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1 Introduction

Approximate differentiability a.e. of vector valued non-smooth maps is a fundamental property in order to
deal with currents carried by graphs of non-smooth maps, compare Giaquinta-Modica-Souček [9, Sec. 3.1.4].
Calderón-Zygmund theorem [7] implies that the latter property is satisfied by Sobolev functions, see [9,
Sec. 3.1.2], and also by functions of bounded variation (BV), see [4, Sec. 3.7]. However, it appears that it is
not known whether the same holds true for functions in the Sobolev-Slobodeckij trace spaces W 1−1/p,p.

More precisely, as communicated to us by G. Crippa in [1], in dimension two there is a function f in
C1,α for each 0 < α < 1 that does not satisfy the so called weak Sard property, see [2]. Correspondingly, the
function b = ∇⊥f belongs to the fractional Sobolev-Slobodeckij classes W s,p for each p > 1 and 0 < s < 1.
Therefore, such a function b does not belong to the class t1,1 (functions with first order Taylor expansion
in L1-sense), see [3]. If it were the case, in fact, the corresponding function f had to satisfy the C2-Lusin
property and, definitely, the weak Sard property. Notice that the existence of a first order Taylor expansion
in L1-sense is a slightly stronger property than approximate differentiability a.e.

Therefore, it is reasonable to conjecture the existence of maps inW 1−1/p,p that are not a.e. approximately
differentiable. Notice that it is known that traces of Sobolev maps may not be functions of bounded variation,
but to our knowledge the previous question is an open problem.

In this paper, we find a characterization of the BV property for functions in trace spaces.
For n,N ≥ 2 and Ω a bounded domain of Rn, we denote by W 1−1/p,p(Ω,RN ) the Banach space of trace

maps in Ω× {0} of the Sobolev class W 1,p(Ω× I,RN ), where I = (0, 1) and p > 1 is a real exponent.
Using the classical extension due to Gagliardo [8], to any map u ∈ W 1−1/p,p(Ω,RN ) we associate a

Sobolev function Ext(u) ∈W 1,p(Ω× I,RN ) given by a minimizer of the infimum problem

inf

{∫
Ω×I

|DU(x, t)|p dx dt | U ∈W 1,p(Ω× I,RN ) , U|Ω×{0} = u

}
.

The norm of maps u in W 1−1/p,p is equivalent to the norm

∥u∥Lp(Ω,RN ) + ∥DU∥Lp(Ω×I,RN ) , U = Ext(u) ,

where

∥DU∥p
Lp(Ω×I,RN )

=

∫
Ω

(∫ 1

0

|DU(x, t)|p dt
)
dx .

The main result of this paper is contained in the following

Theorem 1.1 Let u ∈ W 1−1/p,p(Ω,RN ) for some p ≥ 2. Then, u is a function of bounded variation, say
u ∈ BV (Ω,RN ), if and only if we have

lim inf
ε→0+

1

ε

∫
Ω

(∫ ε

0

∣∣∣∣ ∂U∂xi (x, t)
∣∣∣∣ dt) dx <∞ ∀ i = 1, . . . , n . (1.1)
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Notice that property (1.1) does not involve the partial derivative of the extension map U in the direction
of the variable t. Moreover, the validity of (1.1) guarantees the a.e. approximate differentiability property
of maps that are e.g. traces of Sobolev functions U in W 1,2(Ω× I,RN ).

For real valued maps u ∈W 1−1/p,p(Ω,R), Theorem 1.1 holds true for any exponent p > 1, see Remark 3.1
below. Its proof relies on some ideas contained in [10] and [1]. Roughly speaking, it is based on the analysis
of the properties of the lower order strata of the n-current

Tu := (−1)n−1(∂GU ) ((Ω× {0})× RN ) , U = Ext(u) ,

where GU is the (n+ 1)-current carried by the graph of the Sobolev map U , see [9].

2 Notation and preliminary results

We deal with mappings u : X → RN defined in a smooth, connected, compact Riemannian manifold X
without boundary, of dimension n ≥ 2. Actually, we let X = ∂M for some smooth and compact (n + 1)-
manifold M, the model case being X = Sn, the unit sphere in Rn+1. By Nash-Moser theorem, the manifold
M is isometrically embedded into some Euclidean space Rℓ. We shall equip M and X with the metric
induced by the Euclidean norm on the ambient space.

For x ∈ X and 0 < h < r0, where r0 > 0 is the injectivity radius of X , denote by B(x, h) the geodesic
n-ball of radius h centered at x ∈ X . For 0 < δ < r0 small, let

Mδ := {z ∈ M | dist(z,X ) ≤ δ} , X = ∂M .

There exists 0 < d < r0 such that the nearest point projection ΠM from Md onto X is well-defined, and
hence we may consider the fibration

Φ−1 : X × [0, d] → Md , (2.1)

where Φ(z) := (ΠM(z), dist(z,X )) for any z ∈ Md.

2.1 Trace spaces

The fractional Sobolev-Slobodeckij space W 1−1/p,p(X ), where p > 1 is a real exponent, is the Banach space
of Lp-functions u : X → R which have finite W 1−1/p,p-seminorm

|u|p1−1/p,X :=

∫
X

∫
X

|u(x)− u(y)|p

|x− y|n+p−1
dHn(x) dHn(y) ,

where Hk is the k-dimensional Hausdorff measure in Rℓ, endowed with the norm

∥u∥p1−1/p,X := ∥u∥pLp(X ) + |u|p1−1/p,X . (2.2)

We denote by W 1−1/p,p(X ,RN ) the space of vector valued maps u : X → RN with components uj ∈
W 1−1/p,p(X ) for every j = 1, . . . , N . Since X = ∂M for some smooth manifold M, thenW 1−1/p,p(∂M,RN )
can be characterized as the space of functions u that are traces of functions U in the Sobolev space
W 1,p(M,RN ).

Following Bethuel-Demengel [5], to each map u ∈ W 1−1/p,p(X ,RN ) we associate a function Ũ in

W 1,p(Md,RN ) given by Ũ = v ◦ Φ, where

v(x, h) := −
∫
B(x,h)

u dHn , (x, h) ∈ X×]0, d] . (2.3)

It turns out that Ũ ∈ W 1,p(Md,RN ) and Ũ is smooth outside X , with Ũ|X = u in the sense of the traces,
compare [8]. Moreover, setting uh(x) := v(x, h), we have (cf. [1, Prop. 1.1])

Proposition 2.1 uh → u strongly in W 1−1/p,p as h→ 0+.
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2.2 Semi-currents carried by graphs

We refer to [9] for the basic notation on the theory of currents. According to [10], every compactly supported
smooth differential k-form ω ∈ Dk(X × RN ), where k ≤ n, splits as a sum

ω =
∑k

j=0
ω(j) , k := min(k,N) .

Here the ω(j)’s are the k-forms that contain exactly j differentials in the vertical RN variables. For fixed
r = 1, . . . , k we denote by Dk,r(X ×RN ) the subspace of Dk(X ×RN ) of k-forms of the type ω =

∑r
j=0 ω

(j).

The dual space of “semi-currents” is denoted by Dk,r(X × RN ). Of course we have Dk,k = Dk, the space of
all k-currents. A similar notation holds by replacing X with M or Md.

Example 2.2 If U ∈ W 1,p(M,RN ), then the graph current GU is a well defined (n + 1,p)-current in
Dn+1,p(M× RN ), where we have set

p := min{[p], N} , with [p] the integer part of p .

Denoting by f ▷◁ g the join map (f ▷◁ g)(x) := (f(x), g(x)), in an approximate sense we have

GU := (IdM ▷◁ U)#[[M ]] .

For example, if ω = γ ∧ η ∈ Dn+1(M × RN ), where γ ∈ Dn+1−h(M), η ∈ Dh(RN ), and 0 ≤ h ≤
min{n+ 1,p}, by the area formula we have

⟨GU , γ ∧ η⟩ = ⟨[[M ]], (IdM ▷◁ U)#(γ ∧ η)⟩ = ⟨[[M ]], γ ∧ U#η⟩ =
∫
M
γ ∧ U#η .

Setting moreover
∥GU∥ := sup

{
⟨GU , ω⟩ | ω ∈ Dn+1,p(M× RN ), ∥ω∥ ≤ 1

}
,

where ∥ω∥ is the comass norm of ω, by using the parallelogram inequality we infer that

∥GU∥ ≤ C

∫
M
(1 + |DU |p) dHn+1 <∞

for some absolute constant C = C(n, p,M) > 0, not depending on U . As a consequence, if p ≥ N
it turns out that GU is an integer multiplicity rectifiable (n + 1)-current in Md × RN with finite mass,
M(GU ) = ∥GU∥ <∞, compare [9].

Definition 2.3 To any map u ∈ W 1−1/p,p(X ,RN ) we associate a Sobolev map Ext(u) ∈ W 1,p(M,RN )
given by a minimizer of the infimum problem

inf

{∫
M

|DU |p dHn+1 | U ∈W 1,p(M,RN ) , U|X = u

}
.

The (n,p− 1)-current Tu in Dn,p−1(X × RN ) carried by the graph of u is given by

Tu := (−1)n−1(∂GU ) (X × RN ) on Dn,p−1(X × RN ) , (2.4)

where U := Ext(u) and GU ∈ Dn+1,p(M× RN ) is defined as in Example 2.2.

More precisely, for each δ > 0 we choose a cut-off function η = ηδ ∈ C∞([0, δ], [0, 1]) such that η(t) = 1
for 0 ≤ t ≤ δ/4, η(t) = 0 for 3δ/4 ≤ t ≤ δ, and ∥η′∥ ≤ 4/δ. Then, on account of (2.1), to each smooth
n-form ω ∈ Dn(X × RN ) we associate the smooth n-form ω̃ in Mδ × RN given by

ω̃ := (Φ ▷◁ IdNR )#ω ∧ η , (Φ ▷◁ IdNR )(z, y) := (Φ(z), y) . (2.5)

Now, since U is smooth out of X , the above formula (2.4) reads as

⟨Tu, ω⟩ = ⟨Tu, ω̃⟩ := (−1)n−1⟨GU , dω̃⟩ ∀ω ∈ Dn,p−1(X × RN ) , (2.6)

where we can choose η = η(δ) independently of 0 < δ < d.
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Remark 2.4 The above definition, introduced in [10], does not depend on the choice of the Sobolev ex-
tension. In fact, in [9, Sec. 3.2.5] it is shown that two Sobolev maps U1, U2 ∈ W 1,p(M,RN ) have the same
traces on ∂M, i.e., U1|X = U2|X , if and only if

(∂GU1
) (X × RN ) = (∂GU2

) (X × RN ) on Dn,p−1(X × RN ) .

Moreover, the following null-boundary condition holds true (cf. [1, Prop. 2.4]).

Proposition 2.5 If p ≥ 2, for every u ∈W 1−1/p,p(X ,RN ) we have

⟨∂Tu, ξ⟩ := ⟨Tu, dξ⟩ = 0 ∀ ξ ∈ Dn−1,p−2(X × RN ) . (2.7)

Notice that if X = S2 and N = 2, the function

u(x1, x2, x3) :=
(x1, x2)

|(x1, x2)|

belongs to u ∈W 1−1/p,p(S2,R2) for each exponent p < 3, whence p = 2, but one has

∂Tu = (δP− − δP+
)× [[S1 ]] on D1(S2 × R2) ,

where [[S1 ]] is the 1-current corresponding to integration on the naturally oriented unit circle S1, and δP±

denotes the unit Dirac mass at the point P± := (0, 0,±1). Therefore, u is not a Cartesian map in the sense
of [9].

2.3 Functions of bounded variation

If Ω ⊂ Rn is a bounded domain, a summable function u ∈ L1(Ω,RN ) is said to be of bounded variation,
u ∈ BV (Ω,RN ), if the distributional derivative Du is an RN×n-valued Borel measure in Ω with finite total
variation, |Du|(Ω) < ∞. In that case, u is approximately differentiable a.e. in Ω and the approximate
gradient ∇u agrees with the Radon-Nikodym derivative of Du with respect to the Lebesgue measure in Rn.
We refer to the treatise [4] for further details.

3 Currents carried by graphs in W 1−1/p,p

Let Tu be the semi-current given by Definition 2.3 for some map u ∈ W 1−1/p,p(X ,RN ), where p ≥ 2.
Following [10], in this section we write explicitly the action of the “lower” components of Tu in terms of the
W 1,p extension map U .

We assume for simplicity X = Ω, a bounded domain in Rn, and Mδ = Ω × [0, δ]. In fact, the general
case of mappings u : X → RN is recovered by means of local coordinates and a partition of unity argument.

Notice that Tu agrees with the n-current Gu carried by the rectifiable graph Gu if u is a Sobolev map
in W 1,q(Ω,RN ), where q ≥ min{n,N}, or, more generally, if u ∈ BV (Ω,RN ) and the determinant of any
minor of the approximate gradient matrix ∇u ∈ RN×n is summable in Ω.

According to (2.4), we decompose Tu =
∑p−1

j=0 Tu(j), where Tu(j) is the component of Tu acting on forms

in Dn(Ω× RN ) with exactly j vertical differentials:

⟨Tu(j), ω⟩ := ⟨Tu, ω(j)⟩ , ω ∈ Dn(Ω× RN ) .

For 0 < ε ≪ δ, set ηε(t) := 1− t/ε for 0 ≤ t ≤ ε and ηε(t) ≡ 0 for t ≥ ε. For each ω ∈ Dn,p−1(Ω× RN )
we have

(−1)n−1⟨Tu, ω⟩ = ⟨GU , η
′
ε(t)ω ∧ dt+ ηε(t) ∧ dω⟩ . (3.1)

Setting U = (U1, . . . , UN ), for j = 1, . . . , N we denote

DtU
j(x, t) :=

∂U j

∂t
(x, t) , DiU

j(x, t) :=
∂U j

∂xi
(x, t) , i = 1, . . . , n .
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3.1 The component Tu(0)

If ω = ϕ(x)ψ(y) dx, where ϕ ∈ C∞
c (Ω) and ψ ∈ C∞

c (RN ), formula (3.1) gives

⟨Tu, ϕ(x)ψ(y) dx⟩ =

∫
Ω

ϕ(x) −
∫
[0,ε]

ψ(U(x, t)) dt dx

−
N∑
j=1

∫
Ω

ϕ(x)

∫ ε

0

ηε(t)
∂ψ

∂yj
(U(x, t))DtU

j(x, t) dt dx .

Since U ∈W 1,1(Ω× (0, δ),RN ), passing to the limit as ε→ 0 we get

⟨Tu, ϕ(x)ψ(y) dx⟩ =
∫
Ω

ϕ(x)ψ(u(x)) dx .

By a density argument, this yields that

⟨Tu, ϕ(x, y) dx⟩ =
∫
Ω

ϕ(x, u(x)) dx ∀ϕ ∈ C∞
c (Ω× RN ) . (3.2)

In particular, we have: M(Tu(0)) <∞.

3.2 The component Tu(1)

If ω = ϕ(x)ψ(y) d̂xi ∧ dyj , where d̂xi := dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn, by (3.1) we get

⟨Tu, ϕ(x)ψ(y) d̂xi ∧ dyj⟩ = (−1)i−1

∫
Ω

ϕ(x) −
∫
[0,ε]

ψ(U(x, t))DiU
j(x, t) dt dx

+(−1)i−1

∫
Ω

∂ϕ

∂xi
(x)

∫ ε

0

ηε(t)ψ(U(x, t))DtU
j(x, t) dt dx

+(−1)n+i−1
∑
k ̸=j

∫
Ω

ϕ(x)

∫ ε

0

ηε(t)
∂ψ

∂yk
(U(x, t))

∂(U j , Uk)

∂(xi, t)
(x, t) dt dx .

(3.3)

Since U ∈ W 1,2(Ω × (0, δ)), both the terms ∂(Uj ,Uk)
∂(xi,t)

and DtU are summable functions in Ω × (0, δ), and

hence the last two integrals in (3.3) go to zero as ε→ 0.

Remark 3.1 We thus deduce that Tu(1) has finite mass provided that property (1.1) holds true. In addition,
in case N = 1, the same conclusion holds true for any exponent p > 1.

4 Proof of the Main Result

We proof Theorem 1.1 in two steps. We then give an example of W 1/2,2 maps that are not functions of
bounded variation, and collect some final remarks.

4.1 Step 1

We show that if (1.1) holds, then u ∈ BV (Ω,RN ). We follow the lines in [1, Prop. 3.4], where we used
arguments taken from Thm. 3 in [9, Sec. 4.2.3].

Since u ∈ W 1−1/p,p(Ω,RN ) for some p ≥ 2, we have seen in Remark 3.1 that if property (1.1) holds,

the component Tu(1) has finite mass. We now choose the form ξ = yj φ(x) d̂xi, where φ ∈ C1(Ω) and
|Dφ| ∈ L∞, so that

dξ = (−1)i−1Diφy
j dx+ φ(x) dyj ∧ d̂xi .

Since the coefficient of (dξ)(0) grows linearly in y and the coefficient of (dξ)(1) is bounded, using that
M(Tu(0))+M(Tu(1)) <∞, the action of Tu on dξ can be computed, by approximation, as limit of ⟨Tu, dαh⟩,
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the αh being smooth (n− 1)-forms in Ω×RN with compact support and such that αh = α
(0)
h . Since p ≥ 2,

property (2.7) gives ⟨Tu, dαh⟩ = 0, and passing to the limit

0 = ⟨Tu, dξ⟩ = ⟨Tu, (−1)i−1Diφy
j dx⟩+ ⟨Tu, φ(x) dyj ∧ d̂xi⟩ ,

whence by the formula (3.2) we have∫
Ω

Diφu
j dx = (−1)i⟨Tu, φ(x) dyj ∧ d̂xi⟩ .

Setting for every ϕ = (ϕ1, . . . , ϕN ) ∈ C∞
c (Ω,RN×n)

ωϕ :=

N∑
j=1

n∑
i=1

(−1)iϕji d̂x
i ∧ dyj , ϕj = (ϕj1, . . . , ϕ

j
n) ,

by linearity this gives
N∑
j=1

∫
Ω

divϕj uj dx = ⟨Tu, ωϕ⟩ ,

and hence the estimate
|Du|(Ω) ≤ M(Tu(1)) (4.1)

follows from the definition of variation, see [4]. We thus conclude that u ∈ BV (Ω,RN ).

4.2 Step 2

We show that if u is a function of bounded variation, then property (1.1) is satisfied. To this purpose, we
recall from [1] the following approximation property:

Proposition 4.1 For n ≥ 2, let ρ : Rn → R be the summable symmetric convolution kernel given by

ρ(z) :=


1

(n− 1)αn
(|z|1−n − 1) if 0 < |z| < 1

0 elsewhere
αn := |Bn|

so that ρ ∈ L1(Rn), spt ρ = B
n
, ρ ≥ 0, and

∫
ρ(z) dz = 1. Let u ∈ L1(Bn,RN ) and U(x, t) = −

∫
Bt(x)

u(y) dy.

Then for each ε > 0 and x ∈ Bn
1−ε we have

(u ∗ ρε)(x) = −
∫
[0,ε]

U(x, t) dt , ρε(z) := ε−nρ(z/ε) .

Therefore, if u ∈ BV(Bn,RN ), for every i = 1, . . . , n we have that

lim
ε→0

∫
Bn

∣∣∣−∫
[0,ε]

DiU(x, t), dt
∣∣∣ dx = lim

ε→0

∫
Bn

|Di(u ∗ ρε)(x)| dx = |Diu|(Bn) <∞ (4.2)

and if u ∈W 1,q(Bn,RN ), the map x 7→ −
∫
[0,ε]

U(x, t) dt converges to u strongly in W 1,q, as ε→ 0.

Proof: Denote by χA the characteristic function of a set A ⊂ Rn. We have

−
∫
[0,ε]

U(x, λ) dλ =
1

αn εn

∫ 1

0

1

tn

∫
u(y)χBε t(x)(y) dy dt

=
1

αn εn

∫
Bε(x)

u(y)

∫ 1

0

1

tn
χBε t(x)(y) dt dy

=
1

αn εn

∫
Bε(x)

u(y)

∫ 1

|x−y|/ε

1

tn
dt dy

=
1

εn

∫
Bε(x)

u(y)
1

(n− 1)αn

(∣∣∣x− y

ε

∣∣∣1−n

− 1
)
dy

=

∫
u(y)ρε(x− y) dy =: (u ∗ ρε)(x) .
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The other assertions follow from standard arguments, compare [4]. □

Now, since for every u ∈W 1−1/p,p(Ω,RN ) and every ε > 0 small we have

1

ε

∫
Ω

∫ ε

0

|DiU(x, t)| dt dx ≤
∫
Bn

∣∣∣−∫
[0,ε]

DiU(x, t), dt
∣∣∣ dx

for i = 1, . . . , n, by the limit in (4.2) we infer that if u ∈ BV (Ω,RN ), then property (1.1) holds, and the
proof is complete.

4.3 A counterexample

Denoting for simplicity H1/2 = W 1/2,2, we give an example taken from [1] of maps u ∈ H1/2(B2,R2) that
do not have bounded variation, u /∈ BV(B2,R2).

Following [6, Ex. 5], let f(x) = | log |x||α, where x ∈ Rn and 0 < α < 1. Then f ∈ W 1,n
loc (Rn) provided

that n > 1/(1− α). As a consequence, setting Ω = (−1, 1)2 and x = (x1, x2) ∈ Ω, the function v : Ω → R2

given by

v(x1, x2) := (| log |x1||α, | log |x2||α) , 0 < α <
1

2

belongs to the class H1/2(Ω,R2). Furthermore, denoting v = (v1, v2), we have

|Dvi| = α

|xi|
| log |x1||α−1 , |detDv| = |Dv1| · |Dv2| ,

whence |Dv| /∈ L1(Ω) and detDv /∈ L1(Ω). In particular, v /∈ BV(Ω,R2).
We now modify the function v to obtain a function u = (u1, u2) ∈ H1/2(Ω,R2) such that 0 ≤ ui(x) ≤ 1

for each i, so that u takes values into the unit square [0, 1]2. To this purpose, define t0 = 1 and tn := e−n1/α

,
so that 0 < tn < tn−1 and | log |tn||α = n for each n ∈ N+, and set, for i = 1, 2,

ui(x) :=

{
| log |xi||α − n if tn+1 ≤ |xi| ≤ tn and n ∈ N is even
n− | log |xi||α if tn+1 ≤ |xi| ≤ tn and n ∈ N is odd .

The function u can be easily extended to a function u from (−2, 2)2 onto [0, 1]2 that belongs to the class
H1/2 and such that u ≡ (0, 0) at the boundary of (−2, 2)2.

4.4 Final remarks

We finally point out that if u ∈W 1−1/p,p(Ω,RN ) ∩BV , where p ≥ 2, we have

M(Tu(1)) = |Du|(Ω) . (4.3)

In addition, for every φ ∈ C∞
c (Ω× RN ) we have

⟨Tu, ϕ(x, y) d̂xi ∧ dyj⟩ = (−1)n−i

∫
Ω

ϕ(x, u(x)) dDiu
j(x) (4.4)

In fact, the averaged integral −
∫
Bε(x)

u(y) dy agrees (up to an absolute constant) with the convolution

product (u ∗ ρε)(x), where ρε(z) := ε−nρ(z/ε) for some symmetric kernel ρ ∈ L1(Rn), with spt ρ = B
n
,

ρ ≥ 0, and
∫
ρ(z) dz = 1.

Let Ωε := {x ∈ Ω | dist(x, ∂Ω) < ε}. By [4, Prop. 3.2], we have ∇(u ∗ ρε) = Du ∗ ρε in Ωε, and∫
U
|∇(u ∗ ρε)| dx → |Du|(U) as ε → 0+, for every U ⊂⊂ Ω such that |Du|(∂U) = 0, see [4, Prop. 3.7].

We thus deduce that the graph currents Guε
weakly converge (along a sequence {εj} with εj ↘ 0) in

Dn,1(Ω× RN ) to the current Tu.
By lower semicontinuity of the mass we have

M(Tu(1)) ≤ lim inf
j→∞

M(Guεj (1)
) ,
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where M(Guε(1)
) ≤

∫
Ω
|∇(u ∗ ρε)| dx. Moreover, by the weak-∗ BV-convergence with the total variation

convergence, we have

M(Guε(1)
) =

∫
Ω

|∇(u ∗ ρε)| dx→ |Du|(U) as ε→ 0+ .

Therefore, the inequality M(Tu(1)) ≤ |Du|(Ω) holds, and hence eq. (4.3) follows from the inequality (4.1).
In addition, the structure property (4.4) readily follows.

In conclusion, the maps u in the previous counterexample are such that M(Tu(1)) = ∞.
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