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Abstract. We study the convergence of stochastic time-discretization schemes for evolution

equations driven by random velocity fields, including examples like stochastic gradient descent
and interacting particle systems. Using a unified framework based on Multivalued Probability

Vector Fields, we analyze these dynamics at the level of probability measures in the Wasserstein

space. Under suitable dissipativity and boundedness conditions, we prove that the laws of the
interpolated trajectories converge to those of a limiting evolution governed by a maximal dissi-

pative extension of the associated barycentric field. This provides a general measure-theoretic

study for the convergence of stochastic schemes in continuous time.
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1. Introduction

The aim of this paper is to introduce and develop a general framework for studying the con-
vergence of trajectories generated by a suitable stochastic version of the explicit Euler method,
which we use to approximate the evolution of interacting particle systems governed by dissipative
fields in Hilbert spaces.

Superposition of autonomous vector fields. In order to keep the exposition simple, we first explain
the main ideas of our approach in the case of a simple system of ordinary differential equations in
Rd driven by a continuous vector field b : Rd → Rd,

ẋ(t) = b(x(t)), t ∈ [0, T ], x(0) = x̄ ∈ Rd (1.1)

satisfying, for some λ ∈ R, a one-sided Lipschitz condition

⟨b(x0)− b(x1), x0 − x1⟩ ≤ λ|x0 − x1|2 for every x0, x1 ∈ Rd. (1.2)
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We suppose that b arises as a stochastic superposition of a family of vector fields g : Rd ×U → Rd

depending on a random parameter u ∈ U in a probability space U endowed with a probability
measure U:

b(x) =

∫
U

g(x, u) dU(u) = EU[g(x, ·)] for every x ∈ Rd,

with ∫
U

|g(x, u)|2 dU(u) = EU

[
|g(x, ·)|2

]
≤ L(1 + |x|2).

We can perform a natural time discretization of (1.1) by selecting a sequence of uniform step sizes
τ = T/N , N ∈ N, and a sequence (V n)n of independent, U-valued random variables with law U,
defined in some probability space (Ω,P). A stochastic approximation Xn

τ of x(nτ) is a family of
Rd-valued random variables defined on Ω, which can then be obtained by the following version of
the explicit Euler method

Xn+1
τ = Xn

τ + τg(Xn
τ , V

n), n = 0, 1, · · · , N ; X0
τ := x̄. (1.3)

A special case of the above framework occurs when

b = −∇h, h(x) =
1

K

K∑
u=1

Hu(x) (1.4)

is the sum of gradients of functions Hu : Rd → R. In this case, a deterministic approach to approx-
imate (1.1) may be difficult to implement numerically when K is large. For this reason, stochastic
approximation techniques have been developed, inspired by the seminal works of Robbins and
Monro [20] and of Kiefer and Wolfowitz [14], and they have witnessed a renewed interest, largely
motivated by their growing relevance in machine learning contexts (cf. e.g. [21, 7, 16]). In this
regard, the simplest stochastic formulation takes U = {1, . . . ,K}, U to be the uniform distribution
on U, and g(x, u) := −∇Hu(x); the scheme above in (1.3) with τ fixed coincides then with the
classical Stochastic Gradient Descent (SGD) method and one aims to pass to the limit as n→ ∞
in order to find a minimum (or a stationary point) of h. The effectiveness of this approach relies
on the reduction of the computational cost at each iteration.

Instead of the asymptotic limit as n → ∞, we want to study the uniform approximation in
[0, T ] of the deterministic trajectory of (1.1) as τ = T/N vanishes.

Interacting particle systems. In our analysis, we can include much more general evolution pro-
cesses, as the ones involving interactions. In the simplest case, we may consider a system of M
particles {xω}Mω=1 and an interaction field f : Rd × Rd → Rd determining the velocity of each
particle based on the positions of all particles in the system according to

ẋω(t) =
1

M

M∑
m=1

f(xω(t), xm(t)), xω(0) = x̄ω, ω = 1, · · · ,M, t ∈ [0, T ]. (1.5)

More generally, we can assume that the initial configuration of the particles is described by the
law of a random variable X̄: in this case, we can formulate the evolution of the system described
by the random variables X(t, ·) as

Ẋ(t, ω) =

∫
Ω

f
(
X(t, ω), X(t, ω′)

)
dP(ω′), X(0, ω) = X̄(ω) for every ω ∈ Ω. (1.6)

We can then consider the approximation scheme

Xn+1
τ = Xn

τ + τf(Xn
τ , Y

n
τ ), n = 0, 1, · · · , N, (1.7)

where Y n
τ is an independent copy of Xn

τ and it also independent of Y k
τ , k = 0, · · · , n− 1.

For both schemes (1.3) and (1.7), we can construct a piecewise linear (random) curve Xτ on
the interval [0, T ] by linearly interpolating the values (Xn

τ )n at the nodes nτ . A natural question
arises regarding the convergence of Xτ as τ ↓ 0 to the deterministic solution of (1.1) (cf. [4, 15])
and to that of (1.5), (1.6).

Of course, many variations of the two examples above can be considered—for example, allowing
the field g to depend on the law of Xn

τ or assuming that also the field f in the second case arises as
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a superposition. In fact, we interpret these evolutions as particular cases of a broader framework,
which we use to analyze the behavior of Xτ as τ ↓ 0.

The general idea, developed in this paper, is to regard these evolutions as occurring in the
Wasserstein space of probability measures P2(Rd), focusing on the law of Xn

τ rather than on the
random variable itself. We lift the vector fields b, g, and f to corresponding Probability Vector
Fields (PVF), a notion of distributed velocity field acting on probability measures, introduced in
[18, 17, 10] and studied in our previous works [11, 12], also considering the multivalued case. For
a comprehensive review of the literature on the study of evolution equations in the Wasserstein
space of probability measures, particularly in relation to optimal control problems, we refer the
reader to [19].

Evolution of probability measures driven by probability vector fields. To illustrate this approach, let
us consider the general case of the evolution of probability measures with bounded support driven
by a continuous nonlocal vector field b : X × Pb(X) → X: here X = Rd for simplicity, (though we
can also handle the case of an infinite-dimensional separable Hilbert space) and Pb(X) denotes the
space of probability measures with bounded support.

We assume that b is λ-dissipative [11], i.e.∫
⟨b(x1, µ1)− b(x0, µ0), x1 − x0⟩dµ(x0, x1) ≤ λW 2

2 (µ0, µ1) (1.8)

for every µ0, µ1 ∈ Pb(X) and for some optimal coupling µ ∈ Γo(µ0, µ1) for the L2-Wasserstein
distance W2, a condition which is a natural metric-generalization to probability measures of the
classical dissipativity (or anti-monotonicity) for operators in Hilbert spaces [8]. By [12, Theorem
4.2] for every initial datum µ̄ ∈ Pb(X) we can find a unique solution µ ∈ C([0, T ];Pb(X)) satisfying
the continuity equation

∂tµt +∇ ·
(
b(·, µt)µt

)
= 0 in (0, T )× X, µt=0 = µ̄. (1.9)

Selecting an initial random variable X̄ on a probability space (Ω,P) such that X̄♯P = µ̄ (here ♯ is
the push-forward operator), the measures µt, t ∈ [0, T ], can be equivalently characterized as the
laws of the random variables X(t, ·) satisfying the systems of nonlocal ODEs

Ẋ(t, ω) = b
(
X(t, ω), X(t, ·)♯P

)
, X(0, ω) = X̄(ω). (1.10)

We can then consider the characteristic map X : Ω → C([0, T ];X): for (almost) every ω ∈ Ω, X(ω)
is the curve t 7→ X(t, ω) i.e. a characteristic of the PDE (1.9). The law η := X♯P is therefore a
probability measure in P(C([0, T ];X)) concentrated on the characteristics of (1.9).

In order to describe the stochastic approximation of (1.10), we suppose that b can be represented
as the barycenter of a Probability Vector Field (PVF) F, which in this particular case is a map
from Pb(X) to Pb(X× X) ∼= Pb(TX) (here TX ∼= X× X denotes the flat tangent bundle to X, which
can be interpreted as the natural space for the space-velocity pairs (x, v)), satisfying the structural
condition

πX
♯ F[µ] = µ for every µ ∈ Pb(X), (1.11)

where πX(x, v) = x is the projection on X. The disintegration F[µ] =
∫
Φx dµ(x) of F[µ] with

respect to its first marginal µ yields a Borel family (Φx)x∈X of probability distributions on velocities
Φx ∈ Pb(X) at µ-a.e. x, whose mean value is precisely b(x, µ) :

b(x, µ) =

∫
v dΦx(v) for µ-a.e. x ∈ X. (1.12)

In the simple case (1.1) we have

b(x, µ) = b(x), F[µ] = (πX, g)♯(µ⊗ U), µ ∈ Pb(X). (1.13)

In the case of the interacting particle system (1.5), we have

b(x, µ) =

∫
f(x, y) dµ(y), F[µ] = (iX, f)♯(µ⊗ µ),
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being iX is the identity on X. Assuming that there exists a constant a ≥ 0 such that

⟨v, x⟩ ≤ a(1 + |x|2) for F[µ]-a.e. (x, v) ∈ TX, (1.14)

and for every R > 0 the support of F[µ] is uniformly bounded whenever supp(µ) ⊂ BR(0), the
theory developed in [11] well applies to the evolution driven by the PVF F. The latter can
be approximated by a measure-theoretic version of the Explicit Euler scheme: given a step size
τ = T/N and an approximation µ̄τ ∈ Pb(X) of µ̄, we iteratively define

M0
τ := µ̄τ , Mn+1

τ = expτ♯ F[M
n
τ ], n = 0, 1, · · · , N − 1, (1.15)

where expτ : TX → X sends (x, v) to x + τv. This scheme corresponds to the scheme (1.3)
(resp. (1.7)) at the level of laws, indeed for each n, τ we have that Mn

τ is the law of the random
variable Xn

τ in (1.3) (resp. (1.7)).
In our earlier work [11], we studied the properties of the scheme (1.15) and the uniform conver-

gence of the corresponding piecewise-constant interpolants t 7→ Mτ (t) in the space of measures.
In particular, we are also able to characterize the limit curve µ ∈ C([0, T ];P2(X)) in terms of an
Evolution Variational Inequality associated with F.

Comparing this result with the theory in [12, Theorems 4.2, 4.4] (cf. Theorem 5.4), this imme-
diately gives that µ coincides with the (unique) solution of (1.9) generated by the barycenter b of
F.

It is then natural to lift also the Explicit Euler scheme for F, in the form of its linear inter-
polation Mτ (·), to a probability measure on curves, that we call ητ ∈ P(C([0, T ];X)), such that
its evaluation at times nτ matches Mn

τ (see Definition 3.4 for details). The measure ητ can be
interpreted as the law of the piecewise linear interpolation Xτ of a sequence (Xn

τ )n of random
variables satisfying the following properties:

• the law of Xn
τ is Mn

τ : (X
n
τ )♯P =Mn

τ , n = 0, · · · , N , and X0
τ → X̄ in L2 as τ ↓ 0,

• (Xn
τ )n is a Markov chain,

• denoting by V n
τ the “forward” discrete velocity τ−1(Xn+1

τ −Xn
τ ), the joint law of

(
Xn

τ , V
n
τ

)
is precisely F[Mn

τ ].

We are therefore led to study the convergence of ητ , which corresponds to the convergence of the
process Xτ . Our main result is that ητ converges to η in the strong L2-Wasserstein topology on
P2(C([0, T ];X)) (notice that, in this case, the convergence would not just be limited to the time
evaluations, as already shown).

While compactness of the family (ητ )τ in the weak topology of probability measures follows
from [11] with the dissipativity and boundedness conditions, characterizing the limit is one main
contribution of this paper; see in particular Theorem 5.9. In this result we show that the conver-
gence takes place actually in the strong L2-Wasserstein topology on P2(C([0, T ];X)) and that the
limit η is concentrated precisely on the solutions to (1.10). The tools we employ to characterize
η are largely based on our second work [12] where we study, among other things, the properties
of (multivalued) PVFs enjoying a total dissipativity condition.

As a byproduct, we obtain the convergence in L2(Ω,P; C([0, T ];X)) of Xτ to the unique solution
of the deterministic ODE in (1.10) driven by b (Theorem 5.10). We will further extend the result
described above in a much greater generality so to treat simultaneously also the case of multivalued
and possibly discontinuous probability vector fields. These results fully clarify the links between
the explicit Stochastic Euler Method (1.15) induced by a metrically dissipative (multivalued) PVF
F and the contraction semigroup generated by its totally dissipative barycentric projection, which
in turn can be studied by the implicit Euler Scheme.

Plan of the paper. The paper is organized as follows. Section 2 contains the preliminaries
on Wasserstein spaces, the main notations adopted, a recall of the definition of multivalued PVF
(MPVF) and notions of dissipativity taken from [11, 12]. In Section 3, we recall the Explicit
Euler scheme for dissipative MPVFs and construct a probabilistic representation of its affine
interpolants. We then study its convergence as the step-size vanish. In Section 4, we study the
stability of the probabilistic representation of the Implicit Euler scheme for a maximal totally
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dissipative MPVF with respect to the initial data. Finally, our main results are contained in
Section 5, while illustrative examples appear in Section 6. Appendices A and B close the work.

Acknowledgments. G.C. acknowledges the partial support of INDAM-GNAMPA project 2024
Controllo ottimo infinito dimensionale: aspetti teorici ed applicazioni (CUP E53C23001670001).

2. Preliminaries

We introduce here the main notations used throughout the paper.
Given λ ∈ R, we write λ+ := max{0, λ} and denote by ⌊·⌋ the floor function. Given a set X,

we denote by iX : X → X the identity map on X. Given M ∈ N and sets X0, . . . , XM , we define
the i-th projection map by

πi : X0 ×X1 × · · · ×XM → Xi, πi(x0, . . . , xM ) = xi,

with i = 0, . . . ,M ; note that we start counting from the index 0, this is done to be coherent with
the time evaluations of curves defined in some interval of the form [0, T ]. Similarly, we define

πi,j : X0 ×X1 × · · · ×XM → Xi ×Xj , πi,j(x0, . . . , xM ) = (xi, xj),

for i, j = 0, . . . ,M .

To ensure generality, we introduce the basic notions of measure theory considering X and Y
to be Lusin completely regular topological spaces. Recall that a topological space X is completely
regular if it is Hausdorff and, for every closed set C and point x ∈ X \C, there exists a continuous
function f : X → [0, 1] such that f(C) = {1} and f(x) = 0. This framework is well-suited to our
analysis of Borel probability measures on (subsets of) a separable Hilbert space X, which may
carry either the strong or weak topology.

With P(X) we denote the set of Borel probability measures onX endowed with the weak/narrow
topology, induced by the duality with Cb(X), the space of bounded continuous real-valued func-
tions defined on X.

Given µ ∈ P(X) and a Borel map r : X → Y , we define the push-forward measure r♯µ ∈ P(Y )
by ∫

Y

φ(y) d(r♯µ)(y) =

∫
X

φ(r(x)) dµ(x),

for any φ : Y → R bounded Borel map.
For later use, we recall the disintegration theorem (c.f. [2, Theorem 5.3.1]).

Theorem 2.1. Let X, X be Lusin completely regular topological spaces, µ ∈ P(X), r : X → X
be a Borel map. Then, there exists a (r♯µ)-a.e. uniquely determined Borel family of probability
measures {µx}x∈X ⊂ P(X) such that µx(X \ r−1(x)) = 0 for (r♯µ)-a.e. x ∈ X, and∫

X
φ(x) dµ(x) =

∫
X

(∫
r−1(x)

φ(x) dµx(x)

)
d(r♯µ)(x)

for every bounded Borel map φ : X → R.

Remark 2.2. When X = X0 × X1 and r is the projection π0 on the first component, we can
identify the disintegration {µx}x∈X0 ⊂ P(X) of µ ∈ P(X0 ×X1) w.r.t. the map π0 with a family

of probability measures {µx0
}x0∈X0

⊂ P(X1). We write µ =

∫
X0

µx0
d(π0

♯µ)(x0).

The set of admissible couplings (transport plans) between two probability measures µ ∈ P(X),
ν ∈ P(Y ) is given by

Γ(µ, ν) :=
{
γ ∈ P(X × Y ) | π0

♯γ = µ , π1
♯γ = ν

}
.

If γ ∈ P(X × Y ), we say that the measures π0
♯γ and π1

♯γ, are the first and second marginals of
γ, respectively.
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If (X, | · |) is a separable normed space, given µ ∈ P(X) we define its 2-moment by

m2(µ) :=

(∫
X

|x|2 dµ(x)
)1/2

,

and denote by P2(X) the set of all measures in P(X) with finite 2-moment.

If (X, | · |) is a complete and separable normed space, we denote byW2 the Wasserstein distance
over P2(X), defined by

W 2
2 (µ, µ

′) := inf

{∫
X×X

|x− y|2 dγ(x, y) | γ ∈ Γ(µ, µ′)

}
, (2.1)

and refer to [2, §7] for the main properties of the complete and separable metric space (P2(X),W2).
We denote by Γo(µ, µ

′) the subset of couplings in Γ(µ, µ′) realizing the infimum in (2.1).

In the sequel, X denotes a separable Hilbert space with norm | · | and scalar product ⟨·, ·⟩. In
case X = C(I;X) is endowed with the uniform norm ∥ · ∥∞ and I ⊂ R is a compact interval, we
use the notation W2,∞ to denote the Wasserstein distance over P2(X).

We denote by TX the tangent bundle to X, identified with the cartesian product X × X with

the induced norm |(x, v)| :=
(
|x|2 + |v|2

)1/2
and the strong-weak topology, i.e. the product of the

strong topology on the first component and the weak topology on the second one. The set P(TX)
is defined thanks to the identification of TX with X×X and it is endowed with the narrow topology
induced by the strong-weak topology in TX. Given Φ ∈ P(TX), we define the partial 2-moment of
Φ as

|Φ|2 :=

(∫
TX

|v|2 dΦ(x, v)
)1/2

.

Following the characterization result provided in [12, Section 2.1], we give the following defini-
tion of convergence in Psw

2 (TX).

Definition 2.3. Given (Φn)n∈N ⊂ P2(TX), Φ ∈ P2(TX), we say that Φn → Φ in Psw
2 (TX) as

n→ ∞ if all the following are satisfied

(1) Φn → Φ in P(TX) = P(Xs ×Xw), where Xs is endowed with the strong topology, while Xw

with the weak,

(2) lim
n→+∞

∫
|x|2 dΦn(x, v) =

∫
|x|2 dΦ(x, v),

(3) sup
n

|Φn|2 <∞.

In TX we will use the following notation for projection maps: we set

x : TX → X, x(x, v) := x; v : TX → X, v(x, v) = v;

xi : TX× TX → X, xi(x0, v0, x1, v1) := xi; vi : TX× TX → X, vi(x0, v0, x1, v1) = vi;

for i = 0, 1. Given I ⊂ R an interval of R and t ∈ I, we define the exponential map expt : TX → X,

expt(x, v) = x+ tv,

and the evaluation map et : C(I;X) → X as

et(γ) = γ(t).

2.1. Dissipative Probability Vector Fields and EVI solutions. From now on, X denotes a
separable Hilbert space. We recall here the definition of MPVF and different notions of dissipa-
tivity: the metric dissipativity introduced in [11], where we provide well-posedness results of the
associated evolution equation in the Wasserstein space, using a measure-theoretic Explicit Euler
scheme; the total dissipativity, employed in [12] to deal with an Implicit Euler scheme.
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Definition 2.4 (Multivalued Probability Vector Field - MPVF). A multivalued probability vector
field F is a nonempty subset of P2(TX) with domain D(F) := x♯(F) = {x♯Φ : Φ ∈ F}. Given
µ ∈ P2(X), we define the section F[µ] of F as

F[µ] := {Φ ∈ F | x♯Φ = µ} .

Given Φ ∈ P2(TX), the barycenter of Φ is the function bΦ ∈ L2(X, x♯Φ;X) defined by

bΦ(x) :=

∫
v dΦ(x, v) =

∫
v dΦx(v), (2.2)

where {Φx}x∈X ⊂ P2(X) is the disintegration of Φ w.r.t. x♯Φ.

Definition 2.5. Let F ⊂ P2(TX) be a MPVF. We define the MPVF bar (F) by

bar (F) [µ] := {bar (Φ) := (iX, bΦ)♯µ : Φ ∈ F[µ]} , µ ∈ D(F). (2.3)

Before we recall the metric and total notions of dissipativity for a MPVF F, we briefly recall
the definition of duality pairings between measures in P2(TX).

Definition 2.6 (Metric-duality pairings). For every Φ0,Φ1 ∈ P2(TX), µ1 ∈ P2(X), we set

Λ(Φ0, µ1) :=
{
σ ∈ Γ(Φ0, µ1) | (x0, x1)♯σ ∈ Γo(x♯Φ0, µ1)

}
,

Λ(Φ0,Φ1) :=
{
Θ ∈ Γ(Φ0,Φ1) | (x0, x1)♯Θ ∈ Γo(x♯Φ0, x♯Φ1)

}
,

where, with a slight abuse of notation, we used x1 to be also the projection map x1(x0, v0, x1) = x1
acting on TX× X. We set

[Φ0, µ1]r := min

{∫
TX×X

⟨x0 − x1, v0⟩dσ | σ ∈ Λ(Φ0, µ1)

}
,

[Φ0,Φ1]r := min

{∫
TX×TX

⟨x0 − x1, v0 − v1⟩dΘ | Θ ∈ Λ(Φ0,Φ1)

}
.

Definition 2.7 (Metric λ-dissipativity). A MPVF F ⊂ P2(TX) is (metrically) λ-dissipative,
λ ∈ R, if

[Φ0,Φ1]r ≤ λW 2
2 (x♯Φ0, x♯Φ1) for every Φ0,Φ1 ∈ F. (2.4)

In case λ = 0, we say that F is dissipative.

Definition 2.8 (Total λ-dissipativity). We say that a MPVF F ⊂ P2(TX) is totally λ-dissipative,
λ ∈ R, if for every Φ0,Φ1 ∈ F and every ϑ ∈ Γ(Φ0,Φ1) we have∫

⟨v1 − v0, x1 − x0⟩dϑ(x0, v0, x1, v1) ≤ λ

∫
|x1 − x0|2dϑ(x0, v0, x1, v1). (2.5)

We say that F is maximal totally λ-dissipative if it is maximal in the class of totally λ-dissipative
MPVFs: if F′ ⊃ F and F′ is totally λ-dissipative, then F′ = F.

We recall the definition of λ-EVI solution for a MPVF. Here, I denotes an arbitrary (bounded
or unbounded) interval of R.

Definition 2.9 (λ-Evolution Variational Inequality). Let F be a MPVF and let λ ∈ R. We say

that a continuous curve µ : I → D(F) is a λ-EVI solution (in I) for the MPVF F if

1

2

d

dt
W 2

2 (µt, x♯Φ) ≤ λW 2
2 (µt, x♯Φ)− [Φ, µt]r in D ′(int (I)) for every Φ ∈ F, (2.6)

where when we write D ′(int (I)) it means that the expression holds in the distributional sense in
int (I). Equivalently, (2.6) can be rephrased as

1

2

d

dt

+

W 2
2 (µt, x♯Φ) ≤ λW 2

2 (µt, x♯Φ)− [Φ, µt]r for every t ∈ int (I) for every Φ ∈ F,

where d
dt

+
denotes the right upper Dini derivative.
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3. Explicit Euler scheme and lifting to curves

We recall here below the definition of Explicit Euler scheme for a MPVF F ⊂ P2(TX) coming
from [11] and provide a construction of a probabilistic representation of it with a probability
measure on continuous paths valued in X.

Definition 3.1 (Explicit Euler Scheme). Let F ⊂ P2(TX) be a MPVF and suppose we are given
a step size τ > 0, an initial datum µ̄ ∈ D(F), a bounded interval [0, T ], corresponding to the final
step N(T, τ) := ⌈T/τ⌉ , and a stability bound L > 0. A sequence (Mn

τ ,Φ
n
τ )0≤n≤N(T,τ) ⊂ D(F)×F

is a L-stable solution to the Explicit Euler Scheme in [0, T ] starting from µ̄ if


M0

τ = µ̄,

Φn
τ ∈ F[Mn

τ ], |Φn
τ |2 ≤ L 0 ≤ n < N(T, τ),

Mn
τ = (expτ )♯Φ

n−1
τ 1 ≤ n ≤ N(T, τ).

(EE)

Definition 3.2 (Single-step and multi-step plans). Let τ > 0.

• Given Φ ∈ P(TX), we define the single-step plan associated with Φ as

Tτ ≡ Tτ (Φ) := (x, expτ )♯Φ ∈ P(X2),

so that (π0)♯Tτ = x♯Φ. By disintegration theorem, there exists a [x♯Φ]-a.e. uniquely deter-
mined Borel family of probability measures {Tτ,x}x∈X ⊂ P(X) such that

Tτ =

∫
X

(δx ⊗ Tτ,x) d [x♯Φ] (x).

• Given N ∈ N and a family (Φn)0≤n≤N ⊂ P(TX), we denote the single-step plans associated
with each Φn by Tn

τ := Tτ (Φ
n), n ∈ {0, . . . , N − 1}, and define by recursion

α1
τ := T 0

τ ,

αn
τ :=

∫
(δ(x0,x1,...,xn−1) ⊗ Tn−1

τ,xn−1
) dαn−1

τ (x0, x1, . . . , xn−1) ∈ P(Xn+1),

for 2 ≤ n ≤ N . The multi-step plan associated with (Φn)0≤n≤N is defined by

ατ ≡ ατ ((Φ
n)n) := αN

τ ∈ P(XN+1).

Lemma 3.3. Given N,n ∈ N, n ≤ N , we define the restriction map Rn : XN+1 → Xn+1 as

Rn(x0, . . . , xN ) = (x0, . . . , xn).

Let τ > 0 and (Φn)0≤n≤N ⊂ P(TX). With the notations of Definition 3.2, we have

(1) (Rn)♯ατ = αn
τ ;

(2) (πn)♯α
n
τ = x♯Φ

n,

for any n ∈ {1, . . . , N}, where we recall that πn : Xn+1 → X is the projection map defined as
πn(x0, . . . , xn) = xn.

Proof. Item (1) is immediate by definition. To prove item (2), we notice that

(π1)♯T
n
τ = x♯Φ

n+1, for any n ∈ {0, . . . , N − 1},
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and that (π1)♯α
1
τ = (π1)♯T

0
τ = x♯Φ

1. By induction, assume that item (2) holds for n ∈ {1, . . . , N−
1} and let us prove it for n+ 1. For any bounded Borel function f : X → R, we have∫

f(x) d
(
(πn+1)♯α

n+1
τ

)
(x) =

∫
f(xn+1) dα

n+1
τ (x0, . . . , xn+1)

=

∫
f(xn+1) dT

n
τ,xn

(xn+1) dα
n
τ (x0, . . . , xn)

=

∫
f(xn+1) dT

n
τ,xn

(xn+1) d ((π
n)♯α

n
τ ) (xn)

=

∫
f(xn+1) dT

n
τ,xn

(xn+1) d [x♯Φ
n] (xn)

=

∫
f(xn+1) dT

n
τ (xn, xn+1)

=

∫
f(xn+1) d

[
x♯Φ

n+1
]
(xn+1),

thus proving item (2). □

Definition 3.4 (Interpolations of (EE)). Let F ⊂ P2(TX) be a MPVF, µ̄ ∈ D(F) and τ, T, L > 0.
Let (Mn

τ ,Φ
n
τ )0≤n≤N(T,τ) ⊂ D(F)×F be as in Definition 3.1 and ατ ∈ P(XN(T,τ)+1) be the multi-

step plan associated with (Φn
τ )n as in Definition 3.2. We define the following interpolations of the

sequence (Mn
τ ,Φ

n
τ )n:

Mτ (t) := (expt−nτ )♯Φ
n
τ ∈ P2(X) if t ∈ [nτ, (n+ 1)τ ] for some n ∈ N, 0 ≤ n < N(T, τ), (3.1)

F τ (t) := Φ⌊t/τ⌋
τ ∈ P2(TX), t ∈ [0, T ]. (3.2)

Denote by G : XN(T,τ)+1 → C([0, T ];X) the map sending points (x0, x1, . . . , xN(T,τ)) to their
affine interpolation, i.e. to the curve γ given by

γ(t) :=
1

τ
((n+ 1)τ − t)xn +

1

τ
(t− nτ)xn+1,

if t ∈ [nτ, (n+ 1)τ ] ∩ [0, T ], 0 ≤ n < N(T, τ). We define the selected probabilistic representation
of the affine interpolation of (Mn

τ ,Φ
n
τ )n as

ητ := G♯ατ ∈ P(C([0, T ];X)). (3.3)

We define the following (possibly empty) sets

M (µ̄, τ, T, L) :=
{
Mτ |Mτ is the curve given by (3.1)

}
,

R(µ̄, τ, T, L) :=
{
ητ | ητ is the measure given by (3.3)

}
,

E (µ̄, τ, T, L) :=
{
(Mτ ,F τ ) |Mτ ,F τ are the curves given by (3.1), (3.2) respectively

}
,

T (µ̄, τ, T, L) :=
{
(Mτ ,F τ ,ητ ) |Mτ ,F τ ,ητ are given by (3.1), (3.2), (3.3) respectively

}
.

(3.4)

In the following, a frequently requested assumption is the solvability of the Explicit Euler scheme
at a given µ̄ ∈ D(F). Meaning that, for some µ̄ ∈ D(F), T, L > 0 and a vanishing sequence of
step sizes τ(h) ↓ 0, we require the sets E (µ̄, τ(h), T, L) to be not empty for every h ∈ N. Sufficient
conditions ensuring this property are given e.g. in [11, Proposition 5.20].

We recall that the solvability of the Explicit Euler Scheme (EE), together with the λ-dissipativity
of F, provides existence and uniqueness of λ-EVI solutions (cf. [11, Theorem 5.9(3)-(4)]).

Theorem 3.5. Let F be a λ-dissipative MPVF according to (2.4). If T, L > 0, N ∋ h 7→ τ(h) ∈ R+

is a vanishing sequence of time steps, µ̄ ∈ D(F) and Mh ∈ M (µ̄, τ(h), T, L), then Mh is uniformly

converging to a Lipschitz continuous limit curve µ : [0, T ] → D(F) which is the unique λ-EVI
solution in [0, T ] for F starting from µ̄.
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The link between E (µ̄, τ, T, L) and R(µ̄, τ, T, L), which justifies the definition of the set of
triples T (µ̄, τ, T, L), is made explicit by the following result.

Proposition 3.6. Let F ⊂ P2(TX) be a MPVF and let µ̄ ∈ D(F) and τ, T, L > 0. Let (Mτ ,Fτ ,ητ ) ∈
T (µ̄, τ, T, L), then

(1) ητ is concentrated on curves starting from supp(µ̄) which are affine in every interval
[nτ, (n+ 1)τ ] ∩ [0, T ], n = 0, . . . ,N(T, τ);

(2) we have(
enτ ,

e(n+1)τ − enτ

τ

)
♯

ητ = Fτ (τn) for every n = 0, . . . ,N(T, τ)− 2.

In particular, (et)♯ητ =Mτ (t) for every t ∈ [0, T ].

Proof. It is clear by construction that ητ satisfies (1). Let n ∈ {0, . . . ,N(T, τ) − 2} and observe
that, for every bounded Borel function f : TX → R, we have∫

TX

f(x, v) d

[(
enτ ,

e(n+1)τ − enτ

τ

)
♯

ητ

]
(x, v)

=

∫
XN(T,τ)+1

f

(
xn,

xn+1 − xn
τ

)
dατ (x0, . . . , xN(T,τ))

=

∫
Xn+2

f

(
xn,

xn+1 − xn
τ

)
dαn+1

τ (x0, . . . , xn+1)

=

∫
Xn+2

f

(
xn,

xn+1 − xn
τ

)
dTn

τ,xn
(xn+1) dα

n
τ (x0, . . . , xn)

=

∫
X2

f

(
xn,

xn+1 − xn
τ

)
dTn

τ,xn
(xn+1) dM

n
τ (xn)

=

∫
X2

f

(
xn,

xn+1 − xn
τ

)
dTn

τ (xn, xn+1)

=

∫
TX

f(x, v) dΦn
τ (x, v) ≡

∫
TX

f(x, v) d [Fτ (τn)] (x, v),

where we used the definitions of ητ , α
n
τ , T

n
τ in Definitions 3.4,3.2 and Lemma 3.3.

This proves (2). □

In the following, we give a counterpart of Theorem 3.5 for probabilistic representations of the
Explicit Euler Scheme.

Proposition 3.7. Let F be a λ-dissipative MPVF according to (2.4). Let T, L > 0, N ∋ h 7→
τ(h) ∈ R+ be a vanishing sequence of time steps, µ̄ ∈ D(F). Let (Mh,Fh) ∈ E (µ̄, τ(h), T, L) and
let ηh ∈ P(C([0, T ];X)) satisfying (1),(2) of Proposition 3.6 for (Mh,Fh)h. Then the following
hold:

(1) the family (ηh)h is tight in P(C([0, T ];X)); in particular it weakly converges, up to subse-
quences, to a measure η ∈ P2(C([0, T ];X));

(2) µt := (et)♯η, t ∈ [0, T ], is the unique λ-EVI solution in [0, T ] for F starting from µ̄.

Moreover, if supp(µ̄) is bounded, then (ηh)h is relatively compact in P2(C([0, T ];X)), so that it
converges to η also in W2,∞, up to subsequences.

Proof. Let A2 : C([0, T ];X) → [0,+∞] be the 2-action functional defined in (A.5). By Proposition
3.6, Mh(t) = (et)♯ηh, t ∈ [0, T ], and Mh is uniformly converging to (µ̃t)t∈[0,T ] ⊂ Lip([0, T ];X) by
Theorem 3.5. Thus, in order to prove tightness of (ηh)h it is enough (see e.g. [1, Theorem 10.4])
to prove that

sup
h

∫
A2 dηh < +∞. (3.5)
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By Proposition 3.6(1),(2), we have∫
A2 dηh =

N(T,τ(h))−1∑
k=0

∫
TX

τ(h)|v|2 d
[
Fτ(h)(kτ(h))

]
(x, v) ≤ τ(h)L2N(T, τ(h)) ≤ L2(T + τ(h)),

which yields (3.5).
As a consequence, µ̃t = (et)♯η =: µt for any t ∈ [0, T ] (cf. [2, Lemma 5.2.1]), so that item (2)

follows by Theorem 3.5.
The last assertion is an immediate application of Proposition A.4.

□

4. Total dissipativity and lifting to curves

Let (Ω,B) be a standard Borel space endowed with a non atomic probability measure P.
We recall that (cf. [12]) every maximal totally λ-dissipative MPVF F ⊂ P2(TX) is in one-to-
one correspondence with a maximal λ-dissipative (multivalued) operator B ⊂ L2(Ω,B,P;X) ×
L2(Ω,B,P;X), called Lagrangian representation of F. This fact revealed to be of particular im-
portance in the context of (totally) dissipative MPVFs in [12], due the well-developed theory on
monotone/dissipative operators in Hilbert spaces (cf. [3, 8]), as it is B.

Recall that there exists (cf. [12, Theorems A.5, A.6]) a semigroup of eλt-Lipschitz transforma-

tions (St)t≥0 with St : D(B) → D(B) s.t. for every X̄ ∈ D(B) the curve t 7→ StX̄ is included in
D(B) and it is the unique locally Lipschitz continuous solution of the differential inclusion{

Ẋt ∈ BXt a.e. t > 0,

X|t=0
= X̄.

Given D ⊂ P2(X), we set

S (X, D) := {(x, µ) ∈ X×D | x ∈ supp(µ)} . (4.1)

By [12, Theorem 3.4] or [13, Theorem 4.12]), for every t ≥ 0, there exists a uniquely defined

continuous map st : S
(
X,D(F)

)
→ X such that for every µ ∈ D(F), the map st(·, µ) : supp(µ) →

X is eλt-Lipschitz continuous and

for every X ∈ D(B), StX(ω) = st(X(ω), X♯P) for P-a.e. ω ∈ Ω.

The map st is also associated to the semigroup of eλt-Lipschitz transformations St of F in P2(TX)
via the formula St(µ̄) := st(·, µ̄)♯µ̄ (cf. [12, Definition 4.1]), see the next Theorem 4.1. Reasoning
as in [12, Eq. (4.14)], if µ̄ ∈ D(F), we can associate to (st)t≥0 a µ̄-measurable map

sµ̄ : X → H1(0, T ;X), sµ̄[x](t) := st(x, µ̄). (4.2)

Notice also that, by definition of semigroup, whenever X̄ ∈ L2(Ω,B,P;X) is such that (X̄)♯P = µ̄,
then

e0 ◦ sµ̄ ◦ X̄ = X̄. (4.3)

The following result comes from [12, Theorems 4.2, 4.4, 4.8].

Theorem 4.1. Let F ⊂ P2(TX) be a maximal totally λ-dissipative MPVF. Then, for every µ̄ ∈
D(F), the curve µ : [0,+∞) → P2(X), µt := St(µ̄), is the unique λ-EVI solution in [0,+∞) for F
starting from µ̄. Moreover St is a semigroup of eλt-Lipschitz transformations satisfying

W2(St(µ̄
′), St(µ̄

′′)) ≤ eλtW2(µ̄
′, µ̄′′) for every µ̄′, µ̄′′ ∈ D(F), t ≥ 0.

If T > 0 and, in addition, µ̄ ∈ D(F), then η := (sµ̄)♯µ̄ ∈ P(C([0, T ];X)) is the unique element of
P(C([0, T ];X)) concentrated on absolutely continuous curves satisfying

(1) (et)♯η = µt for every t ∈ [0, T ];
(2) η-a.e. γ is an integral solution of the differential equation γ̇(t) = b◦t (γ(t)) a.e. in [0, T ],

where b◦ is the map associated with the unique element of minimal norm of B as in [12,
Theorem 3.4].
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Finally, if µ̄ ∈ D(F) with #(supp(µ̄)) finite, then

#(supp(µt)) is finite and non-increasing w.r.t. t ≥ 0.

We also recall the following result taken from [12, Theorem 3.20].

Theorem 4.2 (The minimal selection). Let F ⊂ P2(TX) be a maximal totally λ-dissipative MPVF.
The following hold.

(1) For every µ ∈ D(F) there exists a unique vector field f◦[µ] ∈ L2(X, µ;X) such that

(iX,f
◦[µ])♯µ ∈ F[µ],

∫
|f◦[µ]|2 dµ ≤

∫
|v|2 dΦ for every Φ ∈ F[µ]. (4.4)

We denote the minimal selection of F at µ by

F◦[µ] := (iX,f
◦[µ])♯µ.

(2) If B is the Lagrangian representation of F, then for every µ ∈ D(F), we have

f◦[µ] = b◦[µ] µ-a.e.,

where b◦ as in [12, Theorem 3.4].
(3) The map |F|2 : P2(X) → [0,+∞] defined by

|F|2(µ) :=


∫

|f◦[µ]|2 dµ if µ ∈ D(F),

+∞ if µ ̸∈ D(F)
(4.5)

is lower semicontinuous.

The following stability result is a simple consequence of [12, Theorem 4.9].

Proposition 4.3. Let F ⊂ P2(TX) be a maximal totally λ-dissipative MPVF and let µ̄h, µ̄ ∈ D(F),
h ∈ N, be such that

(1) (µ̄h)h converges to µ̄ in P2(X), as h→ ∞;
(2) S := suph |F|2(µ̄h) <∞.

If T > 0 and ηh,η ∈ P(C([0, T ];X)) are as in Theorem 4.1 for µ̄h and µ̄ respectively, then there
exists C > 0 depending only on T, λ, S,η such that

W2,∞(ηh,η) ≤ C
√
W2(µ̄h, µ̄) for every h ∈ N.

Proof. Applying [13, Proposition 3.18], we can find random variables X̄, X̄h ∈ L2(Ω,B,P;X) such
that (X̄h)♯P = µ̄h, X̄♯P = µ̄, and |X̄h − X̄|L2(Ω;X) ≤ 2W2(µ̄h, µ̄). We now consider the family of

P-measurable maps Xh : Ω → H1(0, T ;X) ⊂ C([0, T ];X) defined as Xh := sµ̄h
◦X̄h and X := sµ̄ ◦X̄

(cf. (4.2)). By the proof of [12, Theorem 4.9], we have

∥Xh −X∥2L2(Ω;L2(0,T ;X)) ≤ T e2λ+T |X̄h − X̄|2L2(Ω;X),

∥Xh −X∥2L2(Ω;C([0,T ];X)) ≤ D
(
S′ + ∥X∥L2(Ω;H1(0,T ;X))

)
∥Xh −X∥L2(Ω;L2(0,T ;X)),

for constants D,S′ > 0 depending only on T, λ, S. The sought order of convergence immediately
follows observing that

W2,∞(ηh,η) ≤ ∥Xh −X∥L2(Ω;C([0,T ];X)).

□

5. MPVFs with totally dissipative barycenter

We first introduce another intermediate notion of dissipativity, that will play a crucial role.

Definition 5.1 (Unconditional λ-dissipativity). We say that a MPVF F ⊂ P2(TX) is uncondi-
tionally λ-dissipative, λ ∈ R, if for every γ ∈ P2(X × X) and every Φi ∈ F[πi

♯γ], i = 0, 1, there
exists ϑ ∈ Γ(Φ0,Φ1) such that (x0, x1)♯ϑ = γ and∫

⟨v1 − v0, x1 − x0⟩dϑ(x0, v0, x1, v1) ≤ λ

∫
|x1 − x0|2dγ(x0, x1).



STOCHASTIC EULER SCHEMES AND DISSIPATIVE EVOLUTIONS IN P2 13

It is easy to check that total λ-dissipativity implies unconditional λ-dissipativity, which implies
(metric) λ-dissipativity. It is remarkable that a totally dissipative barycenter is enough to get
unconditional dissipativity.

Proposition 5.2. Let F ⊂ P2(TX) be a MPVF whose barycenter bar (F) is totally λ-dissipative.
Given Φ,Ψ ∈ F and γ ∈ Γ(x♯Φ, x♯Ψ), define

σ :=

∫
X2

(δx ⊗ Φx)⊗ (δy ⊗Ψy) dγ(x, y) ∈ P(TX× TX),

where {Φx}x∈X and {Ψy}y∈X are the disintegrations of Φ and Ψ w.r.t. their spatial marginals i.e.

Φ =

∫
X

(δx ⊗ Φx) d(x♯Φ)(x), Ψ =

∫
X

(δy ⊗Ψy) d(x♯Ψ)(y).

Then σ ∈ Γ(Φ,Ψ), (x0, x1)♯σ = γ, and∫
TX

⟨x− y, v − w⟩dσ(x, v, y, w) ≤ λ

∫
X2

|x− y|2 dγ(x, y). (5.1)

In particular, F is unconditionally λ-dissipative.

Proof. It is clear that σ ∈ Γ(Φ,Ψ) and that (x0, x1)♯σ = γ. Let us show (5.1):∫
TX

⟨x− y, v − w⟩dσ(x, v, y, w) =
∫
X2

∫
X

∫
X

⟨x− y, v − w⟩dΦx(v) dΨy(w) dγ(x, y)

=

∫
X2

⟨x− y, bΦ(x)− bΨ(y)⟩dγ(x, y)

≤ λ

∫
X2

|x− y|2 dγ(x, y),

(5.2)

by total λ-dissipativity of the barycenter. □

Remark 5.3. For later use, we rewrite the expression (5.1) of Proposition 5.2, which involves the
plan σ ∈ P(TX × TX), with a correspondent expression involving a plan in P(X4). Let τ > 0,

µ := x♯Φ, ν := x♯Ψ, and set Tτ ≡ Tτ (Φ) ∈ P(X2) and T̃τ ≡ Tτ (Ψ) ∈ P(X2) the single-step plans
associated with Φ and Ψ, respectively, as in Definition 3.2. Define the plan

ϑ :=

∫
X2

(δx0 ⊗ Tτ,x0)⊗
(
δy0 ⊗ T̃τ,y0

)
dγ(x0, y0) ∈ P(X4).

Then, under the assumptions of Proposition 5.2, we get∫
X4

⟨x0 − y0,
x1 − x0

τ
− y1 − y0

τ
⟩dϑ(x0, x1, y0, y1) ≤ λ

∫
X2

|x0 − y0|2 dγ(x0, y0).

Indeed, we can prove it by disintegration arguments: denote by {γx0
}x0∈X and {γy0

}y0∈X the
disintegrations of γ w.r.t. the first and second marginals, respectively, i.e.

γ =

∫
X

(δx0
⊗ γx0

) dµ(x0), γ =

∫
X

(δy0
⊗ γy0

) dν(y0).
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Then ∫
X4

⟨x0 − y0,
x1 − x0

τ
− y1 − y0

τ
⟩dϑ(x0, x1, y0, y1)

=

∫
X4

⟨x0 − y0,
x1 − x0

τ
− y1 − y0

τ
⟩dTτ,x0

(x1) dT̃τ,y0
(y1) dγ(x0, y0)

=

∫
X4

⟨x0 − y0,
x1 − x0

τ
− y1 − y0

τ
⟩dT̃τ,y0

(y1) dγx0
(y0) dTτ (x0, x1)

=

∫
TX×X2

⟨x0 − y0, v0 −
y1 − y0
τ

⟩dT̃τ,y0(y1) dγx0
(y0) dΦ(x0, v0)

=

∫
X4

⟨x0 − y0, v0 −
y1 − y0
τ

⟩dT̃τ,y0
(y1) dγx0

(y0) dΦx0
(v0) dµ(x0)

=

∫
X4

⟨x0 − y0, v0 −
y1 − y0
τ

⟩dT̃τ,y0
(y1) dΦx0

(v0) dγ(x0, y0)

=

∫
X4

⟨x0 − y0, v0 −
y1 − y0
τ

⟩dΦx0(v0) dγy0
(x0) dT̃τ (y0, y1)

=

∫
TX×X2

⟨x0 − y0, v0 − w0⟩dΦx0
(v0) dγy0

(x0) dΨ(y0, w0)

=

∫
X4

⟨x0 − y0, v0 − w0⟩dΦx0
(v0) dΨy0

(w0) dγ(x0, y0),

and conclude as in (5.2). Otherwise, one can analogously prove that

ϑ =
(
x0, expτ ◦(x0, v0), x1, expτ ◦(x1, v1)

)
♯
σ.

In the following, we show that the λ-EVI solution generated by any maximal extension of the
barycenter of a MPVF F is a λ-EVI solution for the starting MPVF F. For the interested reader,
we refer to [12, Theorem 3.14] for conditions granting uniqueness of maximal extensions for a
MPVF.

Proposition 5.4. Let F ⊂ P2(TX) be a MPVF whose barycenter bar (F) is totally λ-dissipative.

If µ̄ ∈ D(F) and µt := St(µ̄), t ≥ 0, is as in Theorem 4.1 for any maximal totally λ-dissipative
extension of bar (F), then it is also a λ-EVI solution for F.

Proof. Let G be any maximal totally λ-dissipative extension of bar (F). Notice that, since D(F) =

D(bar (F)), then D(F) ⊂ D(G). By Theorem 4.1, the curve µ is the unique λ-EVI solution for G
starting from µ̄. Thus, by Definition 2.9, µ is also a λ-EVI solution for bar (F). Let t ∈ (0,+∞)
and Φ ∈ F. Recalling that bar (Φ) is concentrated on the map bΦ (cf. Definition 2.5), we have

1

2

d

dt

+

W 2
2 (µt, x♯Φ) ≤ λW 2

2 (µt, x♯Φ)− [bar (Φ) , µt]r

= λW 2
2 (µt, x♯Φ)−

∫
TX×X

⟨bΦ(x0), x0 − x1⟩dγ̄(x0, x1),

where

γ̄ = argmin
γ∈Γo(x♯Φ,µt)

∫
TX×X

⟨bΦ(x0), x0 − x1⟩dγ(x0, x1).

In order to prove that µ is a λ-EVI for F, it is then sufficient to show that

[Φ, µt]r ≤
∫
TX×X

⟨bΦ(x0), x0 − x1⟩dγ̄(x0, x1).
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Let {Φx}x∈X ⊂ P2(X) be the disintegration of Φ w.r.t. the projection map x and ϑ ∈ Λ(Φ, µt)
defined by ϑ :=

∫
Φx0(v0) dγ̄(x0, x1). We have

[Φ, µt]r ≤
∫
TX×X

⟨v0, x0 − x1⟩dϑ(x0, v0, x1)

=

∫
TX

⟨v0, x0⟩dΦ(x0, v0)−
∫
TX×X

⟨v0, x1⟩dϑ(x0, v0, x1)

=

∫
X

⟨bΦ(x0), x0⟩d[x♯Φ](x0)−
∫
X×X

⟨bΦ(x0), x1⟩dγ̄(x0, x1)

=

∫
X×X

⟨bΦ(x0), x0 − x1⟩dγ̄(x0, x1).

□

We state the first convergence result of a sequence of probabilistic representations of the Explicit
Euler scheme (corresponding to vanishing step sizes) for a metrically dissipative MPVF F towards
the probabilistic representation of the Implicit Euler scheme for a maximal totally dissipative
extension of the barycenter of F. This result, stated in Theorem 5.6, is proved here assuming
that the starting point µ̄ is finitely supported; we will extend it to a general µ̄ in Theorem 5.9.
To prove Theorem 5.6, we apply the following Theorem 5.5, stated here in a simplified form and
whose proof is postponed to Appendix B.

Theorem 5.5 (Sticky particles representation). Let µ : [0,+∞) → P2(X) be such that

#(supp(µt)) is finite and non-increasing w.r.t. t ≥ 0.

Then there exists at most one η ∈ P(C([0,+∞);X)) such that (et)♯η = µt for every t ≥ 0.

Theorem 5.6. Let F ⊂ P2(TX) be a MPVF whose barycenter bar (F) is totally λ-dissipative. Let
µ̄ ∈ D(F) be a measure with finite support. Let N ∋ h 7→ τ(h) ∈ R+ be a vanishing sequence of
time steps, and let (Mh,Fh) ∈ E (µ̄, τ(h), T, L), T, L > 0, be interpolation of the Explicit Euler
scheme for F, for any h ∈ N. Let

(1) ηh be satisfying (1),(2) of Proposition 3.6 for (Mh,Fh);
(2) η be as in Theorem 4.1 for any maximal totally λ-dissipative extension of bar (F).

Then W2,∞(ηh,η) → 0 as h→ +∞.

Proof. By Proposition 3.7, we know that, up to a subsequence, ηh converges as h→ +∞ in W2,∞
to a measure η̃ ∈ P2(C([0, T ];X) such that (et)♯η̃ = µt for every t ∈ [0, T ], where µ is the unique λ-
EVI solution in [0, T ] for F starting from µ̄. By Proposition 5.4, we deduce that (et)♯η̃ = (et)♯η for
every t ∈ [0, T ]. Moreover, by Theorem 4.1, we have that #(supp(µt)) is finite and non-increasing,
so that we conclude by Theorem 5.5 that η̃ = η. This also gives the convergence without passing
to subsequences. □

Theorem 5.7. Let F ⊂ P2(TX) be a MPVF whose barycenter bar (F) is totally λ-dissipative. Let
τ, T, L > 0 be such that λ+τ ≤ 2 and τ < 1. Let

(i) µ̄, µ̃ ∈ D(F) with W2(µ̄, µ̃) < 1;

(ii) (Mτ ,Fτ ,ητ ) ∈ T (µ̄, τ, T, L) and (M̃τ , F̃τ , η̃τ ) ∈ T (µ̃, τ, T, L).

Then there exists a constant C (depending only on L, T, λ) such that

W2,∞(ητ , η̃τ ) ≤ C
(
W

1
2
2 (µ̄, µ̃) + τ

1
4

)
.

Proof. We set N := N(T, τ) and, for k = 0, . . . , N − 1, we set Φk := Fτ (τk), Φ̃
k := F̃τ (τk); while

for k = 0, . . . , N , we set µk := Mτ (τk), and µ̃
k := M̃τ (τk); we also fix ρ0 ∈ Γo(µ̄, µ̃). Following

Definition 3.2, we define the single-step plans T k
τ := Tτ (Φ

k), T̃ k
τ := Tτ (Φ̃

k) and the multi-step

plans ατ := ατ

(
(Φk)0≤k≤N−1

)
∈ P(XN+1), α̃τ := ατ

(
(Φ̃k)0≤k≤N−1

)
∈ P(XN+1). Recall that,

by Definition 3.4, ητ = G♯ατ , η̃τ = G♯α̃τ .
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For every n ∈ {1, . . . , N}, define pr0n,pr
1
n : Xn+1 × Xn+1 → Xn+1 as the projection maps

pr0n(x0, . . . , xn, y0, . . . , yn) := (x0, . . . , xn), pr1n(x0, . . . , xn, y0, . . . , yn) := (y0, . . . , yn).

and the restriction maps Rn : XN+1 → Xn+1, Rn(x0, . . . , xN ) := (x0, . . . , xn). We start with the
following claim.

Claim 1 : for every n ∈ {1, . . . , N}, there exists ϑn ∈ P(Xn+1 × Xn+1) such that

(pr0n)♯ϑ
n = (Rn)♯ατ , (pr1n)♯ϑ

n = (Rn)♯α̃τ , (pr00,pr
1
0)♯ϑ

n = ρ0,

and∫
⟨xk−yk,

xk+1 − xk
τ

− yk+1 − yk
τ

⟩dϑn ≤ λ

∫
X2

|xk−yk|2 dϑn for every k = 0, . . . , n−1. (5.3)

Proof of claim 1 : we prove it by induction, starting from n = 1. In this case it is sufficient to
define

ϑ1 :=

∫ (
δx0 ⊗ T 0

τ,x0

)
⊗
(
δy0 ⊗ T̃ 0

τ,y0

)
dρ0(x0, y0) ∈ P(X2 × X2)

and use Remark 5.3. Notice that (pr01)♯ϑ
1 = T 0

τ = (R1)♯ατ and (pr11)♯ϑ
1 = T̃ 0

τ = (R1)♯α̃τ , by
Lemma 3.3. Assume the statement to be true for some n ∈ {1 . . . , N − 1} and define

ϑn+1 :=

∫ (
δx0,...,xn

⊗ Tn
τ,xn

)
⊗
(
δy0,...,yn

⊗ T̃n
τ,yn

)
dϑn(x0, . . . , xn, y0, . . . , yn) ∈ P(Xn+2 ×Xn+2).

By construction, recalling Definition 3.2 ofατ and α̃τ and Lemma 3.3, we have that (pr0n+1)♯ϑ
n+1 =

αn+1
τ = (Rn+1)♯ατ and (pr1n+1)♯ϑ

n+1 = α̃n+1
τ = (Rn+1)♯α̃τ . If k ∈ {0, . . . , n− 1}, the validity of

(5.3) for ϑn+1 and the fact that (pr00,pr
1
0)♯ϑ

n+1 = ρ0 follow by the induction step and the fact

that the restriction from Xn+2 × Xn+2 to Xn+1 × Xn+1 of ϑn+1, i.e. (Rn × Rn)♯ϑ
n+1, is equal to

ϑn. If k = n, then∫
⟨xn − yn,

xn+1 − xn
τ

− yn+1 − yn
τ

⟩dϑn+1(x0, . . . , xn+1, y0, . . . , yn+1)

=

∫
⟨xn − yn,

xn+1 − xn
τ

− yn+1 − yn
τ

⟩dTn
τ,xn

(xn+1) dT̃
n
τ,yn

(yn+1) dρ
n(xn, yn),

being ρn the marginal of ϑn in the variables (xn, yn). Hence, (5.3) follows again by applying
Remark 5.3. This concludes the induction step and the proof of the claim.

We consider the map J : XN+1 × XN+1 → C([0, T ];X)× C([0, T ];X) defined as

J(x0, . . . , xn, y0, . . . , yn) := (G(x0, . . . , xn), G(y0, . . . , yn)),

being G defined as in Definition 3.4. Let us set Λ := J♯ϑ
N ; using Claim 1, it is immediate to

check that Λ ∈ Γ(ητ , η̃τ ) and∫
⟨ekτ (γ)− ekτ (γ̃),

e(k+1)τ (γ)− ekτ (γ)

τ
−

e(k+1)τ (γ̃)− ekτ (γ̃)

τ
⟩dΛ(γ, γ̃)

≤ λ

∫
|ekτ (γ)− ekτ (γ̃)|2 dΛ(γ, γ̃)

(5.4)

for every k = 0, . . . , N − 1. Let us set

σ2(t) :=

∫
|et(γ)− et(γ̃)|2dΛ(γ, γ̃) = ∥et ◦ π0 − et ◦ π1∥2Λ, t ∈ [0, T ],
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where, in this context, π0 and π1 are defined on C([0, T ];X)× C([0, T ];X) and are the projection
maps on the first and second component, respectively. We then get, for any k = 0, . . . , N − 1,

d

dt
σ2(t)

∣∣∣∣
t=kτ+

= lim
h→0+

1

h

∫ (
|ekτ+h(γ)− ekτ+h(γ̃)|2 − |ekτ (γ)− ekτ (γ̃)|2

)
dΛ(γ, γ̃)

= 2

∫
⟨ekτ (γ)− ekτ (γ̃),

e(k+1)τ (γ)− ekτ (γ)

τ
−

e(k+1)τ (γ̃)− ekτ (γ̃)

τ
⟩dΛ(γ, γ̃)

+ lim
h→0+

h

∫ ∣∣∣∣e(k+1)τ (γ)− ekτ (γ)

τ
−

e(k+1)τ (γ̃)− ekτ (γ̃)

τ

∣∣∣∣2 dΛ(γ, γ̃)

≤ 2λ

∫
|ekτ (γ)− ekτ (γ̃)|2dΛ(γ, γ̃)

= 2λσ2(kτ),

where we have used (5.4) and the fact that Λ is concentrated on pair of curves which are affine in
every interval [kτ, (k + 1)τ ] ∩ [0, T ], k = 0, . . . , N − 1.

Arguing as in [11, Proposition 3.4(2)], we notice that in every interval [kτ, (k+1)τ ]∩ [0, T ] the
function t 7→ σ2(t)− 4L2(t− kτ)2 is concave. We then obtain

d

dt
σ2(t) ≤ 2λσ2(kτ) + 8L2τ, (5.5)

for every t ∈ [0, T ], with possible countable exceptions. We now proceed as in [11, proof of
Proposition 6.3], noting that, whenever t ∈ [kτ, (k + 1)τ) ∩ [0, T ] for some k = 0, . . . , N − 1, we
have

|σ(t)− σ(kτ)|
=
∣∣∥et ◦ π0 − et ◦ π1∥Λ − ∥ekτ ◦ π0 − ekτ ◦ π1∥Λ

∣∣
=
∣∣∥et ◦ π0 − et ◦ π1∥Λ − ∥et ◦ π1 − ekτ ◦ π0∥Λ + ∥et ◦ π1 − ekτ ◦ π0∥Λ − ∥ekτ ◦ π0 − ekτ ◦ π1∥Λ

∣∣
≤ ∥et ◦ π0 − ekτ ◦ π0∥Λ + ∥et ◦ π1 − ekτ ◦ π1∥Λ

=

(∫
|γ(t)− γ(kτ)|2dητ (γ)

) 1
2

+

(∫
|γ̃(t)− γ̃(kτ)|2dη̃τ (γ̃)

) 1
2

≤ 2Lτ.

Hence, by applying the general identity

a2 − b2 = 2b(a− b) + |a− b|2, a, b ∈ R,

in the relation obtained in (5.5), with a := σ(kτ), b := σ(t), and using the assumption λ+τ ≤ 2,
we get

d

dt
σ2(t) ≤ 2λσ2(t) + 8|λ|Lτσ(t) + 24L2τ,

for every t ∈ [0, T ] with at most countable exceptions. Applying the Gronwall estimate in [11,
Lemma B.1 and equation (6.8)], we get

σ(t) ≤ σ(0)eλt + 8L
√
tτ
(
1 + |λ|

√
tτ
)
eλ+t, for any t ∈ [0, T ].

In particular,

sup
t∈[0,T ]

σ(t) ≤ σ(0)eλ+T + 8L
√
Tτ
(
1 + |λ|

√
Tτ
)
eλ+T =: Kτ . (5.6)

We recall that, by construction of Λ, σ(0) =W2(µ̄, µ̃), indeed we chose ρ0 ∈ Γo(µ̄, µ̃).
Using the interpolation inequality (cf. [9, p.233 (iii)])

∥Y ∥2∞ ≤ C∥Y ∥L2(0,T ;X)∥Y ∥H1(0,T ;X) for every Y ∈ H1(0, T ;X), for some C > 0,
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we have that there exists C > 0 such that

W 2
2,∞(ητ , η̃τ ) ≤

∫
∥γ − γ̃∥2∞dΛ(γ, γ̃)

≤ C

∫
∥γ − γ̃∥L2(0,T ;X) ∥γ − γ̃∥H1(0,T ;X)dΛ(γ, γ̃)

≤ C

(∫
∥γ − γ̃∥2L2(0,T ;X)dΛ(γ, γ̃)

) 1
2

·
(∫

∥γ − γ̃∥2H1(0,T ;X)dΛ(γ, γ̃)

) 1
2

,

(5.7)

indeed Λ ∈ Γ(ητ , η̃τ ).
It remains to estimate the two terms at the right-hand side. Concerning the first term, notice

that

I21 :=

∫
∥γ − γ̃∥2L2(0,T ;X)dΛ(γ, γ̃)

=

∫ (∫ T

0

|γ(t)− γ̃(t)|2dt

)
dΛ(γ, γ̃)

=

∫ T

0

(∫
|γ(t)− γ̃(t)|2dΛ(γ, γ̃)

)
dt

≤ T sup
t∈[0,T ]

σ2(t)

≤ TK2
τ

Regarding the second term in (5.7), we get

I22 :=

∫
∥γ − γ̃∥2H1(0,T ;X)dΛ(γ, γ̃)

≤ 2

(
I21 +

∫ (∫ T

0

|γ′(t)− γ̃′(t)|2dt

)
dΛ(γ, γ̃)

)

= 2

(
I21 +

∫ T

0

(∫
|γ′(t)− γ̃′(t)|2dΛ(γ, γ̃)

)
dt

)
≤ 2(I21 + 4TL2).

In conclusion,

W 2
2,∞(ητ , η̃τ ) ≤

√
2C T

1
2 Kτ

√
TK2

τ + 4TL2

≤ C̃
(
σ(0) + σ2(0) + τ

1
2 + τ + τ2

)
,

for some C̃ > 0 depending on L, T, λ. In particular, if τ < 1 and σ(0) < 1, we get

W2,∞(ητ , η̃τ ) ≤ Ĉ
(
W

1
2
2 (µ̄, µ̃) + τ

1
4

)
,

for some Ĉ > 0 depending on L, T, λ. □

In order to state our main result, we introduce a technical property.

Definition 5.8. Let F be a MPVF, T > 0 and µ̄ ∈ D(F). We say that the Explicit Euler scheme
is approximately solvable at µ̄ up to time T if there exist τ̄ , L > 0 and a sequence (µ̄j)j∈N ⊂ D(F)
such that

(i) W2(µ̄
j , µ̄) → 0 as j → +∞;

(ii) supp(µ̄j) is finite for every j ∈ N;
(iii) the sets E (µ̄j , τ, T, L) are not empty for every 0 < τ < τ̄ , for every j ∈ N.

We conclude with the main result of the paper.
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Theorem 5.9. Let F ⊂ P2(TX) be a MPVF whose barycenter bar (F) is totally λ-dissipative. Let
µ̄ ∈ D(F) and (µ̄h)h ⊂ D(F) be such that W2(µ̄h, µ̄) → 0 as h→ +∞, and let N ∋ h 7→ τ(h) ∈ R+

be a vanishing sequence of time steps. Let T, L > 0 and

(1) (Mh,Fh,ηh) ∈ T (µ̄h, τ(h), T, L) be as in Definition 3.4 for the MPVF F;
(2) η ∈ P2(C([0, T ];X)) be the probability measure given by Theorem 4.1 for any maximal

totally λ-dissipative extension F̂ of bar (F), starting from µ̄.

Assume in addition that the Explicit Euler scheme for F is approximately solvable at µ̄ up to time
T , according to Definition 5.8. Then W2,∞(η,ηh) → 0 as h→ +∞.

Proof. Let (µ̄j)j ⊂ D(F) be as in Definition 5.8 for µ̄. By assumption, there exists L̂ > 0 such

that E (µ̄j , τ(h), T, L̂) ̸= ∅ for h sufficiently large. Without loss of generality, we can assume that

L̂ = L. By this condition, for any j ∈ N there exists Φ̄j ∈ F[µ̄j ] such that |Φ̄j |2 ≤ L.
Also, we can assume w.l.o.g. that W2(µ̄

j , µ̄h) < 1 and τ(h) < min{ 2
λ+
, 1} for every j, h ∈ N.

Let (M j
h,F

j
h,η

j
h) ∈ T (µ̄j , τ(h), T, L). By Theorem 5.7, there exists C > 0 such that

W2,∞(ηh,η
j
h) ≤ C

(√
W2(µ̄h, µ̄j) + τ(h)

1
4

)
for every j, h ∈ N.

Let ηj ∈ P(C([0, T ];X)) be as in Theorem 4.1 for F̂ and the starting point µ̄j . By assumption,
we have

sup
j

|F̂|2(µ̄j) <∞,

indeed, for any j ∈ N, denoting by f̂
◦
the minimal selection of F̂ as in Theorem 4.2, we have∫ ∣∣∣f̂◦

[µ̄j ](x)
∣∣∣2 dµ̄j(x) ≤

∫
|v|2 dΦ̂(x, v), (5.8)

for any Φ̂ ∈ F̂[µ̄j ]. In particular, (5.8) holds for any Φ̂ ∈ bar (F) [µ̄j ], and thus for bar
(
Φ̄j
)
, so

that ∫ ∣∣∣f̂◦
[µ̄j ](x)

∣∣∣2 dµ̄j(x) ≤
∫

|bΦ̄j (x)|2 dµ̄j(x) ≤
∫

|v|2 dΦ̄j(x, v) ≤ L.

We can thus apply Proposition 4.3 for F̂ and get the existence of C̃ > 0 such that

W2,∞(ηj ,η) ≤ C̃
√
W2(µ̄, µ̄j) for every j ∈ N.

Thus, by triangle inequality we can write, for every n,N ∈ N, that

W2,∞(ηh,η) ≤W2,∞(ηh,η
j
h) +W2,∞(ηj

h,η
j) +W2,∞(ηj ,η)

≤ C
(√

W2(µ̄h, µ̄j) + τ(h)
1
4

)
+W2,∞(ηj

h,η
j) + C̃

√
W2(µ̄, µ̄j).

The thesis follows by passing first to the limit as h → +∞ and applying Theorem 5.6 to ηj
h and

ηj , and then passing to the limit as j → +∞. □

Theorem 5.10. In the same hypotheses of Theorem 5.9, let (Ω,B) be a standard Borel space
endowed with a non atomic probability measure P. Let X̄, X̄h ∈ L2(Ω,B,P;X) be random variables
such that (X̄)♯P = µ̄, (X̄h)♯P = µ̄h for every h ∈ N, and let Zh ∈ L2(Ω,B,P; C([0, T ];X)) be such
that (Zh)♯P = ηh for every h ∈ N. If X̄h → X̄ P-a.s. and e0 ◦ Zh = X̄h for every h ∈ N, then

Zh → sµ̄ ◦ X̄ in L2(Ω,B,P; C([0, T ];X)) as h→ +∞,

where sµ̄ is as in (4.2).

Proof. We set ϑh := (iΩ, X̄h,Zh)♯P and ϑ := (iΩ, X̄, sµ̄ ◦ X̄)♯P; we claim that

ϑh ⇀ ϑ as h→ +∞. (5.9)

First of all, notice that (ϑh)h is tight, since its marginals are tight: the first one is the constant
P, the second one is µ̄h which is converging to µ̄, and the third one is ηh which is converging
to η by Theorem 5.9. Up to a (unrelabeled) subsequence, we thus get that ϑh ⇀ ϑ̄ for some
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ϑ̄ ∈ P(Ω× X×C([0, T ];X)). Observe that (π0,1)♯ϑh = (iΩ, X̄h)♯P⇀ (iΩ, X̄)♯P = (π0,1)♯ϑ̄ by the
Dominated Convergence Theorem; we also have that

(π1,2)♯ϑh = (X̄h,Zh)♯P = (e0, iC)♯ηh ⇀ (e0, iC)♯η = (X̄, sµ̄ ◦ X̄)♯P = (π1,2)♯ϑ̄,

where we have denoted by iC the identity map in C([0, T ];X) and we have used that e0◦sµ̄◦X̄ = X̄
(cf. (4.3)), together with the fact that η = (sµ̄)♯µ̄ coming from Theorem 4.1. Since (π1,2)♯ϑ̄ is
concentrated on a map, we deduce by [2, Lemma 5.3.2] that it must be ϑ̄ = ϑ; this proves (5.9).
An application of [2, Lemma 5.4.1] gives that (X̄h,Zh) → (X̄, sµ̄ ◦ X̄) in probability, so that, in
particular, Zh → sµ̄ ◦ X̄ in probability. However, since the measures (Zh)♯P = ηh are converging
to η in W2,∞ by Theorem 5.9, the random variables (Zh)h have uniformly integrable 2-moments,
and therefore they converge to sµ̄ in L2(Ω,B,P; C([0, T ];X)).

□

6. Examples

We present examples illustrating the application of the theory developed in this paper. In
particular, we examine how the results established in Theorem 5.9 and Theorem 5.10 can be
used in the setting of Stochastic Gradient-type evolutions—more broadly, within the framework
of Stochastic Dissipative Flow theory—as well as in the context of dissipative evolutions governed
by interaction fields.

6.1. Stochastic Dissipative Flow. Given a vector field b : X → X and an initial datum x̄ ∈ X,
we consider the following deterministic Cauchy problem

ẋ(t) = b(x(t)), t ∈ [0, T ], x(0) = x̄. (6.1)

We assume b to be continuous and λ-dissipative for some λ ∈ R, i.e.

⟨x1 − x0, b(x1)− b(x0)⟩ ≤ λ|x1 − x0|2, for any x0, x1 ∈ X, (6.2)

so that (6.1) is well-posed.
We assume that b arises as a stochastic average of a family of Borel vector fields g : X×U → X,

where (U,U) is a probability space endowed with a non-atomic probability measure, i.e.

b(x) =

∫
U

g(x, u) dU(u), x ∈ X.

We require that there exists L > 0 such that∫
U

|g(x, u)|2 dU(u) ≤ L(1 + |x|2) for every x ∈ X. (6.3)

Similarly to what is done for the stochastic gradient descent, we consider the following stochastic
scheme.

We adopt the same notation of Definition 3.4 for the interpolation map G : XN(T,τ)+1 →
C([0, T ];X) sending points (x0, x1, . . . , xN(T,τ)) to their affine interpolation, i.e. to the curve γ
given by

γ(t) :=
1

τ
((n+ 1)τ − t)xn +

1

τ
(t− nτ)xn+1, (6.4)

if t ∈ [nτ, (n+ 1)τ ] ∩ [0, T ], 0 ≤ n < N(T, τ).

Definition 6.1 (SDF). Let (Ω,B,P) be a standard Borel probability space and T > 0. Define
J :=

{
T
N : N ∈ N \ {0}

}
. We say that a family of maps Xτ : Ω → C([0, T ];X), τ ∈ J , is a

Stochastic Dissipative Flow (SDF) for g if there exist random variables (Xn
τ )0≤n≤N,τ∈J ⊂ L2(Ω;X)

and V k : Ω → U, k ∈ N such that

• (X0
τ )τ∈J and (V k)k are independent,

• (V k)♯P = U for every k ∈ N,
• Xn+1

τ = Xn
τ + τ g(Xn

τ , V
n) for every 0 ≤ n ≤ N − 1, τ ∈ J ,

and

Xτ = G♯

(
X0

τ , X
1
τ , . . . , X

n
τ

)
for every τ ∈ J. (6.5)
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We point out that in Definition 6.1 we assumed J ⊂ R to be countable in order to ensure the
existence of a SDF which can be proven via the Kolmogorov existence theorem (cf. [5, Theorem
36.1]).

We have the following result.

Corollary 6.2. In the setting of Definition 6.1, assume that (X0
τ )τ∈J converges P-a.s. to some

X̄ ∈ L2(Ω,B,P;X) and thatW2((X
0
τ )♯P, (X̄)♯P) → 0 as τ ↓ 0. Then Xτ converges in L2(Ω,B,P; C([0, T ];X))

as τ ↓ 0 to the unique solution of the deterministic ODE

Ẋt = b(Xt), t ∈ [0, T ], Xt=0 = X̄.

The result can be proved using the machinery developed in this paper as follows. We define
the PVF F ⊂ P2(TX) by

F[µ] := (π0, g)♯(µ⊗ U), µ ∈ P2(X). (6.6)

Notice that, for any µ ∈ D(F) = P2(X), the Borel family of probability measures {Fx[µ]}x∈X ⊂
P2(X), obtained by disintegrating F[µ] w.r.t. x♯F = µ, is given by

Fx[µ] = g(x, ·)♯U, for µ-a.e. x ∈ X.

In particular, for any µ ∈ P2(X), the barycenter of F[µ] defined in (2.2) is given by∫
X

v dFx[µ](v) = b(x), for µ-a.e. x ∈ X.

Thus, according to Definition 2.5, the PVF bar (F) is given by

bar (F) [µ] = (iX, b)♯µ, µ ∈ P2(X). (6.7)

We now show that bar (F) is totally λ-dissipative, so that, thanks to Proposition 5.2, F is uncon-
ditionally λ-dissipative.

Proposition 6.3. The PVF bar (F) defined in (6.7) is totally λ-dissipative.

Proof. Take µ, ν ∈ P2(X) and ϑ ∈ Γ(bar (F) [µ],bar (F) [ν]). Since bar (F) [µ],bar (F) [ν] are
concentrated on maps, there exists γ ∈ Γ(µ, ν) such that

ϑ =
(
π0, b ◦ π0, π1, b ◦ π1

)
♯
γ.

By assumption (6.2), we conclude that∫
TX2

⟨v1 − v0, x1 − x0⟩dϑ(x0, v0, x1, v1) =
∫
X2

⟨b(x1)− b(x0), x1 − x0⟩dγ(x0, x1)

≤ λ

∫
X2

|x1 − x0|2dγ(x0, x1).

□

Thanks to [12, Theorem 3.24], since b is continuous then bar (F) is maximal and

b = f̃
◦
[µ] = b̃

◦
[µ] µ-a.e. (6.8)

(cf. also Theorem 4.2), with f̃
◦
being the element of minimal norm of bar (F) and b̃

◦
of its

Lagrangian representation. By assumption (6.3) and [11, Lemma 5.13], the Explicit Euler scheme
is solvable for F.

In the following Proposition 6.4, we prove the equivalence between the measure ητ constructed
as in Definition 3.4 for F and the measure on paths defined as the law of a Stochastic Dissipative
Flow for g.

Proposition 6.4. In the setting of Definition 6.1, let µ0,τ := (X0
τ )♯P and let F be as in (6.6).

Let ητ ∈ P(C([0, T ];X)) be as in Definition 3.4 for the PVF F and the initial measure µ0,τ . Then
ητ = (Xτ )♯P.
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Proof. Let (Mn
τ ,Φ

n
τ )0≤n≤N(T,τ) ⊂ D(F)× F be as in Definition 3.1 for the PVF F. In particular,

Φn
τ = F[Mn

τ ]. Let ατ ∈ P(XN(T,τ)+1) be the multi-step plan associated with (F[Mn
τ ])n as in

Definition 3.2. Thus, ητ = G♯ατ ∈ P(C([0, T ];X)). By (6.5), the result follows if we show that

ατ = (X0
τ , X

1
τ , . . . , X

N(T,τ)
τ )♯P.

Claim 1 : Mn
τ = (Xn

τ )♯P for any 0 ≤ n ≤ N(T, τ).
Proof of claim 1 : We prove this by induction on n. For n = 1, noting that (µ0,τ ⊗U) = (X0

τ , V
0)♯P

by independence of the random variables, we have

M1
τ = (expτ )♯F[µ0,τ ] = (expτ )♯(π

0, g)♯(µ0,τ ⊗ U) = (π0 + τg(π0, π1))♯(X
0
τ , V

0)♯P = X1
τ ♯P. (6.9)

Assume now that the claim is true for n ≥ 1; we need to prove it holds for n + 1. This proof is
analogous, noting that Mn

τ ⊗ U = (Xn
τ , V

n)♯P again by independence.

Claim 2 : Denote by Tn
τ := (x, expτ )♯F[M

n
τ ] as in Definition 3.2. Then, its disintegration{

Tn
τ,x

}
x∈X

⊂ P(X) with respect to the projection map π0 is given by

Tn
τ,x = (x+ τg(x, ·))♯U

for π0
♯T

n
τ =Mn

τ -a.e. x ∈ X and for any 0 ≤ n ≤ N(T, τ).
Proof of claim 2 : This proof, being straightforward, is omitted.

Claim 3 : Let αn
τ be the plans defined in Definition 3.2 associated with (F[Mn

τ ])n, i.e.

α1
τ := T 0

τ ,

αn
τ :=

∫
(δ(x0,x1,...,xn−1) ⊗ Tn−1

τ,xn−1
) dαn−1

τ (x0, x1, . . . , xn−1) ∈ P(Xn+1), 2 ≤ n ≤ N(T, τ).

Then, αn
τ = (X0

τ , X
1
τ , . . . , X

n
τ )♯P, for any 1 ≤ n ≤ N(T, τ).

Proof of claim 3 : We prove the claim by induction argument. First, we have α1
τ = (X0

τ , X
1
τ )♯P

and its proof is similar to what is done in (6.9). Assume now the claim holds for n ≥ 1 and let us
prove it holds for n+ 1. Given any Borel test function ϕ : Xn+2 → R, we have∫
ϕ(x0, . . . , xn+1) dα

n+1
τ =

∫
ϕ(x0, . . . , xn, xn+1) dT

n
τ,xn

(xn+1) dα
n
τ (x0, . . . , xn)

=

∫
ϕ(x0, . . . , xn, xn + τg(xn, u)) dU(u) dαn

τ (x0, . . . , xn)

=

∫
ϕ(x0, . . . , xn, xn + τg(xn, u)) d

[
(X0

τ , . . . , X
n
τ , V

n)♯P
]
(x0, . . . , xn, u)

=

∫
ϕ(X0

τ (ω), . . . , X
n
τ (ω), X

n+1
τ (ω)) dP(ω),

where we used Claim 2 and the independence of X0
τ , . . . , X

n
τ , V

n. This concludes the proof of the

claim and thus the whole proof, since ατ = α
N(T,τ)
τ . □

Proof of Corollary 6.2. Thanks to Proposition 6.4, we can apply Theorem 5.10 and get that Xτ

converges to sX̄♯P ◦X̄ in L2(Ω,B,P; C([0, T ];X)), as τ ↓ 0, where sX̄♯P is as in (4.2) for the maximal

totally dissipative PVF bar (F). The conclusion follows recalling (6.8), see also [12, Theorem
3.4]. □

6.2. Interaction field. Let f : X × X → X be a continuous map and let bf : X × P2(X) → X be
the barycenter of f , defined by

bf (x, µ) :=

∫
X

f(x, y) dµ(y), (x, µ) ∈ X× P2(X). (6.10)

Given a standard Borel probability space (Ω,B,P) and X̄ ∈ L2(Ω,B,P;X), we consider the
deterministic ODE

Ẋt = bf (Xt, Xt♯P), t ∈ [0, T ], Xt=0 = X̄. (6.11)

We assume that there exists L > 0 such that

|f(x, y)|2 ≤ L(1 + |x|2 + |y|2) for every x, y ∈ X, (6.12)
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and that the vector field f̃ : X×X → X×X defined by f̃(x, y) := (f(x, y), f(y, x)) is λ-dissipative
in X× X for some λ ∈ R, i.e.

⟨f̃(x1, y1)− f̃(x0, y0), (x1, y1)− (x0, y0)⟩ ≤ λ
(
|x1 − x0|2 + |y1 − y0|2

)
. (6.13)

Remark 6.5. A particular case in which (6.13) holds occurs when f(x, y) = h(x−y) and h : X → X
is λ-dissipative and odd.

Similarly as for the example in Section 6.1, we consider the following stochastic scheme driven
by the interaction field f .

Definition 6.6 (IDF). Let (Ω,B,P) be a standard Borel probability space and T > 0. Define J :={
T
N : N ∈ N \ {0}

}
. We say that a family of maps Xτ : Ω → C([0, T ];X), τ ∈ J , is an Interaction

Dissipative Flow (IDF) for f if there exist random variables (Xn
τ )0≤n≤N,τ∈J , (Y

n
τ )0≤n≤N,τ∈J ⊂

L2(Ω;X) such that

• Y n
τ , X0

τ and (Y m
τ )m<n are independent for every 0 ≤ n ≤ N , τ ∈ J ,

• (Xn
τ )♯P = (Y n

τ )♯P for every 0 ≤ n ≤ N , τ ∈ J ,
• Xn+1

τ = Xn
τ + τ f(Xn

τ , Y
n
τ ) for every 0 ≤ n ≤ N − 1, τ ∈ J ,

and
Xτ = G♯

(
X0

τ , X
1
τ , . . . , X

N
τ

)
for every τ ∈ J. (6.14)

Remark 6.7. Notice that, by construction, for any τ ∈ J and n = 0, . . . , N , we have that Y n
τ is

independent also of Xn
τ .

We have the following result.

Corollary 6.8. In the setting of Definition 6.6, assume that (X0
τ )τ∈J converges P-a.s. to some

X̄ ∈ L2(Ω,B,P;X) and thatW2((X
0
τ )♯P, (X̄)♯P) → 0 as τ ↓ 0. Then Xτ converges in L2(Ω,B,P; C([0, T ];X))

as τ ↓ 0 to the unique solution of the deterministic ODE

Ẋt = bf (Xt, Xt♯P), t ∈ [0, T ], Xt=0 = X̄.

The result can be proven similarly as done in Section 6.1 by introducing the following PVF
F ⊂ P2(TX),

F[µ] := (π0, f)♯(µ⊗ µ), µ ∈ P2(X). (6.15)

Note that assumption (6.12) and [11, Lemma 5.13] give the solvability of the Explicit Euler scheme
for F. For µ-a.e. x ∈ X, its disintegration w.r.t. x♯F = µ is given by

Fx[µ] = f(x, ·)♯µ
and so, for any µ ∈ P2(X), the PVF bar (F) is given by

bar (F) [µ] = (iX, bf (·, µ))♯ µ, µ ∈ P2(X).

The dissipativity condition on f̃ in (6.13) gives that bf is λ-dissipative, i.e. for any µ0, µ1 ∈ P2(X)
and any γ ∈ Γ(µ0, µ1),∫

X2

⟨bf (x1, µ1)− bf (x0, µ0), x1 − x0⟩dγ(x0, x1) ≤ λ

∫
|x1 − x0|2 dγ(x0, x1). (6.16)

Therefore, bar (F) is totally λ-dissipative, thus F is unconditionally λ-dissipative. Moreover, the
continuity and growth conditions of f imply that bf satisfies a continuity condition as in the
following result.

Lemma 6.9. Let f : X× X → X be a continuous function satisfying (6.12). Then

µn → µ in P2(X) ⇒ (bf (·, µn))♯µn → (bf (·, µ))♯µ weakly in P(X). (6.17)

Proof. Since µn converges to µ in P2(X), we can find a probability space (Ω′,B′,P′) and random
variables Xn, X in L2(Ω′,B′,P′;X) such that (Xn)♯P′ = µn, X♯P′ = µ and Xn → X P′-a.e. and
in L2(Ω′,B′,P′;X) as n → +∞ (see e.g. [12, Theorem B.5] or [13, Proposition 3.23]). Thus, for
every φ ∈ Cb(X), we may write∫

X

φd(bf (·, µn)♯µn) =

∫
Ω′
φ

(∫
Ω′
f(Xn(ω

′), Xn(ω)) dP′(ω)

)
dP′(ω′).
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Observe that for P′-a.e. ω ∈ Ω′ and P′-a.e. ω′ ∈ Ω′ we have

f(Xn(ω
′), Xn(ω)) → f(X(ω′), X(ω)) as n→ +∞,

since f is continuous. On the other hand condition (6.12) gives that

|f(Xn(ω
′), Xn(ω))|2 ≤ L(1 + |Xn(ω

′)|2 + |Xn(ω)|2) for every ω, ω′ ∈ Ω.

Since Xn(ω) → X(ω) for P′-a.e. ω ∈ Ω and∫
Ω

L(1 + |Xn(ω
′)|2 + |Xn(ω)|2) dP′(ω) →

∫
Ω

L(1 + |X(ω′)|2 + |X(ω)|2) dP′(ω).

By a variant of the dominated convergence theorem (see e.g. [6, Theorem 2.8.8, Proposition
4.7.30]), we deduce that∫

Ω

f(Xn(ω
′), Xn(ω)) dP′(ω) →

∫
Ω

f(X(ω′), X(ω)) dP′(ω) for P′-a.e. ω′ ∈ Ω as n→ +∞.

A further application of the dominated converge theorem (recall that φ is bounded) gives that∫
Ω

φ

(∫
Ω

f(Xn(ω
′), Xn(ω)) dP′(ω)

)
dP′(ω′) →

∫
Ω

φ

(∫
Ω

f(X(ω′), X(ω)) dP′(ω)

)
dP′(ω′).

In other words ∫
X

φd(bf (·, µn)♯µn) →
∫
X

φd(bf (·, µ♯)µ).

By arbitrareity of φ this concludes the proof. □

The continuity in (6.17) is used as in Section 6.1 to ensure the maximality of bar (F) so that
the analogue of (6.8) follows.

We can then prove an analogous of Proposition 6.4 with F as in (6.15) and Xτ as in Definition
6.6. The proof of Corollary 6.8 is then exactly the same of Corollary 6.2.

6.3. Nonlocal Stochastic Dissipative Flow. Assume that dim(X) ≥ 2 and let Pb(X) be the
space of probability measures with bounded support. We take a nonlocal vector field b : X ×
Pb(X) → X and, given a standard Borel probability space (Ω,B,P) and X̄ ∈ L2(Ω,B,P;X), we
consider the deterministic ODE

Ẋt = b(Xt, Xt♯P), t ∈ [0, T ], Xt=0 = X̄. (6.18)

Example 6.10. The vector field b could be for example a cylinder vector field of the form

b(x, µ) =

N∑
i=1

ψi

(∫
φi
1 dµ, . . . ,

∫
φi
Ni

dµ

)
ki(x), (x, µ) ∈ X× P2(X),

where φi
j : X → R, ψi : RNi → R, and ki : X → X are smooth and bounded functions.

We assume that b is λ-dissipative, for some λ ∈ R, i.e. for any µ0, µ1 ∈ Pb(X) there exists
γ ∈ Γo(µ0, µ1) such that∫

X2

⟨b(x1, µ1)− b(x0, µ0), x1 − x0⟩dγ(x0, x1) ≤ λ

∫
|x1 − x0|2 dγ(x0, x1) = λW 2

2 (µ0, µ1). (6.19)

In addition, we assume that b satisfies the following continuity condition:

(C1) whenever (xn, µn), (x, µ) ∈ X × Pb(X) are such that xn ∈ supp(µn) for every n ∈ N,
the supports of µn are equi-bounded, and |x − xn| +W2(µn, µ) → 0 as n → +∞, then
b(xn, µn) → b(x, µ).

Furthermore, we assume that b is the barycenter of some PVF F ⊂ Pb(TX); recall that this means
that for every µ ∈ Pb(X), if we consider the disintegration F[µ] =

∫
Φx dµ(x), then

b(x, µ) =

∫
v dΦx(v) for µ-a.e. x ∈ X, µ ∈ Pb(X). (6.20)
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Remark 6.11. Condition (6.20) is satisfied for example when b can be represented as a stochastic
average of a family of Borel vector fields g : X × Pb(X) × U → X, where (U,U) is a probability
space endowed with a non-atomic probability measure, i.e.

b(x, µ) =

∫
U

g(x, µ, u) dU(u), F[µ] := (π0, g(·, µ, ·))♯(µ⊗ U), (x, µ) ∈ X× Pb(X). (6.21)

In the general case, we require the following growth and local boundedness conditions on the
chosen PVF F satisfying (6.20):

(F1) there exists a constant a ≥ 0 such that

⟨v, x⟩ ≤ a(1 + |x|2) for F[µ]-a.e. (x, v) ∈ TX, µ ∈ Pb(X), (6.22)

(F2) for every R > 0 there exists ρR > 0 such that

supp(µ) ⊂ BR(0) ⇒ supp(F[µ]) ⊂ BρR
(0).

We show that the above conditions (F1) and (F2) imply the solvability of the Explicit Euler scheme
for F.

Lemma 6.12. Let F ⊂ P2(TX) be satisfying (F1) and (F2), and let µ̄ ∈ Pb(X), T > 0. Then, the
Explicit Euler scheme for F is approximately solvable at µ̄ up to time T , according to Definition
5.8.

Proof. For every R > 0, set

R′ := eaT (R2 + T (1 + 2a))1/2 + 1, L := ρR′ , τ̄ := L−2 ∧ T.

In order to prove the lemma it is enough to show the following: for every µ ∈ Pb(X) with supp(µ) ⊂
BR(0), for every 0 < τ < τ̄ and every K = 1, . . . , ⌈T/τ⌉, there exist (Mn

τ )
K
n=0 and (Rn,τ )

K
n=0 such

that 

M0
τ = µ, R0,τ = R,

|F[Mn
τ ]|2 ≤ L n = 0, . . . ,K,

Mn+1
τ = expτ♯ (F[M

n
τ ]), n = 0, . . . ,K − 1,

supp(Mn
τ ) ⊂ BRn,τ

(0) ⊂ BR′(0), n = 0, . . . ,K,

R2
n+1,τ = R2

n,τ (1 + 2aτ) + τ2L2 + 2aτ, n = 0, . . . ,K − 1.

(6.23)

To prove it, we fix µ ∈ Pb(X) with supp(µ) ⊂ BR(0) and 0 < τ < τ̄ and we proceed by induction
on K. When K = 1, we simply define M0

τ ,M
1
τ and R0,τ , R1,τ as in (6.23) and we only have to

check that

|F[Mn
τ ]|2 ≤ L, supp(Mn

τ ) ⊂ BRn,τ (0) ⊂ BR′(0), n = 0, 1.

We observe that supp(M0
τ ) = supp(µ) = BR(0) ⊂ BR0,τ (0) ⊂ BR′(0) by construction. We also

have supp(M1
τ ) ⊂ expτ (supp(F[M0

τ ])) and, if (x, v) ∈ supp(F[M0
τ ]), it holds

|x+ τv|2 ≤ |x|2 + τ2|v|2 + 2aτ(1 + |x|2) ≤ R2
0,τ (1 + 2aτ) + τ2L2 + 2aτ = R2

1,τ ,

where we have used (F1) and the fact that supp(F[M0
τ ]) ⊂ BρR′ (0) by (F2). We deduce that

supp(M1
τ ) ⊂ BR1,τ

(0) and the inequality R1,τ < R′ is trivial using that (1 + 2aτ) ≤ e2aT and

τ ≤ L−2 ∧ T . Finally |F[Mn
τ ]|2 ≤ L by (F2), for n = 0, 1.

The induction step K − 1 ⇒ K can be done exactly in the same way, apart from the inequality
RK,τ < R′. This inequality follows by applying [11, Lemma B.2] with xn := R2

n,τ , y := τL2 + 2a,
α := 2a, N := K − 1, so that one gets

R2
n,τ ≤ (R2 + τn(τL2 + 2a))e2anτ < (R′)2 for every 0 ≤ n ≤ K,

where we used τ ≤ L−2 and τn ≤ T . □

The solvability of the Explicit Euler scheme for F produces a family of measures (Mn
τ )n as in

(EE), for every τ ∈ (0, 1). We can define a general non-local SDF for F as done in Definition 6.1.
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Definition 6.13 (Nonlocal SDF). Let (Ω,B,P) be a standard Borel probability space, T > 0,
F ⊂ Pb(TX) and let b : X × Pb(X) → X be a non-local vector field satisfying the continuity
condition (C1), (6.20), (6.19), and (F1),(F2). Define J :=

{
T
N : N ∈ N \ {0}

}
. We say that a

family of maps Xτ : Ω → C([0, T ];X), τ ∈ J , is a Nonlocal Stochastic Dissipative Flow for F if
there exist random variables (Xn

τ )0≤n≤N,τ∈J ⊂ L2(Ω;X) such that

• (Xn
τ )n is a Markov chain,

• the joint law of
(
Xn

τ , τ
−1(Xn+1

τ −Xn
τ )
)
is F[Mn

τ ],

and
Xτ = G♯

(
X0

τ , X
1
τ , . . . , X

N
τ

)
for every τ ∈ J. (6.24)

Remark 6.14. In the particular case of F as in (6.21), then a sequence (Xn
τ )n as in Definition 6.13

can be obtained as follows: there exist V k : Ω → U, k ∈ N, such that

• (X0
τ )τ∈J and (V k)k are independent,

• (V k)♯P = U for every k ∈ N,
• Xn+1

τ = Xn
τ + τ g(Xn

τ , (X
n
τ )♯P, V n) for every 0 ≤ n ≤ N − 1, τ ∈ J .

We have the following result.

Corollary 6.15. In the setting of Definition 6.13, with dim(X) ≥ 2, assume that (X0
τ )τ∈J con-

verges P-a.s. to some X̄ ∈ L2(Ω,B,P;X) such that µ̄ := X̄♯P ∈ Pb(X) and that W2((X
0
τ )♯P, µ̄) → 0

as τ ↓ 0. Then Xτ converges in L2(Ω,B,P; C([0, T ];X)) as τ ↓ 0 to the unique solution of the
deterministic ODE

Ẋt = b(Xt, Xt♯P), t ∈ [0, T ], Xt=0 = X̄. (6.25)

Proof. Define
bar (F) [µ] = (iX, b(·, µ))♯ µ, µ ∈ Pb(X),

and notice that bar (F) is λ-dissipative by (6.19). Consider the set C :=
⋃
N∈N

P#N (X), where

P#N (X) := {µ ∈ P(X) : # supp(µ) = N} .
Notice that C ⊂ P2(X) is dense and it is a core in the sense of [12, Definition 8.1], with CN :=
P#N (X). We define the PVF G as the restriction of bar (F) to C.

Claim 1 : for any N ∈ N, G is demicontinuous over CN in the following sense:

µn, µ ∈ CN , µn → µ in P2(X) ⇒ G[µn] → G[µ] in Psw
2 (TX). (6.26)

Proof of claim 1 : since µn, µ are all concentrated on N distinct points, we have that the supports
of µn and µ are all contained in BR(0), for some R > 0. The local boundedness assumption (F2)
on F, gives in particular that the supports of G[µn] = bar (F) [µn] are all contained in Bϱ(0) for
some ϱ > 0. This implies that

sup
n

∫
|v|2 dG[µn](v) < +∞.

To show that G[µn] → G[µ] in Psw
2 (TX) it remains only to observe that G[µn] → G[µ] in P(Xs ×

Xw). We proceed as in the proof of Lemma 6.9. Let φ ∈ Cb(X
s × Xw) and (Ω′,P′) be a standard

Borel probability space. Let Xn, X ∈ L2(Ω′,P′) be such that (Xn)♯P′ = µn, X♯P′ = µ and
Xn → X P′-a.e. in Ω′. Then∫

X2

φdG[µn] =

∫
Ω′
φ(Xn, b(Xn, µn)) dP′ →

∫
Ω′
φ(X, b(X,µ)) dP′ =

∫
X2

φdG[µ],

where we have used the dominated convergence theorem and that b(Xn, µn) → b(X,µ) P′-a.e. in
Ω′ in the topology of Xs (hence also in Xw) due to (C1).

Claim 2 : G is totally λ-dissipative; there exists a unique maximal totally λ-dissipative extension

F̂ of G; denoted by F̂
◦
the minimal selection of F̂ (cf. Theorem 4.2), we have

F̂
◦
|C = G = bar (F) |C.

Proof of claim 2 : This follows by [12, Theorem 8.5].
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Claim 3 : bar (F) ⊂ F̂. In particular, bar (F) is totally λ-dissipative and it has a unique maximal

totally λ-dissipative extension given by F̂.
Proof of claim 3 : let µ ∈ Pb(X); then we can find (µn)n ⊂ C such that the supports of µn are
uniformly bounded and W2(µn, µ) → 0 as n→ +∞. We can then proceed as in the proof of claim

1 to show that bar (F) [µn] → bar (F) [µ] in Psw
2 (TX). Since F̂ is closed w.r.t. this convergence by

[12, Proposition 3.16], then bar (F) [µ] ∈ F̂[µ]. By arbitrariness of µ ∈ Pb(X), we conclude.

Claim 4 : Let f̂
◦
∈ L2(X, µ;X) be as in Theorem 4.2 for the PVF F̂, so that F̂

◦
[µ] = (iX, f̂

◦
[µ])♯µ,

for every µ ∈ D(F̂). Then, f̂
◦
[µ] = b(·, µ) for every µ ∈ Pb(X).

Proof of claim 4 : let g : X → X be a continuous and bounded function, µ ∈ Pb(X) and ε ∈
(0, 1). Define the measure νε := (iX + εg)♯µ ∈ Pb(X) and notice that the supports of νε are

uniformly bounded w.r.t. ε and that W2(νε, µ) → 0 as ε ↓ 0. Since both (iX, f̂
◦
[µ])♯µ = F̂

◦
[µ] and

(iX, b(·, µ))♯µ = bar (F) [µ] belong to F̂, we can apply the total λ-dissipativity of F̂ (cf. Definition
2.8) along the plan γ := (iX, iX + εg)♯µ ∈ Γ(µ, νε) to get

−
∫
X

⟨f̂
◦
[µ](x)− b(x+ εg(x), νε), g(x)⟩dµ(x) ≤ ελ

∫
|g(x)|2 dµ.

Using the continuity assumption (C1) on b and the local boundedness (F2) of F, we can pass to
the limit as ε ↓ 0 and get ∫

X

⟨f̂
◦
[µ](x)− b(x, µ), g(x)⟩dµ(x) ≥ 0.

Being g arbitrary, we must have f̂
◦
[µ] = b(·, µ), as wanted.

Claim 5 : we have Xτ ♯P = ητ , where ητ is defined as in Definition 3.4 with (Mn
τ )n generated by

the Explicit Euler scheme for F.
Proof of claim 5 : we argue precisely as in the proof of Proposition 6.4. Indeed, by construction we
have that (Xn

τ , X
n+1
τ )♯P = Tn

τ and (Xn
τ )♯P = Mn

τ for every τ and every n, thus showing the first
claim in the proof of Proposition 6.4. The third claim in the same proof can be achieved again by
induction. Indeed, we observe that the base case α1

τ = T 0
τ = (X0

τ , X
1
τ )♯P has been proven above;

while, the induction step can be performed noting that the Markov property of (Xn
τ )n implies that

the law of Xn+1
τ given (X0

τ , · · · , Xn
τ ) coincides with the law of Xn+1

τ given Xn
τ . Equivalently, we

can write

(X0
τ , . . . , X

n+1
τ )♯P =

∫
Tn
τ,xn

d[(X0
τ , . . . , X

n
τ )♯P](x0, . . . , xn) =

∫
Tn
τ,xn

dαn
τ (x0, . . . , xn) = αn+1

τ ,

where we have used the induction hypothesis (X0
τ , . . . , X

n
τ )♯P = αn

τ and the definition of αn+1
τ .

Claim 6 : Xτ converges in L2(Ω,B,P; C([0, T ];X)) as τ ↓ 0 to the unique solution of the determin-
istic ODE in (6.25).
Proof of claim 6 : by the previous claims and Lemma 6.12, we can apply Theorem 5.10 and obtain
that Xτ converges in L2(Ω,B,P; C([0, T ];X)) as τ ↓ 0 to Z := sµ̄ ◦ X̄, where sµ̄ is as in (4.2) for the

maximal totally λ-dissipative extension F̂ of bar (F). This means that Z is the unique solution of

Ẋt = f̂
◦
(Xt, (Xt)♯P), Xt=0 = X̄, (6.27)

where f̂
◦
is as in Theorem 4.2 for F̂. However, by [12, Theorem 4.2(3)] the support of (Zt)♯P

stays bounded, so that in (6.27) we can replace f̂
◦
with b, since, by claim 4, we proved that

f̂
◦
[µ] = b(·, µ) for every µ ∈ Pb(X). □

6.4. Fully stochastic interaction field. We make a variation to the example in Section 6.2 by
introducing stochasticity in the interaction field. Let f : X×X → X be a continuous map satisfying
the dissipativity condition in (6.13) and consider again the ODE driven by its induced interaction
field bf as in (6.10): given a standard Borel probability space (Ω,B,P) and X̄ ∈ L2(Ω,B,P;X), we
consider the deterministic ODE

Ẋt = bf (Xt, Xt♯P), t ∈ [0, T ], Xt=0 = X̄. (6.28)
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We consider a particular case of the vector field in Section 6.2, assuming that f arises as a
stochastic superposition, that is, there exists a Borel vector field h : X×X×U → X, where (U,U)
is a probability space endowed with a non-atomic probability measure, such that

f(x, y) =

∫
U

h(x, y, u) dU(u), x, y ∈ X.

We require that there exists L > 0 such that∫
U

|h(x, y, u)|2 dU(u) ≤ L(1 + |x|2 + |y|2) for every x, y ∈ X. (6.29)

We state the analogue of Definition 6.6 taking into account the dependence of h on u.

Definition 6.16 (Stochastic IDF). Let (Ω,B,P) be a standard Borel probability space and T > 0.
Define J :=

{
T
N : N ∈ N \ {0}

}
. We say that a family of maps Xτ : Ω → C([0, T ];X), τ ∈ J , is

a Fully Stochastic Interaction Dissipative Flow (fully stochastic IDF) for h if there exist random
variables (Xn

τ )0≤n≤N,τ∈J , (Y
n
τ )0≤n≤N,τ∈J ⊂ L2(Ω;X), and V k : Ω → U, k ∈ N such that

• Y n
τ , X0

τ , (Y
m
τ )m<n, and (V k)k are independent for every 0 ≤ n ≤ N , τ ∈ J ,

• (Xn
τ )♯P = (Y n

τ )♯P for every 0 ≤ n ≤ N , τ ∈ J ,
• (V k)♯P = U for every k ∈ N,
• Xn+1

τ = Xn
τ + τ h(Xn

τ , Y
n
τ , V

n) for every 0 ≤ n ≤ N − 1, τ ∈ J ,

and
Xτ = G♯

(
X0

τ , X
1
τ , . . . ,

)
for every τ ∈ J. (6.30)

We have the following result.

Corollary 6.17. In the setting of Definition 6.16, assume that (X0
τ )τ∈J converges P-a.s. to

some X̄ ∈ L2(Ω,B,P;X) and that W2((X
0
τ )♯P, (X̄)♯P) → 0 as τ ↓ 0. Then Xτ converges in

L2(Ω,B,P; C([0, T ];X)) as τ ↓ 0 to the unique solution of the deterministic ODE

Ẋt = bf (Xt, Xt♯P), t ∈ [0, T ], Xt=0 = X̄.

As for the other examples of Section 6, the proof of the above result is based on the following
construction.

We define the PVF F ⊂ P2(TX) by

F[µ] = (π0, h)♯(µ⊗ µ⊗ U), µ ∈ P2(X), (6.31)

whose barycenter is given by
bar (F) [µ] = (iX, bf (·, µ))♯ µ.

Condition (6.13) ensures the total λ-dissipativity of bar (F), while (6.29) gives the solvability
of the Explicit Euler scheme for F.

We obtain the same result as in Proposition 6.4 for the PVF F defined in (6.31) and with Xτ

defined as in Definition 6.16, hence Corollary 6.17.

Appendix A. Technical results

The following Propositions, of independent interest, are used to prove the strong convergence
result in Proposition 3.7. This is determinant to get the main result of the paper in Theorem 5.9.

Definition A.1. Let (X, d) be a metric space and K ⊂ Pp(X), p ∈ [1,+∞). We say that K has
uniformly integrable p-moments if

lim
k→+∞

sup
µ∈K

∫
{x : d(x,x0)≥k}

dp(x, x0) dµ(x) = 0 for some (hence for any) x0 ∈ X. (A.1)

Proposition A.2. Let (X, d) be a metric space and let K ⊂ Pp(X), p ∈ [1,+∞). Assume that
there exist x0 ∈ X and a Borel measurable function φ : [0,+∞) → [0,+∞) such that

lim
r→+∞

φ(r)

r
= +∞, sup

µ∈K

∫
X

φ(dp(x, x0)) dµ(x) < +∞.

Then K has uniformly integrable p-moments.
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Proof. Let ε > 0 and take Rε > 0 such that εφ(r) > r for every r > Rε. Whenever k ≥ R
1/p
ε ,

then for any µ ∈ K we have∫
{x : d(x,x0)≥k}

dp(x, x0) dµ(x) ≤ ε

∫
{x : d(x,x0)≥k}

φ(dp(x, x0)) dµ(x) ≤ ε sup
µ∈K

∫
X

φ(dp(x, x0)) dµ(x).

Passing to the sup among µ ∈ K, to the limit as k → +∞ and finally to the limit as ε ↓ 0 proves
the sought uniform integrability of the p-moments. □

Proposition A.3. Let (X, d) be a metric space and let K ⊂ Pp(X), p ∈ [1,+∞). Assume that K
has uniformly integrable p-moments. Then, for any x0 ∈ X, there exists φ ∈ C∞([0,+∞); [0,+∞))
increasing and convex such that

φ(0) = 0, lim
r→+∞

φ(r)

r
= +∞, sup

µ∈K

∫
X

φ(dp(x, x0)) dµ(x) < +∞. (A.2)

Proof. The proof is a simple adaptation of the analogous statement for the uniform integrability
of a family of functions in L1, see for example [6, Theorem 4.5.9], combined with a regularization
argument.
Fix x0 ∈ X, by uniform integrability of the p-moments, we can find an increasing sequence of
natural numbers Cn ↑ +∞ such that∫

{x : d(x,x0)≥C
1/p
n }

dp(x, x0) dµ(x) ≤ 2−n for every n ∈ N, µ ∈ K. (A.3)

Let us define, for any k ∈ N and µ ∈ K the real numbers

µk := µ ({x ∈ X : dp(x, x0) > k}) .

We set

αn := 0 if n < C1 and αn := max{k ∈ N : k ≤ Cn} if n ≥ C1.

We finally define

φ̃(r) :=

∫ r

0

g(s) ds, g(r) :=

+∞∑
n=0

αn χ(n,n+1](r), r ≥ 0.

Clearly φ̃ is non-negative, increasing, convex and satisfies limr→+∞ φ̃(r)/r = +∞. Notice also
that φ̃(r) = 0 for any r ∈ [0, 1]. We show that φ̃ also satisfies the last condition in (A.2). First of
all we observe that, for any n ≥ 1 and any µ ∈ K, we have∫

{x : d(x,x0)≥C
1/p
n }

dp(x, x0) dµ(x) =

∫
{x : dp(x,x0)≥Cn}

dp(x, x0) dµ(x)

≥
+∞∑
j=Cn

j µ ({x ∈ X : j < dp(x, x0) ≤ j + 1})

≥
+∞∑
j=Cn

(j − Cn + 1)µ ({x ∈ X : j < dp(x, x0) ≤ j + 1})

=

+∞∑
k=Cn

µk.

We deduce by (A.3)

+∞∑
n=1

+∞∑
k=Cn

µk ≤ 1 for every µ ∈ K. (A.4)
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Moreover ∫
X

φ̃(dp(x, x0)) dµ(x) =

∫
X

∫ dp(x,x0)

0

g(s) dsdµ(x)

=

+∞∑
n=0

∫
{x :n<dp(x,x0)≤n+1}

∫ dp(x,x0)

0

g(s) dsdµ(x)

=

+∞∑
n=0

αnµ ({x ∈ X : n < dp(x, x0) ≤ n+ 1})

=

+∞∑
n=1

αnµ ({x ∈ X : n < dp(x, x0) ≤ n+ 1})

≤
+∞∑
n=1

αnµn =

+∞∑
n=1

+∞∑
k=Cn

µk ≤ 1.

Finally, we define ϱ ∈ C∞
c (R) as

ϱ(t) :=

{
c0 exp

(
1

|2x−1|2−1

)
if |2x− 1| < 1,

0 if |2x− 1| ≥ 1,

where c0 > 0 is the positive constant such that
∫
R ϱ(x) dx = 1. Observe that supp(ϱ) = [0, 1],

ϱ(1− t) = ϱ(t) for every t ∈ R and ϱ is increasing in [0, 1/2]. We define φ := ϱ ∗ φ̃, where we have
extended φ̃ to R by continuity. Clearly (the restriction to [0,+∞) of ) φ is smooth, convex (since
φ̃ is convex) and satisfies

φ(0) = 0, φ̃(t− 1) ≤ φ(t) ≤ φ̃(t) for every t ∈ R

so that (A.2) holds for φ. It remains to show that φ is increasing: we compute

φ′(t) = (ϱ′ ∗ φ̃)(t) =
∫ 1

1/2

ϱ′(r)φ̃(t− r) dr −
∫ 1/2

0

ϱ′(1− r)φ̃(t− r) dr

=

∫ 1

1/2

ϱ′(s) (φ̃(t− s)− φ̃(t− 1 + s)) ds ≥ 0,

where the last inequality follows by the fact that φ̃ is increasing and that ϱ is decreasing in
[1/2, 1]. □

Applying Propositions A.2, A.3, we provide sufficient conditions to have strong compactness of
a set of probability measures over continuous paths.

Proposition A.4. Let (X, d) be a complete and separable metric space, p ∈ (1,+∞), T > 0, and
Ap : C([0, T ]; (X, d)) → [0,+∞] be the p-action functional defined as

Ap(γ) :=


∫ T

0

|γ̇t|pd dt if γ ∈ ACp([0, T ]; (X, d)),

+∞ else,

(A.5)

where |γ̇t|d is the metric derivative of γ at time t. Let K ⊂ Pp(C([0, T ]; (X, d)) be such that

(1) A := sup
η∈K

∫
Ap dη < +∞;

(2) B := sup
η∈K

{d(x, x0) : x ∈ supp((e0)♯η)} < +∞ for some (hence for any) x0 ∈ X;

(3)
{
((et)♯η)t∈[0,T ]

}
η∈K is relatively compact in C([0, T ];Pp(X)).

Then K is relatively compact in Pp(C([0, T ]; (X, d))).

Proof. Conditions (1),(3) stated above imply (see e.g. [1, Theorem 10.4]) that K is uniformly tight
in P(C([0, T ]; (X, d))) so that it is enough ([2, Proposition 7.1.5]) to show that K has uniformly



STOCHASTIC EULER SCHEMES AND DISSIPATIVE EVOLUTIONS IN P2 31

integrable p-moments. Since {((et)♯η)t∈[0,T ]}η∈K is relatively compact in C([0, T ];Pp(X)), we
deduce that

K0 := {(et)♯η : t ∈ [0, T ], η ∈ K} ⊂ Pp(X)

is relatively compact in Pp(X). By Proposition A.3, we deduce that there exists an increasing,
convex function φ ∈ C∞([0,+∞); [0,+∞)), such that

φ(0) = 0, lim
r→+∞

φ(r)

r
= +∞, C := sup

µ∈K0

∫
X

φ(dp(x, x0)) dµ(x) < +∞.

Denoting by q the conjugate exponent of p, we define ψ : [0,+∞) → [0,+∞) as

ψ(r) :=

∫ r

0

(
φ(s)

s

)1/q

ds, r ≥ 0,

where we extended by continuity φ(s)/s to φ′(0) at s = 0. We note that ψ is increasing, ψ ∈
C1([0,+∞)) and limr→+∞ ψ(r)/r = +∞. If we prove that

sup
η∈K

∫
ψ(dp∞(γ, γ̄)) dη(γ) < +∞, (A.6)

we can conclude the proof by applying Proposition A.2, where γ̄ ≡ x0. Let us show (A.6); since
ψ is locally Lipschitz continuous, if we take γ ∈ ACp([0, T ];X) then the composition [0, T ] ∋ t 7→
ψ(dp∞(γt, γ̄)) is absolutely continuous. Thus we have∫
ψ(dp∞(γ, γ̄)) dη(γ) =

∫
sup

t∈[0,T ]

ψ(dp(γt, x0)) dη(γ)

≤
∫ (

ψ(dp(γ0, x0)) + p

∫ T

0

ψ′(dp(γt, x0))d
p−1(γt, x0)|γ̇t|d dt

)
dη(γ)

≤
∫
X

ψ(dp(x, x0)) d((e0)♯η)(x)

+ p

(∫ ∫ T

0

|γ̇t|pd dtdη(γ)

)1/p(∫ ∫ T

0

(ψ′(dp(γt, x0)))
qdp(γt, x0) dtdη(γ)

)1/q

≤
∫
X

ψ(dp(x, x0)) d((e0)♯η)(x)+

+ p

(∫
Ap dη

)1/p
(∫ T

0

∫
X

φ(dp(x, x0)) d((et)♯η)(x) dt

)1/q

≤ ψ(Bp) + pA1/p(TC)1/q,

since ψ is increasing. □

Appendix B. Sticky particles representation

We state and prove the following result providing conditions to ensure uniqueness and sticky
behavior of the probabilistic representation associated to a curve of probability measures. This
result, despite being interesting by itself, is used to prove Theorem 5.6 and has been stated, in a
simplified form, in Theorem 5.5

Theorem B.1. Let N ≥ 1, ai > 0 with
∑N

i=1 ai = 1, xi ∈ X such that xi ̸= xj for i ̸= j and set

µ̄ :=

N∑
i=1

aiδxi
.

Let µ : [0,+∞) → P2(X), with µ(0) = µ̄, be such that

#(supp(µt)) is finite and non-increasing w.r.t. t ≥ 0. (B.1)
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Assume that η ∈ P(C([0,+∞);X)) is such that (et)♯η = µt for every t ≥ 0. Then

η =

N∑
i=1

aiδγi ,

for curves γi ∈ C([0,+∞);X) satisfying

(P1) γi ̸= γj, i ̸= j;
(P2) γi(0) = xi and i = 1, . . . , N ;
(P3) if there exists s ≥ 0, i, j ∈ {1, . . . , N} with i ̸= j, such that γi(s) = γj(s), then γi(t) = γj(t)

for every t ≥ s.

In particular, if η1,η2 ∈ P(C([0,+∞);X)) are such that (et)♯η1 = (et)♯η2 = µt for every t ≥ 0,
then η1 = η2.

Proof. We divide the proof into five claims.
Claim 1 : we have et(supp(η)) = supp(µt).
Proof of claim 1 : by e.g.[2, Formula (5.2.6)], we have that

et(supp(η)) ⊆ supp(µt) ⊆ et(supp(η)).

In particular, by (B.1) we get that et(supp(η)) is finite, so that it is closed and the conclusion
follows.

Claim 2 : if γ1, γ2 ∈ supp(η) and s̄ ≥ 0 are such that γ1(s̄) = γ2(s̄), then γ1(t) = γ2(t) for
every t ≥ s̄.
Proof of claim 2 : suppose by contradiction this is not the case and set

t̄ := max
{
s ≥ s̄ : γ1(r) = γ2(r) for every s̄ ≤ r ≤ s

}
∈ [s̄,+∞).

Then, by continuity of γ1, γ2, for every δ > 0 we can find tδ ∈ (t̄, t̄+ δ) such that γ1(tδ) ̸= γ2(tδ).
Let K := #(supp(µt̄)) ∈ {1, . . . , N}. If K = 1, noticing that{

γ1(t1), γ
2(t1)

}
⊂ supp(µt1),

then #(supp(µt1)) ≥ 2 > 1 and we get a contradiction with (B.1). If K > 1, then we can find
γ̃1, . . . , γ̃K−1 ∈ supp(η) such that γ̃i(t̄) ̸= γ̃j(t̄) ̸= γ1(t̄) = γ2(t̄) for every i ̸= j. By continuity we
can find εk > 0, k = 1, 2, such that

γ̃i(t) ̸= γ̃j(t) ̸= γk(t) for every i ̸= j, k = 1, 2, t ∈ [t̄, t̄+ εk).

Thus, if we set ε := ε1 ∧ ε2, we have that{
γ̃1(tε), . . . , γ̃K−1(tε), γ

1(tε), γ
2(tε)

}
⊂ supp(µtε),

hence #(supp(µtε)) ≥ K + 1 > K, a contradiction with (B.1).

Claim 3 : we have #(supp(η)) = N .
Proof of claim 3 : from Claim 1 applied with t = 0, it follows

supp(η) =

N⋃
i=1

{γ ∈ supp(η) : γ(0) = xi} :=

N⋃
i=1

Ai. (B.2)

However, Claim 2 applied with s̄ = 0 yields that each Ai is a singleton. This concludes the proof
of the claim.

Claim 4 : we have

η =

N∑
i=1

aiδγi ,
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for curves γi ∈ C([0,+∞);X) satisfying properties (P1),(P2),(P3).
Proof of claim 4 : by Claim 3, there exist γi ∈ C([0,+∞);X), i = 1, . . . , N , satisfying (P1) and

ãi > 0, with
∑N

i=1 ãi = 1, such that

η =

N∑
i=1

ãiδγi
.

From Claim 1 (cf. also (B.2)), we get (P2), i.e. γi(0) = xi for any i = 1, . . . , N ; while (P3) comes
from Claim 2. In particular, since

N∑
i=1

ãiδγi(0) = (e0)♯η = µ̄ =

N∑
i=1

aiδxi
,

we deduce that ãi = ai for any i = 1, . . . , N .

Claim 5 : if η1,η2 ∈ P(C([0,+∞);X)) are such that (et)♯η1 = (et)♯η2 = µt for every t ≥ 0,
then η1 = η2.
Proof of claim 5 : by Claim 4, we have

η1 =

N∑
i=1

aiδγ1
i
, η2 =

N∑
i=1

aiδγ2
i
,

with γ1i , γ
2
i ∈ C([0,+∞);X) satisfying properties (P1),(P2),(P3). Let η := 1

2 (η1 + η2) and notice
that η ∈ P(C([0,+∞);X)) and (et)♯η = µt for every t ≥ 0. By construction we have

{γ1i , γ2i }Ni=1 ⊂ supp(η);

however by Claim 3 we have #(supp(η)) = N , so that it must be that γ1i = γ2i for every i =
1, . . . , N . □
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