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Abstract

In this paper we slightly improve the regularity theory for the so called optimal design
problem. We first establish the uniform rectifiability of the boundary of the optimal set, for a
larger class of minimizers, in any dimension. As an application, we improve the bound obtained
by Larsen in dimension 2 about the mutual distance between two connected components. Finally
we also prove that the full regularity in dimension 2 holds true provided that the ratio between
the two constants in front of the Dirichlet energy is not larger than 4, which partially answers
to a question raised by Larsen.
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1 Introduction

Let Ω Ă R
N be a bounded connected open set and 0 ă α ă β be two constants. We define

σE “ α1E `β1ΩzE . The so called optimal design problem consists of minimizing among couples
pu,Eq the following problem

min
pu,EqPA

ż

Ω

σE |∇u|2 dx` P pE; Ωq, (1)

where
A :“

 

pu,Eq s.t. |E| “ V0 and u P H1pΩq, u “ u0 on BΩ
(

.

Here V0 P p0, |Ω|q is a given volume and u0 P H1pΩq is a boundary datum in the sense that
u “ u0 on BΩ means u´ u0 P H1

0 pΩq.
This problem has been widely studied by many famous authors from the 90’s up to nowadays

(see for instance [1, 14, 16, 17, 20, 22, 23, 25]), and a lot is known about the regularity of
minimizers.

To provide some historical context, in 1993 Ambrosio and Buttazzo [1] established the exis-
tence of solutions together with the higher integrabilty of the gradient of the deformation u. In
the same year, Lin [25] proved that for a minimizer pu,Eq, the function umust be globally C0,1{2-
regular in Ω and the boundary of E inside Ω is C1,α outside a singular set of zeroHN´1-measure.
This was again proved with different techniques by Fusco and Julin [20] in 2015, and improved
in the sense that the singular set must have Hausdorff dimension strictly less than N ´ 1. In
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the same year, De Philippis and Figalli [14] independently obtained the estimate about the
Hausdorff dimension of the singular set, by employing porosity techniques. Later, some variants
of the problems with more general densities with quadratic growth and p-growth, higher-order
operators or in a vectorial context have been studied in [3, 6, 7, 8, 9, 15, 18, 19, 21, 24].

However, in the specific dimension N “ 2, the full regularity of E is still a challenging open
problem, raised by Larsen. Indeed, Larsen [23] proved that any connected component of E
has a C1 boundary. This does not prevent that a countable number of connected components
accumulate in a way that BE may not be globally smooth, but Larsen conjectures (in [22] and
again in [23]) that it might not be the case.

The first result of this paper is a positive answer to Larsen’s conjecture in the case when
β ă 4α. Here is our first result.

Theorem 1.1. Let N “ 2 and let pu,Eq be a minimizer for the optimal design Problem (1).
Assume moreoever that β ă 4α. Then BE is a smooth C1,α-surface in Ω.

The proof of Theorem 1.1 is very short and is given in Section 5.1. It relies on a monotonicity
formula, similar to that of Bonnet [5], which directly establishes that E is an almost minimizer
for the perimeter in the regime β ă 4α, allowing us to apply the standard regularity theory. In
the same section, we investigate some further monotonicity properties that imply, for instance,
that, without any restriction on α, β, if BE intersects BBspxq by only two points for all s P p0, rq,
then BE XB r

2
pxq must be smooth.

Theorem 1.1 also partially improves an earlier result of Esposito and Fusco [16], in which they
prove that BE is a smooth surface when β ď γNα, where γN is an explicit constant depending
on dimension. In particular, for N “ 2, they obtain the constant γ2 “ 5{3. Since this value is
strictly less than 4, Theorem 1.1 is an improvement of [16, Theorem 2], in the special case of
N “ 2.

Notice that a possible way to solve Larsen’s conjecture would be to prove that E admits a
finite number of connected components. Subsequently, any qualitative information about the
connected components of E would be of great interest. Toward this direction Larsen was able
to prove in [22] that for two given connected components E1, E2 of E, it holds that

distpE1, E2q ą 0, (2)

which actually stands for the main result of [22].
Our second main result is a quantitative improvement of Larsen’s estimate (2). In the

following statements, there is no more restrictions on the values of α and β.

Theorem 1.2. Let N “ 2 and let pu,Eq be a minimizer for the optimal design Problem (1).
Then there exist two constants C0 ą 0 and ε0 ą 0 such that for any two components E1, E2 of
E it holds that

either distpE1, E2q ě ε0 or distpE1, E2q2 ě C0 mint|E1|, |E2|u.

The proof of Theorem 1.2 is given in Section 5.3, and uses the uniform rectifiability of BE.
This fact is established first in Section 3, in a much more general context, and it is interesting
for its own.

Indeed, a wide proportion of the present paper is to prove the uniform rectifiability of
BE, which is actually valid in any dimension, and applies to the more general class of quasi-
minimizers in the sense of David and Semmes. We also relax the volume constraint by working
with a penalized version of the functional. As it was shown by Esposito and Fusco [16], the
minimization problem with this penalized functional is equivalent to the original problem (in the
language of [16], we work with a generalization of Λ-minimizers). More precisely, we introduce

A1 :“
 

pu,Eq s.t. E Ă Ω and u P H1pΩq, u “ u0 on BΩ
(

,

and then consider the following problem:

min
pu,EqPA1

Fpu,Eq, (3)

with

Fpu,Eq :“
ż

Ω

σE |∇u|2 dx` ΨEpΩq ` Λ||A| ´ V0|. (4)

Here Λ ą 0 is a constant, and ΨE is a scalar Radon measure that we assume to be comparable
to the perimeter, that is

K´1P pE;Gq ď ΨEpGq ď KP pE;Gq, (5)
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for any set G Ă R
N and for some constant K ą 0. In the case when K “ 1, we recover the

so-called Λ-minimizers of the classical optimal design problem. It was furthermore proved in
[16, Theorem 1] that minimizers of the constrained Problem (1) are also Λ-minimizers for a
suitable choice of Λ ą 0 (see also Theorem 2.7).

Here is the regularity result that we obtain with regards to Λ-quasi-minimizers (that in the
sequel will be sometimes simply called quasi minimizers).

Theorem 1.3. Let pu,Eq be a Λ-quasi minimizer for the optimal design problem, i.e. a mini-
mizer for the Problem (3). Then E satisfies the condition-B (see Definition 2.5). In particular,
BE is uniformly rectifiable in Ω.

The notion of uniform rectifiabilty is a sort of quantitative notion of rectifiability that was
introduced and intensively studied by David and Semmes (see for instance [12]). In particular, it
provides some nice uniform control in all scales, such as big pieces of Lipschitz graphs, smallness
of the flatness in many balls in a uniform way, etc. This notion is more global and quantitative
on the whole set BE compared to the usual standard local regularity results such as ε-regularity
type ones. The combination of uniform rectifiability and local regularity gives rise to new
interesting statements.

As already pointed out, Theorem 1.2 is an example of those statements that use the uniform
rectifiability of BE. In addition, we get several other consequences of uniform rectifiability, such
as a new way to improve the Hausdorff dimension of the singular set (see Corollary 4.5) different
from [14] and [20]. A last example is Proposition 3.8 that gives an estimate already obtained
before by Larsen in [23], for which we provide here a completely different proof relying on the
uniform rectifiability of BE.

To prove Theorem 1.3 we first show that quasi-minimizers are Ahlfors-regular, adapting the
standard proof already known for optimal design minimizers. Then we prove that E satisfies the
so-called “condition-B” (see Definition 2.5). For that purpose we use a control of the normalized
energy of u by Carleson measure estimates. The uniform rectifiability follows immediately, as
it is known from David and Semmes [12] that it is a consequence of Ahlfors-regularity and
condition-B.

Once the uniform rectifiability is established, we use it in dimension N “ 2 to prove The-
orem 1.2. The general strategy follows the original one of Larsen [22] in his proof of (2), but
incorporating the uniform rectifiability to make it quantitative. Also, we take benefit from this
paper to entirely rewrite the original arguments of Larsen, especially the key Lemma 5.5 for
which we used some of his ideas, but written here with completely different arguments that we
believe are more detailed than what can be found in [22].

Acknowledgement. This paper was partially financed by the junior IUF grant of A.
Lemenant and by the ANR project “STOIQUES”. Lorenzo Lamberti is a member of the Gruppo
Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the
Istituto Nazionale di Alta Matematica (INdAM).

2 Notation and preliminary definitions

Let Ω be a bounded connected open subset of R
N , with N ě 2. We denote by Brpxq :“

 

y P R
N : |y ´ x| ă r

(

the open ball centered at x P R
N of radius r ą 0 and as usual ωN stands

for the Lebesgue measure of the unit ball in R
N . If x0 “ 0 we simply write Br. We denote by

7E the cardinality of the set E and by C a generic constant that may vary from line to line.
We write xξ, ηy for the inner product of vectors ξ, η P R

N , and consequently |ξ| :“ xξ, ξy 1

2 will
be the corresponding Euclidean norm. In the following, we denote

Crpx0q :“ x0 ` ty P R
N : |yN | ă r, |y ´ yNeN | ă ru,

the cylinder centered in x0 P R
N with radius r ą 0 oriented in the direction of the N -th versor

eN . For i P t1, . . . , Nu, we call by πi the projection on the i-th coordinate, i.e. πipxq “ xi, for
x “ px1, . . . , xN q P R

N .
Let G Ă R

N . We define the set of points of density t P r0, 1s as follows:

Gptq “
"

x P R
N : lim

rÑ0`

|GXBrpxq|
|Brpxq| “ t

*

.

Let U be an open subset of Rn. A Lebesgue measurable set E Ă R
N is said to be a set of

locally finite perimeter in U if there exists a R
N -valued Radon measure µE on U (called the
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Gauss-Green measure of E) such that
ż

E

∇φ dx “
ż

U

φ dµE , @φ P C1

c pUq.

Moreover, we denote the perimeter of E relative to G Ă U by P pE,Gq “ |µE |pGq.
It is well known that the support of µE can be characterized by

sptµE “
 

x P U : 0 ă |E XBrpxq| ă ωnr
n, @r ą 0

(

Ă U X BE,
(see [26, Proposition 12.19]). If E is of finite perimeter in U , the reduced boundary B˚E Ă U of
E is the set of those x P U such that

νEpxq :“ lim
rÑ0`

µEpBrpxqq
|µE |pBrpxqq

exists and belongs to S
n´1. We address the reader to [26] for a complete dissertation about sets

of finite perimeter.
For u P H1pBrpx0qq and p P r1, 2s we denote

ωppx0, rq “ r1´ 2N
p

ˆ
ż

Brpx0q
|∇u|p dx

˙
2

p

.

We simply write ωpx0, rq :“ ω2px0, rq. In the subsequent sections, we need the definition of
Alhfors-regular sets.

Definition 2.1 (Alhfors-regularity). Let G Ă R
N be a closed set. We say that G is pN ´ 1q-

Ahlfors-regular (or, shortly, Ahlfors-regular) if there exists a positive constant CA such that

C´1

A rN´1 ď HN´1pGXBrpx0qq ď CAr
N´1, @x0 P G, @r ą 0.

In what follows, the definition of uniformly rectifiable set will be needed. It is a stronger and
more quantitative notion of rectifiability. There are many equivalent (and not simple) definitions
of uniform rectifiability. For instance, here is one of them.

Definition 2.2 (Uniform rectifiability). Let G Ă R
N be an Ahlfors-regular set. We say that G

is uniformly rectifiable if there exist two positive constants θ and C such that, for each ball B
centered in G, we can find a compact set A Ă R

N´1 and a bi-Lipschitz map ρ : A Ñ R
N such

that
C´1|x´ y| ď |ρpxq ´ ρpyq| ď C|x´ y|, @x, y P A,

and
HN´1pGX ρpAq XBq ě θHN´1pGXBq.

Uniformly rectifiable sets have been extensively studied in the monography [12]. For example,
they provide a connection between geometric measure theory and harmonic analysis. In this
paper, we shall make use of a geometric characterization of uniform rectifiability. We first need
the following definition.

Definition 2.3 (Carleson sets). Let G Ă R
N be Alhfors-regular. We say that a measurable set

A Ă Gˆ R` is a Carleson set if 1AdH
N´1 Gdt

t
is a Carleson measure on Gˆ R`, i.e. there

exists a positive constant C such that
ż r

0

ż

GXBrpzq
1Apx, tq dHN´1

dt

t
ď CrN´1, @z P G, r ą 0.

This is an invariant way of saying that the set A is enough small and that it behaves as it
was pN ´ 1q-dimensional from the perspective of Gˆ t0u.

Here it follows a useful characterization of uniform rectifiabilty that can be found in [12,
Theorem 2.4].

Proposition 2.4. Let G Ă R
N be an Ahlfors-regular set. Then, G is uniformly rectifiable if

and only if G satisfies the bilateral weak geometric lemma (BWGL), i.e., for every ε ą 0,

tpx, tq P Gˆ R` : βpx, tq ą εu
is a Carleson set. Here, the quantity

βpx, tq :“ inf
PĂR

N

Paffine hyperplane

"

sup
yPGXBtpxq

t´1distpy, P q ` sup
zPPXBtpxq

t´1distpz,Gq
*

denotes the bilateral flatness at the point x P G at scale t P R`.
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This equivalence allows us to have a quantitative control of the flatness. In other words, the
sets of points where the flatness of the set E is arbitrarily small is big in terms of measure. This
ensures the existence of many balls centered in the boundary of the optimal shape where the
well-known result of ε-regularity holds.

In practice, it is not so easy to prove uniform rectifiability from Definition 2.2 or Proposi-
tion 2.4. For the particular case of boundaries of sets, there exists a nice criterium using the
so-called condition-B, which we present in the next definition.

Definition 2.5 (condition-B). Let G be a measurable subset of RN . We say that G satisfies
the condition B in Ω if G is open, BG is Ahlfors-regular and if for any open set U ĂĂ Ω of
R

N there exist two constants C0 ą 1 and r0 P p0, distpU, BΩqq such that for any x0 P BG and
r P p0, r0q, we can find two balls B1 Ă Brpx0q XE and B2 Ă Brpx0qzE with radius greater than
C´1

0
r.

The next proposition follows by combining [13, Theorem 1.20, Proposition 1.18, Theorem
1.14 and Proposition 3.35].

Proposition 2.6. Let G Ă R
N be an open such that BG is an Ahlfors-regular set. If furthermore

G satisfies the condition-B, then BG is uniformly rectifiable.

To conclude the section, we cite the following theorem, whose proof is contained in [19].

Theorem 2.7 ([19]). There exists a constant Λ0 ą 0 such that if pu,Eq is a minimizer of the
functional

ż

Ω

σF |∇w|2 dx` ΨF pΩq ` Λ||F | ´ V0| (6)

for some Λ ě Λ0 among all the configurations pF,wq such that w “ u0 on BΩ, then |E| “ V0
and pE, uq is a minimizer of Problem (3). Conversely, if pE, uq is a minimizer of Problem (3),
then it is a minimizer of (6), for any Λ ą 0.

3 Uniform rectifiabilty for quasi-minimizers in dimension N

This section is devoted to prove that the boundary of the optimal set is uniformly rectifiable.
In view of this aim, we first show that it is Alhfors-regular. Afterwards, it suffices to prove that
it satisfies the condition-B (see Proposition 2.6). We show the validity of the latter property in
Proposition 3.7.

Throughout the entire section we assume that E is a Borel set with

BE “ sptpµEq “ tx P R
N : 0 ă |E XBrpxq| ă |Brpxq|, @r ą 0u.

Let us emphasize that, according to [26, Proposition 12.19], for any open set of finite perime-
ter, one can always find an equivalent Borel set with this property. Furthermore, it is easy to
show that Ep1q is a valid choice. At the end of this section, we prove that for a quasi-minimizer,
one can actually choose this Borel set to be an open set (see Lemma 3.7).

In the following theorem, we prove that the boundary of a minimal set is Alhfors-regular.
The scheme of proof is rather standard: it follows the original proof of Ahlfors-regularity for the
optimal design problem that we adapt for quasi-minimizers instead of minimizers. We rewrite
shortly the proof for the convenience of the reader.

Theorem 3.1 (Ahlfors regularity). Let pu,Eq be a minimizer of (3) and U ĂĂ Ω be an open
set. Then there exists a positive constant CA “ CApN,α, β,Λ,K, ‖∇u‖L2pΩq

˘

such that, for

every x0 P BE and Brpx0q Ă U , it holds that

1

CA

rN´1 ď P pE;Brpx0qq ď CAr
N´1. (7)

Furthermore, HN´1ppBEzB˚Eq X Ωq “ 0 and BE is Ahlfors-regular.

Proof. The proof is divided in four steps.
Step 1: Upper bound on the energy. We show that for every open set U ĂĂ Ω there exists

a constant C “ CpN,α, β,K,Λq ą 0 such that for every Brpx0q Ă U it holds

FpE, u;Brpx0qq ď CrN´1. (8)
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In order to prove it, using the Λ-minimality of pu,Eq with respect to pu,E Y Brpx0qq (see
Theorem 2.7) and the comparability condition (5), one can obtain

pβ ´ αq
ż

Brpx0qzE
|∇u|2 dx` 1

K
P pE;Brpx0qq ď CrN´1, (9)

where C “ CpN,K,Λq. To show (8) it suffices to prove that there exist some constants M ą 0,
τ P

`

0, 1
2

˘

and h0 P N, depending on N , β
α
and K, such that, for any Brpx0q Ă U , we have

ż

Brpx0q
|∇u|2 ď h0r

N´1 or

ż

Bτrpx0q
|∇u|2 dx ď MτN´ 1

2

ż

Brpx0q
|∇u|2 dx.

We assume by contradiction that for some M ą 0 and τ P
`

0, 1
2

˘

to be chosen, for any h P N

there exists a ball Brpxhq Ă U such that

ż

Brh
pxhq

|∇u|2 dx ě hrN´1 and

ż

Bτrh
pxhq

|∇u|2 dx ě MτN´ 1

2

ż

Brh
pxhq

|∇u|2 dx. (10)

Combining the first inequality and (9), we get

ż

Brh
pxhqXE

|∇u|2 dx ă C

h

ż

Brh
pxhq

|∇u|2 dx, (11)

where C “ C
`

N, α
β
,K,Λq. For y P B1, we define

vhpyq :“ upxh ` rhyq ´ ah

ςhrh
,

where we have denoted

ah :“ ´
ż

Brh
pxhq

u dx and ς2h :“ ´
ż

Brh
pxhq

|∇u|2 dx.

Furthermore we set

E˚
h :“ B1zE ´ xh

rh
.

Since t∇vhuhPN is bounded in L2pB1q, there exist a (not relabeled) subsequence of vh and
v P H1pB1q such that vh á v in H1pB1q and vh Ñ v in L2pB1q. Furthermore, using the
upper bound on the perimeters of E˚

h in B1 given by (9), up to a not relabeled subsequence,
1E˚

h
Ñ 1E˚ in L1pB1q, for some set E˚ Ă B1 of locally finite perimeter.

From the minimality of u, we obtain the following minimality relation for vh:

ż

B1

σB1zE˚
h

|∇vh|2 dx ď
ż

B1

σB1zE˚
h

ˇ

ˇ∇vh ` ς´1

h ∇ψ
ˇ

ˇ

2
dy, @ψ P H1pB1q. (12)

Choosing ψh “ ςhηpv ´ vhq, where η P C1
c pB1q, with 0 ď η ď 1, we get

ż

B1

σB1zEh
|∇vh|2 dy ď

ż

B1

σB1zE˚
h

|η∇v ` p1 ´ ηq∇vh|2 dy

`
ż

B1

σB1zE˚
h

pv ´ vhq2|∇η|2 dy ` 2

ż

B1

pv ´ vhqx∇η, η∇v ` p1 ´ ηq∇vhy dy

ď
ż

B1

σB1zE˚
h
η|∇v|2 dy `

ż

B1

σB1zE˚
h

p1 ´ ηq|∇vh|2 dy ` op1q,

where we have used the convergence of vh and the boundedness of t∇vhuhPN. Thus, we obtain

ż

B1

σB1zE˚
h
η|∇vh|2 dy ď

ż

B1

σB1zE˚
h
η|∇v|2 dy ` op1q. (13)

Furthermore, by (11) and the and the equi-integrability of t∇vhuhPN, we deduce that

lim
hÑ`8

ż

E˚
h

|∇vh|2 dy “ 0 and

ż

E˚

|∇v|2 dy “ lim
hÑ`8

ż

E˚
h

|∇v|2 dy “ 0. (14)
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Thus, we may rewrite (13) as follows:
ż

B1zE˚
h

η|∇vh|2 dy ď
ż

B1zE˚
h

η|∇v|2 dy ` op1q.

Passing to the upper limit as h Ñ `8, using the lower semicontinuity and letting η Ñ 1, we
get

lim
hÑ`8

ż

B1zE˚

|∇v|2 dy “
ż

B1zE˚

|∇v|2 dy.

Using also the second equality in (14), we infer that ∇vh Ñ ∇v in L2pB1q and therefore vh Ñ v

in H1pB1q. Letting h Ñ `8 in (12), we infer that v minimizes
ż

B1

σB1zE˚ |∇v|2 dy.

Thus, there exist two constants τ0 P
`

0, 1
2

˘

and C ą 0 such that

´
ż

Bτ

|∇v|2 dy ď C´
ż

B1

|∇v|2 dy “ C lim
hÑ`8

´
ż

B1

|∇vh|2 dx “ Cωn.

In conclusion, choosing M ą Cωn, by (10) we get
ż

Bτ

|∇v|2 dy ă M ď Mτ´ 1

2 ď
ż

Bτ

|∇v|2 dy,

which is a contradiction.
Step 2: Decay of the energy in the balls where the perimeter of E is small. We want

to show that for every τ P p0, 1q there exists ε0 “ ε0pτq ą 0 such that, if Brpx0q Ă Ω and
P pE;Brpx0qq ă ε0r

N´1, then

FpE, u;Bτrpx0qq ď CτN
`

FpE, u;Brpx0qq ` rN
˘

, (15)

for some positive constant C “ C
`

N,α, β,Λ,K, ‖∇u‖L2pΩq
˘

ą 0 independent of τ and r. First

of all, we remark that under the assumption (5), ΨE is absolutely continuous with respect to
HN´1 B˚E. Therefore, by the Radon-Nikodym Theorem there exists a function θ : Ω Ñ R

such that

ΨEpGq “
ż

B˚EXG

θ dHN´1,

for all HN´1 B˚E-measurable sets G Ă Ω. Let τ P p0, 1q and Brpx0q Ă Ω. Without loss
of generality, we may assume that τ ă 1

2
. We rescale pE, uq in B1 by setting Er “ E´x0

r

and urpyq “ r´ 1

2upx0 ` ryq, for y P B1. We observe that pEr, urq satisfies the following Λr-
minimality relation:

F̃pEr, urq :“
ż

B1

σEr
|∇ur|2 dy ` Ψ̃Er

pB1q ď
ż

B1

σEr
|∇v|2 dy ` Ψ̃F pB1q ` Λr|Er∆F |, (16)

for any pv, F q be such that v ´ u P H1
0 pB1q and Er∆F ĂĂ B1. Here, we have denoted

Ψ̃F pGq “
ż

B˚FXG

θpx0 ` ryq dHN´1

y , @G Ă Ω.

We have to prove that there exists ε0 “ ε0pτq such that, if P pEr;B1q ă ε0, then

F̃pEr, ur;Bτ q ď C
`

τN F̃pE, u;B1q ` τNr
˘

.

For the rest of the proof, with a slight abuse of notation, we call Er by E and ur by u. We
note that, since P pE;B1q ă ε1, by the relative isoperimetric inequality, either |B1 X E| or
|B1zE| is small. Without loss of generality, We may assume that |B1zE| ď |B1 X E|. By the
coarea formula, Chebyshev’s inequality and the relative isoperimetric inequality, we may choose
ρ P pτ, 2τq such that Hn´1pB˚E X BBρq “ 0 and it holds

Hn´1pBBρzEq ď C

τ
P pE;B1q N

N´1 ď Cε
1

N´1

0

τ
P pE;B1q, (17)
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where C “ CpNq. Now we test the minimality of pu,Eq with pu,E Y Bρq. We remark that,
being Hn´1pB˚EX BBρq “ 0, we can apply [19, Proposition 2.2] with U “ F “ B1 and G “ Bρ,
thus obtaining

Ψ̃EYBρ
pB1q “ Ψ̃EpB1zBρq ` Ψ̃Bρ

pB1zEp1qq. (18)

Using the Λ-minimality relation (16) with respect to the couple pu,E Y Bρq, the equality (18)
to get rid of the common perimeter terms and recalling that E “ Ep1q, we deduce

ż

B1

σE |∇u|2 dx` Ψ̃EpBρq ď
ż

B1

σEYBρ
|∇u|2 dx` Ψ̃Bρ

pB1zEp1qq ` Λr|Bρ|.

Taking into account the comparability to the perimeter (5) and (17), recalling that ρ P pτ, 2τq
and getting rid of the common Dirichlet terms, we deduce:

ż

Bτ

σE |∇u|2 dx`K´1P pE;Bτ q ď β

ż

B2τ

|∇u|2 dx`KHN´1pBBρzEq ` CpN,ΛqrτN

ď β

ż

B2τ

|∇u|2 dx` CpNqK
τ

ε
1

N´1

1
P pE;B1q ` CpN,ΛqrτN .

Finally, we choose ε1 such that

CpNqKε
1

N´1

1
ď τN`1 and CpNqε

N
N´1

1
ď ε1p2τq|B1|,

where ε1 corresponds to the ε0 from [20, Proposition 2.4], thus getting

ż

B2τ

|∇u|2 dx ď 2nc2τ
n

ż

B1

|∇u|2 dx.

From this estimates (15) easily follows applying again the comparability to the perimeter (5).
Step 3: Achieving the lower esitmate on the perimeter of E. The proof matches exactly

that of [20, Proposition 4.4], given the comparability to the perimeter. We give only a sketch
of the proof. We start by assuming that x0 P B˚E. Without loss of generality, we may also
assume that x0 “ 0. We denote by C1 the constant C appearing in (8), by C2 the constant
C appearing in (15). We recall that ε0 is the constant appearing in Step 2. Arguing by
contradiction, for τ P

`

0, p2C1q´2
˘

and σ P
`

0, ε0pτqp2C1C2q´1
˘

there exists a ball Br Ă U , for
some r ă mintε0pτq, C2u, such that

P pE;Brq ď ε0pτq.

By using (8) and (15), we can easily prove by induction (see for example [17, Theorem 4] for
the details) that

FpE, u;Bστhrq ď ε0pτqτ h
2 pστhrqN´1, @h P N.

From this estimate, we deduce that

lim
ρÑ0`

P pE;Bρq
ρN´1

“ lim
hÑ`8

P pE;Bστhrq
pστhrqN´1

ď lim
hÑ`8

ε0pτqτ h
2 “ 0,

which implies that x0 R B˚E, that is a contradiction. If x0 P BE, we get the same estimate by
recalling that we chose the representative of BE such that BE “ B˚E.

Step 4: Proof of the Alhfors-regularity. The proof of the final part of the statement follows
as an application of the lower Ahlfors-regularity. Indeed, we have that

lim sup
rÑ0`

HN´1pB˚E XBrpxqq
rN´1

“ lim sup
rÑ0`

P pE;Brpxqq
rN´1

ą 0, @x P BE X Ω.

Thus, by [2, (2.42)], we get HN´1ppBEzB˚Eq X Ωq “ 0. The Ahlfors-regularity of BE follows as
a consequence, taking also (7) into account.

The following results provide the main ingredients for the proof od Proposition 3.7, which
in turn relies on the same strategy adopted in [28, Lemma 3.6].

The subsequent lemma shows that optimal deformations satisfy a reverse Hölder inequality.
Its proof is rather standard and it relies on the application of the Sobolev-Poincaré inequality.
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Lemma 3.2. Let pu,Eq be a minimizer of (3). There exists a positive constant C0 “ C0

´

N, β
α

¯

such that it holds

ż

B r
2

px0q
|∇u|2 dx ď C0

ˆ
ż

Brpx0q
|∇u|p dx

˙

p
2

, @Brpx0q Ă Ω, (19)

where p “ 2N
N`2

P r1, 2q.

Proof. Let Brpx0q Ă Ω. Without loss of generality we may assume that x0 “ 0. Let ξ P C1
c pBrq

be a cut-off function such that ξ “ 1 on B r
2
and |Dξ| ď 2

r
. By the Euler-Lagrange equation

associated to u, taking as test function pu´ uBr
qξ2 we get

ż

Br

σE |∇u|2ξ2 dx “ ´2

ż

Br

σEξpu´ uBr
qx∇u,∇ξy dx.

Applying Hölder’s and Young’s inequalities, we obtain
ż

Br

σE |∇u|2ξ2 dx ď 1

2

ż

Br

σE |∇u|2ξ2 dx` 2

ż

Br

σE |u´ uBr
|2|∇ξ|2 dx.

Absorbing the first term in the right-hand side to the left-hand side and using that α ď σE ď β,
it holds that
ż

B r
2

|∇u|2 dx ď 1

α

ż

Br

σE |∇u|2ξ2 dx ď 4

α

ż

Br

σE |u´ uBr
|2|∇ξ|2 dx ď 16

r2
β

α

ż

Br

|u´ uBr
|2 dx.

By the Sobolev-Poincaré inequality, we infer

ż

B r
2

|∇u|2 dx ď C

ˆ
ż

Br

|∇u|p dx
˙

p
2

,

where p “ 2N
N`2

and C “ C
`

N, β
α

˘

. Thus (19) is proved.

The following result establishes that it is possible to find a ball centered in a lower Ahlfors-
regular curve where the rescaled Dirichlet energy is arbitrary small. Its proof relies on the
strategy adopted in [11, Corollary 38 in Section 23].

Lemma 3.3. Let pu,Eq be a minimizer of (3), U ĂĂ Ω be an open set and Γ Ă BE a sub-
set which satisfies a lower Ahlfors-regularity property with constant CΓ. There exists ε0 “
ε0
`

N, α
β

˘

ą 0 such that for every ε P p0, ε0q there exists a constant a “ apN,K,Λ, CΓ, εq P p0, 1q
such that for every Brpx0q Ă U , with x0 P Γ there exist y P ΓXB r

3
px0q and t P

`

ar, r
3

˘

such that

ż

Btpyq
|∇u|2 dx ď εtN´1.

Proof. Let ε ą 0 and Brpx0q Ă U , with x0 P BE. Let p be the exponent in the reverse Hölder
inequality given by Lemma (3.2) Setting

ωppx, sq :“ s1´ 2N
p

ˆ
ż

Bspxq
|∇u|p dz

˙
2

p

, @Bspxq Ă Ω,

we show that
ż

ΓXB r
3

px0q

ż r
3

0

ωppy, tq
dHN´1

y

t
dt ď CrN´1, (20)

for some positive contant C “ CpN,K,Λ, CΓq. Indeed, letting σ P r2,`8q be such that

1

σ
` p

2
“ 1,

we choose b P
`

0, 1

σ

˘

. By Hölder’s inequality, we have

ωppy, tq “ t1´ 2N
p

ż

Btpyq

„

|∇upzq|2
ˆ

distpz,Γq
t

˙
2b
p


p
2

ˆ

distpz,Γq
t

˙´b

dz (21)
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ď t1´ 2N
p

ż

Btpyq
|∇upzq|2

ˆ

distpz,Γq
t

˙
2b
p

dz

„
ż

Btpyq

ˆ

distpz,Γq
t

˙´bσ

dz


2

pσ

.

We can partition Btpyq into subsets Bk defined as

Bk :“ tz P Btpyq : 2´k´1t ă distpz,Γq ď 2´ktu, @k P N0,

and, since Γ is Alhfors-regular, we apply [11, Lemma 25] to get

„
ż

Btpyq

ˆ

distpz,Γq
t

˙´bσ

dz


2

pσ

(22)

“
`8
ÿ

k“0

ż

Bk

ˆ

distpz,Γq
t

˙´bσ

dz ď
`8
ÿ

k“0

2kbσ|tz P Btpyq : distpz,Γq ď 2´ktu| ď CtN ,

with C “ CpN,CΓq. We remark that if y P Γ XB r
3

px0q, t P
`

0, r
3

˘

, z P Btpyq, then

z P B 2

3
rpx0q, y P Γ XBtpzq, distpz,Γq P p0, ts.

Therefore, combining (22) and (21) and applying Fubini’s theorem, the Ahlfors-regularity of Γ
and the upper bound on the energy (see (8)), we get

ż

ΓXB r
3

px0q

ż r
3

0

ωppy, tq
dHN´1

y

t
dt

ď C

ż

ΓXB r
3

px0q

ż r
3

0

t1´ 2N
p t

2N
pσ

´1

ż

Btpyq
|∇upzq|2

ˆ

distpz,Γq
t

˙
2b
p

dz dHN´1

y dt

ď C

ż

B 2

3
r

px0q

ż r
3

distpz,Γq
t´NHN´1pΓ XBtpzqq|∇upzq|2

ˆ

distpz,Γq
t

˙
2b
p

dzdt

ď C

ż

B 2

3
r

px0q
|∇upzq|2

„
ż r

3

distpz,Γq

ˆ

distpz,Γq
t

˙
2b
p


dz ď CrN´1,

where C “ CpN,K,Λ, CΓq, thus proving (20).
We assume by contradiction that, for some ε ą 0 and for a P p0, 1q to be chosen, for any

y P Γ XB r
3

px0q and t P
`

ar, r
3

˘

, it holds that

ωppy, tq ě ε
2

p
`1. (23)

Thus, denoting

A :“ pΓ XB r
3

px0qq ˆ
„

ar,
r

3



,

by (20), (23) and the Ahlfors-regularity of Γ, we obtain

rN´1 ě C

ĳ

A

ωppy, tq
dHN´1

y

t
dt ě Cε

2

p
`1HN´1pΓ XB r

3
px0qq

ż r
3

ar

dt

t

ě Cε
2

p
`1rN´1 log

ˆ

a

3

˙

,

which is a contradiction if we choose a “ apN,K,Λ, CΓ, εq ą 0 sufficiently big. Therefore, there
exist y P Γ X B r

3
px0q and t P

`

ar, r
3

˘

, where a “ apN,K,Λ, CΓ, εq is a positive constant, such

that ωppy, tq ď ε
2

p
`1. By the reverse Hölder inequality (19), we conclude that

ż

B t
2

pyq
|∇u|2 dx ď C

ˆ
ż

Btpyq
|∇u|p dx

˙

p
2

“ CtN´ p
2ωppy, tq p

2

ď Cεε
p
2 tN´1 ď εtN´1,

where C “ C
`

N, α
β

˘

, provided that we choose ε “ ε
`

N, α
β

˘

ą 0 sufficiently small.
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The following lemma establishes that if the rescaled Dirichlet integral is sufficiently small
in some ball, then E covers a large part of the ball. Combining this result with the previous
lemma, we get a density estimate for E, which is given in Corollary 3.5.

Lemma 3.4. Let pu,Eq be a minimizer of (3) and U ĂĂ Ω be an open set. There exists ε0 “
ε0pα, β, CAq ą 0 such that for every ε P p0, ε0q there exist two positive constants C0 “ C0pCAq
and r0 “ r0pN,Λ, CAq such that if for Brpx0q Ă U , with r P p0, r0q and x0 P BE, it holds

ż

Brpx0q
|∇u|2 dx ď εrN´1, (24)

then
|Brpx0q X E| ě C0r

N . (25)

Proof. Let Brpx0q Ă U be such that

ż

Brpx0q
|∇u|2 dx ď εrN´1, (26)

where ε ą 0. We divide the proof in two steps.
Step 1: We show that there exists a positive constant r0 “ r0pN,Λ, CAq such that

HN´1pBBrpx0q XEq ě CA

2
rN´1, (27)

for all r P p0, r0q.
Applying the Λ-minimality of pu,Eq with respect to pu,EzBrpx0qq, we get

ż

Ω

σE |∇u|2 dx` P pE; Ωq ď
ż

Ω

σEzBrpx0q|∇u|2 dx` P pEzBrpx0q; Ωq ` Λ|Brpx0q X E|.

Simplifying the previous inequality and estimating |Brpx0q X E| ď ωNr
N , it follows that

´pβ ´ αq
ż

Brpx0qXE

|∇u|2 dx` P pE;Brpx0qq ď HN´1pBBrpx0q X Eq ` ΛωNr
N .

Thanks to (26) and the Ahlfors regularity of BE, we get

 

´ pβ ´ αqε` CA ´ ΛωNr
(

rN´1 ď HN´1pBBrpx0q X Eq.

Choosing r0 “ CA

4ΛωN
and ε0 ă CA

4pβ´αq , we obtain (27).

Step 2: We prove (25). Let us assume by contradiction that choosing δ ă CA

16
and M ą 0

and Brpx0q Ă U , with r ă r0, (24) holds and

|Brpx0q X E| ă δrN ,

By Chebyshev inequality and Fubini’s theorem, we get

H1

ˆ"

ρ P
ˆ

r

2
, r

˙

: HN´1pBBρpx0q XEq ě 4|Brpx0q X E|
r

*˙

ď r

4|Brpx0q XE|

ż r

r
2

HN´1pBBρpx0q X Eq dρ ď r

4
ă r

2
.

This implies that there exists ρ P
`

r
2
, r
˘

such that

HN´1pBBρpx0q X Eq ď 4|Brpx0q X E|
r

ď 4δrN´1.

Since δ ă CA

16
, we get a contradiction, (27) being in force.

Corollary 3.5. Let pu,Eq be a minimizer of (3) and U ĂĂ Ω be an open set. There exists a
positive constant C0 “ C0pN,α, β,K,Λ, CΓq such that for every Brpx0q Ă U , with x0 P BE, it
holds

|Brpx0q X E| ě C0r
N .
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Proof. We fix Brpx0q Ă U , with x0 P BE. Let us call by ε0 the constant ε0 appearing in Lemma
3.3, by ε1 and r0 respectively the constants ε0 and r0 appearing in Lemma 3.4. By Lemma 3.3
there exist a positive constant a “ apN,K,Λ, CΓ, εq and y P BE X B r

3
px0q and t P

`

ar, r
3

˘

such
that

ż

Btpyq
|∇u|2 dx ď εtN´1,

where ε P p0,mintε0, ε1uq and r P p0, r0q. Applying Lemma 3.4, we get that

|Brpx0q X E| ě |Btpx0q X E| ě CtN ě CrN ,

for some positive constant C “ CpN,α, β,K,Λ, CΓq, which is the thesis.

For what follows, it is useful to define the following function:

hpx, rq “ r´N mint|E XBrpxq|, |BrpxqzE|u, @Brpxq Ă Ω.

In the following result, the boundary of an optimal shape E is locally characterized in terms of
the function h. It is the sets of points where the density of E or ΩzE is not too small.

Proposition 3.6. Let pu,Eq be a minimizer of (3), U ĂĂ Ω be an open set and r0 ą 0 be such

that Λr0 ď K´1N
2

. There exists a positive constant C0 “ C0pN,α, β,K,Λ, CΓq such that it holds

BE X U “ tx P U : hpx, rq ě C0, @r P p0,mintr0, distpx, BUququ.

Proof. Let x0 P BEXU and r P p0,min
 

r0, distpx0, BUq, K´1N
2

(

q. If hpx0, rq “ r´N |Brpx0qXE|,
by Corollary 3.5, there exists a positive constant C1 “ C1pN,α, β,K,Λ, CΓq such that

|Brpx0q X E| ě C1r
N ,

that is hpx0, rq ě C1. If hpx0, rq “ r´N |Brpx0qzE|, we assume that HN´1pB˚E X BBrpx0qq “ 0.
We fix s P pr,mintr0, distpx0, BUquq. Let F Ă R

N be such that E∆F ĂĂ Bspx0q. By the
isoperimetric inequality we infer that

|E∆F | “ |E∆F |N´1

N |E∆F | 1

N ď P pE∆F q
N

s “ s

N
P pE∆F ;Bspx0qq

ď s

N
rP pE;Bspx0qq ` P pF ;Bspx0qqs.

Thus, taking (5) into account, we get

pβ ´ αq
ż

Bspx0qzE
|∇u|2 dx`

ˆ

K´1 ´ Λs

N

˙

P pE;Bspx0qq ď
ˆ

K ` Λs

N

˙

P pF ;Bspx0qq.

Testing the previous relation with the set E YBrpx0q and letting s Ñ r`, we get

pβ ´ αq
ż

Brpx0qzE
|∇u|2 dx`

ˆ

K´1 ´ Λr

N

˙

P pE;Brpx0qq ď
ˆ

K ` Λr

N

˙

HN´1pBBrpx0qzEq.

Thus, adding
`

K´1 ´ Λr
N

˘

HN´1pBBrpx0qzEq to both sides of the previous inequality, we get

ˆ

K´1 ´ Λr

N

˙

P pBrpx0qzEq ď
`

K `K´1
˘

HN´1pBBrpx0qzEq.

Taking into account that 1 ´ Λr1
N

ě K´1N
2

, the isoperimetric inequality in the left hand-side
yields

|Brpx0qzE|N´1

N ď cpN,KqHN´1pBBrpx0qzEq.
Setting mprq :“ |Brpx0qzE|, the previous inequality can be rephrased as

mprqN´1

N ď cpN,Kqm1prq, for a.e. r P p0,mintr0, distpx0, BUquq.

Integrating the previous inequality in p0, rq, we get

mprq ě cpN,KqrN , @r P p0,mintr0, distpx0, BUquq,

which implies that hpx0, rq ě cpN,Kq.
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The main result of this section follows.

Proposition 3.7. Let pu,Eq be a minimizer of (3) and U ĂĂ Ω be an open set. Then the open
sets

E0 “ tx P U : Dr ą 0 s.t. |BrpxqzE| “ 0u,
E1 “ tx P U : Dr ą 0 s.t. |Brpxq XE| “ 0u

satisfy the condition-B with some positive constants C0 and r0, and E0 is equivalent to E.
Moreover, it holds that E1 “ R

NzE0 and BE0 “ BE1 “ BE.

Proof. We only prove that E0 and E1 satisfy the condition-B. Indeed, the validity of the other

statements has been showed in [28, Lemma 3.6]. Setting r0 :“ 1

2
min

 

K´1N
2Λ

, distpU, BΩq
(

,
let x0 P BE and r P p0, r0q. By Proposition 3.6, there exists a positive constant C1 “
C1pN,α, β,K,Λ, CAq such that h

`

x0,
r
2

˘

ě C1. Thus

|E0 XB r
2

px0q| ě 2´NC1r
N and |E1 XB r

2
px0q| ě 2´NC1r

N . (28)

Since, by the Ahlfors regularity of BE, it holds that

ˇ

ˇ

ˇ

ˇ

"

y P B r
2

px0q : distpy, BEq ď tr

2

*ˇ

ˇ

ˇ

ˇ

ď CtrN , @, t P p0, 1q,

where C “ CpN,CAq ą 0 (see [28, Lemma 3.6] or [11, Lemma 25 in Chapter 23]). Choosing
t P

`

0, C3

2N`1CpN,CAq
˘

, by (28) we get that

ˇ

ˇ

ˇ

ˇ

"

y P B r
2

px0q : distpy, BEq ď tr

2

*ˇ

ˇ

ˇ

ˇ

ă mint|E0 XB r
2

px0q|, |E1 XB r
2

px0q|u.

As a consequence, there exist y0 P E0 XB r
2

px0q and y1 P E1 XB r
2

px0q such that

distpy0, BEq ą tr

2
and distpy1, BEq ą tr

2
,

which is our aim.

As an application to condition-B, we can give an alternative proof for an estimate that
was already found by Larsen, stated in [23, Theorem 4.1] and proved with completely different
arguments.

Proposition 3.8. Let pu,Eq be a minimizer of F defined in (3) and let Ai be a connected
component of E. Then there exists two positive constants C1 C2 such that if |Ai| ď C1, then

ˇ

ˇ

ˇ

!

x P EzAi : distpx,Aiq ď C2|Ai|
1

N

)ˇ

ˇ

ˇ
ą |Ai|.

Proof. Let x P Ai. Since E satisfies condition-B with some constants C0 and r0, setting r :“
´

2|Ai|
ωN

¯
1

N ď C0r0, there exists y P E such that

Brpyq Ă Bpx,C0rq X E.

By the choice of r, we get that |Brpyq| ą |Ai|. Thus, it holds necessarily that

Brpyq Ă EzAi.

Furthermore, for any z P Brpyq, we have that

distpz,Aiq ď r

C0

“ 1

C0

ˆ

2

ωN

˙
1

N

|Ai|
1

N .

Accordingly,

ˇ

ˇ

ˇ

ˇ

ˇ

#

z P EzAi : distpz,Aiq ď 1

C0

ˆ

2

ωN

˙
1

N

|Ai|
1

N

+ˇ

ˇ

ˇ

ˇ

ˇ

ě |Brpyq| ą |Ai|,

which is the thesis.
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4 Control of the flatness in a quantitative way

Lemma 4.2 below is a variant of the well-known classical fact that for a uniformly rectifiable set,
one can find many balls in which the bilateral flatness is small. In other words, the set of points
where the flatness is larger than any threshold ε ą 0, is a porous set. The following variant says
that one can even choose the center of the ball, where the set is flat, in a given subset Γ Ă BE
provided that Γ satisfies itself a lower Ahlfors regularity estimate.

Definition 4.1. We say that Γ Ă R
N satisfies a lower Ahlfors-regularity estimate if there exists

r0, CΓ ą 0 such that for all r P p0, r0q and x P Γ, it holds

HN´1pΓ XBrpxqq ě CΓr
N´1.

Here below is the lemma that will be needed to control the flatness in many balls.

Lemma 4.2. Let pu,Eq be a minimizer of F defined in (4) and let Γ Ă BE be a subset that
satisfies a lower Ahlfors-regularity estimate with constants r0, CΓ (see Definition 4.1). Then,
for every ε ą 0 there exists a ą 0 such that the following holds: for all x P Γ and r P p0, r0{2q,
there exist y P Γ XBrpxq and t P par, rq such that

βpy, tq ď ε.

Proof. Since BE is Ahlfors-regular and uniformly rectifiable, we know by Proposition 2.4 that
BE satisfies the bilateral weak geometric lemma, i.e. for every ε ą 0, the set

A :“ tpx, tq P BE ˆ R` : βpx, tq ą εu

is a Carleson set (see [12, Definition 2.2]). More precisely there exists C ą 0 and such that

ż r

0

ż

BEXBrpxq
1Apy, tqdHN´1pyqdt

t
ď CrN´1, (29)

for all r ą 0.

Now, let Γ Ă BE satisfy a lower Ahlfors regularity estimate with constants r0, CΓ ą 0 and
let ε ą 0 be given. Fix also some x P Γ and 0 ă r ď r0{2. Assume by contradiction that for all
t P par, rq and for all y P Γ XBrpxq it holds

βpy, tq ą ε. (30)

Defining

AΓ :“ tpx, tq P Γ ˆ R` : βpx, tq ą εu,

using moreover that (30) holds for all t P par, rq, we get

ż r

0

ż

BEXBrpxq
1Apy, tq dHN´1pyqdt

t
ě

ż r

0

ż

BEXBrpxq
1AΓ

py, tq dHN´1pyqdt
t
,

ě
ż r

ar

ż

BEXBrpxq
1AΓ

py, tq dHN´1pyqdt
t
,

ě
ż r

ar

HN´1pΓ XBrpxqq dt
t
,

ě CΓr
N´1 lnp1{aq,

which contradicts (29) for a small enough, and the lemma follows.

Lemma 4.3. For all ε0 ą 0 there exists η0 ą 0 such that the following holds: for any minimizer
of the functional F defined in (4) in Brpxq satisfying

βpx, rq ď η0,

we have

epx, r{2q ď ε0.
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Proof. Let us assume by contradiction that there exists ε0 ą 0, a sequence of balls Brhpxhq and
a sequence of Λ-minimizers pEh, uhq of F in Brhpxhq such that

βhpxh, rhq Ñ 0,

as h Ñ `8, and
ehpxh, rhq ą ε0, @h P N.

Setting pE1
h, u

1
hq “

´

r´1

h pEh ´ xhq, r´ 1

2

h uhpxh ` rh¨q
¯

, it holds that pE1
h, uhq is a Λrh-minimizer

of F in B1. Furthermore, by scaling, it follows that

βhp0, 1q Ñ 0, (31)

as h Ñ `8, and
ehp0, 1q ą ε0, @h P N. (32)

Since Eh is uniformly Ahlfors-regular, we know that

P pEh;B1q ď CA, @h P N,

where CA is a constant independent of h. This allows to extract a further subsequence such
that Eh Ñ E in L1pB1q and, from (31), we infer that, up to a rotation, E “ B1 X txN ą 0u.
Let C :“ Cp0, 1{2, eN q be a cylinder satisfying B 1

2

Ă C Ă C1. Then by [26, Proposition 22.6]
we know that

ehp0, 1{2q Ñ 0,

which contradicts (32), and concludes the proof.

Lemma 4.4. There exists ε0 ą 0 such that for any ε P p0, ε0q there exists a ą 0 and r0 ą 0
such that the following holds. Let pu,Eq be a minimizer for of F defined in (4) and Γ Ă BE a
subset which satisfies a lower Ahlfors-regularity property with constant CΓ. Then, for any x P Γ
and r P p0, r0q there exists y P Γ XBrpxq such that

epy, arq ` ωpy, arq ` Λar ď ε0.

Proof. Let us denote by ε1 the constant ε0 that appears in Lemma 3.3 and let η0 be the constant
of Lemma 4.3. We choose ε ă 3ε1. By Lemma 3.4, there exists b ą 0 such that for any x0 P Γ
and Bρpx0q Ă U there exist z P B ρ

3
px0q and s P

`

bρ, ρ
3

˘

such that

ωpz, sq ď ε

3
. (33)

Furthermore, by Lemma 4.3, there exists η0 ą 0 such that if, for any Brpx0q Ă Ω such that
βpx0, rq ă η0, we have

e

ˆ

x0,
t

2

˙

ď bN´1
ε

3

Finally, by Lemma 4.2, there exists a ą 0 such that for any x0 P Γ and r P
`

0, r0
2

˘

there exist
y P Γ XBrpxq and t P par, rq such that

βpy, tq ď η0.

Thus, we get that

e

ˆ

y,
r

2

˙

ď bN´1
ε

3
.

We choose ρ “ t
2
. By the previous inequality, it follows that

epz, sq ď
ˆ

t

2s

˙N´1

e

ˆ

y,
t

2

˙

ď ε

3
.

If we chose r0 ă 2ε
Λ
, then, by the previous chain of inequalities and (33), we get

epz, sq ` ωpz, sq ` Λs ă ε,

which is the thesis.

Corollary 4.5. BEsing has Hausdorff dimension stricitly less than N ´ 1.

Proof. By the previous lemma, BEsing is a porous set in BE. Then it is standard to show that
the Hausdorff dimension is strictly less than N ´ 1 (see for instance [28, Remark 3.29]).
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5 Regularity in dimension N “ 2

Throughout the section, we derive some properties of solutions of the optimal design problem
(1) in the case N “ 2. In Subsection 5.1, we employ an argument due to Bonnet [5] to show the
validity of a monotonicity formula concerning ∇u (see Proposition 5.2), provided that the ratio
between the coefficients α and β is smaller than 4. The smoothness of the free boundary, which
is the statement in Theorem 1.1, follows as a consequence. In Subsection 5.2, we study the
spectral problem associated to the optimal design when the set E meets a circle exactly in two
points (see Proposition (5.3)). We use the estimate on the first eigenvalue to derive a partial
regularity result concerning the free boundary, which is contained in Corollary 5.4. Finally,
in Subsection 5.3, we prove a quantitative estimate of the mutual distance between connected
components of the optimal set.

5.1 Full regularity in the case β ă 4α from a monotonicity formula

We will need in the sequel the following lemma which is the justification of an integration by
parts formula.

Lemma 5.1 (Integration by parts). Let α ď β and σ : Ω Ñ R
` any given measurable function

such that α ď σ ď β. Let u be a local minimizer for the energy
ż

Ω

σ|∇u|2 dx.

Then for all x0 P Ω and a.e. r P p0, distpx0, BΩqq we have

ż

Brpx0q
σ|∇u|2 dx “

ż

BBrpx0q
σu

Bu
Bν dx,

and
ż

BBrpx0q
σ

Bu
Bν dx “ 0.

Proof. Without loss of generality, we may assume that x0 “ 0. We know from the local mini-
mality of u that it holds

ż

Ω

σ∇u ¨ ∇ϕdx “ 0, @ϕ P H1

0 pΩq. (34)

For ε ą 0, let us choose ϕ “ ϕεu with ϕε :“ gεp|x|q where gε : r0,`8q Ñ R is the continuous
function defined as follows: gεptq “ 1 for any t P r0, p1´εqrs, gεptq “ 0 for any t P rp1`εqr,`8r
and it is linear on rp1 ´ εqr, p1 ` εqrs. Applying (34), we get

ż

Ω

σ∇u ¨ u∇ϕε dx`
ż

Ω

σ∇u ¨ ϕε∇u dx “ 0.

It is clear that ϕε converges strongly in L2 to 1Br
, which implies

lim
εÑ0

ż

Ω

σ∇u ¨ ϕεr∇u dx “
ż

Br

σ|∇u|2 dx.

On the other hand ϕε is Lipschitz continuous and ∇ϕεpxq “ x
2εr|x|1Bp1`εqrzBp1´εqr

pxq for almost

every x P Ω, so that
ż

Ω

σ∇u ¨ u∇ϕε dx “ 1

2εr

ż

Bp1`εqrzBp1´εqr

σu∇u ¨ x

|x| dx

which converges to
ş

BBr
σu∇u ¨ ν dH1 for a.e. r by the Lebesgue’s differentiation theorem.

Therefore, passing to the limit we obtain
ż

Br

σ|∇u|2 dx “
ż

BBr

σu
Bu
Bν dx,

which proves the first half of the statement. For the second assertion, we take φ “ ϕε itself as
a test function. This gives

ż

Ω

σ∇u ¨ ∇ϕε dx “ 0,
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which actually yields
1

2εr

ż

Bp1`εqrzBp1´εqr

σ∇u ¨ x

|x| dx “ 0.

The lemma follows from passing to the limit as ε Ñ 0.

We are now able to prove the monotonicity formula.

Proposition 5.2. Let σ : Ω Ñ R
` a given function such that

α ď σ ď β.

Let u be a local minimizer for the energy

ż

Ω

σ|∇u|2 dx.

Then, for all x0 P Ω and r P p0, distpx0, BΩqq the function

r ÞÑ 1

rγ

ż

Brpx0q
σ|∇u|2 dx

is nondecreasing with γ “ 2
b

α
β
.

Proof. Without loss of generality, we may assume that x0 “ 0. We define

Eprq :“
ż

Br

σ|∇u|2 dx.

Notice that Eprq can be rewritten in the form

Eprq “
ż r

0

ż

BBt

σ|∇u|2 dH1dt,

which directly shows that Eprq is absolutely continuous and, in particular, differentiable almost
everywhere, with

E1prq “
ż

BBr

σ|∇u|2 dH1.

We recall the following classical Wirtinger inequality, valid for any function u P W 1,2pBBrq,
ż

BBr

pu´mrq2 dx ď r2
ż

BBr

ˆBu
Bτ

˙2

dx,

where mr is the average of u, namely, mr :“ 1

2πr

ş

BBr
u dH1. From the minimizing property of

u we may apply Lemma 5.1 which yields

ż

Br

σ|∇u|2 dx “
ż

BBr

σu
Bu
Bν dx, for a.e. r ą 0,

and
ż

BBr

σ
Bu
Bν dx “ 0.

Using the equations above, Hölder’s and Young’s inequalities, we can write

Eprq “
ż

Br

σ|∇u|2 dx “
ż

BBr

σu
Bu
Bν dx “

ż

BBr

σpu´mrqBu
Bν dx

ď
˜

ż

BBr

σpu´mrq2
ˆBu

Bν

˙2

dx

¸1{2

ď ε

2

ż

BBr

σpu´mrq2 dx` 1

2ε

ż

BBr

σ

ˆBu
Bν

˙2

dx

ď ε

2
β

ż

BBr

pu´mrq2 dx` 1

2ε

ż

BBr

σ

ˆBu
Bν

˙2

dx
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ď ε

2
βr2

ż

BBr

ˆBu
Bτ

˙2

dx` 1

2ε

ż

BBr

σ

ˆBu
Bν

˙2

dx

ď ε

2

β

α
r2

ż

BBr

σ

ˆBu
Bτ

˙2

dx` 1

2ε

ż

BBr

σ

ˆBu
Bν

˙2

dx,

where ε ą 0. Finally, by choosing ε “ 1

r

b

α
β
we find that

Eprq ď r

2

c

β

α
E1prq.

This implies that the function

r ÞÑ 1

rγ

ż

Brpxq
σ|∇u|2 dx

is nondecreasing with γ “ 2
b

α
β
.

As a consequence, we obtain the result already announced in the introduction as Theorem 1.1.

Proof of Theorem 1.1. Let pu,Eq be a minimizer for Problem (1) with β ă 4α. Then by [16,
Theorem 1], we know that pu,Eq is a Λ-minimizer, i.e. pu,Eq is a minimizer of the functional

ż

Ω

σE |∇u|2 dx` P pE; Ωq ` Λ||E| ´ V0|.

In particular, the set E being fixed, we infer that u must be a minimizer of the energy
ş

Ω
σE |∇u|2 dx, and according to Proposition 5.2, we know that there exists r0 ą 0 such that

for all x0 P BE and r P p0, r0q we have

ż

Brpx0q
σE |∇u|2 dx ď C0r

1`ε,

with ε “ 2
a

α{β ´ 1 ą 0 and C0 “ r
´2

?
α{β

0

ş

Br0
px0q σE |∇u|2 dx.

Now let F Ă R
N be any set of finite perimeter such that E∆F Ă Brpx0q. Then, testing the

minimality of pu,Eq with the competitor pu, F q we get

ż

Ω

σE |∇u|2 dx` P pE; Ωq ď
ż

Ω

σF |∇u|2 dx` P pF ; Ωq ` Λ||F | ´ V0|,

which implies, since E∆F Ă Brpx0q,

P pE;Brpx0qq ď P pF ;Brpx0qq ` C

ż

Brpx0q
σE |∇u|2 dx` C|Brpx0q|,

ď P pF ;Brpx0qq ` Cr1`ε.

This means that E falls into the theory of almost minimizers for the perimeter, and then by
the classical result of Tamanini [29] we deduce that the singular set is regular up to a singular
set of dimension N ´ 8. Since here N “ 2, the singular set is actually empty.

5.2 Monotonicity formula for a boundary intersecting by only two

points

In the previous subsection, we have obtained a monotonicity behavior of the energy by using
the classical Wirtinger inequality in order to estimate the derivative of the energy with respect
to the radius of the ball. This strategy is necessarily non optimal, due to the coefficients σ in
front of the energy.

In this section, we try to improve the monotonicity behavior of the energy by analysing
precisely the Wirtinger constant taking into account the weight σ in the inequality. In other
words, we arrive to a new spectral problem on the circle, with weight σ.

In the case when the two regions tσ “ αu and tσ “ βu are both connected on the circle,
we obtain a good decay behavior of the energy of the type oprq leading to C1-regularity (see
Corollary 5.4). It was surprising to the authors that even in such “easy” case, the associated
1D-spectral problem on the circle was so difficult to compute (see Proposition 5.3).
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Moreoever when those regions are not connected, the computations become really painful
and some numerical evidences shows that one cannot hope to obtain a good behavior of the
energy in full generality. In other words, using this strategy it seems difficult to prove a full
regularity result without any restriction on α, β or the regions tσ “ αu and tσ “ βu.
Proposition 5.3. Let σ “ α1p0,aq ` β1pa,2πq, where a P p0, 2πq and 0 ă α ă β ă 8. Let

ν1 “ min

#

ş2π

0
σ|u1|2 dt

ş2π

0
σu2 dt

: u P H1pp0, 2πqq, up0q “ up2πq,
ż 2π

0

u dt “ 0

+

.

Then there exists γ “ γ
`

β
α

˘

ą 1

4
independent from the parameter a, such that ν1 ą γ.

Proof. The derivative of the functional that defines ν1 vanishes if and only if

ż 2π

0

σu1v1 dt “ ν1

ż 2π

0

σuv dt, @v P H1

0 pp0, 2πqq.

We deduce that any optimal u is a solution of the following system:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

´u2 “ ν1u in p0, aq,
´u2 “ ν1u in pa, 2πq,
up0q “ up2πq,
αu1p0q “ βu1p0q,
αu1paq “ βu1paq,
u continuous on p0, 2πq.

From the two equations we derive that

uptq “ A1 cospωtq `A2 sinpωtq, @t P p0, aq,
uptq “ B1 cospωtq `B2 sinpωtq, @t P pa, 2πq,

where we have set ω “ ?
ν1 and Ai, Bi are real constants to be determined. Imposing the

continuity conditions in a and 2π, and the transmission conditions in the same points, we get
the following system:

$

’

’

’

&

’

’

’

%

A1 ´ cosp2πωqB1 ´ sinp2πωqB2 “ 0

cospaωqA1 ` sinpaωqA2 ´ cospaωqB1 ´ sinpaωqB2 “ 0

αA2 ` β sinp2πωqB1 ´ β cosp2πωqB2 “ 0

´α sinpaωqA1 ` α cospaωqA2 ` β sinpaωqB1 ´ β cospaωqB2 “ 0.

Denoting by A the matrix of the coefficients of the previous system, doing some elementary
calculations and applying trigonometric identities, we compute

detpAq “ 1

2
pα ´ βq2r´ cosp2pa´ πqωq ` pC ` 1q cosp2πωq ´ Cs,

where

C “ C
´β

α

¯

“ 4β
α

´

1 ´ β
α

¯2
ą 0.

In order to study ν1, we need to estimate the first value of ω that nullifies the following function:

fpω,Cq “ ´ cosp2pa´ πqωq ` pC ` 1q cosp2πωq ´ C, @ω ą 0.

We start by finding the zeros of the function

gpωq “ fpω, 0q “ ´2 sinpp2π ´ aqωq sinpaωq,

which are

ωk “ kπ

a
or ω̃k “ kπ

2π ´ a
, @k P N.

Let us assume that a P rπ, 2πq so that ω1 ď ω̃1. It holds that g ď 0 in
`

0, π
a

˘

.
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Notice that Bf
BC “ cosp2πωq ´ 1 which is negative. It follows that fpω,Cq ď gpωq, which

yields

fpω,Cq ď gpωq ă 0, @ω P
ˆ

0,
π

a

˙

.

Thus by continuity, f must vanish after the first zero of g, in other words

?
ν1 “ min

fpω,Cq“0

ω ě min
gpωq“0

ω “ π

a
.

If a P p0, πq, then ω̃1 ă ω1 and g ď 0 in
`

0, π
2π´a

˘

. With the same argument we get that

?
ν1 “ min

fpω,Cq“0

ω ě min
gpωq“0

ω “ π

2π ´ a
.

At this point we have proved that

ν1 ě min

"ˆ

π

a

˙2

,

ˆ

π

2π ´ a

˙2*

ě 1

4
. (36)

Let us remark that 0 ă ω1 ď 1. Indeed, assume first that cosp2pa ´ πqq ‰ 1. We notice that
fp1, Cq “ 1´ cosp2pa´πqq ą 0 and on the other hand fp1{2, Cq “ ´ cosp2pa´πqq ´ 1´ 2C ă 0
which proves that ω1 P p0, 1q. Now if cosp2pa´ πqq “ 1, then

fpω,Cq “ ´1 ` pC ` 1q cosp2πωq ´ C,

which vanishes for ω P N thus ω1 “ 1 in this case. In any case we have proved that ω1 P p0, 1s.
In other words, we have proved that ω1paq stays in a compact subset of R. Notice that

thanks to the bound in (36), we already know that ω1paq ą 1{2 away from the particular values
a “ 2π and a “ 0. However, up to subsequences, if a Ñ 0`, we know by compactness that
ω1 Ñ η, for some η P r0, 1s. Passing to the limit as a Ñ 0` in the eigenvalue equation, we get
that

cosp2πηq “ 1,

implying that η P t0, 1u. Since η “ limaÑ0` ω1 ě 1

2
, it follows that η “ 1. The same argument

can be applied if we let a Ñ 2π´. Therefore, there exists δ “ δ
`

β
α

˘

ą 0 such that

ω1 ą 3

4
, @a P p0, δq or @a P p2π ´ δ, 2πq.

If a P rδ, 2π ´ δs, then by (36) it holds

ω1 ě min

"

π

δ
,

π

2π ´ δ

*

“ π

2π ´ δ
.

Thus, choosing δ ă 2

3
π, we prove the thesis with γ “

b

π
2π´δ

.

Corollary 5.4. If pu,Eq is a minimizer of the optimal design Problem (1) and let Brpx0q Ă Ω.
If there exists r0 ą 0 such that 7pBE X BBrpyqq ď 2 for all r ă r0 and all y P BE XBr0px0q then
BE is smooth in B r0

2

px0q.

Proof. Proposition 5.3 implies that for all y P BE XBr0pxq and r P p0, r0q we have

ż

Brpxq
σE |∇u|2 dx ď C0r

1`ε,

for some ε ą 0, and we conclude by applying the theory of almost minimizers for the perime-
ter [29].
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5.3 The components of A have mutually quantitative positive distance

In [22] Larsen proved that if pu,Eq is a minimizer of the functional (4), then for any two
components E1, E2 of E one has

distpE1, E2q ą 0.

In this section, we use the uniform rectifiability of BE established in Section 3 to improve
the result of Larsen [22]. More precisely, we show the validity of Theorem 1.2, whose proof relies
on the following lemma. It is a quantitative adaptation of [22, Lemma 3.1], which we derived
using the uniform rectifiability of BE. Actually, the following Lemma contains [22, Lemma 3.1]
with a slightly different proof, which is more detailed.

Lemma 5.5. Let pu,Eq be be a minimizer of the functional (4) and E1, E2 be two connected
components such that

distpE1, E2q2 ď δmin t|E1|, |E2|u ,
where δ P p0, 1q. Then for any R ď 1

2
?
δ
distpE1, E2q there exist a ball BRpcq and two connected

components E1
1 and E1

2 of E1 XBRpcq and E2 XBRpcq respectively such that they are contained
in a rectangle. More precisely, up to a rotation, it holds that

E1
1 YE1

2 Ă tpx, yq | |y ´ yc| ď hu,

with h :“ C0pδ 1

4R`R
3

2 q, where the constant C0 ą 0 depends on the Ahlfors-regularity constant.
Moreover, for i “ 1, 2, each E1

i contains a point ai satisfying |ai| ď distpE1
1, E

1
2q, and E1

i X
BBRpcq ‰ H.

Proof. Let a1 P E1 and a2 P E2 be such that |a2 ´ a1| ď 2distpE1, E2q. Without loss of
generality, we may assume that a1`a2

2
“ 0. Let

R :“ 1

2
?
δ
distpE1, E2q.

By the choice of R, it holds that

EizBR ‰ H, @i P t1, 2u, (37)

because |BR| “ π 1

4δ
distpE1, E2q2 ď π

4
mint|E1|, |E2|u ă |Ei|, for i “ 1, 2.

Since Ei is connected and contains a point outside BRp0q, this point must be connected to
ai P Ei. For the rest of the proof we will still denote by E1 and E2 the connected components
of E1 XBRp0q and E2 XBRp0q containing respectively a1 and a2 (these components will be the
E1

1 and E1
2 of the statement). Note that from (37) we deduce that

BBR XEi ‰ H,

which is the claim at the end of the statement.
Let zi P Ei. Since E1 and E2 are two different connected components, it is true that BE1 and

BE2 separate z1 and z2. Thus, by Theorem 14.3 page 123 of [27], for any i P t1, 2u there exists
a connected subset Γi of BEi such that Γi separates z1 and z2 and H1pΓiq ă `8. Furthermore,
Γi is arcwise connected.

Let ℓ :“ rz1, z2s and let D be the diameter of BR parallel to ℓ. We set

η :“ distpℓ,Dq.

Since ℓX Γi ‰ H, the following two points exist:

y1 :“ suptt P r0, 1s : tz1 ` p1 ´ tqz2 P E1u and y2 :“ inftt P r0, 1s : tz1 ` p1 ´ tqz2 P E2u.

Let us denote by d :“ distpE1, E2q. If η ď 2d, the conclusion of the lemma holds true. We
can assume that η ą 2d. In this case, B2dXℓ “ H, and BB2dXBEi ‰ H, for i “ 1, 2. Thus there
exist three curves Σ1 Ă BE1, Σ2 Ă BE2 and Σ3 Ă BB2d such that the set Σ :“ Σ1 Y Σ2 Y Σ3 is
a curve that goes from y1 to y2. By Lemma 5.7 below, we know that this curve may possibly
have self-intersection points but only by a zero H1-measure set.

The height bound (Lemma 6.1) gives

distpx, ry1, y2sq ď
c

H1pΣqpH1pΣq ´ |y2 ´ y1|q
2

, @x P Σ.
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Figure 1: The domain noted by I used as a competitor in the proof of Lemma 5.5, following
the idea of Larsen [23]: if the two connected components E1 and E2 were not flat enough in
BR, then we could win a lot of perimeter by adding the domain denoted by I in the picture.

Thus, by the triangle inequality and the previous one, we get

η “ distpry1, y2s, Dq ď sup
zPΣ3

distpz, ry1, y2sq ` sup
zPΣ3

distpz,Dq ď sup
zPΣ

distpz, ry1, y2sq ` 2d

ď
c

H1pΣqpH1pΣq ´ |y2 ´ y1|q
2

` 2d. (38)

At this point we use the Λ-minimality relation to estimate the right-hand side of (38). We
denote by I the interior of the Jordan curve Σ Y ry1, y2s. By the Λ-minimality of pu,Eq with
respect to pu,E Y I YB2dq, we get

ż

Ω

σE |∇u|2 dx` P pE; Ωq ď
ż

Ω

σEYIYB2d
|∇u|2 dx` P pE Y I YB2d; Ωq ` ΛπR2.

The inequality can be simplified as

H1pΣ1 Y Σ2q ď H1pry1, y2sq ` 4πd` ΛπR2.

By adding H1pΣ3q to both sides of the previous inequality, we infer that

H1pΣq ´ H1pry1, y2sq ď 8πd` ΛπR2.

Combining (38) with the previous inequality and using the Ahlfors regularity, we obtain

η ď
d

H1pΣq
ˆ

4πd` Λ

2
πR2

˙

` 2d

ď C

d

R

ˆ

4πd` Λ

2
πR2

˙

` 2d

ď C

b?
δR2 `R3 ` C

?
δR.

ď Cpδ 1

4R `R
3

2 q.

The conclusion of the lemma follows by applying Lemma 5.6 below.

Lemma 5.6. Let A Ă B :“ B1p0q a given set such that AXBB ‰ H and satisfying the following
property: there exists η ď 1{2 such that for all z1, z2 Ă A,

distprz1, z2s, Dq ď η,

where D is the diameter of B parallel to rz1, z2s. Then, up to a rotation,

A Ă tpx, yq | |y| ď 3ηu.
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Proof. Let z0 P A X BB. For any point z P A we denote by Dz the the diameter of B parallel
to rz0, zs. From our assumption on A we know that for all z P A it holds,

distprz0, zs, Dzq ď η.

In particular, dpz0, Dzq ď η and since z0 P BB, this implies that the angle between z0 and the
direction of Dz is small. More precisely, if ez is a unit vector in the direction of Dz, then

|z0 ´ xz0, ezyez| ď η

and, accordingly,
|z0 ´ xz0, ezyez|2 “ 1 ´ xz0, ezy2 ď η2. (39)

Let θ be the angle between the vectors z0 and ez, in such a way that |xz0, ezy| “ cospθq. Then
we deduce from (39) that

| sinpθq| ď η.

In other words, all the diameters Dz, for z P A, must be contained in an angular sector of
aperture at most 2 arcsinpηq around z0. By assuming that z0 “ p1, 0q, the first vector of the
canonical basis of R2, we conclude that, for all z P A, Dz Ă tpx, yq | |y| ď arcsinpηqu and finally,
for all z P A, z P tpx, yq | |y| ď η ` arcsinpηqu. The proposition follows from the elementary
inequality, arcsinpηq ď 2η, which valid for all η ď 1{2.

We are now ready to proof the main result of this section and of the paper.

Proof of Theorem 1.2. We may assume by contradiction that for every δ P p0, 1q and ε ą 0
there exist two connected components of E such that

mint|E1|, |E2|u ă ε and distpE1, E2q2 ď δminp|E1|, |E2|q.

Let R :“ 1

2
?
δ
distpE1, E2q. By Lemma 5.5, there exist a ball BRpcq and two connected compo-

nents E1
1 and E1

2 of E1 X BRpcq and E2 X BRpcq such that they are contained in a rectangle.
More precisely, up to a rotation,

E1
1 YE1

2 Ă tpx, yq | |y ´ yc| ď hu,

with h :“ Cpδ 1

4R ` R
3

2 q, with C ą 0 depending on the Ahlfors regularity constant. Without
loss of generality, we may assume that c “ 0.

Next, we want to find a curve Γ Ă BE1
1 XBRpcq which is lower Ahlfors-regular. The easiest

way to do so is to find a connected subset of BE1
1 whose diameter is comparable to the diameter of

E1
1. For that purpose, we use the following general topological result, which follows directly from

the main theorem of [10] (see also [27, Theorem 14.2 p. 123]): if U Ă R
N is an open set such that

R
NzU is connected, then BU is connected. To simplify the notation, we denote for a moment by

E the connected component E1
1 . In particular we know that EXBRp0q Ă tpx, yq | |x2| ď hu. Let

U be the connected component of R2zE containing the point p0, 2hq. Then R
2zU “ E YiPI Fi,

where tFiuiPI is the collection of all the other connected components of R2zE different from U .
In particular, Fi is a closed set, for any i P I. Applying Lemma 6.2 we deduce that R

2zU is
connected. Therefore, from [10] we know that BU is connected. Furthermore, it is easy to see
that BU Ă BE. Let us further show that

diampBUq ě R{4. (40)

Indeed, from Lemma 5.5 we know that E contains a point a satisfying |a| ď distpE1
1, E

1
2q “

2
?
δR, and E X BBR ‰ H. Since E is open and connected, it is pathwise connected. There

exists a curve inside E from the point a to a point on BBR. This curves stays inside the rectangle
tpx, yq | |x2| ď hu. By consequence, each vertical line Lt :“ te1 ` Re2 must intersect BU for all
t P p2

?
δR,R{2q, and (40) follows. We then define Γ “ BU (see Figure 2.).

Since Γ is connected, it satisfies the following lower Ahlfors regularity property:

H1pΓ XBrpxqq ě r, @x P Γ, @r P
ˆ

0,
R

4

˙

.
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BR

E1
1

E1
2

hb

BU “ Γ

The ball BaRpyq in which the
ε-regularity applies

y

Figure 2: In the proof of Theorem 1.2, we get a contradiction by finding a ball in which BE

should be a smooth surface thanks to the ε-regularity result, which prevents a component to be
shrinked in a thin rectangle.

Then by Lemma 4.4 there exist two constants a P p0, 1q, ε0 ą 0 and a ball BaRpyq Ă BRp0q
such that

epy, aRq ` ωpy, aRq ` aR ď ε0,

for R sufficiently small. By ε-regularity we have that BE1
1 XB aR

2

pyq is a C1,γ-hypersurface. We

can choose δ ă
`

a
4C

˘4
and ε ă

`

a
4C

˘4
so that the radius of the ball B aR

2

pyq is greater than the

height h of the rectangle, that is C
`

δ
1

4R `R
3

2

˘

ă aR
2
. Indeed,

C
´

δ
1

4R `R
3

2

¯

ă C0R

4
` C

pmint|E1|, |E2|uq 1

4

4
ă aR

4
` Cε

1

4

4
“ aR

2
,

which concludes the proof. Indeed, this is clearly a contradiction with the fact that E1
1 X BR

was supposed to be totally contained in the rectangle.

The following lemma has been used in the proof of Lemma 5.5 and it holds when N “ 2. It
states that, under some mild regularity assumptions on a BV set Ω, the boundaries of connected
components cannot touch by a positive H1-measure set.

Lemma 5.7. Let Ω Ă R
2 be a set of finite perimeter satisfying a lower Ahlfors-regularity

inequality and such that
H1pBΩzB˚Ωq “ 0. (41)

Let A and A1 be two connected components of Ω and let x0 P BAX BA1. Then x0 does not belong
to B˚Ω. As a consequence,

H1pBAX BA1q “ 0.

Proof. Assume by contradiction that x0 P B˚Ω X BA X BA1. We know that B˚Ω admits an
approximative tangent plane P0 at point x0. From (41) we deduce that P0 is actually an
approximative tangent plane for BΩ as well. Then since BΩ satisfies a lower Ahlfors-regularity
inequality, it is classical to see that this approximative tangent plane is actually a true tangent
plane. Let us write more details about this last fact.

We assume without loss of generality that P0 “ tx2 “ 0u and let ε ą 0 be fixed. Since P0 is
an approximative tangent plane we know that

lim
rÑ0

1

r
H1pBΩ XBrpx0q X t|x2| ě rεuq Ñ 0. (42)

Now we claim that there exists r0 ą 0 such that, for all r ď r0,

BΩ XBrpx0q X t|x2| ą rεu “ H.

Otherwise, if z P BΩ XBrpx0q X t|x2| ą rεu, since BΩ is lower Ahlfors regular then

H1pBΩ XBεrpzqq ě CAεr,
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Which would easily contradict (42) for r small enough.
We may assume that for ε ą 0 we can find r0 ą 0 such that for any r P p0, r0q we have

BΩ XBrpx0q Ă Trpεq :“ t|x2| ď ε|x1|u.

Without loss of generality we may assume that x0 “ 0. We distinguish two cases.
Case 1: there exists r P p0, r0q such that

pBrzTrpεqq XA ‰ H and pBrzTrpεqq XA1 ‰ H.

Let z P pBrzTrpεqq XA and z1 P pBrzTrpεqq XA1. Let us define

BrzTrpεq “
`

BrzTrpεq X tx2 ą 0u
˘

Y
`

BrzTrpεq X tx2 ă 0u
˘

“: T` Y T´.

Notice that if z P T`, then necessarily T` Ă A. Indeed, if y P T` is any other point, then
the segment yz is contained in T` because T` is convex. Since z belongs to the connected
component A, it holds that y P A, thus proving T` Ă A. The same assertion holds for A1 so
that the following two alternatives must hold:

1. T` Ă pBrzTrpεqq XA and T´ Ă pBrzTrpεqq XA1.

2. T` Ă pBrzTrpεqq XA1 and T´ Ă pBrzTrpεqq XA.

In both cases, it follows that there exists a positive constant C such that

|Ω XBr| ě πr2 ´ Cεr2,

which is a contradiction if ε ă π
2C

, being x0 “ 0 P B˚Ω.
Case 2: for any r P p0, r0q it holds

pBrzTrpεqq XA “ H or pBrzTrpεqq XA1 “ H.

We assume without loss of generality that pBrzTrpεqq XA “ H. We take a point z P Trpεq XA.
Without loss of generality, we can assume that s0 :“ π1pzq ą 0. Since A is connected, and
z, 0 P A, we deduce that BBs X A ‰ H, for all s P p0, s0q. Let zs be a point in BBs X A. Since
pBrzTrpεqq XA “ H, we know that zs P Trpεq.

Since 0 P BA, for all s ă s0 there exists a point z1
s P AXBεspx0q such that π1pz1

sq ď π1pzsq.
Let γ be a curve connecting zs and z1

s in A, which exists because A is a connected open set,
thus arc-wise connected.

We define the vertical line

Lt :“ tpt, yq : y P Ru, for t P R.

Since BA X Bspx0q Ă BΩ X Brpx0q Ă Trpεq and Lt meets interior points of A for t P
rπ1pz1

sq, π1pzsqs, we have that

7pBAX Ltq ě 2, @t P rπ1pz1
sq, π1pzsqs.

Accordingly, by the coarea formula we get

H1pBAXBspx0qq ě
ż

BAXBspx0q

a

1 ´ xνA, eny2 dH1

ě
ż s{

?
1`ε2

sε

H0pBAX tπ1 “ tuq dt ě 2s

ˆ

1?
1 ` ε2

´ ε

˙

ě 2sp1 ´ 2εq,

for any s P p0, s0q. Moreover we know that for all s P p0, s0q,

BΩ X BBspx0q X tπ1pxq ă 0u ‰ H,

so that, all together,

H1pBΩ XBspx0qq ě s` 2sp1 ´ 2εq “ sp3 ´ 4εq,

which implies the following contradiction:

lim inf
sÑ0

H1pB˚Ω XBspx0qq
2s

“ lim inf
sÑ0

H1pBΩ XBspx0qq
2s

ě 3

2
´ 2ε ą 1,

for ε ă 1

4
.
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Remark 5.8. The Lemma is false in higher dimensions: consider the 1D-curve Γ Ă R
N defined

by
Γ :“ tx1 “ x2 “ ¨ ¨ ¨ “ xN´2 “ 0 and xN “ x2N´1u.

Then consider G as being a very small open neighborhood of Γ, with the property that G Ă
txN ą 0u and

lim
rÑ0`

|GXBrp0q|
rN

“ 0.

Then we define Ω :“ P` Y G, where P` “ txN ă 0u. The two connected components of Ω are
P` and G, for which their boundaries meet at the origin, which is a point that belongs to B˚Ω.
However, we don’t know if the assertion HN´1pBA X BA1q “ 0 still holds in higher dimensions
for two connected components of a set of finite perimeter Ω satisfying HN´1pBΩzB˚Ωq “ 0, and
such that BΩ satisfies a lower Ahlfors-regularity inequality.

6 Appendix

The following lemma is a standard height bound which is taken from [4, Lemma 6.3] for the
case of injective curves. Here we adapted the argument straightforwardly for a curve which is
possibly non injective anymore, but for which the set of self-intersection points has zero measure.

Lemma 6.1. Let γ : r0, 1s Ñ R
2 be a curve with endpoints z “ γp0q and z1 “ γp1q, with image

Γ :“ γpr0, 1sq. We assume that γ is almost injective in the sense that, defining

Z :“ tt P r0, 1s : Dt1 ‰ t s.t. γptq “ γpt1qu,
it holds that H1pγpZqq “ 0. It follows that

distpy, rz, z1sq2 ď H1pΓq
`

H1pΓq ´ |z1 ´ z|
˘

2
, @y P Γ. (43)

Proof. Let ȳ be a maximizer of the function y P Γ ÞÑ distpy, rz, z1sq, i.e., ȳ is the most distant
point in Γ from the segment rz, z1s, and define d “: distpȳ, rz, z1sq. Let us consider the point
y1 P R

2 making pz, z1, y1q an isosceles triangle with height d. Denoting by a :“ |z ´ z1|{2 and
L :“ |y1 ´ z|, according to Pythagoras Theorem, we have

d2 “ L2 ´ a2 “ pL´ aqpL` aq.
And since by assumption γ is almost injective (i.e. H1pZq “ 0), then H1pΓq ě |z ´ ȳ| ` |ȳ´

z1| ě 2L and H1pΓq ě |z ´ z1| so that

d2 ď 1

4

`

H1pΓq ´ |z ´ z1|
˘ `

H1pΓq ` |z ´ z1|
˘

ď H1pΓq
`

H1pΓq ´ |z ´ z1|
˘

2
,

which proves (43).

Lemma 6.2. Let A Ă R
N be an open and connected set, and let tFiuiPI be a family of closed

connected sets such that Fi X BA ‰ H for all i P I. Then the set

AY
ď

iPI
Fi

is connected.

Proof. Let us denote by
E :“ AY

ď

iPI
Fi,

and assume that
E Ă U1 Y U2

where U1 and U2 are two disjoint open and connected subsets of R
N . To prove that E is

connected, it is enough to prove that E Ă U1 or E Ă U2. Let i P I be fixed for a moment. Then,
by assumption, Fi Ă U1 Y U2 but since Fi is connected we deduce that Fi Ă U1 or Fi Ă U2.
Let us assume that Fi Ă U1. Let x0 P Fi X BA, which is assumed to be non empty. Since U1 is
open and x0 P BA, we actually infer that U1 X A ‰ H. But since A Ă U1 Y U2, and since A is
connected, we conclude that A Ă U1. In other words we have proved that A Y Fi Ă U1. Now
for any other j P I, arguing similarly we deduce that AY Fj is also contained in one of the two
open sets, that actually must be the same U1 because A is already known to be contained in
U1. All in all we have proved that E Ă U1, as desired, and this achieves the proof.
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Hölder coefficients. Calc. Var. Partial Differ. Equ., 62(5):49, 2023. Id/No 156.

[18] Luca Esposito and Lorenzo Lamberti. Regularity results for an optimal design problem
with lower order terms. Adv. Calc. Var., 16(4):1093–1122, 2023.

[19] Luca Esposito, Lorenzo Lamberti, and Giovanni Pisante. Regularity results for almost-
minimizers of anisotropic free interface problem with Hölder dependence on the position.
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