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SURFACE DIFFUSION WITH ELASTICITY IN THE PLANE
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ABSTRACT. In this paper, we prove the existence of classical solutions for the anisotropic
surface diffusion with elasticity in the plane using a minimizing movements scheme,
provided that the initial set is sufficiently regular. This scheme is inspired by the one
introduced by Cahn-Taylor [I5] to modeling the surface diffusion. Moreover, we prove
that this scheme converges to the global solution of the equation.
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1. INTRODUCTION

In this paper, we investigate the existence of solutions to the anisotropic surface diffusion
equation with elasticity in the plane, employing the minimizing movements scheme.

We provide a brief overview of the physical and mathematical motivation for this
equation. In recent years, there has been growing interest in the physics literature in
energy functionals that involve a competition between surface interface energy and elastic
energy. This interest is driven by the study of interface morphologies influenced by such
energies. From a mathematical perspective, the problem is formulated as the analysis of
local or global minimizers of a free energy functional, given by the sum of elastic energy
and surface energy (typically modeled via isotropic or anisotropic perimeter terms). The

static version of this problem has been extensively investigated in both the physical and
1



2 A. KUBIN

numerical literature. In the mathematical literature, several works address this topic:
[, 9 11, 27, [32], 35] present results on existence, regularity, and stability for variational
models describing equilibrium configurations in two dimensions, while [10, [I7] provide
results in three dimensions. As previously mentioned, our focus is on the dynamic and
evolutionary counterpart of such energy models. Before introducing the differential equation
we are studying, we recall the Einstein—Nernst equation, as our equation represents a
special case of it. This equation describes the evolution of an interface driven by surface
mass transport under the influence of a chemical potential u. In particular, the surface
flux of atoms is proportional to the tangential gradient of the chemical potential, and the
divergence of this flux corresponds to the rate at which material is either removed from or
deposited onto the interface. Throughout the evolution, the volume is conserved, as bulk
mass transport can be neglected due to its occurring on a much faster timescale (see [44]).
Thus, the evolution law is

(11) V;j == AT[Lt on 8Et

where V; is the normal velocity, A, is the Laplace-Beltrami operator on dF;, and u; is
the chemical potential. The chemical potential y is defined as the first variation of the
free-energy functional. The prototypical free-energy functional we consider is given by:

(12) 1) = [ eryant 3 [ QB de.
OF 2 Jo\r

where 2 C R? denotes the planar region in which the phenomena of interest occur (e.g.,
the region occupied by the elastic body), and F' C Q (e.g., represents the void that has
formed within the elastic body). As previously mentioned, the minimizers of the functional
F — J(F) under the volume constraint |F'| = m can be used to describe the equilibrium
shapes of voids in elastically stressed solids; see [46]. We now clarify the various terms
appearing in equation . The function up represents the elastic equilibrium in Q \ F
subject to the boundary condition urp = wg on 9L, i.e.,

(1.3) up € argmin{ Q(E(u))dz: u e HY(Q\ F,R?), ulspg = wo} .

O\F

The function @ is the quadratic form defined by Q(A) := %(CA : A for all 2 x 2-symmetric

matrices A, where C is the elasticity tensor. The quantity F(ur) denotes the symmetric part
t

of the gradient Vur, given by E(up) = w. Finally ¢(vr) is the anisotropic surface

energy density evaluated at the outer unit normal vg to F'. The anisotropy considered in

this work is regular and strictly convex; i.e., ¢ is one-homogeneous, ¢ € C*°(R?\ {0}) and
(1.4) 3T > 0: D?*p(v)€-€ > J|E|* Vv e St € € R? such that v L&,

The existence and regularity of minimizers of the energy functional F' +— J(F) under
a volume constraint on F' have been studied in various works; see [16], 26] for the two-
dimensional case. A relaxation result valid in all dimensions, concerning a variant of the
energy , is provided in [12].

The equation studied in this work is derived from the Einstein—Nernst equation (see
(1.1)), under the assumption that p; corresponds to the first variation of the free energy
(1.2). As a result, we obtain the following system:

Vi = Ar(rf, — Q(E(ug,))), on OF,

E) initial datum,

(1.5)

ug, € argmin{ Q(E(u))dz: u € HY(Q\ By, R?), ulaq = wo} ,
O\E,
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where ﬁgt denotes the anisotropic curvature of 0F;. The existence of classical solutions to
equation and the asymptotic stability of strictly stable stationary sets are studied in
[30]. In [31], the authors investigate the existence and asymptotic stability of solutions in
three dimensions for the isotropic surface diffusion equation with elasticity.

The equation can be viewed as a nonlocal perturbation of the surface diffusion
equation, where the nonlocality arises from the elasticity term. In dimension n, the surface
diffusion equation takes the form

Vi = A;Hp, on OF,
(1.6) {

E) initial datum,

where Hp,(z) denotes the mean curvature of the hypersurface OE; at the point x. The
short-time existence of classical solutions to (1.6 was first established in the planar case in
[0, 241, B3], and later extended to all dimensions by Escher, Mayer, and Simonett [25], for
initial sets with C?“-regularity. Remarkably, the result in [25] also applies to immersed
surfaces, and the authors prove both global existence and exponential convergence for
initial sets sufficiently close to a sphere. In the flat torus T™ , similar long-time existence
and convergence results near stable critical sets have been obtained: for n = 3 in [I], and
for n > 4 in [19] and [23]. The equation can be interpreted as the H!-gradient
flow of the area functional; see [14]. This naturally leads to the question of whether a
variational approach based on minimizing movements can be used to model the flow. In
1994, Cahn and Taylor [I5] proposed such a scheme to describe surface diffusion. The
proposed scheme is as follows: given any initial bounded set of finite perimeter Ey C R"
and a small time step h > 0, one defines Eg = Fjy and then constructs Eﬁk fork=1,2,...
inductively as a minimizer of the functional

dy-1(F; By p)°

(1.7) P(F) + o ,
where
dy-1(F;E) = sup / f(mor(@)(xr(z) — xe(2)) dr.
IVorflip2@m <1 /R

Above, P(F') denotes the De-Giorgi perimeter of the set F, Vg denotes the tangential
gradient, yg the characteristic function of £ and myp the projection on the boundary OF.
Only recently, however, has it been rigorously shown in [I8] that this scheme indeed models
surface diffusion. In particular [I8] proves that the scheme produces classical solutions
and converges to the classical solution of throughout the full interval of existence in
dimension 3.

Our work focuses on the implementation of the minimizing movements scheme employed
in [I8] for the case of equation . In the literature, minimizing movement-type schemes
have previously been used to model the H~! gradient flow of a variant of the energy
, although these schemes differ from the one in [I8]. Specifically, the variant energy
considered includes a curvature regularization term added to the original energy . It is
worth noting that such variants have been extensively studied in physical and mathematical
literature; see, for example, [, 3], 21), 36, 37, 45], [46]. For instance, the authors of [28]
study the H~! gradient flow of the functional

1
Fo | owp)di += |  QEur)) ds+ 5/ K2 dH,
oF 2 Ja\r 2 Jor

where € > 0 and xr denotes the curvature. Their analysis focuses on periodic graph
models describing the evolution of epitaxially strained elastic films in two dimensions. The



4 A. KUBIN

corresponding flow is governed by the area-preserving evolution equation

1
Vi = A (K, — Q(E(ug,)) — e(Arkg, + 5/&%)) on OFE;,

E) initial datum,

They prove a local existence result even when ¢ does not satisfy condition . As
previously mentioned, their approach is based on the minimizing movements scheme, which
differs from that of [I8]. It is well defined only when the sets have boundaries that can be
represented as the graph of a function, unlike the method in [I8], which applies to general
sets of finite perimeter. Moreover, their approach crucially depends on the curvature
regularization term. In fact, all estimates derived in their work are e-dependent and
degenerate as € — 07, even when ¢ satisfies . A similar analysis was carried out in
the three-dimensional setting in [29].

The main results of this work are the proof of the existence of a solution to equation ,
and the prove of the consistency of the minimizing movements scheme. We briefly outline
the strategy of the proof. The first step is to introduce a constrained elastic equilibrium by
modifying the original problem . To this end, we fix two constants K. > 0 and h > 0,
where h plays the role of a time discretization parameter, as in formula (1.7). Given a set
F C Q, we consider the following constrained minimization problem:

K
i : 4 el .
min {/Q\FQ(E(U))CZQC. Il g oy < Kt 190 g g < 5wl = wo} |

We denote by u?el’h a minimizer of this problem. Accordingly, the constrained elastic
energy is defined as

E(B(upe™)) = Q(E(up™) da.
O\F

As a second step, we implemented the minimizing movement algorithm as described in [I§].
Let Ep € © be an open, connected set of class C° , which serves as the initial datum. We
fix a small parameter 8 > 0, set Eg B Ey and define EZ,’CB as a minimizer of the following
incremental minimization problem:

(1.8)

A1 (F; Bl )2

. k—1
inf { /8 ) A+ E(Bu ") + T FARY | CT0E )}

where Zg(I') denotes the tubular neighborhood of a set I' C R? (see for its definition).
Due to the constraint condition F AEZ,’f C Ig(aEZig_l)), the existence of a minimizer for
the above problem follows readily from the direct methods of the Calculus of Variations.
Using quantitative geometric estimates we show that any minimizer E,f of satisfies

h,3 h,B h,B
E, AEh(k_l) C I§ (8Eh(k—l))’

when h is sufficiently small, provided 8E,’Z£71) is sufficiently regular. This shows that the

additional constraint in (T.8) it is not touched. We define E/"" = EZ’ﬁ for t € [kh, (k+1)h)

for all k € N. The family {Ef P }e>0 is called a constrained discrete flat flow with initial
datum Ej and time step h (see definition .

Our main result is the short time regularity and the consistency of the minimizing
movement scheme defined above.

Theorem 1.1. There exist constants K., T, By, 01 with the following property: for every
B < By there exists hg > 0 such that the family {Ef’ﬁ}te[QT] satisfies

OF = {w+ [ (t, 2)vmy (2): @ € OB}, 11"l s(omy) < Co, 11"

| Lo (0Ey) < 015
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for allt € [0,T] and 0 < h < hg. The function fP converge in L>=([0,T], H*(0FE)) to a
function fP, such that the family (Eﬁ(t))te[oj] have the properties

OE) = {z + f2(t,2)vp,(z) : © € OE},
and (Etﬁ)te[oﬂ is a solution to (1.5]) with initial datum Eqy on the interval [0,T].

We briefly outline the strategy used to prove the main theorem. The key ingredients for
establishing the main result—whose proof is presented in the final section of the paper
(see Section |6))—are the preliminary estimates (see Section 4) and an iteration argument
(see Section .

The main goal of the preliminary estimates is to show that the minimizers of each
incremental problem satisfy suitable regularity estimates. By regularity estimates,
we mean that the minimizer EZ,’C’B of problem satisfies the following properties:

e the boundary of EZ,’C’B can be written as a normal graph over the previous step, i.e.,

(1.9)  9EN’ = {z+ ¢k(l‘)VEZE§_1>(x) L2z € OENPY, with ¢y € ol(aE,f;g,j_l)),

e the boundary of EZ,;’G does not intersect the constraint, i.e.,
h, R,
(1.10) OBy € T4(OEy,_y),

e the function vy satisfies the bounds
_1
(1'11) H%HLQ(QEZI;B) < Ch, HQ’Z)’“HH‘l(BEZ}C’Q) <C, ||KEZkB||H3(BEZkB) <Ch™1,

where the constant C' depends only on the H?-norm of the curvature of Egii_l). We
explain here how to obtain the estimates for the case k = 1, since the subsequent steps will
be proved by induction and iteration. The idea is to show that the minimizer EZ’ﬁ is a
A-minimizer of the p-perimeter, for some constant A independent of i, but depending only
on the H2-norm of the curvature of Ey (see Lemma . This allows us to apply a variant
of the e-regularity theorem for A-minimizer of the p-perimeter, namely Lemma [£.3] from

which we deduce the existence of a function ¢ : dFy — R such that
OB = (& + 1 (x)vpy(2): & € DEy}, with ¢ € C1(OEy).

To carry out all of this, we need to show that the discrete velocity in H~! is bounded,
namely

A1 (E"°, Eg)
h
where the constant C' depends only on the H?-norm of the curvature of Ey. This inequalit
follows from the minimality of Eg’ﬁ and the regularity of Ey; see Lemmas M and .

Furthermore, using Lemma we obtain that 8EZ’[3 € I3(0Ey), so the constraint
0Z3(0E)y) is never touched. Thanks to these results, we can compute the first variation of
the energy

<C,

dy-1(F; Ep)?
F — o(vr) dH' + S(E(ugel’h)) + dp2 (I Fo)”
OF 2h
at the minimizer EZ"B . This leads to a differential equation for the unknown function 1;
see equation (4.58). Using the Euler-Lagrange equation, we also obtain another estimate
for the discrete velocity, this time in L?:

||¢1||Lh2(an) <c
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where the constant C' depends only on the H2-norm of the curvature of Ey. Moreover, we
obtain a bound in the H*-norm, namely ||v]| HY(0Ey) < C, while the curvature satisfies

5 pnslla30m) < C’if%, where the constant C' depends only on the H2-norm of the
h

curvature of Ey. All of this is proved in Theorem

In Section [5] the goal is to establish a connection between the steps kK — 1,k,k + 1 in
such a way that the validity of formulas , , and can be ensured for every
admissible k. The main idea is to relate the Euler—Lagrange equation satisfied by the set

E}}LL(Q +1) with the one satisfied by the set E}Zf . To achieve this, we use the expansion of

the p-curvature given in formula (4.47)). Indeed, the Euler-Lagrange equation for Eg(g +1)

involves the ¢-curvature of the set E}IZ,’CB , which also appears in the Euler-Lagrange equation
satisfied by E}Z’f itself. Therefore, by substituting the latter equation into the former, we
derive the desired iteration—see Lemma [5.1] and Proposition [5.2

In Section [6] we provide the proof of Theorem This proof follows from Theorems
and In the first of these, we show that for any fixed K, > 0, there exists a time
T > 0 such that the family {Ef’ﬁ}te[oﬂ satisfies

OB’ = {z + fMP(t,2)vp,(2): @ € DB}, | f iy < Cos 1P|l 0m0) < 01,

for all t € [0,7]. The function f™? converge as h — 07 in L>([0,T], H*(0Ep)) to a
function f?, with f? € Lip([0,T], L?(0Ej)), such that the family (Eﬁ(t))te[oj] satisfies

OE] = {z + fP(t,x)vg, () : x € OF,},

and
1

(1.12) 17 ot oy < CFF
where C' = C(K,;). Formula will be sufficient to prove the existence of classical
solutions. Indeed, by fixing a sufficiently large K;, one can show that there exists a small
time T > 0 such that the constraint K; is not active for the minimizer of the constrained
elasticity problem associated with Ef , for every t € [0,T]. Therefore, thanks to the
regularity of OEE , this minimizer coincides with the one for the unconstrained elasticity
problem . This will allow us to prove that the family {Ef }te[o,T] satisfies the equation
(L)

In the final section, namely Section [7} we prove that the minimizing movements scheme
converges to the solution of problem throughout the entire interval of existence.

The paper is organized as follows. In Section[2] we introduce the notation used throughout
the paper, along with some useful formulas, the functional spaces involved, and interpolation
inequalities. In Section |3, we define the function dg-1(F, E), discuss some of its properties
including the computation of its first variation, introduce both the free and constrained
elasticity problems, and finally present the minimizing movement scheme used in the
analysis. In Section [4] we prove the A-minimality property for the minimizer of the
incremental problem and establish a regularity estimate for the heightfunction. Section
is devoted to the proof of the iteration argument. In Section [6] we prove Theorem [I.1
Finally, in Section |7}, we prove the convergence to the global solution of equation (1.5).

2. NOTATION OF THE PAPER AND USEFUL FORMULAS

In this paper, we work in the 2-dimensional Euclidean space R?. We denote with {ey, e}
the canonical basis of R?, by | - | the Euclidean norm, and by - the inner product in R2.
Let r > 0 we set B,(z) = {y € R? : |z — y| < 7} when z = 0, we simply write B, := B,(0).
For every A C R? we denote by cl(A) (int(A)) its topological closure (respectively its
topological interior) with respect to the Euclidean topology. Given A C R? and x € R?,
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we denote by dist(z, A) the distance between x and A. The Lebesgue measure of a Borel
set A C R? is denoted by |A|. We denote by H! the 1-dimensional Hausdorff measure and
by disty the Hausdorff distance between sets. In what follows we denote with ¢ a regular
strictly convex norm; i.e., o € C*°(R?\ {0}) and

37 >0: D*p(v)¢-€> JIE* Vv eS8, € € R? such that v L.
We denote by m,, M, the constants

(2.1) my = min p(v), M, = maxp(v).

lv|=1 lv|=1
The dual norm ¢ is defined as p°(¢) = SUP;cr2\ {0} %. Given a,b € R?, we denote by
a®b:R? — R? the linear map defined as a ® b(z) := (x - b)a. We denote by R?*2 the
space of the 2 x 2 matrices. Given A C R? we denote by A° = R?\ A. Given P,C € R?>*?
weset P:C = Z? =1 PijCij- The standard gradient in R? is denoted by V and the Laplace

operator in R? is denoted by Ag2. Throughout the paper, we write C(x,--- , *) to indicate
a generic positive constant that depends only on *,--- , % and that may change from line
to line.

2.1. Regular sets and useful formulas. Let £ C R? be a bounded open set of class
C?. The derivative of a function f or of a vector field X along OF is denoted by 9, f and
0- X, respectively. In cases of ambiguity, we use Oggf and JyrX. The Laplace—Beltrami
operator on OF is denoted by 92 (or A,) and the tangential divergence on OF is denoted
by div,. If necessary for clarity, we also write these as 8(% 5 or (Apg) and divpr. We recall
that the second fundamental form Bg : 9F — R?*? and the curvature kg : 0E — R are
given by
kp =div,vg  Bp =KpTE ® TE,

where vg : OF — R? is the outer normal vector field on OF and 75 : F — R? is the
tangent vector field on OF, obtained by rotating vg by § clockwise. We denote the
tangential gradient on OF by V., (or Vgg), so that V. f = 0. frg =V f — (V[ vg)vg for
a function f. Let A C R? and given § > 0, define the tubular neighborhood

(2.2) T5(A) := {x € R?: dist(x, A) < 6}.
We define the signed distance function to OF by
dist(z, OF) for z € R*\ E,
dp(z) = )
— dist(z, OF) forz e E.
Let E C R? be a open and bounded set of class C2?. We define
_ 1
2|kl Lo @oE)

It is known (see [34, Chapter 14.6]) that dg € C*(Z,,(0F)). The projection onto OE is
define for all x € R? where exists Vdg(z), and is denoted by mg(x). For all z € I, (9F)
the projection satisfies

OF :

z=7g(z)+dg(x)Vdg(z).
As shown in [38, formula (2.31)], for all € Z,,(0F), it holds that

(2.3)
Vrop(z)

= I — vg o mop() @ vg o mop(x) — dp(z)(Br o mop(x))(I + dp(2) B o mop(x)) .
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Definition 2.1. Let E C R? be an open bounded set of class C? and let 0 < 0 < 0. Let
F C R? be another open bounded set. We say that OF is a normal graph over OE if there
exists a function ¢ : OF — [—0, 0], called the height function, such that

OF = {z + ¥(z)vg(z): z € OE} and EAF C cl(1,(9F)).

Let E,F as in the above definition with 0F = {z + ¢¥(z)ve(x): z € OF}, and let
f € CY(OFE). Then, for all y € OF,

Vor(fomor)(y) = Vorf(mor(y))Vormor(y),

where

(2.4) Vormop(y) = Vrop(y) — Vrap(y)vr(y) @ vr(y).

If v € C1(OF), then the following formulas hold (see [30, formulas (2.5), (2.6), (2.7)]). For
x € 0F:

(1 + P(@)rp(2))mE(r) + 0-(2)vE(2)
VA +9(2)rp(@))? + V()2

(2 + P(2)vr(z)) =

and
vp(x z)vp(x)) = —V(z) + (1 + ¢(x)“E(m))VE<m)
(2.5) F(x + ¢ (2)ve(r)) VA +(@)rp(@)? + [Vob(z)?

If ¢» € C?(OF), then the curvature expands as (see [30, formulas (2.7)], [I8, Lemma 2.5)):

(2.6) kp(z +¢Y(z)vg(x)) = —A(x) + kp(z) + Ro(z), * € OF
where the error term Ry is given by
(2.7) Ro = ao(¥,0:v, kp) + a1(VkE, 0r)Arp + as(Yk g, 0:)0- (VEE)

with ag, a1, ag smooth functions satisfying ag(0,0,-) = a1(0,0) = a2(0,0) = 0.

Lemma 2.2. Let E C R? be a open and bounded set of class C? and let F C R?
be open and bounded set of class C' such that OF is a normal graph over OF given
by OF = {x + ¢(z)vp(r): x € OFE}. Let g € CYOF), and define j : OE — R by
§(2) = g + P(x)vp(x)). Then,

Vorg|® 1
2.8 / Vorg|? dH! —/ dH'.
(28) oF | | or /(1 +¥KEp)? + |[Vory|?

Proof. Let € OF and let y € OF such that myg(y) = . Hence dg(y) = ¢ (x). Without
loss of generality, we may assume that 7g(z) = (1,0) and vg(z) = (0,1), and we write

vr(y) = (v1,12). Using formula (2.3)) we get

e —[1 U2 9ty [t o

el ]

Therefore, by (12.4]), we have

1—1v111 _ viv
Using the formula above, we deduce that
2
vp(x)-v
(@) Vormop()f? = A2 VPO -y ) e om x oF -+ 2 = o).

(1 +dr(y)re(z))?
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Hence, from the previous expression, we obtain

/ VorgPdH' = / Vor(§ o mom)|2dH!
oOF oF

(2.9 = [ IVositmos) Vormas ()]
:/ \VaEfl(WaE(ﬂf))’2|VE(7T0E(96))'VF(:U)IQd,Hl
oF 11+ dp(z)rp(Top(x))|? v

Using formula , we have that for all y € OF
1+ dp(y)se(Toe(y)) ‘
V(I +9(rar®))ke(mas©)))? + [(Vort) (tor(y)) 2

Let us define U : 0F — OF as ¥(x) := z + ¢(x)vg(z). Recalling that the tangential
Jacobian of V¥ is

(2.10)  ve(mar(y)) - vr(y) =

JU(x) = /(1 + ¢(@)rp(@))? + (Vo) (z)?,
we deduce formula (2.8]), from (2.9)) and , indeed

s [ Vord(mon() Plve(mos®) - ve@)? .
|, Warlar' = | 1+ de(9)rptros@)E

_ / \Vori(mor(y))?
vop) (L +U(mor)ke(ror(v)))? + [(Vory) (mar(y))|?
’V8E§($)‘2 dHL

~ Jor O+ 0@)EE@2 + (Vost)@P

dH,

0

2.2. Spaces of functions. In what follows, we denote by Q C R? an open and bounded
set of class C°. Let Ey € {2 be open and connected set of class C® such that |Eg| = 1. We
denote by oy a constant such that

oo < min{og,, disty (0Ey, 00)}.
Given 1 <k <5, a € [0,1], and K > 0 we define
dﬁ(’ifo(Eo) :={E CR*: EAE, C cl(Z,(0Ey)), OF = {y + vu(y)ve,(y): y € 0Ky},
gl Lo @m) < 00, l@Ellcre@r,) < K}

For every k € {1,---,5}, we define the set .6’;%70;0 (Ep) in the same way of C%iO(EO)
by replacing [|¢gl|cre@ry) With [[0ell gr@m)- Let {Entnen and E be such that E;, €
Q:];(’?;O(E()) (respectively H%*(Ep)) for all n € N. We say that E, — E in (‘:];(’?;O(Eo)
(respectively in 53];(’0;0 (Eo)) if ¢p, is uniformly bounded by o in L>(0Ep) and it is a
Cauchy sequence in C**(9Ey) (respectively H¥(OEp)).

Let F' C Q be an open set. Given k € N, a € [0, 1], and M > 0 we define

Chi (P R?) = { f € CR(F, RY): ||l oraqry < M}

2.3. Sets of finite p-perimeter and anisotropic curvature. Let E C R? be a Borel
set. We define the De Giorgi ¢-perimeter of F as

P,(E) = sup {/ divXdr: X € CHR?,R?), sup ¢°(X) < 1}.
E z€R2
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When ¢(-) = | - | (the Euclidean norm), we write P(E) instead of P} |(-). We say that a
Borel set E C R? has finite perimeter if P(E) < +o0. Given the assumptions we made on
the function ¢, it is easy to verify that

P,(E) < +00 <= P(E) < +o0.

For every set E C R? with finite perimeter, the set 9*E C R? identifies the reduced
boundary of E and the Borel measurable map vg : 9*E — R? the measure theoretic outer
normal vector field (see, for instance, [4, Definition 3.53] for the definitions of these objects).
By De Giorgi’s structure theorem (see, for instance, [4, Theorem 3.59], [42 Theorem
15.19)), for every set E C R? of finite perimeter, we have that

P(E) = HY (0"E).

Let E C R? be a set of finite perimeter. A straightforward computation gives

P,(E) = /a*Eap(l/E)dHl.

Now we recall the well-known first variation formula for the anisotropic perimeter. Let
E C R? of class C2. For any vector field X € C}(R? R?), let (®(t,-))te(—c,) be the unique
solution of the Cauchy problem

29(t,x) = X o ®(t,z) VzreR?

®(0,z) =x Vz R

Then we have

(2.11) d / SD(VQ(t,E)) dHl = K%X Vg d?‘[l
t=0 J 0P (¢t,E) OF

dt|,_

where the anisotropic curvature x%, of OF is given by
ki = divop(Ve(vg))
and can also be written as
ke = divor(Ve(ve)) = V(Ve(ve))te - 76 — V(Ve(VE))vE - vE

(212) = (V%p(vE)TE - TR)kE = 9(VE)KE
where
(2.13) g € C=(R?*\ {0}), C, = min g(v) > 0.

lv|=1
We recall an anisotropic version of the Gauss—Bonnet theorem for curves (see [39] for a
proof).

Lemma 2.3. Let ¢ € C*(R"\ {0}) be a regular, strictly convex norm. There ezists a
constant C, > 0, depending only on ¢, such that for all open, bounded sets £ C R? of class
C?, the following holds:

/ k2(2)p(ve(z)) dHE = O,
oOF

2.4. Interpolation inequality. We recall the interpolation inequalities involving Sobolev
norms on embedded surfaces. We use the result from [43, Proposition 6.5] (see also [23,
Proposition 4.3)).

Proposition 2.4. Let E € €¢ | (Ep) for some m > 2. Then for integers 0 <k <1 <m
and numbers p € [1,00), q,r € [1,00] there is 0 € [k/l,1] such that for every function f of
class C* on OF it holds

107 flloom)y < ClLFISnagomy | | (o
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for a constant C = C(k,l,p,q,r,0,Cy), provided that the following condition is satisfied
1 1 1
:k+9<—l) +—(1-6).
p q r
Moreover, if f : OFE — R is a smooth function with faE fdH' =0 the above inequality can
be written as

107 fllzoom) < ClOLF N Taom I I (o

It Ee C’;(’QUO(EO) for some 1 < k <5 and a € [0, 1], then the classical interpolation
inequality in Holder norms holds, i.e., for 0 < S <a <1 and 0 <[ <m < k it holds

[+
(2.14) 1 lctsomy < ClANGma@m 1 /I Go(om €=

m+a’
where C depend on K, I, m,a,B. This result follows from the Euclidean case; see, for
example [41, Example 1.9]. The interpolation inequality in Proposition implies the
following useful estimate. The proof is standard, and we refer to [38, Proposition 2.3].
Note that the argument is similar to that used in the Euclidean case; see [48, Proposition
3.7]. We denote the sum of the components of an index vector o € N! by

la] = a1+ -+ o.

Lemma 2.5. Let £ € €¢ | (Eo) for some m > 2 and let fi,---, fi be function of class
C™. Then for an index vector a € N with norm |a| < k < m it holds

1107 ful - - - 107 filll L2 0m) < C(K Z | follz@m) I foa-1)llz@m) | fo@) | Hr0m)

cES)

where Sy is the group of permutation of | object. In particular,
10 (frf2)lr20m) < CE) [ fill = @myl foll e o) + L f2ll oo o) | fill e o) -

3. SETTING OF THE PROBLEM

3.1. Pseudo-pseudo-H ! metric. In this subsection, we recall the definition and some
basic properties of the pseudo-pseudo-H ~! distance introduced in [I5] to model surface
diffusion.

Definition 3.1 (Pseudo-pseudo-H ~! metric). Let E C R? be a set of finite perimeter, and
let F C R? be a measurable set. We define the function dgy-1(F, E) as

(3.1) dg-1(F,E) = sup / fomyp(@)(xr(z) — xp(z))d.
IV fll 2o gy <1/ R?

Remark 3.2. Let E C R? be a set of finite perimeter |E| < +o0o, and let F C R? be a
measurable set. We observe that if |E| # |F| then dy—1(F,E) = +o00. Indeed, for every
a € R we define f : OE — R by f(x) = a. Then, by (3.1)), we have

dy1(F,E) > supa(|F| — |E|) =
a€R

Lemma 3.3. Let E C R? be a open bounded set of class C?. Fix o > 0 be such that
o <og. Let F C R? such that |F| = |E| and FAE C cl(Z,(0F)). We define

(e

(32) €y 0E =R Eppla) ::/ (xr(@ + tvp()) — iz + twp(@) (1 + the(z) dt.

—0

Then,

- (ppdH' =0, dg-(F.E)=|¢rellp-1om)



12 A. KUBIN

Moreover, if OF is a normal graph respect OF, i.e., OF = {x + ¢¥(x)vg(z): © € OE}, then
we have
2 2

(33 Erp=vtrp’s, dgr(FE) = 9+ np'liiom)

Proof. Let t € [—0o, 0], we define
U, : 0F — {z: dg(z) =t}, U(z) ==z + tve(x).

We have that J,¥;(z) = 1 + tkp(z). Let f € HY(OF). Using the coarea formula and a
change of variables, we get

O T, - xr = 0 O T X xXr) — T !
Jremntr —xmyae= [ fomn@r) —xet) al
(34) = /_ A, oy 2T OE) — xR

— /_0 @0+ e W) = Xy + v W) J- V() dH,, dt.

By (3.2) and (3.4) we obtain

(3.5) [ £omon(a)(xeta) ~ xe(@)do = | f)ernly) dH,
R2 OF
In particular, for f = 1, we find
(3.6) Ny
oF

Hence, from (3.5)) and the definition of dg-1(E, F'), we obtain
dg—1(E, F) = |€rEellg-108)

In the case where OF is a normal graph over F, we compute

2

v ¥
0

Therefore, under the assumptions of the above lemma, we have
(3.7) &\ (F,E) = / IV, 05 ]2 dH!
oFE

where vp g is the unique solution to the equation

AppvrE = EFE on OF,

/ vppdH' = 0.
OFE

The function f that realize the supremum in formula (3.1)) is given by

PE—
dH—l(Fa E)

In the next proposition, we compute the first variation of the function F' — dg-1(F, E).

(3.8)

Proposition 3.4. Let E C R? be a bounded open set of class C?, and let 0 < op. Let
F € R? be a set of class C' such that FAE C T,(0F). Let X € C}(R?,R?) be such that
divX =0, and let ¥ : (—¢,¢) x R? — R? be the solution of the Cauchy problem

%\I/(t,x) =XoVU(t,r) VzeR?
V(0,r) =2 VreR2%
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Finally, let fo € H'(OF) with faF fodH' =0 be the function that realizes the supremum
in the definition of dg-1(F, E). Then

Gl (W F). Do = [ folma(a)X(z) - vr (o).

Proof. We fix ¢ > 0 such that ¥(¢t, F)AF € Z,(0F) for all t € (—¢e,¢). Set Fy := V(¢, F)
for t € (—¢,¢). Define & : OF — R for t € (—¢,¢), by

a) = [ (rly+sve(o) — xslo+ v ) T2 (0) ds, y € OF,

—0

where ®4(z) = x + svg(x). For every t € (—¢,¢) we have
(3.9) A3 (F, E) = / Vv 2dH?,
OF

where

—AT’Ut = ft on 8E,

/ v dH = 0.
OF

We note that § € L*°(0F) with ||&lcc < C(|kE]00)-
Claim: & — & in LP(OF) for all p > 1.
Indeed, since OF; C IC,;(GF ) for some C' > 0 depending only on || X||o, we have

1€ — €0l o) = / | ey svp(u) = xly + (1) 79.0) e,

/ | / (xr(y + sv()) — Xe(y + svp(y)) TPu(y) ds|"dHL < CrP.
B(z,Ct)NOE

In particular this implies that v; — vy in W2P(9E) for all p > 1, hence also uniformly on
OFE. Therefore we have

(3.10) vioTor = voomer  ast— 0in C°(cl(Z,(0F))).

Recall now that, see [42, Proposition 17.8], that for all ¢ € C.(R?)

1
lim</ cpda:—/god:c) :/ ©X -vpdH!,
t—0 t F, F OF

1 * .
(3.11) ;(Xpt —xp)L2 5 X vpHLOF in the sense of measures.

that is

Now, using the divergence theorem, formula (3.10) and coarea formula, we have that
/ (Var]2 — [Vouo2) di! = / (Vovr — Vo) - (Vovy + Vo) dH!

oFE OF

- / (=Bt Aren)(on +00) A = [ (6 = €0)(wr-+ o) d!
(3.12) oF
=[] ety (o) = o+ 55 T8, 0) or(0) + o) ds

= /R (we(mop(2)) + vo(mor (2))) (xF (2) — xr(2)) dz.
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Therefore, by (3.9), (3.10)), (3.11), (3.12), we obtain
- dy-1(Fy, E)? —dy- (F,E)* _ - Jor Vo2 dHY — [0 [Vrvo|* dH!

t—0 t t—0 t
i Jr,(wi(mop(2)) + vo(mop(x))) dr — [p(vi(mop(2)) + vo(Tor(z))) do
t—0 t

B / 200(mor(y) X (y) - vr(y) dH,,
oF

Hence by above formula and recalling fo = vo/||Vrvolr2(9E), We obtain the desired
result. O

3.2. Elastic energy. Let F € Q, and let u: Q\ F — R? be an elastic displacement. We
define E(u), the symmetric part of Vu, as

~ Vu+ (Vu)?

= f.

Throughout this work, C denotes a fourth-order elasticity tensor acting on symmetric 2 x 2
matrices A, satisfying the coercivity condition

CA: A>0forall A#DO0.
We define the elastic energy density as

E(u) :

Q(A) = %CA: A.

3.2.1. Constrained elastic energy. Let K, > 0 and h > 0 be fixed. Given a boundary

displacement wg € C?”%(aﬁ), we define the minimization problem
(3.13)

Ker,h 3 . 3’% 2 4 Kel —
up" € argmin Q(E(u)) dr: u e € (LR, [V UHCO%(Q < , Ulgn = wo ¢ -

)" h

=

O\F

We then define the constrained elastic energy as

(3.14) EEup™) = | QEuE")dx.

Q\F
Remark 3.5. The existence of an minimizier for the problem (3.13) follows from the
Arzela-Ascoli Theorem. Hence, the energy functional in (3.14]) is well-defined.

h

In what follow, we omit the explicit dependence of u?e“ on h, and we write u?el for

brevity.

3.2.2. FElastic energy. Now, fix a boundary displacement wqy € 03%(8{2) we define the
(unconstrained) elastic problem as:

(3.15) up € argmin{ Q(E(u))dr: uec HY(Q\ F, RQ)}
Q\F
and we define the corresponding energy as
E(E(up)) = Q(E(up))dz.
Q\F

More precisely, ur is the unique solution in H(Q \ F,R?) to the following elliptic system:
divCE(up) =0 in Q\ F,
(3.16) CE(up)[vr] =0 on OF,

Up = wo on 0f).



THE ANISOTROPIC SURFACE DIFFUSION WITH ELASTICITY IN THE PLANE 15

We recall that if wg € 03’%(89) and F is of class C*1, then the solution up € C?”i(Q \ F)
by standard elliptic regularity theory (see [2], [32 Proposition 8.9]). Moreover, the following
estimate holds:

< Cllwoll s, 50y T lurl

lerll et oy (09) 4 or))
where C'is an universal constant. Thank to this observation, we have that for K; sufficiently
large, the minimization problems and are equivalent, so that up = u}{"’”o.
In the next proposition, we compute the first variation of the function

F — E(B(uke)).

Proposition 3.6. Let F' € Q be a set of class C*, let X € CL(Q,R?), and let (D(t,-))se(-c.c)
be the unique solution of the Cauchy problem:

g@(t,az) = Xo®(t,z) VzcR%

ot
®(0,z) =z vz € R2.
We define Fy = ®(t, F'). Then the following identity holds:
d
(3.17) — Euh)y =~ QEuE)X -vpdH'.
dt|,_o ¢ oF

Proof. Without loss of generality, we can assume that F; € Q) for all t € (—e,¢). Note that
the symmetric difference FyAF is contained in a tubular neighborhood Z;c(0F'), where

C =C(]| X||oo)- As a result,
(3.18) |F,AF| — 0 as t — 0.
1

For every t € (—¢,¢), let ué{:l € in;jl(Q,RQ) be a minimizer of the problem ({3.13]) for
F = F;. Then using the Arezela-Ascoli Theorem, up to a subsequece, we have that

K, 3
(3.19) up — uin CK:Z(Q,RQ).
Ke

Claim u = up

Combining (3.18]) and (3.19), we deduce:

QEM) dr=Tlim [ QE@EN) dr <lim [ QE@)dr= [ QEW)da
Q\F =0 Jo\ R, i =0 Jo\ R, Q\F

. . 3,2 o
for every admissible test function v € € K4Z(Qv R?). Therefore, u must be a minimizer uﬁfez,
and hence:

1
(3.20) ultel = ulein €8 (Q,R?).
Finally, recall [42, Proposition 17.8] that:
1
T Oxm - Xp)L* = X - vpH' LOF,
in the sense of measures. Combining this with formula (3.20]), we get the desired derivative
formula, i.e., (3.17]). O

3.3. Minimizing movement scheme and flat solution. Fix h > 0 be a fixed time step
discretization. Let K, > 0 be fixed. Let E € Q be a bounded open set of class C2. For
every set F' C R? sufficiently close to E, we define the functional

1

(3.21) Fu(F.E):=G(F) + 37

a3 1 (F,E)
where
(3.22) G(F) = Po(F) + £(E(up)).
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Definition 3.7 (Constrained discrete flat flow). Let
B < min{og,, dist(0Q2,0Ey)} and K¢ be fized.

Let h > 0 be the time step discretization. Define the family of sets {E,’;I’f}keN iteratively by
: h,B . _
setting By := Ey and,

EZ/}B € argmin {.Fh(F, E;Zgil

where the functional Fy, is defined in (3.21). We define
(3.23) EhB Eh,’f for any t € [kh, (k+ 1)h).

)i FAEf Gy € AI30E 5 )} k=1,

The family {Ef”g}tzo 1s called a constrained discrete flat flow with initial datum Ey and
time step h.

We define a flat flow solution {Ef }>0 of the anisotropic surface diffusion with elasticity
as any cluster point when we let h — 0% of {E""},5.

4. PRELIMINARY ESTIMATES

The aim of this section is to establish a regularity estimate for the set F' that minimizes
the incremental problem

(4.1) min {F,(A, E): AAE C cl(Z,(0E))}

where F € 53}1(’00 (Eop) and n(K, K¢) > 0. We recall that Ey € €2 be open and connected
set of class C® such that |Ep| = 1. The main result of this section is the following:

Theorem 4.1. Let E be a set of class C° such that E € % o0 (F0) and 102K, lz20E) < e
’ h4

OE)
Then there exist constants ny = no(K, K¢), C1 = C1(K, K¢p), and Cy = Co( K, Ky), such
that, for every n < ng, there exits hg with the following property: if 0 < h < hg and F' is a
minimizer of , then OF € Z,(OF) and coincides with a graph of a smooth function
¥: OF — R satisfying

(4.2) ¥l 2oE) < Cihy ¥l a o) < Ch
and
@ Co
(4.3) |57l m20m) < C2, 103 FE5 22 (o) < o
Moreover, there exist constants 6 = 6(K,K¢), and K1 = Ki(K, K) such that F €
'6](1 a( )

4.1. A-minimality estimate. In this subsection, we prove that any minimizer F' of (4.1))
is a A-minimizer of the @-perimeter, with A independent from h.
We begin by recalling the definition of a A-minimizer of the p-perimeter.

Definition 4.2. Let E C R? be a set of finite perimeter. We say that E is a A-minimizer
of the p-perimeter if there exists A > 0 such that

P,(E) < P,(G) + A|GAE]
for every G C R2.

It is known that if E C R? is a A-minimizer of the (p-perimeter, then OF is of class C'"
for all n € [0, 3) see [3], [8] and [20]. In the case where ¢ is the Euclidean norm, see also
[47, Theorem 1 9.

We will use the following lemma. The proof is similar to those in [I8, Lemma 2.8] and
[40], but we include it here for the reader’s convenience.
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Lemma 4.3. Assume that E € .Vﬁ(m) (Eo) and let F' be an A-minimizer of the p-perimeter.
Then for every v < i, there exists 6o = do(K, A,~y) such that if

FAE C cl(Z;,(0F)),
then there exists a function 1 € CY7(OF) such that
OF = {x + ¢Y(x)vg(x) : x € OF}.
Moreover, for every e > 0 there exists o = do(e) such that ||¢||Cl op) <€ for vy <.

Proof. By assumption, EAF C cl(Z;,(0F)) we have that for every x € OF,
Cl(BgO (.’E)) NOF # (.

Let € > 0 be fixed, and let C'(K) > K > 0 be a constant that we will choose later.

Claim: For all &y € (0, m) if £ and F satisfy the assumption, then

(4.4) lvg(x) —ve(y)| <e forall y € F Ncl(Bs,(z)).
We argue by contradiction. Suppose the claim fails. Then there exist ¢ > 0, sequences
{En}nen, {Fn}nen such that
(1) E, € ﬁKUO(EO) for all n € N,
(2) F, is a A-minimizer of the ¢-perimeter for all n € N,
(3) E,AF, C cl(Zs,(OF)) for all n € N,
(4) exist zy, € OFy,, yn € Bi(xy,) N OF, such that

(4.5) lve, (xn) — vE, (yn)| > € for all n € N.

Without loss of generality and up to extracting a subsequence, we have z,, y, — = as
n — +00,
E, = E in %, (Eo), F, — F in Hausdorff distance,

where F' is a A-minimizer of the p-perimeter. Therefore, we have
vg, (x,) = vE(x) as n — 4o0.

Now using the A-minimality of F),, we obtain vg, (y,) — vp(z); see [§]. This contradicts
E3).

The conclusion of the lemma follows from and using a standard regularity argument.
Indeed, let zp € OF. We may assume, without loss of generality, that z¢o = 0 and v (0) = es.
Since E € SﬁKUO( 0), there exists 1o = r9(K) < ﬁ such that £ N B, /5 coincides with

the subgraph of a function f: (—%2,%) — R, with

272
10
||f||01 4( 1”0 7"())) S E’
provided ro < 1. It then follows that |[vp(r) —ez| < e for all z € OE N B,_, where r. = gje.

Observe that dy < 3¢ implies 6y < Z&. Then, by (4], we obtain [vr(y) — e2| < 2¢ for all
y € OF N Bar. . Choose any point yg e OF N By, and using the previous inequality and the
perimeter de4nsity estimates for A-minimizers of p-perimeter, we conclude that the excess
satisfies

e(F, yo, %8) = felgll 7”15 /amBT " vr(y) — wl? dH) < Ce?,
provided r. < 1 = ri(A, K), for some constant C' = C(A, K). Then, by the e-regularity
theorem (see [8]), and since B,_;4 C B,_/2(yo) there exists a function ¢ : (—re/4,7./4) — R
such that

FN B, 4={(y1,42) €R*: 9o <o(11)} N By, j4

with [|@llctr((—r. /4. /a)) < C and 7y < i. The existence of the heightfunction ¢ € C17(9F)
follows from the assumption that E € §% , (Ep), see [22, Section 1.2].
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Finally, the smallness of the norm ||¢||Cm/(8 ) for v/ < v ,when §y is small, follows from
interpolation inequality ([2.14)), using that [|¢|| @) < do- O

We proceed to prove a technical lemma that will be instrumental at various stages of
the article.

Lemma 4.4. Let E € $3 oo (E0) be such that |E| = 1. Then there exist constants

o,C depending only on K such that the following holds: if F C R? with OF = {x +
Y(z)ve(r): z € OE} for some function ||¢||c1(op) < o with |F| =1, then

1
(4.6) 5HV8E¢HL2(8E) <|IVorérelr2er) < ClIVorYl L2(08)
where Epp is defined in Lemma 3.5,

Proof. By Lemma we have {pp =Y + %QK g. For o sufficiently small, we obtain

P> Y
(4.7) 7 <@+ re)” =Ehp
Computing the tangential gradient of {r g, we find

2
(4.8) Vorére = Vort + VeV + %VaE%E

Since |E| = |F|, we have [, ¢rE dH' = 0 (see formula ([3.6])). Therefore, using (4.7), (&.8)),

and the Holder inequality, we obtain

g
IVorérEl 208 < (1 +0K)|[Vory| L2E) + \ﬁHfF,E 22(0E)

oC
< 1+ oK) Vopvlizom + -5 Vostral o)

(4.9)

where in the last inequality we used the Poincare inequality:

I€rEllL20m) < C1lIVorérElL2(5E)-
Taking o small enough in (4.9)), we obtain

(4.10) IVorérElr2(08) < ClIVorY L2(0E)-
From (4.8]) and using the Sobolev embedding together with the Holder’s inequality, we get
(4.11)

Vol r2om) < IVorérelzor + IVostl r2om Kl + | Vorsel 2o 1¥°] 208
<||IVorérellrzor) + oK IVort|l20p) + 20K IErE 1208
<|IVorérellr2or) + o K|IVorY|20p) + 20 KC1[|VorérEl L2 (o)

where the second inequality uses (4.7]), and the third uses the Poincaré inequality. Taking
o small enough in (4.11)), we get

1
(4.12) cIVorvllizor) < [Vorsr.ellizom):
Combining (4.10) and (4.12)) yields the desired formula, i.e., (4.6). O

Remark 4.5. Recalling that ¢ is a regular strictly convex norm, the following inequality
holds:

(4.13) 3J, > 0: D*p(v)€- € > T lE* Vv € cl(Z1(SY)), € € R? such that v LE.

1
1
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Lemma 4.6. Let E € f)KUO(EO) with |[E| = 1. Then there exist constants A, N, o

depending on K, K.,Q, such that the following holds: if F C R? is such that OF =
{x +Y(z)vp(z) : x € OE}, with ¢ € C1(OF) and []lcrom) < o, then

(4.14) T op + G(E) < G(F) + Adyy1(F, E)

where J, is defined in . Furthermore, if F C R? is a set of finite perimeter such that
FAE C 1,(0F), then

(4.15) G(E)<G(F)+ANdyg(F,E).

Proof. We fix o1 < min{og, dist(9€2, 0F)} and divide the proof into two steps.

Step 1: Proof of (4.14 -
By Lemma |3.3) we have {pp =9 + K E . If o1 is sufficiently small, then

w2 w2
< (Y + = ) =&hp < 2% 2rp| + PR < 16

Claim 1: There exists a constant C'(K, K,;) such that for all n > 0,
C(K,Kg)

(4.16)

(417)  E(E(ub) < E(Buk) + vom) + IVoEb 2208

Using the definition of F' — E(F (u’}el)), the minimality of uge’, and the very definition
of dg-1(F, E), we have that

E(E(up)) = o r Q(E(up)) dz = Q( (up))(xa — xF) dz
= Q\EQ( Ker) d:c+/ QE ))(xE — xF)dx
(4.18) > E(E(up) / Q(E )) o mor(XF — XE) dv

+ /R (QUE()) ~ QUE(™)) o 7o) (i — ) da
> E(B(ul)) ~ O(Ko)dg-+(F, E)
+ [ (@) - QU)o mow) (xe — o) do.

We observe that

Q(E(up™) (@) = Q(E(up)) o mor()| < O(Ka)lz — mop(x)|.
By this formula and using the coarea formula and (4.16[), we obtain

L (QUEE) = QUECuE) 0 mar) (= xr) do

< C(Ka) /R2 |z — mor(T)|XEAF(T) dT

[¢(z)]
= C ) [ @ [ () dedn

(4.19)
< O(K, Ka)llérell720m < CK K)|éreln-10m)IVorérel 2o
C(K, K
< (n)HfFE”H Lom) T 77HV8E€FEHL2 (9E)
C(K7 Kel)

< THﬁF,EH%{*l(BE) + nC(K)HVE?EwH%Q(aE)
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where in the third inequality we have used the interpolation inequality; i.e.,

1 1
£l 0m) < IF13 2 oy IV £ 2o for all f such that /8Efdw o,

and in the fourth inequality we have used the Young inequality and in the last inequality

we have used Lemma [4.4 Combining (4.18]) and -7 we obtain

Claim 2: There exists a constant C(K) such that

(4.20) 2 |V ostlaom + PolE) < Po(F) + C(K)dg-1(F, E).

Define ¥ : 0F — OF defined as ¥(x) := x + ¢(x)vg(z). The tangential Jacobian is

IV = /(1 +vrE)2 + Vo2
Using the area formula and the expansion of vp, see (2.5)), we get:

Po(F) = / o(vp)dH! = / o(vp 0 W o moplor)dH!
oF W(9E)

(421) - /8 _elvr ()T Ire) + [VopiPan’

= | e=Vopvta) + (1 + dl@p@)vp) k.
We observe that
Vor(Vorp(ve)) = Vipe(e)Vor(ve) = kEVipe(ve)TE © T8,
then
(4.22) divor(Vore(ve)) = TrVor(Vore(ve)) = keVipe(ve)Te - o
By the convexity of ¢ and using (4.13]) (up to take o7 small enough) we have
o((1 +vrp)ve — Vopy)

J
> o(vp + ¥rpve) = Veve) - Vopy + 5 [Vory

(4.23) Jo 2
> o(vg) + YvreVo(vE) - vE — Vo(ve) - Vo + ?|V6E7J}|

= (i) + (Vi) ~ Volvs) - Vout + 22| Vorul?

where in the last equality we have used Vp(z) -z = ¢(z). Let € > 0 that we choice later,
using the divergence theorem and formula (4.22)), we get

/ Ve(vs) - Vopth = / Vowe(ve) - Vopth = / divor(Vore(ve)
oF oF oF

2

< / divor(Vorp(ve)) (¥ + HE%) +C(K) | v°
OF OF

< O + 5 l-som +OF) [ &
(4.24) £y lla-10m) i SFE
< C(K)érellr-10m) + CE)ErEl - )
C(K
< el )

Q
=

(K)

< I€rEllm-108) +C(K)Vord| 72 om)

)
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where in the third inequality we have used the interpolation of L? between H~ ! and H',
in the fourth inequality we have used Young’s inequality and in the last inequality we have

used Lemma [1.4] Integrating (4.23)) over OE and using (4.21]), (4.24)), we get

C(K J
PLP(F) 2 P@(E) - (&j)"gF,E||%{1(aE) - C(K)5||V8E¢H%2(8E) + fHV&EwH%Q(aE)'

e obtain

Choosing ¢ = J( )
We choose n = @w Combining (4.17] , - and recalling that

dH—l( E) = ¢relm-108)

we obtain (4.14)).
Step 2: Proof of (4.15)).

Let A = A(K, K) (to be defined later, see formula (4.38))). By Lemma applied with
A = A, we obtain &y = do(K, K¢;). Set

J(F):=G(F)+ (A+1)dyg-(F,E).
Fix 0 < min{o1,dp}. The thesis of the step 2 is equivalent the claim.
Claim 8: The set E is the minimizer of the problem
(4.25) min{J(F): FAE C cl(Z,(0F))} .

Existence of a minimizer follows by the direct method of the calculus of variations. Let
F' be such a minimizer. R
Subclaim: The minimizer of is an A-minimizer of the @-perimeter.

Let S(K) > 0 denote the Sobolev embedding constant of H'(OE) into L°°(9E), which
depends only on K. Let G C R? with GAE C cl(Z,(0E)) and |G| = 1. Then, by
minimality of F', we get:

(4.26)
G(F)=G(G) < (A +1)(dy (G, E) — dy +(F, E))
<(A+1) /R Jaoman() (xa() = xp(#)) dz < (A+ 1) fg o mopll | GAF|
< S(K)(A+ D|[Vopfall2om | GAF| < S(K)(A +1)|GAF|

where fg is the function that realize the supremum in the definition of dy-1(G, E). We
consider now the elastic term:

E(B(ulie)) — (Buk)) = Q\p@(E(ufiel))dx— Q\GQ<E<u§el>>dx
(4.27) <[ QE@EYd- |  QEWE))d
Q\F O\G
< Kel|GAF|7

here, the first inequality follows from the minimality of u?ﬁl. Combining formulas (4.26]),
(4.27), and recalling the definition of G, we obtain
(4.28)

P,(F) — Py(G) < (S(K)(A +1) + Kg)|FAG]| for all GAE C cl(Z,(0F)) and |G| = 1.

We now conclude the proof of the subclaim using a standard calibration argument, which
we proceed to explain. Let us denote C (K, K¢) := (S(K)(A + 1) + K,;), and fix a set
G C R2
Case 1: |GAF| > 1.

By the minimality of F' in , we have

Pcp(F) < j(F) < j(E) = g(E) < CQ(K7Kel)‘
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Therefore,
(4.29) P,(F) < P,(G) + Py(F) < Py(G)+ Co( K, K¢p) < Py(G) + Co( K, Ko )|GAF|.

Case 2: |GAF| < 1.
Define E; := {z € R?: dg(v) < s} for s € [~0,0], and set
G .= (GNE;)UE_,.
Then GAE C cl(Z,(OF)) and
GAG = (G\ E,) U (E_,\G).

Since FAE C cl(Z,(9E)), we have F C cl(E,) and int(E_,) C F, yielding

(4.30) |GAG| < |GAF.
Subsubclaim:
(4.31) P,(G) < P,(G) + C3(K)|GAG].

We analyze the case GN E_, = E_,; the other cases are similar. Define the vector field
Y:R* 5 R? Y :=-Vo(vg, omog, )¢

where § € C°(Z5(0E,)) and {(z) =1 for all € Zg (E,). By the divergence Theorem,
we obtain

R divY dz = / divY dzx
(4.32) G\C G\Eo

= / v, - Vo(vg,) — / va - Vo(ve, omar, )E.
9E,NG 8*GNE:

By the convexity of ¢ and the triangle inequality, we obtain

(4.33) Vo(vg, omor,) - va < ¢(va +vE, o ToE,) — (VE, © Tar,) < v(vG).
Furthermore, the one homogeneity of ¢ gives

(4.34) Vo(ve, omag,) Ve, © Tog, = p(VE, © ToE, )

Combining (4.32)), (4.33), and (4.34]), we obtain

P,(G) < P,(G) + / divY du,
G\G

which implies (4.31)).
We now consider two cases: |G| > |F| or |G| < |F|. We analyze the former; the latter is
analogous. For all s € [—0, 0], we have

Bl <|E»NG|<|ENG|<|E, NG| =|Gl.

By continuity of s — |Es N G|, there exists § € [0, 0] such that |E; N G| = |F|. Denoting
G; .= EsNG C G and using (4.30)), we get

IGAG;| = |G| — |Gs| = |G| — |F| < |GAF|
< |GAF| + |GAG| < 2|GAF|.
Applying a calibration argument similar to the one in (4.31)), we obtain
P,(G,) < P,(G) + C4(K)|G,AG|.
Combining this with (4.30)), (4.31)), and (4.35)) we conclude

~

(4.36) P,(Gy) < P,(G) + C5(K)|GAF.

(4.35)
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From (4.29)), (4.28)), and (4.36)), we obtain

(4.37) P,(F) < Py(G) + A(K, Ko)|GAF],
where
(4.38) MK, Ky) = C1(K, Kg) + Co(K, Kg) + C5(K).

Thus, from (4.37) we deduce that F' is an A-minimizer of the o-perimeter. Therefore
subclaim has been proven.

Applying Lemma we obtain that OF coincide with a normal graph of a C'! function
over OF, i.e.,

OF = {x +¢Y(x)vp(z): = € OE}.
Applying Step 1, we get
J.
Lo o + G(E) < GUF) + Adyy1 (P )
SJTF)ST(E)=G(E)

where in the last inequality we have used the minimality of F'. Hence, from (4.39)), we
conclude that ¢ must be constant. Since v is constant and |F| = |E|, it follows that ¢ = 0,
and therefore F' = F. O

(4.39)

In the next lemma, we show that every minimizer F' of the problem (4.1)) is an A-
minimizer of the ¢-perimeter, where A depends only on K, K. Moreover, we establish
that the discrete velocity in H~! is bounded

dg—1(E,F)
h

Lemma 4.7. Let E € 33‘}’00 (Ep) with |E| =1 and let o be the constant from . Then,
for every minimizer F of the problem (4.1) with n < o, the following properties hold:

1) Let A’ be the constant from Lemmal[{.6 Then

<C.

(4.40) dy-1(F, E) < 27'h.
2) There exists a constant X\ = \N(K, K¢;) such that
(4.41) P,(F) < P,(G) + \[GAF|  for all G C R%

Proof. We divide the proof into two steps.

Step 1 In this step, we prove (4.40).
Using formula (4.15)) and the minimality of F', we obtain

1
F)+ —
G(F) + 57
Hence, inequality (4.40|) follows.

Step 2 In this step, we prove (4.41)).
Claim: For every set G C R? such that GAE C cl(Z,(9F)) and |G| = 1, the following

inequality holds:

d; 1 (F,E) <G(E) < G(F) + Ndy-1(F,E).

G(F) <G(Q)+3N(dy-1(G,E) —dy-1(F,E)).
Case 1) dy-1(G, E) > 4A\'h.
By , we have
2dy -1 (F,E) <4N'h < dy-1 (G, E)
and hence,

(4.42) dy-1(F, E) < dg-1(G, E) — dgr—1 (F, E).
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Using the minimality of F' along with formulas (4.15)) and (4.42), we deduce

G(F) < G(F) + ;- déy +(F, B) < G(E)

< G(G)+Ndy-1(F,E) < G(G) + N(dg-1(G, E) — dg-1(F, E)).

(4.43)

Case 2) dy-1(G, E) < 4A'h.
Using the minimality of F' and inequality (4.40)), we obtain

1
G(F) = G(G) < 5 (dy-1(G, E) + dy-1(F, E))(dp-1(G, E) — dy-1 (F, E))
<3N (dg-1(G,E) —dy-1(F,E)).
The conclusion of the claim follows from inequalities (4.43|) and (4.44)).
Claim: There exits A\; = A\ (K, K;) such that for every set G C R? with GAE C cl(Z,(0F))
and |G| = 1, the following holds:

(4.45) P,(F) < P,(G) + M|FAG.
Using the definition of G (see formula (3.22))), and the previous claim, we have

(4.44)

Py(F) = Py(G) < E(E(ug”)) — E(B(up)) +3) (d-1(G, E) — dyg-1(F, E))

The claim then follows by applying the same reasoning used in formulas (to estimate
the difference between dy-1(G, E) and dy-1(F, E)) and (to estimate the difference
between E(E(ugd)) and S(E(uifez)))
Claim: There exits A = A\(K, K;) such that for every G C R?, the inequality .

This claim follows by and adapting the same argument used in the subclaim of
Step 2 in Lemma [4.6] O

4.2. Estimate for the heightfunction. In this subsection, we prove that 0F coincides
with the graph of a smooth function ¥ : 0F — R, where F' is a minimizer of . Moreover,
we establish regularity estimates for .

We begin with a remark that provides an analogue of formula for the anisotropic

curvature defined in (2.12)).

Remark 4.8. Let E € @(JO(EO) and let A C R? be a set of class C? such that A is a
normal graph over OF, i.e.

0A ={z+¢Y(x)vp(x): x € OF}.

Let g € C(R?\ {0}) be the function defined in (2.12)). Then, using formula (2.5) and the
Taylor expansion of g, we obtain for all x € OF

(4.46) 9(va@ + b(@)E() = 9vp(@) + Ba(@(2)rp(@), 0,0(z), vs(2)),
where Ry € C*°. Using formulas (2.6), (2.7), (2.12)) and ([#.46), we obtain

(4.47) K4 (@ + (@)vp(e) = —g(ve(2)) 02 (x) + K (2) + R(z) « € OE,
where

(448) R = 7’0(7/% 87'1/}5 RE, VE) + 1 (wKJEa 8T¢a VE)azw + 7“2@”4157 87'7;[)7 VE)67(¢“E)

and ro,T1, T2 are smooth functions satisfying
7’0(0, 0, °y ) = 7‘1(0, 0, ) = 7’2(0, 0, ) =0.

We now state and prove three propositions that will enable us to prove the Theorem
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Proposition 4.9. Let E € 55}%700 (Ey).Then there exist constants ny = no(K, Kep), ho =
ho(K, K¢) and C = C(K, K¢) such that, if 0 < h < hgy then any minimizer of the problem
(with n = ng) F C R? has the property that OF coincides with the graph of a smooth
function ¢ : OF — R satisfying

3
(4.49) 4l r2om) < ChE, | Vosllrzer < CVh, |65l mor) < C.

Proof. Let o be the constant from Lemma [4.6] and let §y be the constant obtained in
Lemma for A = A(K, K¢;), where A\(K, K;) is the constant defined in Lemma (see

formula (4.41))). We set 79 := min{o, dp}. Let F' be a minimizer of (4.1]) for n = ny. By
Lemma we have that F' is a A(K, K)-minimizer of the ¢-perimeter. Applying Lemma

we obtain
OF = {z + ¢Y(x)vg(x): z € OE},
where ¢ € C'(9E) and |[¢||c1(9p) < C(K, K¢). Using formula ({@.14), the minimality of
F, and formula (4.40), we get
(4.50) IVort|l20m) < C(K)Vh.
Using formulas (|4.6]), , and the Poincaré inequality, we have
(4.51) |1¥llz2om) < CUE)NEREl 2008 < CUK)VorérEl L20r) < C(K)IVord|r2aE),
where {pp =Y + % Therefore by the Sobolev embedding, (4.50) and (4.51]), we obtain

19| 1o oy < CE)] grom) < C(K)Vh.

Hence, for hg small enough, we have 0F € Z,(0F). We are now in a position to compute
the Euler-Lagrange equation for the functional F' — Fp(F, E). Applying formula (2.11]),
Proposition [3.4] and Proposition [3.6| we obtain
dg-1(F,E
(@52 wE) - QUEGE) @) + MDD

where f € H'(OE) is the function that attains the supremum in (3.1)), and L is the
Lagrange multiplier. Integrating equation (4.52)) over OF, we get

1 dg-1(F, E
LS[/a m?d?—[l—i-C(K,Kel)—i-Hll(z’)

f(mop(y)) =L forally € OF

1
P(F) [ Jor aFfOFaEdH]
gm[/aFmﬁdH“rC(K,Kel)

)

(4.53)

$ W BB [ ) ST o@ms@) + Vorb(@)P d%ﬂ
OF

T Vi

where we have used: a change of variable x € 0F — z + ¢(z)vg(x) € OF, whose

tangential Jacobian is x — /(1 + ¢(2)kg(2))? + [Vapt(z)[2, the isoperimeteric inequality

1= |F| < L P(F)?, Lemma %mula (4:40), and the bound || f|| z2(p) < C(K). By the
E

Euler-Lagrange equation and (4.53)), we can now estimate the L? norm of /i?, and we get

(4.54) 5570 r2om) < C(K, Ke).

< L {c@ + 2A’C(K)} — O(K,K.)

Differentiating the equation (4.52)), we obtain

dy1 (F, E)

Vorti(y) — VorQ(E(up))(y) + 3

Vorf(rar(y)) =0 for all y € OF.
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Using this equation, formula (2.8), and [|Vagf||12@r) < 1, we get
Vorf|?
o /(1 +vKE) + [Vopy|?
From formulas and (| -, we deduce
IVorsrelrzor < CVh.
Now using formula (4.16]) and the interpolation of L?(OF) between H'(OF) and H'(9F),
we obtain

1 1 1 3
(4.56) ﬁHwHLQ(aE) < érellr20m) < IVorsrellizop lérel - (gp < CUK Ka)ht

where we have used formula (4.40), i.e., dg—1(F, E) = [[Er el g-1(95) < 2A’h. Finally, the
estimate (4.49) follows from (4.50)), (4.54)), (4.55)), and (4.56). O

An important consequence of Proposition [£.9]is that the boundary of any minimizer of
problem (4.1) does not intersect the boundary of the constraint 0Z,,(0F) for h < hg. This
allows us to erte the Euler-Lagrange equation for F', and by applying (3.8)) and ( -,
we obtain:

(4.55) Hvapmﬁuig(m < C(K,Kg) + dH' < C(K,K).

dy-1(F,E
5~ Qe + ) o — 1 on o,
e —Apef = &7]3 on OF
dy 1 (F,E)

where £p g is defined in (see also formula ) and L is the Lagrange multiplier. We
remark that if E is C®7-regular for some « € (0, 1), then by the elliptic regularity theory
implies that F is also C%-regular. Using formula , we can combine the two equations
above into the following single equation:

T 2
(458 1 (0(0) + ) 120

= 92 (—g(ve(2))02¢(x) + K5 (x)) — 02 (Q(E(up™))(z + ¢ (z)vp())) + 02R(x)
for all x € OF, where R is define in .

Let us recall a lemma that will be useful in the upcoming proofs; see [I8, Lemma 2.3],
[38, Lemma 2.5 & Proposition 2.6].

Lemma 4.10. Let A C R? be a set of class C° and such that A € €2,(Ey). For all
f € CHOA) it holds
1m0y < CUI107fll 204y + || 2094y (L + 6El 12(84)))
| £1 254 (102 £l z2(0.4) + 1f 1| oo 9.4y (1 + [10- kAl £2(0.4)))
1fllm30a) < C 102 f 204y + 1f lLoo 0.4 (1 + 10264l £2(04)))
£ 104y < C U107 fll 204y + 1 f 1 poo 04y (1 + 02K4l £2(0.4)))
where C' is a universal constant.

C
<C

In the next proposition, we will prove a sharp estimate for the L?-norm of the height-

function in (4.49), namely:
4]l 20m) 3 b

Proposition 4.11. Let E be a set of class C° such that E € 5, oo (Eo) and 102K, lz20m) g
K Let F C R? be a minimizer of . for m = ng, where ng is given in Proposition

Then for the heightfunction in , we have
(4.59) ||77Z’||L2(8E) <Cih,  |Ylla1or) < Ch



THE ANISOTROPIC SURFACE DIFFUSION WITH ELASTICITY IN THE PLANE 27

for all h < ho where hg is the constant from Proposition[{.9. The constant Cy depends on
K and K.

Proof. By the assumption on E, we deduce
(4.60) ve € H*(OE) and |lvg|| i3 or) < C(K).

We multiply the Euler equation ([4.58) by 91 and integrate over OF, obtaining

1 212 a2 L Ly 9 o
L e [ gwwioter =1 [ S ot [ aawmoton
(4.61) - | ogwnotvate s [ ool
OF OF
- | QU+ iCwe()oks+ [ oRoty.

oF

We now proceed to estimate the right-hand side of the above equation. Let us fix € > 0 to
be chosen later. ,
Estimate of % faE ﬂg%affi/).

Using the Cauchy—Schwarz and Young inequalities, together with formula and
the Sobolev embedding, we obtain

. C(K
! /8E koM < QH@Z,HLOO(BE)||¢}||Lz(3E)||3f¢||L2(aE)
C(K £)
(4.62) < 1110 o) 19122 0m) + 10700220y
C(K,e
(h ) pai+ ) +el| 0272 0m)
< O(K,¢) + |07 72 om)-

Estimate of [, 029(ve)02p0iy.
Using the Cauchy—Schwarz and Young inequalities, we obtain

<

/ 29(ve) 020 < 1029(vE) | L @om)l02¢ | 120m) 1054 | 120 m)
< O(K, &)llgwe) s omy | 0207 20m) + llO7¢ 172 0m)
< C(K,9)|1020]72(0m) + 1079172,

where in the last inequality we have used the smoothness of g is smooth and formula (4.60)).
Estimate of [, 0rg(ve)02¢oty.
Recalling the interpolation inequality (see Proposition ,

(4.63)

3 1
||63¢HL2(8E) < C”T/)”;14(3E)||¢||22(3E)
and using the Cauchy—Schwarz and Young inequalities, we obtain
| orawe)oiot < G100 020 120

e
10211Z20m) + 51079 720

,€)
NNz 0m) + el o)
)
)

(4.64)

™

2
UlZ20m) + C 10701 220m) + [Vl o0y (1 + 10352 2 (08)))

< C(K
< C(K,
< C(K
< C(K, &) [¥ll729m) + eClNO7¢ 720w + C(K),

, €
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where in the fourth inequality we have used Lemma and (4.49) that gives

11
1]l oo 9.4 (1 + 102l L2 (08))* < C(K)thj < C(K).
2

Estimate of [, 02502,
Using the Cauchy-Schwarz and Young inequalities and the bound |02k || 129y < C(K),
we obtain

(4.65) /8 OGN < 02 om0 |2 o) < CUS.2) + <10 oy

Estimate of [, 0(QUE(uS)) (- + (v () 0.
Claim: It is holds

(4.66) H(‘??(Q(E(U?“)))(- +()ve()llr2@or) < C(K, Kel)(|’¢|’L2(aE) + Hawame))-
Set F(x) := Q(E(u?ez))(a?) for all z € Q. Then, for all z € JF, we have

0 (F(z+¢(2)vp(r)) = VE(@ 4+ (@)ve(@)) - (9-¢(@)ve() + (1+3(@)re(r)me(z)).
Moreover,

0-VE(z + ¢ (x)vp(z)) = VE(z + 4 (@)ve(@)) (1 + (@)rp(@)Te(x) + 0,9 (x)ve()]
and

O:[(1 + YrEp)TE + 0:4bvE] = TE[2kE0 + VO, kE| + vE[kE + K% + 0%1)].
Therefore, by the Leibniz rule, we obtain
(4.67)
02 (F(x + p(x)vn(x)))
= V2E(z + P(a)vp(e))G (2, (2)rp(r), 8- (@) - Gz, 9 (2)kp(r), 0-¢ (@)

+ VE(z + ¢(@)vp()) - Gla, 00 (2)rp(x), ¥ (2)dr ks (2), Y(2)rE(), k5 (), 024 (2)),
where G € C®(R3) and G € C*°(R% R?) satisfy G(-,0,0) = 0 and G(-,0,0,0,0,0) = 0.
Using formula and recalling the very definition of F' and that ugd € Qﬁ?}i(ﬁ, R?),
see and using the Soblev embedding we can estimate the L?(0F)-norm of z —
0?2 (Q(E(u?e’))(l‘ + ¢ (z)vg(z))) and we obtain the claim.

Using the claim, along with the Cauchy—Schwarz and Young inequalities and Lemma
we finally obtain

(4.68) /BE O2(QE(up™)) (- +¥()ve(-)0i < C(K, Ka, )| 0207 2(0m) + 00017 2(0m)-
Estimate of [, 02RO}.
Using the Cauchy—Schwarz and Young inequalities, we obtain

/313 O2RIFY < |07 R 2 (om) 1079 | 120y < CENOZR| T2 (05 + €ll07 01220 -

Hence we need to estimate [|02R||12(g5). To estimate this term, we recall the form of R,
see (4.48). Applying the Leibniz rule, we obtain

102R| r20m) <C > 109r1 (¥, 0rtp, v) 02 4|  12o
Jrh=2

(4.69) +C Y (102ra(vrp, 8, vp)IOMF (Wrp) | 12(0m)
J+k=2
+ [lro (¥, 0, ks VE) | H2(0R) -
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Let j, k € N be such that j + k = 2, we apply Lemma with f1 = r(YkEg, -9, vE) and
fa = 0;1 to estimate
102 (r1 (Wke, 070, vE)) 02T 0| 1298y <Cllr1(VkE, 000, vE) | L (am) 1] 13 08)
+ CllYllerop)llr (Vee, 070, ve)ll 3 op)-

Similarly, with fi = ro(Ykg, 0:¢,vE) and fo = Vkpg
(4.71)
102 (ra (W, 0740, vE))Or T (Vkp) | 208y <Cllra(Yip, 0, vE)| L (o) |1V EE 13 (08

+ CllYkel e @p) Ir2(VrE, 070, vE) || H3 (0R) -
Since r; is smooth and satisfies r;(0,0, -) = 0, we have that

Iri(VrE, 07, vE) Lo o) < CllYllcr (or)-

Furthermore, by the smoothness of r; and the chain rule, we obtain the following pointwise
estimate

|0-1i(Vg, 00, vp)| < C(1+ 02| + |0, (VrE)]),

(4.70)

2
02ri(rp, Orp,ve) <€ >0 [T+ 102 (wrm) (1 + [0 ),

a€eNS |a|<2 k=1

3
02ri(Prp, 0, vp) < C Y T+ 102 (kp))(1+ |05 ).

@€ENS |a|<3 k=1
Therefore, using Lemma with fi = fo = fs =v¥kg and fy = f5 = fg = 0:¢, we get
(4.72)
Iri(YeE, 0r, vE)| H3 (0R)
< C+ WrEllpe@r) (X + 1Yl asor) + (1 + [Yllcror) (1 + [Yeelasor)
< C+ [Wllgs@or) + 1VEElns6R))
< CA+[Wllga@r) + 1Yo @e)l5El H305E))
< CA+ 1Yl asor));
where we used the assumption ||02k% ] 1295) < h% and formula (4.49). To estimate the

third term, we again apply the chain rule, the regularity of ry, Lemma [2.5] and Proposition

2.4
(4.73)

Iro(, 0:%, kg, vE) 208y < C(L+ ¥l a3ar) + [IkEH2(00E) < C(L+ [Vl H3(5E))
<elYllmsor) + CUS )Y m20E) + C(K).
Combining estimates ([£.69), (4.70), (4.71)), (4.72)), (4.73) and using Lemma [4.10] we obtain
(4.74) 102 Rll 20y < COK Yo + <0012 00
Using (4.61)),(4.62), (4.63)), (4.64),(4.65),(4.68), (4.74) and recalling (2.13) and for €, h
sufficiently small we deduce
1 C
EHaz@bH%%aE) + 7g||5’ﬁ¢H%2(aE) < C(K, Ka).
Therefore, we obtain the bound
(4.75) [l aeor) < C(K, Kep).
This implies that the right-hand side of equation (4.58)) is bounded in L?(0E), i.e.,
(4.76) [|02(—g(ve)0Z + K5) — O2(QE(up™)) (- + ¥ (-)ve () + O2R| 12 (am) < C(K, Ka).
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To prove ||¢||z29p) < C(K, Ke)h, we multiply the Euler-Lagrange equation (4.58) by
U+ %2/€E, integrate over F, and apply the Cauchy—Schwarz inequality along with (4.76)):

2
e+ -

KE”L%@E)
2
< (@2~ g()20 + k) — QBN + 9w ()) + ER)W + ) 120
2
< O, Ka)ll9 + o wsl 1200

Therefore we obtain ||¢ + %QKZEHLQ(()E) < C(K, K. )h. Recalling that 1/) <(v+% IQE)2
(see formula (4.16))), we obtain

(4.77) 1912208y < C(K, Ker)h.
Combining (4.75)) and ( -, we conclude the proof of (4.59) - O

We need the following technical lemma,; see [38, Lemma 5.3] for the proof. We state the
lemma in R2, as this is the setting relevant to our context.

Lemma 4.12. Let E C R? of class C° be such that E € ﬁKUO( Ey). Then, for all
u € C3(OE), the following estimates hold:

[V(uomgp)(x)] < C(1+ |kE o mop(x)])|0sru o Top ()|,

(78 V2 (uomap) (@) < C Y (14 |0hpre o mon(x)])|055 v o map()],
4.78 i=0,1

V3 (womop)(z)| < C > (14 |0hpke o mop(x)|)|0h5 wo mop (),
i=0,1,2

for all z € Z,,(0F).
In the next proposition, we prove that if ' C R? is a minimizer of (4.1, then the

following estimates hold:

|65l 2o < C2 67l H300F) <

)

cle

where Cy := Co(K, K).

Proposition 4.13. Let E C R? of class C° be such that E € §% oo (E0) and H@gEﬁEHLz(BE
K Let F C R? be a minimizer of . for m =g, where ng is given by the Proposition

. Let 1) be the heightfunction in 9) satisfying -, that 1s,

kuLQ(Z)E) < Chh, \|8§E¢HL2(3E) < (.
Then there exists a constant Cy, depending only on K, K¢, such that
2 P 3 P Cy
(4.79) 105r 7l 1200r) < Coy  103pkgll20r) < e
4

Proof. In what follows, we denote by C a generic constant that depends on K, K., C;. We
derive the estimates from the Euler-Lagrange equations (4.57). We define

g1 (F, E)

fi= T

f
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where f is the function that realizes the supremum in (3.1). The Euler-Lagrange equation
then becomes

K5 — Q(E(up)) + fompp =L  on OF,
(4.80)

—AaEfngT’E on OF,

where £  is defined in (3.3)) and L is the Lagrange multiplier. From (4.59)) and interpolation
of H'(OFE) between L?(OF) and H*(OE), see Proposition we obtain

11 (9E) < Chi.
Using this estimate together with (4.6)) and (4.59)), we deduce

3
(4.81) 1€rEllr2(0m) < Ch 1€rEll H1(0m) < Ch1.
Therefore, by (4.81) and the second equation in (4.80)), we conclude
(4.82)

I fll 2 (0m) < CM

OE)
<C
h —_ M

; : \érEllm oE 1
1l s o) < COL+ kel 1208 + 1008 F 1 om) < C(1+ =22 @E)y < o3,

We now need to estimate the derivatives of f o Ty on dF. From formula (4.78]), we find
that for all z € 7, (OF),

IV(f o mop)(2)] < C(1+ |rp 0 mop()])|0an f o mon ()],

IV2(f omor)(2)| < C Y (1 +18hprE o mor(x) )03 f o mon(2)],
(4.83) i=0,1

IV3(Fomop) (@) < C > (14 |0hpre o mop(x) )|y f o mop(x)|.
i=0,1,2

To obtain ([4.79), we need to estimate ||03k5]12op) and [|03pc7 ] L20r)-
Estimate of Haf%F’i?HL?(aF)-
Recalling the first equation of (4.80]), we need to estimate

Ha(%p(fOWaE)Hm(aF) and Ha(%FQ(E(va(EZ))HB(aFy

We begin with the estimate of ||8§F(f o oE)| r2(ar)- Using formula (4.83), we obtain

IV2(f omap)(2)] < Clojpf o mop(x)| + C(1 +|0opke o mor(z)])|dsr f o mor(z)]
for all x € OF. Therefore, by Sobolev embedding and (4.82)), we get
(4.84)  [IV*(fomar)l2or) < C(Iflluzom) + (1 + 100580006 fll 2 08))) < C.
Next, we recall that the Laplacian of f omgr on OF can be written as
(4.85) 03p(f o mor) = Ape(f o mom) — V([ o mom)vr - v — kpV(f o o) - vp.
Thus, using this formula together with (4.84)), we obtain
(4.86) 1035 (f o 7o) ||l 2or) < C.
It remains to estimate

103 QE (up))l| 2 or)-
A direct computation yields

03pQE(up)) = d9r[0orQ(E(up™))] = dap[VQ(E(up)) - 7]

4.87
(457 = V2Q(E(ub))1p - 77 + kpVQ(E(ul)) - vp
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where we have used Jgp7r = kpvp. Applying this formula, we deduce

K.
(4.88) 105 QB (up )l 2 (o5 < C.
Combining estimates (4.86]) and (4.88]), we conclude that
(4.89) 105K 50 L2(0r) < C-

FEstimate of Hf)gFmﬁHLz(aF).
Recalling the first equation in (4.80)), we need to estimate

1037 (f © 7om)ll L2 (or) and [|03pQ(E(up))llL2 o)
We begin by estimating ||83F(fo moE)| L2(oF)-
Using formula (4.83]), we obtain
(4.90)

V3 (f omom)(2)| < ClO3f o mor(x)| + C(1 + [0sprE © mor(x)|)|05f o mor(x)|
C(1+|035kE o Top(2)| + |0spkE o waE(m)|2)\6aEfo mop(T)]
for all x € OF. Using formula , we compute 83 #( f o THE)
Bp(fomar) = VAgr(fomar) 1r
= V[ARg(fo TOE) — VZ(fo TOE)VF - VF — /@FV(fo TOR) - VF] TR
=T(V?(f omap), V2(f o mar), dorkrV (f o mop)),

where T' € C*° such that T7'(0,0,0) = 0. Hence, using the regularity of T, we deduce the
pointwise estimate: for all x € JF,

(4.91) |83 (f o mar)l(x) < C(IVP(f o mom)(@)| + [V2(f o mop) ()] + [V (f o mor) (2)]).
Therefore, combining (4.91)), (£.90), (4.84), and (4.82), we obtain

~ ~ _1
(4.92) 1055 (f o mop)lr20r) < C(I1fllmsom) + l5ellm2(0m) < Ch74.

It remains to estimate ”8§FQ(E(U§EZ))”L2(8F)-
Differentiating formula (4.87)), we get

@%FQ(E(U%Z)) = OaF [VQQ(E(Ufr{el))TF TR] + 86F[HFVQ(E(U§SI)) %
= 2k V2Q(E(ule)) 1 - vp + M(VPQ(E(up)), 75)7r - TR
— kh7p - VQ(E(up)) + 0ornpV Q(E(up)) - vr
+ kpV2Q(E(uls)) T - v

where M (V3Q(E(u§5’)),7'p) is a matrix 2 x 2 matrix whose coefficients depend on
V3Q(E(u§el)) and 7p, and satisfy

M(VPQE(up)), 7r)| < CIV*Q(E(up™)|
Therefore, using , , and recalling that
IV QB ey < 5
(see formula ([3.13))), we obtain
(4.94) 03pQ(E(up™))ll2or) < C(IV*QUE(uzp ) r20r) + Cldorrel 2om)) <
Therefore, combining and , we conclude that

(4.95) 105757 L2 o) <

(4.93)

7 Q

2 Q
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Combining (4.89) and (4.95]), we finally obtain(4.79). O

We are now in position to prove Theorem

Proof of Theorem [{.1l The existence of constants 7y and hg is guaranteed by Proposition
Using this proposition, it is also established that OF € Z,,(0F) and that

OF = {x +¢Y(z)vp(z): z € OF}.

Proposition establishes the existence of a constant C; and the validity of formula .
Similarly, Proposition proves the existence of a constant Co and formula .
Claim There exists ¢ such that F € ﬁ%(l’&(Eo), for some Ky = K (K, K).

By Lemma the set F' is a A\-minimizer of the p-perimeter, with A = \(K, K¢).
Applying Lemma [£.3| with E = Ej and A = X we obtain the existence of the constant
dp = do(A). Now we take ¢, 19 such that oy + ny < %0. Then we have:

(4.96) OF € I,,,(0E), 0E € T, (0Eo) and op + o < %0 — OF € I, (0F).

Applying Lemma [4.3] once again, we obtain the existence of a function u : 9Fy — R such
that

OF = {z +u(x)vg,(x) : x € OEy},
with u € C'7(9Ey). Therefore, using (4.3)) we conclude that

(4.97) u€ HYOEy), |lullgaomy) < K1 for some K1 = K1 (K, Kq).
Combining (4.96)) and (4.97), we obtain F € .6‘}(1’ 5 as claimed. O

5. ITERATION

In this section, we prove a crucial iteration formula. To this end, we fix a set £ C R?
of class C® such that E € 9% , (Fo) and [|035r5 ]| 120m) < h%. We recall that Ey € 2 be

open and connected set of class C°. We consider two sets F, G C R? constructed as follows.
By the Theorem there exist constants hg, 19, C1, Ca, K1, 6, depending only on K and
K, such that if 0 < A < hg and

F € argmin{F, (A, E): AAE C cl(Z,,(0F))}

then F is of class C° and F € 55‘[1(17 5(Eo). Again, by Proposition and Theorem we
have OF € I,,(0F), and OF = {x + Y rg(x)vg(x) : © € OE}, with the following estimates
for Y g:

(5.1)

1VrEll20m) < Cih, 1WrElriom < C I6olm2er) < Co, 103p55l 120r) < —

Tl &

3 1 1
1008¢r el 12(0m) < C1h3, |1055¢r Bl 1200m) < C1h2, |03p¥rEll2(0m) < C1h4,

where the second line follows from the first and an application of Proposition Applying
Theorem [4.1] again this time with F, K1,6 in place of E, K, 0(, we get new constants
m,h1,Cs,Cyq, Ko,6 , depending only on K; and K; (and hence ultimately on K and K;).
If n <n and 0 < h < hg := min{hg, h1} the set G is given by

G € argmin{F,(A, F): AAE C cl(Z,(0F))}
and G is of class C°, G € .6‘}(2; (Ep). Again, by Proposition and Theorem H, we have

(e

0G € 1,,,(0F), and 0G = {x + Yg r(x)vr(z) : x € OF}, with the following estimates for
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Ya,F:

(5.2)

04
h, 1Warllmier) < Cs, k& m200) < Ci, 105ar8l 200 < —1 T
4

1 1
\ , 1035 va,Fllrz2or) < Cshz, 105pva,Fllr2or) < Cshi,

where the second hne again follows from the first using Proposition [2.4] Throughout this
section, we will use the notation just introduced. We now state a lemma that will be
essential for proving the main result of this section.

Lemma 5.1. Let n < ¥ where 11 is as defined above. Let E, F and G as above, and we

set o, F = Ya.F + kg ve, F. There exists a constant hs > 0, depending only on K and K,
such that the following mequality holds:

3h
(5.3) /8 - Ch)&er + 5 9wr)ld5rva | dH' <h /a i K§O3péap dM.

for 0 < h < hg, where C = C(K, K).

Proof. In what follows, we denote by C' a generic constant depending on K and K. We
recall that, as stated in formula (4.16))

I o 2 2
R < < \/5 .
\/§¢G,F > fG,F > ¢G,F

From the discussion at the beginning of the section, the Fuler-Lagrange equation (4.58))
for the set G can be written as

€. () =B (—g(vp(@) OBy, p(@) + KE(2))

— R (Q(E(ugﬁl))(x + e, r(z)ve(z))) + O3 R(z) for x € OF

where R is define in (4.48). Multiplying the equation above by £z r and integrating by
parts yields

(5.4)

€2
% dH' = / 9(vr) 03 pba pO2péa.r dHY + / K203 pé F dH?
OF OF

~ [ €0rdbe QUG+ var(ve () dk! + | Rofeéer it

By the very definition of {g r, we obtain

§GF
or h

(5.5) = / _g(VF)agF¢G7FagF< >d7-[1+ / KpO5pta,r dH'
OF oF

~ | tortBe(@EMEDC+ barCe()) dH + [ ROt ant
oF oF

We now need to estimate the following integrals:

2
(5:6) || storiBeveroge(“EE Y an,

(5.7) /sGFaaF E()(- + vo.p(Jvp() dH

aHL - /8 (i) Bt w2 dH!
F

2
KEVG P

(5.8) / ROZpécp dH.
OF
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Let £ > 0 be fixed, to be chosen later.

Estimate of (5.6)).

A straightforward computation yields

2
VG, F

V& p
’ ) :8§FRFT’ + 20srkFYa,FOorta,F

(5.9) Osr <”F

+ kp(OrYe,r)? + krte,FO3pbe,F.

Using formulas (5.2]) and (5.4), a together with the Sobolev embedding and the Holder
inequality, we obtain

(5.10)

Ver
105 pkr—2= + 209k rba,rdorte,rl2or)
e, pllLe@F
<(———— O \kpll 2o + 2000rmE 1200 180rYe.Fll 2 0m) 1¥6,F | 120
1
Cah2 3 1

< (22— +205h4) |l r208) = Ch2||¢a.rll 2 (0m)-

2

Using again formula (5.2)), the Sobolev embedding, and the Hélder inequality, we get

(5.11) /aF 9(vr)rve rrr(Orbe r)? dH' < Cloorva rlieom 05rva.rll L2 o)
| 1
S Ch2 Hatg)quZ)G,FH%Q(ap)

Still using (5.2]), the Sobolev embedding, and the Holder inequality, we deduce

/a Q(VF)(anga,F)zﬁﬂ/JG,F dMH' < C|[va.r
P

3
< Chi ||agF¢G,F||%2(6F)‘

(5.12) |20 105 Ya, P ”%2(8F)

Combining (5.6]), (5.9), (5.10), (5.11), (5.12)), and using the Holder inequality, we obtain
that

2
KJF¢G,F

(5.13) /8 Fg(vF)@%FwG,F%F( > di' < |le,FlI72om) + h2C|\03ptba.r 122 0m)-

Estimate of (5.7)).
Recalling formula (4.66|) and applying the Cauchy—Schwarz and Young inequalities, we

get

(5.14) /a €r0Be(QUEGE)( + Ve (v () d!
< O(K, Ku.9)|lEe.r

|%2(8F) + |05 pvba,F I%Q(aF).

Estimate of (5.8)).

Claim:

(5.15) 10orvc,Fll120r) < CllO3rve,rll2or) + CE)Ive,rllL2or)-
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From formulas (4.6]), (5.2)), and (5.9), and using the Sobolev embedding and Proposition
we deduce
4

1 1
10orvc.FllL2or) < CllOoréa,rll2or) < ClOjréa.Flom€c.Fl 22 om

Ve p
= ¢|| 03 pvc,F + O3p (K ) Mezer) + Ce)liarlzor

(5.16) < el|O5rve,rll2or) + CllO3pErl L20m) 1Ve,FllcolVe.Fl L2 or)
+ Cl10arta,rl72om) + CE)éc,rll2or)
< el|O3 v, pllr2om) + Ch |dortbc,r l20r) + CE)€c.FllL2or)-
Thus, for sufficiently small h, estimate follows.
Claim:

IRl r20m) < ECHa?aFwG,FHB(aF) +CE)ve,rFllirzor)-

To this end, we first require a pointwise estimate for R on JF. By the very definition
1
of R, and using formula (4.48) along with the smallness of [[tg rllc1(or) < Ch2 (this

estimate follows from formula and the Sobolev embedding), we obtain the pointwise
estimate

(5.17) IR| < C([va,r| + 10orva,rl) (1 + 103pva.F| + [0or (Y, prr)])  on OF.

From formula (5.2) and the Sobolev embedding, we derive the following estimates:

1
190r (Ve rEr)llLe@r) < [Ve.FllocllOorkrlle + [|00rte Fllcllkrlec < ChZ,

1
183 ptbc, 7 | oo (o) < ChT.
Combining (5.17), , and using (4.16]), (5.15]), we obtain

IR z20r) < C(10arvc.rllr2or) + Ve rllL2om))
< eCl|03 v pllr2r) + CE)l€aFllL2or)-

We are now in a position to estimate (5.8). Using formula (5.19)), the definition of ¢ F,
the Cauchy—Schwarz inequality, and the Young’s inequality, we obtain

(5.18)

(5.19)

2
/ Riwtar i’ = / RO3pia,rdH' + / RO} <HF%7F> JH!
or oF oF 2

wQ
< | Rllz20m) 1030 Fll2(or) + /8 R <KF §F> !

&.r
< eC|lO3rve,Flli2or) + CEYaFliz@r + /8F RO3p <I€F 5 > dH'.

2
YG.r

It remains to estimate the term f@F R@gF </€F2) dH'. Using (5.2)), (5.9), (5.10), (5.15)),
the Sobolev embedding, we get
(5.20)

V& g
103 (HF 7

1
>\L2(8F) < C(h2(|¢a,rllz2or) + 10orva,Fll20m) + RO e, Fllr2 o))

1
< Ch2 (|l€a, pll2or) + 1055 Y e, F

L2(0F))-
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Therefore, using the Cauchy—Schwarz inequality, estimates ([5.19)), (5.20), and Young’s

inequality, we obtain

2 ¢é,F

1 1 2
(521)  Jor 5 ) dH' < C|IR|20mh2 (€a.rllL20r) + 105r%a,Fll L2 0F))

< C)lérlz2or) +ellOirie rlizon).

Finally, inserting the estimates (5.13)) for (5.6]), (5.14)) for (5.7, and (5.21]) for (5.8), into
formula ([5.5)), we obtain

1
(3-cO) [ @wirt+ | o) - ohevorian < | nodecaran
oF oF oF

Recalling that g > m, > 0 (see formula (2.1))), the inequality above implies formula (/5.3)
for sufficiently small h and e. O

In the proof of the next proposition, we will use the following well-known inequality,
whose proof follows from a classical homogenization argument and the Sobolev embedding
of H' in L™®. Let A € ¢},(Ep), for some M > 0. If f is a smooth function on dA, then
there exists a constant C'(M) such that for every € € (0,1),

1
(5.22) [ C(M)(g||f||%2(aA) +elloaflZzioay)-
We are now in a position to prove the main result of this section.

Proposition 5.2 (Iteration). Let E, F,G be as in Lemma and, we set

2 2
FE G, F
ErE =YFrE+KE 5 §a,F = Yo F + ko 5

There exist M, hy, depending only on K and K., such that
(5.23)

h h
&+ 590P) | Morve pP) dHY < (1+ M) /8  (Ehp + 59(p)|Bopvrsl’) dH!

for 0 < h < hy.

Proof. In what follows, we denote by C' a generic constant depending on K and K. To
prove the thesis, we need to estimate the term on the right-hand side of inequality (5.3)),
namely

(5.24) h / kP O0péc,r dH .
OF
To this end, we consider the diffeomorphism
\I/F,E :0FE — OF \I/RE(.CI}) :QS‘+1/JF7E(.%')VE(.%‘)
and we define

E90(x) = w0 (Vrp(2), far(r):=fer(Vrp(z)), VYzcdk.

We fix € > 0, to be chosen later. We set

Jpp = \/(1 +KkpvEE)? + 005V E R
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By integrating by parts in ([5.24]), and using formula (2.8]), the Young inequality and the

Taylor expansion of the function t — \/11?, we obtain
(5.25)
Vopk?  Vaopt
h/ wiOréa.r dH = _/ Vorky - Voréor dH' = —h/ 8ERFJ OBSG.F 11
or or OF F.E

N R 1
= —h/ Vorky - Voplar dH' + h/ Vorke  Voréar (1 — > dH*
OE o JrE

< —h / Dopkdontar dH' + ehC / |Ooréc,p|” dH!
SE OF
C 3
+ 5h/6E 08RG (VEE + ViE + |0optrel*) dH'.

Using (5.22), (5.1)), and the Sobolev embedding, and assuming h is sufficiently small with
respect to €, we estimate the last integral:

(5.26)
Ch - 2 2 4 4 1
= aE|88E"5F’ (WrE+YEE +100pYrE|") dH
< O el oy + 10FE i + 905 0mE S o)
= F.EllL>~(8E) FE||L>(dE) OEVF,E|lL>(8E)
Chr1l
< = |5 Irslizon + 2 10svrslliz o)

3/ 1
+ h1 <?|’88E¢F,E 122(0m) + 52”8(%E¢F,EH%2(3E))]
< C(e)h|¥rElliz@om) + Che(0opvr el T2 0m) + 1055V FE720m)
< C(e)hllér Bl 2(op) + ChellO5pvreli2 o8,

where in the last inequality we have used (5.4)) and (5.15)). Using the same reasoning as in
(5.16)), and recalling (5.4]), we obtain

(5.27) 18oréc,FllT20r) < Cléc,rlZ20m) + 105506, FlI T2 0p))-

Plugging ((5.26) and (5.27) into formula (5.25)) and performing integration by parts yields

(5.28)
h/aF “?agFfG,F dH! <h /BE a(%E’%?éG,F dm' + EhC(HfG,FH%%aF) + ||8<%F¢G,F||%2(3F))

+C(e)hlIEr el 20m) + ChellOpvre

|%2(8E)'
Recalling that F' satisfies the Fuler—Lagrange equation , we have

(529)  BpRf) = 1 Enp(e) + OH(QUEWED) (@ + brp(@vp(r), ¥ e OE.
We need to estimate

h / Bpitéar dHt.
oF
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Using (5.29)), the Cauchy—Schwarz and Young inequalities, and (4.66]), we obtain

(5.30)
h/ 8§E/%§§AG,F dH! 2/ §F,EéG,F dH'
OF OF

b [ B QUEEN) @+ vr(@)s(e)éo.rle) K
1 2 1 1 F2 1
2/3E5F,Eam + 2/8E§G,Fd7'[

o ( | @@EWE )@+ vrs@ve@)? cmif </aE &.r d?-[1> |

IN

<1/ a1 éé’FdH1+1/ 7 (1—1)cm1
=2 Jop 0 2 Jor JrE 2 Jor " JrE
52
+ Che|03pvrpli2m +hC(E) [ 22C du!
OF YF,E

IN

1 1 1 N
E / € a4 / € '+ 1 / & prpips dH!
2 Jor 2 Jor 2 Jor

+ Che| 93 pvrel T2 om) + hC(e) /8F &, r A1 + Ch|YrEll72om)

VAN

1 1 1 “
5 / EhpdH' + / &pdH' + - / & prptrs dH!
2 Jor 2 Jor 2 Jor

+ Che||03pvr 5l 20m) + hC(e) /8 ; & p A1 + Chl[vrpll72om)-

We need to estimate % faE @% FREVEE dH!. To this aim we recall that

2
FE
— AppvrE =E&rE = YrE + ——kKg on 0L,

2
/ VEE dH' =0
OF

and |[Vopvrellr2or) = dg-1(F, E) < Ch, see formulas (3.7)), (3.8) and (4.40). Therefore

we have that

0y .
};E dH! — / éé,FﬂEAaEUF,E dH?!.
oF

(5.31) / & prprpdH' = — / & phE
o)) OF
Using formula (5.1)) we obtain

2
‘/’F’Egh%c/ G <hC [ g pan,
2 oE oF

(5.32) /aE £ pKE
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Now by the divergence theorem and using (4.40)), (5.1) and the Poincare inequality and
the Sobolev embedding we have that

(5.33)
/ —&& prpAopvpp dH!
O

= Vortar - Vorvrekptor dH! + / fé,FVaEUF,E Vopkp dH'
oF OF

< C\Vorvrelrzom) (162.pll 2 0m) + HVBEéG,F”%Q(aE))

< Ch(|léa,p

< Ch(HvaEéG,FHLQ(E)E)HéG,F”LQ(c’?E) + [[éc.F

L= @m e rlir2om) + IVorée rl7zom)

220r) T ellAorve,rl7omy)
< Ch(|IVorté rli2om) + 66.F 320 + €l Borva.rli2om)
< Oh(|léc,FlI72(0r) + €l Dorvc,rl2or))

where we have used Lemma to get

o Vo éG, 2
Vosée.rlison < ) | TSI gyt = € Vanea plagony
OE FE
Using formulas (5.30), (5.31), (5.32), and (5.33)), we get
(5.34)

s 1 1
h / RpitéardH! <= / EhpdH + - / & p dH1+Che||8§EwF,E||ig(aE)
oOF 2 Jor 2 Jor

+ hC(e) /aF &, r M + Ch|Yrpll 2 om) + ehllO5rve Fllizor):

Therefore, combining (5.3)), (5.28)), and (5.34)), and recalling that M, > g > m, > 0 (see
formula (2.1))), we conclude:

1 3
(5 — hC) / & pdH' +h(5 —eC) / 9(vr)|03 e | dH?
2 OF 4 OF

1
< (5+10) [ hupan +hCe [ o) e’
OF OF

Choosing € and h sufficiently small concludes the proof of (5.23)). O

6. PROOF OF THE MAIN THEOREMS

In this section, we use the iteration estimates proved in the previous section to show
that the constrained discrete flat flow, defined in converge, as h — 0, to the classical
solution of the equation , provided K, is sufficiently large. We recall that Ey € €2 be
open and connected set of class C°.

Here and in the following, we reuse the notation introduced in formula (3.13)) and (3.14)).
. Ko,h . e
Specifically, we denote by u,“"" a solution to the minimization problem

. 3,% Ky
(6.1 mm{ [ QB0 e G QR 19, < ,uragzwo}

N

where wy € 03’%(89) is the prescribed boundary displacement. We denote by u?el’o a

solution to the minimization problem

(6.2) min{ Q(E(u))dx: u e Q:ifl (Q,Rz), ulog = wo}
O\F
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where wq is as above.
Before proving the first theorem of this section, we establish a lemma that ensures, under
suitable assumptions, that the minimizers of problem (6.1]) converge to those of problem

(6.2) as h — 0F.
Lemma 6.1. Let F, € Q be such that xp, — xr in L'(Q) with F € Q. Let u?}f“h be a

o .3,
minimizer of (6.1)) for h > 0. Then uﬁfl’h — uge“o as h — 07 in et (Q, R?) where uﬁfel’o
€
is a minimizer of (6.2)).

Proof. In the proof of the lemma, we will omit explicitly mentioning 'up to subsequences’
1
for the sake of brevity. By the Ascoli-Arzela Theorem we have that ughel’h — u in C>1(Q).

Let v € C*(Q) with ||7)H03% < K, then for h sufficiently small we get

()

Q(E(u))dz = lim Q(E(u?e“h)) dx
O\F h—0t Jo\ R, "
< lim Q(E(W))dx = Q(E(v)) dx.
h=0t Jo\ F, O\F

Therefore by the above formula and using a standard density argument we get the thesis. [

Theorem 6.2. Let K. > 0 be fixed. There exist Ty, Cy, By, 01 with the following property:
for every B < By there exists h such that E{l’ﬂ € 9L (Fo), ie.,

Co,01

OEM = (& + fPP(t,2)vp,(x): © € DEy}, || /1P

forallt € [0,Tp] and 0 < h < h, where {Eth’ﬂ}tzo is a discrete constrained flat flow starting
from Ejy.
The function f™8 converge in L°°(]0, Ty, H*(OEy)) to a function f° such that the family

{Etﬁ}te[O,To] with
OE] = {x + fP(t,2)vp, () : © € OE,}
s a distributional solution of the problem

V= 8§Ef (mgtﬁ — Q(E(ugg“o))), on 0Et5

t

B _
(6.3) Eo = Eo,

t

K..,0 . 3,1
uEﬁl € argmin {/Q\Eﬂ Q(E(u))dx: u e et (Q,R?), ulpg = 'U}()} )
t

Moreover f° € Lip([0, Ty}, L*(OEy)) and

1

(6.4) 12 (¢, ) < Ot

||03,i(8E0)
where C = C(Kyg).

Proof. In the proof of the theorem, we will omit explicit mention of 'up to subsequences’
for the sake of brevity, unless it is strictly necessary for clarity. We fix a large constant
Ky = Ky(K,;,00), which will be chosen later. Let Sy < 11 where n; is the constant from
Lemma We fix g < By. Let {EZ,’? }ren be a constrained discrete flat flow starting from

Ey; see definition To simplify notation, we write Ey = EZ,;’B for £ > 0. We are now in
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a position to apply Theorem which yields

OF, = {x + {1 (x)vg,(z): € OE°},
(6.5) l¥1ll20m0) < Lohs |1l Ha@poy < Lo,

I, lisom) < Koo 103,55, lizom < o7
where Lo = Lo(K¢;). Moreover, using Proposition we have

(6.6) [[0om¥1llL2(0Ey) < Loh1, 1055, ¢1 | L2(0m9) < Loh?, 103,01 | 22(080) < Loh.
We denote by kg € N the largest index such that it holds
O0FE, C Ig(0Ey) Vk < ko.
We set Ty := kgh.
Claim 1: For every k < kg, the following holds:
Ky

(6.7) |55 208, < Ko, 1035, 55, 208, < s
4

We prove (6.7)) by induction. The base case is verified since the claim holds for k£ = 1;
see formula (6.5). Assume that the claim holds for all integers up to k& — 1. Then, by

applying Theorem , we obtain
0E, = {z + Yp(x)vp,_,(z): x € OE,_1},
lell20m,_ ) < Lihs 1Wkllneom,_ ) < L,
where Ly = L1(K, K¢). For every j > 1, we set §; = {p; gi-1; see (3.3). Using Proposition

b.2] we get

h
[ @+ o, 1don, s an'
8E]’_1

h
<) [ (& ol )l Bom, b ) aH:
-2
for every 1 < j < k. We recall (see formula (4.16))) that
1

(6.8) ¢J2. < 5]2- < \/5%2 for every j.

V2
By iterating the estimate above and using (6.5) and , we obtain

h k
/8Ek_1 (gi + 4;g(ij—1)|A8Ejl¢j|2) < (1 +Mh)k—1/

h
(&8 + 59(vm) | Dopy )
DO

2

A

eQthL%hQ

< M2 < 2L3H2,

where we have used hkg = Ty and that Ty is small. Possibly increasing the value of Ly,
and using the above inequality along with , we obtain

k
(6.9) 1vkllF20m, ) +h Y N120m Yrlli20m, ) < Lgh>.
j=1

Therefore, we can apply Proposition and conclude the proof of the claim (6.7)), possibly
after increasing the constant K.
Claim 2: Ty > 0.

We can assume that for the set Ej,, there exists a point ¢ € Ey, such that dist(xo, Fo) >
g. The set E}, satisfies the assumptions of Lemma and therefore it is a A-minimizer
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0Ey

OE}

1
Vpt1 OBkt1

Figure 1. Boundary of Ej, Fr41 and functions fx, fi+1, Yr+1

of the ¢-perimeter for a A that is independent of h. Consequently, for Ej, the density
estimates are satisfied, both for the perimeter and for the volume; see [§]. Using these
density estimates together with the inequality dist(xg, Ep) > g, we obtain

|Ek0AE0| Z 61827

where ¢ depends on A. Now, using the inequality above together with , and the
triangular inequality, we derive

k;() k'() kO
1
cB? < |EpAE| <Y |EAE; 1| = N&len;,_ ) < P(Ej-1)2 Y &]r20m, 1)
j=1 j=1 j=1

ko

ko
1 1
< CoPp(Bi1)2 Y & Ir20m, 1) < Co(Po(Eo) + K102 Y 145l 1205,
j=1 j=1

1 1
< Co(Po(Eo) + K3|9)2 Lokoh = Co(Pp(Eo) + K590)% LoTo
where we have used that P,(E;) < K2|Q| + P,(Ep), which follows from the minimizing

movements scheme.
Claim 3: There exist constants Cy, 01 > 0 such that

(6.10) Ej € ¢, 4, (Eo) for all 0 < j < k.

This claim follows by adapting the arguments from the proof of Theorem We provide
here a sketch of the proof. As in the previous claim, we may apply Lemma [4.7, which
implies that each F; is a A-minimizer of the y-perimeter for some A independent of h.
Then, using Lemma we deduce that each Ej; is a normal graph over 0Ey, with

dist(0E;,0Ep) < B < o1 for all j.

If oy is small enough, we can again apply Lemma to conclude that each F; is a normal
graph over OEy. Therefore, there exist functions f; : 9FEy — R such that

IE; = {x + fj(x)vg,(z): © € OEy}.

Moreover, by Lemma we have that || f;||c1.+(0Ey) < C for some C' > 0. Using formula
(6.7) (the bound Hn‘ngHz(an) < Ko) we deduce that || f;l| g1(sr,) < Co-
Claim 4: There exists a constant L;;, > 0 such that for all 0 <7,k < ko,

(6.11) Ifi = fllor@me) < Luphl — 141 — K.
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Without loss of generality, suppose ¢ < k. The claim follows from the following estimate:

k k
Ifi = fellromy) < IERAE] < D IEBAE; = Y (&l
j=it1 jmit

k
1
<P(Ej-1)? Y &lr20m, 1)
j=it1

k
1
< V2KLIQ+ P(Eo)? Y 1Willezos, )
Jj=i+1

< VR(KZ|Q| + P(Eo))? Lo(k — i — 1)h,
where we have used

(6.9).
Hence, combining ((6.10) and (6.11]) and by a standard application of the Ascoli Arzela

Theorem, commonly used in the analysis of minimizing movements, we conclude that there
exists a subsequence {h,, }men such that f, (t) — f5(t) in L'(OEy) for a.e. t € [0,Ty] as
m — +00, where

(6.12) 7 € Lip([0, To], L' (0Fv)), 7 € L=([0, Tv], H*(Ep)).

in what follows we omit the dependence on m for this subsequence. Therefore by the
Sobolev embedding, we get f2 € L>(]0, Tp], C’3’%(6E0)). We define the family {Ef}te[O,To]
by

(6.13) EPAEy C 1,,(0Ey) and 9E! := {x + fP(t,2)vg,(z): © € OEy}.

. o . 3,1
Recall that ugjel’h is a minimizer of the problem (6.1]), with uIE(;“h ec¢ K:(Q,RZ). Then,
up to subsequence, by Lemma [6.1, we obtain

K,

by e 63’%(9 R?) as h — 0T
up! u g in &t (9 as ,

1%}
h t

Ko, . e .
where uEgl’ is a minimizer of (6.2]). Thus, we obtain that

t
1

ufs? € argmin / QE()dr: u € €4 (QR), ulpa = wo -
E Q\E# (1) “

t

Claim 5: EE is a solution of equation (/6.3)).
We define the discrete normal velocity on 0F; as

Vi:0E; =R, Vj:= %ﬁﬂ‘

Let W; : 0Ey — OFE; be defined by
Uj(x) =z + fj(x)vg, ().
We recall that

J05() = /(L + f(@)rpy (2))? + o, (@) = € OF,.
We also define N, : 0Ey — R? by

Nj(l‘) . _aanfj(:E)

T 1+ kg (2)f(x)

TE, () + vE, ().

We observe that
J U5

Ni| = ————.
| ]| 1+"€E0f]
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Subclaim: The following holds:

. fiv1 = [
(6.14) hli%l VoW, — J|J;V |h]||L2 (0Ey) = 0

Using the estimate in we obtain
1
1¥j+1 0 Ujlleromey < Ch? and [[$11 0 )|l 12(95,) < Ch.
From the bounds || f;||c1.~(0Ep) < € and the previous estimate, we deduce
1
|fi+1(z) = fi(2)| < Clpjp1 0 Vj(x)| Vo € OEp and || fj+1 — fillor(am,) < Ch2.
Let G : 0Eyp — R be a function such that ||G||c1(9g,) < Ch? for some 7. We define
U, : 0Ey — R?, Uy(x) := x + tvg, (),
and we recall that J, ¥, = 1 + tkg,.Applying the coarea formula, we get:

/Rz G o opy () (XEJ+1 (z) — xB; (DU)) dx

- G(.%') /U1 (XEj+1(qjt(x)) - XEJ(\IIt(x))) (1 + tHEO (.T}) dt d,Hit
0Ey

—0o1

fi+1(2) )
(6.15) _ / G(z) / (14 tro, (x)) dt dH.
OEy fi(z)

= G()(fi1(x) = fi(2)) (L + fi(2)kp, () dHg + o(h?)

OFEy

(o fiv1(z) — fi () Ly o(p2
o, O I ) dHa o)

We define
@, OF —» R?, ®;4(z) := 2 + tvg, (2),

and we recall J;®;; = 1+ tkg,. We compute the integral Sz G o maE,(x) (XEj+1(.%') —
XE; (ZL‘)) dx in a different way from ((6.15)):

(6.16)

- Go TOEy (l’) (XE]'+1 (CL‘) — XE; (IE)) dzx

B
— [ G0 man (B50) (X (B0)) = X (B30))) (1 + b () it M
oE; J—p

¢j+1
_ / / G o momy (Uja(2))(1 + tr, (z)) dt dHY
oE; Jo

Vji+1
_ /M/D (G o momy (W;4(x)) — G o Ty (x) + G o g, (x)) (1 + thip, (x)) dt dH:
= [ 4ia@)G o mam, (@) ath + o)
OE;
= Yjr1 0 U,(2)G ()], V() dHL + o(h?).

Comparing ((6.15) and (6.16) we find that for all G : 9Ey — R with ||Gl|c1(9g,) < Ch7, it
holds true

(6.17) - G(x)J, V() {wjﬂ oW;(x) — fj“’(]‘@ (;){j(“") dH! = o(h?).
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We define

_
J7¥;(x)

(6.18) G(z) =

b0 et

[N ()]
A straightforward computation yields ||G||c1(9g,) < Ch? for some v € (0,1). Plugging

(6.18) into (6.17) gives (6.14).
We now return to the main claim: ” E#(t) is a solution of (6.3)”. Up to now, we have
established:

f]+1 f]

< C for all jh < Tp.
|N\h < C for all jh < Ty

L2(0Ey)

(6.19)  |Ifillar@my) < Co, [fillLeom) < o1,

Therefore, using (6.19)), along with (6.14)) and (6.12]) we conclude:

. Ofh(t,-)
2 JL*(0Ey) — 1 oW,() = L2l T
(6 0) (8 0) hg€+v]o J() ‘N(t,” Y Orte[()? 0]’
where |N(t,z)| = S @ ang Uy (x) = = + fB(t,x)vg,(z) for © € OEy. Let

1+f5 (tzx)nE() (1‘)
I € C?(R?). Multiplying the Euler-Lagrange equation (4.58)) by [ and integrating by parts
yields:

Lty + [ el it ant
OE;

op;, N

- /a (v, (@) O, 0 (@), () L
(6.21) I

" o, QE(ug: ))& + i1 (2)vp, (x))0p, 1 (x) dH),

+ / R(2)03p,1(x) dH,y.
OE;

We observe that

2
m [0 e an
o sl
. J+1IL2(0F;)
< hli%{r ||”|L00(R2)TH¢J+1||LOO ory) e, 208, = 0,

where we have used . Thank the result of the previous claim we also have that
1j+1llm20m;) < CRY.

Recalling the definition of R (see formula (4.48)), we have:

(6.23) |l 2(om5) < CHY.

Therefore, we can pass to the limit as h — 07, in the equation , and using
and (6.23), we conclude that E(t) is a distributional solution of in [0, Tp]. Moreover
from (6.19) and (6.13). we get f° € Lip(]0, To], L*(OEp)).
Claim 6: Tt is holds true .

Using formula and Proposition we get

2 1
00z £t Mazor) < O Misomy S0 1570 i o)
€10,10

0«\!0

< Cts.



THE ANISOTROPIC SURFACE DIFFUSION WITH ELASTICITY IN THE PLANE 47

Using the estimate above, together with (6.12]), (2.14) and the Sobolev embedding, we
deduce

1
B+ . < B (¢ B¢ 14
172ty < O 380 157 Mg 170Ny
< Ctar.
(|

We now recall the statement of Lemma 3.2 from [30], which we will use in the next
theorem.

Lemma 6.3. Let0<a< <1, M >0 and k € N. Then there exists C > 0 such that
for any F, F € (’:]f\f(Eo), the following estimate holds:

(6.24)  Nlur(-+or()ve, () = up(- + 050 )ve,(Dlcre@r) < Clier = ¢illoreor,)

where
OF = {z + ¢p(z)vg,(z) : © € OEp}, OF = {x + pp(x)vp,(z) : « € OE}.

We are now in a position to prove that the minimizing movement scheme converges to
the classical solution of (|1.5)), provided that the initial data E is sufficiently smooth and
K is sufficiently large.

Theorem 6.4. There exist constants K. and T such that any family {E }te[O 1,] Obtained
in Theorem[6.9 is a solution of the problem (L.5)) in [0,T5].

Proof. Thanks the regularity of 0Ey and using classical elliptic regularity theory, see [2],
[32, Proposition 8.9], we know that the function ug,, which minimizes problem (3.15]) for

F = Ej, is of class C?”i(Q \ Ep) and satisfies equation (3.16)). We define the function
ug,(z) ifx € Q\ Ey,

g, (z) = n(d?E(JU))uEO (rop,(z)) ifz € Ey NZop, (0E0),

0 ifze by \IUEO (an),
where n € C°(—2,2),and n >0, n=11in (—1,1). We observe that

(6.25) Crlug,||

I EOHCSZ(Q) CS'YII(Q\EO)’

where C1 = C(||k g, |lc2(a8,)). Moreover, since ug, solves the equation (3.16]), we get

(6.26) lus |l s L(J[wol| +lusoll s o))

O\ Eo ) 3% (60) Eo)

where L is a universal constant. We define the constant K, as

Therefore, g, is a minimizer of the problem (6.2]) with this choice of K, and satisfies

”anHCS,%I(Q) < K.
Let f” be the function obtained in Theorem . and let T be the corresponding time
from the same theorem. Recall that f(0,-) = 0. By combining formulas and -

(with F = Ey and F = Ef), we get, for all ¢ € [0, Tp],

(6.27) lumy = uga -+ F2(t s, ()

1
Hcg,i(an) S Ct217
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where u B is a minimizer of (3.15)) for F' = Ef .
Claim: There exits T such that for all 0 < ¢ < T}, the function

ups () if & € 2\ E/,
UEE (x) = 77<CZE()(1')>uEf <778E0(x) + f’B(t,iU)VEO(WEO(ﬁU))) ifr e E.EB(t)

TE,
is a minimizer of (6.2) for F = E/ and satisfies || 2|
t
As in formulas (6.25)) and (6.26)), we obtain
sl g gy < Crlllwoll ot oo + g+ P26 (D ot )

Using this and (6.27]), we conclude that

K.
CS’%(Q) < K

< CrL(lwo| et

< Kel7
for ¢ sufficiently small. By the minimality of u s in (3.15)), we get that @ s is a minimizer
t t

of 2.
Therefore, there exist constants K, Ts such that the family {Etﬁ Yeelo,r,) satisfies (6.3)).

Moreover, the minimizer @ B of (6.2)) satisfies ||a Eéa||03, @) < K¢ and

+ [lum,ll

gl o4 ) 1 (60) ot (3E0))

iy (x) = upp () for all 7 € Q\ E’,

where Upp is a minimizer of (3.15). Hence, we conclude that the family {Ef Yeeo,m)s

parametrized by the diffeomorphisms ®;(z) = 2 + f?(t, 2)vg,, constitutes a strong solution
to the anisotropic surface diffusion equation with elasticity. More precisely, using the
expansion of the curvature from and the expansion of the Laplace—Beltrami operator
as in [30], we find that the function f° : [0,Ty] x 0Ey — R is a strong solution to the
equation (see formulas (3.6), (3.32), and (3.38) in [30])

o f?

1 aT((g(VEf)K’Ef _Q(E(uEf))) OW(;;B)
(6.28) <

= Or L], on OF
1+ [Pk, V(1 + fPrpy)? + 0-f5]2 > ’
£2(0,-) = 0 on HEj.

By a strong solution, we mean that f# € Lip([0, 7], L?>(0Ep)) N L>=([0, Ts), H*(0F)) and
that it satisfies equation almost everywhere. Using Gronwall’s lemma, one can
deduce that the strong solution to with zero initial data is unique. This implies that
the limiting flat flow coincides with the classical solution of on the interval [0,T5]. O

We recall the definition of uniform ball condition.

Definition 6.5. We say that a set E C R? satisfies the uniform ball condition (UBC) with
a giwven radius r > 0 if for every x € OF there are balls B.(xy) and B,(x_) such that

By(z,) CR?*\E, B,(z_)CE andz € 0B,(zy) N OB, (z_).

Remark 6.6. We may quantify the statement of Theorem as follows : Let Ey @
be a open connected set of class C° and that satisfies the UBC with radius 2rg, and the
heightfunction 11, see Theorem[6.3, satisfies

lV1ll20m0) < Loh  and || Agm, 1l 2(ng) < LoVh.
Then there is Ko = Ko(ro, Lo) and By = Bo(ro, Ko) such that if

_1
165, | 20m0) < Ko and  [[Vog,Aog,kg, L2 @08, < Koh™
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then the discrete constrained flat flow {Ef’ﬁ}tzo, where B < Bo, also satisfies the UBC with
radius ro, and

_1
||H’§thﬁ||H2(8Et’“’3) <Ky and ||v8E?,BAaEth,BK/§thﬁ||L2(8E£1,6) < Koh™1
for allt € [0,Ts], where Ts = Ty(rg, Ko).-

Remark 6.7. The arguments in the proofs of Theorems and imply that if a
constrained discrete flat flow {Eth’ﬁ}tzo, starting from Ey, satisfies

_1
”/‘Cglz,,@”H%BEfaﬂ) < Ko and Hv@Ef’ﬁAc’)Et}“ﬂHgthﬁHL2(aEt”’5) < Koh™1

for all t € [0,T], then the limiting flat flow coincides with the classical solution on the
time interval [0, Ts).

7. CONVERGENCE TO THE GLOBAL SOLUTION

We recall that the classical solution of with initial datum FEj exists on the interval
[0,T.), where T.denotes the maximal existence time. In this subsection, we prove that for
every T' < T, there exist §(T') and K (T') such that the constrained discrete flat flow with
initial datum Ej converges to the classical solution of on [0,T] as h — 0T. The proof
of the next theorem is similar to the one presented in [18][Theorem 1.2], but we include it
here for the reader’s convenience.

Theorem 7.1. Let {Ei}ycpo1,) be a classical solution of (L.5)) with initial datum Ey. Then
for every T < T, there exist S(T") and K¢ (T') such that for all 5 € (0, 8(T")] the constrained
flat flow Etﬂ, starting from Ey, coincide with Ey in [0,T].

Proof. Let {Ei}c(0,1.) be the classical solution of (1.5)), and let T' < T be fixed. Since the
classical solution is regular on [0, 7], there exist constants Ky, o9, and K,; such that

Ey € H%,.0,(Eo), e, |l o3 < K, forallt e [0,T],

where g, is the function defined by , where we replaced Ef with E;. It is easy to
check that the condition F; € 5’)%(27 #,(Eo) implies that there exists 7o > 0 such that E;
satisfies the UBC with rg. Let 3y, Ts be the constants obtained in Theorems and
Remark [6.6] for

K =4K,.
We fix 8 < fo. Let ko € N be such that Ty € [hko, h(ko + 1)), and let (E/"”)ren be a
discrete constrained flat flow starting from Ey. As in Theorem we have

OEN? = (& + 1 (x)vpo(x): x € DE ),
1l z2aE0) < Lohs |91l g2 aE0) < Lo,
. K
3 0
HHEZ’BHHQ(aEZ’B) < Ko, ”aﬁEhvﬁKgZ,ﬂHLQ(aEﬁﬁ) < hfi,
where Ly and Ky are as in (6.5)), with Ko > K. We adopt the following notation:

El .= EMB(t), By := E}Izl’f, and recall (3.23]) for the definition of Ef”ﬁ. The conclusion of
the theorem follows from the next claim, together with Remarks and
Claim: For evert t € [0, T

Ko
(7.1) HHE{L”H%aEf) < Ko, HagEth’fgthHB(aEf) < E
By Theorem estimate ([7.1) holds for all t € [0,7s]. We define

(7.2) t = inf{t € [T, T] : formula (7.1)) is true for all t € [0,]}.
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We will show that (7.1)) continues to hold for all ¢ < £+ %, which implies the claim. To this

end, let k € N be such that £ — % e [hk, (k + 1)h) satisfies (7.1]), we apply Theorems
and With Ey = Ej, to obtain there exist k1 € N and ¢ > 0 (we recall that ¢ = c¢(K, Ko

such that 0 < ¢ < hky = T) < Ty, and for all k € {k,... , k+ki}
OBy, = {z + Yp(x)vg,_,(x): x € OEK_1}.
Using formula , we obtain
k+ky
Wk”%?(aEk,l) +h Z ||A8Ek,1¢k||%2(615k,1) < Ch?,

j=k
for some constant C. Since 0 < ¢ < hky = T, there exists k € {k,...,k+ L%J} such that
(7.3) 1Willrzoe,_ ) + 1808, YillLear, ) < Ch.

From the above and using the very definition of ¢, see(7.2]), we get
A ~ k -
hk < h(k + LZIJ) <t
Recall that in the minimizing movement scheme, each set Ej; is of class C?, since it solves

the Euler-Lagrange equation (4.57). Moreover, E; is uniformly C’3’%—regular. Let t), = kh
and we set

h V()
t = .
v ( h» x) h
By (7.3) and the Sobolev embedding theorem, we obtain
h .
(74) ”1} (tha )HCL%(E’E@,J < C.

Since t), = kh € [t — %, t], by passing to a subsequence if necessary, we can assume
(7.5) 3 lim tp =t.

h—0t+
From (|7.4) and ([7.5]), we conclude

V" (t,) = v(,-)in CV2 as h — 0%, |ju(Z, ") <c.

o1 3 omoe) =
Hence,

. h = ||v(t, -
Jm o, llz2om; ) = 1o ) om0

Since we assumed that ([7.1]) holds for all ¢ < f, and 7 < ¢, Remark implies that the flat
flow agrees with the classical solution up to time t. Using (6.20) and (6.14) with E(t — %)
in place of Ey, we find that v(¢,-) coincides with the normal velocity V; of the classical
solution {E;}¢>0, and

H‘/EHLQ((?EE) = Hv(t_v )HL2(8E?)
By the definition of K (K¢ = 4 max{ Ko, Kel}) and using equation ((1.5)), we get

el

~ K
Vil 20ry) = 180k, (vE, — Q(E(ur,)) 1208, < K2 + Ka < ==

Hence, we conclude

K.
Lh.

lVrll20m, ) <

[\

Using (7.3)), we also have
1808, Vkllr20m,_,) < Ch < KaVh
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for h small enough. Finally, since Ef = E{B is uniformly 32 regular with bound C, the
same holds for F; is uniformly C3’%, with a bound 2C. Ther}, applying RemaAfks and
with Ej instead of Ep, we deduce that (7.1 holds on [kh, kh + Ty],. Since kh € [t — %, t],

this implies that Eth satisfies (7.1]) on [0, + %] Repeating this argument a finite number
of times yields the claim. O
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