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Abstract. Let Ω ⊂ Rd be an open set of finite measure and let Θ be a disjoint union of two balls of
half measure. We study the stability of the full Dirichlet spectrum of Ω when its second eigenvalue
is close to the second eigenvalue of Θ. Precisely, for every k ∈ N, we provide a quantitative control
of the difference |λk(Ω)−λk(Θ)| by the variation of the second eigenvalue C(d, k)(λ2(Ω)−λ2(Θ))α,
for a suitable exponent α and a positive constant C(d, k) depending only on the dimension of the
space and the index k. We are able to find such an estimate for general k and arbitrary Ω with
α = 1

d+1
. In the particular case when λk(Ω) ≥ λk(Θ), we can improve the inequality and find an

estimate with the sharp exponent α = 1
2
.

1. Introduction

We work in the Euclidean space Rd, for some d ≥ 2. Let us denote by ωd the volume of the unit
ball of Rd and set

A =
{
Ω ⊂ Rd

∣∣ Ω open and |Ω| = ωd

}
.

In the following, by B ∈ A we denote a ball of radius equal to 1 and by Θ ∈ A a union of
two disjoint balls of measure ωd/2. The position of the balls does not affect the spectrum of the
Dirichlet Laplacian, however, in our analysis their position may play a role. This will be specified,
when necessary.

For any Ω ∈ A, let us consider the k-th eigenvalue of the Dirichlet Laplacian, multiplicity being
counted. For k ≥ 1,

(1) λk(Ω) = min
Sk⊂H1

0 (Ω)
sup

u∈Sk, u̸=0

´
Ω |∇u|2´
Ω u2

,

where Sk is a subspace of H1
0 (Ω) of dimension k. The associated eigenfunctions which achieve the

minimum are denoted by uk and solve

(2)
{

−∆uk = λk(Ω)uk in Ω,
uk = 0 in ∂Ω.

If not otherwise specified, we consider them normalized in L2(Ω).

Minimizing λk(Ω) for Ω ∈ A is an important question in spectral geometry, as it is related to the
celebrated Pólya conjecture stating

∀k ≥ 1,∀ Ω ∈ A, λk(Ω) ≥ 4π2
( k

ωd

) 2
d
.

One strategy to understand the conjecture is, for given l ∈ N, to solve the minimization problem

min{λl(Ω) : Ω ∈ A},
precisely to characterize solutions and find their properties. The key element, is that the Pólya
conjecture is known to hold for some particular class of domains and so, a suitable characterization
of the solution may provide useful information.
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Assume Ω∗
l is a minimizer of λl in A and Ω ∈ A is a set such that λl(Ω) approaches the minimal

value λl(Ω
∗
l ). We aim for a sharp control of the variation of the k-th eigenvalue by the variation of

the l-th eigenvalue. Precisely, is the following inequality true

(3) ∀k ∈ N,∀Ω ∈ A, |λk(Ω)− λk(Ω
∗
l )| ≤ C(d, k)[λl(Ω)− λl(Ω

∗
l )]

α ?

Above, α is a suitable exponent and C(d, k) is a constant depending only on the dimension and k.

At the moment, the minimizers Ω∗
l are analytically known only for l = 1 and l = 2 and are

respectively the ball B and the union of two disjoint equal balls, that we denote Θ. This is a
consequence of the Faber-Krahn and the Krahn-Szegö inequalities (see for example [10] and [11]).

For l ≥ 3 some qualitative results are known. For instance, Bucur [7] and Mazzoleni and Pratelli [16]
proved that a minimizer exists in the larger class of quasi-open sets of measure ωd. The minimizers
are bounded and of finite perimeter. Moreover, the structure of their reduced boundary was analyzed
by Kriventsov and Lin in [14, 15], but the qualitative information about their global geometry is
missing. Thus, since so little is known in the case l ≥ 3, we expect to be able to find stability
estimates like those in (3) only for the cases l = 1 and l = 2.

The case l = 1 has already been studied in the literature. As we already stated, we know that the
ball B is the minimizer to λ1 as asserted by the Faber-Krahn inequality

(4) ∀Ω ∈ A, λ1(Ω) ≥ λ1(B),

with equality if and only if Ω is a ball.

In 2006, Bertrand and Colbois in [3] where able to prove stability estimates near the ball. Precisely,
they prove that for any Ω ∈ A such that

λ1(Ω) ≤ (1 + ε)λ1(B),

it holds, if ε < εk small enough,

(5) |λk(Ω)− λk(B)| ≤ Cd,k ε
1

80 d ,

Clearly, the exponent 1
80 d is not optimal, and later in 2019, Mazzoleni and Pratelli [17] improved

the result and obtained for λ1(Ω) ≤ λ1(B) + 1 and for any η > 0

(6) −Cd,k,η(λ1(Ω)− λ1(B))
1
6
−η ≤ λk(Ω)− λk(B) ≤ Cd,k,η(λ1(Ω)− λ1(B))

1
12

−η,

and they are able to improve the exponent in dimension 2.
The sharp estimate has been obtained in 2023, by Bucur, Lamboley, Nahon and Prunier in [8], where
they prove for any Ω ∈ A and k

(7) |λk(Ω)− λk(B)| ≤ Cdk
2+ 4

dλ1(Ω)
1
2 (λ1(Ω)− λ1(B))

1
2

A key ingredient of the proof is the quantitative Faber-Krahn inequality proved in 2015 by Brasco,
de Philippis and Velichkov in [4],

(8) ∀Ω ∈ A, λ1(Ω) ≥ λ1(B) (1 + CdF1(Ω)
2).

where F1(Ω) denotes the Fraenkel asymmetry

F1(Ω) = min

{
|Ω∆B|
|Ω|

∣∣∣∣ B ⊂ Rd ball with |B| = |Ω|
}
.

We point out that inequality (7) can be improved for some specific values of k. Precisely, if λk(B) is
simple, then the exponent 1

2 on the right hand side can be replaced by the exponent 1. This result
is very fine and relies on the analysis of a degenerate free boundary problem of vectorial type. The
key point is that if λk(B) is simple then the ball is a critical set for λk, as for λ1. Intuitilvely this
makes that the variation of λk is of the same order as the variation of λ1.
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Our goal is to analyze the case l = 2 and to prove an inequality similar to (7) with the variation of
the second eigenvalue on the right hand side, variation with respect to its global minimizer which is
Θ. Indeed, we know from the Krahn-Szegö inequality that Θ minimizes λ2 in A,

(9) ∀Ω ∈ A, λ2(Ω) ≥ λ2(Θ),

with equality if and only if Ω = Θ. Moreover, a quantitative inequality has been proved by Brasco
and Pratelli [5] in 2013.

(10) ∀Ω ∈ A, λ2(Ω) ≥ λ2(Θ) (1 + CdF2(Ω)
d+1),

Here, F2(Ω) is the Fraenkel 2-asymmetry defined as follows for any open set Ω ⊂ Rd

F2(Ω) = inf

{
|Ω∆(B1 ∪B2)|

|Ω|

∣∣∣∣ B1, B2 ⊂ Rd balls, |B1 ∩B2| = 0 and |B1| = |B2| =
|Ω|
2

}
.

Below we state our main results.

Theorem 1. There exists a dimensional constant Cd > 0 such that for any Ω ∈ A, and for any
k ≥ 1, it holds,

|λk(Ω)− λk(Θ)| ≤ Cd k
2+ 4

d λ2(Ω)
d

d+1 (λ2(Ω)− λ2(Θ))
1

d+1 .

In general, we do not expect the exponent 1
d+1 to be sharp. We are able to improve the exponent

to the sharp one 1
2 in the case that λk(Ω) ≥ λk(Θ). Our second result reads

Theorem 2. There exists a dimensional constant Cd > 0 such that for any Ω ∈ A, and for any
k ≥ 1, it holds,

(λk(Ω)− λk(Θ))+ ≤ Cd k
2+ 4

d λ2(Ω)
1
2 (λ2(Ω)− λ2(Θ))

1
2 ,

where by (a)+ we denote the positive part of the number a.

As an intermediate technical step, we prove the following more general result.

Theorem 3. There exists a dimensional constant Cd > 0 such that for any Ω ∈ A and any pair of
disjoint open subset of Ω, Ω+ and Ω− verifying λ2(Ω) ≥ max(λ1(Ω

+), λ1(Ω
−)), it holds for all k ≥ 1

|λk(Ω
+ ∪ Ω−)− λk(Θ)| ≤ Cd k

2+ 4
d λ2(Ω)

1
2 (λ2(Ω)− λ2(Θ))

1
2 .

Remark 4. Notice that such couples of subsets Ω+, Ω− indeed do exist. For instance, we can choose
them to be the two nodal sets of the second eigenfunction of Ω, but other choices could be more
relevant in specific situations.

2. Preliminary results

To fix the terminology, below we recall some results useful along the proofs.

We begin with the definition and a few properties of the torsional rigidity and of the torsion function.
For any Ω ∈ A let us define the torsional rigidity of Ω, T (Ω) as

(11) T (Ω) = max
u∈H1

0 (Ω)

ˆ
Ω
2u−

ˆ
Ω
|∇u|2.

The function which achieves the maximum is the unique weak solution in H1
0 (Ω) of

(12)
{

−∆u = 1 in Ω,
u = 0 in ∂Ω.

We denote the solution by wΩ and call it torsion function. Then

T (Ω) =

ˆ
Ω
2wΩ −

ˆ
Ω
|∇wΩ|2 =

ˆ
Ω
wΩ.
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We recall the Saint-Venant inequality (see for instance [10] and [11])

(13) ∀Ω ∈ A, T (Ω) ≤ T (B),

with equality if and only if Ω is a ball, up to a set of zero capacity.

And we also recall the Talenti inequality (see [18, Theorem 2]) that states that the supremum of the
torsion function is also maximized at the ball

(14) ∀Ω ∈ A, ∥wΩ∥L∞(Ω) ≤ ∥wB∥L∞(B).

We recall from [7] the following estimate, which shows that one can control the difference of the
eigenvalues by the difference between torsional rigidities, between an open set Ω and a subset Ω′.

Lemma 5. For any Ω ∈ A and Ω′ ⊂ Ω open, it holds for all k ≥ 1,

0 ≤ 1

λk(Ω)
− 1

λk(Ω′)
≤ exp(1/(4π)) k λk(Ω)

d/2(T (Ω)− T (Ω′)).

We also quote a result by Cheng and Yang (see [9, Theorem 3.1]) which comes as an improvement
of an older less general result form Ashbaugh and Benguria [1] that gives a control of the maximal
ratio between the k-th and the first eigenvalues of a given open set.

Lemma 6. For any Ω ∈ A, and for all k ≥ 1,

λk(Ω) ≤
(
1 +

4

d

)
k

2
d λ1(Ω).

We also recall the Kohler-Jobin inequality for any open set of finite measure Ω ⊂ Rd, see [12] and
[13],

(15) λ1(Ω)
d+2
2 T (Ω) ≥ λ1(B)

d+2
2 T (B).

Notice here that the exponent d+2
2 is such that the functional Ω 7→ λ1(Ω)

d+2
2 T (Ω) is scale invariant.

We present below some results that are specific to the second eigenvalue λ2. They play a fundamental
role in the proof of Theorem 1. For l ≥ 3, such results are not available, so that it is not possible to
adapt the proof of Theorem 1 to higher eigenvalues λl with l ≥ 3.

We start by recalling a decomposition result for the second eigenvalue proved in [5, Lemma 3.1].

Lemma 7. Let Ω ∈ A. There exists two disjoint subsets Ω+,Ω− ⊂ Ω such that

λ2(Ω) = max{λ1(Ω
+), λ1(Ω

−)}.

Note that if Ω is connected, then Ω+ and Ω− correspond to the nodal sets of an eigenfunction u2
associated to λ2(Ω), namely Ω+ = {u2 > 0}, Ω− = {u2 < 0}. In that case λ2(Ω) = λ1(Ω

+) =
λ1(Ω

−). If Ω is disconnected, the construction of Ω+,Ω− may (or not) use two different connected
components, possibly making that the difference Ω \ (Ω+ ∪ Ω−) is a set of positive measure.

At the end this section we recall a Kohler-Jobin type inequality for the second eigenvalue

(16) ∀Ω ⊂ A, λ2(Ω)
d+2
2 T (Ω) ≥ λ2(Θ)

d+2
2 T (Θ).

This inequality comes as a consequence of [2, Lemma 6], yet we give it here a simple proof for the
sake of completeness.
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Proof. Take Ω in A, by Lemma 7 there exists two disjoint open subsets of Ω, Ω+ and Ω− such that
λ2(Ω) = max{λ1(Ω

+), λ1(Ω
−)} and also, by inclusion, T (Ω) ≥ T (Ω+) + T (Ω−). Then, take B1/2 a

ball of volume ωd/2 we have by the Kohler-Jobin inequality (15),

λ1(Ω
+)

d+2
2 T (Ω+) ≥ λ1(B

1/2)
d+2
2 T (B1/2),

λ1(Ω
−)

d+2
2 T (Ω−) ≥ λ1(B

1/2)
d+2
2 T (B1/2).

Then, we can compute

λ2(Ω)
d+2
2 T (Ω) ≥ max{λ1(Ω

+), λ1(Ω
−)}

d+2
2 (T (Ω+) + T (Ω−))

≥ λ1(Ω
+)

d+2
2 T (Ω+) + λ1(Ω

−)
d+2
2 T (Ω−)

≥ 2λ1(B
1/2)

d+2
2 T (B1/2)

= λ2(Θ)
d+2
2 T (Θ).

□

Remark 8. Note that a Kohler-Jobin type inequality for higher order eigenvalues would have its
own interest. However, it is very unclear even for l = 3 if a minimizer does exist for λ3(Ω)

d+2
2 T (Ω)

in the class A.

Remark 9. Yet the case of the associated maximization problem for the first eigenvalue

max
{
λ1(Ω)

p T (Ω)
∣∣ Ω ∈ A

}
,

has been studied in [6] by Briani, Buttazzo and Guarino Lo Bianco, where they proved existence of
an optimal shape for p > p1 > 1 large enough. In [8], it was proved that the ball is the maximizer
for p > p2 for some p2 larger than p1.

3. Proof of Theorem 1

The proof of Theorem 1 is based on a sharp approximation of the torsion of a set by the torsion of
the best overlapping of the set by two equal balls of half measure. If such an approximation is rough
in general, one can reasonably expect that the approximation becomes sharp if the set has a second
eigenvalue close to its minimum, on the set Θ. The set Θ is the union of two disjoint balls of half
of the measure of Ω, and their positionning has to be done in a optimal manner, we will actually
choose them such that they are close to a minimum for the Fraenkel 2-asymmetry.

In [8, Lemma 3.2 ], the authors got a control of the difference of the torsional rigidies between
a set and the intersection of the set with a ball. The following lemma is in the same spirit, and
gives control of the difference of the torsional rigidities between Ω and Ω ∩Θ by the volume of the
symmetric difference.

Lemma 10. Let Ω ∈ A. Then

T (Ω)− T (Ω ∩Θ) ≤
(
1

d
+

1

2
2
d d2

)
|Ω \Θ|.

Proof. For simplicity, we denote by w the torsion function of Ω and v the torsion function of Θ. Let
us denote

u = min(w, v).

Notice that u ∈ H1
0 (Ω ∩Θ), then

T (Ω ∩Θ) ≥
ˆ
Ω∩Θ

2u−
ˆ
Ω∩Θ

|∇u|2.
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so,

T (Ω)− T (Ω ∩Θ) +

ˆ
Ω\Θ

|∇w|2 ≤
ˆ
Ω\Θ

2w +

ˆ
Ω∩Θ

2(w − u) +

ˆ
Ω∩Θ

(|∇u|2 − |∇w|2)

=

ˆ
Ω\Θ

2w +

ˆ
Ω∩Θ

2(w − v)+ −
ˆ
Ω∩Θ

∇(u+ w) · ∇(w − u).

For any real numbers a, b it holds (a+ b)(a− b) ≤ 2b(a− b), then we deduce

T (Ω)− T (Ω ∩Θ) +

ˆ
Ω\Θ

|∇w|2 ≤
ˆ
Ω\Θ

2w +

ˆ
Ω∩Θ

2(w − v)+ −
ˆ
Ω∩Θ

2∇u · ∇(w − v)+.

Notice that on Ω ∩Θ,

∇u · ∇(w − v)+ = ∇ · (w − v)+∇v + (w − v)+,

so by divergence theorem,

T (Ω)− T (Ω ∩Θ) +

ˆ
Ω\Θ

|∇w|2 ≤
ˆ
Ω\Θ

2w −
ˆ
∂(Ω∩Θ)

(w − v)+∇v · ndHd−1

=

ˆ
Ω\Θ

2w +

ˆ
∂Θ

(w − v)+|∇v| dHd−1

≤ 2 |Ω \Θ| sup
Ω

w + sup
∂Θ

|∇v|
ˆ
∂Θ

w dHd−1.

Next, we use the trace inequality ˆ
∂Θ

w dHd−1 ≤
ˆ
Ω\Θ

|∇w|

followed by the Jensen inequality to obtain

T (Ω)− T (Ω ∩Θ) ≤
(
2 sup

Ω
w + sup

∂Θ
|∇v|2

)
|Ω \Θ|.

It now only remains to express the constant. We know for the ball B(0, 1) the expression of its
torsion function wB:

wB(x) =
1− |x|2

2d
.

Then, since Θ is a disjoint union of two balls of radii 2−
1
d , sup∂Θ |∇v|2 = 1

2
2
d d2

and from the Talenti

inequality (14), we get supΩw ≤ 1
2 d . □

We may now tackle the proof of Theorem 1.

Proof. (of Theorem 1) Along the proof we will denote by Cd a purely dimensional constant which
may increase from line to line.

Take Ω in A and Θ a disjoint union of two balls of volume ωd/2 and fix k ≥ 1.

First, if λ2(Ω) ≥ 2λ2(Θ), we know from the spectral inequality given by Lemma 6 that

|λk(Ω)− λk(Θ)| ≤ k
2
d

(
1 +

4

d

)
(λ2(Ω) + λ2(Θ)),



FULL SPECTRUM CONTROL BY THE SECOND EIGENVALUE 7

and then we can compute

|λk(Ω)− λk(Θ)| ≤ 2

(
1 +

4

d

)
k

2
d λ2(Ω)

≤ 2
d+2
d+1

(
1 +

4

d

)
k

2
d λ2(Ω)

1− 1
d+1 (λ2(Ω)− λ2(Θ))

1
d+1

≤ C k2+
4
d λ2(Ω)

1− 1
d+1 (λ2(Ω)− λ2(Θ))

1
d+1 .

Assume now λ2(Ω) < 2λ2(Θ), by Lemma 5, since Ω ∩Θ ⊂ Ω and Ω ∩Θ ⊂ Θ, we obtain
1

λk(Ω)
− 1

λk(Ω ∩Θ)
≤ exp(1/(4π)) k λk(Ω)

d/2(T (Ω)− T (Ω ∩Θ)),

1

λk(Θ)
− 1

λk(Ω ∩Θ)
≤ exp(1/(4π)) k λk(Θ)d/2(T (Θ)− T (Ω ∩Θ)).

We combine this with Lemma 6 and the minimality of Θ for λ2 to get

1

λk(Ω)
− 1

λk(Ω ∩Θ)
≤ exp(1/(4π)) k2

(
1 +

4

d

) d
2

λ2(Ω)
d/2

(
T (Ω)− T (Ω ∩Θ)

)
,

1

λk(Θ)
− 1

λk(Ω ∩Θ)
≤ exp(1/(4π)) k2

(
1 +

4

d

) d
2

λ2(Ω)
d/2

(
T (Θ)− T (Ω ∩Θ)

)
.

And we deduce, adding these two inequalities∣∣∣∣ 1

λk(Ω)
− 1

λk(Θ)

∣∣∣∣ ≤ exp(1/(4π)) k2
(
1 +

4

d

) d
2

λ2(Ω)
d/2

(
T (Ω) + T (Θ)− 2T (Ω ∩Θ)

)
,

which rewrites, using Lemma 6 again, as

|λk(Ω)− λk(Θ)| ≤ Cdk
2+ 4

d λ2(Ω)
2+ d

2
(
T (Ω) + T (Θ)− 2T (Ω ∩Θ)

)
.

It remains to estimate the factor T (Ω) + T (Θ)− 2T (Ω ∩Θ), to do so, we rewrite it

T (Θ)− T (Ω) + 2
(
T (Ω)− T (Ω ∩Θ)

)
.

In Lemma 10 we have already computed

T (Ω)− T (Ω ∩Θ) ≤
(
1

d
+

1

2
2
d d2

)
|Ω \Θ|.

Choosing rightfully the two balls that compose Θ we get

|Ω \Θ| ≤ ωdF2(Ω).

Then we have by the quantitative Krahn-Szegö inequality (10),

|Ω \Θ| ≤ Cd λ2(Θ)−
1

d+1 (λ2(Ω)− λ2(Θ))
1

d+1 .

Combining the two we get that

2 (T (Ω)− T (Ω ∩Θ)) ≤ Cd λ2(Θ)−
1

d+1 (λ2(Ω)− λ2(Θ))
1

d+1 .

Now, from the Kohler-Jobin inequality for the second eigenvalue (16) and since λ2(Ω) < 2λ2(Θ),
we obtain

T (Θ)− T (Ω) ≤ T (Ω)

[(
λ2(Ω)

λ2(Θ)

) d+2
2

− 1

]

≤ 2
d
2
d+ 2

2
T (Ω)λ2(Θ)−

1
d+1 [λ2(Ω)− λ2(Θ)]

1
d+1 .
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Then, from Saint-Venant inequality (13), for B a ball of radius 1, we obtain

T (Θ)− T (Ω) ≤ 2
d
2
d+ 2

2
T (B)λ2(Θ)−

1
d+1 [λ2(Ω)− λ2(Θ)]

1
d+1

≤ Cd λ2(Θ)−
1

d+1 [λ2(Ω)− λ2(Θ)]
1

d+1 .

Finally, we obtain using the upper bound on λ2(Ω)

|λk(Ω)− λk(Θ)| ≤ Cd k
2+ 4

d λ2(Ω)
2+ d

2 λ2(Θ)−
1

d+1 (λ2(Ω)− λ2(Θ))
1

d+1

≤ Cd k
2+ 4

d λ2(Ω)
1− 1

d+1 (λ2(Ω)− λ2(Θ))
1

d+1 .

□

4. Proof of Theorems 2 and 3

The statement of Theorem 2 is a consequence of the more technical Theorem 3. We will prove first
Theorem 3 and get, as a consequence, Theorem 2.

The idea is that using the two subsets Ω+ and Ω− we are able to benefit from the sharp estimation
(7) that was proved for the first eigenvalue and thus obtain the sharp exponent 1/2.

Proof. (of Theorem 3) Take Ω in A and Θ a disjoint union of two balls of volume ωd/2 and fix k ≥ 1.
Now take Ω+ and Ω− two disjoint open subsets of Ω such that λ2(Ω) ≥ max(λ1(Ω

+), λ1(Ω
−)). We

know the existence of such sets by the decomposition lemma 7. Finally consider two disjoint balls
B+ and B− of respective volumes |Ω+| and |Ω−|, we will specify their position later in the proof.

First, as in the proof Theorem 1, if λ2(Ω) ≥ 2λ2(Θ), we know from Lemma 6 that

|λk(Ω
+ ∪ Ω−)− λk(Θ)| ≤ k

2
d

(
1 +

4

d

)
(λ2(Ω

+ ∪ Ω−) + λ2(Θ)),

≤ k
2
d

(
1 +

4

d

)
(λ2(Ω) + λ2(Θ)),

and then, by a similar computation,

|λk(Ω
+ ∪ Ω−)− λk(Θ)| ≤ Cd k

2+ 4
d λ2(Ω)

1
2 (λ2(Ω)− λ2(Θ))

1
2 .

Now, consider λ2(Ω) < 2λ2(Θ), then

|λk(Ω
+ ∪ Ω−)− λk(Θ)| ≤ |λk(Ω

+ ∪ Ω−)− λk(B
+ ∪B−)|+ |λk(B

+ ∪B−)− λk(Θ)|.
For each term, as in the previous proof, by Lemma 5 we obtain the two estimates

|λk(Ω
+ ∪ Ω−)− λk(B

+ ∪B−)

≤ C k2+
4
d λ2(Ω)

2+ d
2 (T (Ω+ ∪ Ω−) + T (B+ ∪B−)− 2T ((Ω+ ∪ Ω−) ∩ (B+ ∪B−))),

and,

|λk(B
+ ∪B−)− λk(Θ)| ≤ C k2+

4
d λ2(Ω)

2+ d
2
(
T (B+ ∪B−) + T (Θ)− 2T ((B+ ∪B−) ∩Θ)

)
.

We start by working with the first term, since the torsion is an increasing functional for the inclusion
of sets,

T ((Ω+ ∪ Ω−) ∩ (B+ ∪B−)) ≥ T (Ω+ ∩B+) + T (Ω− ∩B−),

and we only have to estimate separately the two terms

T (Ω+) + T (B+)− 2T (Ω+ ∩B+),

T (Ω−) + T (B−)− 2T (Ω− ∩B−).
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We know, from [8, Theorem 1.1], applied to each set Ω+ and Ω− that we can choose the two balls
B+ and B− such that

T (Ω+) + T (B+)− 2T (Ω+ ∩B−) ≤ C(λ1(Ω
+)− λ1(B

+))
1
2 ,

T (Ω−) + T (B−)− 2T (Ω− ∩B−) ≤ C(λ1(Ω
−)− λ1(B

−))
1
2 ,

then, since λ2(Ω) = min(λ1(Ω
+), λ1(Ω

−)), we deduce that

T (Ω+) + T (B+)− 2T (Ω+ ∩B+) ≤ C(λ2(Ω)− λ1(B
+))

1
2 ,

T (Ω−) + T (B−)− 2T (Ω− ∩B−) ≤ C(λ2(Ω)− λ1(B
−))

1
2 .

Now, if |Ω+|, |Ω−| ≤ ωd/2 we have since the eigenvalue is decreasing for the inclusion of sets that
λ1(B

+), λ1(B
−) ≥ λ2(Θ) and we can conclude. So it only remains to consider the case |Ω−| <

ωd/2 < |Ω+|, we still have the same argument working for |Ω−| and we claim that

(17) λ2(Ω)− λ1(B
+) ≤ 2 (λ2(Ω)− λ2(Θ)),

then we have showed that

|λk(Ω
+ ∪ Ω−)− λk(B

+ ∪B−)| ≤ Ck2+
4
d λ2(Ω)

2+ d
2 (λ2(Ω)− λ2(Θ))

1
2 ,

and using the upper bound λ2(Ω) < 2λ2(Θ), we deduce

|λk(Ω
+ ∪ Ω−)− λk(B

+ ∪B−)| ≤ Ck2+
4
d λ2(Ω)

1
2 (λ2(Ω)− λ2(Θ))

1
2 .

To prove this claim we just compute, for B any ball of radius 1, and any 0 < t < 1,

λ2(Θ) =

(
1

2

)− 2
d

λ1(B) ≤ 1

2
(t−

2
d + (1− t)−

2
d )λ1(B),

choosing t = |B+|
|B| we obtain t−

2
d λ1(B) = λ1(B

+) and (1 − t)−
2
d λ1(B) ≤ λ1(B

−) ≤ λ2(Ω). And
then, we get

λ2(Θ) ≤ λ2(Ω) +
1

2
(λ1(B

+)− λ2(Ω)),

which proves the claim.

We now consider the second term. Note that since the torsion functional and the eigenvalues are
invariant by translation of each connected components, we can consider that B+ and B− are disjoint.
Once again we need to consider two cases depending on the volume. If |B+| ≤ ωd/2 and |B−| ≤ ωd/2,
we choose the two balls B1 and B2 composing Θ such that B+ ⊂ B1 and B− ⊂ B2 and then we are
left with estimating the term

T (B1)− T (B+) + T (B2)− T (B−).

Then, by Kohler Jobin inequality (15)

T (B1)− T (B+) + T (B2)− T (B−) ≤ Cd(λ1(B
+)− λ2(Θ) + λ1(B

−)− λ2(Θ))

≤ 2Cd(λ2(Ω)− λ2(Θ)).

If we have |B−| < ωd/2 < |B+| by choosing B1 ⊂ B+ and B2 ⊃ B−, we are left with estimating
T (B+)− T (B−) and once again, using the Kohler Jobin inequality and inequality (17) we obtain,

T (B+)− T (B−) ≤ 2C(λ2(Ω)− λ2(Θ)),

and then we have showed

|λk(B
+ ∪B−)− λk(Θ)| ≤ Cd k

2+ 4
d λ2(Ω)

2+ d
2 (λ2(Ω)− λ2(Θ)),

and once again using the upper bound λ2(Ω) < 2λ2(Θ), we deduce

|λk(B
+ ∪B−)− λk(Θ)| ≤ Cd k

2+ 4
d 22+

d−1
2 λ2(Θ)2+

d
2λ2(Ω)

1
2 (λ2(Ω)− λ2(Θ))

1
2 .
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Wich we rewritte

|λk(B
+ ∪B−)− λk(Θ)| ≤ Cd k

2+ 4
d λ2(Ω)

1
2 (λ2(Ω)− λ2(Θ))

1
2 ,

and this concludes the proof □

From Theorem 3 we can now deduce Theorem 2 wich comes as a direct corollary.

Proof. (of Theorem 2) Consider Ω ∈ A and choose two disjoints subsets Ω+, Ω− of Ω satisfying the
eigenvalue condition λ2(Ω) ≥ max(λ1(Ω

+), λ1(Ω
−)). Since the eigenvalues are decreasing for the

inclusion of sets, it holds for all k in N,

λk(Ω) ≤ λk(Ω
+ ∪ Ω−).

Then we can deduce

(λk(Ω)− λk(Θ))+ ≤
(
λk(Ω

+ ∪ Ω−)− λk(Θ)
)
+
≤

∣∣λk(Ω
+ ∪ Ω−)− λk(Θ)

∣∣ .
Finally, we can apply Theorem 3 and obtain

(λk(Ω)− λk(Θ))+ ≤ Cd k
2+ 4

d λ2(Ω)
1
2 (λ2(Ω)− λ2(Θ))

1
2 .

□

5. Further remarks and open questions

As a conclusion, a few remarks are in order.

Remark 11 (Sharpness of the exponent 1
2). We have claimed that 1

2 should be the sharp exponent
in our inequality. By this we mean that one cannot find an exponent α∗ > 1

2 such that for all Ω ∈ A

(18) |λk(Ω)− λk(Θ)| ≤ C k2+
4
d λ2(Ω)

1−α∗
(λ2(Ω)− λ2(Θ))α

∗
,

and that the inequality should be true for α∗ = 1
2 .

Even though we are not able to prove that the inequality is true for the exponent 1
2 Theorem 2 gives

good hope that it should be, and we can actually show that we cannot expect a better exponent.

Suppose that (18) is true for some α∗ > 1
2 , for any Ω and k. We can take Ω ∈ A. Denoting by

Ω1/2 ⊔ Ω1/2 the disjoint union of two copies of Ω rescaled to have measure ωd/2 we have for any k,

|λk(Ω)− λk(B)| = 2−
1
d

∣∣∣λ2k(Ω
1/2 ⊔ Ω1/2)− λ2k(Θ)

∣∣∣ .
We then deduce from inequality (18)

|λk(Ω)− λk(Θ)| ≤ 2−
1
dC (2k)2+

4
d λ2(Ω

1/2 ⊔ Ω1/2)1−α∗
(λ2(Ω

1/2 ⊔ Ω1/2)− λ2(Θ))α
∗
.

Which implies that

|λk(Ω)− λk(Θ)| ≤ 22+
4
d C k2+

4
d λ1(Ω)

1−α∗
(λ1(Ω)− λ1(B))α

∗
.

Since this inequality would then be true for any Ω ∈ A and k ≥ 1, it is in contradiction with the
fact that 1

2 is the sharp exponent for the stability inequality by the first eigenvalue near the ball.
In the setting of the first eigenvalue, the sharpness of the exponent 1

2 can actually be easyly observed.
Since the second eignevalue is not critical on the ball B, one can find a smooth volume preserving
deformation of the ball Ωt such that λ2(Ωt)− λ2(B) = c2 t+ o(t) and by minimality of the ball for
the first eigenvalue, λ1(Ωt)−λ1(B) = c1 t

2+ o(t2), where c1 and c2 are two positve constants. Then
having

|λ2(Ωt)− λ2(B)| ≤ C(λ1(Ωt)− λ1(B))β,

for t small implies β ≤ 1
2 .
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Remark 12 (General estimate with exponent 1
2). We proved in Theorem 2, for any Ω ∈ A

(19)
(
λk(Ω)− λk(Θ)

)
+
≤ C k2+

4
d λ2(Ω)

1
2 (λ2(Ω)− λ2(Θ))

1
2 .

which is of course non trivial only when λk(Ω) − λk(Θ) ≥ 0. To obtain the full inequality with
exponent 1

2 , it remains to prove an inequality of the form

(20) λk(Θ)− λk(Ω) ≤ Cd k
2+ 4

d λ2(Ω)
1
2 (λ2(Ω)− λ2(Θ))

1
2 .

Taking into account Theorem 3 and Lemma 5 this reduces to the following question:
Is there a dimensionnal constant Cd such that for any Ω ∈ A, statisfying λ2(Ω) ≤ 2λ2(Θ), the
following quantitative Krahn-Szegö inequality holds

(21)
λ2(Ω)− λ2(Θ)

λ2(Θ)
≥ Cd

(
T (Ω)− T (Ω1 ∪ Ω2)

T (Ω)

)2

,

for some Ω1 and Ω2 disjoint subsets of Ω satisfying max{λ1(Ω1), λ1(Ω2)} ≤ λ2(Ω)?

Remark 13 (About the restriction on the sets Ω). In order to simplify the notations in the proofs,
we fixed the volume of Ω to ωd but all the inequalities we proved are actually scale invariant and
remain true for any Ω of finite measure as long as Θ is chosen with the same volume. As for the
restriction to open sets, by continuity for the γ-convergence of the eigenvalues, the theorems remain
true for any quasi open set of finite measure.
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