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Abstract

We establish an Alhfors-regularity result for minimizers of a multiphase optimal design problem.
It is a variant of the classical variational problem which involves a finite number of chambers
E(1) of prescribed volume that partition a given domain 2 € R™. The cost functional associated
with a configuration ({£(7)}, ) is made up of the perimeter of the partition interfaces and a
Dirichlet energy term, which is discontinuous across the interfaces. We prove that the union of
the optimal interfaces is (n — 1)-Alhfors-regular via a penalization method and decay estimates
of the energy.
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1 Introduction

The problem of partitioning an open domain into regions with minimal interface has deep roots
in both classical geometry and modern variational analysis. Formally, the goal is to partition an
open set 2 = R™ into a finite collection of disjoint subsets {£(i)}}¥, such that their union covers Q
(up to a set of measure zero) and they minimize the total interfacial energy, basically interpreted
as the (n — 1)-dimensional Hausdorff measure of the common boundaries. A celebrated example
in two dimensions is the Honeycomb Conjecture, resolved by T. C. Hales [I7], which states that
the regular hexagonal tiling minimizes the total perimeter among all partitions of the plane into
regions of equal area.

Such partition problems generalize classical isoperimetric inequalities and are intimately con-
nected to the theory of minimal surfaces. They also arise naturally in various applications, including
immiscible fluid separation (see [22, [29]), and image segmentation (see [I], 8, 28]).
Mathematically, the problem often involves minimizing an energy functional of the form

PUE()}; Q) = D H T (*EG) n 0*E()) n Q),

1<j

subject to volume constraints |£(7)| = m,. Here, 0*£(i) denotes the reduced boundary of £(¢) in the
sense of geometric measure theory, which captures the essential structure of the interface between
phases.

In this paper, we focus on functionals that depend not only on the interfacial energy of a par-
tition, but also on a bulk energy term. To motivate this setting, we refer to the classical problem
of liquid droplets subjected to an external electric field, where the equilibrium configuration is
typically determined by the competition between interfacial and bulk energies. The interfacial en-
ergy, often modeled as proportional to the surface area of the droplet, reflects the action of surface
tension and tends to favor compact shapes, such as spheres, that minimize the surface area for a
given volume.

However, the presence of an external electric field introduces a nonlocal bulk energy that ac-
counts for the interaction of the electric field with the dielectric properties of the droplet and the



surrounding medium. This contribution is typically expressed through the Dirichlet energy of the
electrostatic potential. The balance between bulk energy and interfacial energy gives rise to a free
boundary variational problem in which the domain itself is an unknown to be optimized. For a
comprehensive study of this model, the reader can refer to the work of Muratov and Novaga, who
have extensively analyzed the variational problems associated with charged liquid droplets, see
[10, 26, 27] and the references therein.

A prototype version of functionals involving bulk and perimeter energies is the following:

J;z UE(x)|Vu|2dx+P(E;Q), (1)

with u = ug prescribed on Q2 and og(z) = flg + algg, 0 < a < S.

This functional was formerly studied in 1993 in two papers by L. Ambrosio & G. Buttazzo and
F.H. Lin (see [2, 23]). Later on, refined regularity results for functionals of type have been
established in [9, 16] and for dimension two in [I9) 20, 2I]. Furthermore, the same problem has
been studied in the case where both the bulk and interfacial energies are of a more general nature
(see [, 5, 16, [7), [T, (13, (14, (15} (18, 24]).

In this paper, we study optimal partitions associated with functionals that also depend on a
bulk Dirichlet energy, which is discontinuous across the partition interface. To our knowledge,
there are no regularity results in the literature for this context. The presence of multiple chambers
significantly complicates the study of regularity due to the possibility of triple points or, even worse,
multiple intersections between the chambers.

Some notation is needed. Let €2 < R™ a bounded connected open set and N € N such that
N > 1. An N-partition € of Q is a family €& = {€(i)}, of sets (i) of finite perimeter with

() >0, Vie{l,..., N},
EG) N EG) =0, Vi,je{l,...,N},i<j.

N
DL IE@] =19l
i=1
We introduce the following main functional associated to a partition &:
N 1 N
FEw) =3 | alVuPde+ ;) PEQ) 2)
i=1vE() i=1
where the vector o = {a;}2Y | is positive, i.e. oy > 0 for any i € {1,... N}.
The interfaces of the N-partition £ of Q are the H" !-rectifiable sets
E(h, k) = 0"E(h) n 0*E(k) N Q,

where 0 < h,k < N and h # k.
Given {d;}}¥, such that

N
di€(0,Q), Vie{l,...,N} and > d; =9,
=1

we consider the minimization of the functional assuming that the measures of the chambers
E(i) are equal to d; and the function w is prescribed on the boundary of 2. More precisely, given
up € H'(Q), we consider the following constrained problem:

min {F(&,v) : € is an N-partition of Q, |&] =d;, i =1,..., N, ve ug + H&(Q)} (P.)

The aim of the paper is to prove the (n — 1)-Ahlfors-regularity of the interfaces of the optimal
chambers. We recall that a closed set G < R" is said to be (n — 1)-Ahlfors-regular if there exists a
positive constant C'4 such that

Ctr" P < HHG A B(xg)) < Car™™t, Vage G, Vr > 0.

In particular, we prove the following theorem.



Theorem 1.1. Let (€,u) be a minimizer of the problem and U € Q be an open set. Then,
there exist a positive constant Cy such that, for every xg € U]kV:1 0E(k) n Q and B,(xg) c U, it
holds

N
C'r" 1 < ) P(E(k); By(wg)) < Car™ .
k=1

Moreover, H™ 1 (Qm ngl 6S(k)\Uf€V:1 6*E(k)> =0 and Ufcvzl 0E(k) is (n — 1)-Ahlfors-reqular.

The strategy of the proof of Theorem follows a well-established path. First, we show
that minimizers of are indeed also minimizer for a penalized problem without constraint (see
Theorem . Afterwards, the proof follows by combining the upper and lower density estimates
for the minimizers of the penalized problem contained in Theorem [3.2] and Theorem

2 From constrained to penalized problem

In the following theorem, we show that volume-constrained minimizers of are, in fact, uncon-
strained A-minimizers of the functional F defined in (see Definition below). This type of
relaxation of the volume constraint is standard in problems of this nature. To obtain this result,
we employ a technique introduced in [12], which, in our setting, is more intricate and requires a
suitable adaptation due to the presence of multiple chambers.

Theorem 2.1. There exist Ag > 0 such that if (£,u) is a minimizer of the functional

N 1N N
FrAw) = Y [ ailVuldet 5 3 PAGR) + A Y} A6 - (3)
i=1 JA() 2i=1 i=1

for some A = Ao, among all configurations (A, w) such that w = ug on 0N2, then |E| = d and (€, u)
18 a manimizer of problem . Conversely, if (E,u) is a minimizer of problem among all
configurations (A, w) such that w = ug on 0K, then it is a minimizer of (3)), for all A = Ay.

Proof. The first part of the theorem can be proved by contradiction. We assume that there exist
a positive sequence (Ap)pen such that Ay, — 400, as h — +o0, and a sequence of configurations
(En,up) minimizing Fy, and such that up, = ug on 0Q and || # d, for all h € N. We choose an
arbitrary fixed partition & of 2 such that |£| = d. We point out that

Fa, (Ensun) < F(&o,up) 1= 0. (4)

Our aim is to show that there exists a configuration (5h,ﬂh) such that, for h sufficiently large,
Fa, (gh, ap) < Fa, (En,up), thus proving the result by contradiction.

By condition ({)), it follows that the sequence (up,)pen is bounded in H'(Q), the perimeter of the
partition &, in € is uniformly bounded and |&},(i)| — d;, for any i € {1,..., N}. Therefore, possibly
extracting a not relabelled subsequence, we may assume that there exists a configuration (£, u) such
that uj, converges to u weakly in H'(Q), g, i) — Legy a.e. in €, where the collection £ = {&(i) N
is a partition of 2 and |€| = d. The couple (€, u) will be used as a reference configuration for the
definition of (£, Gp).

By appropriately rearranging the order of the chambers, we can assume that there exists an
i€ {l,...,N} such that |E,(i)| < d;, for any h € N. Since

N N
M) =19l = > d;,
j=1 j=1

we can also assume that there exists j € {1,..., N} such that |&,(j)| > d;, for any h e N.
Let 0 <4, < N,i# j. We say that £(i) and £(j) are neighboring chambers, if H" (£(i, j)) > 0.
If there exist two neighboring chambers £(i) and £(j) with [£,(i)| < d; and |Ex(j)] > dj, then

~

we can argue exactly as in [I2] to construct the configuration (&, ap). Otherwise we will work



with the pair of chambers £(i) and £(j) with with |£,()] < d; and [Ex(j)| > dj that are the
closest in a suitable sense. More precisely, for ¢,j € {1,..., N}, we denote by ¢;; the order of link
between the chambers £(i) and £(j) that is defined as the minimum number m such that there
exist chambers E(k1), - - - E(km), such that (i) is neighboring €(k1), £(j) is neighboring &(km) and
E(ky) is neighboring &(kj41) for any [ € {1,...,m — 1}. We identify 7 and j as the indices of two
chambers such that

(i,5) = argmin{ci; : (i,7) € {L,..., N}, [En(i)| < di, [E(7)] > dj}.

Therefore there exists m € N such that £, (i) and &, (j) are linked through some chambers &, (k1), ..., En(km),
where k; € {1,..., N}\{4,7} and |Ex(ke)| = dy,, for any £ € {1,...,N}.
We may also assume that there is only one intermediate chamber. i.e. m = 1 or equivalently that

c;=1lasin the other case the construction can be carried over in a similar way.
Then, for simplicity, up to relabeling the chambers, we will assume that i =1, j = 3, c13 =1
and &(2) is the linking chamber between £,(1) and &,(3), with

En(D)] < di, [En(2)] =d2, [En(3)] > ds.

Step 1. Construction of (&, ). Let us choose (01)s € R and (o3)p, such that

(o1)n € (O,Ozmin{;n, W}) (5)

(025 € <O,min{21n, W}) (6)

where @ = a(n,N) € (0,1) is a constant that will be chosen later. We fix ¢ € {1,2}. Since the
three chambers are linked, the set d*E(£) n 0*E(¢ + 1) N is not empty. Thus, we can take a point
xp€ 0*El) N 0*E(L + 1) m Q such that

L8O By €+ 1) nBylao] _ 1
p—0+ W p" p—0+ W p" 2

Since

N
L= Boled] € n By(zo)| | [EC+ D) n By | E(K) N Br(x0)|
W p" Wnp" Wpp" pr} wWpp"
k#0041

)

there exists 7 € (0, min {M, 1}) such that if 0 < r» < 7, then

N

Z ) N Br(zg)| < K m%%(al)hr”, (7)
]:
j#0,

for some positive constant x that will be chosen later and h sufficiently large. By De Giorgi

structure theorem for sets of finite perimeter, lew o, — 1p, in L}OC(R"), as r — 0%, where

Hy = {{z,vgey(m1)) < 0} = {{z, veqq1y (7)) > O} Let ye € B1\H/ be the point

ve(oy (1) Ve(e+1)(T1)
e Bl et

Therefore, there exists 0 < r < n such that holds and

g(ﬁ) — Xy

—— N Byl <e

1
N Bi(ye)| > ontz”

‘5@)—%

r

4



Setting xj, := x; + ryp, from the convergence of &, to £, we have that, for h sufficiently large,

N
7

[En(0) N Brpa(xp)| < er”s |E(0) 0 Br(a)] > s >, () 0 Br(w)| < s min (o), (8)
jeen

where x will be chosen later. We remark that, since r < 7, By(z1) and B, (x2) are disjoint.
Now we define the following bi-Lipschitz map used in [12] which maps B, (0) into itself:

[1—(eon(2 =)z if 2] < g

U(z) =4+ (ag)h<1 -

x if |z| = 7.

TTL

R

T
)z 1f§$|x|<r,

We denote the corresponding action localized in the ball B,(z}) by
Oy(z) =) + V(x —2y), VreR™

In the sequel, we will use some estimates for the map ®, that can be easily obtained by direct
computations (see [12] for the explicit calculations). These estimates are trivial for |z — | < /2,
whereas they can be deduced by the explicit expression of VU for r/2 < |z — x| < r, that is

o(Py);
8:13]-

n _ Y. _ Y.
r|n>5ij+m~“(m i@ — 7); | Vi,je{l,...,n}).

|z — ), |z — a7+

(2) = 0y + <oe>h[(1 -

There exists a positive constant C' = C'(n) depending only on n such that,

Vo (y) = I|| < Cn)(o)n, Yy e By(xp), 9)
1+ Cn)(op)p < JPp(z) <1+ n2"(op)p, VYae Br(m})\B% (). (10)
1—n(2n—1)(0g)h < J(I)g(l‘) < 1—(2”—1)(0‘5)}“ VZL‘EB%(ZL‘Z) (11)

Accordingly, for j # £,f + 1, we estimate,

126(En(5) 0 Br(@)] = €a(7) O Br(ap)

< J |J®p — 1| dz < n2™(00)n|En(4) N Br(zy)| < n2"k min (oj)nr", (12)
Eh(j)mBr(w’Z) je{1,2}

whenever, for j = £,£ + 1,

‘I‘Pe(fh(j) N Br(x9))] = [€n(5) 0 Br(x}))]

< T, — 1] dz < n2"(00)n|En () A Be(z))| < n2"(00)nr™. (13)

th(j)ﬁBr(f'g)

We define 3
D:=D oDy, & = {P(ELENNY,, api=upod7 (14)

and remark that ® act in not trivial way only in B,(z}) and B,(z}), leaving anything unchanged
outside these balls.

Step 2. ® does not modify too much |E,(1)| and |Ex(3)].
Let us show that under conditions , (6) on (o1), and (o2)4, it results

[@(En(1))] < du, (15)

[@(En(3)) > ds. (16)



Since the application of the map ® leaves the measure unchanged outside B,(x}) u B,(z}), we can
evaluate the differences in measure solely within B, (z}) u B, (x}). We have that

[LICACHIE LA
< [[01(Ex (1) 0 Bo(@))| = |€(1) 0 B, (@h)]] + | |92(Ea(1) 0 Br(ah)| = 1€4(1) 0 By ().
Applying and ((L3)), by the choice of (1), we deduce
[D(E(L)] < [E(D)] + 02" (o1)n < di.

The same argument can be applied to chamber £, (3) under the transformation by the map ®; that
is, we have

(€3] - I(3)]
< [[91(En(3) 0 Bol@h)| = 160(3) 0 By (@h)] + | |92(6n(3) 0 Br(ah))] = 1€4(3) 0 Br(ab).
Using again and , by the choice of (o2), we deduce
[D(En(B)] = [En(3)] = n2" N (o2) > da.

Step 3. The choice of (02)p. In this step we prove that for every (o1);, as in (b)) there exists (o2)p,
as in (6]) such that
|@(En(2))] = do- (17)

To this end, we prove that the action of the map & results in an increase in the measure of
En(2) n By(z)) and a decrease in the measure of £,(2) N B,(z}), modulated by the parameters
(02)p, and (01)p. Precisely we prove that there exist two positive constants Cy = C,y(n) and
C; = Cy(n) such that

G = [92(E4(2))  Br(ah)| — [€0(2) 0 Bo(ah)] = Cyln) (o)™, (18)
L1 = [En(2) A By(2})] — |®1(E0(2) A Br(ah)]

With this notations can be rephrased
Gn =L

Inequality is the simplest to prove. Indeed, taking the estimates and on J®, and
into account, we have that

Gn = |P2(En(2)) N Br(ah)| = [En(2) 0 Br(a5)] = f (& —1)dx (20)
€n(2)n Br(x)
:f (J@g—l)dx—i-f (JOy —1)dx
En(2)n By () En(2)n(Br(zy)\By (23))

Wn

> —5n(2" — 1)(02)hr” + C(n) <2n+2 — 5) (o2)pr™

= ([ —n(2" —1) = C(n)]e + C(n) 2?;12) (o2)pr™ = Cyg(n)(o2)nr",

where ¢ is chosen small enough in such a way that Cy(n) > 0.
To prove , we first note that by employing exactly the same computations used to establish
(18), we deduce that &,(1) increases in measure within B,(z}). Specifically, we have that

|@1(En(1)) N Br(2h)] = [En(1) N Br(a)] = Co(n)(o1)nr™. (21)



Since the total measure of the ball B,(x}) is preserved by the map ®; we have that

N

N
Z |21(E0(5) 0 Br(@)] = Y €()) N Br(a1)l,

j=1

consequently we deduce

[€n(2) 0 Br(21)| = [21(En(2)) N By (1))

L
(n) — wn(N = 2)2"](o1)nr™,

N

= |21 (En(1)) N Bo(zh)] — 1E,(1) A Br(ah) |+ . [|@1(Er () 0 Be(2h)| — €r(F) N~ Bp(a))]]
=1
§#1,2

= Cy(n)(o1)pr™ — kn(N — 2)2"(o1)pr" = [Cy

where we used and (12). Therefore is proved with Cj(n) = C4(n)/2 if we chose r =
Cy(n)/[n(N — 2)2"1]. If we denote with Cj* and C}" the greatest constant such that and
holds true we deduce that

|@2(En(2)) 0 Br(xh)] = |Er(2) N Br(h)] = Cg'(n)(o2)nr”
[€n(2) N Br ()] = [21(En(2)) N Br(21)] = CT"(n)(o1)nr™.
Finally we can conclude observing that

Gn — L = [Cg'(n)(o2)n = C"(n)(a1)n]r".

Then is proved if we choose (o2), = Cmgng (o1)h-

Step 4: Reaching a contradiction. Finally, we prove that the perturbation defined in ([14]) leads
to a decrease in energy, namely

fAh(ghauh) - fAh(gh,’LNLh) > Oa

which contradicts the minimality of (£, up). For convenience of notation, we reformulate the
energy difference by setting

i=1/4=1 2})
+ % DI PE), Br(x)) — P(@e(En(i), Br(x))]
i=1/¢=1
N
+ An Y (1€ ()] = dil = [|9(En ()] = dil] = Tin + T + Tz (22)
=1

Substep 1. Estimate of I . Performing the change of variables y = ®,(x), and observing that
Laen ) © @ = L, i), we get

Iip = Z;;J o) (@) [|Vun(@)]? = [Vup(z) o VO ! ‘ JO(x)] de = Ay p + Agp,

where Ay , stands for the above integral over By (x}) and Ag j, for the same integral over B, (x'e)\B% (x).

Using the explicit expressions of V‘D;l and J®, which remain constant inside B% (x}), we easily get

Ay = Z Z J USh(i)|VZLh|2{1 —[1 = (oo)n(2" — 1)]"_2} dz > 0.

i=14=1



(x}), even though V@Zl is not constant, we can use (9) and to obtain
-2
)USh(i)|vuh|2{1 - [1 - (Ug)h(Qn - 1)] (1 + Q"n(og)h)}dx
r (2

N
> —c(n) (Ue)hf g, ()| Vup|* dx
i;e:l BBy

> —c(n)O((o1)n + (02)n),

where we also used , thus getting

Iy = —C10((o1)n + (02)n), (23)

for some positive constant C; = C(n).
Substep 2. Estimate of I5j. In order to estimate Iy j,, we can use the area formula for maps

between rectifiable sets. If we denote by T ., the tangential gradient of ®, along the approximate

tangent space to 0*&,(i) in x and ( }f;)* is the adjoint of the map Thx’ the (n — 1)-dimensional

jacobian of Tfi’i is given by

Ta AT = \Jdet(T1)° o 1),
Thereafter we can estimate
Tn 1Tyt < 1+ (o) +2"(n — 1)(00)h- (24)

We address the reader to [12] where explicit calculations are given. In order to estimate Iy, we
use the area formula for maps between rectifiable sets ([3, Theorem 2.91]), thus getting

=

W

=

I
MN

[ P(En(i); Br(xy)) — P(Qe(En): Br(}))]
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Notice that the last integral in the above formula is non-negative since ®, is a contraction in B%,
hence J,— 1T < 1in B,y, while from (24 (24) we have

Br(a))

r
2

f (1 - Jn_le’;) A"
i— 1@ 1 JO*ER (1) By (xe)\Br(xé) ’

= —2"n((o1)n + (02)n ZP (En(i); Br(xp)) = =2"nO((01)n + (02)n)

thus concluding that
I, = —Ca(n, ©)((01)n + (02)n)- (25)

Substep 3. Estimate of I3 j,. Taking (15 , 16) and into account, we split I3 j, in three addends
as follows:

A T =[1@(ER(1)] = En(D)]] + [I1E-(B)] — |2(En(3))]]



+Z th |—d‘—“‘1) (En(7) |—du = Bip+ Bap + B3, (26)

=4

We estimate the addends separately. For ¢ > 3, by (12 we have

1En (D)) = di] = [|D(En ()] - di < ||5h )| = [2(E(0) ||

< Hr‘?h( ) 0 Br(@)] = [@1(ER (i) N DI+ [IEn (D) N B (2h)] — |@2(En(i) 0 Br(x))]|

< 2n+1 g

2 gy o
Therefore, we have
B3, = —n(N —3)2" "k min (o)™ (27)

je{1,2}
Regarding Bj p, we use (21) and to get

Bip = [®(E())] = [En(1)]
= [121(En(1)) N Br(@1)| = |Ex(1)  Br(@)]] + [|192(En(1)) N Br(3)| — |Ex(1) N Br(x5)]]
= Cy(n)(o1)pr™ — n2"(o2)pkr™. (28)

Similarly, we can estimate By in B,(xf) observing that the total measure of the ball B,(x%) is
preserved by the map ®o, that is

N
Z |2 (En () g r(5)]-

Accordingly, using (20]) and , we deduce that
|En(3) N Br(a5)] — |2(Er(3)) N Br(x)|
= [|®2(&n(2) n Br(2h))| = 1Er(2) n Br(ah)[] + D) [1®2(En(7) N Br(ah)| — En(j) 0 Br(ah)]]

j#2,3

\Y

Cy(n)(o2)pr™ —n2"(N —2)k min (03)pr".
1€{1,2}

Therefore, we can conclude, using again ,
Byh = |€r(3)] — [®(ER(3))]
= [1€(3) N Br(3)| — [@2(En(3)) 0 Br(ay)[] + [[€(3) N Br(a1)| — [@1(En(3)) N Br(ah)]]

= Cy(n)(o2)pr™ —n2"(N —2)k 'I?Erzl}(ai)hrn —n2"k(op)pr"
ie{1,

= Cy(n)(o2)pr"™ —n2"(N — 1)k .Iillig}(Uz‘)th- (29)
ief{1,

Finally, combining (26)), (27), (28) and (29), we conclude that
Ig h = Ah[C’ ( ) - ’rl2n(N + 1)%]((01)]1 + (Ug)h)Tn. (30)

Substep 4. The contradiction. Inserting , , in , we conclude that
Lip+ Do+ I35 = [(00)n + (02)8][ — C10 — Ca + Ap(Cy(n)r™ — n2™(N + 1)kr™)] > 0,

if K = k(n, N) is sufficiently small and Ay, = Ag = Ag(n, N, ). This contradicts the minimality of
(&, up), thus concluding the proof. O

The previous theorem motivates the following definition.

Definition 2.2 (A-minimizers). The energy pair (€,u) is a A-minimizer in Q of the functional F,
defined in , if and only if for every By(x¢) < § it holds that

N
F(&,u; Br(x0)) < F(G,v; By(z0)) + A Y] [G(R)AE(K)],
i=1

whenever (G, v) is an admissible test pair, namely, G is an N -partion of Q such that G(k)AE(k) cc
By (x0) and v —u € H}(By(z0)).



3 Energy decay estimates

We start by proving a fundamental lemma which establishes that, for any ball that is either almost
entirely contained within a single chamber or lies at the interface of only two chambers, the Dirichlet
part of the functional satisfies a favorable decay estimate.

Lemma 3.1. Let (£,u) be a A-minimizer of the functional F defined in (2)). There exists 19 € (0,1)
such that the following statement is true: for all T € (0,79) there exists €1 = e1(7) > 0 such that if
B, (xz0) c< Q and one of the following conditions holds:

(i) There exists i € {1,..., N} such that W <eq, for any k # 1,

(ii) There exist i,j € {l,...,N} and a half-space H such that w < €1,

|B7» o
[(EG)NH) By (20)] |E(k)nBr(z0)|

[Br(z0)] <e1 and Brwo)] | < L for any k # i, 7,

then

J |Vul* de < C’lT"J |Vul? da,
BTT(xO) BT(xO)

for some positive constant C; = C1(n, N, ay).

Proof. Let us fix B,(xg) cc Q and 0 < 7 < 1. Without loss of generality, we may assume that
7 < 1/2 and zp = 0. We start proving (i). We denote by v the harmonic function in B satisfying

the condition v = u on B,\Br. Let ¢ € H} (Bz). It holds that

J (Vu,Voydx = 0. (31)
Py
On the other hand, u solves the following equation:
o f (Vu,Veyde = — > ay f <Vu, Vo) d. (32)
B% ﬁg( k}#l 7 ﬂg

Adding the equation

o f (Vu,Voydr = o; ) J (Vu, V) dr,

B%\E(Z k‘?ﬁ’b 'r nE k
to (32) and dividing by «;, we obtain
1
(Vu,Véyde = — > (o — o) f (Vu, Vo) da.
Br ai k‘?ﬁl Br ﬁg(k)
2 2

Now we choose ¢ := v — u and we subtract from the previous equation, getting

J V(v —u)?de = — 2 — ag J (Vu,Voydx
g Bgﬁg(k))

(67
vk
«

<2 Vu, Vo)| da
a; ,;Z fBrmS(k) K %

3
<2 ZJ Vul? de (J |V(U—u)|2dx>2,

where we have denoted « := maxy, |a; — ag|. Thus we infer that

2
J V(v —u)|?de < (a) Z f |Vul|? da.
o 67} ki B%mg(k)

10
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By the higher integrability for quadratic functional, (see for example [16, Lemma 2.2], where an
explicit calculation of the constants is provided)

J[ |Vu|2pdx<C<J[ |Vu|2dm>p,

r
5 T

for some p and C' both depending on n, a. Then using Hélder inequality, we deduce

f V(v —u)[2ds < CF (2‘)2 D (W)lé JBT Vul? dz.

r P

1

p

1—
We choose €1 such that e; ” = 7". Since v is harmonic, we finally get

j |Vu|2dx<2f |V(v—u)|2daz+2f |Vv|? da
Tr By

Tr

2
< Cr (a) T"f |Vu)? dx—l—?nHT"J |Vo|? da
r B,

(&%)

< C(n,N,a,a;)m" f |Vu|? dz,

T

where we have also used the minimality of v.
We are left with case (ii). We denote by v the minimizer of the energy

JB (oilpg + oszlB%\H)|Vv|2 dx,
3

with the condition v = w on B,\B:. Let ¢ € H} (Bz). It holds that

o f (Vu,Vo)dx + o f (Vv,V¢)dx = 0. (33)
B% nH H

r
2

Now we rewrite the equation .

a; J (Vu,Vo)dr + a; f (Vu,Voydr + Z ag f (Vu,Voyde =0. (34)
B%mé’(i) B%mg(j) ki, B%mé’(k)

We decompose

a; f (Vu,Voydr = o J Vu,Voydr + a; J (Vu,Vo)ydx
By n€(i) By n€()nH By n€(\H

= oy J (Vu,Voydr + o ( J (Vu,Voydx
BynH By n&()\H

— f (Vu,Vgyde — ) f (Vu, V) d:z;> (35)
B%mg(j)mH ki, B%mg(k)mH
and similarly
a; J (Vu,Voydr = J (Vu,Voydr + o (J (Vu, V) dz
B% nE(F) B%\H B% nE()nH
— f (Vu,Vgyde — ) f (Vu, V) dx). (36)
By n€(\H Kz OBy nE(RNH

11



Inserting and in , we deduce that

a; J (Vu,Vo)dr + o J (Vu,Vo)dx
BrnH

Br
2

= (04 — o) J (Vu,Vo)dr + (a; — o) J (Vu, V) dz
Brn&(G)nH BrnE(@N\H

+ ), (aJ (Vu, Vo) dx + ajJ
Bng(k)mH

(Vu,Voydr — ay, J

B% nE(k)

(Vu, Vo) dx) .

Choosing ¢ := v —u, subtracting from the previous equation and applying Hélder’s inequality,
we get

min{a;, a;} IV(u—v)]*dr < max ag J |Vu|? da + f |Vu|? da
By k=1..N By nE(j)nH By nE(D\H
: }
- (J |vu|2dx+f |Vu|2dx+J |Vu|2dx>] (f |V(u—v)|2dx> .
ki, B'r nE(k)nH B%mg(k)\H Bgmé’(k) B%
Thus
J IV (u—v)>dz < C(a)u \Vu|? dz + J Vul?da + )] J |vu|2 dx).
r B%m(é'(j)mH) Bgm(é‘(i)\H ki, B'r nE(k

Arguing as above, the higher integrability of Vu and Hélder’s inequality yield

11

E(J)nH)n Br P

|Vu|2dx<C% IEG) ) ;| J |Vul|? d,
|Bs | B,

JBg ~(E(F)nH)

(EGN\H) B;|>1‘i

1
|Vu|?dz < Cv
| Bz |

f |Vul|* de,

T

JBS AEG\H)

E(k) n Br
J |Vu|2dx Cr <|()|
By nE(k) | B:|
2

_1
p

1_,
) J \Vul|? dz,  Vk #1i,j.

1
Choosing €1 such that Ne; ” = 7" and making the same computations as before we obtain the
thesis. O

Theorem 3.2 (Density upper bound). Let (£,u) be a A-minimizer of the functional F defined in
. Then, for any open set U € ) there exists a positive constant Cy = Co(n, N, A, ) such that

F(E,u; Br(w)) < Cor™ 1, (37)
for any B.(xo) c U.

Proof. Let B(wg) € U € Q. Let i € {1,..., N} such that a; := minjeqy,  n} ;. We may assume
that xg = 0 and ¢ = 1. We define:

E(1) v By,
F(h) =€(h)\ . Yhe{2,...,N}.

It holds that
P(F(1);Q) = P(E(D\B,; Q) + H" (9B,\E(1)),

12



N N N

> P(F(h Z W\B,; Q) + H" 1 (0B, n E(h 2 W\By; Q) + H" 1 (0B,\E(1)).
h=2 h=2 h=2
Using the previous equalities, the minimality of (£, u) with respect to (F,u) yields

N N

1

D akJ V2 dz + £ 3 PEK); B) < alj Vul? de + HH(@BAE(L)) + 2AB,).
By nE(k) 24 B,

It follows that
N
2 1 n—1
54 \Vul?dz + = Y P(E(k); By) < c(n, A)r"~"
BAE(D) 20

where da = ming—s _n(ap — ). We deduce that

N
J VP dz+ Y PEK) By) < e, A, a)r™ L. (38)
BAE) A

This concludes the proof of in B \E(L).

It remains to prove that the Dirichlet integral decays in the right way also in B, n £(1). This
can be proved by contradiction using a quite standard blow-up argument that we present for the
reader’s convenience.

We prove that there exist 7 € (0, %) and M > 0 such that for every 0 € (0, 1) there exists hg € N
such that, for any B,(z¢) < U, we have

f |Vul> < hor™' or J |Vul? de < MT”‘SJ |Vul|® d. (39)
By (z0) Brr(z0) By (z0)

Arguing by contradiction, for every 7 € (0, %) and M > 0 there exists ¢ € (0, 1) such that for every
h € N there exists a ball By, (z,) < U such that

J \Vul? dz > hrp~! (40)
Brh(xh)
and
J |Vu)? dz > MTHJ |Vul|? dz. (41)
Bﬂ“h(wh) Brh(zh)

We choose M > 1. Note that estimates and (40) yield

N
Z J \Vul? dz + P(E(k); By, (z1)) < cory ™! < “« |Vu|? de, (42)
By, (xp)nE(k) h By, (zn)
and so
Z f |Vu|2 dr < 2 Vul? dz, (43)
By, (zp)nE(k h Brh(l”h)

for some positive constant cg.
Now we employ a typical blow-up argument. We set

= J[ \Vul|? dx
Brh(xh)

and, for y € By, we introduce the sequence of rescaled functions defined as

wlxp +r —a .
(@n ny) h, with ap := J[ udx.
ShTh B'rh(xh)

13
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We have Vu(zy, + r,y) = ¢, Vur(y) and a change of variable yields

1
f v Pdr = V(@) 2do = 1.
By gh Brh(xh)

Therefore, there exist a (not relabeled) subsequence of {vj}, .y and v € H!(By) such that v, — v
in H'(B;) and vy, — v in L?(B;). Moreover, the semicontinuity of the norm implies
J[ |Vo(y) > dy < liminf 4+ |Vou(y)* dy = 1.
Bl h—o Bl

Let us define the sets

E(k) —
grhy = W =T g
Th
We rewrite the inequalities , and . They become, respectively,
h
2
> —_—
Sh . )
J[ Von(y)? dy > M7~°, (44)
N o cow
| vl <P [ v Py = 2 (45)
o I B1nE* (k) B

To achieve the desired contradiction, it remains to show that the sequence v;, cannot fulfill e
because its limit v minimizes the Dirichlet functional. Nevertheless, to establish a connection
between the decay properties of Vv and Vv, we must prove that the L?-norm of vj, converges to
the L?-norm of v. Observe that implies that ¢, — o0, as h — 0.

Since 7"t P(} (k); B1) = P(E(k); By, (1)), by ([@2), we have that the sequence { P(}" (k); B1)}nen
is bounded for any k € {2,..., N}. Therefore, up to a not relabeled subsequence, ﬂs;f(k) — Lex(r)
in L1(By), for some set £*(k) = By of locally finite perimeter. By semicontinuity we deduce that

J ]lg* |Vv|2dy hmlan lg*(k)|Vvh|2dy (46)
B1 Bl
< lim inf (JB 157;(,@)|Vvh|2dy + JB Ilg*(k)\g}f(k)thde) = O,
1 1

—00

for any k€ {2,..., N}, where we used and the equi-integrability of (|Vvh|2)heN.
By A-minimality of (€, u) with respect to (€,u + ¢) we get, for ¢ € H} (B, (z1)),

N N
> akj |Vu|? d < Z f |Vu + Vo|? da
k=1 Bry, (zn)nE(k) Ee1 By, (zp)NE(k)

Using the change of variable z = x, + rpy, we deduce for every 1 € H (By)

N N
Z oy, J lsn Vop|? dz < Z J lcn Vo, + Vip|? da.
k:=1 Blﬁg;’:(k) = Blﬂgif(k)
Let n € CL(By) such that 0 < n < 1. Choosing as a test function ¢, = ¢,n(v —vp), we deduce that
J n|Vup|? dz < J n|Vo|? dzx
Bin&E(1) Bin&f(1)

+ C(« Z J |Vvh|2+ |V1}|2) dx-i—J |Vnllv — v dx]
Blﬁg (k) By

14



By , and the strong convergence of vy, to v in L? we deduce that the last term in the
previous inequality tends to zero as h — oo, thus obtaining

limsupf 77|Vvh|2dm<J n|Vv|? de.
h—+0w JB; B

By the arbitrariness of 7 and lower semicontinuity we conclude that Vv, — Vv in L? and v is
harmonic. Thus, since M > 1, by the harmonicity of v and we get

é
J[ Vo2 dy < J[ |Vol2dy <1< T lim J[ Vo, |>dy < lim J[ Vo, |2 dy = J[ |Vo|? dy,
B, B M h—owo B, h—o0 B B,

which is a contradiction. Once is in force, the conclusion follows in a standard manner by
applying an iteration argument.
O

We are now in position to prove that in the neighborhoods where the perimeters of the chambers
are small, the energy F decays in an appropriate manner.

Proposition 3.3. Let (£,u) be a A-minimizer of the functional F defined in . Then, for any
7 € (0,1) there exists eo = e9(7) > 0 such that, if for B.(x¢) <

P(E(k); By (20)) < ear™ Y, Vke{l,...,N}, (47)

then
F(E,u; Brp(xo)) < O3 (F(E,u; Br(xo)) + Ar™),

for some positive constant C3 = Cs(n, N, A, «).
Proof. Let B,(z) £ such that holds and 7 € (0,1). Setting

E(k)—x 1
Er(k) = ()7"0’ & = {Er(k)};gvzl, up(y) := r_éu(ajo +ry), Vye By,
scaling we obtain

P(&(k); By) < s, Vkef{l,...,N}.

We need to prove that
F(& up; Br) < 7(F(Er,ur; Br) + Ar).

In what follows, for simplicity of notation, we will still denote &,.(k) by £(k) and u, by u and we
explicitly observe that (£(k),u) is a Ar minimizer of F.

n—1

. T _ T .
We choose €9 < min { (2;; ) m pt(n-1) (%51) " }, where c;p = ¢;p(n) is the constant

of the relative isoperimetric inequality and €1 = £1(7) is as in Lemma/[3.1] We first show that there
exists ¢ € {1,..., N} such that

|BI\Ei)] < erpP(E(i); By) . (48)

Let us assume by contradiction that the previous inequality is false for any i € {1,..., N}. By the
isoperimetric inequality, we have that

E(k) A Bi| < epP(E(k); BI)" 1, Vke{l,... N}
Thus, by the choice of €2, we get the following contradiction:

n

N N
Bil= Y €(k) n Byl < erp Y. P(E(k); B)7T < eqpNej < %
k=1 k=1

15



Therefore, (48)) is proved. We may assume that ¢ = 1 for simplicity. As a consequence we have:

N
S} IER) A Bil = [Bil — [€(1) 0 Bi| = [BNE()] < erpPE(L); BT <
k=2

The isoperimetric inequality yields
E(k) A Bi| < epP(E(k); By)"1, Vke{2,... N}

Since

2T
cpPEW: BT > BAEW)| > [ U 0B)\E() do

T

we can choose p € (7,27) such that

crp

H" 1 (0B,\E(1)) < 755%110(5(1); By),

H" Y (0*E(h) n 0B,) =0, VYhe{l,...,N}.
We set

(W\B,, Vke{2,...,N}.

We remark that, (G,u) is an admissible test pair to test the minimality of (£,u) in By because
E(k) = G(k) outside of B, for any k€ {1,..., N}. Thus

F(E,u;B) < F(G,u; By) + Arp". (49)

To eliminate the common contribution in B;\B, in the previous equation we use the following
equalities for the perimeter term:

P(&(k); B1) = P(E(k); By) + P(£(k); Bi\By),

P(G(1); Br) = P(E(1); BI\B,) + H" (0B, \E(1)),

M=
!
Q
=
&

Il
M=

[P(E(h); BI\B,) + H""'(9Bp n £(h))]

>
||
o
>
||
N

I
M=

P(E(h); BI\B,) + K" (0B,\E(1)).

T
V)

Moreover we observe that the choice of e implies that we are in position to apply Lemma[3.1} since

n—1 n—1

|E(R) n By| < cipP(E(R); By) = <crpey™ <wper, VYhe{2,...,N}
Deleting the common term in and applying Lemma we conclude:
F(€,w; By) < F(€,u; By)
<o J \Vu?dz + H"H0B,\E(1)) + c(n)Arp™

P

1
< a1J Vul?d + P57 PE(1); BY) + e(n)Are"
B27‘ T
< ¢(n, N, a)T”J |Vu|? dz + ¢(n)T"P(E(1); By) + c(n)ArT"
By
< e(n, N,a)t"(F(E,u; By) + Ar).
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Building upon the previous proposition, we proceed to establish the following theorem, which
states a lower bound estimate for the perimeter of the interfaces of optimal chambers.

Theorem 3.4 (Density lower bound). Let (€,u) be a A-minimizer of the functional F defined in
and U € 2 be an open set. Then, there exists a positive constant Cy = Cy(n, N, A, o) such that,
for every xg € Ui\;l 0E(k) N Q ad B,(xg) < U, it holds

N
> P(E(K); By(wo)) = Car™ ", (50)
k=1

Moreover, H" ! (Q A~ U, 28RN\ U, 5*5(k)> =0.

Proof. Since 0*E(k) = 0E(k), for any k € {1,...,N}, it is not restrictive to set xg = 0 €
;cv=1 0*E(k) n Q. Fix 7 € (0,1) such that 2C37%2 < 1, and fix o € (0,1) such that

2(7)
e (51)

and let rg be such that
Arg < min {ea(7), Co}, (52)

where Oy, C3 and &9 are the constants from Theorem and Proposition Assume by contra-
diction that for some B, < U with r < rg, we have

N
3} P(E(R); Brwo)) < 220}, (53)
k=1

By induction, it is straightforward to show that
F(E,u; Byyny) < ()72 (0r7)" ", (54)

for every h = 0. Indeed, for A = 0, using Proposition and Theorem and conditions ,
and

F(E,u; Byy) < C30™(Cor™™! 4+ Ar™) < 203050 (0r)" ™! < eo(7) (o)L,

Assuming that holds for some h, to prove it also holds h + 1 it suffices to apply Proposition
again and observe that 20572 < 1, together with . Indeed, we get

F(E,u; Byrner,) < C31" [ T T%( )" " Ao ]
)"t

w\a-

)
< Csea(T [T "Yor (UThr) nil]

h+1

ea(T )2037'2727' s (m’hr)n_l <eom)T 2 (UThHr)n_l

It follows that

N 1
Z B, n,) < EQ(T)Th (aThr)nf )

l\D\*—‘

Finally, it holds:

N
P(E(k), B B
lim sup =k=1 (7(1 )i By) = limsup Zk 1 PE(E 7)1 1“Thr) <2 lim EQ(T)Th =0,
p—07F P h—+00 (UThT') h—s+00

which is a contradiction.
We are left to prove that

N N
T (Q ~ e a*s(k)) —0. (55)
k=1
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By the lower bound , we get

H 7 ((Uiey 0*E(k)) N By ()

rn—l

lim sup
r—0t+

N 4n-1/A% N . N
= lim sup Z H @ E(R) 0 Br(x)) = limsupkz1 PE(R); Br(x) >0, Vxe U 0E (k) n Q.

-1 -1
r—=0% p—q " r—0% " k=1

On the other hand, by density property of H"~!-measurable sets with finite measure, see [3, (2.42)],

H (U, 0°E(K)) N B, N
lim sup (Ui n—1( ) 0 Br(@)) =0, forH" lae. z¢ U o*E(k) N Q,
r—0+ r k=1
thus (5] follows. O

3.1 Conclusion

Theorem 1.1 summarizes the results obtained in Theorems 3.2 and 3.4, and is a direct consequence
of them. We emphasize that the result concerns the union of the interfaces, but does not necessarily
imply any regularity for the boundary of a single chamber. We believe that such a result could be
achieved provided a suitable infiltration lemma were available. Specifically, if certain chambers of
a minimizing partition occupy most of the ball By, (z), then they must entirely fill the smaller ball
B, (z) (cf. [25, Lemma 30.2] in the case of clusters). Establishing such a lemma, however, appears
to be non-trivial due to the lack of sufficiently strong decay estimates for the Dirichlet bulk energy.
However, its validity would represent a major breakthrough, potentially leading to more significant
geometric insights into the chambers and, hopefully, to the regularity of the interface.
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