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Abstract. Representation results for absolutely continuous curves µ : [0, T ] → Pp(Rd) , p > 1 , with

values in the Wasserstein space (Pp(Rd),Wp) of Borel probability measures in Rd with finite p -moment,

provide a crucial tool to study evolutionary PDEs in a measure-theoretic setting. They are strictly related

to the superposition principle for measure-valued solutions to the continuity equation.
This paper addresses the extension of these results to the case p = 1, and to curves µ : [0,+∞) →

P1(Rd) that are only of bounded variation in time: in the corresponding continuity equation, the flux

measure ν ∈ Mloc([0,+∞) × Rd;Rd) thus possesses a non-trivial singular part w.r.t. µ in addition to
the absolutely continuous part featuring the velocity field.

Firstly, we carefully address the relation between curves in BVloc([0,+∞);P1(Rd)) and solutions to

the associated continuity equation, among which we select those with minimal singular (contribution to
the) flux ν . We show that, with those distinguished solutions it is possible to associate an ‘auxiliary’

continuity equation, in an augmented phase space, solely driven by its velocity field. For that continuity

equation, a standard version of the superposition principle can be thus obtained. In this way, we
derive a first probabilistic representation of the pair (µ,ν) solutions by projection over the time and

space marginals. This representation involves Lipschitz trajectories in the augmented phase space,
reparametrized in time and solving the characteristic system of ODEs. Finally, for the same pair (µ,ν)

we also prove a superposition principle in terms of BV curves on the actual time interval, providing a

fine description of their behaviour at jump points.
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1. Introduction

Representation results for Lipschitz (or even absolutely continuous) curves µ : [0, T ]→ Pp(Rd), p > 1,
with values in the Wasserstein space (Pp(Rd),Wp) of Borel probability measures in Rd with finite p -
moment, metrized by the Lp -Kantorovich-Rubinstein-Wasserstein distance

Wp(µ0, µ1) := min
{∫

‖x−y‖p dγ(x, y) : γ ∈ P(Rd × Rd), π1
] γ = µ0, π

2
] γ = µ1

}
, (1.1)

provide a crucial tool to study evolutionary PDEs and geometric problems in a measure-theoretic setting.
Such results are strictly related to the corresponding representation formulae for measure-valued so-

lutions to the continuity equation

∂tµ+ div ν = 0 in D ′((0, T )× Rd), ν = vµ� µ, (1.2)

as a superposition of absolutely continuous curves γ : [0, T ]→ Rd solving the differential equation

γ̇(t) = v(t, γ(t)) a.e. in (0, T ) (1.3)

in an integral sense. In fact, a curve (µt)t∈[0,T ] in Pp(Rd) satisfies the p -absolute continuity property

Wp(µs, µt) ≤
∫ t

s

L(r) dr for every 0 ≤ s < t ≤ T, and some L ∈ Lp(0, T ), (1.4)

if and only if [11, Sec. 8.1] the space-time measure µ = L 1⊗µt =
∫ T

0
δt ⊗ µt dt solves the continuity

equation (1.2) for a vector measure ν � µ whose density v = dν
dµ satisfies∫

Rd
‖vt(x)‖p dµt(x) ≤ Lp(t) for a.a. t ∈ (0, T ). (1.5)

The measure ν and its density v comply with the minimality condition(∫
Rd
‖vt(x)‖p dµt(x)

)1/p

= lim
h→0

Wp(µt, µt+h)

|h|
for a.a. t ∈ (0, T ), (1.6)

and are also uniquely determined by (1.6) if the norm ‖ · ‖ is strictly convex. On the other hand, if
(µt)t∈[0,T ] is a continuous family of probability measures in Rd and (µ,ν) is a solution to the (1.2)
satisfying (1.5) for some L ∈ Lp(0, T ), then by [11, Sec. 8.2] there exists a Radon probability measure
η in C([0, T ];Rd), concentrated on the subset of absolutely continuous curves satisfying (1.3), such that
µt = (et)]η for every t ∈ [0, T ] , where et : γ 7→ γ(t) is the evaluation map. Equivalently,

µt(A) = η
(
{γ ∈ C([0, T ];Rd) : γ(t) ∈ A}

)
for every t ∈ [0, T ], A Borel subset of Rd. (1.7)

The characterization of ACp curves in Pp(Rd) and the lifting result from [11] have been extended to
the case in which Rd is endowed with a non-flat Riemannian distance [35], or replaced by a separable
complete metric space (X, d) [34]; cf. also [36] for the extension to spaces endowed with Wasserstein-Orlicz
distances.

A first typical application of the above results concerns curves of measures in Pp(Rd) arising from a
suitable approximation method, when a priori estimates provide the bound (1.4) (e.g. in gradient flows,
see [11], or in geometric problems, see [12]). In order to identify the PDE satisfied by the limit curve,
one can start from the continuity equation (1.2) and then try to characterize the velocity field v . In this
respect, the minimality property (1.6) provides a particularly useful information (see e.g. [13]).

Another important application stems from problems where one tries to extract finer information from
the continuity equation, using the representation given by the superposition principle. The latter in
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fact establishes a link between the Eulerian representation of the flow of measures solving the continuity
equation, and its Lagrangian depiction that comes with the associated characteristic system of ODEs.
This connection is at the core of the Young-measure type technique pioneered in [5] for transport and
continuity equations featuring velocitiy fields with low regularity (see, e.g., [7, 6, 8, 15]). The recent [44]
(see also [14]) has thoroughly investigated the correlation between these two facets of the superposition
principle, i.e. as a bridge between the Eulerian and the Lagrangian standpoints, and as a tool to gain
insight into the structure of curves of measures absolutely continuous to some Wasserstein distances, de-
composed in simpler ones associated with rectifiable curves, cf. the cornerstone paper [43]. The approach
from [44] has in particular led to an extension of the probabilistic representations previously obtained in
[34, 36].

Eventually, let us mention that the superposition principle has also turned out to be a key tool for
the well-posedness of mean-field particle systems, see, e.g., [9, 40, 3], as well as for the analysis and
finite-particle approximation of mean-field optimal control problems [2, 4, 28, 32], where, compared to
previous literature (see, for instance, [18, 33]), a priori regularity assumptions on the control variable can
be dropped. Further applications include the formulation and convergence analysis of gradient methods
for dynamic inverse problems [25, 26], which build upon an extension of the superposition principle to
inhomogeneous continuity equations and on the characterization of extremal points of the Benamou-
Brenier or Hellinger-Kantorovich type of energies [23, 24]. We also mention [16], where the superposition
principle for absolutely continuous curves of measures has been leveraged to obtain uniqueness results
for a transport equation. Finally, we recall that in [22] two counterexamples to the validity of the
superposition principle have been exhibited in the case of signed measures.

The continuity equation with singular flux . The main aim of this paper is to investigate the validity
and the appropriate formulation of the

• characterization of solutions to the continuity equation
• superposition principle

in the case p = 1, for the space of probability measures with finite moment P1(Rd), endowed with
the metric W1. Indeed, we will address curves of measures that have bounded variation as functions
of time, and, above all, with respect to the W1 -metric. A crucial feature of this setting, that makes
the interpretation of the differential equation (1.3) much more delicate, is the fact that the vector flux
measure ν in (1.2) may have a singular part with respect to µ . Consider, e.g., the simplest example (cf.
[1, Ex. 1.1]) of the curves (µt)t∈[0,1]

µt = (1− t)δx0 + tδx1 , x0 < x1 ∈ R, t ∈ [0, 1]. (1.8)

It is immediate to check that

W p
p (µs, µt) = |t−s|W p

p (δ0, δ1) = |t−s| for s, t ∈ [0, 1], p ∈ [1,∞) .

Hence, while µ /∈ AC([0, 1];Pp(Rd)) if p > 1, we have µ ∈ Lip([0, 1];P1(Rd)). Now, it can be calculated
(see Example 7.1 ahead), that µ satisfies the continuity equation together with the flux measure ν =
L1
∣∣
[0,1]
⊗ L1

∣∣
[x0,x1]

.

The metric superposition principle for BV curves in (P1(X),W1) with X a (complete, separable)
metric space, has been tackled in the recent [1], by a constructive argument carefully adapting the line
of proof of [34, Thm. 5] to the BV setup. Therein, the superposition principle has indeed been obtained
by lifting absolutely continuous curves to Càdlàg (i.e., right-continuous, left-limited) BV curves on (0, T )
with values in X by means of a probability measure η . Additionally, in [1] it has been proved that the
total variation of the measure µ can be reconstructed by averaging the variation of the BV curves via
the path measure η .

In this paper, while confining our analysis to the Euclidean setup X = Rd , we will adopt a different
approach. Indeed, we will primarily focus on the structure of the superposition measure and its link with
the flux measure ν . In this way, we will shed more light into the properties of the continuity equation in
the BV setup. More precisely,
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(1) We will carefully address the relation between BV curves in (P1(Rd),W1) and the continuity
equation

∂tµ+ div ν = 0 in D ′((0,+∞)× Rd), |ν|([0, T ]× Rd) <∞ for every T > 0, (1.9)

where the Lebesgue decomposition ν = νa + ν⊥ of the flux measure ν with respect to µ may
feature a nontrivial singular part ν⊥ .

(2) Among solutions to (1.9) we will enucleate a particular class of flux measures, which we will call
minimal, and we will show that starting from a non-minimal measure, it is always possible to
replace the singular part ν⊥ by a minimal one ν̄⊥ such that ν̄ = νa + ν̄⊥ satisfies

∂tµ+ div ν̄ = 0, ν̄⊥ = λν⊥ for a Borel scalar map λ : (0,+∞)× Rd → [0, 1]. (1.10)

(3) We will represent minimal solutions to (1.10) as marginals of solutions to an auxiliary continuity
equation in the augmented phase space, driven by an autonomous bounded vector field.

(4) By applying the known superposition principle to the augmented equation we will obtain a first
representation of the solutions to (1.9) by a measure on reparametrized 1-Lipschitz curves in the
augmented phase space [0,+∞)× Rd .

(5) Eventually, we will derive a superposition principle in the original space by a measure on a class
of agumented BV curves, providing finer information on their jump transitions.

Let us explain some of the above points in more detail.

Absolutely continuous and BV curves in (P1(Rd),W1) . Dealing with p = 1, a first natural choice
is to include the space BVloc([0,+∞);P1(Rd)) of BV curves with values in P1(Rd) in the analysis, i.e.
the curves µ : [0,+∞)→ P1(Rd) satisfying VarW1

(µ; [0, T ]) <∞ for every T > 0, where

VarW1(µ; [a, b]) := sup

{
n∑
i=1

W1(µti−1
, µti) : a = t0 < t1 < . . . < tn = b

}
. (1.11)

To avoid ambiguities at the jump points of µ and simplify this introductory exposition, we will also
assume that µ is right continuous in [0,+∞). With every map µ ∈ BVloc([0,+∞);P1(Rd)) we will
associate the increasing map Vµ(t) := VarW1(µ; [0, t]) and its distributional derivative

vµ =
d

dt
Vµ, a positive locally finite measure in [0,+∞). (1.12)

First of all, in Theorem 3.4 we will show that it is possible to associate with every curve µ ∈
BVloc([0,+∞);P1(Rd)) a “minimal” vector measure ν ∈Mloc([0,+∞)×Rd;Rd), with local-in-time finite
total variation, such that the pair (µ,ν) fulfills (1.9) and the push forward of the variation measure |ν|
(associated with the norm ‖·‖ in Rd ), with respect to the time projection map t : [0,+∞)×Rd 3 (t, x) 7→ t
satisfies

t]|ν| = vµ i.e. |ν|
(
(a, b]× Rd

)
= Vµ(b)−Vµ(a) for every 0 ≤ a < b. (1.13)

It is worth noticing that the disintegration (µt)t≥0 of a solution µ of (1.9) w.r.t. a vector measure ν of
local-in-time finite total variation admits a BV representation satisfying the further condition

vµ ≤ t]|ν|. (1.14)

Therefore, condition (1.13) provides a variational characterization of ν similar to (1.6) in the case p > 1.
Moreover, if the norm ‖·‖ is strictly convex, then ν is uniquely characterized by (1.9) and (1.13).

The augmented continuity equation. A more difficult task is to establish the superposition principle
for solutions to (1.9), also dealing with the case when the variational condition (1.13) is not satisfied. For
this, we have drawn inspiration from the results by Smirnov on the representation of solenoidal (i.e.,
null-divergence) charges (currents) in terms of simpler ones associated with rectifiable curves, [43]. In
fact, a pair (µ,ν) solving the continuity equation (1.9) can be viewed as a “solenoidal charge”, too, in
the sense that (1.9) rewrites as

Div(t,x)(µ,ν) = 0 in D ′((0,+∞)× Rd), (1.15)
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with the overall divergence operator Div(t,x)(?, •) := ∂t(?) + div(•). This observation is, in fact, also at
the core of the approach in [19, §3.1], where an alternative proof of the superposition principle from [5]
has been developed, based on Smirnov’s decomposition theorem in [43].

In the present BV setup, we have developed a self-contained approach, independent of Smirnov’s
result, which exploits the nonnegativity of µ and the irreversible direction of time. We have also been
guided by the reparametrization technique that has been quite successful in the variational theory of
rate-independent evolution (cf., e.g., [31, 37, 38, 39, 29]), where solution curves incorporate further
information about jump transitions (not necessarily segments) and take values in the augmented phase

space Rd+1
+ := [0,+∞)×Rd , including time.

Accordingly, our idea (cf. Theorem 4.7 ahead), is to represent a minimal solution to (1.9) as the
marginals (µ,ν) = π](σ

0,σ) (with π the projection, π(s, t, x) := (t, x)), of a distinguished solution to

the auxiliary continuity equation in the augmented phase space Rd+1
+ 3 (t, x), namely

∂sσ + ∂tσ
0 + divσ = 0 in D ′((0,+∞)×Rd+1), σ, σ0 ≥ 0, σs=0 = δ0 ⊗ µ0. (1.16)

In (1.16), s is an artificial time-like parameter, the flux pair (σ0,σ) is absolutely continuous w.r.t. σ
(σ0,σ) = (τ,v)σ , and the autonomous velocity field (τ,v) is related to the original solution pair (µ,ν)
via

τ =
dµ

d|(µ,ν)|
, v =

dν

d|(µ,ν)|
.

In particular, the augmented norm of (τ,v) is 1 and σ = |(σ0,σ)| . A simple modification (cf. Proposition
4.5) of the standard superposition principle can then be applied to the augmented continuity equation
(1.16). It guarantees a representation of any solution σ in terms of a probability measure η supported
on 1-Lipschitz curves y of the form

[0,+∞) 3 s 7→ y(s) = (t(s), x(s)) ∈ [0,+∞)×Rd, (1.17)

solving the associated characteristic system

ṫ(s) = τ(t(s), x(s)), ẋ(s) = v(t(s), x(s)).

We will then derive a probabilistic representation for the pair (µ,ν) in terms of the trajectories γ .
Specifically, in Theorem 5.1 we will show that

(µ,ν) = e](ẏL
1 ⊗ η), |(µ,ν)| = e](‖ẏ‖L1 ⊗ η) , (1.18)

where L1 denotes the Lebesgue measure in [0,+∞), and e : [0,+∞)×Lip([0,+∞);Rd+1
+ ) is the evaluation

map defined as e(s, y) := y(s).

Superposition by augmented BV curves. Our final contribution is to recover a superposition result
for the original continuity equation (1.9) by a measure on the space of time dependent BV curves. If
ν does not satisfy the variational condition (1.13), one can expect the singular part ν⊥ of ν to carry
crucial information about the jump transition of the curves (not necessarily along segments). Seemingly,
such information cannot be fully captured by the usual descrition of a BV curve, which only characterizes
the left and right limit of the curve at each jump point, but not the actual trajectory described along the
jump.

To overcome this difficulty, we introduce the notion of augmented BV curves: they are maps u : Z→ Rd
defined in the augmented parameter space Z := [0,+∞)× [0, 1] such that

(1) the functions u−(t) := u(t, 0) (resp. u+(t) := u(t, 1)) are left- (resp. right-) continuous (local)
BV maps which coincide in the complement of their countable jump set Ju;

(2) for every t /∈ Ju the function [0, 1] 3 r 7→ u(t, r) is constant and coincides with u−(t) = u+(t);
(3) for every t ∈ Ju the function [0, 1] 3 r 7→ u(t, r) is a Lipschitz (transition) map connecting u−(t)

with u+(t) with constant (and strictly positive) velocity, thus equal to the length `u(t) of the
transition path.

(4) For every finite time interval [0, T ] we have

Var(u; [0, T ]× [0, 1]) = Var(u±; [0, T ]) +
∑
t∈Ju

(
`u(t)− ‖u+(t)− u−(t)‖

)
<∞ . (1.19)
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We will denote such space by ABV([0,+∞);Rd) and endow it with a Lusin topology, for which the
evaluation maps e(t, r, u) := u(t, r) are Borel.

In Theorem 6.5, we will represent a minimal solution (µ,ν) to (1.9) by means of a probability measure
η̂ on ABV([0,+∞;Rd) concentrated on curves u satisfying a suitable differential equation formulated in
a BV sense. More precisely, we can write the Lebesgue decomposition νa + ν⊥ of ν as νa = vaµ ,
ν⊥ = v⊥|ν⊥| , and we observe that the curves t 7→ u(t, r) coincide L1 -a.e. on (0,+∞), so that their
distributional time derivative ∂tu(t, r) does not depend on r and can be decomposed in the sum of an
absolutely continuous part ∂L

t uL
1 , a Cantor part ∂C

t u and a jump part ∂J
t u concentrated on Ju :

∂tu = ∂L
t uL

1 + ∂C
t u + ∂J

t u .

Thus, η̂ -a.e. curve u satisfy

∂L
t u(t) = va(u(t, ·)) for L1 -a.a. t ∈ (0,+∞),

∂C
t u = v⊥(u(t, ·))|∂C

t u|,
and

∂ru(t, r) = v⊥(u(t, r))`u(t) for a.a. r ∈ (0, 1) and every t ∈ Ju .

We then have
µ+
t = (et,1)]η̂, µ−t = (et,0)]η̂,

where the evaluation maps et,0, et,1 : ABV([0,+∞);Rd) → Rd are defined by et,0(u) := u(t, 0) and
et,1(u) := u(t, 1) for every u ∈ ABV([0,+∞);Rd). Whenever ν is minimal, we can recover ν by su-
perimposing integration along u .

Plan of the paper. Our analysis is carried out as follows:

- In Section 2, after settling some notation and preliminary results from measure theory, we intro-
duce an order relation between Radon measures and delve into the induced minimality concept,
which will play a key role in the selection of distinguished solutions to the continuity equation
with singular flux. We also lay the ground for the superposition principle by defining the function
spaces that will come into play, and fixing their properties.

- Section 3 revolves around the relation between curves µ ∈ BVloc([0,+∞);P1(Rd)) and the con-
tinuity equation (1.9).

- In the main result of Section 4 we associate with (1.9) a new continuity equation in an augmented
phase space, driven by a non-singular flux measure with bounded velocity field. Their relation
is such that suitable marginals of the solutions to the augmented continuity equation provide,
indeed, solutions to the continuity equation with minimal singular flux.

- Based on this, in Section 5 we derive our first, ‘parametrized’ version of the superposition prin-
ciple. In fact, by leveraging the probabilistic representation for the solutions to the augmented
continuity equation, we obtain a representation of the solutions to the original continuity equa-
tion, in terms of trajectories that are Lipschitz w.r.t. an artificial time-like parameter and solve
the characteristic system in the extended phase space.

- Section 6 is devoted to establishing a probabilistic representation for solutions of the continuity
equation in terms of BV curves depending on the ‘true’ process time. For this, we preliminarily
carry out a thorough analysis of a distinguished class of BV curves that are ‘attached’ with their
transitions at jump points. We use them as a bridge between the probabilistic representation in
terms of reparametrized trajectories, and that involving BV curves.

- In Section 7 we discuss our assumptions, and illustrate our results (mostly focusing on the
‘parametrized version’ of the superposition principle) in a series of examples.

- Finally, in the Appendix we prove some technical results that have been employed at scattered
spots in the paper.
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2. Notation and preliminary results

The following table contains the main notation that we shall use throughout the paper:

‖·‖ (generic) norm in Rh

BR, BR open/closed ball of center 0 and radius R > 0 in Rh (w.r.t. the norm ‖·‖)
B(Rh),Bb(Rh) Borel (resp. bounded Borel) subsets of Rh
I the positive half-line [0,+∞)
L1 Lebesgue measure on I

P(Rh) Borel probability measures in Rh

P1(Rh) probability measures in Rh with finite first moment, endowed with the
W1 Wasserstein distance

M(A), Mloc(A) finite (resp. Radon) Borel measures on A ∈ B(Rh)
M+(A), M+

loc(A) finite (resp. Radon) nonnegative Borel measures on A
M(A;Rm), Mloc(A;Rm) Rm-valued Borel measures with finite total variation,

(resp. Rm-valued Radon meas.), on A

|λ| total variation of λ ∈Mloc(A;Rd)
Cc(A),Ckc (A) continuous (Ck, k ≥ 1, resp.) real functions on A with compact support

Cb(A),Ckb(A) continuous (Ck, k ≥ 1, resp.) and bounded real functions on A
‖ · ‖p norm on Lp(A;Rm) for some p ≥ 1

Lpθ(R
h;Rk), Lploc,θ(R

h;Rk) Lp-spaces w.r.t. θ ∈M+(Rh)

Rd+1
+ the space-time domain I× Rd.

2.1. Preliminaries of measure theory.
Finite and Radon vector measures. We denote by M(Rh;Rm) the space of Borel measures µ : B(Rh)→
Rm with finite total variation ‖µ‖TV := |µ|(Rh) < +∞ , where for every B ∈ B(Rh)

|µ|(B) := sup

{
+∞∑
i=0

‖µ(Bi)‖ : Bi ∈ B(Rh), Bi pairwise disjoint, B =

+∞⋃
i=0

Bi

}
,

and ‖·‖ is a norm in Rm . (M(Rh;Rm); ‖·‖TV) is a Banach space. We recall that a Radon vector
measure in M(Rh;Rm) is a set function λ : Bb(Rh) → Rm such that for every compact subset K b Rh
its restriction to B(K) is a (vector) measure with finite total variation.

We identify λ ∈Mloc(Rh;Rm) with a vector (λ1, λ2, . . . , λm) of m measures in Mloc(Rh), so that its
integral with a continuous Rm -valued function with compact support ζ ∈ Cc(Rh;Rm) is given by∫

Rh
ζ(x)dλ(x) :=

m∑
i=1

∫
Rh
ζi(x)dλi(x) . (2.1)

By the above duality pairing, Mloc(Rh;Rm) can be identified with the dual of Cc(Rh;Rm) and is thus
endowed with the corresponding weak∗ topology; for the associated convergence notion we will use the
symbol ⇀∗ .

For every λ ∈Mloc(Rh;Rm) and every open subset O ⊂ Rh we have that

|λ|(O) := sup

{∫
Rh
ζ(x)dλ(x) : ζ ∈ Cc(Rh;Rm) , spt(ζ) ⊂ O, sup

x∈O
‖ζ(x)‖∗ ≤ 1

}
Clearly, the choice of the norm ‖·‖ on Rm (and its dual ‖·‖∗ ) affects the definition of the total variation
measure | · | , which depends on ‖·‖ . The set function |λ| : Mloc(Rh;Rm)→ [0,+∞] is a positive Radon
measure and every λ ∈ M(Rh;Rm) admits the polar decomposition λ = w|λ| for some Borel map
w : Rh → Rm with ‖w‖ ≡ 1 |λ|-a.e. in Rh . It is trivial to check that the integral of (2.1) can also be
written as ∫

Rh
ζ(x) dλ(x) =

∫
Rh
ζ(x) ·w(x) d|λ|(x) (2.2)

and the previous formula can also be used to define a vector integral for a scalar function.
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Weak∗ and narrow convergence. Every sequence (λk)k ⊂Mloc(Rh;Rm) such that

sup
k
|λk|(BR) < +∞ for every R > 0

admits a subsequence (λkj )j weakly∗ -converging to some λ ∈Mloc(Rh;Rm); furthermore, the sequence

(|λkj |)j weakly∗ converges to some λ ∈ M+
loc(Rh) such that λ ≥ |λ| . If supk |λk|(Rh) < +∞ , then up

to a subsequence the measures (λk)k weakly∗ converge to some λ ∈M(Rh;Rm).
We recall that a sequence (µk)k ⊂M(Rh) narrowly converges to µ ∈M(Rh) if

lim
k→∞

∫
Rh
ϕ(x)dµk(x) =

∫
Rh
ϕ(x)dµ(x) for all ϕ ∈ Cb(Rh).

Prokhorov’s Theorem [30, III-59] asserts that a subset M ⊂M(Rh) has compact closure in this topology
if and only if it is bounded in the total variation norm |·| and equally tight, namely

∀ ε > 0 ∃K b Rh : sup
µ∈M

|µ|(Rh\K) ≤ ε .

On P(Rh) the narrow topology coincides with the weak∗ topology.
Restriction and push-forward of measures. For every µ ∈Mloc(Rh;Rm) and A ∈ B(Rh) we denote
by µ A ∈ Mloc(Rh;Rm) the restriction of µ to A , i.e. µ A(B) := µ(B∩A) for every B ∈ Bb(Rh).
We shall use that, whenever µn ⇀

∗ µ in Mloc(Rh;Rm) and A ⊂ Rh is open, then µn A ⇀∗ µ A in
Mloc(A;Rm).

Let p : Rh → Rk be a Borel map. For every µ ∈M(Rh;Rm) we define the push-forward measure p]µ
in M(Rk;Rm) via

p]µ(B) := µ(p−1(B)) for all B ∈ B(Rk) .

In general, the above definition can be extended to define a measure in Mloc(Rk;Rm) from a measure
in Mloc(Rh;Rm) if, in addition, the mapping p : Rh → Rk is continuous and proper, namely for every
compact subset K ∈ Rk we have that p−1(K) is a compact subset of Rh . Under this condition, we
have that (cf., e.g., [10, Rmk. 1.7]) if µn ⇀

∗ µ in Mloc(Rh;Rm), then p]µn ⇀
∗ p]µ in Mloc(Rk;Rm).

We further notice that if (µn)n,µ ∈ M(Rh;Rm), (µn)n converges narrow to µ , and p : Rk → Rh is
continuous, then (p]µn)n converges narrow to p]µ .
The Wasserstein distance on P1(Rh) . We recall that the distance W1 on P1(Rh) is defined by

W1(µ1, µ2) := min

{∫
Rh×Rh

‖x−y‖dγ(x, y) : γ ∈ P(Rh×Rh), πi]γ = µi, i ∈ {1, 2}
}
. (2.3)

Again, notice that the above definition depends on the choice of the norm ‖·‖ on Rh . For a given curve
µ : I→ P1(Rh) we will denote by VarW1

its total variation w.r.t. W1 , defined on every [a, b] ⊂ I by

VarW1
(µ; [a, b]) := sup

{
n∑
i=1

W1(µti−1
, µti) : a = t0 < t1 < . . . < tn = b

}
. (2.4)

We will denote by BVloc(I;P1(Rh)) the space of curves µ : I→ P1(Rh) such that VarW1
(µ; [a, b]) < +∞

for every [a, b] ⊂ I . Finally, we recall (cf. [11, Thm. 1.1.2]) that for any µ ∈ ACloc(I;P1(Rh)) the limit

|µ′t|W1
:= lim

h→0

1

h
W1(µt, µt+h) exists for a.a. t ∈ (0,+∞).

Metrizable spaces. Following [30, III-16] A topological space (X, τ) is called

- Polish if it can be endowed with a metric d inducing the topology τ such that (X, d) is a complete
separable metric space;

- Lusin if it is the injective and continuous image of a Polish space.
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2.2. Submeasures and minimality. In the spirit of the definition of subcurrent from [42, Def. 3.1], we
introduce the concept of ‘submeasure’ and the induced order relation on Mloc(O;Rd), where O is some
locally compact topological space.

Definition 2.1. Let θ, ζ ∈Mloc(O;Rk). We say that ζ is a submeasure of θ and write ζ ≺ θ if

∃λ ∈ L∞|θ|(O; [0, 1]) such that ζ = λθ. (2.5)

It can be immediately checked that ≺ is an order relation, and that it fulfills

(ζ ≺ θ and |θ|(O) ≤ |ζ|(O) < +∞) =⇒ ζ = θ . (2.6)

The relation ≺ can also be characterized by the following result.

Lemma 2.2. Let θ, ζ ∈Mloc(O;Rk) and let w be the Lebesgue density of the polar decomposition of θ ,
i.e. θ = w|θ| . The following properties are equivalent:

(i) ζ ≺ θ ,
(ii) |ζ| ≤ |θ| and ζ = w|ζ| ,

(iii) (assuming the norm ‖·‖ in Rk is strictly convex) there exists ζC ∈ Mloc(O;Rk) such that θ =
ζ + ζC and |θ| = |ζ|+ |ζC | .

Proof. The implications (i)⇒ (ii), (iii) are obvious.
In order to prove (ii)⇒ (i) we observe that |ζ| = λ|θ| for some λ ∈ L∞|θ|(O, [0, 1]) since |ζ| ≤ |θ| , so

that ζ = wλ|θ| = λθ.
As for (iii) ⇒ (i) let ζC ∈ Mloc(O,Rk) be such that θ = ζ + ζC and |θ| = |ζ| + |ζC | . Then,

ζ, ζC � |θ| . Denoting by v : = dζ
d|θ| we may write ζ = v|θ| and ζC = (w − v)|θ| . Now, the function

v ∈ L1
|θ|(O;Rk) satisfies 1 = ‖w‖ = ‖w−v‖+ ‖v‖ |θ|-a.e. in O . Since ‖·‖ is strictly convex, we deduce

v = λw for some λ ∈ L∞|θ|(O; [0, 1]), i.e. (2.5) holds. �

We now consider the previous order relation in the particular case when O is an open subset of space-
time Euclidean space Rd+1 = R × Rd (whose elements will be denoted by (t, x)), and measures have
the same x -distributional divergence. The operator div is to be understood with respect to the ‘spatial’
variable x ∈ Rd . This gives rise to the following definition.

Definition 2.3 (Minimal vector measures). Let O be an open subset of R×Rd and let θ ∈Mloc(O;Rd).
We say that θ is minimal if the following property holds:

whenever ζ ∈Mloc(O;Rd) fulfills div ζ = div θ and ζ ≺ θ , then ζ = θ . (2.7)

We illustrate this concept with the following example, where a minimal measure is constructed by
juxtaposing the measures carried by finitely many regular and injective curves.

Example 2.4. Let (%i)
n
i=1 be a family of regular injective curves in Rd , with disjoint image sets. Let

t%i , i = 1, . . . , n be their tangent vector fields, and r%i : [0, L%i ] → Rd their arclength parametrizations.
Let (a, b) ⊂ R be an arbitrary interval and λ ∈ M((a, b)). Then, the measure θ ∈ Mloc((a, b)×Rd;Rd)
defined by

θ := λ⊗mρ with mρ :=

n∑
i=1

t%iH
1 %i

is minimal.
Indeed, let ζ ∈ Mloc((a, b)×Rd;Rd) fulfill ζ ≺ θ and div ζ = div θ . Then, there exists ` ∈

L∞|θ|((a, b)×R
d; [0, 1]) such that ζ = `θ . Moreover, for every ϕ ∈ C1

c((a, b)×Rd) we have that∫
(a,b)

n∑
i=1

∫ L%i

0

d

ds
ϕ(t, r%i(s)) dsdλ(t) =

∫
(a,b)

n∑
i=1

∫
Rd

Dxϕ(t, x) · t%i(x) d(H1 %i)(x) dλ(t) (2.8)

=

∫∫
(a,b)×Rd

Dxϕ(t, x) dθ(t, x) =

∫∫
(a,b)×Rd

Dxϕ(t, x) dζ(t, x)
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=

∫
(a,b)

n∑
i=1

∫
Rd
`(t, x)Dxϕ(t, x) · t%i(x) d(H1 %i)(x) dλ(t)

=

∫
(a,b)

n∑
i=1

∫ L%i

0

`(t, r%i(s))
d

ds
ϕ(t, r%i(s)) dsdλ(t) .

Taking ϕ(t, x) = ψ1(t)ψ2(x) for ψ1 ∈ C1
c((a, b)) and ψ2 ∈ C1

c(Rd) , we deduce from (2.8) that for
λ -a.a. t ∈ (a, b)

n∑
i=1

∫ L%i

0

d

ds
ψ2(r%i(s)) ds =

n∑
i=1

∫ L%i

0

`(t, r%i(s))
d

ds
ψ2(r%i(s)) ds .

Since each %i is regular and injective, and their image sets are disjoint, we infer that for every ψ ∈
C1([0, Lρi ]) , for λ -a.a. t ∈ (a, b) and every i = 1, . . . , n it holds∫ L%i

0

(
1− `(t, r%i(s))

) d

ds
ψ(s) ds = 0. (2.9)

Choosing a countable set of test functions strongly dense in C1([0, L]) , with L := maxi L%i , then for
every i = 1, . . . , n we have that 1 − `(t, r%i(·)) = 0 a.e. in [0, L%i ] for λ -a.a. t ∈ (a, b) . Thus, ` ≡ 1
|θ|-a.e., hence ζ = θ .

In the next two statements we discuss the existence of minimal submeasures. We start with the case
of bounded Radon measures.

Proposition 2.5. Let O be an open subset of Rd+1 and θ ∈M(O;Rd) . Then, the problem

min {|ζ|(O) : ζ ≺ θ and div ζ = div θ} (2.10)

admits a solution. Moreover, every solution to (2.10) is minimal.

We point out for later use that, by Lemma 2.2, the minimum problem (2.10) can be reformulated in
terms of densities:

min

{∫
O

λ d|θ| : λ ∈ L∞|θ|(O; [0, 1]),

∫
O

(1− λ)Dxϕdθ = 0 for every ϕ ∈ C1
c(O)

}
. (2.11)

Proof. A solution to the minimum problem (2.11), and thus to (2.10), exists, since the constraint is
convex and weakly∗ -compact and the functional is weakly∗ -continuous.

Let ζ ∈M(O;Rd) be a solution of (2.10) and let ζ̃ ∈M(O;Rd) be such that div ζ̃ = div ζ and ζ̃ ≺ ζ .

Then, div ζ̃ = div θ and ζ̃ ≺ θ , and ζ̃ is a competitor for (2.10), so that |ζ|(O) ≤ |ζ̃|(O). Hence, by

(2.6) we conclude that ζ̃ = ζ . �

With our following result we show that the existence of minimal submeasures extends to the case in
which θ is just a Radon measure in a cylindrical open set (a, b) × Rd (we again emphasize that the
divergence operator is only considered w.r.t. the variable x ∈ Rd ).

Corollary 2.6. Let θ ∈Mloc((a, b)×Rd;Rd) be such that |θ|([c, d]×Rd) < +∞ for every [c, d] ⊂ (a, b) .
Then there exists ζ ∈Mloc((a, b)×Rd;Rd) minimal such that ζ ≺ θ and div ζ = div θ .

Proof. We consider two sequences (aj)j , (bj)j ⊂ (a, b) with aj ↘ a and bj ↗ b as j → ∞ , and set
Oj := (aj , bj)× Rd . By assumption, for every j ∈ N the restriction θj := θ Oj belongs to M(Oj ;Rd);
we denote by div|Oj the divergence operator relative to the open set Oj , i.e., restricted to test functions
with a compact support in Oj , and observe that div|Oj (θj) = div|Oj (θ). We can apply Proposition 2.5
and find, for every j ∈ N , a minimal measure

ζj ∈M(Oj ;Rd) such that ζj ≺ θj and div |Oj (ζj) = div |Oj (θj) .
We now show that it is not restrictive to assume that

ζj O` = ζ` if ` ≤ j . (2.12)
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Indeed, since ζj ≺ θj and ζ` ≺ θ` , there exist λj ∈ L∞|θj |(Oj ; [0, 1]) and λ` ∈ L∞|θ`|(O`; [0, 1]) such that

ζj = λjθj and ζ` = λ`θ` . Recall that λj and λ` solve the minimum problem (2.11) on Oj and on O` ,

respectively. Define now λ̂j : Oj → [0, 1] via

λ̂j(t, x) :=

{
λ`(t, x) if (t, x) ∈ O`,
λj(t, x) if (t, x) ∈ Oj \O` .

Then, λ̂j ∈ L∞|θj |(Oj ; [0, 1]) and the measure ζ̂j := λ̂jθj clearly fulfills ζ̂j ≺ θj , div|Oj (ζ̂j) = div|Oj (θj),

and ζ̂j O` = ζ` . By minimality of ζ` on O` , we have that

|ζ̂j |(Oj) = |ζ̂j |(O`) + |ζ̂j |(Oj \O`) = |ζ`|(O`) + |ζj |(Oj \O`) ≤ |ζj |(Oj) .

Hence, ζ̂j solves the minimum problem (2.11) on Oj and is minimal. This implies that, up to replacing ζj
with ζ̂j , we may assume (2.12).

Let us trivially extend each ζj to O = (a, b)×Rd . Since |ζj | ≤ |θj | for every j ∈ N , we find that there

exists ζ ∈ Mloc(O;Rd) such that, up to a subsequence, ζj ⇀
∗ ζ in Mloc(O;Rd). Thus, div ζ = div θ .

By the lower semicontinuity of the total variation and by the relation ζj ≺ θj we deduce that ζ ≺ θ .

Let us now show that ζ is minimal. Indeed, let ξ ∈ Mloc(O;Rd) be such that div ξ = div ζ and
ξ ≺ ζ . In particular, ξ Oj satisfies div |Oj (ξ Oj) = div |Oj (ζj) and ξ Ojζj ≺ ζj . Thus, ξ Oj = ζj
for every j ∈ N and ξ = ζ .

�

A crucial step in the proof of Theorem 4.7 ahead will consist in relating the weak∗ limits of the
projections of (weakly∗ converging) sequences of positive and vector-valued measures, with the push
forward of their weak∗ limits through the projection π(s, t, x) := (t, x), R×R×Rd → R×Rd , which is
not proper.

Now, the last result of this section addresses this issue in general, for the push forward through a
generic continuous map. It provides sufficient conditions under which the push forward of a weakly∗

converging sequence of measures is a submeasure of the weak∗ -limits of their push forwards.

Lemma 2.7. Let O,G be open subsets of some Euclidean spaces, let p : O → G be a continuous map,
let Rk be endowed with a strictly convex norm ‖·‖ , and let (ζn)n ⊂Mloc(O;Rk) satisfy

sup
n∈N
|ζn|(p−1(K)) < +∞ for every compact subset K ⊂ G,

so that λn = p]ζn is a well defined measure in Mloc(G;Rk) . Let us assume that

ζn ⇀
∗ ζ in Mloc(O;Rk), λn = p]ζn ⇀

∗ λ in Mloc(G;Rk), (2.13)

for some ζ ∈Mloc(O;Rd), and λ ∈Mloc(G;Rk) . If

p]|ζn|⇀∗ |λ| in M+
loc(G), (2.14)

then

p]ζ ≺ λ. (2.15)

Proof. Let ηj ∈ Cc(O) form an increasing sequence such that 0 ≤ ηj ≤ 1 for all j ∈ N and ηj(x) ↑ 1 as
j →∞ for every x ∈ O . For every n ∈ N and j ≥ 1 we set

ζjn := ηjζn, ζ̂
j

n := (1− ηj)ζn, λn := p]ζn, λjn := p]ζ
j
n, λ̂

j

n := p]ζ̂
j

n,

so that

ζn = ζjn + ζ̂
j

n, λn = λjn + λ̂
j

n. (2.16)

Since the functions ηj have compact support, if we pass to the limit as n → ∞ while keeping j ≥ 1
fixed, we get

ζjn ⇀
∗ ζj = ηjζ, λjn ⇀

∗ λj = p](ζ
j) as n→∞, (2.17)
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and we correspondingly deduce the convergence of ζ̂
j

n and λ̂
j

n to measures ζ̂
j

and λ̂
j

respectively,
satisfying the decomposition

ζ = ζj + ζ̂
j
, λ = λj + λ̂

j
. (2.18)

(Notice, however, that in general λ̂j does not coincide with p]ζ
j ). We can now consider similar decom-

positions on the level of the total variations

αn := |ζn|, αjn := ηj |ζn|, α̂jn := (1− ηj)|ζn|, βn := p]αn, βjn := p]α
j
n, β̂jn := p]α̂

j
n,

which satisfy

αn = αjn + α̂jn, βn = βjn + β̂jn, βn ≥ |λn|, βjn ≥ |λ
j
n|, β̂jn ≥ |λ̂

j

n|, βn ⇀
∗ β = |λ| as n→∞.

(2.19)
By a possible extraction of a (not relabeled) subsequence, it is not restrictive to assume that there exists
α ∈M+

loc(O) such that αn ⇀
∗ α as n→∞ , so that

αjn ⇀
∗ αj = ηjα, α̂jn ⇀

∗ α̂j = (1− ηj)α, βjn ⇀
∗ βj = p]α

j , β̂jn ⇀
∗ β̂j = β − βj . (2.20)

By Cantor’s diagonal argument, it is possible to extract an increasing subsequence m 7→ n(m) and to

find limit measures λj , λ̂j ∈M+
loc(G) such that for every j ∈ N

|λjn(m)|⇀
∗ λj ≥ |λj |, |λ̂

j

n(m)|⇀∗ λ̂j ≥ |λ̂
j
| as m→∞. (2.21)

Since

|λn| ≤ |λjn|+ |λ̂
j

n|
we deduce

|λ| ≤ λj + λ̂j . (2.22)

On the other hand, the inequalities

λjn ≤ βjn, λ̂jn ≤ β̂jn
yield

λj ≤ βj , λ̂j ≤ β̂j , (2.23)

and since βj + β̂j = β = |λ| we conclude that

|λ| = λj + λ̂j . (2.24)

Similarly, the inequalities λj ≥ |λj |, λ̂j ≥ |λ̂
j
| and |λ| ≤ |λj |+ |λ̂

j
| yield

λj = |λj |, λ̂j = |λ̂
j
|, |λ| = |λj |+ |λ̂

j
|, λ = λj + λ̂

j
. (2.25)

We deduce that λj ≺ λ . For every ϕ ∈ Cc(G;Rk) we easily check that∫
G

ϕ · dλj =

∫
O

ηjϕ(p(x)) · dζ(x) −→
∫
O

ϕ(p(x)) · dζ(x) =

∫
G

ϕ · d(p]ζ) as j →∞,

i.e. λj ⇀∗ p]ζ . We eventually conclude that p]ζ ≺ λ by (iii) of Lemma 2.2. �

2.3. Function spaces for the superposition principle. Recall that I denotes the interval [0,+∞);
if (X, d) is a complete and separable metric space, we will endow the pathspace C(I; X) with the Polish
topology of uniform convergence on the compact subsets of I (see Lemma B.1). We introduce the spaces

- Lipk(I; X) , of k -Lipschitz paths, k ≥ 0 which is a (closed, thus Polish) subset of C(I; X);
- Lip(I; X) of Lipschitz paths; since Lip(I; X) =

⋃
k∈N Lipk(I; X), Lip(I; X) is a Fσ (namely, a

countable union of closed sets), thus a Borel subset of C(I; X).



13

We introduce a few more subsets of C(I;Rd+1): first of all, the set

C↑(I;Rd+1) :=
{
y = (t, x) ∈ C(I;Rd+1) : t(0) = 0, t is non-decreasing, lim

s↑∞
t(s) = +∞

}
. (2.26)

C↑(I;Rd+1) is a Polish space, in particular a Borel subset of C(I;Rd+1). In fact, it can be written as the
intersection A ∩B where

A :=
⋂
n∈N

{
y ∈ C(I;Rd+1) : sup

s∈I
t(s) > n

}
,

B :=
{
y = (t, x) ∈ C(I;Rd+1) : t(0) = 0, t is non-decreasing

}
.

Since the map y 7→ sups∈I t(s) is lower semicontinuous in C(I;Rd+1), A is a Gδ set (namely, the
countable intersection of open sets). Since B is closed, C↑(I;Rd+1) is a Gδ as well, and thus also Polish.

We further set

Lip↑k(I;Rd+1) := Lipk(I;Rd+1) ∩ C↑(I;Rd+1), Lip↑(I;Rd+1) :=
⋃
k∈N

Lip↑k(I;Rd+1), (2.27)

which are respectively a Polish and a Fσ subset of C(I;Rd+1). Finally, we define

ArcLip(I;Rd+1) := {y ∈ Lip↑1(I;Rd+1) : ‖y′(s)‖ = 1 for a.e. s ∈ I} .

We notice that

ArcLip(I;Rd+1) =
⋂
m∈N

⋂
n∈N

{
y ∈ Lip↑1(I;Rd+1) :

∫ m

0

‖y′(s)‖ds > m− 1

n

}
,

so that ArcLip(I;Rd+1) is a Gδ , thus Polish and Borel, subset of C(I;Rd+1).

3. BV curves and the ‘relaxed’ continuity equation

The main result of this section, Theorem 3.4 below, will unveil the relation between bounded-variation
curves with values in P1(Rd), and the continuity equation (3.1), which, throughout the paper, will be

formulated as in Definition 3.1 below. Recall that we denote by Rd+1
+ the space-time domain I × Rd ,

which we can consider as a subset or Rd+1 .

Definition 3.1 (Distributional and P1 -solutions to the continuity equation). We call a pair (µ,ν) ∈
M+

loc(Rd+1
+ )×Mloc(Rd+1

+ ;Rd) a (forward, distributional) solution to the continuity equation

∂tµ+ div ν = 0 in Rd+1
+ , µ ≥ 0, with initial datum µ0 ∈M+

loc(Rd) , (3.1)

if ∫∫
Rd+1

∂tϕ(t, x) dµ(t, x) +

∫∫
Rd+1

Dϕ(t, x) dν(t, x) = −
∫
Rd
ϕ(0, x) dµ0(x) (3.2)

for every ϕ ∈ C1
c(Rd+1). We say that (µ,ν) is a P1 -solution if

µ0 ∈ P1(Rd), |ν|([0, T ]× Rd) < +∞ for every T > 0 . (3.3)

Observe that, since µ,ν are supported in Rd+1
+ , we could restrict the integrals in (3.2) to Rd+1

+ . We

have integrated on Rd+1 , and thus considered test functions in C1
c(Rd+1), to be consistent with the usual

distributional formulation in D ′(Rd+1).
In this paper we will mainly focus on P1 -solutions; we will also consider an important subclass char-

acterized by a minimality condition.

Definition 3.2 (Minimal P1 -solutions). Let (µ,ν) be a P1 -solution to the continuity equation (3.1)
and let us consider the Lebesgue decomposition of ν as

ν = νa + ν⊥, νa � µ, ν⊥ ⊥ µ. (3.4)

We say that (µ,ν) is a minimal P1 -solution if ν⊥ is minimal in the sense of Definition 2.3.
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Let now ν̄ ∈Mloc(Rd+1
+ ;Rd). We say that (µ, ν̄) is a minimal pair induced by (µ,ν) if

ν̄ = νa + ν̄⊥, ν̄⊥ ≺ ν⊥, ν̄⊥ is minimal according to Definition 2.3, (3.5)

so that in particular (µ, ν̄) is a P1 -solution of (3.1) as well.

Remark 3.3. The existence of a minimal pair induced by (µ,ν) is guaranteed by Corollary 2.6. Notice
that the pair (µ, ν̄) in (3.5) satisfies

|(µ, ν̄)| = θ|(µ,ν)|, (µ, ν̄) = θ(µ,ν) ≺ (µ,ν) for θ : Rd+1
+ → [0, 1] Borel, θ = 1 µ -a.e. (3.6)

We will see that minimality can also be characterized directly in terms of ν .

We now establish the analogue of [11, Thm. 8.3.1].

Theorem 3.4. (1) Let µ ∈ BVloc(I;P1(Rd)) and let µ± be the left- and right-continuous represen-

tatives of µ , respectively. Then, there exists a Borel measure ν ∈ Mloc(Rd+1
+ ;Rd) such that for

every T ∈ [0,+∞)

|ν|([0, T )× Rd) = VarW1
(µ−; [0, T ]), |ν|((0, T ]× Rd) = VarW1

(µ+; [0, T ]), (3.7)

and the pair (µ,ν) is a minimal P1 -solution to the continuity equation (3.1) in the sense of
Definition 3.2. 2.3.

(2) Conversely, if (µ,ν) is a P1 -solution to the continuity equation in the sense of Definition 3.1
with initial datum µ0 ∈ P1(Rd) , then

(a) π0
]µ = L1 (with π0 : Rd+1

+ → I the projection (t, x) 7→ t), in particular µ([0, T ) × Rd) = T

for every T ∈ [0,+∞) ;
(b) there exists a curve t 7→ µt ∈ BVloc(I;P1(Rd)) such that µ = L1 ⊗ µt . The curve admits

a narrowly left-continuous representative µ− (a right-continuous representative µ+ , respec-
tively), such that µ−(0) := µ0 , the functions t 7→ µ±t belong to BVloc(I;P1(Rd)) , and there
holds

VarW1
(µ−; [a, b]) ≤ |ν|([a, b)× Rd), VarW1

(µ+; [a, b]) ≤ |ν|((a, b]× Rd) for all [a, b] ⊂ I . (3.8)

Furthermore, for every 0 ≤ a < b < +∞ and ϕ ∈ C1
c(Rd+1

+ ) , there holds∫
Rd
ϕ(b, x) dµ−b (x)−

∫
Rd
ϕ(a, x) dµ+

a (x) =

∫ b

a

∫
Rd
∂tϕ(t, x) dµt(x) dt+

∫∫
(a,b)×Rd

Dϕ(t, x) dν(t, x) , (3.9a)∫
Rd
ϕ(b, x) dµ−b (x)−

∫
Rd
ϕ(0, x) dµ0(x) =

∫ b

0

∫
Rd
∂tϕ(t, x) dµt(x) dt+

∫∫
[0,b)×Rd

Dϕ(t, x) dν(t, x) . (3.9b)

In particular, for every ϕ ∈ C1
c(Rd) and b ∈ I there holds∫

Rd
ϕ(x) dµ+

b (x)−
∫
Rd
ϕ(x) dµ−b (x) =

∫∫
{b}×Rd

Dϕ(x) dν(t, x) . (3.10)

In fact, a partial analogue of part (1) of the statement has been established for BV curves of currents in
[21, Thm. 6.1, Prop. 6.4] (see also [20, Theorems 6.1 and 6.2]). We will develop the proof of Theorem
3.4 in the ensuing subsections, starting from the second part of the statement.

Remark 3.5. The definition µ−(0) := µ0 for the left-continuous representative of the curve t 7→ µt
associated with a solution to the continuity equation, reflects the fact that, if |ν|({0}×Rd) > 0 the curve
t 7→ µt has a jump at t = 0. Hence, µ+(0) 6= µ−(0) and it is meaningful to set µ−(0) := µ0 .

Remark 3.6 (Continuity equation in [a, b]×Rd ). Let 0 ≤ a < b , µa, µb ∈ P1(Rd), and (µ,ν) ∈M+([a, b]×
Rd) ×M([a, b] × Rd;Rd) (recall that M(A;Rm) denotes the space of Rm -valued Borel measures with
finite total variation) satisfy∫∫

[a,b]×Rd
∂tϕ(t, x) dµ(t, x) +

∫∫
[a,b]×Rd

Dϕ(t, x) dν(t, x) =

∫
Rd
ϕ(b, x) dµb(x)−

∫
Rd
ϕ(a, x) dµa(x)
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for every ϕ ∈ C1
c([a, b] × Rd). It can be immediately checked that the extensions µ̃, ν̃ defined for every

Borel set A ⊂ Rd+1
+ by

µ̃(A) := µ
(
A ∩

(
[a, b]× Rd

))
+ (L1⊗µa)

(
A ∩

(
[0, a)× Rd

))
+ (L1⊗µb)

(
A ∩

(
b,+∞)× Rd

))
,

ν̃(A) := ν
(
A ∩

(
[a, b]× Rd

))
solve (3.2) in the sense of Definition 3.1.

3.1. Proof of Part (2) of Thm. 3.4. The proof is carried out in several steps. First of all, we show that,
if µ solves (3.1), then its marginal w.r.t. the time variable coincides with the 1-dimensional Lebesgue
measure on I . We also provide a useful chain-rule formula.

Lemma 3.7 (Time marginals and distributional chain rule for P1 -solutions). Let µ0 ∈ P1(Rd) and let
(µ,ν) be a P1 -solution of the continuity equation in the sense of Definition 3.1. Then, µ([0, T )×Rd) = T
for all T > 0 , π0

]µ = L1 and µ = L1⊗µt for a family of probability measures (µt)t∈I in P1(Rd) with finite

first moment. Furthermore, for every Lipschitz function ϕ ∈ C1(Rd+1
+ ) the map t 7→

∫
Rd
ϕ(t, x) dµt(x)

(trivially extended to 0 for t < 0) has distributional derivative

d

dt

∫
Rd
ϕ(t, ·) dµt =

∫
Rd
∂tϕ(t, ·) dµt + π0

] (Dϕ · ν) + δ0

∫
Rd
ϕ(0, ·) dµ0 in D′(R) , (3.11)

(where the scalar product Dϕ·ν has to be understood in the sense of (2.1)), and in particular it has
essential bounded variation in every bounded interval (0, T ) , T > 0 .

Proof. Let us first observe that selecting ζ ∈ C1
c(I) and ϕc ∈ C1(Rd+1

+ ) with support in I × BR(0) for
some R > 0, (3.2) yields∫∫

Rd+1
+

(ζ ′ϕc + ζ∂tϕc) dµ+

∫∫
Rd+1

+

ζDϕc dν = −
∫
Rd
ζ(0)ϕc(0, x) dµ0(x). (3.12)

In order to evaluate µ([0, T )×Rd), we consider a regularization of the function ζ(t) := t− = max(−t, 0),
for instance

ζε(t) :=


t+ ε

2 if t ≤ −ε,
− t2

2ε if − ε < t ≤ 0,

0 if t > 0

and we set ζε,T (t) := ζε(t− T ). We also take a function θ ∈ C∞c (Rd) fulfilling

0 ≤ θ ≤ 1, θ ≡ 1 in B1(0), θ ≡ 0 in Rd \B2(0), ‖Dθ‖∞ ≤ 2,

and for ψ ∈ C1(Rd) we set

θR(x) := θ(x/R), ψR(x) := ψ(x)θR(x).

Choosing 0 < ε < T and ϕc = ψR , (3.12) yields∫∫
[0,T−ε]×Rd

ψR dµ+

∫∫
(T−ε,T )×Rd

T − t
ε

ψR dµ =

(
T − ε

2

)∫
Rd
ψR dµ0 −

∫∫
Rd+1

+

ζε,TDψR dν .

(3.13)
We first take ψ ≡ 1, so that ψR = θR . Since ζε,T → ζT = ζ(· − T ) as ε ↓ 0, uniformly in I , and
‖ζε,T ‖∞ ≤ T + ε/2, ‖DθR‖∞ ≤ 2

R , and |ν|([0, T ]× Rd) < +∞ , we find that

lim
ε↓0

∫∫
Rd+1

+

ζε,T (t)DθR(x) dν(t, x) =

∫∫
[0,T ]×Rd

(T − t)+DθR(x) dν(t, x) .

Clearly,

lim
ε↓0

∫∫
[0,T−ε]×Rd

θR(x) dµ(t, x) =

∫∫
[0,T )×Rd

θR(x) dµ(t, x) .
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Finally, ∣∣∣∣∣
∫∫

(T−ε,T )×Rd

T − t
ε

θR(x) dµ(t, x)

∣∣∣∣∣ ≤ |µ|((T − ε, T )×Rd) −→ 0 as ε ↓ 0 .

Passing to the limit as ε ↓ 0 in (3.13) we get∫∫
[0,T )×Rd

θR(x) dµ(t, x) = T

∫
Rd
θR(x) dµ0(x)−

∫∫
[0,T ]×Rd

(T − t)+DθR(x) dν(t, x) .

We now take the limit as R → ∞ in both sides of the above equality, recalling that θR → 1 and that
‖DθR‖∞ → 0. Hence, we conclude that µ([0, T )×Rd) = Tµ0(Rd) = T , i.e. π0

]µ([0, T )) = T and therefore

π0
]µ([a, b)) = b− a for every 0 ≤ a < b . This implies that π0

]µ is the Lebesgue measure L1 .

By the disintegration theorem (cf., e.g., [45, Cor. A.5]), we can disintegrate the measure µ with respect

to the projection π0 : Rd+1
+ → I , so that there exists a Borel family {µt}t∈I of probability measures on Rd

such that µ = L1 ⊗ µt .
We now use (3.13) by choosing ψ(x) :=

√
1+‖x‖2 ; since

|DψR(x)| ≤ |DθR(x)ψ(x)|+ |θR(x)Dψ(x)| ≤ 2

R

√
1 + (2R)2 + 1 ≤ 5 if R ≥ 2,

we obtain the uniform estimate for R ≥ 2∫
[0,T−ε]×Rd

ψR dµ ≤ T
∫
Rd
ψR dµ0 + 5T |ν|([0, T ]× Rd).

Passing to the limit as R ↑ +∞ we deduce that∫ T

0

∫
Rd

√
1+‖x‖2 dµt dt ≤ CT, C :=

∫
Rd

√
1+‖x‖2 dµ0 + 5|ν|([0, T ]× Rd), (3.14)

so that µt ∈ P1(Rd) for L1 -a.a. t > 0.

Eventually, we write (3.12) for an arbitrary ζ ∈ C1
c(I) and ϕc = ϕθR (with ϕ ∈ C1(Rd+1

+ ) Lipschitz)
and we get ∫∫

Rd+1
+

(ζ ′ϕ+ ζ∂tϕ)θR dµ+

∫∫
Rd+1

+

ζDϕθRdν = −
∫
Rd
ζ(0)ϕ(0, ·)θR dµ0 − ER, (3.15)

where

ER =

∫∫
Rd+1

+

ζϕDθR dν .

Choosing constants a, L, T such that |ζ(t)| ≤ a , supp(ζ) ⊂ [0, T ] , |ϕ(t, x)| ≤ L(1+‖x‖) whenever
0 ≤ t ≤ T , we obtain

|ER| ≤ 2aL
(1 + 2R)

R
|ν|
(

[0, T ]× (B2R(0) \BR(0))
)
,

so that limR→∞ |ER| = 0. Passing to the limit in (3.15) as R ↑ +∞ using the fact that ϕ has linear
growth and ∂tϕ is bounded, we get∫

I

[
ζ ′
(∫

Rd
ϕt dµt

)
+ ζ
(∫

Rd
∂tϕt dµt

)]
dt+

∫∫
Rd+1

+

ζDψ dν = −
∫
Rd
ζ(0)ϕ0 dµ0, (3.16)

which in particular yields (3.11). �

We now show the existence of the left- and right-continuous representatives. The following result
extends [11, Lemma 8.1.2] and concludes the proof of Part 2. of Thm. 3.4.

Lemma 3.8 (Left- and right- continuous representatives). Let µ0 ∈ P1(Rd) and let (µ,ν) be a P1 -
solution to the continuity equation in the sense of Definition 3.1. Then, there exists a narrowly left-
(resp. narrowly right-)continuous representative I 3 t 7→ µ−t ∈ P(Rd) (resp. I 3 t 7→ µ+

t ∈ P(Rd)) of the
curve t 7→ µt , such that, setting µ−0 := µ0 , for every 0 ≤ a ≤ b < +∞ the following estimates hold

W1(µ−a , µ
−
b ) ≤ |ν|([a, b)× Rd), (3.17)
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W1(µ+
a , µ

+
b ) ≤ |ν|((a, b]× Rd), (3.18)

as well as estimates (3.8) and relations (3.9) and (3.10).

Proof. We combine the argument of [11, Lemma 8.1.2] with the duality characterization of the Kantorovich-
Rubinstein-Wasserstein metric.

We set ν := π0
] (|ν|) and Dν := {t ∈ I : ν({t}) = 0} , whose complement is at most countable; we also

select a Borel set Dµ such that L1(I \Dµ) = 0 and
∫
Rd |x|dµt(x) < +∞ for every t ∈ Dµ . Finally, we

select a countable set Z ⊂ C1
c(Rd) such that every function ψ ∈ Z is 1-Lipschitz and Z provides the

representation

W1(µ′, µ′′) = sup
{∫

Rd
ψ d(µ′ − µ′′) : ψ ∈ Z

}
. (3.19)

For such ψ , let us still denote by µt(ψ) a good representative [10, Theorem 3.28] of the map t 7→
∫
Rd ψ dµt ,

and let us denote with Dψ the set of continuity points of the function t 7→ µt(ψ). We eventually set
D := Dν ∩Dµ ∩

⋂
ψ∈Z Dψ . Then, L1(I \D) = 0 and t 7→ µt(ψ) is continuous at t ∈ D for every ψ ∈ Z .

For every r < s ∈ D and every ψ ∈ Z we have

|µs(ψ)− µr(ψ)| ≤
∫∫

[r,s]×Rd
|Dψ|d|ν|(t, x) ≤ |ν|([r, s]× Rd) = ν((r, s)), (3.20)

so that (3.19) yields

W1(µr, µs) ≤ ν((r, s]) = ν((r, s)) for every r, s ∈ D , r < s. (3.21)

Thus, the map D 3 r 7→ µr has pointwise bounded variation in every bounded subset of D . Since
(P1(Rd),W1) is complete, by a standard density argument we deduce that the limits

µ−t := lim
s∈D,s↑t

µs, µ+
t := lim

s∈D,s↓t
µt (3.22)

exist in (P1(Rd),W1) for every t ∈ I and define a left-continuous and a right continuous map respectively
satisfying (3.8).

Then, relations (3.9) and (3.10) immediately follow from (3.11) by observing that for every Lipschitz

function ϕ ∈ C1(Rd+1
+ ) the map t 7→ µ−(ϕt) (resp. t 7→ µ+(ϕt)) is left- (resp. right-)continuous and thus

provides the unique left- (resp. right-) continuous representative of t 7→ µt(ϕt). �

3.2. Proof of Part (1) of Thm. 3.4.
Let µ ∈ BVloc(I;P1(Rd)) and let µ± be the left- and right-continuous representatives of µ , respectively.
We define

Vµ(t) := VarW1
(µ−; [0, t]) = VarW1

(µ−; [0, t)) . (3.23)

We prove the following claim: there exists a Borel measure ν ∈ Mloc(Rd+1
+ ;Rd) such that for every

T ∈ [0,+∞) relations (3.7) hold, and the pair (µ,ν) satisfies the continuity equation (3.1) in the sense
of Definition 3.1. Moreover, writing ν = νaµ + ν⊥ with νaµ � µ and ν⊥ ⊥ µ , we have that ν⊥ is
minimal in the sense of Definition 2.3.

Indeed, let us consider two continuity points a < b for Vµ (and thus for µ) and let us define the linear
functional `a,b : C1

c([a, b]× Rd)→ R by

`a,b(ζ) :=

∫ b

a

∫
Rd
∂tζ dµt(x) dt+

∫
Rd
ζ(a, x) dµa(x)−

∫
Rd
ζ(b, x) dµb(x) . (3.24)

Observe that, by continuity of µ at a, b , and continuity of ζ , we have

`a,b(ζ) = lim
h↓0

1

h

∫ b−h

a

∫
Rd

(
ζ(t+ h, x)− ζ(t, x)

)
dµt(x) dt

+ lim
h↓0

1

h

∫ a+h

a

∫
Rd
ζ(t, x) dµt(x) dt− lim

h↓0

1

h

∫ b

b−h

∫
Rd
ζ(t, x) dµt(x) dt

= lim
h↓0

1

h

∫ b

a+h

∫
Rd
ζ(s, x) d(µs−h − µs)(x) ds = lim

h↓0

1

h

∫ b

a+h

∫
Rd
ζ(s, x) d(µ−s−h − µ

−
s )(x) ds .
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The duality formula for the Wasserstein metric yields∣∣∣∣ 1h
∫
Rd
ζs d(µ−s−h − µ

−
s )

∣∣∣∣ ≤ 1

h
W1(µ−s−h, µ

−
s ) sup

Rd
‖Dζs‖ ≤

1

h

(
Vµ(s)− Vµ(s− h)

)
sup
Rd
‖Dζs‖,

so that ∣∣∣∣∣ 1h
∫ b

a+h

∫
Rd
ζs d(µs−h − µs) ds

∣∣∣∣∣ ≤ 1

h
‖Dζ‖∞

(∫ b

b−h
Vµ ds−

∫ a+h

a

Vµ ds
)
.

Therefore, taking the limit as h ↓ 0 we obtain

|`a,b(ζ)| ≤ ‖Dζ‖∞
(
Vµ(b)− Vµ(a)

)
.

Therefore, the linear functional La,b defined on the space Va,b := {Dζ : ζ ∈ C1
c([a, b] × Rd)} by

La,b(ξ) := `a,b(ζ) whenever ξ = Dζ is well defined and it satisfies

‖La,b‖ = sup
ξ∈Va,b,‖ξ‖∞≤1

La,b(ξ) ≤ Vµ(b)− Vµ(a) .

By the Hahn-Banach and Riesz representation theorems, we can find a vector measure νa,b on [a, b]×Rd ,
which satisfies ∫∫

[a,b]×Rd
Dζ dνa,b = 〈νa,b,Dζ〉 = `a,b(ζ), (3.25)

|νa,b|([a, b]× Rd) = ‖La,b‖ ≤ Vµ(b)− Vµ(a) . (3.26)

Now, from (3.25) we deduce that the pair (µ,νa,b) satisfies the continuity equation on [a, b]×Rd in the
sense of Remark 3.6. Since µ is Lipschitz, estimate (3.8) then yields

Vµ(β)− Vµ(α) ≤ |νa,b|([α, β)× Rd) for every a ≤ α < β ≤ b, (3.27)

so that we derive

|νa,b|({a} × Rd) = |νa,b|({b} × Rd) = 0, |νa,b|([α, β)× Rd) = Vµ(β)− Vµ(α) . (3.28)

Possibly extending µ to (−∞, 0) by setting µt := µ0 and selecting a diverging sequence (an)n∈N of
continuity points for Vµ with a0 ≤ 0, we can now apply the above results to a sequence of intervals
[an, an+1] , n ∈ N , and we define the vector measure ν whose restriction to [an, an+1] × Rd coincides
with νan,an+1

. By (3.28) such a gluing process is well defined and it is easy to check that (µ,ν) satisfies
the continuity equation and (3.7).

Finally, we decompose ν = νa + ν⊥ into its absolutely continuous part νa and singular part ν⊥

w.r.t. µ , and show that ν⊥ is minimal. Let ρ ∈ Mloc(Rd+1
+ ;Rd) fulfill divρ = div ν⊥ and ρ ≺ ν⊥ .

Setting θ = νa + ρ , the pair (µ,θ) satisfies the continuity equation

∂tµ+ div θ = 0 in (0,+∞)× Rd

with initial datum µ0 , in the sense of Definition 3.1. In particular, by (3.7) and (3.8) we have that for
T ∈ [0,+∞)

|νa|([0, T )× Rd) + |ν⊥|([0, T )× Rd) ≤ VarW1(µ, [0, T ))

≤ |θ|([0, T )× Rd) = |νa|([0, T )× Rd) + |ρ|([0, T )× Rd) .
(3.29)

Thus, |ν⊥|([0, T ) × Rd) ≤ |ρ|([0, T ) × Rd). Combining this with the fact that ρ ≺ ν⊥ and recalling
property (2.6), we conclude that ν⊥ = ρ . Thus, ν⊥ is minimal.
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4. The augmented continuity equation

This section revolves around the result at the core of our approach to the superposition principle for
the continuity equation (3.1). The main idea is to lift a pair (µ,ν) solving (3.1), to a solution of an

augmented continuity equation in Rd+2
+ = I× Rd+1 exhibiting distinguished properties.

Throughout this section we will denote by

(t, x) any element in Rd+1 = R× Rd, π : R× Rd+1 → Rd+1, π(s; t, x) := (t, x). (4.1)

and indicate by the symbol ‖·‖ a norm in Rd+1 , whose restriction on {0} × Rd induces a norm on Rd
which will be denoted by the same symbol. As previously observed, a choice of the norm in Rd+1 affects
the W1 -distance on P1(Rd+1), cf. (2.3).

Theorem 4.7 ahead associates with a solution (µ,ν) to the continuity equation (in the sense of Defini-
tion 3.1), a curve of measures (σs)s∈I ⊂ P1(Rd+1) and a vector measure (σ0,σ) ∈Mloc(I×Rd+1;Rd+1)

that turn out to solve the ‘augmented’ continuity equation in Rd+2
+ = I× Rd+1 ,

∂sσ + ∂tσ
0 + divσ = 0 in Rd+2

+ ,

σ, σ0 ≥ 0 in Rd+2
+ ,

σ0 = δ0 ⊗ µ0 in Rd+1.

(4.2)

In this connection, we mention that, hereafter, with slight abuse of notation we shall denote by the same
symbol both the curve σ : I → P1(Rd+1) and the measure σ = L1 ⊗ σs ∈ M+

loc(I × Rd+1). In equation
(4.2), the ‘augmented’ operator (∂t,div) plays the role that the ‘spatial divergence’ had for the continuity
equation (3.1). Thanks to the construction carried out in the proof of Theorem 4.7 ahead, the vector
measure (σ0,σ) will be induced by an autonomous (i.e. independent of s) velocity field given by a pair
of bounded Borel maps (τ,v) : Rd+1 → Rd+1 that satisfy

σ0 = (τ ◦ π)σ, σ = (v ◦ π)σ, τ ≥ 0. (4.3)

We formalize the above properties in the next Definition 4.2, after recalling an equivalence relation
between positive measures.

Definition 4.1 (Uniformly equivalent measures). We say that two measures %, ϑ ∈ M+
loc(Rh) are k -

uniformly equivalent (for some k ≥ 1), and we write % ∼k ϑ , if

k−1% ≤ ϑ ≤ k%. (4.4)

We write % ∼ ϑ if there exists k ≥ 1 such that % ∼k ϑ .

Clearly, two uniformly equivalent measures are mutually absolutely continuous (and thus equivalent,
sharing the same collection of null sets). Moreover, their mutual Lebesgue densities are bounded and
uniformly bounded away from 0.

With this notion at hand, we can introduce ‘qualified’ solutions (σ, σ0,σ) of the augmented continuity
equation. In particular, the second and third properties below establish a relation between σ and the
pair (σ0,σ).

Definition 4.2 (Solutions of the augmented continuity equation). Let µ0 ∈ P1(Rd) and let σ = L1⊗σs ∈
M+

loc(Rd+2
+ ), σ0 ∈ M+

loc(Rd+2
+ ), and σ ∈ Mloc(Rd+2

+ ;Rd) be such that (σ, σ0,σ) is a P1 -solution to the
augmented continuity equation (4.2) according to Definition 3.1. We say that

(1) (σ, σ0,σ) has locally finite π -marginals if

|(σ, σ0,σ)|
(
I× [0, T ]× Rd

)
< +∞ for every T > 0, (4.5)

so that, in particular, π](σ, σ
0,σ) is a Radon vector measure in Rd+1

+ .
(2) (σ, σ0,σ) is k -adapted if σ ∼k |(σ0,σ)| and normalized if σ = |(σ0,σ)| (i.e. k = 1).

(3) (σ, σ0,σ) is π -autonomous if there exists a pair of Borel maps (τ,v) : Rd+1
+ → Rd+1

+ such that
the autonomous density condition (4.3) holds.
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An adapted (resp. normalized) solution (σ, σ0,σ) which has locally finite π -marginals and is π -autonomous
will be called π -adapted (resp. π -normalized).

Lemma 4.3 (Elementary properties of augmented solutions). Let (σ, σ0,σ) be a P1 -solution to the
augmented continuity equation (4.2) with µ0 ∈ P1(Rd) and locally finite time marginals.

(1) If (σ, σ0,σ) is k -adapted, then the disintegration (σs)s≥0 of σ w.r.t. the Lebesgue measure in I
admits a representation which belongs to the space Lipk(I;P1(Rd+1)) (it is in fact Lipschitz with
values in Pp(Rd+1) if µ0 ∈ Pp(Rd) , p ≥ 1).

(2) If (σ, σ0,σ) is π -autonomous, then

|(σ0,σ)| = ‖(τ,v)‖σ � σ, π](σ
0,σ) = (τ,v)π]σ, (4.6)

π]|(σ0,σ)| = π]
(
‖(τ,v)‖σ

)
= ‖(τ,v)‖π]σ = |π](σ0,σ)|. (4.7)

(3) If (σ, σ0,σ) is π -normalized then ‖(τ,v)‖ ≡ 1 σ -a.e. and

σ = |(σ0,σ)|, π]σ = |(π]σ0,π]σ)| . (4.8)

Moreover, the map s 7→ σs belongs to Lip1(I;P1(Rd+1)) .
(4) Conversely, if ‖·‖ is a strictly convex norm of Rd+1 and (σ, σ0,σ) satisfies (4.8) then it is a

π -normalized solution.

Proof. Claim (1) immediately follows from Theorem 3.4 since the Lebesgue density of (σ0,σ) w.r.t. σ is
uniformly bounded.

Claim (2) is an immediate consequence of the autonomous property. Claim (3) follows from Claim (2)
and the normalization condition.

Concerning the last Claim (4), the normalized property is obious since σ = |(σ0,σ)| . The autonomous
condition is a consequence of Lemma A.1 ahead and the strict convexity of the norm. �

Let us now establish a first easy link between the solutions to the continuity equation (3.1) and those
to its augmented counterpart (4.2).

Lemma 4.4 (Marginals of sutonomous solutions). Let (σ, σ0,σ) be an adapted solution to the augmented
continuity equation (4.2) with locally finite π -marginals according to Definition 4.2, and an initial datum
µ0 ∈ P1(Rd) . Then, setting

µ := π]σ
0, ν := π]σ ,

the pair (µ,ν) is a P1 -solution to the continuity equation (3.1), with initial datum µ0 , in the sense of
Definition 3.1.

Proof. Recall that µ,ν are well defined Radon measures thanks to (4.5). As in Theorem 3.4(2), we have

that σ = L1 ⊗ σs , where σs ∈ P(Rd+1
+ ) for s ∈ I thanks to the next Theorem 4.5.

Let us fix ζ ∈ C1
c([0, 2)) such that 0 ≤ ζ ≤ 1 and ζ ≡ 1 in [0, 1], and let us define the sequence

ζn ∈ C1
c(I) by ζn(s) : = ζ(s/n), so that ζn(s) → 1 for every s ∈ I as n → ∞ , 0 ≤ ζn ≤ 1, and

‖ζ ′n‖∞ ≤
‖ζ′‖∞
n . For every n and every ϕ ∈ C1

c(R×Rd) it holds ζnϕ ∈ C1
c(I×R×Rd). Since the triple

(σ, σ0,σ) solves the Cauchy problem (4.2) and spt(σ0), spt(σ) ⊂ I×[0,+∞)×Rd , we have that∫
I

ζ ′n(s)

∫∫
Rd+1

+

ϕ(t, x) dσs(t, x) ds+

∫∫∫
I×Rd+1

+

ζn(s)∂tϕ(t, x) dσ0(s, t, x)

+

∫∫
I×Rd+1

+

ζn(s)Dϕ(t, x) dσ(s, t, x) = −
∫
Rd
ϕ(0, x) dµ0(x) .

(4.9)

Since ϕ has compact support, there exists Tϕ < +∞ such that spt(ϕ) ⊆ [−Tϕ, Tϕ] × Rd . Hence, the
first integral in (4.9) can be estimated by∣∣∣∣ ∫

I

ζ ′n(s)

∫∫
Rd+1

+

ϕ(t, x) dσs(t, x) ds

∣∣∣∣ ≤ ‖ϕ‖∞‖ζ ′‖∞n
σ([n,+∞)×[0, Tϕ]×Rd),
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and therefore it tends to 0 as n → ∞ . By dominated convergence, we can take the limit in the second
and third integrals of (4.9), thus obtaining

−
∫
Rd
ϕ(0, x) dµ0(x) =

∫∫∫
I×Rd+1

+

∂tϕ(t, x) dσ0(s, t, x) +

∫∫∫
I×Rd+1

+

Dϕ(t, x) dσ(s, t, x)

=

∫∫
Rd+1

+

∂tϕ(t, x) dµ(t, x) +

∫∫
Rd+1

+

Dϕ(t, x) dν(t, x)

for every ϕ ∈ C1
c(R×Rd), which concludes the proof. �

4.1. Superposition results for the augmented continuity equation. Since π -adapted solutions
of the augmented continuity equations are driven by a bounded Borel velocity field, it is easy to state a
superposition principle in the spirit of [11, Theorem 8.2.1].

In order to formulate the probabilistic representation of the curve σ , we introduce the evaluation and
the augmented evaluation maps

e : I× C(I;Rd+1)→ Rd+1, e(s, y) := y(s) = (t(s), x(s)),

es : C(I;Rd+1)→ Rd+1, es(y) := y(s) = (t(s), x(s)),

a : I× C(I;Rd+1)→ I× Rd+1, a(s, y) := (s, y(s)) = (s, t(s), x(s)).

(4.10)

Clearly, a , e and es , s ≥ 0, are continuous maps.
We also introduce the Borel maps y′ : I× Lip(I;Rd+1)→ Rd+1 defined by

y′(s, y) := y′(s), where (y′)i(s) := lim sup
h→0

yi(s+ h)− yi(s)

h
, i = 0, · · · , d. (4.11)

Clearly, y′(s, y) coincides with the usual pointwise derivative of y(s) for L1 -a.a. s ∈ I . We will also
denote by t′ (resp x′ ) the first (corresponding to the index i = 0) component (resp. the vector of the
last d components) of y′ , y′ = (t′, x′):

t′ : I× Lip(I;Rd+1)→ R, t′(s, y) := t′(s),

x′ : I× Lip(I;Rd+1)→ Rd, x′(s, y) := x′(s) .
(4.12)

Notice that the restriction of y′ to Lip↑k(I;Rd+1) is a bounded Borel vector field whose image is contained

in Rd+1
+ .

Now, for every y = (t, x) ∈ C↑(I;Rd+1) the set

{s ≥ 0 : t(s) ∈ [0, T ]} = y−1
(
[0, T ]× Rd

)
is a compact interval.

For every time interval [0, T ] we consider the domain

E(T ) :=
{

(s, y) ∈ I× C↑(I;Rd+1) : t(s) ∈ [0, T ]
}

= e−1(I× [0, T ]× Rd). (4.13)

If η is a probability measure on Lip↑(I;Rd+1) we set

ηL := L1 ⊗ η ∈M+
loc(I× Lip↑(I;Rd+1)) (4.14)

and we observe that ∫
E(T )

t′(s, y) dηL(s, y) = T, (4.15)

so that∫
E(T )

‖x′(s, y)‖ dηL(s, y) ≤
∫

E(T )

‖y′(s, y)‖dηL(s, y) ≤ T +

∫
E(T )

‖x′(s, y)‖ dηL(s, y). (4.16)

We are now in a position to state our result on the probabilistic representation of the solutions to the
augmented continuity equation.

Theorem 4.5 (Superposition principle for solutions to the augmented continuity equation).
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(1) Let k > 0 and η be a probability measure in Lip↑k(I;Rd+1) such that∫
‖e0‖dη < +∞,

∫
E(T )

‖x′‖dηL <∞ for every T > 0. (4.17)

Setting

σs := (es)]η, σ := a]ηL, σ0 := a]
(
t′ ηL

)
, σ := a]

(
x′ ηL

)
(4.18)

then the curve s 7→ σs is k -Lipschitz with values in P1(Rd+1
+ ) , (σ, σ0,σ) is a P1 -solution to the

augmented continuity equation with locally finite π -marginals, and

|(σ0,σ)| ≤ kσ. (4.19)

If moreover there exists a Borel vector field w : Rd+1
+ → Rd+1

+ such that ‖w‖ ≥ k−1 and

y′ = w(e) ηL -a.e., (4.20)

then (σ, σ0,σ) is a π -adapted solution (with constant k ; it is π -normalized if k = 1) and

(σ0,σ) = wσ. (4.21)

(2) Conversely, let (σ, σ0,σ) be a π -adapted solution (with constant k ≥ 1) to the augmented con-
tinuity equation (4.2) according to Definition 4.2, and let it be driven by the (autonomous) Borel

vector field w := (τ,v) . Then, the support of (σ, σ0,σ) is contained in I×Rd+1
+ and there exists

η ∈ P(Lip↑k(I;Rd+1
+ )) that satisfies (4.17), (4.18), and is concentrated on the curves solving the

Cauchy problem {
ẏ(s) = w(y(s)), s ∈ (0,∞),

y(0) = (0, x), x ∈ spt(µ0).
(4.22)

If moreover (σ, σ0,σ) is π -normalized, then η ∈ P(Lip↑1(I;Rd+1
+ )) .

Proof. The first claim is well known (see e.g. the second part of [11, Theorem 8.2.1] and can be easily
checked by a direct computation. Condition (4.17) ensures that (σ, σ0,σ) has locally finite π -marginals.
Property (4.21) easily follows from Lemma A.1.

In order to prove the second claim, we can still rely on [11, Theorem 8.2.1] (which corresponds to the
case of a finite interval), applied to the restrictions of (σ, σ0,σ) to the intervals [i, i+ 1]. We find mea-

sures ηi concentrated on Lipk([i, i+1];Rd+1
+ ) and corresponding measures η̃i = L1⊗ηi satisfying (4.18)

in [i, i+ 1] together with ∫
E[i,i+1](T )

‖x′‖ dη̃i = |σ|([i, i+ 1]× [0, T ]× Rd), (4.23)

where

E[i,i+1](T ) :=
{

(s, y) ∈ [i, i+ 1]× C↑(I;Rd+1) : t(s) ∈ [0, T ]
}

= e−1([i, i+ 1]× [0, T ]× Rd) .

We can then apply the glueing Lemma C.1: it is sufficient to use

X := C(I;Rd+1
+ ), Xi := C([i, i+ 1];Rd+1

+ ), Y j := Rd+1
+ ,

and choose pi : X → Xi as the operators mapping a continuous curve defined in I into its restriction
to the interval [i, i + 1]. We eventually set Ri = Li+1 := ei+1 and we thus find a measure η such that
pi]η = ηi for every i ∈ N . It is easy to check that η satisfies all the properties stated in Claim (2). The

second estimate in (4.17) can be derived from (4.23). �

We can now state a useful rescaling property, which is strongly related to the fact that the velocity
vector field is autonomous according to (4.3).
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Lemma 4.6 (Rescaling). Let (σ, σ0,σ) be a π -adapted solution to the augmented continuity equa-

tion (4.2) driven by the (autonomous) Borel vector field w = (τ,v) : Rd+1
+ → Rd+1

+ , let

θ : Rd+1
+ → (0,+∞) be a Borel map satisfying c−1 ≤ θ ≤ c < +∞ in Rd+1

+ for some constant c ≥ 1 ,
(4.24)

and let

τ̂ := θτ, v̂ := θv, ŵ = (τ̂ , v̂) = θw. (4.25)

There exists an autonomous solution (σ̂, σ̂0, σ̂) satisfying

σ̂0 = τ̂ σ̂, σ̂ = v̂ σ̂, π](σ̂
0, σ̂) = π](σ

0,σ). (4.26)

Proof. By Theorem 4.5 there exists η ∈ P(Lip↑k(I;Rd+1
+ )) providing the representation formulae (5.6)

and supported on solutions of the Cauchy problem (4.22), with autonomous velocity field w = (τ,v)

satisfying k−1 ≤ ‖w‖ ≤ k . For every Lipschitz curve y : I → Rd+1
+ we consider the solution `y to the

differential equation
˙̀
y(r) = (θ ◦ y)(`y(r)), `y(0) = 0. (4.27)

Indeed, `y can be easily obtained as the inverse of the bi-Lipschitz map

Θy(s) :=

∫ s

0

1

θ(y(r))
dr, c−1 ≤ Θ′y ≤ c. (4.28)

Thus, we may define the function R : Lip↑k(I;Rd+1)→ Lip↑
k̂
(I;Rd+1), k̂ := ck , that associates with every

Lipschitz curve y the rescaled curve

R(y) := y ◦ `y. (4.29)

Notice that ŷ := R(y) satisfies the system

ŷ′(r) = θ(ŷ(r))w(ŷ(r)) = ŵ(ŷ(r)), ŷ(0) = y(0). (4.30)

By Lemma D.2 in Appendix D ahead, R is a Borel map. Let us set η̂ := R](η) ∈ P(Lip↑(I;Rd+1
+ )). A

further application of Theorem 4.5 yields the thesis. �

4.2. A representation result by the augmented continuity equation. We can now apply the
previous results to get a first representation for P1 -solutions to the continuity equation (3.1).

Theorem 4.7 (Augmented representations of P1 -solutions). Let (µ,ν) ∈M+
loc(Rd+1

+ )×Mloc(Rd+1
+ ;Rd)

be a P1 -solution to the continuity equation in the sense of Definition 3.1, with initial condition µ0 ∈
P1(Rd) , let (µ, ν̄) = θ(µ,ν) be a minimal pair induced by (µ,ν) according to Definition 3.2 and fulfill-
ing (3.6), let % ∼ |(µ,ν)| , and let (τ,v) be bounded Borel vector field representing the density of (µ,ν)
w.r.t. % , i.e.

µ = τ%, ν = v% %-a.e. in Rd+1
+ . (4.31)

Then, there exists a Lipschitz continuous curve σ ∈ Lip(I;P1(Rd+1
+ )) satisfying the following properties:

(1) the associated measure σ = L1 ⊗ σs ∈M+
loc(I× Rd+1

+ ) has marginal

π]σ = %̄ = θ%. (4.32)

(2) The measures

σ0 := (τ ◦ π)σ, σ := (v ◦ π)σ (4.33)

have marginals

π]σ
0 = µ, π]σ = ν̄. (4.34)

(3) The triple (σ, σ0,σ) is a π -adapted solution to the augmented continuity equation (4.2), in the
sense of Definition 4.2.

In particular, when % = |(µ,ν)| then (σ, σ0,σ) is also a π -normalized solution.

Remark 4.8. When (µ,ν) is a minimal P1 -solution, then ν⊥ = ν̄⊥ is minimal and (4.32) holds for
ν = ν̄ .
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Proof. Thanks to Lemma 4.6 it is not restrictive to assume that % = |(µ,ν)| , ‖·‖ is the Euclidean norm
(so that it is strictly convex), and θ ≡ 1. Therefore, in the remainder of the proof we shall use that
ν̄ = ν . We will split the proof in the following steps:

(1) Regularization of the pair (µ,ν) via convolution;
(2) Analysis of the ‘augmented’, regularized system;
(3) Passage to the limit in the regularization parameter;
(4) Proof of property (4.31).

Step 1 : regularization. It follows from Theorem 3.4 that µ admits a left-continuous representative
w.r.t. narrow convergence. Therefore, from now on, without loss of generality we shall suppose that
t 7→ µt is (narrowly) left-continuous. We now extend the measures µ and ν to the whole Rd+1 by
setting

µt :=

{
µ0 if t < 0,

µt if t ≥ 0,
and ν = 0 on (−∞, 0)× Rd.

Let us now consider convolution kernels κ0 ∈ C∞c (R) κ1 ∈ C∞(Rd) satisfying

κ0 ≥ 0, spt(κ0) ⊂ [0, 1],

∫ 1

0

κ0 dt = 1, (4.35)

0 < κ1 ≤ 1,

∫
Rd
κ1 dx = 1,

∫
Rd
‖x‖κ1(x) dx = M1 <∞. (4.36)

Let us set

κ0
ε(t) := ε−1κ(t/ε), κ1

ε(x) := ε−dκ1(x/ε) dx, κε(t, x) := κ0
ε(t)κ

1
ε(x). (4.37)

For (t, x) ∈ Rd+1 we define

µε(t, x) = (µ?κε)(t, x) =

∫
Rd+1

κε(t− τ, x− y)dµ(τ, y),

νε(t, x) := (ν?κε)(t, x) =

∫
Rd+1

κε(t− τ, x− y)dν(τ, y) .

(4.38)

Since (µ,ν) is a P1 -solution to the continuity equation, the functions µε ∈ C∞(Rd+1) and νε ∈
C∞(Rd+1;Rd) are smooth solutions to the continuity equation

∂tµ
ε + div νε = 0 in Rd+1, (4.39)

with

µε(t, x) =

∫
Rd
κ1
ε(x− y)dµ0(y)

.
= µ̄ε0(x) for every t ≤ 0.

It is easy to check that ∫
Rd
µε(t, x) dx = 1 for every t ∈ R. (4.40)

Moreover∫
Rd
‖x‖ µ̄ε0(x) dx =

∫
Rd

∫
Rd
‖x‖κ1

ε(x− y)dµ0(y) dx ≤
∫
Rd

∫
Rd

(
‖x− y‖+ ‖y‖

)
κ1
ε(x− y)dµ0(y) dx

≤ εM1 +

∫
Rd
‖y‖ dµ0(y).

With slight abuse of notation, we shall denote by µε = (µεt )ε and νε = (νεt ) (where νεt := νε(t, ·)) also
the measures with densities µε and νε , respectively. Due to [10, Thm. 2.2] and the previous estimate,
we have the following convergences as ε ↓ 0:

µε ⇀∗ µ in M+
loc(Rd+1

+ ), νε ⇀∗ ν in Mloc(Rd+1
+ ;Rd), µ̄ε0 → µ0 in P1(Rd),

µε [0, T ]× Rd ⇀ µ [0, T ]× Rd narrowly in M+([0, T ]× Rd) for every T > 0.
(4.41a)
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We also have by [10, Thm. 2.2] that

|(µε,νε)|⇀∗ |(µ,ν)|, |νε|⇀∗ |ν| in M+
loc(Rd+1

+ ). (4.41b)

In a similar way, we can show that

|(µε,νε)|([0, T ]× Rd) ≤ |(µ,ν)|([0, T ]× Rd), |νε|([0, T ]× Rd) ≤ |ν|([0, T ]× Rd) , (4.42)

which implies that{
|νε| [0, T ]× Rd ⇀ |ν| [0, T ]× Rd,
|(µε,νε)| [0, T ]× Rd ⇀ |(µ,ν)| [0, T ]× Rd

narrowly in M([0, T ]× Rd) (4.43)

for every T ∈ [0,+∞) such that |ν|({T} × Rd) = 0.
Since µε(t, x) > 0 (see [11, Lemma 8.1.9]) we may introduce the velocity field

wε(t, x) :=
νεt (x)

µεt (x)
for all (t, x) ∈ Rd+1. (4.44)

The velocity field wε fulfills the local regularity conditions of [11, Prop. 8.1.8], which we may therefore
apply to the continuity equation (4.39). We can introduce the characteristic system{

Ẋε
t = wε

t (X
ε
t ),

Xε
0 = x ,

(4.45)

and we denote by Dε the subset of x ∈ Rd for which the unique maximal solution is globally defined. We
know that Rd \Dε is µ̄ε0 -negligible (equivalently Ld(Rd\Dε) = 0)) and (4.45) defines a flow Xε

t : Dε →
Dε , t ≥ 0, inducing the representation formula

µεt = (Xε
t )]µ̄

ε
0. (4.46)

We finally notice that by (4.44), (4.46), and (4.42), we get for every T ∈ [0,+∞) the bound∫
Rd

∫ T

0

‖wε(t,Xε
t (x))‖dtdµ̄ε0(x) ≤ |νε|([0, T ]×Rd) ≤ |ν|([0, T ]×Rd) . (4.47)

Step 2 : Analysis of the augmented system. We define

τε : Rd+1 → R, τ ε(t, x) :=
1

‖(1,wε(t, x))‖
, (4.48a)

vε : Rd+1 → Rd, vε(t, x) := τε(t, x)wε(t, x) =
wε(t, x)

‖(1,wε(t, x))‖
. (4.48b)

By construction we have that

‖(τε(t, x),vε(t, x))‖ ≡ 1 for every (t, x) ∈ Rd+1. (4.49)

For each ε > 0 the functions τε and vε are locally Lipschitz and globally bounded.
We now consider the following ‘augmented’ characteristic system, in the unknowns T : I → R and

Y : I→ Rd 
Ṫs = τε(Ts, Ys),

Ẏs = vε(Ts, Ys),

T0 = t,

Y0 = x .

(4.50)

For every (t, x) ∈ Rd+1 , the Cauchy problem possesses a unique solution s 7→ (T εs (t, x), Y εs (t, x)) which

is globally defined. Clearly, s 7→ T εs is an increasing map and in particular T εs (t, x) ≥ 0 if (t, x) ∈ Rd+1
+ .

The following result relates the flow map (T ε, Y ε) : I× Rd+1 → Rd+1 , defined by T ε(s, t, x) := T εs (t, x),
Y ε(s, t, x) := Y εs (t, x), with the flow map Xε : I×Dε → Dε of the ODE system (4.45).
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Lemma 4.9. For every x ∈ Dε , let (T̂ εs (x))s∈I solve the Cauchy problem{
T̂ ′s = τε(T̂s, X

ε(T̂s, x)),

T̂0 = 0,
(4.51)

and thus define a map T̂ ε : I×Dε → I . Define Ŷ ε : I×Dε → Dε via Ŷ ε(s, x) := Xε(T̂ ε(s, x), x) . Then,

T̂ ε(s, x) = T ε(s, 0, x) , Ŷ ε(s, x) = Y ε(s, 0, x) for all (s, x) ∈ I×Dε , (4.52)

and T̂ ε(·, x) is a (strictly increasing and surjective) diffeomorphism of I for every x ∈ Dε . In particular,

Y ε(s, 0, x) = Xε(T ε(s, 0, x), x) for all (s, x) ∈ I× Rd . (4.53)

Furthermore, if Sε : I×Dε → I is defined by

Sε(t, x) :=

∫ t

0

‖(1,wε(τ,Xε(τ, x)))‖ dτ , (4.54)

then ∫
Rd
Sε(T, x) dµ̄ε0(x) ≤ |(µ,ν)|([0, T ]× Rd) (4.55)

and

Sε(·, x) = (T̂ ε)−1(·, x) for every x ∈ Dε . (4.56)

Proof. We observe that the functions T̂ ε and Ŷ ε satisfy

∂sT̂
ε(s, x)

(4.51)
= τε(T̂ ε(s, x), Xε(T̂ ε(s, x), x)) = τε(T̂ ε(s, x), Ŷ ε(s, x)),

as well as

∂sŶ
ε(s, x) = ∂tX

ε(T̂ ε(s, x), x)∂sT̂
ε(s, x)

(4.45)
= wε(T̂ ε(s, x), Xε(T̂ ε(s, x), x)) τε(T̂ ε(s, x), Xε(T̂ ε(s, x), x))

(4.48b)
= vε(T̂ ε(s, x), Ŷ ε(s, x)) .

Since we also have that Ŷ ε(0, x) = Xε(T ε(0, 0, x), x) = Xε(0, x) = x , we conclude that the pair (T̂ ε, Ŷ ε)
solves system (4.50) for t = 0. By uniqueness, (4.52) follows.

The function Sε defined in (4.54) is finite (since the integrand is a continuous function w.r.t. τ ) and
it is clearly strictly increasing. Estimate (4.55) follows immediately by∫

Rd
Sε(T, x) dµ̄ε0(x) =

∫
Rd

∫ T

0

‖(1,wε(t,Xε(t, x)))‖ dtdµ̄ε0(x)
(4.47)

≤ |(µ,ν)|
(
[0, T ]× Rd

)
< +∞ .

Finally, we observe that for every x ∈ Dε

∂t(S
ε◦T̂ ε)(s, x) = ∂tS

ε(T̂ ε(s, x), x) ∂sT̂
ε(s, x)

(1)
= ‖(1,wε(T̂ ε(s, x), Xε(T̂ ε(s, x), x)))‖ · τε(T̂ ε(s, x), Xε(T̂ ε(s, x), x))

(2)
≡ 1 ,

where (1) is due to (4.54) and (4.51), while (2) is a consequence of (4.48). Hence, (4.56) follows, whence

we conclude that T̂ ε(·, x) is a strictly increasing diffeomorphism of I for every x ∈ Dε . �

Let us now consider the continuity equation with the vector field (τε,vε) and initial datum σε0 =

δ0⊗µ̄ε0 . Since σε0 is supported in Rd+1
+ then the family of measures

σεs := (T εs , Y
ε
s )](δ0⊗µ̄ε0) for all s ∈ I, (4.57)

are supported in Rd+1
+ as well. Moreover, (4.52) shows that

σεs = (T̂ εs , Ŷ
ε
s )]µ̄

ε
0 for all s ∈ I. (4.58)
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It follows from [11, Lemma 8.1.6, Prop. 8.1.8] that the curve σε belongs to Lip(I;P1(Rd+1
+ )) (it is in fact

1-Lipschitz) and fulfills {
∂sσ

ε + ∂t(τ
εσε) + div(vεσε) = 0 in I× Rd+1,

σε0 = δ0 ⊗ µ̄ε0 .
(4.59)

From now on, we will use the short-hand notation

σε,0 := τεσε, σε := vεσε.

Observe that, in view of (4.49), the measures σε,0 and σε satisfy

|(σε,0,σε)| = σε in M+
loc(I×Rd+1

+ ). (4.60)

In the following lemma the relation between µε , νε , and σε is established in terms of the projection
operator π : R× R× Rd → R× Rd , π(s, t, x) := (t, x) from (4.1).

Lemma 4.10. There holds

µε = π]σ
ε,0 , νε = π]σ

ε , |(µε,νε)| = π]σ
ε in I× Rd . (4.61)

Moreover for every S, T > 0

σε,0((S,+∞)× [0, T ]× Rd) ≤ T

S
|(µ,ν)|

(
[0, T ]× Rd

)
. (4.62)

Proof. For every ϕ0 ∈ Cc(Rd+1) we have∫
Rd+1

ϕ0(t, x) dµε(t, x)
(1)
=

∫
I

∫
Rd
ϕ0(t,Xε(t, x)) dµ̄ε0(x) dt

(2)
=

∫
Dε

∫
I

ϕ0(T̂ ε(s, x), Xε(T̂ ε(s, x), x)) ∂sT̂
ε(s, x) dsdµ̄ε0(x)

(3)
=

∫
Dε

∫
I

ϕ0(T̂ ε(s, x), Ŷ ε(s, x)) τε(T̂ ε(s, x), Ŷ ε(s, x)) dsdµ̄ε0(x)

=

∫
I

(∫
Dε
ϕ0(T̂ ε(s, x), Ŷ ε(s, x)) τε(T̂ ε(s, x), Ŷ ε(s, x)) dµ̄ε0(x)

)
ds

(4)
=

∫
I

(∫
Rd+1

ϕ0(t, x)τε(t, x) dσεs(t, x)

)
ds =

∫
Rd+2

+

ϕ0(t, x) dσε,0(s, t, x)

where (1) follows from (4.46), (2) and (3) from the change of variables t = T̂ ε(s, x) (see Lemma 4.9), (4)
from (4.58), and we have repeatedly applied Fubini’s Theorem.

The second of (4.61) follows from the fact that νε = wεµε and vε = τεwε , so that for all test
functions ϕ ∈ Cc(Rd+1;Rd)∫

Rd+1

ϕ(t, x) dνε(t, x) =

∫
I

∫
Rd
ϕ(t,Xε(t, x)) ·wε(t,Xε(t, x)) dµ̄ε0(x) dt

=

∫
Rd

∫
I

ϕ(T̂ ε(s, x), Xε(T̂ ε(s, x), x)) ·wε(T̂ ε(s, x), Xε(T̂ ε(s, x), x)) ∂sT̂
ε(s, x) dsdµ̄ε0(x)

=

∫
Rd

∫
I

ϕ(T̂ ε(s, x), Ŷ ε(s, x)) · τε(T̂ ε(s, x), Ŷ ε(s, x))wε(T̂ ε(s, x), Ŷ ε(s, x)) dsdµ̄ε0(x)

=

∫
I

(∫
Rd
ϕ(T̂ ε(s, x), Ŷ ε(s, x)) · vε(T̂ ε(s, x), Ŷ ε(s, x)) dµ̄ε0(x)

)
ds

=

∫
I

(∫
Rd+1

ϕ(t, x) · vε(t, x) dσεs(t, x)

)
ds =

∫
Rd+2

+

ϕ(t, x) dσε(s, t, x) .

Finally, for every open subset A of Rd+1
+ we have that

|(µε,νε)|(A) =

∫
A

‖(1,wε)(t, x)‖dµε(t, x)
(1)
=

∫
I×A
‖(1,wε)(t, x)‖ dσε,0(s, t, x)
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(2)
=

∫
I×A
‖(1,wε)(t, x)‖ τε(t, x) dσε(s, t, x)

(3)
=

∫
I×A

dσε(s, t, x) = π]σ
ε(A) ,

where (1) follows from the previously proved fact that µε = π]σ
ε,0 ; for (2) we have used that σε,0 = τεσε ,

while (3) is a consequence of (4.48a). This concludes the proof of (4.61).
In order to check the tightness estimate (4.62), let us denote by ιS,T the characteristic function of

(S,+∞) × [0, T ] and by jεS,T (s, x) the characteristic function of (S, Sε(T, x)] (which is identically 0 if

S ≥ Sε(T, x)). We first observe that

ιS,T (s, T̂ ε(s, x)) = jεS,T (s, x)

so that

σε,0((S,+∞)× [0, T ]× Rd) =

∫
Rd+2

ιS,T (s, t)τε(t, x) dσε(s, t, x)

=

∫
Rd

∫
I

ιS,T (s, T̂ ε(s, x))τε(T̂ ε(s, x), Ŷ ε(s, x)) dsdµ̄ε0(x)

=

∫
Rd

∫
I

jεS,T (s, x)∂sT̂
ε(s, x) dsdµ̄ε0(x)

=

∫
Rd

(
T − T̂ ε(S, x)

)
+

dµ̄ε0(x) ≤ T µ̄ε0
{
x ∈ Rd : T̂ ε(S, x) < T

}
= T µ̄ε0

{
x ∈ Dε : Sε(T, x) > S

}
.

Estimate (4.62) then follows by (4.55) and by the Chebyschev inequality. �

Step 3 : Passage to the limit as ε ↓ 0 . Since the curves of measures (σε)ε ⊂ Lip(I;P1(Rd+1)) are
1-Lipschitz continuous for every ε > 0, and bounded sets in P1(Rd+1) are narrowly compact in P(Rd+1),

we can find a limit curve σ ∈ Lip(I;P1(Rd+1)), 1-Lipschitz and supported in Rd+1
+ , and a vanishing

subsequence (εk)k such that σεks ⇀ σs narrowly in P1(Rd+1) for every s ∈ I . As usual we will also
denote by σ the Radon measure L1 ⊗ σs in M+

loc(I× Rd+1) satisfying

σεk [0, S]× Rd+1
+ ⇀ σ [0, S]× Rd+1

+ narrowly in M+(Rd+2) for every S > 0. (4.63)

Clearly, the above convergence also yields σεk ⇀∗ σ in M+
loc([0,+∞) × Rd+1

+ ) as k ↑ ∞ . Moreover, we
deduce from (4.43) and from (4.61) that

π]σ ≤ |(µ,ν)| . (4.64)

From (4.60) and the projection relations (4.61) it follows that the restrictions to [0, S]× Rd+1
+ of the

families of measures (σε,0)ε and (σε)ε are uniformly tight, so that there exist σ0 ∈ M+
loc(Rd+2

+ ) and

σ ∈Mloc(Rd+2
+ ;Rd) such that up to a further (not relabeled) subsequence

(σεk,0,σεk) [0, S]× Rd+1
+ ⇀ (σ0,σ) [0, S]× Rd+1

+ in M(Rd+2;Rd+1) for every S > 0. (4.65)

Therefore, also thanks to the third of (4.41a) and (4.63) we gather that the triple (σ, σ0,σ) satisfies
the Cauchy problem (4.2) in the sense of Definition 3.1, with the operator (∂t,div) playing the role of
the ‘spatial divergence’ in (3.2). Moreover, it follows from (4.49), (4.63), and the lower semicontinuity of
the total variation functional that

|(σ0,σ)| ≤ σ in Rd+2, (4.66)

so that in particular σ0,σ � σ . Hence, since σ is concentrated in I × Rd+1
+ , the Radon-Nikodým

derivatives can be represented by bounded Borel fields

τ̂ :=
dσ0

dσ
: I× Rd+1

+ → I v̂ :=
dσ

dσ
: I× Rd+1

+ → Rd

satisfying

‖(τ̂ , v̂)‖ ≤ 1 σ-a.e. in I×Rd+1
+ . (4.67)
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In terms of τ̂ and v̂ , we rewrite the continuity equation (4.2) as{
∂sσ + ∂t(τ̂σ) + div(v̂σ) = 0 in I× Rd+1

σ0 = δ0 ⊗ µ0 .
(4.68)

It remains to prove the projection properties (4.34). We start by showing that

µ = π]σ
0. (4.69)

For this, the tightness estimate (4.62) implies that σε,0 I× [0, T ]× Rd narrowly converge to σ0 I×
[0, T ]× Rd for every T > 0. This shows that µ([0, T ]× Rd) = σ0(I× [0, T ]× Rd) for every T > 0. Since
π]σ

0 ≤ µ , the above equality yields (4.69).
Let us now show that

ν = π]σ . (4.70)

With this aim, we set ν̃ := π]σ . In order to show that ν̃ = ν , we argue in the following way. On the one
hand, it follows from the previously proved Lemma 4.4 that the pair (µ, ν̃) solves the continuity equation

∂tµ+ div ν̃ = 0 in Rd+1
+ , (4.71)

with initial condition µ0 , in the sense of Definition 3.1. On the other hand, applying Lemma 2.7 with the
choices p = π : R×R×Rd → R×Rd , ζk = (σεk,0,σεk), ζ = (σ0,σ), λk = π](σ

εk,0,σεk) = (µεk ,νεk),
λ = (µ,ν), we show that

(µ, ν̃)
(4.69)

= (π]σ
0,π]σ) ≺ (µ,ν).

Then, by Lemma 2.2 there exists λ ∈ L∞|(µ,ν)|(R
d+1
+ ; [0, 1]) such that (µ, ν̃) = λ(µ,ν). Since the first

components coincide, from that equality we infer that ν̃ = λν and λ ≡ 1 µ -a.e., as well. We decompose ν
and ν̃ into their absolutely continuous and singular part w.r.t. µ , namely,

ν = νa + ν⊥ ν̃ = ν̃a + ν̃⊥ with ν⊥, ν̃⊥ ⊥ µ .

Since ν̃ = λν , we have

ν̃a + ν̃⊥ = (λνa) + λν⊥ .

As λ ≡ 1 µ -a.e. in Rd+1
+ , we have that ν̃a = νa , ν̃⊥ = λν⊥ . Therefore, ν̃⊥ ≺ ν⊥ . Moreover, by

Lemma 4.4 it holds div ν̃⊥ = div ν⊥ . By hypothesis, ν⊥ is minimal. Therefore, we conclude that
ν̃⊥ = ν⊥ and, since ν̃aµ = νaµ , we ultimately have ν̃ = ν . Then, (4.70) follows.

Lastly, we may conclude (4.32) by observing that

|(µ,ν)|
(4.64)

≥ π]σ
(4.66)

≥ π]|(σ0,σ)| ≥ |π](σ0,σ)| = |(µ,ν)| .
This finishes the proof.

�

5. The parametrized superposition principle

The main result of this section, Theorem 5.1, provides a probabilistic representation of the solutions
of the continuity equation, which in fact extends the representation obtained in [11, Thm. 8.2.1] for
absolutely continuous solutions. We will derive it from the probabilistic representation (4.18), provided
by Theorem 4.5, for the solutions to the ‘augmented’ system (4.2). For that, we will need to take into
account that σ and the measures µ and ν are related via (4.34). Fine properties of our probabilistic
representation will be proved in Proposition 5.2 and in Theorem 5.3.

In the spirit of [11, Thm. 8.2.1], the statement of Theorem 5.1 below consists of two parts:

(1) First of all, starting from a measure η ∈ P(Lip↑(I;Rd+1
+ )), we construct the measures t′L1⊗η

and x′L1⊗η (recall the definition (4.12) of t′ and x′ ), and show that their push-forwards through
the evaluation map e from (4.10), cf. (5.2) below, solve the Cauchy problem (5.3). In fact, the
Cauchy condition is expressed in terms of the push-forward (e0)]η (where e0 stands for e(0, ·)):
in this respect, let us specify that, while e0 is evaluated along curves y ∈ C↑(I;Rd+1), so that
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e0(y) = (t(0), x(0)) = (0, x(0)), in (5.3) with slight abuse of notation we will consider e0 as valued
in Rd .

(2) Conversely, we prove that any solution of the continuity equation admits the probabilistic repre-

sentation (5.2) below in terms of a probability measure η on the space Lip↑1(I;Rd+1
+ ) from (2.27).

In addition, we show that for η -a.a. curve y , the velocity y′(r) at a given time r ∈ I does not
depend explicitly on r but only on the position y(r), see (5.7a) ahead.

Theorem 5.1. The following facts hold:

(1) Let η ∈ P(Lip↑k(I;Rd+1
+ )) and ηL := L1 ⊗ η fulfill∫

‖e0‖dη < +∞,
∫

E(T )

‖x′‖dηL <∞ for every T > 0. (5.1)

Then, the pair (µ,ν) ∈M+
loc(Rd+1

+ )×Mloc(Rd+1
+ ;Rd) defined by

µ := e](t
′ηL) ν := e](x

′ηL) (5.2)

is a P1 -solution to the continuity equation,

∂tµ+ div ν = µ0 in (0,+∞)× Rd, with µ0 = (e0)]η ∈ P1(Rd) , (5.3)

in the sense of Definition 3.1. Moreover,

|(µ,ν)| ≤ e](‖y′‖ηL) . (5.4)

(2) Conversely, let (µ,ν) ∈M+
loc(Rd+1

+ )×Mloc(Rd+1
+ ;Rd) be a P1 -solution to the continuity equation

in the sense of Definition 3.1, with initial condition µ0 ∈ P1(Rd) ; let (µ, ν̄) = θ(µ,ν) be a
minimal pair induced by (µ,ν) according to Definition 3.2 and (3.6), let % ∼k |(µ,ν)| for some
k > 0 , and let (τ,v) be a bounded Borel vector field representing the density of (µ,ν) w.r.t. % ,
namely

µ = τ%, ν = v% %-a.e. in Rd+1
+ . (5.5)

Then, there exists a measure η ∈ P(Lip↑k(I;Rd+1
+ )) such that the representation

µ = e]
(
t′ ηL

)
ν̄ = e]

(
x′ ηL

)
, |(µ, ν̄)| = e]

(
‖y′‖ηL

)
, % = e] ηL. (5.6a)

holds, and η is supported on curves solving the Cauchy problem{
ẏ(s) = (τ(y(s)),v(y(s))) for a.a. s ∈ (0,+∞)

y(0) = (0, x), x ∈ spt(µ0) .
(5.7a)

Choosing in particular % = |(µ,ν)| we get η ∈ P(Lip↑1(I;Rd+1
+ )) is concentrated on ArcLip(I;Rd+1

+ ) and

|(µ, ν̄)| = e](‖y′‖ηL) = e]ηL . (5.8)

Proof. Recalling the definitions of the evaluation maps (4.10), we observe that

e = π ◦ a. (5.9)

Claim (1) follows by Claim (1) of Theorem 4.5 and Lemma 4.4.
Claim (2) follows by the augmented representation of (µ,ν) given in Theorem 4.7, and by Claim (2)

of Theorem 4.5. �

5.1. Fine properties of the representing measure. With the upcoming Proposition 5.2 we unveil
some refined properties of the probabilistic representation provided by Theorem 5.1 for the solutions of
the continuity equation. Namely, we give a finer representation formula for µ and specify the probabilistic
representation of the measures νa � µ and ν⊥ featuring in the decomposition ν = νa + ν⊥ , cf. (5.11)

below. To this purpose, we need to introduce some further notation. For every y = (t, x) ∈ Lip↑(I;Rd+1
+ )

we define the sets D+[y] , D0[y] , Dc[y] ⊆ I as

D+[y] := {s ∈ I : t′(s) > 0} ,
D0[y] := {s ∈ I : t′(s) = 0} ,
Dc[y] := {s ∈ I : t(·) is constant in a neighborhood of s} ,

(5.10)
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where t′ denotes the upper derivative defined in (4.11)–(4.12). Its usage is motivated by the fact that t′

exists at every s ∈ I and it is a bounded nonnegative Borel map. We further set

D+ := {(s, y) ∈ I× Lip↑(I;Rd+1
+ ) : s ∈ D+[y]} ,

D0 := {(s, y) ∈ I× Lip↑(I;Rd+1
+ ) : s ∈ D0[y]} ,

Dc := {(s, y) ∈ I× Lip↑(I;Rd+1
+ ) : s ∈ Dc[y]} .

Since we have Dc[y] ⊆ D0[y] for every y , there holds Dc ⊆ D0 .
We are now in a position to provide the probabilistic representation of νa and ν⊥ in terms of the

measure η ∈ P(Lip↑(I;Rd+1
+ )) featuring in (5.6a) and (5.8).

Proposition 5.2 (Decomposition property of the probabilistic representation). Let (µ,ν) be a P1 so-
lution to the continuity equation (3.1) in the sense of Definition 3.1, let (µ, ν̄) be a minimal solution
induced by (µ,ν) with Lebesgue decomposition ν̄ = νa + ν̄⊥ . Suppose that the representation formulae

(5.6a) and (5.8) hold with η ∈ P(Lip↑(I;Rd+1
+ )) and ηL = L1 ⊗ η . Then, we have that

µ = e](t
′ ηL D+) , νa = e](x

′ ηL D+) , ν̄⊥ = e](x
′ ηL D0) , (5.11)

|(µ,νa)| = e](‖y′‖ηL D+) , |ν̄⊥| = e](‖x′‖ηL D0). (5.12)

Proof. Since µ = e](t
′ηL), the first equality in (5.11) holds. Being νa � µ and D0 ∩ D+ = Ø, the

second and the third equalities in (5.11) follow.
Concerning (5.12), we have

|(µ,ν)| = |(µ,νa)|+ |ν⊥| ≤ e](‖y′‖ηL D+) + e](‖y′‖ηL D0) = e](‖y′‖ηL) = |(µ,ν)|

so that all inequalities are in fact equalities and (5.12) follows. �

With the next result, we use the representation formulae (5.11) provided by Proposition 5.2, to show

that the superposition measure η ∈ P(Lip↑(I;Rd+1)) is supported on injective curves. In the proof, we
will identify the pair (µ,ν) with an associated mininimal solution (µ, ν̄).

Theorem 5.3. Let (µ,ν) be a minimal P1 -solution to the continuity equation (3.1) and let the measure

η ∈ P(Lip↑k(I;Rd+1
+ )) provide the representation formulae (5.6a). Then, η -a.e. curve y ∈ Lip↑(I;Rd+1

+ )
is injective.

Proof. We prove the theorem by contradiction. Let us assume that there exist S > 0 and a set

Λ ⊆ Lip↑(I;Rd+1
+ ) with η(Λ) > 0 s.t. every y ∈ Λ is not injective in the interval [0, S] . (5.13)

Since η is a Radon measure, it is not restrictive to assume that Λ is compact.
For y ∈ Lip↑(I;Rd+1

+ ) and s ∈ [0, S] we define

r(s, y) := max {σ ∈ [0, S] : y(σ) = y(s)} , r[(s, y) := r(s, y)− s , r(y) := max
s∈[0,S]

r[(s, y),

and we notice that the maps (s, y) 7→ r[(s, y) and y 7→ r(y) are upper semicontinuous in [0, S]×Λ and in
Λ respectively. Since r(y) > 0 for every y ∈ Λ, we may find h ∈ N such that the (closed, thus compact)
set

Λ′ :=
{
y ∈ Λ : r(y) ≥ 1

h

}
satisfies η(Λ′) > 0. For every y ∈ Λ′ we now define

Ξ(y) :=
{
s ∈ [0, S] : r[(s, y) ≥ 1/h

}
, sl(y) := min Ξ(y),

where l stands for ‘lower’. Notice that sl is well defined since Ξ(y) is a closed nonempty subset of [0, S] ;
one can easily check that is lower semicontinuous: if (yn)n ⊂ Λ′ converges to y and sn = sl(yn) is
converging (up to the extraction of a subsequence) to s , we know that r[(s, y) ≥ 1/h (by the upper
semicontinuity of r[ ) so that s ∈ Ξ(y) and sl(y) ≤ s .
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We set su(y) := r(sl(y), y) (with u for ‘upper’); the function y 7→
(
sl(y), su(y)

)
is Borel measurable

and for every y ∈ Λ′ we have by construction

y(sl(y)) = y(su(y)), su(y)− sl(y) = r[(sl(y), y) ≥ 1

h
. (5.14)

Since t is non-decreasing we conclude that t is constant in (sl(y), su(y)), hence for the interval (sl(y), su(y))
we have

(sl(y), su(y)) ⊆ Dc[y] ⊆ D0[y] . (5.15)

We introduce the function T : Lip↑(I;Rd+1
+ )→ Lip↑(I;Rd+1

+ ) defined by T(y) = y for y /∈ Λ′ and

T(y)(s) =

{
y(s) for s ≤ sl(y) ,
y(s+ r[(sl(y), y)) for s > sl(y)

for y ∈ Λ′ . By construction, the map T is Borel measurable and satisfies T(y) ∈ Lip↑k(I;Rd+1) for every

y ∈ Lip↑k(I;Rd+1), so that the push-forward η[ := T]η belongs to P(Lip↑k(I;Rd+1
+ )).

After these preliminary definitions, we are in a position to carry out the contradiction, which will
be essentially based on the fact that the measure η[ also provides a probabilistic representation of the
pair (µ,ν), cf. the upcoming Claims 1, 2, and 3. For later use, let us set ν[ := e](x

′L1 ⊗ η[). Let us
write ν = νa + ν⊥ and ν[ = νa[ + ν⊥[ , where νa,νa[ � µ and ν⊥,ν⊥[ ⊥ µ .
Claim 1 : we have

µ = e](t
′L1 ⊗ η[). (5.16)

This follows from the finer representation of µ provided by (5.11), and by the definition of T . Indeed,

using the place-holder µ[ := e](t
′L1 ⊗ η[), for every ϕ0 ∈ Cc(Rd+1

+ ) we have∫
Rd+1

+

ϕ0(t, x) d(µ− µ[)(t, x)

=

∫
Λ′

∫
I

ϕ0(y(s))t′(s) dsdη(y)−
∫

Λ′

∫
I

ϕ0(y(s))t′(s) dsdη[(y)

(1)
=

∫
Λ′

∫ +∞

sl(y)

ϕ0(y(s))t′(s) dsdη(y)−
∫

Λ′

∫ +∞

sl(y)

ϕ0(y(s+r[(sl(y), y))t′(s+r[(sl(y), y)) dsdη(y)

(2)
=

∫
Λ′

∫ +∞

su(y)

ϕ0(y(s))t′(s) dsdη(y)−
∫

Λ′

∫ +∞

su(y)

ϕ0(y(τ))t′(τ) dτ dη(y) = 0 .

(5.17)

In the above chain of equalities, (1) follows from the fact that T is the identity in the complement of
Λ′ and modifies a curve y ∈ Λ′ only on (sl(y),+∞), while (2) ensues from the fact that t′ ≡ 0 on
(sl(y), su(y)) and from a change of variable in the second integral.
Claim 2 : we have

νa = νa[ . (5.18)

With the very same arguments as in (5.17) we check that∫
Rd+1

+

ϕ(t, x) d(ν − ν[)(t, x) =

∫
Λ′

(∫ su(y)

sl(y)

ϕ(y(s)) · x′(s) ds
)

dη(y) (5.19)

for every ϕ ∈ Cc(Rd+1
+ ;Rd). By (5.11) and by (5.15) we therefore have that (ν−ν[) ⊥ µ and νa = νa[ .

Thus, ν[ = νa + ν⊥[ .
Claim 3 : we have

div ν⊥[ = div ν⊥ . (5.20)

Denoting θ := ν⊥− ν⊥[ = ν − ν[ , it follows from (5.19) and Theorem 5.1(2), that for every test function

ϕ ∈ Cc(Rd+1
+ ;Rd) there holds∫

Rd+1
+

ϕ(t, x) dθ(t, x) =

∫
Λ′

∫ su(y)

sl(y)

ϕ(y(s)) · x′(s) dsdη(y), (5.21)
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i.e.

θ = e]
(
x′ ηL Θ

)
, Θ :=

{
(s, y) : y ∈ Λ′, sl(y) ≤ s ≤ su(y)

}
. (5.22)

It is sufficient to select ϕ = Dϕ for ϕ ∈ C1
c(Rd+1

+ ) in (5.21) and to observe that for every y ∈ Λ′ the
inner integral∫ su(y)

sl(y)

Dϕ(y(s)) · x′(s) ds =

∫ su(y)

sl(y)

Dϕ(t, x(s)) · x′(s) ds = ϕ(t, x(su(y)))− ϕ(t, x(sl(y))) = 0

since t(s) ≡ t is constant in the interval (sl(y), sl(y)). Plugging this formula in (5.21), with ϕ = Dϕ for

an arbitrary ϕ ∈ C1
c(R

d+1
+ ), and we get div θ = 0.

Claim 4 : we have
ν⊥[ ≺ ν

⊥ . (5.23)

Let us define η0
[ := η[ D0 , ϑ = x′η0

[ = (v◦e)η0
[ ; let us consider the Borel function

λ(s, y) :=

{
0 if (s, y) ∈ Θ,

1 otherwise.

and the measure ζ = λϑ . The representation formula (5.11) yields ν⊥ = e]ϑ , whereas (5.21) yields
ν⊥[ = e]ζ . Since ζ ≺ ϑ and ϑ satisfies (A.2) (w.r.t. the measure α := η0

[ and the map p := e), we infer

from Lemma A.1 ahead that ν⊥[ ≺ ν
⊥.

Conclusion of the proof: Since ν is minimal, we deduce that ν⊥[ = ν⊥ ; since ‖v‖ ≥ 1/k η0
[ -a.e., we

have λ ≡ 1 a.e. in Θ, i.e. η[(Θ) = 0. This implies the for η[ -a.e. y sl(y) = su(y), a contradiction.
�

The next result provides another property for any measure η ∈ P(Lip↑1(I;Rd+1
+ )) representing the

solutions to the continuity equation, when the pair (µ,ν) satisfies condition (3.7) (in which case, ν is
minimal, cf. Theorem 3.4). In this situation, we show that the measure η is concentrated on curves y =

(t, x) ∈ Lip↑1(I;Rd+1) given by segments on intervals where t′ ≡ 0. The proof mimics the contradiction
argument carried out for Theorem 5.3.

Theorem 5.4. Let (µ,ν) ∈ M+
loc(Rd+1

+ ) ×Mloc(Rd+1
+ ;Rd) be a minimal P1 -solution of the continuity

equation (3.1) with initial datum µ0 ∈ P1(Rd) , in the sense of Definition 3.2. Suppose that (µ,ν) comply
with (3.7).

Let η ∈ P(Lip↑1(I;Rd+1
+ )) satisfy the representation formulae (5.2) and (5.8). Then, η -almost every

curve y ∈ Lip↑1(I;Rd+1
+ ) enjoys the following property:

if s1 < s2 ∈ [0,+∞) are such that t′ ≡ 0 in (s1, s2), then

x(s) = x(s1) + (s− s1)
x(s2)− x(s1)

‖x(s2)− x(s1)‖
for all s ∈ [s1, s2].

(5.24)

Proof of Theorem 5.4. Assume by contradiction that the thesis is false. Then, there exist S > 0 and

Λ ⊆ Lip↑1(I;Rd+1
+ ) such that η(Λ) > 0 and for every y = (t, x) ∈ Λ there exist s1 < s2 ∈ [0, S] such that

t(s1) = t(s2) and the the restriction of x to the interval [s1, s2] is not of the form (5.24). In particular,
since y is 1-Lipschitz continuous, we have that ‖x(s1) − x(s2)‖ < s2 − s1 . Arguing similarly as in the

proof of Theorem 5.3, for y ∈ Lip↑1(I;Rd+1
+ ) and s ∈ [0, S] we set

ρ(s, y) := sup {σ ∈ [0, S] : t(σ) = t(s)} , ρ[(s, y) := ρ(s, y)− s .
Then, the maps (s, y) 7→ ρ(s, y) and (s, y) 7→ ρ[(s, y) are upper semicontinuous.

Let us show that also the map

(s, y) 7→ ρ[(s, y)− ‖x(s)− x(ρ(s, y))‖ (5.25)

is upper semicontinuous. Let sn → s and yn → y uniformly on compact subsets of [0,+∞), and assume
that (sn)n, s ∈ [0, S] . We need to show that

lim sup
n→∞

(ρ[(sn, yn)− ‖xn(sn)− xn(ρ(sn, yn))‖) ≤ ρ[(s, y)− ‖x(s)− x(ρ(s, y))‖ . (5.26)



34 STEFANO ALMI, RICCARDA ROSSI, AND GIUSEPPE SAVARÉ

Up to a not relabeled subsequence, we may assume that

s = lim
n→∞

ρ(sn, yn) = lim sup
n→∞

ρ(sn, yn) ≤ ρ(s, y) ,

lim sup
n→∞

‖xn(sn)− xn(ρ(sn, yn))‖ = lim
n→∞

‖xn(sn)− xn(ρ(sn, yn))‖ = ‖x(s)− x(s)‖ .

Hence, we deduce that

(s− s)− ‖x(s)− x(s)‖ = lim
n→∞

(
ρ[(sn, yn)− ‖xn(sn)− xn(ρ(sn, yn))‖

)
. (5.27)

If s = ρ(s, y), equality (5.27) proves the upper semicontinuity. If s < ρ(s, y), since y ∈ Lip↑1(I;Rd+1
+ )

and t′ ≡ 0 in (s, ρ(s, y)), we have that

‖x(s)− x(ρ(s, y))‖ ≤ ρ(s, y)− s. (5.28)

Therefore, we deduce from (5.27) and (5.28) that

ρ[(s, y)− ‖x(s)− x(ρ(s, y))‖ ≥ (ρ(s, y)− s) + (s− s)− ‖x(s)− x(s)‖ − ‖x(s)− x(ρ(s, y))‖
≥ (s− s)− ‖x(s)− x(s)‖
= lim sup

n→∞

(
ρ[(sn, yn)− ‖xn(sn)− xn(ρ(sn, yn))‖

)
,

whence (5.26).
Since η(Λ) > 0, there exists k ∈ N such that the set

Λ′ :=
{
y ∈ Lip↑1(I;Rd+1

+ ) : max
s∈[0,S]

(
ρ[(s, y)− ‖x(s)− x(ρ(s, y))‖

)
≥ 1

k

}
is Borel measurable and satisfies η(Λ′) > 0. We define the multifunction ∆: Λ′ → 2[0,S] by ∆(y) :=
{s ∈ [0, S] : ρ[(s, y) − ‖x(s) − x(ρ(s, y)‖ ≥ 1

k} . Since the map (5.25) is upper semicontinuous, the
multifunction ∆ is upper semicontinuous. Thanks to [27, Theorem III.6] we find a Borel measurable
selection of ∆, namely, a Borel function l : Λ′ → [0, S] such that l(y) ∈ ∆(y) for every y ∈ Λ′ . By
construction, we have that

ρ[(l(y), y)− ‖x(l(y))− x(ρ(l(y), y))‖ ≥ 1

k
, (5.29)

and the function y 7→ (l(y), ρ(l(y), y)) is Borel measurable. Moreover, for every y ∈ Λ′ we have t(l(y)) =
t(ρ(l(y), y)) and t′(s) ≡ 0 for every s in the interval (l(y), ρ(l(y), y)). Hence,

(l(y), ρ(l(y), y)) ⊆ Dc[y] ⊆ D0[y] . (5.30)

For y ∈ Λ′ we further define

r(y) := l(y) + ‖x(l(y))− x(ρ(l(y), y))‖
and xy : [l(y), r(y)]→ Rd as the segment

xy(s) := x(l(y)) + (s− l(y))
x(ρ(l(y), y))− x(l(y))

‖x(ρ(l(y), y))− x(l(y))‖
for s ∈ [l(y), r(y)] . (5.31)

We introduce the function G : Lip↑1(I;Rd+1
+ )→ Lip↑1(I;Rd+1

+ ) defined by G(y) := y for y /∈ Λ′ and, for
y ∈ Λ′ , we set

G(y)(s) :=


y(s) for s < l(y) ,

z(s) for s ∈ [l(y), r(y)] ,

y(s− r(y) + ρ(l(y), y)) for s > r(y)

with z(s) = (t(l(y))), xy(s))

for y ∈ Λ′ . By construction, the map G is Borel measurable, so that the push-forward η[ := G]η belongs

to P(Lip↑1(I;Rd+1
+ )).

After these preparations, we are in a position to carry out the proof by contradiction, based on the
properties of the pair

µ[ := e](t
′L1 ⊗ η[), ν[ := e](x

′L1 ⊗ η[)
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stated in the following Claims 1, 2, and 3.
Claim 1 : we have that

µ = µ[ . (5.32)

This follows from the definition of G (in particular, the fact that G is the identity in Lip↑1(I;Rd+1
+ ) \ Λ′

and modifies curves in Λ′ only where t′ ≡ 0, cf. (5.30)), also taking into account the representation of µ
provided by Proposition 5.2.
Claim 2 : the pair (µ,ν[) solves the continuity equation (3.1) with initial datum µ0 ∈ P1(Rd) , in the

sense of Definition 3.1. For this, it is enough to show that div(ν − ν[) = 0 in Rd+1
+ . Since G is

the identity map in Lip↑1(I;Rd+1
+ ) \ Λ′ and modifies a curve y ∈ Λ′ only on (l(y), ρ(l(y), y)), for every

ϕ ∈ Cc(Rd+1
+ ) we have that∫

I

∫
Rd

Dϕ(t, x) d(ν − ν[)(t, x) =

∫
Λ′

∫ ρ(l(y),y)

l(y)

Dϕ(t(l(y)), x(s)) · x′(s) dsdη(y)

−
∫

Λ′

∫ r(y)

l(y)

Dϕ(t(l(y)), xy(s)) ·
x(ρ(l(y), y))− x(l(y))

‖x(ρ(l(y), y))− x(l(y))‖
dsdη(y)

(?)
=

∫
Λ′

(
ϕ(t(l(y)), x(ρ(l(y), y)))− ϕ(t(l(y)), x(l(y)))

)
dη(y)

−
∫

Λ′

(
ϕ(t(l(y)), xy(r(y)))− ϕ(t(l(y)), xy(l(y)))

)
dη(y) = 0

by definition of xy for y ∈ Λ′ , and with (?) due to the chain rule and to (5.30). Hence, div(ν − ν[) = 0
as desired.

Since η(Λ′) > 0 and Λ′ =
⋃
T>0{y ∈ Λ′ : t(l(y)) < T} with

{y ∈ Λ′ : t(l(y)) < T1} ⊆ {y ∈ Λ′ : t(l(y)) < T2} if T1 ≤ T2 ,

we find T ∈ [0,+∞) such that

η({y ∈ Λ′ : t(l(y)) < T}) > 0 . (5.33)

Claim 3 : we have that

|ν|([0, T )× Rd) > |ν[|([0, T )× Rd) . (5.34)

Indeed, recalling the representation ν = e](x
′ηL) and the fact that the curves y ∈ spt(η) solve the

Cauchy problem (4.22) with velocity field (τ,v) independent of s , we rewrite the left-hand side of (5.34)
as

|ν|([0, T )× Rd) =

∫
Lip↑1

∫
{s∈I : t(s)<T}

‖v(t(s), x(s))‖ dsdη(y)

=

∫
Lip↑1\Λ′

∫
{s∈I : t(s)<T}

‖v(t(s), x(s))‖ dsdη(y)

+

∫
Λ′

∫
{s∈[0,l(y)): t(s)<T}

‖v(t(s), x(s))‖ dsdη(y)

+

∫
Λ′

∫
{s∈[l(y),ρ(l(y),y)]: t(s)<T}

‖v(t(s), x(s))‖dsdη(y)

+

∫
Λ′

∫
{s∈(ρ(l(y),y),+∞): t(s)<T}

‖v(t(s), x(s))‖ dsdη(y) .

(5.35)

Since the pair (τ,v) fulfills ‖(τ,v)(t, x)‖ ≡ 1 |(µ,ν)| -almost everywhere in Rd+1
+ , η -a.e. curve y ∈

Lip↑1(I;Rd+1
+ ) satisfies

‖y′(s)‖ = ‖(t′(s), x′(s))‖ = ‖(τ(y(s)),v(y(s)))‖ = 1 for a.a. s ∈ I .

In particular, since t′ ≡ 0 in (l(y), ρ(l(y), y)) for η -a.a. y ∈ Λ′ , it must be ‖v(y(s))‖ ≡ 1 for a.a. s ∈
(l(y), ρ(l(y), y)), for η -a.e. y ∈ Λ′ . Moreover, if t(l(y)) < T , then t(s) < T for every s ∈ [l(y), ρ(l(y), y)] .
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Thus, by construction of G and by (5.33) we may continue in (5.35) with

|ν|([0, T )× Rd) ≥
∫

Lip↑1\Λ′

∫
{s∈I : t(s)<T}

‖v(G(y)(s))‖ dsdη(y)

+

∫
Λ′

∫
{s∈[0,l(y)): t(s)<T}

‖v(G(y)(s))‖ dsdη(y)

+

∫
Λ′

∫ r(y)

l(y)

‖x′y(s)‖ dsdη(y) +
η({y ∈ Λ′ : t(l(y)) < T})

k

+

∫
Λ′

∫
{s∈(r(y),+∞): t(s−r(y)+ρ(l(y),y)))<T}

‖v(G(y)(s))‖ dsdη(y) .

≥ |ν[|([0, T )× Rd) +
η({y ∈ Λ′ : t(l(y)) ≤ T})

k
> |ν[|([0, T )× Rd) ,

where we have also used that ρ(l(y), y)− r(y) ≥ 1
k due to (5.29), as well as (5.33).

Conclusion of the proof: From the assumed (3.7) and (5.34) we further deduce that

|ν[|([0, T )× Rd) < VarW1
(µ, [0, T ]) (5.36)

for every T ∈ I such that (5.33) holds. Since (µ,ν[) solves the continuity equation (3.1), with initial
datum µ0 ∈ P1(Rd), in the sense of Definition 3.1, (5.36) contradicts (3.8) of Theorem 3.4. Hence, the
assertion with which we started the proof is false. This concludes the proof of the theorem. �

6. Superposition by BV curves

The superposition principle obtained in Theorem 5.1 offers a probabilistic representation of a solution
(µ,ν) to the continuity equation in terms of a measure η concentrated on curves y = y(s) = (t(s), x(s))
in the augmented space Rd+1 = R × Rd . We may in fact think of them as ‘parametrized’ trajectories,
and accordingly regard s as an ‘artificial’ time variable.

With the main result of this section, Theorem 6.5 ahead, we provide an alternative probabilistic
representation involving a probability measure η̂ on the space of curves with locally bounded variation,
that are functions of the process time t .

The bridge between the superposition principles of Theorem 5.1 and Theorem 6.5 will be provided by
a suitable class of curves that represent BV curves augmented by their transition at jumps. The next
section revolves around them.

6.1. Augmented reparametrized BV curves.
Preliminaries. We denote by Z the set I× [0, 1] endowed with the dictionary order relation:

(t1, r1), (t2, r2) ∈ Z : (t1, r1) Î (t2, r2) ⇔ t1 < t2 or (t1 = t2 and r1 < r2) .

We can define on Z the order topology (cf., e.g., [41, II.14]): a basis for such a topology is the collection
of all the open intervals (z1, z2) := {z ∈ Z : z1 Î z Î z2} and all the intervals of the form [(0, 0), z2) :=
{z ∈ Z : z Î z2} . Notice that, while with this topology Z is neither separable nor metrizable, it satisfies
the first axiom of countability.

We use the symbol ⇁ for the associated notion of convergence. Observe that, for any t ∈ I we have
that

∀ (rn)n ⊂ [0, 1] : (tn, rn) ⇁

{
(t, 0) if tn < t and tn → t,

(t, 1) if tn > t and tn → t.

In turn, for any (tn, rn)n, (t, r) ∈ Z ,

(tn, rn) ⇁ (t, r) =⇒ for n big enough, we have


tn ≡ t if r ∈ (0, 1),

tn ≤ t if r = 0,

tn ≥ t if r = 1.
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Therefore, let v : Z→ Rd be a continuous curve. Necessarily,

∀ t ∈ [0,+∞) : the curve [0, 1] 3 r 7→ v(t, r) is continuous

∀ t ∈ [0,+∞) ∀(rn)n ⊂ [0, 1] : v(tn, rn)→

{
v(t, 0) if tn < t and tn → t,

v(t, 1) if tn > t and tn → t.

(6.1)

ABV curves. We are now in a position to introduce the class of curves on Z we shall employ to ‘bridge’
the Lipschitz continuous trajectories y to their BV counterpart.

Definition 6.1. We call augmented BV curve any u : Z→ Rd such that

(1) u is continuous in Z ;
(2) [0, 1] 3 r 7→ u(t, r) is Lipschitz continuous for all t ∈ [0,+∞);
(3) [0, 1] 3 r 7→ ‖∂ru(t, r)‖ is constant for all t ∈ [0,+∞);
(4) for all T ∈ (0,+∞) we have that

sup
P partition of [0, T ]× [0, 1]

∑
(tk,rk)∈P

‖u(tk, rk)−u(tk−1, rk−1)‖ < +∞ ,

where the partition P is constructed using the order relation Î in Z .

We denote by ABV(Z;Rd) the set of all such curves. For t ∈ [0,+∞), we further denote by `u(t) the
length of the curve r 7→ u(t, r).

Loosely speaking, a curve in ABV(Z;Rd) may be interpreted as an augmented version of a curve
u ∈ BVloc(I;Rd), to which we attach Lipschitz continuous transition curves at the jump points. We may
indeed associate with any u ∈ BVloc(I;Rd) (which is, in particular, regulated, with left and right limits
u−(t) and u+(t) at each t ∈ I), with jump set Ju , a curve u ∈ ABV(Z;Rd) by setting

if t ∈ I\Ju u(t, r) ≡ u(t) for all r ∈ [0, 1],

if t ∈ Ju u(t, r) :=


u−(t) if r = 0

a transition curve with constant velocity joining u−(t) to u+(t) if r ∈ (0, 1)

u+(t) if r = 1

.

Because of (6.1), the resulting u is indeed continuous on Z , even when originating from a curve u with
jumps. Notice that, at any t ∈ Ju the transition curve r 7→ u(t, r) has constant speed on [0, 1], equal
to its length `u(t) (observe that this property may be obtained through reparametrization). Moreover,
we remark that, for all r1, r2 ∈ [0, 1] the mappings t 7→ u(t, r1) and t 7→ u(t, r2) coincide a.e. in I
(namely, outside Ju ). Hence, the mappings t 7→ u(t, r) share the same distributional derivative ∂tu , i.e.
∂tu(t, r) = ∂tu(t, 0) for all r ∈ [0, 1].

Conversely, we may consider the mapping

V : ABV(Z;Rd)→ BVloc(I;Rd), u 7→ vu where vu(t) := u(t, 0) . (6.2)

Loosely speaking, vu is the “BV skeleton” of u . We notice that vu is left-continuous, i.e., at each
t ∈ (0,+∞) its left limit v−u (t) coincides with vu(t) = u(t, 0), while its right limit v+

u (t) is u(t, 1).
Augmented reparametrized BV curves and Lipschitz trajectories. For u ∈ ABV(Z;Rd), t ∈
[0,+∞), and r ∈ [0, 1] we define

L−u (t) := sup
P partition of [0, t)× [0, 1]

∑
(tk,rk)∈P

‖(tk, u(tk, rk))− (tk−1, u(tk−1, rk−1))‖ ,

L+
u (t) := sup

P partition of [0, t]× [0, 1]

∑
(tk,rk)∈P

‖(tk, u(tk, rk))− (tk−1, u(tk−1, rk−1))‖ ,

Lu(t, r) := L−u (t) + r`u(t) ,

(recall that ‖∂ru(t, r)‖ ≡ `u(t) for all r ∈ [0, 1]). For later use, we further introduce the set

Ju := {t ∈ I : ‖∂ru(t, ·)‖ ≡ `u(t) 6= 0}. (6.3)
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With each curve u ∈ ABV(Z;Rd) we may associate a trajectory y ∈ Lip↑1(I;Rd+1) as follows. For s ∈ I
we define

t(s) := inf{t ∈ I : L+
u (t) > s} , (6.4)

r(s) :=


s− L−u (t(s))

L+
u (t(s))− L−u (t(s))

if L+
u (t(s)) 6= L−(t(s)) ,

0 otherwise.

(6.5)

In particular, notice that L−u (t(s)) ≤ s ≤ L+
u (t(s)) for every s ∈ I . We define the curve y by

y(s) := (t(s), u(t(s), r(s))), s ∈ I. (6.6)

Then, y is 1-Lipschitz continuous: for s1 < s2 it holds

‖y(s2)− y(s2)‖ =
∥∥(t(s2), u(t(s2), r(s2))

)
−
(
t(s1), u(t(s1), r(s1))

)∥∥
≤ Lu(t(s2), r(s2))− Lu(t(s1), r(s1)) ≤ s2 − s1 .

Moreover, notice that ‖y′(s)‖ ≡ 1 for a.e. s ∈ I . We denote by T : ABV(Z;Rd) → ArcLip(I;Rd+1) the
map that associates with any u ∈ ABV(Z;Rd) the curve y ∈ ArcLip(I;Rd+1) from (6.6).

We also introduce a map S : Lip↑1(I;Rd+1) → ABV(Z;Rd) as follows. For y = (t, x) ∈ Lip↑1(I;Rd+1)
we set

s−y (t) := sup {s ∈ I : t(s) < t} for every t ∈ I , (6.7)

s+y (t) := inf {s ∈ I : t(s) > t} for every t ∈ I . (6.8)

Then, s±y : I→ I satisfy t(s±y (t)) = t for every t ∈ I , and

s−y (t(s)) ≤ s ≤ s+(t(s)) for every s ∈ I. (6.9)

Moreover, if t′(s) > 0 at some s ∈ I , then s±y (t(s)) = s . Indeed, if s−y (t(s)) < s or s+(t(s)) > s , then we

would have t(σ) = t(s) for σ ∈ (s−y (t(s)), s+y (t(s))), which would contradict the assumption t′(s) > 0.
Since y is 1-Lipschitz continuous and t is monotone non-decreasing with t(s) → +∞ for s → +∞ ,
we have that the functions s±y are monotone non-decreasing, s±y (t) → +∞ as t → +∞ . We define

S (y) ∈ ABV(Z;Rd) via

S (y)(t, r) := x
(
s−y (t) + r(s+y (t)− s−y (t))

)
. (6.10)

We will prove in Appendix E the following.

Lemma 6.2. For every y ∈ ArcLip(I;Rd+1) and every u ∈ ABV(Z;Rd) we have

T (S (y)) = y , S (T (u)) = u . (6.11)

Recall that Lip↑1(I;Rd+1) is endowed with the following distance, which metrizes the uniform conver-
gence on compact subintervals of I (see Appendix B):

D(y1, y2) :=

∞∑
n=1

2−n sup
s∈[0,n]

(
min{‖y1(s)− y2(s)‖ , 1}

)
for y1, y2 ∈ Lip↑1(I;Rd+1). (6.12)

We further define the distance DABV on ABV(Z;Rd) via

DABV(u1, u2) := D(T (u1),T (u2)) .

Then, the map T : ABV(Z;Rd)→ Lip↑1(I;Rd+1) is trivially continuous. Likewise, the restriction of S to
ArcLip(I;Rd+1) is continuous with values in ABV(Z;Rd).
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6.2. Bridging the probabilistic representations, from Lipschitz to ABV curves. In order to
obtain our superposition principle by ABV curves, we need to first revisit the probabilistic representation
for solutions (µ,ν) of the continuity equation guaranteed by Theorem 5.1. Recall (5.6a) and (5.8), (which
in fact involved the minimal pair (µ, ν̄) associated with (µ,ν)), namely

µ = e]
(
t′ ηL

)
, ν̄ = e]

(
x′ ηL

)
, |(µ, ν̄)| = e](‖y′‖ηL) = e]ηL , (6.13)

(where e : I×C(I;Rd+1)→ Rd+1 is the evaluation mapping, and the Borel maps t′ and x′ are defined on
I×Lip(I;Rd+1) by t′(s, y) := t′(s), x′(s, y) := x′(s)). The above representation brings into play a measure

η ∈ P(Lip↑1(I;Rd+1)) supported on curves y ∈ ArcLip(I;Rd+1) solving the Cauchy problem (5.7).
Let us introduce a general construction that provides an equivalent formulation of (6.13). Firstly,

observe that every y ∈ Lip↑1(I;Rd+1) induces the vector measure

ωy := y]((t
′, x′)L1) ∈Mloc(Rd+1

+ ;Rd+1)

i.e., 〈ωy, ϕ〉 =

∫
I

ϕ(t(s), x(s)) · (t′(s), x′(s))ds for all ϕ = (ϕ0,ϕ) ∈ Cc(Rd+1
+ ;Rd+1) .

(6.14)

Namely, ωy is the integration measure along the curve y . Now, for a given probability measure λ ∈
P(Lip↑1(I;Rd+1)) fulfilling the integrability conditions (5.1), we may consider the measure

Ωλ :=

∫
Lip↑1

ωy dλ(y) ∈Mloc(Rd+1
+ ;Rd+1) .

Let now λ be the measure η ∈ P(Lip↑1(I;Rd+1)) supported on ArcLip(I;Rd+1) and providing the rep-

resentation formulae (6.13). It follows from such representation that for η -almost every y ∈ Lip↑1(I;Rd+1)
we have |ωy| = y](‖y′‖L1) and

|Ωη| =
∫

Lip↑1

|ωy|dη(y) .

Hence, (6.13) reformulates in compact form as

(µ,ν) = Ωη, |(µ,ν)| = |Ωη| =
∫

Lip↑1

|ωy|dη(y). (6.15)

This observation is at the core of the representation provided by Theorem 6.5 ahead.
Indeed, with any u ∈ ABV(Z;Rd) we associate the measure ϑu ∈Mloc(Rd+1

+ ;Rd+1) defined by

ϑu := ωT (u) i.e.,

∫
Rd+1

ϕ(t, x) dϑu(t, x) =

∫
I

ϕ(y(s)) · y′(s) ds with y = T (u),

for ϕ = (ϕ0,ϕ) ∈ Cc(Rd+1
+ ;Rd+1). By construction, we have that for every ϕ ∈ Cc(Rd+1

+ ;Rd+1) the map

u 7→
∫
Rd+1 ϕdϑu is continuous with respect to the convergence in ABV(Z;Rd). Hence, for A ⊆ Rd+1

+ open
we infer that u 7→ ϑu(A) is Borel. The following result allows us to express the measure Ωη in terms of
a probability measure η̂ on curves in ABV(Z;Rd).

Lemma 6.3. For every λ ∈ P(Lip↑1(I;Rd+1)) concentrated in ArcLip(I;Rd+1) , let λ̂ := S]λ . Then,

(1) λ̂ is a Borel probability measure over ABV(Z;Rd) ;

(2) if λ̂ satisfies the integrability condition (5.1), then

Θλ̂ :=

∫
ABV

ϑu dλ̂(u) is a measure in Mloc(Rd+1
+ ;Rd+1) . (6.16)

(3) Let λ = η fulfill (6.13). Then,

Θη̂ = Ωη = (µ,ν) and |Θη̂| =
∫
ABV

|ϑu|dη̂(u) = |(µ,ν)| . (6.17)
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Proof. Since the map S is continuous on ArcLip(I;Rd+1), we have that λ̂ = S]λ is a Borel probability
measure over ABV(Z;Rd).

Let λ additionally satisfy (5.1). To show that Θλ̂ ∈ M+
loc(Rd+1

+ ; ;Rd+1), it is enough to notice that
for every T ∈ [0,+∞)

Θλ̂([0, T ]× Rd) =

∫
E(T )

‖y′(s)‖ dsdλ̂(y) < +∞

(where E(T ) is from (4.13)).
When λ = η fulfills (6.13), (6.17) obviously follows from (6.15). �

In the upcoming Proposition 6.4, we give an alternative formula for ϑu . It brings into play

- the mapping V : ABV(Z;Rd)→ BVloc(I;Rd) from (6.2) that associates with each u ∈ ABV(Z;Rd)
its BV ‘skeleton’ vu(t) := u(t, 0),

- as well as the jump transitions [0, 1] 3 r 7→ u(t, r) at the discontinuity points t of vu .

To prepare the statement of Proposition 6.4, let us recall that the distributional derivative (vu)
′
d is a

Radon vector measure on I that can be decomposed into the sum of three mutually singular measures

(vu)
′
d = (vu)

′
L1 + (vu)

′
C + (vu)

′
J.

Now,

- (vu)
′
L1 is the absolutely continuous part with respect to L1 , is given by (vu)

′
L1 = v′uL

1 (with
v′u the a.e.-defined pointwise derivative of vu ). In turn, since the a.e. defined derivative of
t 7→ ∂tu(t, r) does not, in fact, depend on r , we have that v′u = ∂tu(·, 0) = ∂tu(·, r) L1 -a.e. in I
for every r ∈ [0, 1]. Therefore, hereafter we will use the more evocative notation

∂L
t u in place of v′u . (6.18)

- (vu)
′
C is the so-called Cantor part of vu , still satisfying (vu)

′
C({t}) = 0 for all t ∈ [0,+∞). In

accordance with (6.18), we will write

∂C
t u in place of (vu)

′
C . (6.19)

- (vu)
′
J is a discrete measure concentrated on the (at most countable) jump set of vu , i.e.

Jvu := {t ∈ I : v+
u (t) 6= v−u (t)} = {t ∈ I : u(t, 0) 6= u(t, 1)} ⊆ Ju.

Observe that ∂L
t uL

1 + ∂C
t u does not charge Ju (it is indeed known as the diffuse part of (vu)

′
d ). Clearly,

it is concentrated on
Cvu := I \ Jvu . (6.20)

We further denote by
Cu := I \ Ju (6.21)

and notice that Cu ⊆ Cvu and |∂L
t uL

1 +∂C
t u|(Cvu \Cu) = 0. While ∂L

t uL
1 and ∂C

t u will be encompassed
in the alternative representation of ϑu , the jump contribution will feature, in place of (vu)

′
J , the measures

jt,u ∈Mloc(Rd+1
+ ;Rd+1), t ∈ Jvu , given by〈

jt,u,ϕ
〉

:=

∫ 1

0

ϕ(t, u(t, r))·∂ru(t, r) dr for all ϕ ∈ Cc(Rd+1
+ ;Rd).

(6.22)

Finally, for fixed u ∈ ABV(Z;Rd), we introduce the map (where the gothic letter G stands for ’graph’)

Gu : I→ Rd+1
+ , Gu(t) := (t, vu(t)) = (t, u(t, 0)) ,

and observe that it is Borel measurable, since may rewrite it as the composition γ2 ◦ γ1 of the following
functions:

γ1 : I→ I× I γ1(t) := (t, s−T (u)(t)) ,

γ2 : I× I→ Rd+1
+ γ2(t, σ) = (t, π(T (u)(σ))) ,

where π : Rd+1
+ → Rd is the projection π(t, x) := x . Then, γ2 is continuous, while γ1 is Borel measurable,

as the second component is lower-semicontinuous. In fact, Gu will come into play in the representation
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formula (6.23) for ϑu , where ϑu results from the sum of three contributions involving the absolutely
continuous, the Cantor and the jump parts of the distributional derivative (vu)

′
d ; the corresponding

mappings A , C , and J , cf. (6.25), will be shown to be Borel measurable.
Let us emphasize that, the ‘jump contribution’ to ϑu features the jump transitions r 7→ u(t, r) at the

transition times t ∈ Ju , i.e., those times t such that `u(t) = ‖∂ru(t, r)‖ 6= 0, by means of the measures
jt,u of (6.22). We notice that we cannot, in principle, only consider the jump points t ∈ Jvu in the jump
contribution jt,u of ϑu , as it may happen that u(t, 0) = u(t, 1) but a transition occurs. Nevertheless, in
the representation result of Theorem 6.5 there will come into play curves u such that Ju may be replaced
by Jvu .

Proposition 6.4. For any u ∈ ABV(Z;Rd) , the measure ϑu is given by

ϑu := (Gu)]
(
(1, ∂L

t u)L1 + (0, ∂C
t u)
)

+
∑
t∈Ju

δt⊗jt,u . (6.23)

The above measures can be expressed in terms of y = T (u) as〈
(Gu)]

(
(1, ∂L

t u)L1 + (0, ∂C
t u)
)
, ϕ
〉

=

∫
Cy

ϕ0(y(s)) t′(s) ds+

∫
Cy

ϕ(y(s)) · x′(s) ds , (6.24a)

〈
jt,u,ϕ

〉
=

∫ s+y (t)

s−y (t)

ϕ(y(s)) · x′(s) ds (6.24b)

for all ϕ = (ϕ0,ϕ) ∈ Cc(Rd+1
+ ;Rd+1) , where Cy := t−1(Cu) and Cu is from (6.21).

Finally, the mappings
A : ABV(Z;Rd)→M(I× Rd;Rd+1), u 7→ (Gu)](1, ∂

L
t u)L1

C : ABV(Z;Rd)→M(I× Rd;Rd+1), u 7→ (Gu)](0, ∂
C
t u)

J : ABV(Z;Rd)→M(I× Rd;Rd+1), u 7→
∑
t∈Ju

δt⊗jt,u

are Borel. (6.25)

We postpone the proof to Appendix F.

6.3. The BV probabilistic representation. We are now in a position to state the ‘BV version’ to
Theorem 5.1. In the same way as the latter result, Theorem 6.5 also provides information on the curves
u ∈ ABV(Z;Rd) on which the representation measure η̂ is concentrated. Recall that in Theorem 5.1
the superposition principle involved trajectories solving the characteristic system. Now, relations (6.27)
ahead, which involve ∂L

t u (6.18), ∂C
t u (6.19), and ∂ru(t, ·) at each t ∈ Ju = Jvu , may be interpreted as

a counterpart to the Cauchy problem (4.22).
Without loss of generality, in what follows we will identify a given solution to the continuity equation

with an induced minimal pair, and thus suppose minimality straight away.

Theorem 6.5. Let (µ,ν) ∈ M+
loc(Rd+1

+ ) ×Mloc(Rd+1
+ ;Rd) be a minimal P1 -solution to the continuity

equation in the sense of Definition 3.2, with initial condition µ0 ∈ P1(Rd) . Let (τ,v) be bounded Borel
vector field representing the density of (µ,ν) w.r.t. |(µ,ν)| .

Then, there exists a Borel probability measure η̂ on ABV(Z;Rd) that provides the probabilistic repre-
sentation

(µ,ν) = Θη̂, |(µ,ν)| = |Θη̂| , (6.26)

with Θη̂ defined as in (6.16). The measure η̂ is concentrated on curves u ∈ ABV(Z;Rd) fulfilling u(0) ∈
spt(µ0) and

∂L
t u(t) =

v(t, u(t, r)))

τ(t, u(t, r)))
=

dνa

dµ
(t, u(t, r)) for L1-a.a. t ∈ I and L1-a.a. r ∈ [0, 1], (6.27a)

∂C
t u = v(t, u(t, r))|∂C

t u| =
dν⊥

d|ν⊥|
(t, u(t, r))|∂C

t u| for |∂C
t u|-a.a. t ∈ I and L1-a.a. r ∈ [0, 1], (6.27b)

∂ru(t, r) =
dν⊥

d|ν⊥|
(t, u(t, r)) ‖∂ru(t, r)‖ for a.a. r ∈ [0, 1] and all t ∈ Jvu , (6.27c)
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with ν = νa + ν⊥ the Lebesgue decomposition of ν into νa � µ and ν⊥ ⊥ µ .

As a consequence of Theorem 6.5 and of the Borel measurability in (6.25) we can rewrite the repre-
sentation formulae (6.26) and (6.27) as follows.

Corollary 6.6. Under the assumptions of Theorem 6.5, the representation formulae (6.26) and (6.27)
rephrase as∫∫

Rd+1
+

ϕ0(t, x) dµ(t, x) =

∫
ABV

∫
I

ϕ0(t, vu(t)) dtdη̂(u) for all ϕ0 ∈ Cc(Rd+1
+ ), (6.28a)

while for νa and ν⊥ we have∫∫
Rd+1

+

ϕ(t, x) dνa(t, x) =

∫
ABV

∫
I

ϕ(t, vu(t))
v(t, vu(t))

τ(t, vu(t)))
dtdη̂(u) ,∫∫

Rd+1
+

ϕ(t, x) dν⊥(t, x) =

∫
ABV

∫
I

ϕ(t, vu(t))v(t, vu(t))) d|∂Ct u|(t) dη̂(u)

+

∫
ABV

∑
t∈Jvu

∫ 1

0

ϕ(t, u(t, r))·∂ru(t, r) dr dη̂(u)

(6.28b)

for every ϕ ∈ Cc(Rd+1
+ ;Rd) .

Finally, the left and right representatives µ−t = µt and µ+
t of µ fulfill

∫
Rd
ψ(x)dµt(x) =

∫
Rd
ψ(x)dµ−t (x) =

∫
ABV

ψ(vu(t)) dη̂(u)∫
Rd
ψ(x)dµ+

t (x) =

∫
ABV

ψ(v+
u (t)) dη̂(u)

for all ψ ∈ Cc(Rd) . (6.29)

In the proof of Theorem 6.5 we will also resort to some measure-theoretic results in Appendix G.

Proof of Theorem 6.5. We divide the proof in three steps, proving (6.26)–(6.29) separately.
Step 1: proof of (6.26). Since ν fulfills the minimality condition by Theorem 5.1 there exists η ∈
P(Lip↑1(I;Rd+1)) concentrated on ArcLip(I;Rd+1) and such that the representation formulae (6.15) hold.
In view of Lemma 6.3, we conclude that the Borel measure η̂ := S]η fulfills (6.26).

Step 2: proof of (6.27). From (6.26) we gather in particular that |Θη̂| =
∫
ABV
|ϑu|dη̂(u). Therefore, we

are in a position to apply Proposition G.1, thus concluding that

ϑu = f|ϑu| for η̂-a.a. u ∈ ABV(Z;Rd) with f =
dΘη̂

d|Θη̂|
=

d(µ,ν)

d|(µ,ν)|
= (τ,v) .

Combining this with (6.23), we thus obtain

A (u) + C (u) + J (u) = ϑu = (τ,v)|ϑu| with


A (u) = (Gu)](1, ∂

L
t u)L1,

C (u) = (Gu)](0, ∂
C
t u),

J (u) =
∑
t∈Jvu

δt⊗jt,u.
(6.30)

Notice that in the last equality in (6.30) we have used that Jvu = Ju , which is a consequence of Theo-
rem 5.3. Namely, a transition at time t may occur if and only if u(t, 0) 6= u(t, 1), since η is supported on
injective curves in ArcLip(I;Rd+1). We shall obtain (6.27) by restricting (6.30) to the support of each
of the three mutually singular contributions A (u), C (u), J (u).

Indeed, restricting (6.30) to spt(A (u)) we infer

(1, ∂L
t u(t)) = (τ(t, vu(t)),v(t, vu(t)))|(1, ∂L

t u(t))|
= (τ(t, u(t, r)),v(t, u(t, r)))|(1, ∂L

t u(t))| for L1-a.a. t ∈ I and every r ∈ [0, 1] .

Hence, for L1 -a.a. t ∈ I and every r ∈ [0, 1] we have

τ(t, u(t, r)) =
1

|(1, ∂L
t u(t))|

, v(t, u(t, r)) =
∂L
t u(t)

|(1, ∂L
t u(t))|

.
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Ultimately, we deduce (6.27a).
Analogously, restricting (6.30) to spt(C (u)) we obtain

(0, ∂C
t u) = (τ(·, vu(·)),v(t, vu(·)))|(0, ∂C

t u)| |∂C
t u|-a.e. in I .

Therefore, we obtain

τ(t, u(t, r)) ≡ 0, v(t, u(t, r)) =
d∂C

t u

d|∂C
t u|

(t) for |∂C
t u|-a.a. t ∈ I and every r ∈ [0, 1].

Observing that spt(∂C
t u) coincides with the image set t(D0[y]\Dc[y]) and recalling the representation

formula (5.11) for ν⊥ , we deduce that v(t, u(t, r)) = dν⊥

d|ν⊥| (t) for |∂C
t u|-a.a. t ∈ I and every r ∈ [0, 1],

and (6.27b) ensues.
Finally, restricting (6.30) to spt(J (u)) we deduce that for t ∈ Jvu and r ∈ [0, 1]

(0, ∂ru(t, r)) = (τ(t, u(t, r)),v(t, u(t, r)))‖∂ru(t, r)‖ = (τ(t, u(t, r)),v(t, u(t, r)))`u(t) , (6.31)

with `u(t) the length of the curve connecting u(t, 0) to u(t, 1). Hence, at every t ∈ Jvu and L1 -
a.a. r ∈ [0, 1] there holds

τ(t, u(t, r)) ≡ 0, v(t, u(t, r)) =
∂ru(t, r)

‖∂ru(t, r)‖
=

dν⊥

d|ν⊥|
(t, u(t, r)) ,

whence (6.27c). �

We conclude with the proof of Corollary 6.6.

Proof of Corollary 6.6. The representation formulae in (6.28) are a consequence of Theorem 6.5. Let us
plug in (6.28a) the test function ϕε(r, x) = ηε(r)ψ(x), with ψ ∈ Cc(Rd) and ηε ∈ Cc(I), 0 < ε � 1,
such that{

spt(ηε) ⊂ (t− 2ε− ε2, t− ε+ ε2),

ηε(r) ≡ 1
ε = max[t−2ε−ε2,t−ε+ε2] ηε for all r ∈ [t− 2ε, t− ε],

for any fixed t ∈ (0,+∞) .

On the one hand, we have∫∫
Rd+1

+

ϕε(r, x) dµr(x) dr

=

∫∫
(t−2ε−ε2,t−2ε)×Rd

ηε(r)ψ(x) dµr(x) dr +
1

ε

∫∫
(t−2ε,t−ε)×Rd

ψ(x) dµr(x) dr

+

∫∫
[t−ε,t−ε+ε2)×Rd

ηε(r)ψ(x) dµr(x) dr
.
= I1,ε + I2,ε + I3,ε .

We observe that

|I1,ε| ≤
1

ε
‖ψ‖∞ε2 = ε‖ψ‖∞ −→ 0 as ε ↓ 0,

and with analogous calculations we have I3,ε → 0, while

I2,ε =
1

ε

∫ t−ε

t−2ε

∫
Rd
ψ(x) dµr(x) dr −→

∫
Rd
ψ(x) dµ−t (x) =

∫
Rd
ψ(x) dµt(x)



44 STEFANO ALMI, RICCARDA ROSSI, AND GIUSEPPE SAVARÉ

where we have used the assumed left-continuity of t 7→ µt . On the other hand,∫
ABV

∫ +∞

0

ηε(r)ψ(vu(r)) dr dη̂(u)

=

∫
ABV

∫ t−2ε

t−2ε−ε2
ηε(r)ψ(vu(r)) dr dη̂(u) +

1

ε

∫
ABV

∫ t−ε

t−2ε

ψ(vu(r)) dr dη̂(u)

+

∫
ABV

∫ t−ε+ε2

t−ε
ηε(r)ψ(vu(r)) dr dη̂(u)

.
= I4,ε + I5,ε + I6,ε .

Arguing in the same way as in the above lines we conclude that I4,ε → 0 and I6,ε → 0 as ε ↓ 0 while
(recall that vu is assumed to be left-continuous)

lim
ε↓0

1

ε

∫
ABV

∫ t−ε

t−2ε

ψ(vu(r)) dr dη̂(u) =

∫
ABV

ψ(vu(t)) dη̂(u) .

We thus have the first of (6.29). The very same argument yields the second of (6.29).
This concludes the proof. �

7. Examples

In this final section we illustrate our results, and discuss our assumptions, in the context of some
examples. In what follows we will often work with time-dependent measures (`p0,p1t )t∈I on Rh given by
the linear combination of two Dirac masses at p0, p1 ∈ Rh, i.e.

`p0,p1t := max{1−t, 0}δp0 + min{t, 1}δp1 =

{
tδp1 + (1−t)δp0 t ∈ [0, 1] ,
δp1 t ∈ (1,+∞) .

(7.1)

Example 7.1. We consider the curve (µt)t∈I of probability measures on R

µt := `x0,x1

t for some x0 < x1 ∈ R ,

so that the corresponding measure on the time-space cylinder I×R is µ = L1⊗µt . Let ν be the measure
on I×R , concentrated on [0, 1]×[x0, x1] , given by

ν := (L1 [0, 1])⊗ (L1 [x0, x1])

(although in this spatially one-dimensional case ν is a scalar measure, we will stick to the vectorial
notation used throughout the paper for better reference). For simplicity of notation, let us set d0 :=
x1−x0 > 0 . The pair (µ,ν) fulfills the continuity equation on (0,+∞)×R , with initial datum µ0 = δx0

,
in the sense of Definition 3.1 (cf. Remark 3.6), since for every ϕ ∈ C1

c(I× R) there holds∫∫
I×R

∂tϕ(t, x) dµ(t, x) =

∫ 1

0

((1−t)∂tϕ(t, x0)+t∂tϕ(t, x1)) dt+

∫ +∞

1

∂tϕ(t, x1) dt

= −
∫ 1

0

(ϕ(t, x1)−ϕ(t, x0)) dt+ [(1−t)ϕ(t, x0)+tϕ(t, x1)]
1
0 − ϕ(1, x1)

= −
∫ 1

0

∫ x1

x0

∂xϕ(t, x) dxdt− ϕ(0, x0)

= −
∫∫

I×R
∂xϕ(t, x) dν(t, x)−

∫
R
ϕ(0, x) dδx0(x) .

In order to illustrate the superposition principle from Theorem 5.1, let us consider the fields τ : I×R→
R , v : I × R → R associated with the pair (µ,ν) via (5.5). Since the measures µ and ν are mutually
singular, we have that

|(µ,ν)| = L1
∣∣
[0,1]
⊗ (µt+L1

∣∣
[x0,x1]

) + L1
∣∣
(1,+∞)

⊗ µt ,
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so that

τ(t, x) =
dµ

d|(µ,ν)|
(t, x) =


1 if t ∈ [0, 1) and x ∈ {x0, x1} ,
1 if t ∈ [1,+∞) and x = x1 ,

0 otherwise,

v(t, x) =
dν

d|(µ,ν)|
(t, x) =

{
1 if t ∈ [0, 1) and x ∈ [x0, x1] ,

0 otherwise,

for L1 -almost all t ∈ (0,+∞) . The measure η involved in the representation (5.2) of (µ,ν) is concen-
trated on the curves y solving the Cauchy system{

ẏ(s) = (τ(y(s)),v(y(s))), s ∈ I,

y(0) = (0, x), x ∈ spt(µ0) = {x0} .
(7.2)

Now, for every t̄ ∈ [0, 1] the curves yt̄ : I→ R2 defined by

yt̄(s) := (s, x0)χ[0,t̄](s) +

(
t̄,
t̄+ d0 − s

d0
x0 +

s− t̄
d0

x1

)
χ[t̄,t̄+d0](s) + (s− d0, x1)χ[t̄+d0,+∞)(s)

solve (7.2). Loosely speaking, each curve yt̄ can decide to move time till t̄ , then it ‘fills in’ the jump

from x0 to x1 , and then moves time again. Let us now consider the mapping Υ: [0, 1]→ Lip↑1(I;R2) that

with each t̄ ∈ [0, 1] associates the curve yt̄ , and let us consider the probability measure on Lip↑1(I;R2)
defined by

η := Υ](L
1 [0, 1]), ηL := L1 ⊗ η . (7.3)

We will now check that η provides the probabilistic representation (5.2) of the pair (µ,ν) . Indeed, for
every ϕ0 ∈ Cb(R2) there holds

〈e](t′ηL), ϕ0〉 =

∫
Lip↑1

∫
I

ϕ0(y(s))t′(s) dsdη(y)

(1)
=

∫ 1

0

∫
I

ϕ0(yt̄(s))τ(yt̄(s)) dsdt̄

(2)
=

∫ 1

0

(∫ t̄

0

ϕ0(s, x0) ds+

∫ +∞

t̄+d0

ϕ0(s− d0, x1) ds

)
dt̄

=

∫ 1

0

(∫ t̄

0

ϕ0(s, x0) ds+

∫ +∞

t̄

ϕ0(s, x1) ds

)
dt̄

(3)
=

∫ 1

0

∫ 1

s

ϕ0(s, x0) dt̄ds+

∫ +∞

0

∫ min{s,1}

0

ϕ0(s, x1) dt̄ds

=

∫ 1

0

(1−s)ϕ0(s, x0) ds+

∫ 1

0

sϕ0(s, x1) ds+

∫ +∞

1

ϕ0(s, x1) ds

=

∫
I

∫
R
ϕ0(s, x) dµs(x) ds,

where (1) follows from (7.2), (2) from the fact that τ(t, ·) ≡ 0 on R \ {x0, x1} , and (3) from the Fubini
theorem. Analogously, we easily check that, for η given by (7.3) there holds ν = e](x

′ηL) .

In our next example the measures µ and ν are again mutually singular and the minimality of ν⊥

does not hold. In this case, the pair (µ,ν) lacks a probabilistic representation.

Example 7.2. Let x0 = (0, 0) , Λ be the unitary circle centered at x0 with tangent vector tΛ , and{
µ := L1 ⊗ µt with µt = δx0

ν := δt0 ⊗ tΛH
1 Λ



46 STEFANO ALMI, RICCARDA ROSSI, AND GIUSEPPE SAVARÉ

with any t0 ∈ I . The pair (µ,ν) solves the continuity equation with initial datum µ0 = δx0
, since for

any ϕ ∈ C1
c(I×R2) there holds∫∫

I×R2

∂tϕ(t, x) dµ(t, x) =

∫
I

∂tϕ(t,x0)dt = −ϕ(0,x0)

= −
∫∫

I×R2

∇ϕ(t, x) · tΛ(t, x)d(H1 Λ)(x)dt− ϕ(0,x0) .

(7.4)

Since the measures µ and ν are mutually singular (and, in particular, spt(µ) ∩ spt(ν) = Ø), we have
that |(µ,ν)| = µ+ |ν| = L1 ⊗ δx0 + δt0 ⊗ (H1 Λ) and

τ(t, x) =
dµ

d|(µ,ν)|
(t, x) =

{
1 if x = x0,

0 otherwise
for L1-a.a. t ∈ I,

v(t, x) =
dν

d|(µ,ν)|
(t, x) =

{
tΛ(x) if x ∈ Λ, t = t0,

0 otherwise .

(7.5)

Now, any probabilistic representation of the pair (µ,ν) would involve a measure η supported on the
solutions of the Cauchy problem{

ẏ(s) = (τ(y(s)),v(y(s))), s ∈ I ,

y(0) = (0, x), x ∈ spt(µ0) = {x0} .
(7.6)

However, it is immediate to check that the solution to (7.6) is given by y(s) = (s,x0) for all s ∈ I
so that, in particular, v(y(s)) ≡ 0 for all s ∈ I and y never intersects spt(ν) . Hence, no probability
measure supported on the solution trajectories of (7.6) could represent the measure ν in the sense of
Theorem 5.1.

A modification of Example 7.2 provides a situation in which the measures (µ,ν) are still mutually
singular and the minimality of ν⊥ does not hold, but it is still possible to provide a probabilistic rep-
resentation. Hence, minimality is not a necessary condition for the validity of the representation from
Theorem 5.1.

Example 7.3. Let x1 = (1, 0) and

µ = L1 ⊗ δx1 , ν = δt0 ⊗ tΛH
1 Λ .

with the same notation as in Example 7.2. The very same calculations as in (7.4) show that the pair (µ,ν)
solves the continuity equation with initial datum µ0 = δx1

. In this case,

τ(t, x) =
dµ

d|(µ,ν)|
(t, x) =

{
1 if x = x1,

0 otherwise
for L1-a.e. t ∈ I , (7.7)

and v is as in (7.5). Let us now examine the Cauchy problem (7.6). Its solution is provided by the curve
yt0 : I→ R3 defined by

yt0(s) :=


(s,x1) if 0 ≤ s < t0 ,

(t0, r(s− t0)) if t0 ≤ s ≤ t0 + 2π ,

(s− 2π,x1) if s > t0 + 2π ,

(7.8)

where r : [0, 2π]→ R2 is the arclength parametrization of Λ , r(τ) := (cos(τ), sin(τ)) . The measure

η := δyt0 ∈ P(Lip↑1(I;R3))
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gives the probabilistic representation of the pair (µ,ν) . Indeed, for every ϕ0 ∈ C(R3) we have (with the
notation yt0 = (̄t, x̄))

〈e](t′ηL), ϕ0〉 =

∫
I

ϕ0(yt0(s))̄t′(s) ds

(7.8)
=

∫ t0

0

ϕ0(s,x1)ds+

∫ +∞

t0+2π

ϕ0(s−2π,x1)ds

=

∫ t0

0

ϕ0(s,x1)ds+

∫ +∞

t0

ϕ0(s,x1)ds = 〈µ, ϕ0〉 ,

and for all ϕ ∈ Cc(R3;R2) there holds

〈e](x′ηL),ϕ〉 =

∫
I

ϕ(yt0(s)) · x̄′(s) ds

(7.8)
=

∫ t0+2π

t0

ϕ(t0, r(s− t0)) · r′(s−t0)ds =

∫ 2π

0

ϕ(t0, r(s)) · r′(s)ds = 〈ν,ϕ〉 .

Another instance of a pair (µ,ν) for which the minimality of ν⊥ does not hold, but a probabilistic
representation still exists, is offered by a variant of the above example in which ν is diffuse in time, i.e.

µ = L1 ⊗ δx1
, ν = L1 ⊗ tΛH

1 Λ .

In this case, τ is still given by (7.7) while

v(t, x) =

{
tΛ(x) if x ∈ Λ \ {x1}
0 otherwise

for L1-a.a. t ∈ I ,

so that τ2 + |v|2 ≡ 1 |(µ,ν)|-a.e. in I×R2 . The solutions to the Cauchy problem (7.6) are provided by
the family of curves yt̄ : I → R3 , t̄ ∈ [0, 1] defined by (7.8) (with t̄ in place of t0 ). Let us consider the

measure η := Υ](L
1 [0, 1]) , where in this case the mapping Υ: [0, 1]→ Lip↑1(I;R2) associates with each

t̄ ∈ [0, 1] the curve yt̄ . A straightforward adaptation of the above calculations show that η represents
(µ,ν) in the sense of (5.2).

The following example shows that the representation provided by Theorem. 5.1 is not in general stable
for weak∗ convergence.

Example 7.4. Recall the notation x0 = (0, 0) and x1 = (1, 0) from Examples 7.2 and 7.3. For every
n ≥ 1 consider the probability measures on (0, 1)× R2

µn = L1 ⊗
((

1− 1
n

)
δx0

+ 1
nδx1

)
and ν = δt0 ⊗ tΛH

1 Λ . In this case as well, the minimality condition is not satisfied, but for each n ≥ 1
the pair (µn,ν) admits a probabilistic representation. Indeed, the associated fields (τn,vn) are

τn(t, x) =

{
1 if x = x0,x1 ,

0 otherwise
L1-a.a. in I ,

while vn ≡ v with v as in (7.5). The Cauchy problem (7.6) featuring the fields (τn,v) is solved by the
curves

y0(s) = (s,x0) for all s ∈ R
and

yn1 (s) =


(s,x1) if s < t0 ,

(t0, r(s−t0)) if s ∈ [t0, t0 + 2πn] ,

(s− 2πn,x1) if s ∈ [t0 + 2πn,+∞] .

We then consider the probability measure

ηn =

(
1− 1

n

)
δγ0 +

1

n
δγn1 .
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For every ϕ0 ∈ Cc(I×R2) we have that

〈e](t′ηnL), ϕ0〉 =
1

n

∫ t0

0

ϕ0(s,x1) ds+
1

n

∫ +∞

t0+2πn

ϕ0(s− 2πn,x1) ds+

(
1− 1

n

)∫ +∞

0

ϕ0(s,x0) ds

=
1

n

∫ +∞

0

ϕ0(s,x1) ds+

(
1− 1

n

)∫ +∞

0

ϕ0(s,x0) ds = 〈µn, ϕ0〉 .

In a similar way, for ϕ ∈ Cc(I×R2;R2) we have that

〈e](x′ηnL),ϕ〉 =
1

n

∫ t0+2πn

t0

ϕ(t0, r(s− t0)) · tΛ(r(s− t0)) ds

=

∫ 2π

0

ϕ(t0, r(s)) · tΛ(r(s)) ds = 〈ν,ϕ〉 .

Nonetheless, it turns out that, as n → ∞ , µn ⇀∗ µ∞ = L1 ⊗ δx0 and ηn ⇀∗ η∞ = δy0 , which
represents µ∞ but no longer provides a representation for ν∞ = ν .

Example 7.5. Let % be a regular and injective curve connecting x0 to x1 , r% : [0, L%] → R2 be its
arclength parametrization and t% its tangent vector. Consider the measures

µ = L1 ⊗ µt with µt = `x0,x1

t ,

ν = (L1 [0, 1])⊗ t%H
1
∣∣
%
.

Here, ν⊥ = ν and the minimality condition is satisfied, cf. Example 2.4. In order to illustrate the
probabilistic representation of the pair (µ,ν) , we consider the fields defined for L1 -a.e. t ∈ I by

τ(t, x) =
dµ

d|(µ,ν)|
(t, x) =

{
1 if x ∈ {x0,x1},
0 otherwise,

v(t, x) =
dν

d|(µ,ν)|
(t, x) =

{
t%(x) if x ∈ % ,
0 otherwise.

The family of curves (yt̄)t̄∈[0,1] defined by

yt̄(s) :=


(s,x0) if 0 ≤ s < t̄ ,

(t̄, r%(s−t̄)) if t̄ ≤ s ≤ t̄+ L% ,

(s− L%,x1) if t̄+ L% < s < +∞
(7.9)

provide the solutions to the Cauchy problem (7.6). Let Υ: [0, 1] → Lip↑1(I;R2) associate with each
t̄ ∈ [0, 1] the corresponding curve yt̄ . It can be easily checked that the measure η = Υ](L

1 [0, 1]) fulfills
µ = e](t

′ηL) and ν = e](x
′ηL) .

In our last example we consider a solution pair (µ,ν) such that ν � µ . Therefore, in this absolutely
continuous case [11, Theorem 8.2.1] applies. We show that representation from our Theorem 5.1 follows
from that provided by [11, Theorem 8.2.1] via a reparametrization. Hence, Theorem 5.1 is consistent
with the classical result.

Example 7.6. Let us consider the scalar measures

µ = L1 ⊗
(

1

2
`0,1t +

1

2
L1
∣∣
(0,1)

)
, ν = L1 ⊗ 1

2
L1
∣∣
(0,1)

.

Then, ν � µ and ν = wµ with

w(t, x) :=

{
1 for t ∈ I and x ∈ (0, 1),
0 elsewhere.

The representation of Theorem 5.1(2) follows, for instance, from [11, Theorem 8.2.1] by an arc-length
reparametrization, arguing as in (4.48). In particular, we may write µ = e](t

′ηL) and ν = e]ηL , where

the measure η ∈ P(Lip↑1(I;R2)) is supported on the set of curves y ∈ Lip↑1(I;R2) solving the Cauchy
problem {

ẏ(s) = (τ,v)(y(s)) ,
y(0) = (0, x0), x0 ∈ [0, 1] ,
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where

τ(t, x) =


1 for t ∈ [0, 1) and x ∈ {0, 1},
1√
2

for t ∈ [0,+∞) and x ∈ (0, 1),

1 for t ∈ [1,+∞) and x = 1,
0 elsewhere,

(7.10)

v(t, x) =

{ 1√
2

for t ∈ [0,+∞) and x ∈ (0, 1) ,

0 elsewhere.
(7.11)

On the other hand, we may write µ = 1
2µ1 + 1

2µ2 with

µ1 := L1 ⊗ `0,1t , µ2 := L1 ⊗ (L1 (0, 1)) .

The pairs (µ1, 2ν) and (µ2, 0) solve the continuity equation in the sense of Definition 3.1 and both
admit a representation in the form (5.2) satisfying the conditions of Theorem 5.1(2). Precisely, we take

η1 ∈ P1(Lip↑1(I;R2)) as in Example 7.1 (with the obvious modifications) and write µ1 = e](t
′L1 ⊗ η1)

and ν = e](x
′L1 ⊗ η1) . As for µ2 , we consider the measure η2 ∈ P1(Lip↑1(I;R2)) of the form η2 =

Υ](L
1 [0, 1]) where Υ: (0, 1)→ P1(Lip↑1(I;R2)) is defined as Υ(x) := yx with yx(s) := (s, x) for every

s ∈ I and every x ∈ (0, 1) . Then, it is easy to see that µ2 = e](t
′L1 ⊗ η2) .

As a consequence, we obtain the alternative representation

µ = e]

(
t′L1⊗

(
1

2
η1 +

1

2
η2

))
, ν = e]

(
x′L1⊗

(
1

2
η1 +

1

2
η2

))
.

However, we notice that this second representation does not fulfill the conditions of Theorem 5.1(2).
Indeed, the curves contained in spt(η1) ∪ spt(η2) do not solve y′(s) = (τ(y(s)),v(y(s))) with τ,v as
in (7.10)–(7.11). This shows that the superposition of two representations from Theorem 5.1 does not,
in general, yield a representation in the sense Theorem 5.1.

Appendix A. Push forward of vector measures

Let ‖ · ‖ be a strictly convex norm on Rh and let ‖ · ‖∗ denote its dual norm. The corresponding
duality (multivalued) map J : Rh � Rh is defined by

J1(x) :=
{
y ∈ Rh : ‖y‖∗ ≤ 1, y · x = ‖x‖

}
.

Notice that if ‖ · ‖ is strictly convex then for every x1,x2 ∈ Rh

‖x1‖ = ‖x2‖, y ∈ J(x1) ∩ J(x2) =⇒ x1 = x2. (A.1)

In fact, setting x̄ := 1
2x1 + 1

2x2 , we get

‖x̄‖ ≥ y · x̄ =
1

2
y · x1 +

1

2
y · x2 =

1

2
‖x1‖+

1

2
‖x2‖

which implies x1 = x2 by the strict convexity of the norm. In the following statement, X and Y are
two locally compact topological spaces.

Lemma A.1. Let ϑ ∈ Mloc(X;Rh) , let p : X → Y be a |ϑ|-proper map (i.e. |ϑ|(p−1(K)) < +∞ for
every compact subset K ⊂ Y ).

(1) If there exists α ∈M+
loc(X) and a Borel map f : Y → Rh such that

ϑ = (f ◦ p)α, (A.2)

then

|p]ϑ| = p]|ϑ|. (A.3)

(2) If the norm ‖·‖ on Rh is strictly convex and (A.3) holds, then (A.2) holds with respect to α := |ϑ|
and f the density of the polar decomposition of p]ϑ , i.e.

p]ϑ = f |p]ϑ|, ϑ = (f ◦ p) |ϑ|. (A.4)
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(3) If (A.2) holds and ζ ≺ ϑ then

p]ζ ≺ p]ϑ. (A.5)

Proof. First of all, we observe that (A.2) implies a similar identity for |ϑ| up to rescaling f by a suitable
positive Borel function, therefore it is not restrictive to assume that α = |ϑ| and therefore ‖f‖ = 1
p]|ϑ|-a.e. in Y .

In order to prove Claim 1, notice that, by (A.2), we have that p]ϑ = p](f◦p)|ϑ| = fp]|ϑ| . Since
‖f‖ = 1 p]|ϑ| -a.e. in Y , we immediately deduce that |p]ϑ| ≤ p]|ϑ| . On the other hand, let us select
ϕ ∈ L∞p]|ϑ|(Y ;Rh) so that ϕ(y) ∈ J(f(y)) for p]|ϑ| -a.a. y ∈ Y ; for every K compact in Y we have

|p]ϑ|(K) ≥
∫
K

ϕ · dp]ϑ =

∫
K

ϕ · f dp]|ϑ| = p]|ϑ|(K) .

This implies that p]|ϑ| = |p]ϑ| .
In order to prove Claim 2 (which is also well known, see e.g. [13, Lemma 2.4] for a similar statement)

we observe that for ϕ as above it holds

|p]ϑ|(K) =

∫
K

‖f‖d|p]ϑ| =
∫
K

ϕ · fd|p]ϑ| =
∫
K

ϕ · dp]ϑ (A.6)

=

∫
p−1(K)

ϕ◦p · dϑ =

∫
p−1(K)

ϕ◦p · gd|ϑ| ≤
∫
p−1(K)

‖ϕ◦p‖∗ ‖g‖d|ϑ| ≤ p]|ϑ|(K) ,

where ϑ = g|ϑ| . Then, (A.3) and (A.6) yield that (ϕ◦p) · g = ‖g‖ holds |ϑ|-a.e. on p−1(K) so that
ϕ(p(x)) ∈ J(g(x)) for |ϑ|-a.a. x ∈ p−1(K). On the other hand, by construction ϕ(p(x)) ∈ J(f(p(x)))
so that (A.1) yields f(p(x)) = g(x) for |ϑ| -a.e. x ∈ p−1(K). Exhausting Y with a countable sequence
of compact sets, we conclude.

Let us eventually consider Claim 3: we can write ζ = λϑ for a Borel map λ with values in [0, 1].
We can select the Euclidean norm and we thus have

|ζ| = λ |ϑ|, ζ = λϑ = λf◦p |ϑ| = f◦p |ζ|

and therefore, by Claim 1,

p]|ζ| = |p]ζ|.
Similarly p]|ϑ− ζ| = p]|(1− λ)ϑ| = |p]((1− λ)ϑ)| = |p](ϑ− ζ)| . We deduce that

|p]ζ|+ |p](ϑ− ζ)| = p]
(
|ζ|+ |ϑ− ζ|

)
= p]|ϑ| = |p]ϑ|

so that p]ζ ≺ p]ϑ . �

Appendix B. Topological properties of functions spaces

Recall that C(I;Rh) denotes the space of Rh -valued continuous paths endowed with the topology of
uniform convergence on compact sets of I .

Lemma B.1. The metric

D(y1, y2) :=

∞∑
n=0

2−n(‖y1 − y2‖∞,n ∧ 1), with ‖y1 − y2‖∞,n = max
s∈[0,n]

‖y1(s)− y2(s)‖, (B.1)

makes the topological space C(I;Rh) complete, separable, and induces on C(I;Rh) the topology of uniform
convergence on compact sets. In particular C(I;Rh) is Polish.

Proof. It is easy to check that (C(I;Rd+1), D) is complete. It is also separable: indeed, for every n ≥ 1
the space C([0, n];Rd+1) has a countable and dense subset (yi)i∈In ; we then extend each γi to a function
ỹi ∈ C(I;Rd+1) by setting ỹi(x) ≡ yi(n) for x ∈ (n,+∞). Then, the set

⋃
n≥1(yi)i∈In is countable and

dense in (C(I;Rd+1), D). �
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Appendix C. Glueing properties

We establish a useful generalization of the glueing Lemma [11, Lemma 5.3.2, 5.3.4].

Lemma C.1. Let N ∈ N ∪ {∞} , I(N) := {1, 2, · · · , N} if N ∈ N and I(∞) := N (N = ∞), let
X,Xi, Y j , be Polish spaces and let pi : X → Xi , Ri : Xi → Y i , Lj+1 : Xj+1 → Y j , be Borel maps for
i ∈ I(N) and j ∈ I(N−1). We set X := Πi∈IX

i , X0 :=
{
x = (xi)i∈I ∈ X : Ri(xi) = Li+1(xi+1), i ∈

I(N−1)
}

, and we suppose that the image of the map p : X →X , p(x) := (pi(x))i∈N contains X0.

If µi ∈ P(Xi) , i ∈ I(N) , satisfy the compatibility conditions

Ri]µ
i = Li+1

] µi+1, i ∈ I(N−1), (C.1)

then there exists µ ∈ P(X) such that pi]µ = µi for every i ∈ I(N).

Proof. We consider the case N = ∞ , I(N) = I(N−1) = N ; the argument in the finite case is even
simpler.

Let di be a metric inducing the topology of Y i taking values in [0, 1]. Let us set νi := Ri]µ
i =

Li+1
] µi+1 ∈ P(Y i), µ̂i→ := (iXi ,R

i)]µ
i ∈ Γ(µi, ν) ⊂ P(Xi × Y ), µ̂i← := (iXi+1 , Li+1)]µ

i+1 ∈ Γ(µi+1, ν) ⊂
P(Xi+1 × Y ). Notice that∫

Xi×Y
di(R

i(xi), y) dµ̂i→(xi, y) = 0,

∫
Xi+1×Y

di(L
i+1(xi+1), y) dµ̂i←(xi+1, y) = 0, i ∈ N. (C.2)

By the standard glueing Lemma (see e.g. [11, Lemma 5.3.2]) there exist βi ∈ P(Xi ×Xi+1 × Y i) such
that

πi→] βi = µ̂i→, πi←] βi = µ̂i←, where πi→(xi, xi+1, y) := (xi, y), πi←(xi, xi+1, y) := (xi+1, y).

In particular, using (C.2) we deduce∫
di(R

i(xi), L
i+1(xi+1)) dβi ≤

∫
di(R

i(xi), y) dβi +

∫
di(y, L

i+1(xi+1)) dβi

=

∫
di(R

i(xi), y) dµ̂i→ +

∫
di(L

i+1(xi+1), y) dµ̂i← = 0,

so that αi := πi]γ (where πi(xi, xi+1, y) = (xi, xi+1)) is concentrated on {(xi, xi+1) ∈ Xi × Xi+1 :

Ri(xi) = Li+1(xi+1)}.
We can then use the glueing Lemma [11, 5.3.4] to find a probability measure α ∈ P(X) such that

πi]α = αi for every i ∈ N , where πi(x) = (xi, xi+1). Clearly, α is concentrated on X0 ; since the image

of p contains X0 , we can find µ ∈ P(X) such that p]µ = α , so that pi]µ = µi. �

Appendix D. A measurability result

In this section we prove the measurability of the mapping R from (4.29), coming into play in the
proof of Lemma 4.6. In the proof we shall resort to the following functional version of the monotone
class theorem, which we record here (in a shortened and simplified version, adapted to our usage) for the
reader’s convenience. We refer to [17, Thm. 2.12.9] for the general statement.

Theorem D.1 (Functional monotone class theorem). Let H be a class of real functions on a set O ⊂ Rk
containing f ≡ 1 . Suppose that H is closed with respect to the formation of uniform and monotone limits
and that f ≡ 1 ∈H . Let H0 ⊂H be a subclass closed with respect to multiplication (i.e., fg ∈H0 for
every f, g ∈H0 ).

Then, H contains all bounded functions measurable with respect to the σ -algebra generated by H0 .

We will then prove the following result.

Lemma D.2. The mapping R : Lip↑k(I;Rd+1)→ Lip↑
k̂
(I;Rd+1) from (4.29) is Borel.
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Proof. Let θ be a Borel measurable function θ : Rd+1 → (0,+∞) such that c−1 ≤ θ ≤ c for some
c ∈ [1,+∞) (cf. (4.24)). For every function ζ : Rd+1 → (0,+∞) such that ζ ≥ cζ > 0 we consider the
mapping

Fζ : Lip↑k(I;Rd+1)→ L1
loc(I), y 7→ 1

ζ(y)
.

We consider L1
loc(I) endowed with the (Fréchet, hence metrizable) topology that induces the L1 conver-

gence on the compact subsets of I , whereas we recall that Lip↑k(I;Rd+1) is with the (metrizable) topology
of the convergence on compact subsets. We claim that for every ζ as above we have

Fζ is Borel. (D.1)

To show this, we introduce the class H as

ζ ∈H ⇐⇒


ζ : Rd+1 → (0,+∞) is Borel,

∃ cζ > 0 ζ ≥ cζ in Rd+1,

Fζ : Lip↑k(I;Rd+1)→ L1
loc(I) is Borel.

Now, we clearly have that ζ ≡ 1 belongs to H and that H is closed w.r.t. monotone limits of uniformly
bounded sequences. Moreover, it is immediate to check that H contains the set

H0 := {ζ ∈ C(Rd+1) : ∃ c > 0 ζ ≥ c in Rd+1} .
Furthermore, H0 is closed with respect to multiplication. Hence, by the monotone class theorem the
family H contains all positive Borel functions bounded away from 0. In particular, θ ∈ H and (D.1)
follows.

We now consider the mapping

Aθ : Lip↑k(I;Rd+1)→ C(I), Aθ(y)(t) := Θy(t) =

∫ t

0

1

θ(y(r))
dr =

∫ t

0

Fθ(y(r))dr .

In particular, we notice that for every y ∈ Lip↑k(I;Rd+1) we have

Aθ(y) ∈ biLipc,c−1(I) :=

{
g : I→ [0,+∞) : g(0) = 0, g is bi-Lipschitz, with

1

c
≤ g′ ≤ c in I

}
,

where c ≥ 1 the constant from (4.24). Recalling that C(I) is endowed with the (metrizable) topology
that induced the uniform convergence on compact sets, we have that the map Aθ is the composition of
the Borel mapping Fθ with the function

A : L1
loc(I)→ C(I), f 7→ A(f) with A(f)(t) :=

∫ t

0

f(r)dr .

Since A is continuous, we have that Aθ is Borel.
Finally, we show that the mapping

Lθ : Lip↑k(I;Rd+1)→ C(I) , y 7→ `y = Θ−1
y ,

is Borel measurable. We notice that Lθ(y) is well defined, as Aθ(y) is invertible for every y ∈ Lip↑k(I;Rd+1).
Moreover, Lθ(y) is the composition of Aθ with the inversion operator I : biLipc,c−1(I) → biLipc,c−1(I).
Now, I is continuous: indeed, let (gn)n, g ∈ biLipc,c−1(I) with gn → g uniformly con compact subsets

of I . Consider g−1, (g−1
n )n ⊂ biLipc,c−1(I). Taking into account that (g−1

n )n is bounded in L∞loc(I) with
1
c ≤ (g−1

n )′ ≤ c , in order to check that g−1
n → g−1 on compact subsets of I it is sufficient to show that

g−1
n → g−1 pointwise in I . Hence, let r ∈ I and sn := g−1

n (r), i.e. gn(sn) = r . Since (sn)n is bounded,
it admits a subsequence (snk)k converging to some s∗ . Recalling that (gn)n converges uniformly to g
on the compact subsets of I , we gather that r = gnk(snk) → g(s∗). Hence, s∗ = g−1(r). As the limit
does not depend on the extracted subsequence, then we have that the whole sequence (sn = g−1

n (r))n
converges to g−1(r). Therefore, Lθ = I◦Aθ is the composition of a Borel and of a continuous mapping:
a fortiori, it is Borel.

Ultimately, the map R : Lip↑k(I;Rd+1)→ Lip↑
k̂
(I;Rd+1) defined by y 7→ y ◦ `y = y ◦ Lθ(y) is Borel. �
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Appendix E. Proof of Lemma 6.2

We divide the proof in 2 steps, proving the two equalities in (6.11) separately.
Step 1: S (T (u)) = u for u ∈ ABV(Z;Rd) . Let us denote by y = (t, x) = T (u), constructed according

to (6.4)–(6.6). Then, we have that for t ∈ I

s−y (t) := sup {s ∈ I : t(s) < t} = sup {s ∈ I : inf{τ ∈ I : L+
u (τ) > s} < t} .

For every s < L−u (t) we have that inf{τ ∈ I : L+
u (τ) > s} < t , since L+

u (τ) < L−u (t) for τ < t and
L+
u (τ)→ L−u (t) as τ ↗ t . Hence, L−u (t) ≤ s−y (t). On the other hand, for s > L−u (t) we get that

inf{τ ∈ I : L+
u (τ) > s} ≥ inf{τ ∈ I : L+

u (τ) > L−u (t)} ≥ t .

Hence, L−u (t) = s−y (t). With a similar argument we infer L+
u (t) = s+y (t).

Recalling (6.10), we write for (t, r) ∈ Z

S (y)(t, r) = S (T (u))(t, r) = u
(
t
(
s−y (t) + r(s+y (t)− s−y (t))

)
, r
(
s−y (t) + r(s+y (t)− s−y (t))

))
= u
(
t, r
(
L−u (t) + r(L+

u (t)− L−u (t))
))

= u(t, r) ,

where we have used that t(s) = t for every s ∈ [s−y (t), s+y (t)] and the definition of r in (6.5).

Step 2: T (S (y)) = y for y = (t, x) ∈ ArcLip(I;Rd+1) . For (t, r) ∈ Z we notice that

S (y)(t, r) = x(s−y (t) + r(s+y (t)− s−y (t))) . (E.1)

To shorten the notation, we set u = S (y) and (tu, xu) = T (S (y)). Since ‖y′‖ = 1 a.e. in I , it holds

L±u (t) =

∫ s±y (t)

0

‖y′(s)‖ds = s±y (t) for t ∈ I, (E.2)

Lu(t, r) = s−y (t) + r(s+y (t)− s−y (t)) for (t, r) ∈ Z. (E.3)

By definition of T and by the characterization of L±u above we have that for s ∈ I

tu(s) = inf {t ∈ I : s+
y (t) > s} .

In particular, it is immediate to see that t(s) ≥ tu(s). By contradiction, if t(s) > tu(s), then it must be
s+y (t) > s for every t ∈ (tu(s), t(s)), which implies s−y (t(s)) > s , whence (6.9). Thus, t = tu in I .

We now consider the second component xu of T (S (y)). We recall that, in view of (6.5) and (E.2),
it holds for s ∈ I

r(s) =
s− s−y (t(s))

s+y (t(s))− s−y (t(s))
if s+y (t(s)) 6= s−y (t(s)), (E.4)

xu(s) = u(tu(s), r(s)) = u(t(s), r(s)) (E.5)

= x(s−y (t(s))) + (s+y (t(s))− s−y (t(s)))

∫ r(s)

0

x′(s−y (t(s)) + `(s+y (t(s))− s−y (t(s)))) d` .

Hence, if s+y (t(s)) = s−y (t(s)), from (6.9) we immediately conclude that xu(s) = x(s). If s+y (t(s)) >

s−y (t(s)), (E.1) and (E.4) yield xu(s) = x(s). Hence, T (S (y)) = y .

Appendix F. Proof of Proposition 6.4

B (6.23) & (6.24). We will prove the representation formula (6.23) for ϑu by showing (6.24). To do so,
we need to relate the curve vu to the trajectory T(u) = y = (t, x). In fact,

vu(t) = u(t, 0) = x(s−y (t)) for all t ∈ I .

Moreover, Ju = Js±y
, and Cy := t−1(Cu) = t−1(I\Ju) is the set where t(·) is injective. In particular,

I \ Cy is union of the intervals [s−y (t), s+y (t)] .
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Now, for every ϕ ∈ Cc(Rd+1
+ ;Rd) we have

〈
∑
t∈Ju

δt⊗jt,u,ϕ〉 =
∑
t∈Ju

∫ 1

0

ϕ(t, u(t, r)) · ∂ru(t, r) dr =
∑
t∈Ju

∫ s+y (t)

s−y (t)

ϕ(t, u(t, r(s))) · x′(s) ds (F.1)

=
∑
t∈Ju

∫ s+y (t)

s−y (t)

ϕ(t(s), u(t(s), r(s))) · x′(s) ds

=
∑
t∈Ju

∫ s+y (t)

s−y (t)

ϕ(y(s)) · x′(s) ds ,

where, in the last equality, we have used the fact that t(s) ≡ t for every s ∈ [s−y (t), s+y (t)] . Hence, (6.24b)
follows.

In order to show (6.24a), we start by recalling that for every ζ ∈ Cc(I) and ζ ∈ Cc(I;Rd) we further
have (see, e.g., [38, Proposition 6.11])∫

I

ζ(t) dt =

∫
Cy

ζ(t(s)) t′(s) ds , (F.2)∫
Cu

ζ(t) d((vu)
′
L1 + (vu)

′
C)(t) =

∫
Cvu

ζ(t) d((vu)
′
L1 + (vu)

′
C)(t) =

∫
Cy

ζ(t(s)) · x′(s) ds (F.3)

(in (F.3) and in what follows in this proof, we use the more compact notation v′u , (vu)
′
L1 , and (vu)

′
C ,

in place of (6.18) and (6.19)). For ϕ0 ∈ Cc(Rd+1
+ ) and ϕ ∈ Cc(Rd+1

+ ;Rd), we test (F.2) and (F.3)
with ζε := ϕ0(·, vu(·)) ∗ ρε and ζε := ϕ(·, vu(·)) ∗ ρε , for a mollifier ρε supported in [0, ε] . Since
ζε(t)→ ϕ0(t, vu(t)) and ζε(t)→ ϕ(t, vu(t)) for every t ∈ I , we infer that∫

I

ϕ0(t, vu(t)) dt =

∫
Cy

ϕ0(t(s), vu(t(s))) t
′(s) ds , (F.4)∫

Cvu

ϕ(t, vu(t)) d((vu)
′
L1 + (vu)

′
C)(t) =

∫
Cy

ϕ(t(s), vu(t(s))) · x′(s) ds . (F.5)

Since vu(t(s)) = u(t(s), 0) and, for s ∈ Cy , u(t(s), 0) = u(t(s), r) for every r ∈ [0, 1], we rewrite (F.4)–
(F.5) as ∫

I

ϕ0(t, vu(t)) dt =

∫
Cy

ϕ0(y(s)) t′(s) ds , (F.6)∫
Cvu

ϕ(t, vu(t)) d((vu)
′
L1 + (vu)

′
C)(t) =

∫
Cy

ϕ(y(s)) · x′(s) ds , (F.7)

whence (6.24a).

Combining (F.6)–(F.7) with (F.1) we conclude that for all ϕ = (ϕ0,ϕ) ∈ Cc(Rd+1
+ ;Rd+1)

〈ωy, ϕ〉 =
〈
(Gu)]

(
(1, v′u)L

1 + (0, (vu)
′
C)
)

+
∑
t∈Ju

δt⊗jt,u, ϕ
〉
,

and (6.23) follows.

B (6.25) : We will show the measurability of A , C , and J by proving that the following mappings
ABV(Z;Rd) 3 u 7→ 〈A (u), ϕ〉
ABV(Z;Rd) 3 u 7→ 〈J (u),ϕ〉
ABV(Z;Rd) 3 u 7→ 〈C (u),ϕ〉

are Borel for every test function ϕ = (ϕ0,ϕ) ∈ Cc(Rd+1
+ ;Rd+1) .

In turn, this will be shown via the representation formulae (6.24). We start by observing that the
mappings {

Lip↑1(I;Rd+1) 3 y 7→ I0(y) :=
∫
I
ϕ0(y(s))t′(s) ds

Lip↑1(I;Rd+1) 3 y 7→ I(y) :=
∫
I
ϕ(y(s)) · x′(s) ds

are Borel. (F.8)
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Indeed, they are continuous with respect to the topology of uniform convergence on compact sets of I

induced by the metric D from (B.1): to check this, it suffices to take (yn)n , y ∈ Lip↑1(I;Rd+1) with
D(yn, y)→ 0 as n→∞ , and and observe that, since ‖(t′n, x′n)‖ ≤ 1 a.e. in I , we may suppose (up to a
not relabeled subsequence), that t′n ⇀

∗ t′ and x′n ⇀
∗ x in L∞(I). Then, the convergences

lim
n→∞

∫
I

ϕ0(yn(s))t′n(s) ds =

∫
I

ϕ0(y(s))t′(s) ds ,

lim
n→∞

∫
I

ϕ(yn(s)) · x′n(s) ds =

∫
I

ϕ(y(s)) · x′(s) ds

follow by dominated convergence. Now, recalling (F.4) and (F.6), we conclude that the mapping

ABV(Z;Rd) 3 u 7→ I0(T (u)) =

∫
I

ϕ0(t, vu(t)) dt is Borel, (F.9)

as it is given by the composition of two Borel mappings.

In turn, we observe that for all y ∈ Lip↑1(I;Rd+1) we have

I(y) = Icont(y) + Ising(y) with

{
Icont(y) =

∫
I∩{t′>0}ϕ(y(s)) · x′(s) ds,

Ising(y) =
∫
I∩{t′=0}ϕ(y(s)) · x′(s) ds.

.

Indeed, the pedices cont and sing refer to the fact that Icont and Ising represent the contributions to ϑu
involving the measures (vu)

′
L1 and (vu)

′
C + (vu)

′
J , respectively, as{

Icont(y) =
∫
I
ϕ(t, vu(t)) · v′u(t) dt,

Ising(y) =
∫
I
ϕ(t, vu(t)) d(vu)

′
C(t) + 〈

∑
t∈Ju

δt⊗jt,u,ϕ〉.
(F.10)

Now, we claim that the mapping

ArcLip(I;Rd+1) 3 y 7→ Ising(y) =

∫
I

1{s∈I : t′(s)=0}(r)ϕ(y(r)) · x′(r) dr is Borel. (F.11)

Since we can write Ising(y) = I+
sing(y)− I−sing(y) with

I±sing(y) :=

∫
I

1{s∈I : t′(s)=0}(r)(ϕ(y(r)) · x′(r))± dr with

{
r+ = max{r, 0},
r− = max{−r, 0} ,

it is enough to prove that y 7→ I±sing(y) are Borel measurable. We proceed with the proof for I+
sing . The

very same argument applies to I−sing .

For n, k ∈ N \ {0} we consider the map

ArcLip(I;Rd+1) 3 y 7→ Jn,k(y) =

∫
I

1Sn,k(t)(r)(ϕ(y(r)) · x′(r))+ dr ,

where 1Sn,k is the characteristic function of the set Sn,k(t) := {s ∈ I : k(t(s + 1
k ) − t(s)) ≤ 1

n} .
Then, Jn,k is Borel measurable, as it is upper semicontinuous with respect to the uniform convergence
on compact subsets of I . Notice that here we are also using that, whenever ym, y ∈ ArcLip(I;Rd+1) are
such that D(ym, y)→ 0 as m→∞ , then we also have y′m → y′ in Lploc(I;Rd+1) for every 1 ≤ p < +∞ .

The Borel measurability of Jn,k implies that also the maps

ArcLip(I;Rd+1) 3 y 7→ lim inf
k→∞

Jn,k(y) , ArcLip(I;Rd+1) 3 y 7→ lim sup
k→∞

Jn,k(y)

are Borel measurable for every n ∈ N . By Fatou lemma, we further notice that for every y ∈ ArcLip(I;Rd+1)
it holds

I+
sing(y) ≤

∫
I

lim inf
k→∞

1Sn,k(t)(r)(ϕ(y(r)) · x′(r))+ dr ≤ lim inf
k→∞

Jn,k(y) (F.12)

≤ lim sup
k→∞

Jn,k(y) ≤
∫

I

lim sup
k→∞

1Sn,k(t)(r)(ϕ(y(r)) · x′(r))+ dr
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≤
∫

I

1{s∈I: t′(s)≤ 1
n}

(r)(ϕ(y(r)) · x′(r))+ dr .

Taking the limit as n→∞ in the chain of inequalities (F.12), we infer that

I+
sing(y) = lim

n→∞
lim inf
k→∞

Jn,k(y) .

This implies that I+
sing is a Borel map. This concludes the proof of (F.11).

Combining (F.8) and (F.11) we deduce that also Icont is Borel measurable. Thus, in view of (F.10)
we have that

ABV(Z;Rd) 3 u 7→ Icont(T (u)) =

∫
I

ϕ(t, vu(t)) · v′u(t) dt is Borel. (F.13)

From (F.9) and (F.13) we then have that the mapping

ABV(Z;Rd) 3 u 7→ 〈A (u), ϕ〉 is Borel for every ϕ ∈ Cc(Rd+1
+ ;Rd+1) .

Now, Lemma F.1 ahead ensures that the mapping ABV(Z;Rd) 3 u 7→ 〈J (u),ϕ〉, is Borel for all test
functions ϕ . Ultimately,

ABV(Z;Rd) 3 u 7→ Icont(T (u))− 〈J (u),ϕ〉 = 〈C (u),ϕ〉 is Borel for all ϕ ∈ Cc(Rd+1
+ ;Rd) .

We have thus proven (6.25).

The last result of this section addresses the measurability of the mapping J .

Lemma F.1. For all ϕ ∈ Cc(Rd+1
+ ;Rd) we consider the mapping

Ijump : ArcLip(I;Rd+1)→ R y 7→
∑
t∈L(y)

∫ s+y (t)

s−y (t)

ϕ(y(s)) · x′(s) ds (F.14)

with the short-hand notation Ly := {s ∈ I : s+y (s)− s−y (s) > 0} . Then,

∀ϕ ∈ Cc(I×Rd;Rd) u 7→ Ijump(T (u)) = 〈J (u),ϕ〉 is Borel.

Proof. First of all, observe that

Ijump(y) = I+
jump(y)− I−jump(y)

with

I±jump(y) :=
∑
t∈Ly

∫ s+y (t)

s−y (t)

(ϕ(y(s)) · x′(s))± ds with

{
r+ = max{r, 0},
r− = max{−r, 0} .

Hence, we can show the measurability property for the functions I±jump . We provide the full proof

for I+
jump . A similar argument applies to I−jump .

Let us now introduce the continuous function

A : I→ R+, A(r) :=

∫ r

0

(ϕ(y(s)) · x′(s))+ ds,

so that ∫ s+y (t)

s−y (t)

(ϕ(y(s)) · x′(s)) ds = A(s+y (t))−A(s−y (t)) (F.15)

We will thus prove that the function

A : ArcLip(I;Rd+1)→ R+ y 7→
∑
t∈L(y)

[A(s+y (t))−A(s−y (t))] is Borel. (F.16)

We split the argument for (F.16) in the following steps.
Claim 1 : {

I×ArcLip(I;Rd+1) 3 (t, y) 7→ A(s+y (t)) is upper semicontinuous.

I×ArcLip(I;Rd+1) 3 (t, y) 7→ A(s−y (t)) is lower semicontinuous.
(F.17)
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As for the first property, it suffices to observe that (t, y) 7→ s+y (t) is upper semicontinuous. Hence,

since every y ∈ ArcLip(I;Rd+1) satisfies ‖y′(s)‖ = 1 for a.e. s ∈ I , we have that A ◦ s+y is upper
semicontinuous. Indeed, the constraint ‖y′(s)‖ = 1 implies that

y 7→
∫ r

0

(ϕ(y(s)) · x′(s))+ ds

is continuous in ArcLip(I;Rd+1) for every r ∈ I . This yields the desired upper semicontinuity. Analo-
gously, the second statement follows from the lower semicontinuity of (t, y) 7→ s−y (t).

Claim 2 : for every T > 0 , S > 0 , and ζ > 0 , the mapping

A
T,S
ζ : ArcLip(I;Rd+1)→ R+, y 7→

{∑
t∈LT,Sζ (y)[A(s+y (t))−A(s−y (t))] if s−y (T ) ≤ S,

0 if s−y (T ) > S,

with LTζ (y) := {t ∈ L(y) : t ∈ [0, T ], |s+y (t)−s−y (t)| ≥ ζ}

(F.18)

is upper semicontinuous. Let us consider (yj)j , y ∈ ArcLip(I;Rd+1) such that D(yj , y) → 0 and show
that

lim sup
j→∞

A
T,S
ζ (yj) ≤ A

T,S
ζ (y) .

Up to a subsequence, we may assume that the limsup is a limit. If s−yj (T ) > S definitely for j large enough,

there is nothing to prove. Let us therefore assume that for every j ∈ N we have s−yj (T ) ≤ S . By lower-

semicontinuity, observe that s−y (T ) ≤ S. Moreover, we observe that, in correspondence with the sequence

(yj)j there exists N ∈ N such that for every j ∈ N there exist at most N times tj1 < . . . < tjN ∈ [0, T ]

such that |s+yj (t
j
i )−s−yj (t

j
i )| ≥ ζ for all i = 1, . . . , N . In fact, by definition of s±yj , for every j ∈ N it holds

that
S ≥ s−yj (T ) ≥

∑
t∈LTζ (y)∩[0,T )

|s+y (t)− s−y (t)| ≥
(
#
[
LTζ (y) ∩ [0, T )

])
ζ .

This implies that #LTζ (yj) ≤ S
ζ + 1 for every j ∈ N . Then,

A
T,S
ζ (yj) =

N∑
i=1

[A(s+yj (t
j
i ))−A(s−yj (t

j
i ))] .

Now, up to a non-relabeled subsequence we have that there exist (ti)
N
i=1 ⊂ [0, T ] such that tji → ti as

j → ∞ . In particular, it holds |s+y (ti)−s−y (ti)| ≥ ζ for every i = 1, . . . , N , so that (ti)
N
i=1 ⊂ LTζ (y).

We notice that some of the ti ’s may coincide. With a slight abuse of notation, we denote by tk , for
k = 1, . . . ,M ≤ N the distinct limit points of tji . By (F.17) we have that, whenever tji → tk as j →∞ ,
then

A(s+y (tk))−A(s−y (tk)) ≥ lim sup
j→∞

A(s+yj (t
j
i ))−A(s−yj (t

j
i )) . (F.19)

If we have that tji , . . . , t
j
i+` → tk for some ` > 0 and some k = 1, . . . ,M , then

A(s+y (tk))−A(s−y (tk)) ≥ lim sup
j→∞

A(s+yj (t
j
i+`))−A(s−yj (t

j
i )) (F.20)

≥ lim sup
j→∞

∑̀
n=0

A(s+yj (t
j
i+n))−A(s−yj (t

j
i+n)) .

Combining (F.19)–(F.20) we conclude that

A
T,S
ζ (y) ≥

M∑
k=1

[A(s+y (tk))−A(s−y (tk))] ≥ lim sup
j→∞

A
T,S
ζ (yj) .

Conclusion: Clearly, we have that

∀ y ∈ ArcLip(I;Rd+1) : A(y) = lim
T↑∞, S↑∞, ζ↓0

A
T,S
ζ (y) .



58 STEFANO ALMI, RICCARDA ROSSI, AND GIUSEPPE SAVARÉ

Then, A is the pointwise limit of Borel mappings. Thus, (F.16) follows. This finishes the proof. �

Appendix G. Auxiliary measure-theoretic tools

Let X be a Polish metric space and M(X;Rh) the space of Rh -valued Borel measures on X with
finite total variation, endowed with the weak∗ topology. Let Ξ also be a Polish space, and let (λξ)ξ∈Ξ ⊂
M(X;Rh) be a Borel family. With any given m ∈ P(Ξ) with∫

Ξ

|λξ|(X) dm(ξ) < +∞

we may associate the measures

Λm :=

∫
Ξ

λξ dm(ξ) ∈M(X;Rh) and Υm :=

∫
Ξ

|λξ|dm(ξ) ∈M+
loc(X) .

Clearly, we have that |Λm| ≤ Υm . The following result provides a useful property of the ‘generating’
measures (λξ)ξ∈Ξ ⊂M(X;Rd) in the case when the measures |Λm| and Υm coincide.

Proposition G.1. Let f : X → Rh be a Borel density of Λm w.r.t. Υm , with |f(x)| ≤ 1 for all x ∈ X .
Suppose that |Λm| = Υm . Then

λξ = f|λξ| for m-a.e. ξ ∈ Ξ . (G.1)

Proof. Observe that, for a given measure λ ∈ M(X;Rh), a Borel function h : X → Rh is the density of
λ w.r.t. |λ| if and only if

|h| ≤ 1 |λ| -a.e. in X , and

∫
X

h(x)dλ(x) = |λ|(X) . (G.2)

Now, from |Λm| = Υm we have that |f(x)| ≡ 1 for Υm -a.e. x ∈ X . Therefore, we have the following
chain of identities∫

Ξ

|λξ|(X) dm(ξ) =

∫
X

|f(x)|2 dΥm(x)
(1)
=

∫
X

f(x)dΛm(x)
(2)
=

∫
Ξ

(∫
X

f(x) dλξ(x)

)
dm(ξ)

where (1) follows from the fact that Λm = fΥm and (2) from the Fubini theorem. Then, we immediately
conclude that

|λξ|(X) =

∫
X

f(x) dλξ(x) for m-a.e. ξ ∈ Ξ .

Thus, on account of (G.2) we obtain (G.1).
�
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[28] G. Cavagnari, S. Lisini, C. Orrieri, and G. Savaré, Lagrangian, Eulerian and Kantorovich formulations of multi-

agent optimal control problems: equivalence and gamma-convergence, J. Differential Equations, 322 (2022), pp. 268–
364.

[29] G. Dal Maso, A. DeSimone, and F. Solombrino, Quasistatic evolution for cam-clay plasticity: a weak formulation
via viscoplastic regularization and time rescaling, Calc. Var. Partial Differential Equations, 40 (2011), pp. 125–181.

[30] C. Dellacherie and P.-A. Meyer, Probabilities and potential, vol. 29 of North-Holland Mathematics Studies, North-
Holland Publishing Co., Amsterdam-New York; North-Holland Publishing Co., Amsterdam-New York, 1978.



60 STEFANO ALMI, RICCARDA ROSSI, AND GIUSEPPE SAVARÉ
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(Riccarda Rossi) DIMI, Università degli studi di Brescia, Via Branze 38, 25133, Brescia, Italy

E-mail address, Riccarda Rossi: riccarda.rossi@unibs.it

(Giuseppe Savaré) Department of Decision Sciences and BIDSA, Università Bocconi, Via Roentgen 1, 20136,
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