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Abstract. This paper deals with the dynamics - driven by the gradient flow of negative
fractional seminorms - of empirical measures towards equi-spaced ground states.

Specifically, we consider periodic empirical measures µ on the real line that are
screened by the Lebesgue measure, i.e., with µ − dx having zero average. To each
of these measures µ we associate a (periodic) function u satisfying u′ = dx − µ. For
s ∈ (0, 1

2
) we introduce energy functionals E s(µ) that can be understood as the density

of the s-Gagliardo seminorm of u per unit length. Since for s ≥ 1
2
, the s-Gagliardo semi-

norms are infinite on functions with jumps, some regularization procedure is needed:
For s ∈ [ 1

2
, 1) we define E s

ε (µ) := E s(µε), where µε is obtained by mollifying µ on scale
ε.

We prove that the minimizers of E s and E s
ε are the equi-spaced configurations of

particles with lattice spacing equal to one. Then, we prove the exponential convergence
of the corresponding gradient flows to the equi-spaced steady states. Finally, although
for s ∈ [ 1

2
, 1) the energy functionals E s

ε blow up as ε→ 0, their gradients are uniformly
bounded (with respect to ε), so that the corresponding trajectories converge, as ε→ 0,
to the gradient flow solution of a suitable renormalized energy.
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Introduction

Periodic configurations are ubiquitous in nature, crystallization being a paradigmatic example
in the physics of solids [1]. Here we are interested in studying the dynamics - driven by negative
fractional semi-norms - towards the equi-spaced ground states for an infinite number of repelling
particles on the whole real line, mimicking charged particles screened by a uniform field of opposite
charges.

In our analysis, we bypass any compactness issue or boundary effect by working in a periodic
setting; specifically, given Λ ∈ N, we consider Λ-periodic empirical measures µ on the real line

1
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that are screened by the Lebesgue measure, so that µ([0,Λ)) = Λ. To each µ we may associate
the potential u defined (up to additive constants) by u′ = dx− µ; notice that, since the particles
are screened, u is Λ-periodic.

Given s ∈ (0, 1
2 ) we focus on the energy functionals

(0.1) E s(µ) :=
1

2

∫ Λ

0

dx

∫
R

|u(x)− u(y)|2

|x− y|1+2s
dy.

Notice that the first integral is computed on the periodicity interval (0,Λ), so that the functional
can be understood as (Λ times) the density of the squared s-Gagliardo seminorm of u per unit
length. We stress that for s ∈ [ 1

2 , 1) the energy in (0.1) is infinite for any empirical measure µ. In
order to overcome this issue, we adopt a regularization procedure by considering, for every ε > 0,
the energy functional

(0.2) E s
ε (µ) := E s(µ ∗ ρε);

here ρε(·) := 1
ερ( ·ε ) where ρ is a standard positive mollifier with support in (−1, 1).

The first result of the paper is that the global minimizers of the functionals E s(µ) and E s
ε (µ) are

given by the equi-spaced configurations with lattice spacing equal to one. This is a consequence
of the fact that the energy functionals are convex with respect to the mutual distances between
the particles. More precisely, for s ∈ (0, 1

2 ) the energy functionals are smooth in the space of all
configurations without collisions, i.e., µ contains only Diracs of multiplicity one. For such config-
urations, which we call regular, the second variation of the energy functionals, with respect to the
particle positions, is strictly positive on all directions which are orthogonal to global translations.
Notice that for this sub-critical range of the parameter s, the energy is finite (and continuous) on
all configurations of particles, but we prove that splitting any cluster of multiple particles decreases
the energy, so that the global minimizer is a regular configuration. By convexity such a global
minimizer is the unique - up to translations - critical point of the energy. By symmetry arguments
the equi-spaced configuration is a critical point, so that it is the only critical point and it coincides
with the ground state of the energy. The situation for the super-critical cases s ∈ [ 1

2 , 1) is very
similar, up to the fact that the regularized energy functionals are regular everywhere, and that
we are able to prove the positiveness of the second variation only for configurations in which the
mutual distances between the particles is at least of order ε. As a consequence, we still have that
the equi-spaced lattice is the only ground state, but we cannot exclude the presence of high energy
stable configurations of closed packets of particles.

Then, we focus on the dynamics driven by the gradient flow of the energy towards the equi-
spaced ground states. Such an analysis consists in proving that the trajectories of the particles
avoid collisions. Let us discuss first the sub-critical case s ∈ (0, 1

2 ). At a first glance, one could
think that collisions are local maximum points of the energy, so that they are excluded by the
simple fact that the energy decreases in time. Reality is a little more subtle: Since moving a cluster
of particles could decrease the energy, there are trajectories where some of the particles collapse
and translate remaining stack on each other, and such that the total energy decreases in time; in
order to exclude that these trajectories are solutions of the gradient flow, we have to show that,
before the collision, splitting the particles provides a direction of steeper descent for the energy, so
that the steepest descent directions of the energy landscape never lead to collisions. The situation
is somehow easier in the supercritical case, where collisions cost an amount of energy that blows
up as ε→ 0. More precisely, Proposition 3.3 provides the leading term σs(ε) (defined in (3.2)) of
the blowing up energy E s

ε induced by a single particle as ε → 0. On the other hand, the energy
cost of a singularity with multiplicity m behaves as m2σs(ε), so that configurations with multiple
singularities are clearly less favorable than regular ones. As a consequence, we have that, for any
regular initial condition, for ε small enough the trajectories avoid collisions and then converge to
a ground state. Again, for initial data with closed packets of particles, we cannot exclude the
presence of high energy stationary configurations.

Finally, we show that in all cases the convergence to the equilibrium is exponentially fast. To
this end, we stress that the energy functionals are invariant with respect to global translations
so that the “periodic barycenter” (in the sense of definition (4.27)) of the evolving configuration
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remains constant along the motion. Therefore, the convergence rate is determined by the first
eigenvalue of the Hessian of the energy restricted to the space orthogonal to global translations.

In Propositions 2.2 (for s ∈ (0, 1
2 ]) and 2.10 (for s ∈ [ 1

2 , 1)) we prove that such an eigenvalue is

bounded from above by Γ(s)Λ−2s for some positive constant Γ(s), for the equi-spaced configura-
tions, and, for generic configurations, from below by γ(s)Λ−2s for some constant γ(s) ≤ Γ(s). As
a consequence, the - optimal in Λ - convergence rate is proportional to Λ−2s.

A natural question is what happens (for s ≥ 1
2 ) to the energy functionals E s

ε and to the
corresponding gradient flows as ε → 0. First, the energies W s

ε := E s
ε − Λσs(ε) converge locally

uniformly in the space of regular configurations to a renormalized energy W s
0 (as ε→ 0). Moreover,

while the energies E s
ε (for s ∈ [ 1

2 , 1)) blow up as ε → 0, their gradients (namely the slopes) stay
locally uniformly bounded with respect to ε. As a consequence, the gradient flows of E s

ε (or
equivalently of W s

ε ) converge, as ε → 0, to the solution of the gradient flow of the renormalized
energy W s

0 .
The case s = 1

2 is of particular interest in the literature, since it corresponds to a Dirichlet-like
bulk energy induced by a Λ-periodic distribution of topological singularities lying on a straight
line in the two dimensional plane. In this respect, the energy functional W s

0 corresponds to the
renormalized energy computed in the context of the Ginzburg-Landau vortices; as shown in [2],
such a renormalized energy is given, up to additive and multiplicative constants depending only on
Λ, by −

∑
λ6=λ′ log | sin(π(xλ−xλ′))|, and, in view of the convexity of the interaction potentials, its

minimizers are the equi-spaced configurations. The renormalized energy has been introduced in
several contexts also for infinite non-periodic configurations and it has been shown that the equi-
spaced configuration, as well as any compact perturbation of it, is a ground state [2, 7, 12, 13].
In particular, in [13] the renormalized energy represents the energy per unit length induced by
a system of screened charged particles lying on a straight line in the plane, once the infinite self
energy of each particle is removed.

For the critical case s = 1
2 the energy functional in (0.2) can be seen as a “positive ε” version of

the renormalized energy considered in [13] for a periodic distribution of screened charges. Precisely,
the potential u is the trace of the harmonic conjugate of the potential generated by dx−µ, so that
the functional E

1
2 (µ) represents the infinite energy density induced by the electric field generated

by the screened particles, while E
1
2
ε (µ) is its finite counterpart when the particles are diffused on

the scale ε. More generally, for s ∈ (0, 1), our functionals are closely related to (one-dimensional)
Riesz gases which have received considerable attention in the past few years, see [8, 14]. In such a
generality, we show that the minimizers are still the equi-spaced configurations also for ε > 0 (see
[12] for the case ε = 0) and that such ground states are attractors for the dynamics.

The emergence of periodic structures as a result of minimization of convex functionals has been
much investigated in the last decades. In [9] the minimization of the square of the L2 norm has
been considered, among functions having two opposite slopes. Such a result has been generalized
in [11] to the case of two, possibly different, slopes. The case of fractional 1

2 -Gagliardo seminorm
has been considered in [6], again for functions with equal opposite slope; their approach relies on
a technique referred to as reflection positivity for which such a symmetry assumption is somehow
required. In the aforementioned results, the functionals under minimization contains also a term
penalizing the jumps of the slopes, which is multiplied by a certain (small) parameter. It is such a

parameter, say δ, that dictates the periodicity scale, that is proportional to δ
1
3 in the “local” case

of the L2 norm and to δ
1
2 for the 1

2 -Gagliardo seminorm. We stress that, for the “local” L2-energy,
the periodicity of minimizers (with the same scale) is proven also when the sharp penalization on
the slope-jump is replaced by a Modica-Mortola functional.

In this paper we have adopted a more rigid approach: the slopes of the order parameter u are
either 1 or −∞ and, instead of a term penalizing the jumps of the slope, we have assumed that the
region where the slope is −∞ is quantized (the Dirac delta’s have positive integer weights). This is
strongly related to the framework considered in [3], where a model for misfit dislocations at semi-
coherent interfaces has been introduced and the optimality of equi-spaced dislocations has been
proved. Since that model was one of the motivations for the present analysis, it is convenient to
briefly describe the formalism in [3]. In turn, the model studied there is motivated by the modeling
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of misfit dislocations by van der Merwe in [15]. He considered semi-coherent straight interfaces
between two parallel square lattices with different spacing. In his analysis it is tacitly assumed,
as a well understood and unanimously accepted truth (as in the celebrated Read-Shockley paper
[10] for small angle grain boundaries), that dislocations are periodically distributed along the
interface; the optimal profile of the displacement corresponding to the periodic distribution of
dislocations is provided and the corresponding interfacial energy is computed. Since the precise
shape of the optimal profile only gives lower order corrections in the asymptotics of the energy
density as the regularizing parameter ε → 0, in [3] a simplified model is introduced, where the
transition is prescribed in a simple, non optimal way; namely, considering functions with two
given slopes: A “small” positive slope of order 1, accommodating elastically the lattice misfits,
and a “big” negative slope of order −1/ε, providing the transition at the core length scale of
the dislocation. Then, the elastic energy density induced by the resulting trace is given, up to
pre-factors, by the (square of the) 1

2 -fractional seminorm, and the minimality of the equi-spaced
configuration of dislocations is proved. A related model for semi-coherent interfaces has previously
been introduced and analyzed by Γ-convergence in [4]; there, only the asymptotic (in the semi-
coherent limit) uniform distribution of dislocations is proved, together with the periodicity for
minimizers of a suitable renormalized energy, corresponding to ε = 0.

The main novelty of our analysis with respect to the results in [3] is that we also consider here
the dynamics of misfit dislocations driven by the gradient flow of the induced elastic energy. To
this end, it is convenient to replace the large negative slopes with concentrated negative slopes
represented by the empirical measure µ. On the one hand, this formalism yields after mollification
merely a different (still non-optimal) profile; on the other hand, it fits naturally within a canonical
framework based on the formalism of empirical measures, which is well-suited for studying the
dynamics.
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1. Setting of the problem

In this section we introduce the fractional seminorm energies and the class of admissible func-
tions we will deal with.

1.1. Function spaces. Let Λ ∈ N be fixed. We set

XΛ := [0,Λ)Λ.

Notice that the entries of a generic configuration X ∈ XΛ are not required to be distinct. For every
X = (x1, . . . , xΛ) ∈ XΛ we will denote by Xord = (xord

1 , . . . , xord
Λ ) the non-decreasing reordering of

X, namely the vector in XΛ obtained permuting the entries of X is such a way that xord
λ ≤ xord

λ+1

for every λ = 1, . . . ,Λ− 1.
Let X ∈ XΛ. We define S(X) := {ξ ∈ [0,Λ) : xλ = ξ for some λ = 1, . . . ,Λ}. To every

ξ ∈ S(X) we associate the set I(ξ) of the indices λ ∈ {1, . . . ,Λ} such that xλ = ξ and we define
the multiplicity m̂(ξ) of ξ as m̂(ξ) := ]I(ξ). Notice that if m̂(ξ) = 1, then I(ξ) is made of one
element, that will be denoted by λ(ξ). Moreover, if X = Xord, to any ξ ∈ S(X) we can associate
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the first index φ(ξ) for which ξ is an entry of X, i.e., φ(ξ) := min{λ = 1, . . . ,Λ : xλ = ξ}; notice
that, in such a case, m̂(ξ) = max{m = 1, . . . ,Λ : xφ(ξ)+m−1 = ξ}.

We define the set of regular configurations RΛ as

RΛ := {X ∈ XΛ : m̂(ξ) = 1 for every ξ ∈ S(X)}.

Notice that X ∈ RΛ if and only if ]S(X) = Λ.

For every X = (x1, . . . , xΛ) ∈ XΛ we denote by X its Λ-periodic extension, namely the Λ-
periodic sequence X := {xz}z∈Z with xz = xz for z = 1, . . . ,Λ.

We denote by {eλ}λ=1,...,Λ the canonical basis of RΛ and we set e := Λ−
1
2

∑Λ
λ=1 eλ.

Moreover, for all τ ∈ R we denote by X + τ the element of XΛ whose Λ-periodic extension is
X + τ .

We denote by µX :=
∑
z∈Z δxz the empirical measure associated to the configuration X; notice

that µX ≡
∑
ξ∈S(X) µ

ξ, where, for every ξ ∈ S(X), we have set

(1.1) µξ := m̂(ξ)
∑
z∈Z

δξ+Λz.

Finally, for every X ∈ XΛ, we introduce the family AS(X) of functions compatible with X as

AS(X) := {u ∈ BVloc(R) : u′ = dx− µX},

where u′ denotes the distributional derivative of u and dx is the standard Lebesgue measure.
By construction, the set AS(X) contains functions differing just by additive constants. Since the
energy functionals we consider are insensitive to (horizontal and) vertical translations, with a little
abuse of notation, we will denote by uX the “unique up to additive constants” element of AS(X).

Trivially, uX ≡ uXord

.

1.2. The energy functionals. We introduce here the energy functionals that will be used
throughout the paper.

The subcritical case 0 < s < 1
2 . For every X ∈ XΛ, we set

(1.2) E s(X) :=
1

2

∫ Λ

0

dx

∫
R

|uX(x)− uX(y)|2

|x− y|1+2s
dy.

Notice that the energy E s is insensitive to global translations, i.e., for every τ ∈ R,

(1.3) E s(X + τ) = E s(X);

therefore, whenever it will be convenient, we will assume without loss of generality that xλ > 0
for every λ = 1, . . . ,Λ.

For every x ∈ R we set ūX(x) := (uX)+(x)+(uX)−(x)
2 , where (uX)±(x) denote the traces of the

function uX at x, so that ūX coincides with uX on each of its continuity point. Then, we define

(1.4) (−∆)suX(x) := 2

∫
R

ūX(x)− uX(y)

|x− y|1+2s
dy,

where the integral is intended in the sense of principal value if x is a jump point for uX .

The critical and supercritical case 1
2 ≤ s < 1. Let ρ be a standard mollifier supported in

(−1, 1) and, for any ε > 0, let ρε(·) := 1
ερ( ·ε ). For every Radon measure ν on R we set νε := ρε ∗ν.

The notation νεε stands for ρε ∗ νε = ρε ∗ (ρε ∗ ν). For every X ∈ XΛ we define

(1.5) E s
ε (X) :=

1

2

∫ Λ

0

dx

∫
R

|uXε (x)− uXε (y)|2

|x− y|1+2s
dy.

We notice that for all X ∈ XΛ the function uXε is smooth and bounded, so that its s-fractional

Laplacian (−∆)suXε (x) := 2

∫
R

uXε (x)− uXε (y)

|x− y|1+2s
dy is well defined in the sense of principal value.
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Remark 1.1. Notice that for every X ∈ XΛ the operator in (1.4) is well defined, in the sense of
principal value, also for 1

2 ≤ s < 1. Moreover, we have that

(1.6) lim
ε→0

(−∆)suXε (x) = (−∆)suX(x) for every x ∈ R.

Finally, for any open set U ⊂⊂ RΛ (so that the minimal distance between two particles is uniformly
bounded from below) we have that the convergence in (1.6) at any x ∈ S(X) is uniform in U .

2. First and second variations

In this section we compute first and second variations of the energy functionals defined in (1.2)
and (1.5). For every r > 0 and x ∈ R we denote by Br(x) = (x−r, x+r) the open interval centered
at x and having radius r; moreover, we set Br := Br(0). Furthermore, for every 0 < r < R and
x ∈ R we set Ar,R(x) := BR(x) \Br(x) and Ar,R := Ar,R(0).

2.1. The subcritical case 0 < s < 1
2 . We start by computing the first and second variations of

the energy E s on regular configurations.

Proposition 2.1. Let 0 < s < 1
2 and let X ∈ RΛ. Let ξ, η ∈ S(X) with ξ, η > 0 and ξ 6= η. Then

∂xλ(ξ)
E s(X) = (−∆)suX(ξ),(2.1)

∂2
x2
λ(ξ)

E s(X) =
∑
z∈Z

∑
ξ′∈S(X)\{ξ}

2

|Λz + ξ − ξ′|1+2s
,(2.2)

∂2
xλ(ξ) xλ(η)

E s(X) = −
∑
z∈Z

2

|Λz + ξ − η|1+2s
.(2.3)

Proof. We first prove (2.1). Let h 6= 0 and let Ih be the (for instance open) interval with extreme
points ξ and ξ+h. We set Ah := Ih+ΛZ. By construction, for |h| small enough, X+heλ(ξ) ∈ XΛ

and uX+heλ(ξ) = uX +sgn(h)χAh . To simplify notation we consider only the case h > 0. By direct
computations

(2.4)

E s(X + heλ(ξ))− E s(X)

=
1

2

∫ Λ

0

dx

∫
R

(χAh(x)− χAh(y))
(
(2uX(x) + χAh(x))− (2uX(y) + χAh(y))

)
|x− y|1+2s

dy

=

∫ Λ

0

dx

∫
R

χAh(x)
(
(2uX(x) + χAh(x))− (2uX(y) + χAh(y))

)
|x− y|1+2s

dy

= 2

∫
Ih

dx

∫
R

(uX(x) + 1
2 )− (uX(y) + 1

2χAh(y))

|x− y|1+2s
dy

= 2

∫
Ih

dx

∫
R\Ih

(uX(x) + 1
2 )− (uX(y) + 1

2χAh(y))

|x− y|1+2s
dy .

The first equality is nothing but computing the difference of squares. The second equality is a
consequence of periodicity, using the change of variable x 7→ x − Λz, y 7→ y − Λz, together with
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Fubini Theorem as follows

1

2

∫ Λ

0

dx

∫
R

−χAh(y)
(
(2uX(x) + χAh(x))− (2uX(y) + χAh(y))

)
|x− y|1+2s

dy

=
1

2

∫ Λ

0

dx

∫
R

χAh(y)
(
(2uX(y) + χAh(y))− (2uX(x) + χAh(x))

)
|x− y|1+2s

dy

=
∑
z∈Z

1

2

∫ Λ

0

dx

∫ Λ(z+1)

Λz

χAh(y)
(
(2uX(y) + χAh(y))− (2uX(x) + χAh(x))

)
|x− y|1+2s

dy

=
∑
z∈Z

1

2

∫ Λ(1−z)

−Λz

dx

∫ Λ

0

χAh(y)
(
(2uX(y) + χAh(y))− (2uX(x) + χAh(x))

)
|x− y|1+2s

dy

=
1

2

∫ Λ

0

dy

∫
R

χAh(y)
(
(2uX(y) + χAh(y))− (2uX(x) + χAh(x))

)
|x− y|1+2s

dx .

Finally, the third equality in (2.4) is immediate, while the last one follows from the fact that

(2.5)

∫
Ih

dx

∫
Ih

(uX(x) + 1
2 )− (uX(y) + 1

2χAh(y))

|x− y|1+2s
dy

=

∫
Ih

dx

∫
Ih

uX(x)− uX(y)

|x− y|1+2s
dy =

∫
Ih

dx

∫
Ih

x− y
|x− y|1+2s

dy = 0.

We set ξh := ξ + h
2 , so that Ih = Bh

2
(ξh). Let 0 < σ < minξ′∈S(X)\{ξ} |ξ − ξ′| and notice that, for

h small enough

uX(x)− uX(y) = x− y if x ∈ Ih, y ∈
(
ξh +

h

2
, ξh + σ

)
,

uX(x)− uX(y) = x− y − 1 if x ∈ Ih, y ∈
(
ξh − σ, ξh −

h

2

)
.

Whence we deduce

(2.6)

∫
Ih

dx

∫
Bσ(ξh)\Ih

(uX(x) + 1
2 )− (uX(y) + 1

2χAh(y))

|x− y|1+2s
dy

=

∫
Bh

2
(ξh)

dx

∫
Bσ(ξh)\B h

2
(ξh)

uX(x) + 1
2 − u

X(y)

|x− y|1+2s
dy = 0.

Therefore, in view of (2.4) and (2.6), we deduce

(2.7)

E s(X + heλ(ξ))− E s(X)

= 2

∫
Bh

2
(ξh)

dx

∫
R\Bσ(ξh)

(uX(x) + 1
2 )− (uX(y) + 1

2χAh(y))

|x− y|1+2s
dy

= 2

∫
Bh

2
(ξh)

dx

∫
R\Bσ(ξh)

uX(x) + 1
2 − u

X(y)

|x− y|1+2s
dy + r(h) ,

where (for h small enough)

(2.8)

r(h) :=

∫
Bh

2
(ξh)

dx

∫
R\Bσ(ξh)

χAh(y)

|x− y|1+2s
dy

=

∫
Bh

2
(ξh)

dx
∑

z∈Z\{0}

∫
Bh

2
(ξh)+Λz

1

|x− y|1+2s
dy ≤ h2

∑
z∈Z\{0}

( 2

Λ|z|

)1+2s

.
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Let us now consider the change of variable x′ = x−ξh
h so that x = ξh + hx′. By (2.7) and (2.8),

using the Dominated Convergence Theorem, we get

(2.9)

lim
h→0

E s(X + heλ(ξ))− E s(X)

h

= lim
h→0

[
2

∫ 1
2

− 1
2

dx′
∫
R\Bσ(ξh)

uX(ξh + hx′) + 1
2 − u

X(y)

|ξh + hx′ − y|1+2s
dy +

r(h)

h

]
= 2

∫ 1
2

− 1
2

dx′
∫
R\Bσ(ξ)

uX(ξ) + 1
2 − u

X(y)

|ξ − y|1+2s
dy,

which, by the arbitrariness of σ, and by the very definition in (1.4), implies (2.1).
Now we prove (2.2). By (2.1), using the invariance by global translations, we have

(2.10)
∂2
x2
λ(ξ)

E s(X) = lim
h→0

(−∆)suX+heλ(ξ)(ξ + h)− (−∆)suX(ξ)

h

= lim
h→0

(−∆)suX−hêλ(ξ)(ξ)− (−∆)suX(ξ)

h
,

where êλ(ξ) denotes the vector with the λ(ξ)-th entry equal to 0 and all the remaining ones equal

to 1. To simplify notation we consider only the case h > 0 and we set Îh :=
⋃
ξ′∈S(X)\{ξ}(ξ

′−h, ξ′)
and Âh := Îh + ΛZ. Then, for h small enough, uX−hêλ(ξ) ≡ uX − χÂh . By the very definition of

fractional Laplacian in (1.4) and by the Fundamental Theorem of Calculus, we get

lim
h→0

(−∆)suX−hêλ(ξ)(ξ)− (−∆)suX(ξ)

h
= lim

h→0

2

h

∫
Âh

1

|ξ − y|1+2s
dy

=
∑
z∈Z

∑
ξ′∈S(X)\{ξ}

2

|Λz + ξ − ξ′|1+2s
,

which, together with (2.10), yields (2.2).
We finally turn to (2.3). By (2.1), we have

(2.11) ∂2
xλ(ξ) xλ(η)

E s(X) = lim
h→0

(−∆)suX+heλ(η)(ξ)− (−∆)suX(ξ)

h
.

To simplify notation we focus on the case h > 0; for h small enough,

(−∆)suX+heλ(η) = (−∆)suX + (−∆)sχEh ,

where we have set Eh := ∪z∈Z(η + Λz, η + Λz + h). Therefore, by (2.11), we obtain

∂2
xλ(ξ) xλ(η)

E s(X) = lim
h→0

(−∆)sχEh(ξ)

h
= −2 lim

h→0

1

h

∫
Eh

1

|ξ − y|1+2s
dy = −

∑
z∈Z

2

|Λz + ξ − η|1+2s
.

This concludes the proof of (2.3). �

In the next proposition, we prove that the Hessian ∇2E s is positive definite on RΛ, providing
a lower bound on its first eigenvalue.

We define the class CΛ of equispaced configurations as

(2.12) CΛ := {X ∈ RΛ : S(X) = {τ, 1 + τ, . . . ,Λ− 1 + τ} , τ ∈ [0, 1)}.

Proposition 2.2. Let 0 < s < 1
2 and Λ ∈ N. Then, for every X ∈ RΛ with S(X) ⊂ (0,Λ) and

for every h ∈ RΛ

(2.13) 〈∇2E s(X)h, h〉 =
∑

ξ,η∈S(X)
ξ 6=η

as(ξ, η)(hλ(ξ) − hλ(η))
2,

where

(2.14) as(ξ, η) := 2
∑
z∈Z

1

|ξ − η + Λz|1+2s
for every ξ, η ∈ S(X) with ξ 6= η.
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As a consequence, if h · e =
∑Λ
λ=1 hλ = 0, then

(2.15) 〈∇2E s(X)h, h〉 ≥ γ(s)Λ−2s|h|2,
for some positive constant γ(s) depending only on s.

Moreover, for every X ∈ CΛ, there exists h ∈ RΛ with h 6= 0, h · e = 0 and

(2.16) 〈∇2E s(X)h, h〉 ≤ Γ(s)Λ−2s|h|2,
for some positive constant Γ(s) depending only on s.

Proof. Identity (2.13) is an immediate consequence of Proposition 2.1. Now we prove (2.15). By
definition, for every ξ, η ∈ S(X) with ξ 6= η we have

(2.17) as(ξ, η) ≥ γ(s)Λ−1−2s.

Now, since ∑
λ,λ′∈{1,...,Λ}

λ6=λ′

(hλ − hλ′)2 = (Λ− 1)

Λ∑
λ=1

h2
λ − 2

∑
λ,λ′∈{1,...,Λ}

λ6=λ′

hλhλ′

and ( Λ∑
λ=1

hλ

)2

=

Λ∑
λ=1

h2
λ + 2

∑
λ,λ′∈{1,...,Λ}

λ 6=λ′

hλhλ′ ,

we find that for every h ∈ RΛ with h · e = 0,

(2.18)
∑

λ,λ′∈{1,...,Λ}
λ6=λ′

(hλ − hλ′)2 = Λ

Λ∑
λ=1

h2
λ.

Thus, by (2.17) and (2.18), we have

(2.19)
∑

ξ,η∈S(X)
ξ 6=η

as(ξ, η)(hλ(ξ) − hλ(η))
2 ≥ γ(s)Λ−1−2s

∑
λ,λ′∈{1,...,Λ}

λ 6=λ′

(hλ − hλ′)2 = γ(s)Λ−2s|h|2,

whence the claim follows by (2.13).
Now we prove the upper bound. To this end let

(2.20) | · |per := min
z∈Z
| ·+Λz|

denote the (Λ-)periodic norm on R. We define the vector h ∈ RΛ by setting

hλ := |λ|per −
1

Λ

Λ−1∑
λ′=0

|λ′|per.

By construction h · e = 0. On the one hand we have

|h|2 ≥ CΛ3.

On the other hand, since

as(λ, λ′) ≤ Γ(s)
1

|λ− λ′|1+2s
per

,

we have

〈∇2E s(X)h, h〉 ≤ Γ(s)
∑

λ,λ′∈{0,1,...,Λ−1}
λ 6=λ′

(|λ|per − |λ′|per)
2

|λ− λ′|1+2s
per

≤ Γ(s)
∑

λ,λ′∈{0,1,...,Λ−1}
λ 6=λ′

|λ− λ′|1−2s
per

≤ Γ(s)Λ3−2s.
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Combining both estimates together yields (2.16).
�

Remark 2.3. Let us point out that in order to prove (2.16), being 0 < s < 1/2, it would have

been enough to consider the interpolating function ĥ to be piecewise constant instead of piecewise
affine. The advantage of introducing piecewise affine functions is that they belong to Hs also for
s ≥ 1/2, covering the whole range of exponents 0 < s < 1. In fact, following along the lines of the
proof of Proposition 2.2, we have immediately that, also for 1

2 ≤ s < 1

(2.21)
∑

ξ,η∈S(X)
ξ 6=η

as(ξ, η)
(
hλ(ξ)−hλ(η)

)2 ≥ γ(s)Λ−2s|h|2 for every X ∈ RΛ, h ∈ RΛ with h · e = 0

and
(2.22)∑
ξ,η∈S(X)
ξ 6=η

as(ξ, η)
(
hλ(ξ)−hλ(η)

)2 ≤ Γ(s)Λ−2s|h|2 for every X ∈ CΛ, for some h ∈ RΛ with h·e = 0,

where the coefficients as(ξ, η) are defined in (2.14).

Arguing verbatim as in the proof of (2.1) in Proposition 2.1 we get its extension to the case
of multiple singularities (we recall that I(ξ) is the set of indices of the particles at position ξ and
m̂(ξ) is its cardinality).

Lemma 2.4. Let 0 < s < 1
2 and let X ∈ XΛ; then, given {hξ}ξ∈S(X) ⊂ RΛ, we have

E s
(
X +

∑
ξ∈S(X)

hξ
∑

m∈I(ξ)

em

)
=

∑
ξ∈S(X)

hξm̂(ξ)(−∆)suX(ξ) + o
( ∑
ξ∈S(X)

|hξ|
)
.

The next lemma shows that splitting multiple particles gives a direction with infinite slope for
the energy.

Lemma 2.5. Let 0 < s < 1
2 and let X ∈ XΛ \ RΛ. Let ξ ∈ S(X) be such that m̂(ξ) ≥ 2. Then,

for every m ∈ I(ξ), we have

∂±xmE s(X) = ∓∞.

Proof. Fix m ∈ I(ξ). By construction, for |h| small enough, uX+hem = uX + sgn(h)χIh , where Ih
is the (for instance open) interval with extreme points ξ and ξ + h. We set Ah := Ih + ΛZ . To
simplify notation we consider only the case h > 0. By arguing verbatim as in (2.4) we have

(2.23) E s(X + hem)− E s(X) = 2

∫
Ih

dx

∫
R\Ih

uX(x) + 1
2 −

(
uX(y) + 1

2χAh(y)
)

|x− y|1+2s
dy.

We set ξh := ξ + h
2 , so that Ih = Bh

2
(ξh). Let 0 < σ < minξ′∈S(X)\{ξ} |ξ − ξ′|; we notice that, for

h small enough

uX(x)− uX(y) = x− y if x ∈ Ih, y ∈
(
ξh +

h

2
, ξh + σ

)
,

uX(x)− uX(y) = x− y − m̂(ξ) if x ∈ Ih, y ∈
(
ξh − σ, ξh −

h

2

)
,



DYNAMICS OF SCREENED PARTICLES TOWARDS EQUI-SPACED GROUND STATES 11

whence we deduce

(2.24)

∫
Bh

2
(ξh)

dx

∫
Bσ(ξh)\B h

2
(ξh)

(uX(x) + 1
2 )− (uX(y) + 1

2χAh(y))

|x− y|1+2s
dy

=

∫
Bh

2
(ξh)

dx

∫
Bσ(ξh)\B h

2
(ξh)

uX(x) + 1
2 − u

X(y)

|x− y|1+2s
dy

= (1− m̂(ξ))

∫
Bh

2
(ξh)

dx

∫ ξh−h2

ξh−σ

1

|x− y|1+2s
dy

= (1− m̂(ξ))
1

2s(1− 2s)

(
h1−2s −

(
σ +

h

2

)1−2s

+
(
σ − h

2

)1−2s)
= (1− m̂(ξ))

h1−2s

2s(1− 2s)
+ O(h).

Finally, since the numerator in the integral below is in L∞(R2), one can easily prove that∫
Bh

2
(ξh)

dx

∫
R\Bσ(ξh)

(uX(x) + 1
2 )− (uX(y) + 1

2χAh(y))

|x− y|1+2s
dy = O(h),

which, together with (2.23) and (2.24), yields

E s(X + hem)− E s(X) = (1− m̂(ξ))
h1−2s

s(1− 2s)
+ O(h),

whence the claim follows, since m̂(ξ) ≥ 2. �

Now, according with Lemma 2.5, we prove that separating at least one singularity from a close
packed cluster of singularities decreases the energy. For every pair of sets A,B ⊂ R, we set

(2.25) I s(A,B) :=

∫
A

dx

∫
B

1

|x− y|1+2s
dy.

Proposition 2.6. Let 0 < s < 1
2 , σ > 0 and let X ∈ RΛ. Let Q := {ξ1, . . . , ξK} ⊂ S(X) with

K ≥ 2 and 0 < ξk ≤ ξk+1 (for all k = 1, . . . ,K − 1) be such that

min
ξ∈S(X)\Q
k=1,...,K

{|ξ − ξk|, |ξ − ξk − Λ|, |ξ − ξk + Λ|} ≥ σ .

Then, setting δ := ξK − ξ1, we have

∇E s(X) · eλ(ξK) ≤
1−K

2s
δ−2s + C(Λ, s, σ),

for some constant C(Λ, s, σ) (independent of δ).

Proof. Let h > 0. We set Ih := (ξK , ξK + h) and Ah := Ih + ΛZ. By (2.4), for h small enough we
have

(2.26) E s(X + heλ(ξK))− E s(X) = 2

∫
Ih

dx

∫
R\Ih

(uX(x) + 1
2 )− (uX(y) + 1

2χAh(y))

|x− y|1+2s
dy,

and

(2.27)

∫
Ih

dx

∫
R\[ξ1−σ,ξK+σ]

(uX(x) + 1
2 )− (uX(y) + 1

2χAh(y))

|x− y|1+2s
dy ≤ C(Λ, σ)h

∑
z∈Z\{0}

1

|z|1+2s
.

Therefore, setting

Esδ [h] :=

∫
Ih

dx

∫
(ξ1−σ,ξK+σ)\Ih

(uX(x) + 1
2 )− (uX(y) + 1

2χAh(y))

|x− y|1+2s
dy,
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in order to prove the claim, it is enough to show that

(2.28) lim sup
h→0+

Esδ [h]

h
≤ 1−K

2s
δ−2s + C(s, σ) .

We first write (for h small enough) Esδ [h] := Esδ,1[h] + Esδ,2[h], where

Esδ,1[h] =

∫
Ih

dx

∫ ξK

ξ1

uX(x) + 1
2 − u

X(y)

|x− y|1+2s
dy +

∫
Ih

dx

∫ ξK+δ

ξK+h

uX(x) + 1
2 − u

X(y)

|x− y|1+2s
dy,

Esδ,2[h] :=

∫
Ih

dx

∫ ξ1

ξ1−σ

uX(x) + 1
2 − u

X(y)

|x− y|1+2s
dy +

∫
Ih

dx

∫ ξK+σ

ξK+δ

uX(x) + 1
2 − u

X(y)

|x− y|1+2s
dy.

Now we observe that

uX(x)− uX(y) = −K + x− y whenever x ∈ Ih, y ∈ (ξ1 − σ, ξ1),(2.29)

uX(x)− uX(y) ≤ −1 + x− y whenever x ∈ Ih, y ∈ (ξ1, ξK)(2.30)

uX(x)− uX(y) = x− y whenever x ∈ Ih, y ∈ (ξK + h, ξK + σ) .(2.31)

Hence, by (2.30) and (2.31), recalling the definition of I s in (2.25) and using Taylor expansion,
we get

(2.32)

Esδ,1[h] ≤ − 1

2
I s(Ih, (ξ1, ξK)) +

1

2
I s(Ih, (ξK + h, ξK + δ))

+

∫
Ih

dx

∫ ξK

ξ1

(x− y)−2s dy −
∫
Ih

dx

∫ ξK+δ

ξK+h

(y − x)−2s dy

= − 1

2

1

2s(1− 2s)

(
h1−2s + δ1−2s − (h+ δ)1−2s

)
+

1

2

1

2s(1− 2s)

(
h1−2s + (δ − h)1−2s − δ1−2s

)
+

1

(1− 2s)(2− 2s)

(
− h2−2s − δ2−2s + (h+ δ)2−2s

)
− 1

(1− 2s)(2− 2s)

(
− h2−2s − (δ − h)2−2s + δ2−2s

)
=

1

2

1

2s(1− 2s)

(
(δ + h)1−2s + (δ − h)1−2s − 2δ1−2s

)
+

1

(1− 2s)(2− 2s)

(
(h+ δ)2−2s + (δ − h)2−2s − 2δ2−2s

)
= O(h2),

where |O(h2)| ≤ C(s, δ)h2. Analogously, by (2.29) and (2.31) we have

(2.33)

Esδ,2[h] =
(1

2
−K

)
I s(Ih, (ξ1 − σ, ξ1)) +

1

2
I s(Ih, (ξK + δ, ξK + σ))

+

∫
Ih

dx

∫ ξ1

ξ1−σ
(x− y)−2s dy −

∫
Ih

dx

∫ ξK+σ

ξK+δ

(y − x)−2s dy

=
(1

2
−K

) 1

2s(1− 2s)

(
− (h+ δ + σ)1−2s + (δ + σ)1−2s − δ1−2s + (δ + h)1−2s

)
+

1

2

1

2s(1− 2s)

(
(σ − h)1−2s − σ1−2s + δ1−2s − (δ − h)1−2s

)
+

1

(1− 2s)(2− 2s)

(
− (δ + h)2−2s + (h+ δ + σ)2−2s + δ2−2s − (δ + σ)2−2s

)
− 1

(1− 2s)(2− 2s)

(
− (σ − h)2−2s + (δ − h)2−2s + σ2−2s − δ2−2s

)
.
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By Taylor expansion we have

−(h+ δ + σ)1−2s + (δ + σ)1−2s − δ1−2s + (δ + h)1−2s

= −(1− 2s)(δ + σ)−2sh+ (1− 2s)δ−2sh+ O(h2);

(σ − h)1−2s − σ1−2s + δ1−2s − (δ − h)1−2s

= −(1− 2s)σ−2sh+ (1− 2s)δ−2sh+ O(h2);

−(δ + h)2−2s + (h+ δ + σ)2−2s + δ2−2s − (δ + σ)2−2s

= −(2− 2s)δ1−2sh+ (2− 2s)(δ + σ)1−2sh+ O(h2);

−(σ − h)2−2s + (δ − h)2−2s + σ2−2s − δ2−2s

= (2− 2s)σ1−2sh− (2− 2s)δ1−2sh+ O(h2).

Plugging this in (2.33) yields

(2.34)

Esδ,2[h] =
(1

2
−K

) h
2s

(
δ−2s − (δ + σ)−2s

)
+

1

2

h

2s

(
δ−2s − σ−2s

)
+

h

1− 2s

(
(δ + σ)1−2s − σ1−2s

)
+ O(h2)

≤ (1−K)
h

2s
δ−2s + (K − 1)

h

2s
σ−2s +

h

1− 2s
(Λ + σ)1−2s + O(h2)

≤ (1−K)
h

2s
δ−2s + C(Λ, s, σ)h.

By (2.32) and (2.34) we get (2.28), thus concluding the proof of the proposition. �

Remark 2.7. Clearly, under the same assumptions of Proposition 2.6, and by arguing verbatim
as in its proof, one also has

−∇E s(X) · eλ(ξ1) ≤
1−K

2s
δ−2s + C(Λ, s, σ).

2.2. The supercritical case 1
2 ≤ s < 1. Here we compute the first and second variations of the

functional E s
ε defined in (1.5). For every X ∈ RΛ and for every ξ ∈ S(X), we recall that the

measure µξ is defined in (1.1) and we set µξ̂ := µX − µξ.

Proposition 2.8. Let 1
2 ≤ s < 1, 0 < ε < Λ and let X ∈ RΛ. Let ξ, η ∈ S(X) with ξ, η > 0 and

ξ 6= η. Then

(2.35) ∂xλ(ξ)
E s
ε (X) = (−∆)suXεε(ξ).

Moreover,

(2.36) ∂2
x2
λ(ξ)

E s
ε (X) = −(−∆)sµξ̂εε(ξ).

and

(2.37) ∂2
xλ(ξ),xλ(η)

E s
ε (X) = (−∆)sµηεε(ξ).

Proof. We proceed as in the proof of Proposition 2.1. Let h 6= 0 and let Ih be the (for instance
open) interval with extreme points ξ and ξ + h. We set Ah := Ih + ΛZ. By construction, for
|h| small enough, X + heλ(ξ) ∈ XΛ and uX+heλ(ξ) = uX + sgn(h)χAh . To simplify notation we
consider only the case h > 0. Moreover, we set χAh,ε := χAh ∗ ρε. Then,

(2.38)

E s
ε (X + heλ(ξ))− E s

ε (X)

=
1

2

∫ Λ

0

dx

∫
R

(χAh,ε(x)− χAh,ε(y))
(
(2uXε (x) + χAh,ε(x))− (2uXε (y) + χAh,ε(y))

)
|x− y|1+2s

dy

= 2

∫ Λ

0

dxχAh,ε(x)

∫
R

uXε (x)− uXε (y)

|x− y|1+2s
dy +

1

2

∫ Λ

0

dx

∫
R

(χAh,ε(x)− χAh,ε(y))2

|x− y|1+2s
dy

=

∫ Λ

0

χAh,ε(x)(−∆)suXε (x) dx+
1

2

∫ Λ

0

dx

∫
R

(χAh,ε(x)− χAh,ε(y))2

|x− y|1+2s
dy,
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where the last equality follows by the very definition of fractional laplacian in (1.4), noticing that
the function uXε is C∞.

On the one hand, notice that χAh,ε coincides with the Λ-periodic extension of the function

χIh ∗ ρε and that 1
hχIh

?
⇀ δξ as h→ 0, so that

(2.39) lim
h→0

1

h

∫ Λ

0

χAh,ε(x)(−∆)suXε (x) dx =

∫ Λ

0

(δξ ∗ ρε)(x)(−∆)suXε (x) dx = (−∆)suXεε(ξ).

On the other hand, the function χAh,ε is Lipschitz continuous with Lipschitz constant ‖χAh,ε‖W 1,∞ ≤
C h
ε , whence we deduce that

(2.40)

1

2

∫ Λ

0

dx

∫
R

(χAh,ε(x)− χAh,ε(y))2

|x− y|1+2s
dy

=
1

2

∫ Λ

0

dx

∫ Λ

0

(χAh,ε(x)− χAh,ε(y))2

|x− y|1+2s
dy +

∑
z∈Z
z 6=0

1

2

∫ Λ

0

dx

∫ (z+1)Λ

zΛ

(χAh,ε(x)− χAh,ε(y))2

|x− y|1+2s
dy

≤Ch
2

ε2

∫ Λ

0

dx

∫ Λ

0

|x− y|1−2s dy + C
h2

ε2

∑
z∈Z
z 6=0

∫ Λ

0

dx

∫ Λ

0

1

|x− y + Λz|1+2s
dy ≤ Ch

2

ε2
.

By combining (2.38) with (2.39) and (2.40), we get (2.35).
We now turn to (2.36). The proof is similar to (2.2). As before let êλ(ξ) denotes the vector with
the λ(ξ)-th entry equal to 0 and all the remaining ones equal to 1. Again, we consider only the

case h > 0 (small enough) and we set Îh :=
⋃
η∈S(X)\{ξ}(η−h, η) and Âh := Îh + ΛZ. Then, for h

small enough, u
X−hêλ(ξ)
εε ≡ uXεε − (χÂh)εε. By (2.35), using the invariance by global translations,

we thus find

∂2
x2
λ(ξ)

E s
ε (X) = lim

h→0

(−∆)su
X+heλ(ξ)
εε (ξ + h)− (−∆)suXεε(ξ)

h

= lim
h→0

(−∆)su
X+hêλ(ξ)
εε (ξ)− (−∆)suXεε(ξ)

h
= − lim

h→0

(−∆)s(χÂh)εε(ξ)

h

= −2 lim
h→0

1

h

∫
R

((χÂh)εε(ξ)− χÂh)εε(y)

|y − ξ|1+2s
dy = −2

∫
R

µξ̂εε(ξ)− µξ̂εε(y)

|y − ξ|1+2s
dy = −(−∆)sµξ̂εε(ξ).

We finally prove (2.37). Let again h > 0 and set A′h := (η, η + h) + ΛZ; then, for h small enough,

u
X+heλ(η)
εε = uXεε + (χA′h)εε. Then, by (2.35) we obtain

∂2
xλ(ξ),xλ(η)

E s(X) = lim
h→0

(−∆)su
X+heλ(η)
εε (ξ)− (−∆)suXεε(ξ)

h

= lim
h→0

(−∆)s(χA′h)εε(ξ)

h
= (−∆)sµηεε(ξ).

�

Remark 2.9. Let us notice that sending ε → 0, formulas (2.35), (2.36) and (2.37) converge to
(2.1), (2.2) and (2.3).

To any configuration X ∈ XΛ we associate the minimal distance between its entries

(2.41) δ(X) := min
λ,λ′∈{1,...,Λ}

λ6=λ′

|xλ − xλ′ |per,

where the norm | · |per is defined in (2.20). We notice that δ(X) = mini6=j |xi − xj | and that
supX∈XΛ δ(X) = 1.
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Proposition 2.10. Let 1
2 ≤ s < 1, Λ ∈ N and ε > 0. Then, for every X ∈ RΛ and for every

h ∈ RΛ we have

(2.42) 〈∇2E s
ε (X)h, h〉 =

∑
ξ,η∈S(X)
ξ 6=η

asε(ξ, η)(hλ(ξ) − hλ(η))
2,

where

asε(ξ, η) := 2

∫
R

µηεε(y)− µηεε(ξ)
|y − ξ|1+2s

dy for every ξ, η ∈ S(X) with ξ 6= η.

Assume now δ(X) ≥ 4ε; then the following facts hold true.
If h · e = 0, then

(2.43) 〈∇2E s
ε (X)h, h〉 ≥ Γ(s)Λ−2s|h|2,

for some positive constant Γ(s) depending only on s.
Moreover, for every X ∈ CΛ, then

(2.44) 〈∇2E s
ε (X)h, h〉 ≤ γ(s)Λ−2s|h|2 for every h ∈ RΛ with h · e = 0,

for some positive constant γ(s) depending only on s.

Proof. Identity (2.42) is an immediate consequence of Proposition 2.8. Now, since δ(X) ≥ 4ε, we
have that µηεε(ξ) = 0 for every ξ, η ∈ S(X) with ξ 6= η so that

(2.45) asε(ξ, η) = 2

∫
R

µηεε(y)

|y − ξ|1+2s
dy = 2

∑
z∈Z

∫
B2ε(η)

(
ρε ∗ (ρε ∗ δη)

)
(y)

|y − ξ + Λz|1+2s
dy.

Let ξ, η ∈ S(X) with ξ 6= η and note that for every y ∈ B2ε(η)

2−1−2s

|η − ξ + Λz|1+2s
≤ 1

|y − ξ + Λz|1+2s
≤ 21+2s

|η − ξ + Λz|1+2s
,

so that, by (2.45),

(2.46) 2−1−2sas(ξ, η) ≤ asε(ξ, η) ≤ 21+2sas(ξ, η),

where the coefficients as(ξ, η) are defined in (2.14). As a consequence, in view of Remark 2.3 and
of (2.46), the estimates (2.21) and (2.22) yield (2.43) and (2.44), respectively. This concludes the
proof. �

3. Minimal configurations

By symmetry arguments it is straightforward to check that the configurations in CΛ (see (2.12))
are critical points of the energy functionals; more precisely, for all X ∈ CΛ

(3.1) (−∆)suX(ξ) = 0, (−∆)sūXεε(ξ) = 0 for any ξ ∈ S(X).

The next theorem establishes that for s < 1
2 , the ground states of E s coincide with CΛ.

Theorem 3.1. Let 0 < s < 1
2 and Λ ∈ N. Then, the set of critical points of the energy E s in

RΛ is given by CΛ. Moreover, CΛ coincides with the set of all local and global minimizers of E s

in XΛ.

Proof. Let X be a local minimizer of E s in XΛ; by Lemma 2.5 we have immediately that X ∈ RΛ,
so that it is a critical point of the energy. Since, in view of (2.15), the second variation of E s

is strictly positive modulo rigid translations, there is at most one - up to rigid translations -
critical point of the energy E s. This fact, together with (2.1) and (3.1) implies that the set of
critical points coincides with CΛ. In turn X ∈ CΛ and, since E s is constant on CΛ, X is a global
minimizer. �

In the next theorem we consider the critical cases s ≥ 1
2 .

Theorem 3.2. Let 1
2 ≤ s < 1 and Λ ∈ N. There exists ε̄ > 0 such that for every 0 < ε < ε̄ the

set of global minimizers of E s
ε is given by CΛ.
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Before proving Theorem 3.2 we state and prove the following result, providing an asymptotic
“expansion” of the minimal energy E s

ε as ε → 0. To this end, we recall the definition of δ(X) in
(2.41) and, for every 1

2 ≤ s < 1, δ > 0, we set

(3.2) σs(δ) :=


| log δ| if s = 1

2

21−2s

2s(2s−1)δ
1−2s if 1

2 < s < 1.

Proposition 3.3. Let 1
2 ≤ s < 1 and Λ ∈ N. Then, for δ small enough (depending on Λ and s),

(3.3) lim inf
ε→0

(
inf

X∈XΛ:δ(X)≤δ
E s
ε (X)− Λσs(ε)

)
≥ C(s)σs(δ),

for some positive constant C(s) depending only on s.

Proof. Let X ∈ XΛ and let S(X) := {ξ1, . . . , ξK} with 1 ≤ K ≤ Λ and ξk < ξk+1 for k =
1, . . . ,K − 1. Since the maximal distance between two consecutive particles is larger than (or
equal to) 1, we can assume without loss of generality that ξ1 ≥ 1

2 and ξK ≤ Λ− 1
2 ; let

0 < ε < r <
1

2
min

{
1, min
k=1,...,K−1

|ξk+1 − ξk|
}
.

Moreover, we can assume without loss of generality that X = Xord.
Then

(3.4)

E s
ε (X) ≥ 1

2

K∑
k=1

∫
Aε,r(ξk)

dx

∫
Aε,r(ξk)

|uXε (x)− uXε (y)|2

|x− y|1+2s
dy

+
1

2

∫
(0,Λ)\

⋃K
k=1 B̄r(ξk)

dx

∫
R\

⋃K
k=1 B̄r(ξk)

|uXε (x)− uXε (y)|2

|x− y|1+2s
dy

=: Isε,r,sr + Isε,r,lr.

Now we estimate Isε,r,sr and Isε,r,lr.

To this end, we preliminarily notice that for x, y ∈ R \
⋃K
k=1 B̄ε(ξk) it holds

(3.5) uXε (x)− uXε (y) = uX(x)− uX(y) = x− y + µX((x, y)),

As a consequence

(3.6)

Isε,r,sr =

K∑
k=1

(
1

2

∫
Aε,r(ξk)

dx

∫
Aε,r(ξk)

|x− y|1−2s dy

− 2m̂(ξk)

∫ ξk−ε

ξk−r
dx

∫ ξk+r

ξk+ε

(y − x)−2s dy

+ m̂2(ξk)

∫ ξk−ε

ξk−r
dx

∫ ξk+r

ξk+ε

(y − x)−1−2s dy

)

≥
K∑
k=1

(
− 2m̂(ξk)

∫ ξk−ε

ξk−r
dx

∫ ξk+r

ξk+ε

(y − x)−2s dy

+ m̂2(ξk)

∫ ξk−ε

ξk−r
dx

∫ ξk+r

ξk+ε

(y − x)−1−2s dy

)
.

We first discuss the case s > 1
2 .

By straightforward computations, we have that

(3.7) lim
ε→0

∫ −ε
−r

dx

∫ r

ε

(y − x)−2s dy =
2− 22−2s

(2s− 1)(2− 2s)
r2−2s ≤ C(s),
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and, by Taylor expansion,

(3.8)

∫ −ε
−r

dx

∫ r

ε

(y − x)−1−2s dy =
1

2s(2s− 1)

(
(2ε)1−2s + (2r)1−2s − 2(ε+ r)1−2s

)
=σs(ε) +

21−2s − 2

2s(2s− 1)
r1−2s + Or(ε),

where Or : R+ → R satisfies, for fixed r > 0, lim supε→0
Or(ε)
ε =: Cr < +∞. By (3.4), (3.6), (3.7)

and (3.8), using also that Isε,r,lr is non-negative, for ε small enough, we get

(3.9)

E s
ε (X) ≥

K∑
k=1

m̂2(ξk)
(
σs(ε) +

2− 21−2s

2s(2s− 1)
r1−2s + Or(ε)

)
− 2ΛC(s)

≥Λσs(ε) + Λ
1

2s(2s− 1)
r1−2s + Or(ε)− 2ΛC(s),

where the last inequality follows using that 1− 2s < 0 and that

(3.10)

K∑
k=1

m̂2(ξk) ≥ Λ.

If δ(X) = 0, then the inequality (3.10) is strict, whence (3.3) immediately follows.
Assume now that δ(X) > 0; since r < δ(X), taking the lim inf as ε→ 0 in (3.9), we have

lim inf
ε→0

(
inf

X∈XΛ:δ(X)≤δ
E s
ε (X)− Λσs(ε)

)
≥ Λ

1

2s(2s− 1)
r1−2s − 2ΛC(s).

This concludes the proof of (3.3) for s > 1
2 .

Now, we discuss the case s = 1
2 .

To this end, we preliminarily observe that for every 0 < γ < γ̄ it holds∫ −γ
−γ̄

dx

∫ γ̄

γ

(y − x)−2 dy = 2 log(γ + γ̄)− log(2γ)− log(2γ̄) = log
γ + γ̄

γ
+ log

γ + γ̄

γ̄
− 2 log 2,

thus yielding

(3.11) lim
γ
γ̄→0

(∫ −γ
−γ̄

dx

∫ γ̄

γ

(y − x)−2 dy − log
γ̄

γ

)
= −2 log 2.

Analogously, one can check that

(3.12)

∫ −γ
−γ̄

dx

∫ γ̄

γ

(y − x)−1 dy = 2γ(1 + log(2γ))− 2γ̄(1− log(2γ̄))− 2(γ + γ̄) log(γ + γ̄).

Therefore, by combining (3.6) together with (3.11), (3.12) (applied with γ = ε and γ̄ = r) and
with (3.10), for r fixed and ε small enough we deduce that

(3.13) I
1
2
ε,r,sr ≥

K∑
k=1

m̂2(ξk) log
r

ε
− Cr(ε) ≥ Λ log

r

ε
− Cr(ε),

where Cr(ε) satisfies lim supε→0 Cr(ε) =: Cr < +∞. We recall that the inequality in (3.10) is an
equality if and only if m̂(ξk) = 1 for every k = 1, . . . ,K, namely, if X ∈ RΛ. Therefore, since

I
1
2

ε,r,lr is non-negative, we have that the claim is trivially satisfied if X ∈ XΛ \ RΛ.

We focus now on the case X ∈ RΛ. Notice that, in view of (3.5), the term I
1
2

ε,r,lr does not

depend on ε, so that we can write I
1
2

ε,r,lr =: I
1
2

r,lr, and by (3.4) and (3.13), we get that for ε small
enough,

(3.14) E
1
2
ε (X)− Λ| log ε| ≥ I

1
2

r,lr + Λ log r − Cr(ε) for every X ∈ RΛ with δ(X) ≥ 2r.

We can assume without loss of generality that δ(X) ≤ 1. In order to prove the claim it is enough

to study the behavior of I
1
2

r,lr as r → 0. Let γr : (0, 1) → N be the function that at any p ∈ (0, 1)
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associates the number γr(p) of connected components of the set
⋃Λ
λ=1Brp(xλ) ∪ Brp(x1 + Λ).

Trivially, the function γr is piecewise constant; we denote by 0 < p1 < . . . < pL < 1 the jump
points of γr and we set p0 := 0 and pL+1 := 1. Let 0 < η < 1

2 minl=1,...,L−1(pl+1− pl). Then there

exists J lr “annuli” Arpl−η,rpl−1+η (ζj), with j = 1, . . . , J lr, that are pairwise disjoint for every j and

l and satisfy
Λ⋃
λ=1

Br(xλ) ⊂
⋃
j

Brpl−η (ζj).

We highlight that, µX((x, y)) = µX(Brpk−η (ζj)) =: [µj ] whenever ζj − rpl−1+η < x < ζj − rpl−η
and ζj + rpl−η < y < ζj + rpl−1+η. Moreover, by construction, for every l there exists (at least
one) j = 1, . . . , J lr such that |[µj ]| ≥ 2 and hence |[µj ]|2 ≥ |[µj ]| + 3. Therefore, by (3.5), using
(3.11) and (3.12), arguing as in (3.9), for r small enough we have that

I
1
2

r,lr ≥
1

2

L+1∑
l=1

Jlr∑
j=1

∫
A
rpl−η,rpl−1+η (ζj)

dx

∫
A
rpl−η,rpl−1+η (ζj)

|µX(x, y)|2

|x− y|2
dy − C

≥
L+1∑
l=1

Jlr∑
j=1

|[µj ]|
∫ ζj−rpk−η

ζj−rpk−1+η
dx

∫ ζj+r
pk−1+η

ζj+r
pk−η

1

|x− y|2
dy

+ 3

K+1∑
k=1

∫ ζj−rpl−η

ζj−rpl−1+η
dx

∫ ζj+r
pl−1+η

ζj+r
pl−η

1

|x− y|2
dy − C

≥ (Λ + 3)

K+1∑
l=1

(pl − pl−1 − 2η)| log r| − C = (Λ + 3)(1− 2(K + 1)η)| log r| − C,

where in the last inequality we have used that
∑Jkr
j=1[µj ] = µX([0,Λ)) = Λ.

By the arbitrariness of η we have that I
1
2

r,lr ≥ (Λ + 3)| log r| −C, which, in view of (3.14), for r
small enough, implies

E
1
2
ε (X)− Λ| log ε| ≥ 3| log r| − C,

whence (3.3) follows also in this case. This concludes the proof of the whole result. �

Proof of Theorem 3.2. By straightforward computations, for every configuration X ∈ CΛ we have

(3.15) E s
ε (X) ≤ Λσs(ε) + C̄(s).

Let ωs(·) := C(s)σs(·) be the quantity in the right-hand side of (3.3) and let δ̄ = δ̄(s) > 0 be such

that ωs(δ)
2 > C̄(s) for every 0 < δ < δ̄. By Proposition 3.3, there exists ε̄ = ε̄(δ̄) > 0 such that for

every 0 < ε < ε̄ it holds

(3.16) inf
X∈XΛ:δ(X)<δ̄

E s
ε (X) ≥ Λσs(ε) +

ωs(δ)

2
.

Let

(3.17) 0 < ε < min
{
ε̄,
δ̄

4

}
.

By (3.15) and (3.16), we have that every minimizer X of E s
ε in XΛ satisfies

(3.18) δ(X) > δ̄,

and hence, in particular,

(3.19) δ(X) > 4ε.

Let RΛ
δ̄

denote the class of configurations satisfying (3.18); notice that such a set is convex if the
configurations are described in terms of the distances between nearest neighboring particles. By
(3.19), we can use (2.43) to deduce that ∇2E s

ε is strictly positive modulo rigid translations on RΛ
δ̄

,
whence we have immediately that there is at most one - up to rigid translations - critical point
of the energy E s

ε in RΛ
δ̄

. This fact, together with (2.35) and (3.1), yields that the set of critical
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points of E s
ε in RΛ

δ̄
coincides with CΛ. Now, since E s

ε is constant on CΛ, we get that CΛ is the set
of global minimizers of E s

ε .
�

4. Dynamics

In this section we study the gradient flows of the energy functionals E s and E s
ε .

4.1. The subcritical case 0 < s < 1
2 . Here we analyze the gradient flow system of E s starting

from a regular datum X0 ∈ RΛ. With a little abuse of notation we say that the map t 7→ X(t) ∈
RΛ is absolutely continuous on some interval I, and we write X ∈ AC(I), if the maps t 7→ xz(t)

are absolutely continuous in I (for all z ∈ Z). Notice that, if X ∈ AC(I), the quantities Ẋ(t) and
∇E s(X(t)) are well defined (in the obvious way) for almost all t ∈ I. In this sense we understand
the Cauchy problem we aim at studying

(4.1)

{
Ẋ(t) = −∇E s(X(t))
X(0) = X0.

Notice that if we denote by ∇E s(X) the sequence obtained by setting ∂xλ+Λz
E s(X) := ∂xλE

s(X)
for every λ = 1, . . . ,Λ and for every z ∈ Z, then the Cauchy problem above is equivalent to

(4.2)

{
Ẋ(t) = −∇E s(X(t))
X(0) = X0.

In view of Proposition 2.1 we have that there exists T > 0 such that the problem (4.1) admits a
unique C1 (actually, smooth) solution in [0, T ).

We start by proving that the problem (4.1) has (unique and C1) solution in [0,+∞) and that
the configuration X(t) is regular for every t ≥ 0.

Proposition 4.1. Let 0 < s < 1
2 . Let X0 ∈ RΛ and let Tmax be the maximal existence time for

the Cauchy problem (4.1). Then Tmax = +∞.

In order to prove Proposition 4.1, we need an auxiliary result and some further notation. For
every X, Y ∈ XΛ we set

(4.3) dist(X,Y ) :=
( Λ∑
λ=1

|xord
λ − yord

λ |2per

) 1
2

.

Let {Xn}n∈N ⊂ RΛ and X ∈ XΛ, be such that

(4.4) dist(Xn, X)→ 0 (as n→ +∞).

Assume that Xn ≡ (Xn)ord, X ≡ Xord and S(X) ⊂ (0,Λ). For every ξ ∈ S(X), we recall that
xφ(ξ) is the first entry of X which is equal to ξ, so that xnφ(ξ), . . . , x

n
φ(ξ)+m̂(ξ)−1 converge to ξ as

n→ +∞; for every n ∈ N we define

ξn := argmax{|t− ξ| : t ∈ {xnφ(ξ), x
n
φ(ξ)+m̂(ξ)−1}}.

For every n ∈ N we define the configuration X̂n ∈ XΛ such that

(4.5) x̂nλ := ξn if φ(ξ) ≤ λ ≤ φ(ξ) + m̂(ξ)− 1 for some ξ ∈ S(X).

We have, x̂nφ(ξ) = ξn = xnφ(ξ) whenever m̂(ξ) = 1. It is easy to check that

(4.6)
1√
Λ

dist(X̂n, X) ≤ dist(Xn, X) ≤ dist(X̂n, X).

Furthermore, we define

(4.7) ∆X(Xn) :=
∑

λ:xλ=xλ+1

(xnλ+1 − xnλ) =
∑

ξ∈S(X)

(xnφ(ξ)+m̂(ξ)−1 − x
n
φ(ξ)).

Finally, for general Xn and X (not necessarily coinciding with (Xn)ord and Xord, respectively),
we set ∆X(Xn) := ∆Xord((Xn)ord).
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Lemma 4.2. Let {Xn}n∈N ⊂ RΛ and X ∈ XΛ \ RΛ, be such that

(4.8) dist(Xn, X)→ 0 (as n→ +∞).

Then,

(4.9) lim
n→+∞

E s(X̂n)− E s(Xn)

∆X(Xn)
= +∞.

Proof. We can assume without loss of generality that X = Xord and that Xn = (Xn)ord for every
n ∈ N. Moreover, in virtue of the translational invariance, we can assume that x1 > 0 and that
xn1 > 0 for every n ∈ N.

Let M(X) := {ξ ∈ S(X) : m̂(ξ) ≥ 2} = {ξ1, . . . , ξJ} with ξj < ξj+1. We will assume, just to
fix the notation, that ξnj ≡ xnφ(ξj)+m̂(ξj)−1 for every j = 1, . . . , J and for every n ∈ N.

Let K :=
∑J
j=1(m̂(ξj)−1). For every k = 0, 1, . . . ,K−1 there are uniquely determined integers

1 ≤ ̄ ≤ J and 0 ≤ l ≤ m̂(ξ̄)− 2 such that

(4.10) k =

̄−1∑
j=1

(m̂(ξj)− 1) + l,

where, for ̄ = 1 the sum above is understood to be equal to zero. We defineXn[k] = (xn1 [k], . . . , xnΛ[k]),
where

xnλ[k] :=


xnφ(ξj)+m̂(ξj)−1 if φ(ξj) ≤ λ ≤ φ(ξj) + m̂(ξj)− 1, for 1 ≤ j ≤ ̄− 1,

xnφ(ξ̄)+l
if φ(ξ̄) ≤ λ ≤ φ(ξ̄) + l − 1,

xnλ elsewhere.

By definition, Xn[0] ≡ Xn. Furthermore, we define Xn[K] as

xnλ[K] :=

{
xnφ(ξj)+m̂(ξj)−1 if φ(ξj) ≤ λ ≤ φ(ξj) + m̂(ξj)− 1, for 1 ≤ j ≤ J,
xnλ elsewhere,

so that Xn[K] ≡ X̂n.
We claim that, for k as in (4.10) with l ≥ 1,

(4.11) E s(Xn[k])− E s(Xn[k − 1])

≥ 1

2s(1− 2s)
(xnφ(ξ̄)+l

− xnφ(ξ̄)+l−1)1−2s − C(s,Λ)(xnφ(ξ̄)+l
− xnφ(ξ̄)+l−1),

and that, if k =
∑̄−1
j=1(m̂(ξj) − 1) for some ̄ = 1, . . . , J + 1 (i.e., in the case l = 0 in (4.10) and

k = K), then

(4.12) E s(Xn[k])− E s(Xn[k − 1]) ≥
1

2s(1− 2s)
(xnφ(ξ̄)+m̂(ξ̄)−1 − x

n
φ(ξ̄)+m̂(ξ̄)−2)1−2s − C(s,Λ)(xnφ(ξ̄)+m̂(ξ̄)−1 − x

n
φ(ξ̄)+m̂(ξ̄)−2).

We will prove only (4.11), being the proof of (4.12) the same up to notational changes.
For every n ∈ N we set

Inl := (xnφ(ξ̄)+l−1, x
n
φ(ξ̄)+l

), Anl := Inl + ΛZ.

For every k, we set un[k] := uX
n[k] and we notice that

un[k] = un[k − 1] + lχAnl .

By arguing as in (2.4), one can check that

(4.13)

E s(Xn[k])− E s(Xn[k − 1])

= 2l

∫
Inl

dx

∫
R

(un[k − 1](x) + l
2 )− (un[k − 1](y) + l

2χAnl (y))

|x− y|1+2s
dy.



DYNAMICS OF SCREENED PARTICLES TOWARDS EQUI-SPACED GROUND STATES 21

By arguing as in (2.5), we get

(4.14)

∫
Inl

dx

∫
Inl

un[k − 1](x) + l
2 −

(
un[k − 1](y) + l

2χAnl (y)
)

|x− y|1+2s
dy = 0.

Let now ρ > 0 be such that the intervals Bρ(ξ), with ξ ∈ S(X) are pairwise disjoint and contained
in (0,Λ).

By construction, for every x, y ∈ R

(4.15)
∣∣∣un[k − 1](x) +

l

2
−
(
un[k − 1](y) +

l

2
χAnl (y)

)∣∣∣ ≤ 2Λ;

moreover, for n large enough, we have that

(4.16) |x− y| ≥ 1

2
|ξ̄ − y| whenever x ∈ Inl , y ∈ R \Bρ(ξ̄).

By (4.15) and (4.16), we deduce

(4.17)

∣∣∣∣ ∫
Inl

dx

∫
R\Bρ(ξ̄)

un[k − 1](x) + l
2 −

(
un[k − 1](y) + l

2χAnl (y)
)

|x− y|1+2s
dy

∣∣∣∣
≤C(s)Λρ−2s(xnφ(ξ̄)+l

− xnφ(ξ̄)+l−1).

Now we compute

(4.18)

∫
Inl

dx

∫
Bρ(ξ̄)\Īnl

un[k − 1](x) + l
2 − u

n[k − 1](y)

|x− y|1+2s
dy

=

∫
Inl

dx

∫ xnφ(ξ̄)+l−1

ξ̄−ρ

un[k − 1](x) + l
2 − u

n[k − 1](y)

|x− y|1+2s
dy

+

∫
Inl

dx

∫ ξ̄+ρ

xn
φ(ξ̄)+l

un[k − 1](x) + l
2 − u

n[k − 1](y)

|x− y|1+2s
dy.

Since

un[k − 1](x)− un[k − 1](y) = −l + x− y whenever x ∈ Inl , y ∈ (ξ̄ − ρ, xnφ(ξ̄)+l−1),

we get

(4.19)

∫
Inl

dx

∫ xnφ(ξ̄)+l−1

ξ̄−ρ

un[k − 1](x) + l
2 − u

n[k − 1](y)

|x− y|1+2s
dy

= − l

2
I s
(
Inl , (ξ̄ − ρ, xnφ(ξ̄)+l−1)

)
+

∫
Inl

dx

∫ xnφ(ξ̄)+l−1

ξ̄−ρ

x− y
(x− y)1+2s

dy

≥ − l

2
I s
(
Inl , (ξ̄ − ρ, xnφ(ξ̄)+l−1)

)
.

Moreover, we observe that

un[k − 1](x)− un[k − 1](y) ≥ 1 + x− y whenever x ∈ Inl , xnφ(ξ̄)+l
≤ y ≤ ξ̄ + ρ.

Whence, by arguing as in (4.21), we deduce

(4.20)

∫
Inl

dx

∫ ξ̄+ρ

xn
φ(ξ̄)+l

un[k − 1](x) + l
2 − u

n[k − 1](y)

|x− y|1+2s
dy

≥
( l

2
+ 1
)
I s
(
Inl , (x

n
φ(ξ̄)+l

, ξ̄ + ρ)
)
− C(s)(xnφ(ξ̄)+l

− xnφ(ξ̄)+l−1),

where in the last inequality we have used that

(4.21)

∫
Inl

dx

∫ ξ̄+ρ

xn
φ(ξ̄)+l

x− y
|x− y|1+2s

dy ≤ −C(s)(xnφ(ξ̄)+l
− xnφ(ξ̄)+l−1).
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Finally, by straightforward computations, we obtain

(4.22)

I s
(
Inl , (ξ̄ − ρ, xnφ(ξ̄)+l−1)

)
≤ 1

2s(1− 2s)
(xnφ(ξ̄)+l

− xnφ(ξ̄)+l−1)1−2s

+ C(s)(xnφ(ξ̄)+l
− xnφ(ξ̄)+l−1),

I s
(
Inl , (x

n
φ(ξ̄)+l

, ξ̄ + ρ)
)
≥ 1

2s(1− 2s)
(xnφ(ξ̄)+l

− xnφ(ξ̄)+l−1)1−2s

− C(s)(xnφ(ξ̄)+l
− xnφ(ξ̄)+l−1).

By (4.13), (4.14), (4.17), (4.18), (4.19), (4.20), (4.22), we obtain (4.11).
Let ̂ ∈ {1, . . . , J}, q̂ ∈ {1, . . . , m̂(ξ̂)} be such that xnφ(ξ̂)+q̂

−xnφ(ξ̂)+q̂−1 ≥
1
Λ∆X(Xn); moreover,

let k̂ be given by: k̂ :=
∑̂−1
j=1(m̂(ξ̂) − 1) if q̂ = m̂(ξ̂) and let k̂ :=

∑̂−1
j=1(m̂(ξ̂) − 1) + q̂ − 1 if

1 ≤ q̂ ≤ m̂(ξ̂)− 1.
By (4.11) and (4.12), we have that

lim inf
n→+∞

E s(X̂n)− E s(Xn)

∆X(Xn)
= lim inf

n→+∞

K∑
k=1

E s(Xn[k])− E s(Xn[k − 1])

∆X(Xn)

≥ 1

Λ
lim inf
n→+∞

E s(Xn[k̂])− E s(Xn[k̂ − 1])

xnφ(ξ̂)+m̂
− xnφ(ξ̂)+m̂−1

− C(s,Λ) = +∞,

whence we deduce the claim. �

With Lemma 4.2 in hand, we are now able to prove Proposition 4.1.

Proof of Proposition 4.1. Assume by contradiction that the maximal existence time T for the
Cauchy problem (4.1) is finite. Notice that, given δ̄ > 0 there exists τ = τ(δ̄) > 0 such that, if
δ(X(t̄)) ≥ δ̄ for some t̄ ≥ 0, then T ≥ t̄+ τ . By definition of maximal time, this implies that

lim
t→T−

δ(X(t)) = 0,

which, by Proposition 2.6, yields

(4.23) lim
t→T−

|∇E s(X(t))| = +∞.

Since X solves the Cauchy problem (4.1) and E s is bounded from below, we have that X is an
absolutely continuous function in [0, T ] and that for all t ∈ (0, T )

E s(X(T ))− E s(X(t))

dist(X(t), X(T ))
= −

∫ T
t
| d
dσE s(X(σ))|dσ

dist(X(t), X(T ))

= −
∫ T
t
|Ẋ(σ)||∇E s(X(σ))|dσ
dist(X(t), X(T ))

≤ − inf
σ∈(t,T )

|∇E s(X(σ))|.

By (4.23) we get

(4.24) lim
t→T−

E s(X(T ))− E s(X(t))

dist(X(t), X(T ))
= −∞.

Let now {tn}n∈N be a sequence of non-decreasing times such that tn → T− (as n → +∞). For

every n ∈ N we set Xn := X(tn). Recalling the definition of X̂n in (4.5), by Lemma 2.4, we have

(4.25) lim
n→+∞

E s(X(T ))− E s(X̂n)

dist(X̂n, X(T ))
= C ∈ R.
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Moreover, by Lemma 4.2 E s(X̂n)− E s(Xn) ≥ 0 for n large enough. Therefore, in view of (4.24)
and (4.6), we have

(4.26)

−∞ = lim
n→+∞

E s(X(T ))− E s(Xn)

dist(Xn, X(T ))

≥ lim inf
n→+∞

E s(X(T ))− E s(X̂n)

dist(X̂n, X(T ))

dist(X̂n, X(T ))

dist(Xn, X(T ))
+ lim inf
n→+∞

E s(X̂n)− E s(Xn)

dist(Xn, X(T ))

≥ − |C|
√

Λ,

thus getting a contradiction. Therefore T = +∞ and δ(X(t)) > 0 for every t ≥ 0.
�

For any given X ∈ XΛ we set

(4.27) bar(X) := (X · e)/Z.

The next result provides the convergence of the gradient flow solution to a global minimizer, with
(optimal in Λ) exponential decay.

Proposition 4.3. Let X0 ∈ RΛ and let X∞ be the unique (up to permutations of the indices)
configuration in CΛ having the same barycenter as X0. Then, denoting by X = X(t) the unique
solution to the Cauchy problem (4.1) we have

dist(X(t), X∞) ≤ dist(X0, X∞)e−γ(s)Λ−2st,

where γ(s) is the constant in (2.15).

Proof. We set X̃Λ := XΛ/(Re) and R̃Λ := RΛ/(Re). For every X ∈ XΛ we denote by X̃ the

Λ-periodic extension of X − (X · e)e and by X̃ the corresponding element in XΛ; in this sense,

X̃ provides the canonical representative of the equivalence class [X] of X in X̃Λ. Let Ẽ s : X̃Λ →
[0,+∞) be defined by Ẽ s([X]) := E s(X̃). Since ∇E s(X + τ) = ∇E s(X) for all τ ∈ R we clearly
have

(4.28) ∇E s(X) · e = 0,

whence we deduce that ∇Ẽ s([X]) = ∇E s(X). From now on we will identify [X] with X̃.

Let X = X(t) be a solution to (4.1). By (4.28), we have that ˙(X · e) = Ẋ ·e = −∇E s(X) ·e = 0,
so that bar(X(t)) = bar(X0) for every t ≥ 0. Moreover, by Proposition 4.1 and by (4.28) we have

that dist(X(t), X∞)→ 0 as t→ +∞ . By the very definition of X̃ we have

˙̃
X = Ẋ − (Ẋ · e)e = −

(
∇E s(X)− (∇E s(X) · e)e

)
= −∇Ẽ s(X̃),

so that dist(X̃(t), X̃∞) → 0 as t → +∞. Finally, by (2.13) we have that Ẽ s is strictly convex on

R̃Λ and by (2.15), using Gronwall inequality, we get that

dist(X(t), X∞) = dist(X̃(t), X̃∞) ≤ dist(X̃0, X̃∞)e−C(s)Λ−2st = dist(X0, X∞)e−C(s)Λ−2st.

�

4.2. The supercritical case 1
2 ≤ s < 1. With the notation introduced in Section 4.1, we will

study the gradient flow system of the energy E s
ε in (1.5) for 1

2 ≤ s < 1 and ε > 0

(4.29)

{
Ẋ(t) = −∇E s

ε (X(t))
X(0) = X0,

where X0 ∈ XΛ. Notice that by Proposition 2.8, for every X0 ∈ XΛ, the Cauchy problem (4.29)
admits a unique and C1 solution Xε = Xε(t) in [0,+∞).

The next result concerns the convergence of the gradient flow solution to a minimizer of the
energy. Before stating it, recall the definitions of bar(·) and of dist(·, ·) in (4.27) and (4.3),
respectively.
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Proposition 4.4. Let 1
2 ≤ s < 1 and let X0 ∈ RΛ. There exists ε̄ = ε̄(s,X0) > 0 such that, for

every 0 < ε < ε̄, denoting by Xε = Xε(t) the unique solution to (4.29) we have that Xε(t) ∈ RΛ

for every t ≥ 0. Moreover, denoting by X∞ the unique - up to a permutation of indices - element
in CΛ such that bar(X∞) = bar(X0), we have that

(4.30) dist(Xε(t), X
∞) ≤ dist(X0, X∞)e−γ(s)Λ−2st,

where γ(s) is the constant in (2.43).

Proof. It is easy to see that (3.15) still holds true with X replaced by X0 and C̄(s) replaced by
some constant C̄(s,X0). Let ωs(·) := C(s)σs(·) be the quantity on the right-hand side of (3.3)

and let δ > 0 be as small as required in Proposition 3.3 and such that C̄(s,X0) < ωs(δ)
2 . We first

show that, for ε small enough,

(4.31) δ(Xε(t)) > δ for every t ≥ 0.

Indeed, assume that (4.31) does not hold true at some time tε ≥ 0; then, since the energy is
decreasing along the flow, Proposition 3.3 would yield (for ε small enough) the following contra-
diction

(4.32) Λσs(ε) +
ωs(δ)

2
≤ E s

ε (Xε(tε)) ≤ E s
ε (X0) ≤ Λσs(ε) + C̄(s,X0) < Λσs(ε) +

ωs(δ)

2
.

Let RΛ
δ denote the class of configurations X satisfying δ(X) > δ; assuming 4ε < δ, we can use

(2.43) to deduce that ∇2E s
ε is strictly positive modulo rigid translations on RΛ

δ , whence, together
with (2.35) and (3.1), we deduce that the set of critical points of E s

ε in RΛ
δ coincides with CΛ.

Finally, by arguing verbatim as in the proof of Proposition 4.3, using (2.43) in place of (2.15), we
obtain the second part of the statement. �

Finally, we analyze the behavior, as ε→ 0, of the solutions Xε = Xε(t) of the Cauchy problem
(4.29). To this end we introduce the following notation. Recalling Remark 1.1, we can define for
1
2 ≤ s < 1, the functional F s : XΛ → RΛ as

F s
λ(X) := (−∆)suX(xλ).

Proposition 4.5. Let 1
2 ≤ s < 1 and let X0 = (X0)ord ∈ RΛ. For every ε > 0, let Xε = Xε(t)

be the unique solution to the Cauchy problem (4.29). Then, Xε converges uniformly in [0,+∞)
(as ε→ 0), with respect to the distance dist(·, ·) in (4.3), to the global solution X0 of the Cauchy
problem

(4.33)

{
Ẋ = −F s(X)
X(0) = X0.

Proof. By (4.31) there exists δ > 0 such that, for ε small enough, the trajectories Xε lie in the
set RΛ

δ of configurations X satisfying δ(X) > δ. By Remark 1.1 and by (2.35), we get that ∇E s
ε

converge uniformly to F s in RΛ
δ . As a consequence, the Cauchy problem (4.33) admits a global

solution X0 and the trajectories Xε converge locally uniformly to X0 as ε → 0. Finally, in view
of the uniform rate of convergence (4.30) of Xε(t) to X∞ as t → +∞, the convergence of Xε to
X0 is uniform on the whole half-line [0,+∞). �

Remark 4.6. Let 1
2 ≤ s < 1. Given δ > 0 and recalling thatRΛ

δ denotes the class of configurations

X satisfying δ(X) > δ, we have that∇E s
ε converges, uniformly inRΛ

δ , to F s (as ε→ 0). Therefore,
E s
ε −C(ε, s,Λ), for suitable choices of the constant C(ε, s,Λ), are uniformly bounded (and uniformly

Lipschitz) in RΛ
δ . Clearly, the constant C(ε, s,Λ) can be chosen equal to E s

ε (CΛ); in fact, one can
check that E s

ε (CΛ)−Λσs(ε) converge (as ε→ 0) to a constant, so that C(ε, s,Λ) could equivalently
be chosen equal to Λσs(ε). Therefore, setting W s

ε := E s
ε − Λσs(ε), by Ascoli-Arzelá Theorem, we

have that, up to a subsequence, W s
ε converge uniformly in RΛ

δ to a function W s
0 (as ε → 0).

Moreover, by uniform convergence of the gradients, ∇W s
0 = F s. As a consequence, the limit

function W s
0 is uniquely determined, up to additive constants, and in fact, using that the whole

sequence W s
ε (CΛ) converges as ε→ 0, we have that W s

0 is uniquely determined. As a consequence,
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the whole sequence W s
ε converges to W s

0 as ε→ 0. In this respect, the solution X0 of (4.33) is the
gradient flow of the renormalized energy W s

0 starting from X0.
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