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Abstract

In this paper we slightly improve the regularity theory for the so called optimal design
problem. We first establish the uniform rectifiability of the boundary of the optimal set, for a
larger class of minimizers, in any dimension. As an application, we improve the bound obtained
by Larsen in dimension 2 about the mutual distance between two connected components. Finally
we also prove that the full regularity in dimension 2 holds true provided that the ratio between
the two constants in front of the Dirichlet energy is not larger than 4, which partially answers
to a question raised by Larsen.
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1 Introduction

Let © < RY be a bounded connected open set and 0 < a < 3 be two constants. We define
op = alp+ Blg g. The so called optimal design problem consists of minimizing among couples
(u, F) the following problem

min J op|Vul? dz + P(E;Q), (1)
(u,E)eA Jo

where
A= {(u,E) st. |E| = Vy and ue H'(Q),u = ug on 0Q}.

Here Vg € (0,]9]) is a given volume and ug € H'(Q) is a boundary datum in the sense that
u = ug on J§) means u — ug € HZ ().

This problem has been widely studied by many famous authors from the 90’s up to nowadays
(see for instance [1, 14, 16, 17, 20, 22, 23, 25]), and a lot is known about the regularity of
minimizers.

To provide some historical context, in 1993 Ambrosio and Buttazzo [1] established the exis-
tence of solutions together with the higher integrabilty of the gradient of the deformation u. In
the same year, Lin [25] proved that for a minimizer (u, F), the function « must be globally C°1/2-
regular in Q and the boundary of F inside  is C*® outside a singular set of zero H~ ~!-measure.
This was again proved with different techniques by Fusco and Julin [20] in 2015, and improved
in the sense that the singular set must have Hausdorff dimension strictly less than N — 1. In
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the same year, De Philippis and Figalli [14] independently obtained the estimate about the
Hausdorff dimension of the singular set, by employing porosity techniques. Later, some variants
of the problems with more general densities with quadratic growth and p-growth, higher-order
operators or in a vectorial context have been studied in [3, 6, 7, 8, 9, 15, 18, 19, 21, 24].

However, in the specific dimension N = 2, the full regularity of E is still a challenging open
problem, raised by Larsen. Indeed, Larsen [23] proved that any connected component of E
has a C' boundary. This does not prevent that a countable number of connected components
accumulate in a way that 0E may not be globally smooth, but Larsen conjectures (in [22] and
again in [23]) that it might not be the case.

The first result of this paper is a positive answer to Larsen’s conjecture in the case when
B < 4a. Here is our first result.

Theorem 1.1. Let N = 2 and let (u, E) be a minimizer for the optimal design Problem (1).
Assume moreoever that B < 4a.. Then OF is a smooth CY®-surface in Q.

The proof of Theorem 1.1 is very short and is given in Section 5.1. It relies on a monotonicity
formula, similar to that of Bonnet [5], which directly establishes that F is an almost minimizer
for the perimeter in the regime § < 4« allowing us to apply the standard regularity theory. In
the same section, we investigate some further monotonicity properties that imply, for instance,
that, without any restriction on «, 8, if 0F intersects 0B;(x) by only two points for all s € (0,7),
then 0E' n B (x) must be smooth.

Theorem 1.1 also partially improves an earlier result of Esposito and Fusco [16], in which they
prove that 0F is a smooth surface when § < yya, where vy is an explicit constant depending
on dimension. In particular, for N = 2, they obtain the constant vy, = 5/3. Since this value is
strictly less than 4, Theorem 1.1 is an improvement of [16, Theorem 2], in the special case of
N =2.

Notice that a possible way to solve Larsen’s conjecture would be to prove that E admits a
finite number of connected components. Subsequently, any qualitative information about the
connected components of E would be of great interest. Toward this direction Larsen was able
to prove in [22] that for two given connected components Fy, Ey of E, it holds that

dist(Ey, By) > 0, (2)

which actually stands for the main result of [22].
Our second main result is a quantitative improvement of Larsen’s estimate (2). In the
following statements, there is no more restrictions on the values of a and .

Theorem 1.2. Let N = 2 and let (u, E) be a minimizer for the optimal design Problem (1).
Then there exist two constants Cy > 0 and €9 > 0 such that for any two components E1, Ey of
E it holds that

cither  dist(E1, Ey) =9 or dist(Fy, Es)? = Comin{|E|, |Es|}.

The proof of Theorem 1.2 is given in Section 5.3, and uses the uniform rectifiability of 0F.
This fact is established first in Section 3, in a much more general context, and it is interesting
for its own.

Indeed, a wide proportion of the present paper is to prove the uniform rectifiability of
OF, which is actually valid in any dimension, and applies to the more general class of quasi-
minimizers in the sense of David and Semmes. We also relax the volume constraint by working
with a penalized version of the functional. As it was shown by Esposito and Fusco [16], the
minimization problem with this penalized functional is equivalent to the original problem (in the
language of [16], we work with a generalization of A-minimizers). More precisely, we introduce

A ={(u,E) st. EcQandue H'(Q),u =up on 00},

and then consider the following problem:

in F(u, E), 3
(min (u, E) (3)
with
F(u, E) :=J o Vul2 dz + U p(Q) + AllA| — Vol. )
Q

Here A > 0 is a constant, and Vg is a scalar Radon measure that we assume to be comparable
to the perimeter, that is
K 'P(E;G) < Vg(G) < KP(E;Q), (5)



for any set G < RY and for some constant K > 0. In the case when K = 1, we recover the
so-called A-minimizers of the classical optimal design problem. It was furthermore proved in
[16, Theorem 1] that minimizers of the constrained Problem (1) are also A-minimizers for a
suitable choice of A > 0 (see also Theorem 2.7).

Here is the regularity result that we obtain with regards to A-quasi-minimizers (that in the
sequel will be sometimes simply called quasi minimizers).

Theorem 1.3. Let (u, E) be a A-quasi minimizer for the optimal design problem, i.e. a mini-
mizer for the Problem (3). Then E satisfies the condition-B (see Definition 2.5). In particular,
OF is uniformly rectifiable in Q.

The notion of uniform rectifiabilty is a sort of quantitative notion of rectifiability that was
introduced and intensively studied by David and Semmes (see for instance [12]). In particular, it
provides some nice uniform control in all scales, such as big pieces of Lipschitz graphs, smallness
of the flatness in many balls in a uniform way, etc. This notion is more global and quantitative
on the whole set 0F compared to the usual standard local regularity results such as e-regularity
type ones. The combination of uniform rectifiability and local regularity gives rise to new
interesting statements.

As already pointed out, Theorem 1.2 is an example of those statements that use the uniform
rectifiability of E. In addition, we get several other consequences of uniform rectifiability, such
as a new way to improve the Hausdorff dimension of the singular set (see Corollary 4.5) different
from [14] and [20]. A last example is Proposition 3.8 that gives an estimate already obtained
before by Larsen in [23], for which we provide here a completely different proof relying on the
uniform rectifiability of 0F.

To prove Theorem 1.3 we first show that quasi-minimizers are Ahlfors-regular, adapting the
standard proof already known for optimal design minimizers. Then we prove that E satisfies the
so-called “condition-B” (see Definition 2.5). For that purpose we use a control of the normalized
energy of u by Carleson measure estimates. The uniform rectifiability follows immediately, as
it is known from David and Semmes [12] that it is a consequence of Ahlfors-regularity and
condition-B.

Once the uniform rectifiability is established, we use it in dimension N = 2 to prove The-
orem 1.2. The general strategy follows the original one of Larsen [22] in his proof of (2), but
incorporating the uniform rectifiability to make it quantitative. Also, we take benefit from this
paper to entirely rewrite the original arguments of Larsen, especially the key Lemma 5.5 for
which we used some of his ideas, but written here with completely different arguments that we
believe are more detailed than what can be found in [22].
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2 Notation and preliminary definitions

Let © be a bounded connected open subset of RY, with N > 2. We denote by B,.(z) :=
{y eRN : |y —2a| < r} the open ball centered at x € R of radius r > 0 and as usual wy stands
for the Lebesgue measure of the unit ball in RY. If 2y = 0 we simply write B,. We denote by
#E the cardinality of the set E and by C a generic constant that may vary from line to line.
We write (¢,n) for the inner product of vectors &,n € RY, and consequently [€] := (£, &)z will
be the corresponding Euclidean norm. In the following, we denote

C,(z0) := o+ {y e RY : Jyn| <7, |y — ynen| <7},

the cylinder centered in 2o € RY with radius 7 > 0 oriented in the direction of the N-th versor
en. Forie {1,..., N}, we call by m; the projection on the i-th coordinate, i.e. m;(z) = x;, for
= (x1,...,75) € RV,

Let G < RY. We define the set of points of density t € [0,1] as follows:

GO =1zeRY : lim Mzt .
r—0t By ()]

Let U be an open subset of R”. A Lebesgue measurable set £ — RY is said to be a set of
locally finite perimeter in U if there exists a RY-valued Radon measure pug on U (called the



Gauss-Green measure of E) such that

quﬁdx:J ddup, Yoe CHU).
E U

Moreover, we denote the perimeter of E relative to G < U by P(E,G) = |ug|(G).
It is well known that the support of ug can be characterized by

sptpg = {z €U :0 <|E n B,(z)| <wyr™, Vr >0} c U n OF,

(see [26, Proposition 12.19]). If E is of finite perimeter in U, the reduced boundary 0*E < U of
E is the set of those x € U such that

. e (B (z))
vg(zr) = lim ————~
)= B 1 Be@))
exists and belongs to S"~!. We address the reader to [26] for a complete dissertation about sets

of finite perimeter.
For u € HY(B,(x¢)) and p € [1,2] we denote

wp(xo,7) = P <J |VulP dm) "
B7'(w0)

We simply write w(zg,r) := wa(zo,r). In the subsequent sections, we need the definition of
Alhfors-regular sets.

Definition 2.1 (Alhfors-regularity). Let G = RN be a closed set. We say that G is (N — 1)-
Ablfors-reqular (or, shortly, Ahlfors-reqular) if there exists a positive constant C's such that

Cilr NV < HYHG A By()) < Car¥TY, Vag e G, Vr > 0.

In what follows, the definition of uniformly rectifiable set will be needed. It is a stronger and
more quantitative notion of rectifiability. There are many equivalent (and not simple) definitions
of uniform rectifiability. For instance, here is one of them.

Definition 2.2 (Uniform rectifiability). Let G = RN be an Ahlfors-regular set. We say that G
is uniformly rectifiable if there exist two positive constants 8 and C such that, for each ball B
centered in G, we can find a compact set A < RN~1 and a bi-Lipschitz map p: A — RN such
that
C7Ha —yl < lp(z) — p(y)| < Clz —yl, Va,yeA,
and
HN"HG A p(A) n B) = 0HNY(G ~ B).

Uniformly rectifiable sets have been extensively studied in the monography [12]. For example,
they provide a connection between geometric measure theory and harmonic analysis. In this
paper, we shall make use of a geometric characterization of uniform rectifiability. We first need
the following definition.

Definition 2.3 (Carleson sets). Let G = RY be Alhfors-regular. We say that a measurable set
Ac G xRy is a Carleson set if 1 qdHN ™! I_G% is a Carleson measure on G x R, i.e. there
erists a positive constant C' such that

" dt
J J Ta(z, t)dHN 1= < CrVt, VYze G, r>0.
0 JGNnB,(z) t

This is an invariant way of saying that the set A is enough small and that it behaves as it
was (N — 1)-dimensional from the perspective of G x {0}.

Here it follows a useful characterization of uniform rectifiabilty that can be found in [12,
Theorem 2.4].

Proposition 2.4. Let G < RN be an Ahlfors-reqular set. Then, G is uniformly rectifiable if
and only if G satisfies the bilateral weak geometric lemma (BWGL), i.e., for every € > 0,

{(z,t) e G x Ry : B(z,t) > e}
is a Carleson set. Here, the quantity

Blx,t) := inf sup ¢ 'dist(y, P) + sup t_ldist(z,G)}

PcRY yeGNBy(x €PN By (z
Paffine hyperplane yeGnBi() z€PnBi(2)

denotes the bilateral flatness at the point x € G at scale t € R



This equivalence allows us to have a quantitative control of the flatness. In other words, the
sets of points where the flatness of the set F is arbitrarily small is big in terms of measure. This
ensures the existence of many balls centered in the boundary of the optimal shape where the
well-known result of e-regularity holds.

In practice, it is not so easy to prove uniform rectifiability from Definition 2.2 or Proposi-
tion 2.4. For the particular case of boundaries of sets, there exists a nice criterium using the
so-called condition-B, which we present in the next definition.

Definition 2.5 (condition-B). Let G be a measurable subset of RN. We say that G satisfies
the condition B in Q if G is open, 0G is Ahlfors-reqular and if for any open set U cc Q of
RY there exist two constants Coy > 1 and ro € (0,dist(U, 0Q)) such that for any x¢ € 0G and
re (0,79), we can find two balls By = B,.(x9) N E and By < B,.(x¢)\E with radius greater than
Calr.

The next proposition follows by combining [13, Theorem 1.20, Proposition 1.18, Theorem
1.14 and Proposition 3.35].

Proposition 2.6. Let G = RN be an open such that 0G is an Ahlfors-reqular set. If furthermore
G satisfies the condition-B, then 0G is uniformly rectifiable.

To conclude the section, we cite the following theorem, whose proof is contained in [19].

Theorem 2.7 ([19]). There exists a constant Ag > 0 such that if (v, E) is a minimizer of the
functional

f o | Vw2 de + Up(Q) + Al[F| — Vol (6)
Q

for some A = Ay among all the configurations (F,w) such that w = ug on 09, then |E| = Vp
and (E,u) is a minimizer of Problem (3). Conversely, if (E,u) is a minimizer of Problem (3),
then it is a minimizer of (6), for any A > 0.

3 Uniform rectifiabilty for quasi-minimizers in dimension N

This section is devoted to prove that the boundary of the optimal set is uniformly rectifiable.
In view of this aim, we first show that it is Alhfors-regular. Afterwards, it suffices to prove that
it satisfies the condition-B (see Proposition 2.6). We show the validity of the latter property in
Proposition 3.7.

Throughout the entire section we assume that F is a Borel set with

OF = spt(ug) = {z e RY : 0 < |E n B,(z)| < |B.(x)], ¥r > 0}.

Let us emphasize that, according to [26, Proposition 12.19], for any open set of finite perime-
ter, one can always find an equivalent Borel set with this property. Furthermore, it is easy to
show that E() is a valid choice. At the end of this section, we prove that for a quasi-minimizer,
one can actually choose this Borel set to be an open set (see Lemma 3.7).

In the following theorem, we prove that the boundary of a minimal set is Alhfors-regular.
The scheme of proof is rather standard: it follows the original proof of Ahlfors-regularity for the
optimal design problem that we adapt for quasi-minimizers instead of minimizers. We rewrite
shortly the proof for the convenience of the reader.

Theorem 3.1 (Ahlfors regularity). Let (u, E) be a minimizer of (3) and U cc Q be an open
set. Then there exists a positive constant Cy = Cyx(N,a, B, A, K, ||Vu||L2(Q)) such that, for
every xo € 0F and B,(xo) < U, it holds that

1

— N1 < P(E; By (20)) < Car™ 1. (7)
Ca

Furthermore, HN~Y((0E\0*E) n Q) = 0 and 0E is Ahlfors-regular.

Proof. The proof is divided in four steps.
Step 1: Upper bound on the energy. We show that for every open set U cc () there exists
a constant C = C(N,a, 8, K, A) > 0 such that for every B,.(zg) < U it holds

F(B,u; By(20)) < Cr¥ 1. (8)



In order to prove it, using the A-minimality of (u, E) with respect to (u, E U B,.(x¢)) (see
Theorem 2.7) and the comparability condition (5), one can obtain

1
(5 - Q)J |Vu|2 dxr + 7P(E7Br($0)) < (;V,],.]\/'—l7 (9)
By (zo)\E K

where C' = C(N, K, A). To show (8) it suffices to prove that there exist some constants M > 0,
7€ (0,1) and hg € N, depending on N, g and K, such that, for any B,(z¢) = U, we have

J |Vul> < hor™! or f \Vul?dz < M7N~3 J |Vul|? d.
B, (x0) Brr(z0) By (zo0)

1

, 2) to be chosen, for any h € N

We assume by contradiction that for some M > 0 and 7 € (0
there exists a ball B,.(zp,) < U such that

1

J |Vu|?>dz = hrV ™! and J |Vul>de = MN~2 J |Vu|? da. (10)
By, (zn) By, (zn) By, (zn)

Combining the first inequality and (9), we get

C
f |Vul? de < —J |Vul? de, (11)
B, (zn)nE h By, (zn)

where C' = C(N,%,K,A). For y € By, we define

u(zn + rrY) — an

v =
h(y) ShTh
where we have denoted
ap := J[ udr and ¢f = ][ |Vul|? da.
By, (zn) By, (zn)
Furthermore we set 5
B} = B)\—".
Th

Since {Vvp}ren is bounded in L?(B;), there exist a (not relabeled) subsequence of vj, and
v € HY(By) such that v, — v in H'(B;) and v, — v in L?(B;). Furthermore, using the
upper bound on the perimeters of E} in B; given by (9), up to a not relabeled subsequence,
Igsx — Lgx in LY(B,), for some set E* < By of locally finite perimeter.

From the minimality of u, we obtain the following minimality relation for vy:

_ 2
f aBl\E2<|Vvh\2dm < f UBl\E;f’VUh +6, ' VY| dy, Vo e H'(B). (12)
Bl Bl
Choosing ¥y, = sun(v — v3,), where n € CL(By), with 0 <71 < 1, we get
f JBI\Eh|V1)h|2 dy < J O’BI\E}*|’I7VU + (1 —n)Vuu|? dy
Bl Bl ‘
+ f T (v —vn)?[Vi|* dy + 2f (v =o)XV, NV + (1 = n)Von) dy
Bl Bl
<[ opusloldy+ [ op - nValdy+ o),
Bl Bl
where we have used the convergence of v, and the boundedness of {Vuvj }ren. Thus, we obtain
| onmnl oy < [ onznlvePdy+ o). (13)
Bl Bl
Furthermore, by (11) and the and the equi-integrability of {Vuvp }ren, we deduce that

lim |Vou|?dy =0 and J |Vol* dy = limf |Voul2dy = 0. (14)
E¥ B h—+ow Jp*

h—+00

6



Thus, we may rewrite (13) as follows:

J 0|V, ? dy < f 0|Vl dy + o(1).
B1\E}f Bi\E¥

12

Passing to the upper limit as A — 400, using the lower semicontinuity and letting n — 1, we
get

lim Vo2 dy = J

|Vo|? dy.
h—+0o0 B1\E* B1\E*

Using also the second equality in (14), we infer that Vv;, — Vv in L?(B;) and therefore v, — v
in H'(By). Letting h — +0 in (12), we infer that v minimizes

J o\ mx|Vo|? dy.
B,
Thus, there exist two constants 7y € (07 %) and C > 0 such that

][ \Vv|2dy<5][ |Vo|2dy = C lim |Vop|? de = Cuw,.
B, B: h— 400 B,

In conclusion, choosing M > Cuw,,, by (10) we get

J [Vol?dy < M < M77% < f |Vol? dy,
B, B,
which is a contradiction.

Step 2: Decay of the energy in the balls where the perimeter of E is small. We want

to show that for every 7 € (0,1) there exists g9 = £¢(7) > 0 such that, if B.(x¢) < © and
P(E; B,(z0)) < gor¥ ™1, then

F(E,u; Brr(20)) < CTN(F(E, u; Br(20)) + 1), (15)

for some positive constant C' = C(N, a, B, A K, ||Vu|\L2(Q) ) > 0 independent of 7 and r. First
of all, we remark that under the assumption (5), Ug is absolutely continuous with respect to
HN-1 L 0*E. Therefore, by the Radon-Nikodym Theorem there exists a function : Q — R
such that

Up(G) = LE . O dHN 1,

for all N1 _ 0* E-measurable sets G = Q. Let 7 € (0,1) and B,(z9) < Q. Without loss

of generality, we may assume that 7 < i. We rescale (E,u) in B; by setting E, = @
and u,(y) = r~2u(zg + ry), for y € By. We observe that (E,,u,) satisfies the following Ar-

minimality relation:

F(Ey,uy) :=J UET|VU,,|2dy+\i/ET(Bl)<f o, Vo> dy + Up(B)) + Ar|E.AF|, (16)
Bl Bl

for any (v, F) be such that v —u € Hi(B;) and E,.AF cc Bj. Here, we have denoted
Up(G) = f O(zo +ry) dHY ™", VG < Q.
0¥ FnG

We have to prove that there exists €9 = €o(7) such that, if P(F,; By) < €o, then
F(Er,ur; By) < C(TNF(E,u; By) + V7).

For the rest of the proof, with a slight abuse of notation, we call E, by E and u, by u. We
note that, since P(E;B;) < €1, by the relative isoperimetric inequality, either |B; n E| or
|B1\E| is small. Without loss of generality, We may assume that |B;\E| < |By n E|. By the
coarea formula, Chebyshev’s inequality and the relative isoperimetric inequality, we may choose
p € (7,27) such that H" "1 (0*E n dB,) = 0 and it holds

1
N-—-1
Ceg

H" N (0B,\E) < —P(E;B)) ™ T <

AQ

P(E; By), (17)



where C' = C(N). Now we test the minimality of (u, E) with (u,E u B,). We remark that,
being H"~1(0* E n dB,) = 0, we can apply [19, Proposition 2.2] with U = F = B; and G = B,,
thus obtaining } } }

\IIEqu (By) = \I’E(Bl\Fp) + ‘I’BP(Bl\E(l)). (18)

Using the A-minimality relation (16) with respect to the couple (u, E U B,), the equality (18)
to get rid of the common perimeter terms and recalling that £ = E(!), we deduce

j op|Vu*dz + Ug(B,) < J orup, |Vul?do + Vg (BI\EW) + Ar|B,|.
B, B,

Taking into account the comparability to the perimeter (5) and (17), recalling that p € (7,27)
and getting rid of the common Dirichlet terms, we deduce:

f op|Vu|>de + K'P(E; B;) < 8 \Vu?dz + KHN"H(0B,\E) + C(N, A)rr™
BT B27-

NK &
C) e"P(E;By) + C(N,A)rrV.

<p |Vu|? dz +
Bar

Finally, we choose €1 such that

i N
C(N)KeF " <V and  C(N)el ™" <e1(27)|B,

where €1 corresponds to the gy from [20, Proposition 2.4], thus getting

J |Vu|? de < 2"co™ J |Vul|? d.
Bar B

From this estimates (15) easily follows applying again the comparability to the perimeter (5).

Step 3: Achieving the lower esitmate on the perimeter of . The proof matches exactly
that of [20, Proposition 4.4], given the comparability to the perimeter. We give only a sketch
of the proof. We start by assuming that xzy € 0*E. Without loss of generality, we may also
assume that o = 0. We denote by C; the constant C' appearing in (8), by Cs the constant
C appearing in (15). We recall that ey is the constant appearing in Step 2. Arguing by
contradiction, for 7 € (0,(2C1)7?) and o € (0,20(7)(2C1C2) ") there exists a ball B, < U, for
some r < min{ep(7), C2}, such that

P(E; B,) < eo(7).

By using (8) and (15), we can easily prove by induction (see for example [17, Theorem 4] for
the details) that

h
2

F(E,u; Byrny) < eo(1)72 (o)1 VheN.

From this estimate, we deduce that

h
2

P(E; B P(E;B
lim PE:B,) _ lim MS lim eo(7)7

= =0
p—0+ pN—1 h—+oo (orhr)N=1 = hestoo ’

which implies that z¢ ¢ 0*E, that is a contradiction. If zg € 0F, we get the same estimate by
recalling that we chose the representative of 0F such that 0F = 0*E.

Step 4: Proof of the Alhfors-reqularity. The proof of the final part of the statement follows
as an application of the lower Ahlfors-regularity. Indeed, we have that

P(E; By ()

rN-1

HN=L(0*E n B,.(z))
FN-1

= lim sup >0, VYredEnQ.

r—0+

lim sup
r—0+t

Thus, by [2, (2.42)], we get HN~L((0E\0*E) n Q) = 0. The Ahlfors-regularity of 0E follows as
a consequence, taking also (7) into account.
0

The following results provide the main ingredients for the proof od Proposition 3.7, which
in turn relies on the same strategy adopted in [28, Lemma 3.6].

The subsequent lemma shows that optimal deformations satisfy a reverse Holder inequality.
Its proof is rather standard and it relies on the application of the Sobolev-Poincaré inequality.



Lemma 3.2. Let (u, E) be a minimizer of (3). There exists a positive constant Cy = Cy (N, g)
such that it holds

2

‘[ |Vu|? dr < CO(J [Vul? dx) ,  VB(z0) < Q, (19)
B%(zo) BT(Z())
where p = 1\2,—]_?_/2 €[1,2).

Proof. Let B,(xg) < Q. Without loss of generality we may assume that zo = 0. Let £ € C1(B,.)

be a cut-off function such that { = 1 on Br and |D§| < 2. By the Euler-Lagrange equation

associated to u, taking as test function (u — up, )&? we get

J op|Vul|?¢* de = —2[ opé(u—up, ){Vu,VE) dr.

s ™

Applying Hélder’s and Young’s inequalities, we obtain

1
J UE|Vu|2§2d$<§J UE\Vu|2§2dx+2f oplu—up,|?|VEP? du.
: B

T r T

Absorbing the first term in the right-hand side to the left-hand side and using that a < og < 3,
it holds that

)

By the Sobolev-Poincaré inequality, we infer

)

where p = ]\2,752 and C = C(N, g) Thus (19) is proved. O

1 4 16
|Vu|? de < *j op|Vul?¢® dx < —J oplu—upg, |*|VEP de < —2ﬁ
aJp, a r? «

T

lu —up, |* dx.

r
2

|Vu|? dz < C(J |Vul? dw) )
B,

r
2

The following result establishes that it is possible to find a ball centered in a lower Ahlfors-
regular curve where the rescaled Dirichlet energy is arbitrary small. Its proof relies on the
strategy adopted in [11, Corollary 38 in Section 23].

Lemma 3.3. Let (u, E) be a minimizer of (3), U cc Q be an open set and T' < OE a sub-
set which satisfies a lower Ahlfors-reqularity property with constant Cr. There exists €9 =
o (N, %) > 0 such that for every e € (0,e9) there exists a constant a = a(N, K, A,Cr,¢) € (0,1)
such that for every By.(xzo) € U, with xo € T there existy € ' n By (x0) and t € (ar, §) such that

J |Vu|? d < etV
Bi(y)

Proof. Let € > 0 and B,(zg) < U, with o € 0E. Let p be the exponent in the reverse Holder
inequality given by Lemma (3.2) Setting

_2N

2
wp(z,8) =877 <J |Vul? dz) , VBg(x) cQ,
Bs(x)

we show that
N-—1

d
J J wp(y,t) %dt <corN T (20)
FQB%(IQ)

wly

0

for some positive contant C = C(N, K, A, Cr). Indeed, letting o € [2, +0) be such that

+i=1,

Q|
(U eS]

we choose b € (O7 %) By Holder’s inequality, we have

)=t ¥ [ [|w<z>|2(‘]“St(j’w2’?]g (B, 1)

9



. . T % . r —bo by
<% J |Vu(z)2(dlbt(tz’ )) dz[f (dlSt(:’ )> dz] .
B:(y) B:(y)

We can partition By (y) into subsets By defined as
By :={z€ By(y) : 27"t < dist(2,T) < 27%t}, Vke Ny,

and, since I" is Alhfors-regular, we apply [11, Lemma 25] to get

[, (=50) 7o)

+00 . —bo +00
dist(z,T
=S f (IS(Z)> dz < Y 27|z e By(y) : dist(zT) < 27"4)| < OV,
k=0 Bk t k=0

with C' = C(N,Cr). We remark that if y € I' n Bz (o), t € (0,%), z € By(y), then

2 € Bz, (x0), yel nBy(z), dist(z,T) € (0, ¢].

(22)

Therefore, combining (22) and (21) and applying Fubini’s theorem, the Ahlfors-regularity of "

and the upper bound on the energy (see (8)), we get

r

5 dH !
[ ] e
TABy (w0) JO

r

w0l

2b

5 dist(z,T)\ *
<C rtl—%%—lf |Vu(z)|2<1s (= )> dz dHN~dt
TABy (o) JO Bi(y) t

2b
P

t=NHNTUD A B (2))|Vu(2)|? (dlSt(tZ’F)) dzdt

=3

of
B%,,(CCD) dist(z,I")

r 2
3 dist(z,I")\ »
< CJ |Vu(z)2[J3 <1s(z,)) ] dz < CrN-1,
B3, (w0) dist(z,T) t

where C = C(N, K, A, Cr), thus proving (20).

We assume by contradiction that, for some ¢ > 0 and for a € (0,1) to be chosen, for any

yel'n Bz (zg) and t € (ar, %), it holds that

wp(y,t) = er ™.

Thus, denoting

A= (T A B: (w0)) x [ar, ;}

by (20), (23) and the Ahlfors-regularity of T', we obtain

PVl > ijwp(y,t)
A

> Cert1pNllog (;) ;

5odt

dHN-1 2
z dt > Cer 'HN Y (' n By (xo))f

ar

(23)

which is a contradiction if we choose a = a(N, K, A, Cr, €) > 0 sufficiently big. Therefore, there
exist y € ' n Bz (zo) and t € (ar, %), where a = a(N, K, A, Cr, ) is a positive constant, such

that wy(y,t) < ertl, By the reverse Holder inequality (19), we conclude that

W

J |Vul|? dz < C(f [Vul? d:c) = CtN 5w, (y,t)
By (y) Bi(y)

t
2

BON-1 N-1
< Ceezt <et ,

where C = C(N, %), provided that we choose € = (N, %) > 0 sufficiently small.
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The following lemma establishes that if the rescaled Dirichlet integral is sufficiently small
in some ball, then E covers a large part of the ball. Combining this result with the previous
lemma, we get a density estimate for E, which is given in Corollary 3.5.

Lemma 3.4. Let (u, E) be a minimizer of (3) and U cc Q be an open set. There exists g =
eo(a, B,Ca) > 0 such that for every € € (0,eq) there exist two positive constants Cy = Cy(Ca)
and rg = ro(N, A, Ca) such that if for B.(x¢) < U, with r € (0,79) and xg € OF, it holds

J \Vul?dz < erV 1, (24)
Br(zo0)

then
|B,(z0) N E| = Cor™. (25)

Proof. Let B,(xzg) < U be such that
J |Vul|? de < erV 71, (26)
Br(zo)

where € > 0. We divide the proof in two steps.
Step 1: We show that there exists a positive constant ro = 7o(N, A, C4) such that

Ca n_
V-1

HY"Y(0B,(x0) N E) = 5 ,

for all r € (0,79).
Applying the A-minimality of (u, E) with respect to (u, F\B,(xo)), we get

L op|Vul|? dz + P(E;Q) < L OB\B, (20)| VUul* dz + P(E\B,(20); ) + A|B,(z0) N E|.
Simplifying the previous inequality and estimating | B, (zo) N E| < wyr?, it follows that
—(8—a) JB T |Vu|? dx + P(F; By (x0)) < HYN 1 (0B,(z0) N E) + Awnr
o
Thanks to (26) and the Ahlfors regularity of 0F, we get
{—(B—a)e+Ca—Awyr}r¥ "t <HN (0B, (z0) N EB).
Choosing rg = K—:}‘N and gp < % we obtain (27).

Step 2: We prove (25). Let us assume by contradiction that choosing § < CA and M >0
and B,.(z¢) c U, with r < rg, (24) holds and

|B,(z0) n E| < 6r
By Chebyshev inequality and Fubini’s theorem, we get

H1<{p€ (;7’> : HN1(8B,(x0) N E) > W})

r
WJ HN (B, (x0) N E) dp < £<g.
This implies that there exists p € (g, r) such that
HNTHOB,(v0) N E) < w < 45rNV1
Since § < 16 , we get a contradiction, (27) being in force. O

Corollary 3.5. Let (u, E) be a minimizer of (3) and U cc 2 be an open set. There exists a
positive constant Cy = Co(N,a, 8, K, A, Cr) such that for every B,.(xo) < U, with ¢ € OF, it
holds

‘BT(JZQ) M E| = OQ’I“N

11



Proof. We fix B,.(x9) < U, with g € E. Let us call by ¢ the constant ey appearing in Lemma
3.3, by €1 and 7y respectively the constants €9 and ry appearing in Lemma 3.4. By Lemma 3.3
there exist a positive constant a = a(N, K, A, Cr,¢) and y € 0E n Bz (z) and t € (ar, g) such
that

J |Vu|? do < etV 1,
Bi(y)
where ¢ € (0, min{eg,e1}) and r € (0,7¢). Applying Lemma 3.4, we get that
|B,(20) N E| = |B(0) n E| = CtY = Cr?Y,
for some positive constant C' = C(N, «, 8, K, A, Cr), which is the thesis. O
For what follows, it is useful to define the following function:
h(z,r) = 7N min{|E n B.(z)],|B.(x)\E|}, VB,(z)c Q.

In the following result, the boundary of an optimal shape F is locally characterized in terms of
the function h. It is the sets of points where the density of E or Q\F is not too small.

Proposition 3.6. Let (u, E) be a minimizer of (3), U c< Q be an open set and ro > 0 be such

that Arg < K;N. There exists a positive constant Cy = Co(N, o, B8, K, A, Cr) such that it holds

OEnU={xeU : h(z,r) = Cy, Vr € (0, min{rg, dist(z, 0U)})}.

Proof. Let zg € dEnU and r € (0, min {ro, dist(zo, 0U), L;N}) If h(xo,7) = r~N|B,(20) N E|,
by Corollary 3.5, there exists a positive constant C; = C1 (N, «, 8, K, A, Cr) such that

‘BT(IQ) M E| = OlT‘N,

that is h(zo,r) = C1. If h(zg,7) = r~N|B,.(20)\E|, we assume that HN~1(0* E n 0B,.(x¢)) = 0.
We fix s € (r, min{rg,dist(zg,0U)}). Let F = RY be such that EAF cc B,(zg). By the
isoperimetric inequality we infer that

|EAF| = |EAF|"~ |EAF|™ < PIEAF)

S

N

S
N 0= NP(EAF;BS(%))

< —[P(E; By(x0)) + P(F; By(20))]-

Thus, taking (5) into account, we get
9 1 As As
(6-a) Va2 dz + (K1 = 52 P(B; By(ao)) < (K + 22 ) P(F; By(x0)-
B.(wo)\E N N
Testing the previous relation with the set £ U B,.(xo) and letting s — r*, we get
2 A Ay, v
(B — a) [Vul*de+ | K~ — — | P(E; B.(20)) < | K + — |H" 7 (0B, (x0)\E).
By (x0)\E N N
»(2o)\
Thus, adding (K~ — 42)HN1(0B, (20)\E) to both sides of the previous inequality, we get
A
<K1 - A;) P(By(20)\E) < (K + K~ )HY"1(0B,(x0)\E).

K 'N
= 2

Taking into account that 1 — % , the isoperimetric inequality in the left hand-side
yields

B (zo\E|"¥ < e(N, KYHN "1 (0B,(x0)\E).
Setting m(r) := |B,(xo)\E|, the previous inequality can be rephrased as

N—-1

m(r) ~ < e(N,K)m/(r), fora.e. re (0, min{rg,dist(zq,0U)}).

Integrating the previous inequality in (0,7), we get
m(r) = ¢(N, K)r’N,  ¥re (0,min{ro, dist(zq, 8U)}),

which implies that h(zg,7) = ¢(NV, K). O
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The main result of this section follows.

Proposition 3.7. Let (u, E) be a minimizer of (3) and U cc Q be an open set. Then the open
sets
Ey={zeU: 3r>0s.t |B.(x)\E| =0},

Ey={zxeU:3Ir>0st |B.(zx)nE| =0}

satisfy the condition-B with some positive constants Co and 1o, and Ey is equivalent to E.
Moreover, it holds that E, = RN\Ey and 0Ey = 0E, = 0F.

Proof. We only prove that Ey and E; satisfy the condition-B. Indeed, the validity of the other
statements has been showed in [28, Lemma 3.6]. Setting ro := min {E N dist(U, N},
let zp € OF and r € (0,79). By Proposition 3.6, there exists a positive constant C; =
C1(N,a, B, K,A,Cy4) such that h(xo, %) > (1. Thus

|Eo N B (w0)] = 27NCyrN and  |Ep n Bz (xo)| = 27 Noyr. (28)

Since, by the Ahlfors regularity of 0F, it holds that
. tr N
y € Br(w) : dist(y, 0F) < 5} < Ctr?, V,te(0,1),

where C' = C(N,C4) > 0 (see [28, Lemma 3.6] or [11, Lemma 25 in Chapter 23]). Choosing
te (0, WE’N%), by (28) we get that

: tr :
Hy € Bz (wo) : dist(y,0E) < 2}‘ < min{|Ey n Bz (z0)|,|E1 0 Bz (20)l}-
As a consequence, there exist yo € Eg N Bz (z9) and y1 € Ey n Bz (x0) such that

t t
dist(yo, OF) > g and dist(y1,0F) > g,

which is our aim. ]

As an application to condition-B, we can give an alternative proof for an estimate that
was already found by Larsen, stated in [23, Theorem 4.1] and proved with completely different
arguments.

Proposition 3.8. Let (u, E) be a minimizer of F defined in (3) and let A; be a connected
component of E. Then there exists two positive constants Cy; Cy such that if |A;| < C1, then

‘{x € E\A; : dist(z, A;) < 02|Ai|%}‘ > | A
Proof. Let x € A;. Since E satisfies condition-B with some constants Cy and rg, setting r :=

wN

(M) ~ < Cyro, there exists y € E such that

B, (y) € B(x,Cor) n E.
By the choice of r, we get that |B,(y)| > |A;|. Thus, it holds necessarily that
By (y) « E\A;.

Furthermore, for any z € B,.(y), we have that

1
T 1 2 N 1
dist(z,4;) < — = — | — A ™.
( ) Co Co (WN) ‘ |
Accordingly,
1
. 1 2 \V 1
z€ EN\A; : dist(z,4;) < =— | — ) |4Al|™ 7| = |Br(y)| > |Ail,
CQ wWN
which is the thesis. O

13



4 Control of the flatness in a quantitative way

Lemma 4.2 below is a variant of the well-known classical fact that for a uniformly rectifiable set,
one can find many balls in which the bilateral flatness is small. In other words, the set of points
where the flatness is larger than any threshold € > 0, is a porous set. The following variant says
that one can even choose the center of the ball, where the set is flat, in a given subset I' ¢ 0F
provided that I" satisfies itself a lower Ahlfors regularity estimate.

Definition 4.1. We say that T' = RY satisfies a lower Ahlfors-reqularity estimate if there exists
r0, Cr > 0 such that for all r € (0,7¢9) and x € T, it holds

HNYT A B, (2)) = CprV L,

Here below is the lemma that will be needed to control the flatness in many balls.

Lemma 4.2. Let (u, E) be a minimizer of F defined in (4) and let I' < OF be a subset that
satisfies a lower Ahlfors-reqularity estimate with constants ro,Cr (see Definition 4.1). Then,
for every e > 0 there exists a > 0 such that the following holds: for all x € T' and r € (0,79/2),
there exist y € T n B.(x) and t € (ar,r) such that

Bly,t) <e.

Proof. Since 0F is Ahlfors-regular and uniformly rectifiable, we know by Proposition 2.4 that
OF satisfies the bilateral weak geometric lemma, i.e. for every € > 0, the set

A:={(z,t) e 0F xRy : B(x,t) > ¢}

is a Carleson set (see [12, Definition 2.2]). More precisely there exists C' > 0 and such that

4 dt
jj La(y, )aH " (y) & < orV 1, (29)
0 JOEAB, (z) t

for all » > 0.

Now, let I' € OF satisfy a lower Ahlfors regularity estimate with constants ro, Cr > 0 and
let e > 0 be given. Fix also some x € I" and 0 < r < r¢/2. Assume by contradiction that for all
t € (ar,r) and for all y e T' n B,.(x) it holds

Bly,t) > e. (30)

Defining
Ar = {(z,t) e T xRy : B(x,t) > €},

using moreover that (30) holds for all ¢ € (ar,r), we get

r dt T dt
ff 1a(y. ) V() D > fj Ly (5.8 dHV " ()L
0 JOENB,(z) 3 0 JOENB,(z) 13

r N
> Jf La.(y,t) dHY l(y)?
ar JOENB,.(x)
r dt
> J”HN’I(FmBT(z))?,

> Crr¥lIn(1/a),

which contradicts (29) for a small enough, and the lemma follows. O

Lemma 4.3. For all g > 0 there exists ng > 0 such that the following holds: for any minimizer
of the functional F defined in (4) in B,(x) satisfying

we have
e(x,r/2) < ep.
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Proof. Let us assume by contradiction that there exists g9 > 0, a sequence of balls B,, (x) and
a sequence of A-minimizers (E}p,uy) of F in By, (xp,) such that
Br(zh,Th) — 0,
as h — +o0, and
eh(:ch,rh) > €9, Vh e N.
_1

Setting (E},,u},) = (r;l(Eh —xp), 7y, 2up(xy + rh~)), it holds that (Ej,up) is a Arp-minimizer
of F in B;. Furthermore, by scaling, it follows that

Br(0,1) — 0, (31)

as h — +o0, and
en(0,1) > g9, VheN. (32)

Since F}, is uniformly Ahlfors-regular, we know that
P(Eh;Bl)gCA, Vh e N,

where C'4 is a constant independent of h. This allows to extract a further subsequence such
that E;, — E in L'(B;) and, from (31), we infer that, up to a rotation, E = By n {xx > 0}.
Let C := C(0,1/2,en) be a cylinder satisfying By < C < Cy. Then by [26, Proposition 22.6]
we know that
en(0,1/2) — 0,

which contradicts (32), and concludes the proof. O
Lemma 4.4. There exists £g > 0 such that for any € € (0,e9) there exists a > 0 and ro > 0
such that the following holds. Let (u, E) be a minimizer for of F defined in (4) and T < 0F a

subset which satisfies a lower Ahlfors-reqularity property with constant Cr. Then, for any x € T
and r € (0,19) there exists y € T n B,.(x) such that

e(y,ar) + w(y, ar) + Aar < .

Proof. Let us denote by €7 the constant g that appears in Lemma 3.3 and let 79 be the constant
of Lemma 4.3. We choose € < 3¢;. By Lemma 3.4, there exists b > 0 such that for any z¢ € I'
and B, (z9) < U there exist z € Bg(20) and s € (bp, &) such that

€
w(z,s) < 3 (33)

Furthermore, by Lemma 4.3, there exists o > 0 such that if, for any B,.(z9) < Q such that
B(xo,7) <m0, we have
t 5
S <oV
e(l'o, 2) 3

Finally, by Lemma 4.2, there exists a > 0 such that for any z9 € I and r € (0,%2) there exist
y €' n B.(z) and t € (ar,r) such that

r 1S
o <bN_1*.
e(g) <02

We choose p = % By the previous inequality, it follows that

( )< ¢ N—-1 " _
e(z,8) < | — ely, =) <
: 2s D)

If we chose ry < %, then, by the previous chain of inequalities and (33), we get

Thus, we get that

Wl M

e(z,8) +w(z,8)+ As <g,
which is the thesis. O
Corollary 4.5. 0Egg has Hausdorff dimension stricitly less than N — 1.
Proof. By the previous lemma, 0Eg;,4 is a porous set in 0EF. Then it is standard to show that

the Hausdorff dimension is strictly less than N — 1 (see for instance [28, Remark 3.29]). O
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5 Regularity in dimension N = 2

Throughout the section, we derive some properties of solutions of the optimal design problem
(1) in the case N = 2. In Subsection 5.1, we employ an argument due to Bonnet [5] to show the
validity of a monotonicity formula concerning Vu (see Proposition 5.2), provided that the ratio
between the coefficients o and 3 is smaller than 4. The smoothness of the free boundary, which
is the statement in Theorem 1.1, follows as a consequence. In Subsection 5.2, we study the
spectral problem associated to the optimal design when the set E meets a circle exactly in two
points (see Proposition (5.3)). We use the estimate on the first eigenvalue to derive a partial
regularity result concerning the free boundary, which is contained in Corollary 5.4. Finally,
in Subsection 5.3, we prove a quantitative estimate of the mutual distance between connected
components of the optimal set.

5.1 Full regularity in the case [ < 4a from a monotonicity formula

We will need in the sequel the following lemma which is the justification of an integration by
parts formula.

Lemma 5.1 (Integration by parts). Let a < 8 and o: Q@ — RT any given measurable function
such that o < o < B. Let u be a local minimizer for the energy

J o|Vul? dz.
Q

Then for all xg € Q and a.e. r € (0,dist(zg, 0Q)) we have

J o|Vul* dr = f UU@ dx,
By (o) 0B (zg) OV

and

J Ua—u dr = 0.
aBr(xO) al/

Proof. Without loss of generality, we may assume that zo = 0. We know from the local mini-
mality of u that it holds

J oVu-Vodr =0, VYpe HJ(9Q). (34)
Q

For € > 0, let us choose ¢ = @ .u with ¢, := g.(|z|) where g.: [0, +o0) — R is the continuous
function defined as follows: g.(t) =1 for any t € [0, (1 —¢)r], g-(t) = 0 for any ¢ € [(1+¢&)r, +0[
and it is linear on [(1 — ¢)r, (1 + €)r]. Applying (34), we get

f oVu - uVe.dr + J oVu - p.Vudr = 0.
0 Q

It is clear that ¢, converges strongly in L? to 15, which implies

lim | oVu- @ rVude = J o|Vul? d.
e—0 Jo N

On the other hand . is Lipschitz continuous and V. (x) = (z) for almost

every x € §2, so that

—x
2er|x| 13(14»6)7‘\3(175)7‘

1
J oVu - uVe.der = — ouVu - 2 dx
Q 2er B(14e)r\B(1—e)r |x|

which converges to S(?B ouVu - v dH! for a.e. r by the Lebesgue’s differentiation theorem.
Therefore, passing to the limit we obtain

J U\Vu\dezf aua—udx,
B, 0B, v

which proves the first half of the statement. For the second assertion, we take ¢ = . itself as
a test function. This gives

J oVu- -V dr =0,
Q
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which actually yields
1
oVu - =z
Bte)yr\B—e)r

— dz = 0.
2er |z] v
The lemma follows from passing to the limit as € — 0. O

We are now able to prove the monotonicity formula.

Proposition 5.2. Let o: Q — R a given function such that
a<o<p.
Let u be a local minimizer for the energy
J o|Vul? dz.
Q
Then, for all xg € Q and r € (0, dist(xg, 0Q)) the function

1
T —f o|Vul? dx
7 JB, (o)

is nondecreasing with v = 2\/%.
Proof. Without loss of generality, we may assume that o = 0. We define

E(r):= J o|Vul? dx.

r

Notice that E(r) can be rewritten in the form

E(r) =J J o|Vu|* dH! dt,
0 JoB,

which directly shows that E(r) is absolutely continuous and, in particular, differentiable almost
everywhere, with

E'(r) = f o|Vu|? dH'.
OB,

We recall the following classical Wirtinger inequality, valid for any function u € W2(0B,.),

2
J (u—m,)? dr < T2J (6u> dz,
2B, o, \ 0T

1

where m,. is the average of u, namely, m, := 5

u we may apply Lemma 5.1 which yields

Sa B U dH!. From the minimizing property of

0
J o|Vul? dz = f ouZt dx, for a.e. r>0,
0B, v

s

and

ou
oc— dx = 0.
J;}BT (71/

Using the equations above, Holder’s and Young’s inequalities, we can write

E(r) = J o|Vul|* dx

o
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2 2
E 9 ou 1 ou
< = — | d — d
QBT LBT <a’7’) x+2€ aBTU<al/> r
2 2
1
< B (™ d“if o) an,
2« B, 67’ 2e 0B, al/
where € > 0. Finally, by choosing ¢ = % % we find that

This implies that the function

is nondecreasing with v = 2\/% . O

As a consequence, we obtain the result already announced in the introduction as Theorem 1.1.

Proof of Theorem 1.1. Let (u, E) be a minimizer for Problem (1) with 8 < 4a. Then by [16,
Theorem 1], we know that (u, E') is a A-minimizer, i.e. (u, F) is a minimizer of the functional

J op|Vul|? dz + P(E;Q) + A||E| — Vg
Q

In particular, the set E being fixed, we infer that v must be a minimizer of the energy
SQ og|Vul? dz, and according to Proposition 5.2, we know that there exists 79 > 0 such that
for all 29 € 0F and r € (0,7) we have

J 0E|Vu\2 dr < Cortte,
Br(xﬂ)

with € = 24/a/f — 1> 0 and Cy = 7‘82 Vo/s SB (zo) op|Vul? dz.
70

Now let F' = RY be any set of finite perimeter such that EAF < B,(xg). Then, testing the
minimality of (u, E) with the competitor (u, F') we get

f og|Vul|? de + P(E;Q) < J op|Vul?dz + P(F;Q) + A||F| =V,
Q Q

which implies, since EAF < B, (zg),

P(E; B,(z0)) < P(F; B.(20)) + CJ o |Vul|? dz + C|B,(x)|,
BT(IO)

< P(F; B.(wo)) + Crte.

This means that E falls into the theory of almost minimizers for the perimeter, and then by
the classical result of Tamanini [29] we deduce that the singular set is regular up to a singular
set of dimension N — 8. Since here N = 2, the singular set is actually empty. O

5.2 Monotonicity formula for a boundary intersecting by only two
points

In the previous subsection, we have obtained a monotonicity behavior of the energy by using
the classical Wirtinger inequality in order to estimate the derivative of the energy with respect
to the radius of the ball. This strategy is necessarily non optimal, due to the coefficients ¢ in
front of the energy.

In this section, we try to improve the monotonicity behavior of the energy by analysing
precisely the Wirtinger constant taking into account the weight ¢ in the inequality. In other
words, we arrive to a new spectral problem on the circle, with weight o.

In the case when the two regions {c = a} and {o = 3} are both connected on the circle,
we obtain a good decay behavior of the energy of the type o(r) leading to C'-regularity (see
Corollary 5.4). It was surprising to the authors that even in such “easy” case, the associated
1D-spectral problem on the circle was so difficult to compute (see Proposition 5.3).
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Moreoever when those regions are not connected, the computations become really painful
and some numerical evidences shows that one cannot hope to obtain a good behavior of the
energy in full generality. In other words, using this strategy it seems difficult to prove a full
regularity result without any restriction on «, 8 or the regions {o = a} and {0 = 5}.

Proposition 5.3. Let 0 = al(gq) + B1l(q,2x), where a € (0,27) and 0 < a < 3 < 0. Let

2™ 12 dit 27
v1 = min # cue HY((0,2m)), u(0) = u(27), J udt =0p.
o ourdt 0

Then there exists v = 'y(g) > i independent from the parameter a, such that v, > 7.

Proof. The derivative of the functional that defines v; vanishes if and only if

2m 2m
f ouv' dt =1y f ouvdt, Yve H((0,27)).
0 0

We deduce that any optimal u is a solution of the following system:

—u" = 1ru in (0,a),
—u" =1nu in (a,2m),
0 = )

au'(0) = pu/(0),
av'(a) = fu'(a),
u continuous on (0, 27).

From the two equations we derive that
u(t) = Ay cos(wt) + Agsin(wt), Vit e (0,a),
u(t) = By cos(wt) + Bysin(wt), VYt e (a,2n),

where we have set w = /vy and A;, B; are real constants to be determined. Imposing the
continuity conditions in a and 27, and the transmission conditions in the same points, we get
the following system:

Ay — cos(2rw) By — sin(2rw)By = 0

cos(aw)A; + sin(aw)As — cos(aw)B; — sin(aw)Bz = 0

aAy + Bsin(2nw)By — Bcos(2nw)By =0

—asin(aw) A + a cos(aw)As + fsin(aw)By — B cos(aw)By = 0.

Denoting by A the matrix of the coefficients of the previous system, doing some elementary
calculations and applying trigonometric identities, we compute

det(A) = %(a — B)?[~ cos(2(a — m)w) + (C + 1) cos(2nw) — C1,

where
B 4
c-c(Z)=—=5>0
-9

@

In order to study vy, we need to estimate the first value of w that nullifies the following function:
f(w,C) = —cos(2(a — m)w) + (C + 1) cos(2rw) — C, VYw > 0.

We start by finding the zeros of the function

g(w) = f(w,0) = —2sin((27 — a)w) sin(aw),

which are . .
Tr= " or @p=-—"__ VkeN.
a 2r —a
Let us assume that a € [, 27) so that @y < @;. It holds that g < 0in (0,%).
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Notice that % = cos(2nw) — 1 which is negative. It follows that f(w,C) < g(w), which
yields

flw,C) < glw) <0, Ywe (O, W).
a
Thus by continuity, f must vanish after the first zero of g, in other words

. . ™
A/VI= mn w>= mn w= —.
F@,C)=0  ~ g(w)=0 a

If a € (0,7), then & <@ and g <0 in (0, -2—). With the same argument we get that

) 2m—a

™

A/V1 = min w>= min

i
f(w,©)=0 g(w)=0

w = .
2r—a

At this point we have proved that

v > min{(Z)Q, (2;_@)2} > i. (36)

Let us remark that 0 < wy < 1. Indeed, assume first that cos(2(a — 7)) # 1. We notice that
f(1,C) =1—cos(2(a—m)) > 0 and on the other hand f(1/2,C) = —cos(2(a—7))—1—-2C <0
which proves that wy € (0,1). Now if cos(2(a — 7)) = 1, then

flw,C) = =14 (C +1)cos(2mw) — C,

which vanishes for w € N thus wy = 1 in this case. In any case we have proved that wy € (0, 1].

In other words, we have proved that wi(a) stays in a compact subset of R. Notice that
thanks to the bound in (36), we already know that wq(a) > 1/2 away from the particular values
a = 27 and a = 0. However, up to subsequences, if a — 0%, we know by compactness that
wy — 7, for some 7 € [0,1]. Passing to the limit as @ — 0% in the eigenvalue equation, we get
that

cos(2mn) = 1,

implying that n € {0,1}. Since = lim,_,o+ w1 = %, it follows that n = 1. The same argument
can be applied if we let a — 27~. Therefore, there exists § = 5(%) > ( such that

3
wi >, Va € (0,0) or Ya € (27 — 0, 27).

If a € [§,2m — §], then by (36) it holds

o T 7r

wp = min< —, = .

! §2m—05f 2m—6

Thus, choosing § < %7‘(, we prove the thesis with v =, /5. O

Corollary 5.4. If (u, E) is a minimizer of the optimal design Problem (1) and let B,(xq) < Q.
If there exists ro > 0 such that §(0E n 0B (y)) < 2 for allr < ry and all y € OE n By, (x) then
0F is smooth in Bro (xo).

Proof. Proposition 5.3 implies that for all y € dF n B, (z) and r € (0,r9) we have
J op|Vul? dz < Cor'*e,
By (x)

for some € > 0, and we conclude by applying the theory of almost minimizers for the perime-
ter [29]. O
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5.3 The components of A have mutually quantitative positive distance

In [22] Larsen proved that if (u,E) is a minimizer of the functional (4), then for any two
components E1, Fs of E one has
diSt(El,Eg) > 0.

In this section, we use the uniform rectifiability of 0F established in Section 3 to improve
the result of Larsen [22]. More precisely, we show the validity of Theorem 1.2, whose proof relies
on the following lemma. It is a quantitative adaptation of [22, Lemma 3.1], which we derived
using the uniform rectifiability of 0E. Actually, the following Lemma contains [22, Lemma 3.1]
with a slightly different proof, which is more detailed.

Lemma 5.5. Let (u, E) be be a minimizer of the functional (4) and Ey, Es be two connected
components such that

dist(E1, E2)* < min {|E1|, |Ea|},
where § € (0,1). Then for any R < ﬁdist(El,Eg) there exist a ball Br(c) and two connected

components B} and E of E1 n Br(c) and Es n Bgr(c) respectively such that they are contained
in a rectangle. More precisely, up to a rotation, it holds that

with h 1= C’O((SiI:H— R%), where the constant Cy > 0 depends on the Ahlfors-regularity constant.
Moreover, for i = 1,2, each E. contains a point a; satisfying |a;| < dist(Ef, EY), and E; n

aBR(C) # @

Proof. Let a1 € Ey and as € E3 be such that |ay — a1] < 2dist(Eq, F2). Without loss of
generality, we may assume that ‘“Tm = 0. Let

1
24/6

R := diSt(El,Eg).

By the choice of R, it holds that
E\Bgr # &, Vie{l,2}, (37)

because |Bg| = m5dist(E1, E2)* < T min{|E1],|Ez|} < |Ey|, for i = 1,2.

Since E; is connected and contains a point outside Br(0), this point must be connected to
a; € E;. For the rest of the proof we will still denote by F; and E5 the connected components
of E1 n Br(0) and E3 n Bgr(0) containing respectively a1 and as (these components will be the
E} and F) of the statement). Note that from (37) we deduce that

aBRmEl 7é®7

which is the claim at the end of the statement.

Let z; € E;. Since Eq and Es are two different connected components, it is true that 0F; and
0F> separate z; and zo. Thus, by Theorem 14.3 page 123 of [27], for any i € {1,2} there exists
a connected subset I'; of 0F; such that I'; separates z; and 2z and H!(I';) < +o0. Furthermore,
I'; is arcwise connected.

Let £ := [21, 22] and let D be the diameter of Bp parallel to . We set

n := dist(¢, D).

Since £ " I['; # F, the following two points exist:
yp :=sup{t € [0,1] : tz1 + (1 —t)z2 € E1} and yo :=inf{t€[0,1] : tz1 + (1 — )22 € Ea}.

Let us denote by d := dist(E1, F2). If n < 2d, the conclusion of the lemma holds true. We
can assume that 1 > 2d. In this case, Bognl = J, and 0By n0E; # &, for i = 1,2. Thus there
exist three curves Y1 c 0F1, X9 € dF5 and X3 € 0Bs4 such that the set X := X U Xy U X3 is
a curve that goes from y; to yo. By Lemma 5.7 below, we know that this curve may possibly
have self-intersection points but only by a zero H'-measure set.

The height bound (Lemma 6.1) gives

dist (2. [yr a]) < \/7—[1(2)(%1(22) —ly2 — y1|)7 Vees.
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Figure 1: The domain noted by I used as a competitor in the proof of Lemma 5.5, following
the idea of Larsen [23]: if the two connected components E1 and E2 were not flat enough in
Bgr, then we could win a lot of perimeter by adding the domain denoted by I in the picture.

Thus, by the triangle inequality and the previous one, we get

n = dist([y1,y2], D) < sup dist(z, [y1,y2]) + sup dist(z, D) < supdist(z, [y1,y2]) + 2d
z€X3 z€X3 E1o
- \/Hl(z)('ﬂl(z) —ly2 —wl)
= 2

+2d. (38)

At this point we use the A-minimality relation to estimate the right-hand side of (38). We
denote by I the interior of the Jordan curve X U [y1,y2]. By the A-minimality of (u, E) with
respect to (u, E U I U Bag), we get

f op|Vul*dz + P(F;Q) < f OBOIUBy, |Vul? dz + P(E U I U Byg; Q) + ATR2.
Q Q

The inequality can be simplified as
HY(Z1 U X)) < H'([y1,92]) + dnd + AR
By adding H!(X3) to both sides of the previous inequality, we infer that
HY(Z) — H ([y1, y2]) < 8md + AR

Combining (38) with the previous inequality and using the Ahlfors regularity, we obtain
A
n < |HYE)| 4nd + §7TR2 +2d

< C\/R (47rd + /2\7TR2> +2d
< CA/VOR? + R® + CVSR.

< C(6% R+ R?).

The conclusion of the lemma follows by applying Lemma 5.6 below. O

Lemma 5.6. Let A c B := B1(0) a given set such that AndB # & and satisfying the following
property: there exists n < 1/2 such that for all zy,2z0 € A,

dist([21, 22], D) < 7,
where D is the diameter of B parallel to [z1,22]. Then, up to a rotation,

Ac{(z,y) | |y < 3n}.
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Proof. Let zg € A n 0B. For any point z € A we denote by D, the the diameter of B parallel
to [20, z]. From our assumption on A we know that for all z € A it holds,

dist([z0, 2], D.) < .

In particular, d(zo, D,) < n and since zg € 0B, this implies that the angle between 2y and the
direction of D, is small. More precisely, if e, is a unit vector in the direction of D, then

|20 — (20, €.)e.| <7

and, accordingly,
|20 — (20, €.)e.|? = 1 — (20,€.)* <1 (39)

Let 6 be the angle between the vectors zg and e,, in such a way that |[(zg,e,)| = cos(f). Then
we deduce from (39) that
|sin(9)] < n.

In other words, all the diameters D,, for z € A, must be contained in an angular sector of
aperture at most 2arcsin(n) around zp. By assuming that zo = (1,0), the first vector of the
canonical basis of R?, we conclude that, for all z € A, D, < {(z,y) | |y| < arcsin(n)} and finally,
for all z € A, z € {(z,y) | ly| < n+ arcsin(n)}. The proposition follows from the elementary
inequality, arcsin(n) < 27, which valid for all n < 1/2. O

We are now ready to proof the main result of this section and of the paper.

Proof of Theorem 1.2. We may assume by contradiction that for every § € (0,1) and € > 0
there exist two connected components of E such that

min{\E1|, |E2|} < e and diSt(EhEg)Z < 5m1n(|E1|, |E2|)

Let R := Tbgdist(El, E;). By Lemma 5.5, there exist a ball Br(c) and two connected compo-

nents F| and F) of By n Bgr(c) and Fy n Br(c) such that they are contained in a rectangle.
More precisely, up to a rotation,

Er v By < {(z,y) [ ly — yel <R},

with h := C ((ﬁR + R%), with C > 0 depending on the Ahlfors regularity constant. Without
loss of generality, we may assume that ¢ = 0.

Next, we want to find a curve I' € 0E] n Br(c) which is lower Ahlfors-regular. The easiest
way to do so is to find a connected subset of dE] whose diameter is comparable to the diameter of
E}. For that purpose, we use the following general topological result, which follows directly from
the main theorem of [10] (see also [27, Theorem 14.2 p. 123]): if U = R is an open set such that
RM\U is connected, then 0U is connected. To simplify the notation, we denote for a moment by
E the connected component Ej . In particular we know that EnBr(0) < {(z,y) | |x2| < h}. Let
U be the connected component of R*\E containing the point (0,2h). Then R:\U = E Ujcs Fj,
where {F;};cs is the collection of all the other connected components of R?\E different from U.
In particular, F; is a closed set, for any i € I. Applying Lemma 6.2 we deduce that R?\U is
connected. Therefore, from [10] we know that 0U is connected. Furthermore, it is easy to see
that U < OE. Let us further show that

diam(oU) = R/4. (40)
Indeed, from Lemma 5.5 we know that E contains a point a satisfying |a| < dist(E], Ej) =
2V0R, and E n 0B # . Since E is open and connected, it is pathwise connected. There
exists a curve inside F from the point a to a point on 0 Bg. This curves stays inside the rectangle

{(z,y) | |x2] < h}. By consequence, each vertical line L; := te; + Rey must intersect oU for all
te (24/0R, R/2), and (40) follows. We then define ' = dU (see Figure 2.).

Since I' is connected, it satisfies the following lower Ahlfors regularity property:

H' (T~ B.(2))=r, Veel, Vre (0, f).
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Br

The ball Byg(y) in which the
e-regularity applies

Figure 2: In the proof of Theorem 1.2, we get a contradiction by finding a ball in which 0E
should be a smooth surface thanks to the e-regularity result, which prevents a component to be
shrinked in a thin rectangle.

Then by Lemma 4.4 there exist two constants a € (0,1), g > 0 and a ball B,r(y) = Br(0)
such that
e(y,aR) + w(y,aR) + aR < &y,

for R sufficiently small. By e-regularity we have that 0E] n B an (y) is a Ct7-hypersurface. We

can choose § < (%)4 and € < (%)4 so that the radius of the ball B%(y) is greater than the
height h of the rectangle, that is C’((ﬁR + R%) < %. Indeed,

1 s\ _ CoR  (min{|Ei|,|E5|})T aR Cei  aR

C(§4R+R2>< —+C . <=
which concludes the proof. Indeed, this is clearly a contradiction with the fact that F{ n Br
was supposed to be totally contained in the rectangle. O

The following lemma has been used in the proof of Lemma 5.5 and it holds when N = 2. It
states that, under some mild regularity assumptions on a BV set (), the boundaries of connected
components cannot touch by a positive H'-measure set.

Lemma 5.7. Let Q < R? be o set of finite perimeter satisfying a lower Ahlfors-reqularity
inequality and such that

HL(0Q\0*Q) = 0. (41)
Let A and A’ be two connected components of Q0 and let xg € 0An 0A’. Then xg does not belong
to 0*Q. As a consequence,

HY(OA N A" = 0.

Proof. Assume by contradiction that zy € 0*Q n 0A n 0A’. We know that 0*Q admits an
approximative tangent plane Py at point zp. From (41) we deduce that P, is actually an
approximative tangent plane for 02 as well. Then since 02 satisfies a lower Ahlfors-regularity
inequality, it is classical to see that this approximative tangent plane is actually a true tangent
plane. Let us write more details about this last fact.

We assume without loss of generality that Py = {x2 = 0} and let € > 0 be fixed. Since Py is
an approximative tangent plane we know that

lim %’H,l(aQ A By(z0) N {|z2| = re}) — 0. (42)
Now we claim that there exists rg > 0 such that, for all r < rg,
00 N By (z0) N {|x2| > re} = &.
Otherwise, if z € 0Q N By (x0) N {|z2| > re}, since 0 is lower Ahlfors regular then

HY(09 A B, (2)) = Caer,
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Which would easily contradict (42) for r small enough.
We may assume that for € > 0 we can find ro > 0 such that for any r € (0,7) we have

0Q N Br(xo) < Tr(g) := {|za| < elxq]}.

Without loss of generality we may assume that o = 0. We distinguish two cases.
Case 1: there exists r € (0, rg) such that

(B\T-(e))nA# & and (B\T.(c))n A" # .
Let z € (B, \Tr(¢)) n A and 2’ € (B,\T(¢)) n A’. Let us define
B\T,(e) = (B\Tr.(e) n {z2 > 0}) U (B\T;(e) n{wo < 0}) =T+ U T .

Notice that if z € T, then necessarily TT < A. Indeed, if y € T is any other point, then
the segment 7z is contained in T because T is convex. Since z belongs to the connected
component A, it holds that y € A, thus proving 7" < A. The same assertion holds for A’ so
that the following two alternatives must hold:

1. Tt < (B\Tr(e)) nAand T~ < (B,\T(e)) n A'.

2. TT c (B\T(¢)) n A’ and T~ < (B,\T,()) n A.

In both cases, it follows that there exists a positive constant C such that
|Q " B,| = 7r? — Cer?,

which is a contradiction if ¢ < 57, being zo = 0 € 0*Q.

Case 2: for any r € (0,r) it holds
(B\T(e))n A= or (B\T,(e))n A" = .

We assume without loss of generality that (B, \T(¢)) n A = J. We take a point z € T).(¢) n A.
Without loss of generality, we can assume that s := m;(z) > 0. Since A is connected, and
2,0 € A, we deduce that dB; n A # ¢, for all s € (0,sp). Let z5 be a point in 0Bs n A. Since
(B:\T-(g)) n A = J, we know that z; € Ty(e).

Since 0 € 0A, for all s < so there exists a point 2, € A N Beg(x) such that m(2}) < m1(2s).
Let v be a curve connecting z; and 2. in A, which exists because A is a connected open set,
thus arc-wise connected.

We define the vertical line

Ly :={(t,y) : ye R}, forteR.

Since 0A N Bs(zg) < Q2 n Br(xo) < Tr(e) and L; meets interior points of A for ¢ €
[m1(2L), m1(25)], we have that

BOA N L) =2, Vte[m(zh),m(2s)]

Accordingly, by the coarea formula we get

HY(OA A By(z0)) = f A1 —=(va,en)? dH?

0ANBs(z0)
s/v/1+¢€2? 0 1
> HY(CA N {m =t})dt = 2s —&
[ 04 fm = thar =25 )
> 25(1 — 2),

for any s € (0, s9). Moreover we know that for all s € (0, sg),
O N 0Bs(x0) N {m(x) < 0} # I,
so that, all together,
HY(OQ A By(w0)) = s + 25(1 — 2¢) = 5(3 — 4e),
which implies the following contradiction:

1( A%
lim inf H (0% 1 Bs(20)) = liminf
s—0 2.9 s—0 28

HL (092 N By(xo)) >3 2% > 1

[\)

1
for e < 1
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Remark 5.8. The Lemma is false in higher dimensions: consider the 1D-curve I' « RY defined
by
Fi={r1=29=--=xny_2=0and zy =93?V_1}.
Then consider G as being a very small open neighborhood of T, with the property that G <
{zy > 0} and
B

lim G B NT(O)‘ =0.

r—0+ T
Then we define Q := PT U G, where PT = {xy < 0}. The two connected components of 2 are
P* and G, for which their boundaries meet at the origin, which is a point that belongs to 0*Q.
However, we don’t know if the assertion HN"1(0A n 0A") = 0 still holds in higher dimensions
for two connected components of a set of finite perimeter Q satisfying HN 1 (0Q\0*Q) = 0, and
such that 0S) satisfies a lower Ahlfors-reqularity inequality.

6 Appendix

The following lemma is a standard height bound which is taken from [4, Lemma 6.3] for the
case of injective curves. Here we adapted the argument straightforwardly for a curve which is
possibly non injective anymore, but for which the set of self-intersection points has zero measure.

Lemma 6.1. Let v : [0,1] — R? be a curve with endpoints z = v(0) and 2z’ = v(1), with image
I:=~([0,1]). We assume that ~y is almost injective in the sense that, defining
Z:={tel0,1] : I #t st. ()=~}

it holds that H*(y(Z)) = 0. It follows that
HI(T) (HA(T) — |2/ — )

2 )
Proof. Let § be a maximizer of the function y € I' — dist(y, [z, 2']), i.e., ¥ is the most distant
point in T' from the segment [z, z'], and define d =: dist(y, [z, 2']). Let us consider the point

y' € R? making (z,2’,%') an isosceles triangle with height d. Denoting by a := |z — 2/|/2 and
L := |y’ — z|, according to Pythagoras Theorem, we have

d2=L2—a2=(L—a)(L+a).

dist(y, [, 2'])* <

Vyel. (43)

And since by assumption « is almost injective (i.e. H1(Z) = 0), then H1(T') > |2 — | + |y —
2| = 2L and HY(T) > |z — 2’| so that
HUD)(H(D) — |2 — ')
2 b
which proves (43). 0O

A<= (HD) =z —2|) (H' (D) + |2 —2]) <

PN

Lemma 6.2. Let A < RY be an open and connected set, and let {F;}icr be a family of closed
connected sets such that F; n 0A # & for all i€ I. Then the set

AUUF,L

el
is connected.
Proof. Let us denote by
E:=Avu U F;,
el
and assume that
FE c U1 U UQ

where U; and U, are two disjoint open and connected subsets of RY. To prove that E is
connected, it is enough to prove that E < Uy or E < Us,. Let i € I be fixed for a moment. Then,
by assumption, F; < U; u Uy but since F; is connected we deduce that F; < Uy or F; < Us.
Let us assume that F; ¢ U;. Let xg € F; n 0 A, which is assumed to be non empty. Since Uj is
open and xg € dA, we actually infer that Uy n A # . But since A < Uy u Us, and since A is
connected, we conclude that A ¢ U;. In other words we have proved that A u F; < U;. Now
for any other j € I, arguing similarly we deduce that A U Fj is also contained in one of the two
open sets, that actually must be the same U; because A is already known to be contained in
U,. All in all we have proved that E c Uq, as desired, and this achieves the proof. O
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