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Abstract

We establish an Alhfors-regularity result for minimizers of a multiphase optimal design problem.
It is a variant of the classical variational problem which involves a finite number of chambers
Epiq of prescribed volume that partition a given domain Ω � Rn. The cost functional associated
with a configuration ptEpiqui, uq is made up of the perimeter of the partition interfaces and a
Dirichlet energy term, which is discontinuous across the interfaces. We prove that the union of
the optimal interfaces is pn� 1q-Alhfors-regular via a penalization method and decay estimates
of the energy.
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1 Introduction

The problem of partitioning an open domain into regions with minimal interface has deep roots
in both classical geometry and modern variational analysis. Formally, the goal is to partition an
open set Ω � Rn into a finite collection of disjoint subsets tEpiquNi�1 such that their union covers Ω
(up to a set of measure zero) and they minimize the total interfacial energy, basically interpreted
as the pn � 1q-dimensional Hausdorff measure of the common boundaries. A celebrated example
in two dimensions is the Honeycomb Conjecture, resolved by T. C. Hales [17], which states that
the regular hexagonal tiling minimizes the total perimeter among all partitions of the plane into
regions of equal area.

Such partition problems generalize classical isoperimetric inequalities and are intimately con-
nected to the theory of minimal surfaces. They also arise naturally in various applications, including
immiscible fluid separation (see [22, 29]), and image segmentation (see [1, 8, 28]).
Mathematically, the problem often involves minimizing an energy functional of the form

PptEpiqu; Ωq �
¸
i j

Hn�1pB�Epiq X B�Epjq X Ωq,

subject to volume constraints |Epiq| � mi. Here, B
�Epiq denotes the reduced boundary of Epiq in the

sense of geometric measure theory, which captures the essential structure of the interface between
phases.

In this paper, we focus on functionals that depend not only on the interfacial energy of a par-
tition, but also on a bulk energy term. To motivate this setting, we refer to the classical problem
of liquid droplets subjected to an external electric field, where the equilibrium configuration is
typically determined by the competition between interfacial and bulk energies. The interfacial en-
ergy, often modeled as proportional to the surface area of the droplet, reflects the action of surface
tension and tends to favor compact shapes, such as spheres, that minimize the surface area for a
given volume.

However, the presence of an external electric field introduces a nonlocal bulk energy that ac-
counts for the interaction of the electric field with the dielectric properties of the droplet and the
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surrounding medium. This contribution is typically expressed through the Dirichlet energy of the
electrostatic potential. The balance between bulk energy and interfacial energy gives rise to a free
boundary variational problem in which the domain itself is an unknown to be optimized. For a
comprehensive study of this model, the reader can refer to the work of Muratov and Novaga, who
have extensively analyzed the variational problems associated with charged liquid droplets, see
[10, 26, 27] and the references therein.

A prototype version of functionals involving bulk and perimeter energies is the following:»
Ω
σEpxq|∇u|2 dx� P pE; Ωq, (1)

with u � u0 prescribed on BΩ and σEpxq � β1E � α1ΩzE , 0   α   β.
This functional was formerly studied in 1993 in two papers by L. Ambrosio & G. Buttazzo and
F.H. Lin (see [2, 23]). Later on, refined regularity results for functionals of type (1) have been
established in [9, 16] and for dimension two in [19, 20, 21]. Furthermore, the same problem has
been studied in the case where both the bulk and interfacial energies are of a more general nature
(see [4, 5, 6, 7, 11, 13, 14, 15, 18, 24]).

In this paper, we study optimal partitions associated with functionals that also depend on a
bulk Dirichlet energy, which is discontinuous across the partition interface. To our knowledge,
there are no regularity results in the literature for this context. The presence of multiple chambers
significantly complicates the study of regularity due to the possibility of triple points or, even worse,
multiple intersections between the chambers.

Some notation is needed. Let Ω � Rn a bounded connected open set and N P N such that
N ¡ 1. An N -partition E of Ω is a family E � tEpiquNi�1 of sets Epiq of finite perimeter with

|Epiq| ¡ 0, @i P t1, . . . , Nu,

|Epiq X Epjq| � 0, @i, j P t1, . . . , Nu, i   j.

Ņ

i�1

|Epiq| � |Ω|.

We introduce the following main functional associated to a partition E :

FpE , wq �
Ņ

i�1

»
Epiq

αi|∇w|2 dx�
1

2

Ņ

i�1

P pEpiq; Ωq, (2)

where the vector α � tαiu
N
i�1 is positive, i.e. αi ¡ 0 for any i P t1, . . . Nu.

The interfaces of the N -partition E of Ω are the Hn�1-rectifiable sets

Eph, kq � B�Ephq X B�Epkq X Ω,

where 0 ¤ h, k ¤ N and h � k.
Given tdiu

N
i�1 such that

di P p0, |Ω|q, @i P t1, . . . , Nu and
Ņ

i�1

di � |Ω|,

we consider the minimization of the functional (2) assuming that the measures of the chambers
Epiq are equal to di and the function w is prescribed on the boundary of Ω. More precisely, given
u0 P H

1pΩq, we consider the following constrained problem:

min
 
FpE , vq : E is an N -partition of Ω, |Ei| � di, i � 1, . . . , N, v P u0 �H1

0 pΩq
(
. (Pc)

The aim of the paper is to prove the pn � 1q-Ahlfors-regularity of the interfaces of the optimal
chambers. We recall that a closed set G � Rn is said to be pn� 1q-Ahlfors-regular if there exists a
positive constant CA such that

C�1
A rn�1 ¤ Hn�1pGXBrpx0qq ¤ CAr

n�1, @x0 P G, @r ¡ 0.

In particular, we prove the following theorem.
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Theorem 1.1. Let pE , uq be a minimizer of the problem (Pc) and U � Ω be an open set. Then,
there exist a positive constant CA such that, for every x0 P

�N
k�1 BEpkq X Ω and Brpx0q � U , it

holds

C�1
A rn�1 ¤

Ņ

k�1

P pEpkq;Brpx0qq ¤ CAr
n�1.

Moreover, Hn�1
�
ΩX

�N
k�1 BEpkqz

�N
k�1 B

�Epkq
	
� 0 and

�N
k�1 BEpkq is pn� 1q-Ahlfors-regular.

The strategy of the proof of Theorem 1.1 follows a well-established path. First, we show
that minimizers of (Pc) are indeed also minimizer for a penalized problem without constraint (see
Theorem 2.1). Afterwards, the proof follows by combining the upper and lower density estimates
for the minimizers of the penalized problem contained in Theorem 3.2 and Theorem 3.4.

2 From constrained to penalized problem

In the following theorem, we show that volume-constrained minimizers of (Pc) are, in fact, uncon-
strained Λ-minimizers of the functional F defined in (2) (see Definition 2.2 below). This type of
relaxation of the volume constraint is standard in problems of this nature. To obtain this result,
we employ a technique introduced in [12], which, in our setting, is more intricate and requires a
suitable adaptation due to the presence of multiple chambers.

Theorem 2.1. There exist Λ0 ¡ 0 such that if pE , uq is a minimizer of the functional

FΛpA, wq �
Ņ

i�1

»
Apiq

αi|∇w|2 dx�
1

2

Ņ

i�1

P pApiq; Ωq � Λ
Ņ

i�1

��|Apiq| � di
��, (3)

for some Λ ¥ Λ0, among all configurations pA, wq such that w � u0 on BΩ, then |E | � d and pE , uq
is a minimizer of problem (Pc). Conversely, if pE , uq is a minimizer of problem (Pc) among all
configurations pA, wq such that w � u0 on BΩ, then it is a minimizer of (3), for all Λ ¥ Λ0.

Proof. The first part of the theorem can be proved by contradiction. We assume that there exist
a positive sequence pΛhqhPN such that Λh Ñ �8, as h Ñ �8, and a sequence of configurations
pEh, uhq minimizing FΛh

and such that uh � u0 on BΩ and |Eh| � d, for all h P N. We choose an
arbitrary fixed partition E0 of Ω such that |E0| � d. We point out that

FΛh
pEh, uhq ¤ FpE0, u0q :� Θ. (4)

Our aim is to show that there exists a configuration prEh, ũhq such that, for h sufficiently large,
FΛh

prEh, ũhq   FΛh
pEh, uhq, thus proving the result by contradiction.

By condition (4), it follows that the sequence puhqhPN is bounded in H1pΩq, the perimeter of the
partition Eh in Ω is uniformly bounded and |Ehpiq| Ñ di, for any i P t1, . . . , Nu. Therefore, possibly
extracting a not relabelled subsequence, we may assume that there exists a configuration pE , uq such
that uh converges to u weakly in H1pΩq, 1Ehpiq Ñ 1Epiq a.e. in Ω, where the collection E � tEpiquNi�1

is a partition of Ω and |E | � d. The couple pE , uq will be used as a reference configuration for the
definition of prEh, ũhq.

By appropriately rearranging the order of the chambers, we can assume that there exists an
i P t1, . . . , Nu such that |Ehpiq|   di, for any h P N. Since

Ņ

j�1

|Ehpjq| � |Ω| �
Ņ

j�1

dj ,

we can also assume that there exists j P t1, . . . , Nu such that |Ehpjq| ¡ dj , for any h P N.
Let 0 ¤ i, j ¤ N , i � j. We say that Epiq and Epjq are neighboring chambers, if Hn�1pEpi, jqq ¡ 0.
If there exist two neighboring chambers Epiq and Epjq with |Ehpiq|   di and |Ehpjq| ¡ dj , then

we can argue exactly as in [12] to construct the configuration prEh, ũhq. Otherwise we will work
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with the pair of chambers Epiq and Epjq with with |Ehpiq|   di and |Ehpjq| ¡ dj that are the
closest in a suitable sense. More precisely, for i, j P t1, . . . , Nu, we denote by cij the order of link
between the chambers Epiq and Epjq that is defined as the minimum number m such that there
exist chambers Epk1q, � � � Epkmq, such that Epiq is neighboring Epk1q, Epjq is neighboring Epkmq and
Epklq is neighboring Epkl�1q for any l P t1, . . . ,m � 1u. We identify i and j as the indices of two
chambers such that

pi, jq � argmintcij : pi, jq P t1, . . . , Nu, |Ehpiq|   di, |Ehpjq| ¡ dju.

Therefore there existsm P N such that Ehpiq and Ehpjq are linked through some chambers Ehpk1q, . . . , Ehpkmq,
where kℓ P t1, . . . , Nuzti, ju and |Ehpkℓq| � dkℓ , for any ℓ P t1, . . . , Nu.
We may also assume that there is only one intermediate chamber. i.e. m � 1 or equivalently that
cij � 1 as in the other case the construction can be carried over in a similar way.

Then, for simplicity, up to relabeling the chambers, we will assume that i � 1, j � 3, c13 � 1
and Ehp2q is the linking chamber between Ehp1q and Ehp3q, with

|Ehp1q|   d1, |Ehp2q| � d2, |Ehp3q| ¡ d3.

Step 1. Construction of pẼh, ũhq. Let us choose pσ1qh P R and pσ2qh such that

pσ1qh P

�
0, αmin

"
1

2n
,
|d1 � |Ehp1q||

n2n�1

*

, (5)

pσ2qh P

�
0,min

"
1

2n
,
|d2 � |Ehp2q||

n2n�1

*

, (6)

where α � αpn,Nq P p0, 1q is a constant that will be chosen later. We fix ℓ P t1, 2u. Since the
three chambers are linked, the set B�EpℓqX B�Epℓ� 1qXΩ is not empty. Thus, we can take a point
xℓ P B

�Epℓq X B�Epℓ� 1q X Ω such that

lim
ρÑ0�

|Epℓq XBρpxℓq|

ωnρn
� lim

ρÑ0�

|Epℓ� 1q XBρpxℓq|

ωnρn
�

1

2
.

Since

1 �
|Bρpxℓq|

ωnρn
�
|Epℓq XBρpxℓq|

ωnρn
�
|Epℓ� 1q XBρpxℓq|

ωnρn
�

Ņ

k�1
k�ℓ,ℓ�1

|Epkq XBrpxℓq|

ωnρn
,

there exists η P p0,min
 distpx1,x2q

2 , 1
(
q such that if 0   r   η, then

Ņ

j�1
j�ℓ,ℓ�1

|Epjq XBrpxℓq|   κ min
i�1,2

pσiqhr
n, (7)

for some positive constant κ that will be chosen later and h sufficiently large. By De Giorgi
structure theorem for sets of finite perimeter, 1Epℓq�xℓ

r

Ñ 1Hℓ
in L1

locpRnq, as r Ñ 0�, where

Hℓ � txz, νEpℓqpxlqy   0u � txz, νEpℓ�1qpxlqy ¡ 0u. Let yℓ P B1zHℓ be the point

yℓ �
νEpℓqpxlq

2
� �

νEpℓ�1qpxlq

2
.

Therefore, there exists 0   r   η such that (7) holds and����Epℓq � xℓ
r

XB1{2pyℓq

����   ε,

����Epℓq � xℓ
r

XB1pyℓq

���� ¡ 1

2n�2
.
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Setting x1ℓ :� xℓ � ryℓ, from the convergence of Eh to E , we have that, for h sufficiently large,

|EhpℓqXBr{2px
1
ℓq|   εrn, |EhpℓqXBrpx

1
ℓq| ¡

rn

2n�2
,

Ņ

j�1
j�ℓ,ℓ�1

|EhpjqXBrpxℓq|   κ min
i�1,2

pσiqhr
n, (8)

where κ will be chosen later. We remark that, since r   η, Brpx1q and Brpx2q are disjoint.
Now we define the following bi-Lipschitz map used in [12] which maps Brp0q into itself:

Ψpxq :�

$'''&'''%
�
1� pσℓqh

�
2n � 1

��
x if |x|  

r

2
,

x� pσℓqh

�
1�

rn

|x|n



x if

r

2
¤ |x|   r,

x if |x| ¥ r.

We denote the corresponding action localized in the ball Brpx
1
ℓq by

Φℓpxq � x1ℓ �Ψpx� x1ℓq, @x P Rn.

In the sequel, we will use some estimates for the map Φℓ that can be easily obtained by direct
computations (see [12] for the explicit calculations). These estimates are trivial for |x� x1ℓ|   r{2,
whereas they can be deduced by the explicit expression of ∇Ψ for r{2   |x� x1ℓ|   r, that is

BpΦℓqi
Bxj

pxq � δij � pσℓqh

��
1�

rn

|x� x1ℓ|
n



δij � nrn

px� x1ℓqipx� x1ℓqj
|x� x1ℓ|

n�2

�
, @i, j P t1, . . . , nu.

There exists a positive constant C � Cpnq depending only on n such that,∥∥∇Φ�1
ℓ pyq � I

∥∥ ¤ Cpnqpσℓqh, @y P Brpx
1
ℓq, (9)

1� Cpnqpσℓqh ¤ JΦℓpxq ¤ 1� n2npσℓqh, @x P Brpx
1
ℓqzB r

2
px1ℓq. (10)

1� np2n � 1qpσℓqh ¤ JΦℓpxq ¤ 1� p2n � 1qpσℓqh, @x P B r
2
px1ℓq. (11)

Accordingly, for j � ℓ, ℓ� 1, we estimate,���|ΦℓpEhpjq XBrpx
1
ℓqq| � |Ehpjq XBrpx

1
ℓq|
���

¤

»
EhpjqXBrpx1ℓq

|JΦℓ � 1| dx ¤ n2npσℓqh|Ehpjq XBrpx
1
ℓq| ¤ n2nκ min

jPt1,2u
pσjqhr

n, (12)

whenever, for j � ℓ, ℓ� 1,���|ΦℓpEhpjq XBrpx
1
ℓqq| � |Ehpjq XBrpx

1
ℓq|
���

¤

»
EhpjqXBrpx1ℓq

|JΦℓ � 1| dx ¤ n2npσℓqh|Ehpjq XBrpx
1
ℓq| ¤ n2npσℓqhr

n. (13)

We define

Φ :� Φ1 � Φ2, Ẽh :� tΦpEhpiqquNi�1, ũh :� uh � Φ
�1, (14)

and remark that Φ act in not trivial way only in Brpx
1
1q and Brpx

1
2q, leaving anything unchanged

outside these balls.
Step 2. Φ does not modify too much |Ehp1q| and |Ehp3q|.

Let us show that under conditions (5) , (6) on pσ1qh and pσ2qh, it results

|ΦpEhp1qq|   d1, (15)

|ΦpEhp3qq| ¡ d3. (16)
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Since the application of the map Φ leaves the measure unchanged outside Brpx
1
1q YBrpx

1
2q, we can

evaluate the differences in measure solely within Brpx
1
1q YBrpx

1
2q. We have that���|ΦpEhp1qq| � |Ehp1q|

���
¤

���|Φ1pEhp1q XBrpx
1
1qq| � |Ehp1q XBrpx

1
1q|

���� ���|Φ2pEhp1q XBrpx
1
2qq| � |Ehp1q XBrpx

1
2q|

���.
Applying (12) and (13), by the choice of pσ1qh we deduce

|ΦpEhp1qq| ¤ |Ehp1q| � n2n�1pσ1qh   d1.

The same argument can be applied to chamber Ehp3q under the transformation by the map Φ; that
is, we have���|ΦpEhp3qq| � |Ehp3q|

���
¤

���|Φ1pEhp3q XBrpx
1
1qq| � |Ehp3q XBrpx

1
1q|

���� ���|Φ2pEhp3q XBrpx
1
2qq| � |Ehp3q XBrpx

1
2q|

���.
Using again (12) and (13), by the choice of pσ2qh we deduce

|ΦpEhp3qq| ¥ |Ehp3q| � n2n�1pσ2qh ¡ d3.

Step 3. The choice of pσ2qh. In this step we prove that for every pσ1qh as in (5) there exists pσ2qh
as in (6) such that

|ΦpEhp2qq| � d2. (17)

To this end, we prove that the action of the map Φ results in an increase in the measure of
Ehp2q X Brpx

1
2q and a decrease in the measure of Ehp2q X Brpx

1
1q, modulated by the parameters

pσ2qh and pσ1qh. Precisely we prove that there exist two positive constants Cg � Cgpnq and
Cl � Clpnq such that

Gh :� |Φ2pEhp2qq XBrpx
1
2q| � |Ehp2q XBrpx

1
2q| ¥ Cgpnqpσ2qhr

n, (18)

Lh :� |Ehp2q XBrpx
1
1q| � |Φ1pEhp2qq XBrpx

1
1q| ¥ Clpnqpσ1qhr

n. (19)

With this notations (17) can be rephrased

Gh � Lh

Inequality (18) is the simplest to prove. Indeed, taking the estimates (10) and (11) on JΦ2 and (8)
into account, we have that

Gh � |Φ2pEhp2qq XBrpx
1
2q| � |Ehp2q XBrpx

1
2q| �

»
Ehp2qXBrpx12q

pJΦ2 � 1q dx (20)

�

»
Ehp2qXB r

2
px12q

pJΦ2 � 1q dx�

»
Ehp2qXpBrpx12qzB r

2
px12qq

pJΦ2 � 1q dx

¥ �εn
�
2n � 1

�
pσ2qhr

n � Cpnq

�
ωn

2n�2
� ε



pσ2qhr

n

�

��
� n

�
2n � 1

�
� Cpnq

�
ε� Cpnq

ωn

2n�2



pσ2qhr

n � Cgpnqpσ2qhr
n,

where ε is chosen small enough in such a way that Cgpnq ¡ 0.
To prove (19), we first note that by employing exactly the same computations used to establish

(18), we deduce that Ehp1q increases in measure within Brpx
1
1q. Specifically, we have that

|Φ1pEhp1qq XBrpx
1
1q| � |Ehp1q XBrpx

1
1q| ¥ Cgpnqpσ1qhr

n. (21)
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Since the total measure of the ball Brpx
1
1q is preserved by the map Φ1 we have that

Ņ

j�1

|Φ1pEhpjqq XBrpx
1
1q| �

Ņ

j�1

|Ehpjqq XBrpx
1
1q|,

consequently we deduce

|Ehp2q XBrpx
1
1q| � |Φ1pEhp2qq XBrpx

1
1q|

� |Φ1pEhp1qq XBrpx
1
1q| � |Ehp1q XBrpx

1
2q| �

Ņ

j�1
j�1,2

�
|Φ1pEhpjqq XBrpx

1
1q| � |Ehpjq XBrpx

1
1q|

�
¥ Cgpnqpσ1qhr

n � κnpN � 2q2npσ1qhr
n � rCgpnq � κnpN � 2q2nspσ1qhr

n,

where we used (21) and (12). Therefore (19) is proved with Clpnq � Cgpnq{2 if we chose κ �
Cgpnq{

�
npN � 2q2n�1

�
. If we denote with Cm

g and Cm
l the greatest constant such that (18) and

(19) holds true we deduce that

|Φ2pEhp2qq XBrpx
1
2q| � |Ehp2q XBrpx

1
2q| � Cm

g pnqpσ2qhr
n

|Ehp2q XBrpx
1
1q| � |Φ1pEhp2qq XBrpx

1
1q| � Cm

l pnqpσ1qhr
n.

Finally we can conclude observing that

Gh � Lh � rCm
g pnqpσ2qh � Cm

l pnqpσ1qhsr
n.

Then (17) is proved if we choose pσ2qh �
Cm

l pnq

Cm
g pnqpσ1qh.

Step 4: Reaching a contradiction. Finally, we prove that the perturbation defined in (14) leads
to a decrease in energy, namely

FΛh
pEh, uhq � FΛh

pẼh, ũhq ¡ 0,

which contradicts the minimality of pEh, uhq. For convenience of notation, we reformulate the
energy difference by setting

FΛh
pEh, uhq � FΛh

pẼh, ũhq

�
Ņ

i�1

2̧

ℓ�1

�»
Brpx1ℓq

σEhpiq|∇uh|
2 dx�

»
Brpx1ℓq

σΦℓpEhpiqq|∇puh � Φ
�1
ℓ q|2 dx

�

�
1

2

Ņ

i�1

2̧

ℓ�1

�
P pEhpiq, Brpx

1
ℓqq � P pΦℓpEhpiqq, Brpx

1
ℓqq

�
� Λh

Ņ

i�1

r||Ehpiq| � di| � ||ΦpEhpiqq| � di|s � I1,h � I2,h � I3,h. (22)

Substep 1. Estimate of I1,h. Performing the change of variables y � Φℓpxq, and observing that
1ΦpEhpiqq � Φ � 1Ehpiq, we get

I1,h �
Ņ

i�1

2̧

ℓ�1

»
Brpx1ℓq

σEhpiqpxq
�
|∇uhpxq|2 �

��∇uhpxq �∇Φ�1
ℓ pΦℓpxqq

��2JΦℓpxq
�
dx � A1,h �A2,h,

whereA1,h stands for the above integral overB r
2
px1ℓq andA2,h for the same integral overBrpx

1
ℓqzB r

2
px1ℓq.

Using the explicit expressions of ∇Φ�1
ℓ and JΦ, which remain constant inside B r

2
px1ℓq, we easily get

A1,h �
Ņ

i�1

2̧

ℓ�1

»
B r

2
px1ℓq

σEhpiq|∇uh|
2
!
1�

�
1� pσℓqhp2

n � 1q
�n�2

)
dx ¥ 0.
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Inside Brpx
1
ℓqzB r

2
px1ℓq, even though ∇Φ�1

ℓ is not constant, we can use (9) and (10) to obtain

A1,h ¥
Ņ

i�1

2̧

ℓ�1

»
Brpx1ℓqzB r

2
px1ℓq

σEhpiq|∇uh|
2
!
1�

�
1� pσℓqh

�
2n � 1

���2�
1� 2nnpσℓqh

�)
dx

¥ �cpnq
Ņ

i�1

2̧

ℓ�1

pσℓqh

»
Brpx1ℓqzB r

2
px1ℓq

σEhpiq|∇uh|
2 dx

¥ �cpnqΘppσ1qh � pσ2qhq,

where we also used (4), thus getting

I1,h ¥ �C1Θppσ1qh � pσ2qhq, (23)

for some positive constant C1 � C1pnq.
Substep 2. Estimate of I2,h. In order to estimate I2,h, we can use the area formula for maps

between rectifiable sets. If we denote by T ℓ,i
h,x the tangential gradient of Φℓ along the approximate

tangent space to B�Ehpiq in x and
�
T ℓ,i
h,x

��
is the adjoint of the map T ℓ,i

h,x, the pn � 1q-dimensional

jacobian of T ℓ,i
h,x is given by

Jn�1T
ℓ,i
h,x �

b
det

��
T ℓ,i
h,x

��
� T ℓ,i

h,x

�
.

Thereafter we can estimate

Jn�1T
ℓ,i
h,x ¤ 1� pσℓqh � 2npn� 1qpσℓqh. (24)

We address the reader to [12] where explicit calculations are given. In order to estimate I2,h, we
use the area formula for maps between rectifiable sets ([3, Theorem 2.91]), thus getting

I2,h �
Ņ

i�1

2̧

ℓ�1

�
P pEhpiq;Brpx

1
ℓqq � P pΦℓpEhq;Brpx

1
ℓqq

�
�

Ņ

i�1

2̧

ℓ�1

� »
B�EhpiqXBrpx1ℓq

dHn�1 �

»
B�EhpiqXBrpx1ℓq

Jn�1T
ℓ,i
h,x dH

n�1

�

�
Ņ

i�1

2̧

ℓ�1

� »
B�EhpiqXBrpx1ℓqzB r

2
px1ℓq

�
1� Jn�1T

ℓ,i
h,x

	
dHn�1

�

»
B�EhpiqXB r

2
px1ℓq

�
1� Jn�1T

ℓ,i
h,x

	
dHn�1

�
.

Notice that the last integral in the above formula is non-negative since Φℓ is a contraction in B r
2
,

hence Jn�1T
ℓ,i
h,x   1 in Br{2, while from (24) we have

Ņ

i�1

2̧

ℓ�1

»
B�EhpiqXBrpx1ℓqzB r

2
px1ℓq

�
1� Jn�1T

ℓ,i
h,x

	
dHn�1

¥ �2nnppσ1qh � pσ2qhq
Ņ

i�1

P pEhpiq;Brpx
1
ℓqq ¥ �2nnΘppσ1qh � pσ2qhq

�: �C2pn,Θqppσ1qh � pσ2qhq,

thus concluding that
I2,h ¥ �C2pn,Θqppσ1qh � pσ2qhq. (25)

Substep 3. Estimate of I3,h. Taking (15), (16) and (17) into account, we split I3,h in three addends
as follows:

Λ�1
h I3,h �

�
|ΦpEhp1qq| � Ehp1q|

�
�
�
|Ehp3q| � |ΦpEhp3qq|

�
8



�
Ņ

i�4

���|Ehpiq| � di
��� ��|ΦpEhpiqq| � di

��� � B1,h �B2,h �B3,h. (26)

We estimate the addends separately. For i ¡ 3, by (12) we have��|Ehpiq| � di| �
��|ΦpEhpiqq| � di

�� ¤ ��|Ehpiq| � |ΦpEhpiqq|
��

¤
��|Ehpiq XBrpx

1
1q| � |Φ1pEhpiq XBrpx

1
1qq|

��� ��|Ehpiq XBrpx
1
2q| � |Φ2pEhpiq XBrpx

1
2qq|

��
¤ n2n�1κ min

jPt1,2u
pσjqhr

n.

Therefore, we have
B3,h ¥ �npN � 3q2n�1κ min

jPt1,2u
pσjqhr

n. (27)

Regarding B1,h, we use (21) and (12) to get

B1,h � |ΦpEhp1qq| � |Ehp1q|
�

�
|Φ1pEhp1qq XBrpx

1
1q| � |Ehp1q XBrpx

1
1q|

�
�
�
|Φ2pEhp1qq XBrpx

1
2q| � |Ehp1q XBrpx

1
2q|

�
¥ Cgpnqpσ1qhr

n � n2npσ2qhκr
n. (28)

Similarly, we can estimate B2,h in Brpx
1
2q observing that the total measure of the ball Brpx

1
2q is

preserved by the map Φ2, that is

Ņ

j�1

|Φ2pEhpjqq XBrpx
1
2q| �

Ņ

j�1

|Ehpjqq XBrpx
1
2q|.

Accordingly, using (20) and (12), we deduce that

|Ehp3q XBrpx
1
2q| � |Φ2pEhp3qq XBrpx

1
2q|

�
�
|Φ2pEhp2q XBrpx

1
2qq| � |Ehp2q XBrpx

1
2q|

�
�

¸
j�2,3

�
|Φ2pEhpjqq XBrpx

1
2q| � Ehpjq XBrpx

1
2q|

�
¥ Cgpnqpσ2qhr

n � n2npN � 2qκ min
iPt1,2u

pσiqhr
n.

Therefore, we can conclude, using again (12),

B2,h � |Ehp3q| � |ΦpEhp3qq|
�

�
|Ehp3q XBrpx

1
2q| � |Φ2pEhp3qq XBrpx

1
2q|

�
�
�
|Ehp3q XBrpx

1
1q| � |Φ1pEhp3qq XBrpx

1
1q|

�
¥ Cgpnqpσ2qhr

n � n2npN � 2qκ min
iPt1,2u

pσiqhr
n � n2nκpσ1qhr

n

� Cgpnqpσ2qhr
n � n2npN � 1qκ min

iPt1,2u
pσiqhr

n. (29)

Finally, combining (26), (27), (28) and (29), we conclude that

I3,h ¥ Λh

�
Cgpnq � n2npN � 1qκ

�
ppσ1qh � pσ2qhqr

n. (30)

Substep 4. The contradiction. Inserting (23), (25), (30) in (22), we conclude that

I1,h � I2,h � I3,h ¥ rpσ1qh � pσ2qhs
�
� C1Θ� C2 � Λh

�
Cgpnqr

n � n2npN � 1qκrn
��
¡ 0,

if κ � κpn,Nq is sufficiently small and Λh ¥ Λ0 � Λ0pn,N,Θq. This contradicts the minimality of
pEh, uhq, thus concluding the proof.

The previous theorem motivates the following definition.

Definition 2.2 (Λ-minimizers). The energy pair pE , uq is a Λ-minimizer in Ω of the functional F ,
defined in (2), if and only if for every Brpx0q � Ω it holds that

FpE , u;Brpx0qq ¤ FpG, v;Brpx0qq � Λ
Ņ

i�1

|Gpkq∆Epkq|,

whenever pG, vq is an admissible test pair, namely, G is an N -partion of Ω such that Gpkq∆Epkq ��
Brpx0q and v � u P H1

0 pBrpx0qq.
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3 Energy decay estimates

We start by proving a fundamental lemma which establishes that, for any ball that is either almost
entirely contained within a single chamber or lies at the interface of only two chambers, the Dirichlet
part of the functional satisfies a favorable decay estimate.

Lemma 3.1. Let pE , uq be a Λ-minimizer of the functional F defined in (2). There exists τ0 P p0, 1q
such that the following statement is true: for all τ P p0, τ0q there exists ε1 � ε1pτq ¡ 0 such that if
Brpx0q �� Ω and one of the following conditions holds:

(i) There exists i P t1, . . . , Nu such that |EpkqXBrpx0q|
|Brpx0q|

  ε1, for any k � i,

(ii) There exist i, j P t1, . . . , Nu and a half-space H such that |pEpiqzHqXBrpx0q|
|Brpx0q|

  ε1,
|pEpjqXHqXBrpx0q|

|Brpx0q|
  ε1 and |EpkqXBrpx0q|

|Brpx0q|
  ε1, for any k � i, j,

then »
Bτrpx0q

|∇u|2 dx ¤ C1τ
n

»
Brpx0q

|∇u|2 dx,

for some positive constant C1 � C1pn,N, αkq.

Proof. Let us fix Brpx0q �� Ω and 0   τ   1. Without loss of generality, we may assume that
τ   1{2 and x0 � 0. We start proving (i). We denote by v the harmonic function in B r

2
satisfying

the condition v � u on BrzB r
2
. Let ϕ P H1

0 pB r
2
q. It holds that»

B r
2

x∇v,∇ϕy dx � 0. (31)

On the other hand, u solves the following equation:

αi

»
B r

2
XEpiq

x∇u,∇ϕy dx � �
¸
k�i

αk

»
B r

2
XEpkq

x∇u,∇ϕy dx. (32)

Adding the equation

αi

»
B r

2
zEpiq

x∇u,∇ϕy dx � αi

¸
k�i

»
B r

2
XEpkq

x∇u,∇ϕy dx,

to (32) and dividing by αi, we obtain»
B r

2

x∇u,∇ϕy dx � 1

αi

¸
k�i

pαi � αkq

»
B r

2
XEpkq

x∇u,∇ϕy dx.

Now we choose ϕ :� v � u and we subtract (31) from the previous equation, getting»
B r

2

|∇pv � uq|2 dx �
1

αi

¸
k�i

pαi � αkq

»
B r

2
XEpkq

x∇u,∇ϕy dx

¤
α

αi

¸
k�i

»
B r

2
XEpkq

|x∇u,∇ϕy| dx

¤
α

αi

�¸
k�i

»
B r

2
XEpkq

|∇u|2 dx

� 1
2�»

B r
2

|∇pv � uq|2 dx


 1
2

,

where we have denoted α :� maxk |αi � αk|. Thus we infer that»
Bτr

|∇pv � uq|2 dx ¤

�
α

αi


2 ¸
k�i

»
B r

2
XEpkq

|∇u|2 dx.
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By the higher integrability for quadratic functional, (see for example [16, Lemma 2.2], where an
explicit calculation of the constants is provided)

�

»
B r

2

|∇u|2pdx ¤ C
�
�

»
Br

|∇u|2dx
	p
,

for some p and C both depending on n, α. Then using Hölder inequality, we deduce

»
Bτr

|∇pv � uq|2 dx ¤ C
1
p

�
α

αi


2 ¸
k�i

�
|Epkq XBr|

|Br|


1� 1
p
»
Br

|∇u|2 dx.

We choose ε1 such that ε
1� 1

p

1 � τn. Since v is harmonic, we finally get»
Bτr

|∇u|2 dx ¤ 2

»
Bτr

|∇pv � uq|2 dx� 2

»
Bτr

|∇v|2 dx

¤ C
1
p

�
α

αi


2

τn
»
Br

|∇u|2 dx� 2n�1τn
»
Br

|∇v|2 dx

¤ Cpn,N, α, αiqτ
n

»
Br

|∇u|2 dx,

where we have also used the minimality of v.
We are left with case (ii). We denote by v the minimizer of the energy»

B r
2

pαi1H � αj1B r
2
zHq|∇v|2 dx,

with the condition v � u on BrzB r
2
. Let ϕ P H1

0 pB r
2
q. It holds that

αi

»
B r

2
XH

x∇v,∇ϕy dx� αj

»
B r

2
zH
x∇v,∇ϕy dx � 0. (33)

Now we rewrite the equation (32).

αi

»
B r

2
XEpiq

x∇u,∇ϕy dx� αj

»
B r

2
XEpjq

x∇u,∇ϕy dx�
¸

k�i,j

αk

»
B r

2
XEpkq

x∇u,∇ϕy dx � 0. (34)

We decompose

αi

»
B r

2
XEpiq

x∇u,∇ϕy dx � αi

»
B r

2
XEpiqXH

x∇u,∇ϕy dx� αi

»
B r

2
XEpiqzH

x∇u,∇ϕy dx

� αi

»
B r

2
XH

x∇u,∇ϕy dx� αi

�»
B r

2
XEpiqzH

x∇u,∇ϕy dx

�

»
B r

2
XEpjqXH

x∇u,∇ϕy dx�
¸

k�i,j

»
B r

2
XEpkqXH

x∇u,∇ϕy dx



(35)

and similarly

αj

»
B r

2
XEpjq

x∇u,∇ϕy dx � αj

»
B r

2
zH
x∇u,∇ϕy dx� αj

�»
B r

2
XEpjqXH

x∇u,∇ϕy dx

�

»
B r

2
XEpiqzH

x∇u,∇ϕy dx�
¸

k�i,j

»
B r

2
XEpkqzH

x∇u,∇ϕy dx


. (36)
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Inserting (35) and (36) in (34), we deduce that

αi

»
B r

2
XH

x∇u,∇ϕy dx� αj

»
B r

2
zH
x∇u,∇ϕy dx

� pαi � αjq

»
B r

2
XEpjqXH

x∇u,∇ϕy dx� pαj � αiq

»
B r

2
XEpiqzH

x∇u,∇ϕy dx

�
¸

k�i,j

�
αi

»
B r

2
XEpkqXH

x∇u,∇ϕy dx� αj

»
B r

2
XEpkqzH

x∇u,∇ϕy dx� αk

»
B r

2
XEpkq

x∇u,∇ϕy dx


.

Choosing ϕ :� v�u, subtracting (33) from the previous equation and applying Hölder’s inequality,
we get

mintαi, αju

»
B r

2

|∇pu� vq|2 dx ¤ max
k�1...N

αk

� »
B r

2
XEpjqXH

|∇u|2 dx�
»
B r

2
XEpiqzH

|∇u|2 dx

�
¸

k�i,j

�»
B r

2
XEpkqXH

|∇u|2 dx�
»
B r

2
XEpkqzH

|∇u|2 dx�
»
B r

2
XEpkq

|∇u|2 dx

� 1

2�»
B r

2

|∇pu� vq|2 dx


 1
2

.

Thus»
Bτr

|∇pu� vq|2 dx ¤ Cpαq

�»
B r

2
XpEpjqXHq

|∇u|2 dx�
»
B r

2
XpEpiqzHq

|∇u|2 dx�
¸

k�i,j

»
B r

2
XEpkq

|∇u|2 dx


.

Arguing as above, the higher integrability of ∇u and Hölder’s inequality yield

»
B r

2
XpEpjqXHq

|∇u|2 dx ¤ C
1
p

�
|pEpjq XHq XB r

2
|

|B r
2
|

�1� 1
p »

Br

|∇u|2 dx,

»
B r

2
XpEpiqzHq

|∇u|2 dx ¤ C
1
p

�
|pEpiqzHq XB r

2
|

|B r
2
|

�1� 1
p »

Br

|∇u|2 dx,

»
B r

2
XEpkq

|∇u|2 dx ¤ C
1
p

�
|Epkq XB r

2
|

|B r
2
|


1� 1
p
»
Br

|∇u|2 dx, @k � i, j.

Choosing ε1 such that Nε
1� 1

p

1 � τn and making the same computations as before we obtain the
thesis.

Theorem 3.2 (Density upper bound). Let pE , uq be a Λ-minimizer of the functional F defined in
(2). Then, for any open set U � Ω there exists a positive constant C2 � C2pn,N,Λ, αq such that

FpE , u;Brpx0qq ¤ C2r
n�1, (37)

for any Brpx0q � U .

Proof. Let Brpx0q � U � Ω. Let i P t1, . . . , Nu such that αi :� minjPt1,...,Nu αj . We may assume
that x0 � 0 and i � 1. We define:

Fp1q :� Ep1q YBr,

Fphq :� EphqzBr, @h P t2, . . . , Nu.

It holds that

P pFp1q; Ωq � P pEp1qzBr; Ωq �Hn�1pBBrzEp1qq,
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Ņ

h�2

P pFphq; Ωq �
Ņ

h�2

rP pEphqzBr; Ωq �Hn�1pBBr X Ephqqs �
Ņ

h�2

P pEphqzBr; Ωq �Hn�1pBBrzEp1qq.

Using the previous equalities, the minimality of pE , uq with respect to pF , uq yields

Ņ

k�1

αk

»
BrXEpkq

|∇u|2 dx� 1

2

Ņ

k�1

P pEpkq;Brq ¤ α1

»
Br

|∇u|2 dx�Hn�1pBBrzEp1qq � 2Λ|Br|.

It follows that

δα

»
BrzEp1q

|∇u|2 dx� 1

2

Ņ

k�1

P pEpkq;Brq ¤ cpn,Λqrn�1.

where δα � mink�2,...N pαk � α1q. We deduce that»
BrzEp1q

|∇u|2 dx�
Ņ

k�1

P pEpkq;Brq ¤ cpn,Λ, αqrn�1. (38)

This concludes the proof of (37) in BrzEp1q.
It remains to prove that the Dirichlet integral decays in the right way also in Br X Ep1q. This

can be proved by contradiction using a quite standard blow-up argument that we present for the
reader’s convenience.

We prove that there exist τ P
�
0, 12

�
and M ¡ 0 such that for every δ P p0, 1q there exists h0 P N

such that, for any Brpx0q � U , we have»
Brpx0q

|∇u|2 ¤ h0r
n�1 or

»
Bτrpx0q

|∇u|2 dx ¤Mτn�δ

»
Brpx0q

|∇u|2 dx. (39)

Arguing by contradiction, for every τ P
�
0, 12

�
and M ¡ 0 there exists δ P p0, 1q such that for every

h P N there exists a ball Brhpxhq � U such that»
Brh

pxhq
|∇u|2 dx ¡ hrn�1

h (40)

and »
Bτrh

pxhq
|∇u|2 dx ¡Mτn�δ

»
Brh

pxhq
|∇u|2 dx. (41)

We choose M ¡ 1. Note that estimates (38) and (40) yield

Ņ

k�2

»
Brh

pxhqXEpkq
|∇u|2 dx� P pEpkq;Brhpxhqq ¤ c0r

n�1
h  

c0
h

»
Brh

pxhq
|∇u|2 dx, (42)

and so
Ņ

k�2

»
Brh

pxhqXEpkq
|∇u|2 dx   c0

h

»
Brh

pxhq
|∇u|2 dx, (43)

for some positive constant c0.
Now we employ a typical blow-up argument. We set

ς2h :� �

»
Brh

pxhq
|∇u|2 dx

and, for y P B1, we introduce the sequence of rescaled functions defined as

vhpyq :�
upxh � rhyq � ah

ςhrh
, with ah :� �

»
Brh

pxhq
u dx.
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We have ∇upxh � rhyq � ςh∇vhpyq and a change of variable yields

�

»
B1

|∇vhpyq|2 dy �
1

ς2h
�

»
Brh

pxhq
|∇upxq|2 dx � 1.

Therefore, there exist a (not relabeled) subsequence of tvhuhPN and v P H1pB1q such that vh á v
in H1pB1q and vh Ñ v in L2pB1q. Moreover, the semicontinuity of the norm implies

�

»
B1

|∇vpyq|2 dy ¤ lim inf
hÑ8

�

»
B1

|∇vhpyq|2 dy � 1.

Let us define the sets

E�h pkq :�
Epkq � xh

rh
XB1.

We rewrite the inequalities (40), (41) and (43). They become, respectively,

ς2h ¡
h

rh
,

�

»
Bτ

|∇vhpyq|2 dy ¡Mτ�δ, (44)

Ņ

k�2

»
B1XE�pkq

|∇vhpyq|2 dy  
c0
h

»
B1

|∇vhpyq|2 dy �
c0ωn

h
. (45)

To achieve the desired contradiction, it remains to show that the sequence vh cannot fulfill (44) e
(45) because its limit v minimizes the Dirichlet functional. Nevertheless, to establish a connection
between the decay properties of ∇v and ∇vh we must prove that the L2-norm of vh converges to
the L2-norm of v. Observe that (44) implies that ςh Ñ8, as hÑ8.

Since rn�1
h P pE�h pkq;B1q � P pEpkq;Brhpxhqq, by (42), we have that the sequence tP pE�h pkq;B1quhPN

is bounded for any k P t2, . . . , Nu. Therefore, up to a not relabeled subsequence, 1E�h pkq
Ñ 1E�pkq

in L1pB1q, for some set E�pkq � B1 of locally finite perimeter. By semicontinuity we deduce that»
B1

1E�pkq|∇v|2 dy ¤ lim inf
hÑ8

»
B1

1E�pkq|∇vh|2 dy (46)

¤ lim inf
hÑ8

�»
B1

1E�h pkq
|∇vh|2dy �

»
B1

1E�pkqzE�h pkq
|∇vh|2dy

	
� 0,

for any k P t2, . . . , Nu, where we used (45) and the equi-integrability of
�
|∇vh|2

�
hPN.

By Λ-minimality of pE , uq with respect to pE , u� ϕq we get, for ϕ P H1
0 pBrhpxhqq,

Ņ

k�1

αk

»
Brh

pxhqXEpkq
|∇u|2 dx ¤

Ņ

k�1

αk

»
Brh

pxhqXEpkq
|∇u�∇ϕ|2 dx

Using the change of variable x � xh � rhy, we deduce for every ψ P H1
0 pB1q

Ņ

k�1

αk

»
B1XE�h pkq

|ςh∇vh|2 dx ¤
Ņ

k�1

αk

»
B1XE�h pkq

|ςh∇vh �∇ψ|2 dx.

Let η P C8
c pB1q such that 0 ¤ η ¤ 1. Choosing as a test function ψh � ςhηpv� vhq, we deduce that»

B1XE�h p1q
η|∇vh|2 dx ¤

»
B1XE�h p1q

η|∇v|2 dx

� Cpαq

�
Ņ

k�2

»
B1XE�h pkq

�
|∇vh|2 � |∇v|2

	
dx�

»
B1

|∇η||v � vh| dx

�
.
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By (45), (46) and the strong convergence of vh to v in L2 we deduce that the last term in the
previous inequality tends to zero as hÑ8, thus obtaining

lim sup
hÑ�8

»
B1

η|∇vh|2 dx ¤
»
B1

η|∇v|2 dx.

By the arbitrariness of η and lower semicontinuity we conclude that ∇vh Ñ ∇v in L2 and v is
harmonic. Thus, since M ¡ 1, by the harmonicity of v and (44) we get

�

»
Bτ

|∇v|2 dy ¤ �

»
B1

|∇v|2 dy ¤ 1 ¤
τ δ

M
lim
hÑ8

�

»
Bτ

|∇vh|2 dy   lim
hÑ8

�

»
Bτ

|∇vh|2 dy � �

»
Bτ

|∇v|2 dy,

which is a contradiction. Once (39) is in force, the conclusion follows in a standard manner by
applying an iteration argument.

We are now in position to prove that in the neighborhoods where the perimeters of the chambers
are small, the energy F decays in an appropriate manner.

Proposition 3.3. Let pE , uq be a Λ-minimizer of the functional F defined in (2). Then, for any
τ P p0, 1q there exists ε2 � ε2pτq ¡ 0 such that, if for Brpx0q � Ω

P pEpkq;Brpx0qq   ε2r
n�1, @k P t1, . . . , Nu, (47)

then

FpE , u;Bτrpx0qq ¤ C3τ
npFpE , u;Brpx0qq � Λrnq,

for some positive constant C3 � C3pn,N,Λ, αq.

Proof. Let Brpx0q � Ω such that (47) holds and τ P p0, 1q. Setting

Erpkq :�
Epkq � x0

r
, Er :� tErpkquNk�1, urpyq :� r�

1
2upx0 � ryq, @y P B1,

scaling (47) we obtain

P pErpkq;B1q   ε2, @k P t1, . . . , Nu.

We need to prove that

FpEr, ur;Bτ q ¤ τnpFpEr, ur;B1q � Λrq.

In what follows, for simplicity of notation, we will still denote Erpkq by Epkq and ur by u and we
explicitly observe that pEpkq, uq is a Λr minimizer of F .

We choose ε2   min
!�

ωn
2cIPN

	n�1
n
, τ pn�1qpn�1q,

�
ωn
cIP

ε1

	 n
n�1

)
, where cIP � cIP pnq is the constant

of the relative isoperimetric inequality and ε1 � ε1pτq is as in Lemma 3.1. We first show that there
exists i P t1, . . . , Nu such that

|B1zEpiq| ¤ cIPP pEpiq;B1q
n

n�1 . (48)

Let us assume by contradiction that the previous inequality is false for any i P t1, . . . , Nu. By the
isoperimetric inequality, we have that

|Epkq XB1| ¤ cIPP pEpkq;B1q
n

n�1 , @k P t1, . . . , Nu.

Thus, by the choice of ε2, we get the following contradiction:

|B1| �
Ņ

k�1

|Epkq XB1| ¤ cIP

Ņ

k�1

P pEpkq;B1q
n

n�1 ¤ cIPNε
n

n�1

2  
ωn

2
.
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Therefore, (48) is proved. We may assume that i � 1 for simplicity. As a consequence we have:

Ņ

k�2

|Epkq XB1| � |B1| � |Ep1q XB1| � |B1zEp1q| ¤ cIPP pEp1q;B1q
n

n�1  
ωn

2
.

The isoperimetric inequality yields

|Epkq XB1| ¤ cIPP pEpkq;B1q
n

n�1 , @k P t2, . . . , Nu.

Since

cIPP pEp1q;B1q
n

n�1 ¥ |B1zEp1q| ¥
» 2τ

τ
Hn�1pBBρzEp1qq dρ,

we can choose ρ P pτ, 2τq such that

Hn�1pBBρzEp1qq ¤
cIP
τ
ε

1
n�1

2 P pEp1q;B1q,

Hn�1pB�Ephq X BBρq � 0, @h P t1, . . . , Nu.

We set

Gp1q :� Ep1q YBρ,

Gpkq :� EphqzBρ, @k P t2, . . . , Nu.

We remark that, pG, uq is an admissible test pair to test the minimality of pE , uq in B1 because
Epkq � Gpkq outside of Bρ for any k P t1, . . . , Nu. Thus

FpE , u;B1q ¤ FpG, u;B1q � Λrρn. (49)

To eliminate the common contribution in B1zBρ in the previous equation we use the following
equalities for the perimeter term:

P pEpkq;B1q � P pEpkq;Bρq � P pEpkq;B1zBρq,

P pGp1q;B1q � P pEp1q;B1zBρq �Hn�1pBBρzEp1qq,

Ņ

h�2

P pGphq;B1q �
Ņ

h�2

rP pEphq;B1zBρq �Hn�1pBBρX Ephqqs

�
Ņ

h�2

P pEphq;B1zBρq �Hn�1pBBρzEp1qq.

Moreover we observe that the choice of ε2 implies that we are in position to apply Lemma 3.1, since

|Ephq XB1| ¤ cIPP pEphq;B1q
n�1
n ¤ cIP ε

n�1
n

2 ¤ ωnε1, @h P t2, . . . , Nu.

Deleting the common term in (49) and applying Lemma 3.1 we conclude:

FpE , u;Bτ q ¤ FpE , u;Bρq

¤ α1

»
Bρ

|∇u|2 dx�Hn�1pBBρzEp1qq � cpnqΛrρn

¤ α1

»
B2τ

|∇u|2 dx� cIP
τ
ε

1
n�1

2 P pEp1q;B1q � cpnqΛrτn

¤ cpn,N, αqτn
»
B1

|∇u|2 dx� cpnqτnP pEp1q;B1q � cpnqΛrτn

¤ cpn,N, αqτnpFpE , u;B1q � Λrq.
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Building upon the previous proposition, we proceed to establish the following theorem, which
states a lower bound estimate for the perimeter of the interfaces of optimal chambers.

Theorem 3.4 (Density lower bound). Let pE , uq be a Λ-minimizer of the functional F defined in
(2) and U � Ω be an open set. Then, there exists a positive constant C4 � C4pn,N,Λ, αq such that,
for every x0 P

�N
k�1 BEpkq X Ω ad Brpx0q � U , it holds

Ņ

k�1

P pEpkq;Brpx0qq ¥ C4r
n�1. (50)

Moreover, Hn�1
�
ΩX

�N
k�1 BEpkqz

�N
k�1 B

�Epkq
	
� 0.

Proof. Since B�Epkq � BEpkq, for any k P t1, . . . , Nu, it is not restrictive to set x0 � 0 P�N
k�1 B

�Epkq X Ω. Fix τ P p0, 1q such that 2C3τ
1{2   1, and fix σ P p0, 1q such that

2C3C2σ  
ε2pτq

2
, (51)

and let r0 be such that
Λr0   min tε2pτq, C2u , (52)

where C2, C3 and ε2 are the constants from Theorem 3.2 and Proposition 3.3. Assume by contra-
diction that for some Br � U with r   r0, we have

Ņ

k�1

P pEpkq;Brpx0qq ¤ ε2pσqr
n�1. (53)

By induction, it is straightforward to show that

FpE , u;Bστhrq ¤ ε2pτqτ
h
2

�
στhr

�n�1
, (54)

for every h ¥ 0. Indeed, for h � 0, using Proposition 3.3 and Theorem 3.2 and conditions (51),
(52) and (53)

FpE , u;Bσrq ¤ C3σ
npC2r

n�1 � Λrnq ¤ 2C3C2σpσrq
n�1 ¤ ε2pτqpσrq

n�1.

Assuming that (54) holds for some h, to prove it also holds h � 1 it suffices to apply Proposition
3.3 again and observe that 2C2τ

1{2   1, together with (52). Indeed, we get

FpE , u;Bστh�1rq ¤ C3τ
n
�
ε2pτqτ

h
2

�
στhr

�n�1
� Λpστhrqn

�
¤ C3ε2pτqτ

n
�
τ

h
2

�
στhr

�n�1
� στh

�
στhr

�n�1
�

¤ ε2pτq2C3τ
1
2 τ

1
2 τn�1τ

h
2

�
στhr

�n�1
¤ ε2pτqτ

h�1
2

�
στh�1r

�n�1

It follows that
1

2

Ņ

k�1

P pEpkq;Bστhrq ¤ ε2pτqτ
h
�
στhr

�n�1
.

Finally, it holds:

lim sup
ρÑ0�

°N
k�1 P pEpkq;Bρq

ρn�1
� lim sup

hÑ�8

°N
k�1 P pEpkq;Bστhrq�

στhr
�n�1 ¤ 2 lim

hÑ�8
ε2pτqτ

h � 0,

which is a contradiction.
We are left to prove that

Hn�1
�
ΩX

N¤
k�1

BEpkqz
N¤
k�1

B�Epkq
	
� 0. (55)
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By the lower bound (50), we get

lim sup
rÑ0�

Hn�1
���N

k�1 B
�Epkq

�
XBrpxq

�
rn�1

� lim sup
rÑ0�

Ņ

k�1

Hn�1pB�Epkq XBrpxqq

rn�1
� lim sup

rÑ0�

Ņ

k�1

P pEpkq;Brpxqq

rn�1
¡ 0, @x P

N¤
k�1

BEpkq X Ω.

On the other hand, by density property of Hn�1-measurable sets with finite measure, see [3, (2.42)],

lim sup
rÑ0�

Hn�1
���N

k�1 B
�Epkq

�
XBrpxq

�
rn�1

� 0, for Hn�1-a.e. x R
N¤
k�1

B�Epkq X Ω,

thus (55) follows.

3.1 Conclusion

Theorem 1.1 summarizes the results obtained in Theorems 3.2 and 3.4, and is a direct consequence
of them. We emphasize that the result concerns the union of the interfaces, but does not necessarily
imply any regularity for the boundary of a single chamber. We believe that such a result could be
achieved provided a suitable infiltration lemma were available. Specifically, if certain chambers of
a minimizing partition occupy most of the ball B2rpxq, then they must entirely fill the smaller ball
Brpxq (cf. [25, Lemma 30.2] in the case of clusters). Establishing such a lemma, however, appears
to be non-trivial due to the lack of sufficiently strong decay estimates for the Dirichlet bulk energy.
However, its validity would represent a major breakthrough, potentially leading to more significant
geometric insights into the chambers and, hopefully, to the regularity of the interface.
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