
A DE GIORGI CONJECTURE ON THE REGULARITY OF MINIMIZERS OF CARTESIAN
AREA IN 1D

GIOVANNI BELLETTINI AND SHOKHRUKH YU. KHOLMATOV

ABSTRACT. We prove a C1,1-regularity of minimizers of the functional∫
I

√
1+ |Du|2 +

∫
I
|u−g|ds, u ∈ BV (I),

provided I ⊂R is a bounded open interval and ∥g∥∞ is sufficiently small, thus partially establishing a De Giorgi
conjecture in dimension one and codimension one. We also extend our result to a suitable anisotropic setting.

1. INTRODUCTION

The non-parametric minimal surfaces, more generally, the prescribed mean curvature surfaces, have been
extensively studied in the literature from the variational perspective (see e.g. [11, 16, 17, 18, 14] and the
references therein). Given an open set Ω ⊂Rn and a sufficiently regular function H : Ω →R, the underlying
equation is rewritten as

div
∇u√

1+ |∇u|2
= H in Ω (1.1)

with a prescribed Dirichlet or Neumann boundary condition, and corresponds to the Euler-Lagrange equation
of the functional ∫

Ω

√
1+ |∇u|2dx+

∫
Ω

Hudx, u ∈C1(Ω). (1.2)

It is well-known that under suitable assumptions on Ω and H, the minimizers are in fact locally C2+α , and
hence solve (1.1) in a classical sense.

In the context of functionals with linear growth, a related problem is the existence and regularity of
minimizers of the (convex, but not strictly convex) functional

F (u) :=
∫

Ω

√
1+ |∇u|2dx+

∫
Ω

|u−g|dx, u ∈C1(Ω),

where g ∈ L1(Ω) is given, see [7]. In this case, the associated Euler-Lagrange equation becomes formally a
differential inclusion of the form

div
∇u√

1+ |∇u|2
∈


{1} in {u > g},
[−1,1] in {u = g},
{−1} in {u < g},

(1.3)

thus, in the sets {u > g} and {u < g}, the subgraph of u has mean curvature equal to 1 and −1, respectively.
Unlike the minimizers of the functional in (1.2), the equation (1.3) may admit nonregular solutions, as

observed in [7]. For instance, if n = 1, Ω = (−1,1) and

g(s) =

{
2 if s ∈ (0,1),
−2 if s ∈ (−1,0),
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one can readily check that the functions

ua,b(s) =


√

2s− s2 +a if s ∈ (0,1),
0 if s = 0,√
−2s− s2 +b if s ∈ (−1,0)

(1.4)

with −1 ≤ b ≤ a ≤ 1 satisfy (1.3) and minimize F , with F (ua,b) = 4+ π

2 . However, any ua,b is not contin-
uously differentiable at s = 0, even worse – it has a jump if a > b.

To study regularity of minimizers of F , in [7] De Giorgi posed the following conjecture, which seems
nontrivial even when n = k = 1.

Conjecture 1.1. For any n,k ≥ 1, there exists σ := σ(n,k) > 0 such that for any open ball B ⊂ Rn and
g ∈ L∞(B;Rk) with ∥g∥∞ ≤ σ the following minimum is achieved:

min
{∫

B

√
1+∑ |Mi(∇u)|2dx+

∫
B
|u−g|dx : u ∈C1(B;Rk)

}
, (1.5)

where the sum is taken over all minors Mi(∇u) of the Jacobian matrix ∇u of u.

A variation of this conjecture for n = 1 and k ≥ 1 has been recently addressed in [5]: using the Sobolev
regularity theory for the minimizers of an Ambrosio-Tortorelli-type functional [2], the authors have shown
the existence of σ :=σ(k, |I|−1/2)> 0, such that for any g∈ L∞(I;Rk) with ∥g∥∞ ≤σ , the minimum problem

min
{∫

I

√
1+ |u′|2 ds+

∫
I
(u−g)2 ds : u ∈C1(I;Rk)

}
(1.6)

admits a unique solution, where I is a bounded interval. This result does not solve Conjecture 1.1, due to
the exponent 2 in the second integral of the functional and to the dependence of σ on the length |I| of the
interval I. To prove the existence of solutions, they observe that if u ∈W 1,∞(I;Rk) minimizes the Γ-limit F
of a suitable sequence of approximating functionals, then it also minimizes the functional in (1.6), which
turns out to be Sobolev regular provided that ∥g∥∞ is small enough depending only on |I|. Next, they show
that u is in fact a solution to the corresponding Euler-Lagrange equation with suitable boundary conditions,
which yield the continuity of the derivative (here the quadratic term (u−g)2 is important in the analysis of
the Euler-Lagrange equation).

In the present paper we consider n = k = 1 and generalize the functional in (1.5) to the anisotropic case
with Lp-fidelity terms. Given an anisotropy (a norm) ϕ in R2, p ∈ [1,+∞), a bounded open interval I ⊂ R
and g ∈ L∞(I), we consider the functional

G (u) =
∫

I
ϕ

o(−Du,1)+
∫

I
|u−g|pds, u ∈ L1(I), (1.7)

where ϕo is the dual of ϕ and∫
I
ϕ

o(−Du,1) := sup
{∫

I
(uh′1 +h2)ds : (h1,h2) ∈C1

c (I;R2), ∥ϕ(h1,h2)∥∞ ≤ 1
}

is the ϕ-total variation of (−Du,L1) when u ∈ BV (I). The main result of this paper reads as follows (see
also Theorem 5.4).

Theorem 1.2. Let ϕ be an anisotropy in R2 such that the unit ball W ϕ := {ϕ ≤ 1} is symmetric with respect
to the coordinate axes and does not have vertical facets. Let I ⊂ R be a bounded open interval. Then there
exists σ := σ(ϕ, p, |I|)> 0 such that for any g ∈ L∞(I) with ∥g∥∞ < σ every minimizer of G is Lipschitz in
I. Additionally, if ϕ is C2 out of the origin and elliptic (see Definition 2.1), then minimizers are C1,1 in I.

In the Euclidean case ϕ = | · |, Theorem 1.2 provides a positive solution to Conjecture 1.1 for n = k = 1,
except that our σ depends on |I| (as in [5]); at the same time we gain an extra regularity of minimizers.

To prove Theorem 1.2, we begin by observing that if g is bounded, then every minimizer u of G is also
bounded, with ∥u∥∞ ≤ ∥g∥∞ (see Lemma 5.1). If, additionally, ϕ is even in each coordinate (equivalently,
W ϕ is symmetric with respect to the coordinate axes), then the subgraph and the epigraph of u are (γ,Λ)-local
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minimizers of the ϕ-perimeter, in the sense of Definition 4.5 below, with suitable constants γ,Λ (Proposition
5.3). Next in Proposition 4.3, we prove that if u satisfies an appropriate L∞-bound depending only on Λ

and |I|, a tangent ϕ-ball condition holds at each point x on the graph of u for all radii r up to α0
Λ
> 0 for a

constant α0 > 0 depending only on ϕ. The uniformity of the radii of these tangent balls allows to estimate
the deviation of the generalized normals of the reduced boundary of the subgraph of u in I ×R from the
vertical direction (see (4.14)) which is away from 0 provided that ∥u∥∞ is small enough depending only on
ϕ, Λ and |I|. In particular, this observation and [19, Lemma 3.10] imply that u is Lipschitz in I (Corollary
4.4). Finally, an explicit choice of σ is made, using the previous L∞-bounds for u (Theorem 5.4). When ϕ is
C2 and elliptic, then the tangent ϕ-ball condition becomes equivalent to the classical tangent ball condition,
and hence u must be C1,1 in I.

Note that the function ua,b in (1.4) shows that in case ∥g∥∞ is large, the validity of a tangent ball condition
may not suffice for the regularity of minimizers of F .

When Λ = 0 and γ =+∞, (γ,Λ)-local minimizers coincide with classical local minimizers. In this case,
assuming ϕ is symmetric with respect to the coordinate axes, we can characterize all possible Cartesian local
minimizers of the ϕ-perimeter (see Theorem 3.1).

The paper is organized as follows. In Section 2 we introduce some preliminaries on anisotropies, Λ-local
minimizers, and ϕ-ball condition for Cartesian Λ-local minimizers. In Section 3 we provide a characteriza-
tion of local minimizers. Some regularity properties of Λ-local minimizers and their further generalizations
are studied in Section 4. Finally, we prove Theorem 1.2 in Section 5.

Acknowledgements. The first author acknowledges the support of the INDAM/GNAMPA. The second au-
thor acknowledges support from the Austrian Science Fund (FWF) Stand-Alone project P 33716. The au-
thors are very grateful to Umberto Massari, whose papers, as well as his book on minimal surfaces written
in collaboration with M. Miranda, have been a source of lasting mathematical inspiration.

2. SOME PRELIMINARIES

In what follows, by Lm (typically for m = 1,2) and Ht we denote the Lebesgue measure in Rm and the
t-dimensional Hausdorff measure in R2. Depending on the context, we use | · | to denote the Euclidean norm
of a vector in R2, the length of a bounded interval on R and the measure of a (Lebesgue) measurable set in
Rm for m = 1,2. The scalar product in R2 is indicated by ⟨·, ·⟩ . The symmetric difference of sets A and B is
denoted A∆B. The symbol Br(x) stands for the Euclidean ball in R2 centered at x and of radius r > 0. The
topological closure, interior and boundary of E ⊂ R2 will be denoted by E, E̊ and ∂E, respectively. Given
an open interval I ⊂ R, we write O(I) and Ob(I) to denote the collection of all open and all bounded open
subsets of I, respectively.

2.1. Anisotropies. Let ϕ : R2 → [0,+∞) be an anisotropy, i.e., a positively one-homogeneous even convex
function with

c ≤ ϕ ≤ 1
c

on the unit circle S1 (2.1)

for some c ∈ (0,1]. We denote by ϕo the dual of ϕ, defined as

ϕ
o(ξ ) = max

ϕ(η)=1
⟨ξ , η⟩ ,

which is also an anisotropy in R2. We say that ϕ is a Ck-anisotropy for some k ≥ 1 provided that ϕ ∈
Ck

loc(R2 \{0}).
The unit ϕ-ball W ϕ := {ϕ ≤ 1} is sometimes called the Wulff shape of ϕ. We also introduce the Wulff

shape of radius r centered at x as W ϕ
r (x) := {ϕ(·−x)≤ r}; clearly W̊ ϕ

r (x) = {ϕ(·−x)< r}. Given η ∈ ∂W ϕ ,
we call any vector ν ∈ ∂ϕo(η) a normal to W ϕ at η , where ∂ is the subdifferential. Note that if W ϕ is not
regular at η , for instance, it has a corner, its set of normals at η forms a nonempty closed convex cone.

We write distϕ(x,S) := inf{ϕ(x− y) : y ∈ S} to denote the ϕ-distance function from a nonempty set S.
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Definition 2.1 (Elliptic anisotropy). An anisotropy ϕ in R2 is elliptic provided that there exists λ > 0 such
that φ −λ | · | is also an anisotropy in R2.

For instance, any anisotropy induced by some positive definite quadratic form, is elliptic. The following
proposition can be found in [13, Appendix A] and provides a characterization of elliptic C2-anisotropies.

Proposition 2.2. For any C2-anisotropy the following assertions are equivalent:
(a) ϕ is elliptic;
(b) ϕo is C2 and elliptic;
(c) there exists r̄ ∈ (0,1) such that for any z ∈ ∂W ϕ there exist xz,yz ∈ R2 such that

Br̄(xz)⊂W ϕ ⊂ B1/r̄(yz) and ∂Br̄(xz)∩∂W ϕ = ∂B1/r̄(yz)∩∂W ϕ = {z}.

Another interesting class of anisotropies is introduced in [4, Section 4]:

Definition 2.3. We say an anisotropy ϕ is partially monotone if

(x1,y1),(x2,y2) ∈ R2, |x1| ≤ |x2|, |y1| ≤ |y2| =⇒ ϕ(x1,y1)≤ ϕ(x2,y2).

According to [4, Appendix A] the following statements are equivalent:
• ϕ is partially monotone;
• ϕo is partially monotone;
• ϕ(x1,x2) = ϕ(|x1|, |x2|) for all x1,x2 ∈ R.

Thus, ϕ is partially monotone if and only if it is even in each coordinates separately. Equivalently, ϕ is
partially monotone if and only if its Wulff shape W ϕ is symmetric with respect to the coordinates axes.

2.2. Anisotropic total variation and perimeter. Let ϕ be an anisotropy in R2 and I ⊆ R be an open
interval. Recall that a function u : I → R has locally bounded variation in I, and we write u ∈ BVloc(I), if its
distributional derivative Du is a Radon measure in I. If, additionally, u ∈ L1(I) and Du is a bounded Radon
measure in I, then u is called a function of bounded variation and is denoted by u ∈ BV (I).

Given u ∈ BVloc(I), the anisotropic area of the graph of u ∈ BVloc(I) is defined by the ϕ-total variation of
the Radon measure (−Du,L1) in an open set J ⋐ I as

Aϕ(u,J) :=
∫

J
ϕ

o(−Du,L1) := sup
{∫

J
(uh′1 +h2)ds : (h1,h2) ∈C1

c (J;R2), ∥ϕ(h1,h2)∥∞ ≤ 1}.

When u ∈W 1,1
loc (I), the Radon-Nikodym theorem implies

Aϕ(u,J) =
∫

J
ϕ

o(−u′,1)ds,

and hence, in the case of the Euclidean anisotropy,

A|·|(u,J) =
∫

J

√
1+u′2 ds.

Note that [6, p. 390]

Aϕ(u, I) =
∫

I
ϕ

o(−u′,1)ds+ϕ
o(Dsu,0)(I)

=
∫

I
ϕ

o(−u′,1)ds+ ∑
x∈Ju

ϕ
o(e1)|u+(x)−u−(x)|+ϕ

o(Dcu,0)(I), (2.2)

where Dsu and Dcu are the singular part of Du with respect to L1 and the Cantor part respectively, Ju is the
jump set of u, u±(x) are the right and left traces of u at x and

ϕ
o(µ,0)(I) = sup

{∫
I
η dµ : η ∈Cc(I), ∥ϕ(η ,0)∥∞ ≤ 1

}
is the partial ϕ-total variation of a Radon measure µ in I.
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A measurable set E ⊂ R2 is called of locally finite perimeter in an open set Ω ⊆ R2, and denoted as
E ∈ BVloc(Ω;{0,1}), provided that the distributional derivative DχE of its characteristic function χE is a
Radon measure in Ω. If, additionally, DχE is a bounded Radon measure in Ω, then E has finite perimeter.
We denote by ∂ ∗E and νE the reduced boundary and the generalized outer unit normal of E, respectively. If
χE ∈ BV (R2), we write E ∈ BV (R2;{0,1}). We refer for instance to [1, 11, 15, 17] for more information on
BV -functions and sets of finite perimeter.

We define the ϕ-perimeter of E in the open set Ω ⊆ R2 as

Pϕ(E,Ω) =
∫

Ω∩∂ ∗E
ϕ

o(νE)dH1.

We also set Pϕ(E) := Pϕ(E,R2).
For a function u : I → R we write

sg(u) := {(s, t) ∈ I ×R : u(s)> t} ⊂ R2

to denote the (strict) subgraph of u (sometimes called hypograph). There is a natural connection between the
anisotropic area of the graph and the anisotropic perimeter of the subgraph.

Lemma 2.4 ([6]). u ∈ BVloc(I) if and only if sg(u) has locally finite perimeter in I ×R. Moreover, in either
case, for any J ⋐ I,

Aϕ(u,J) = Pϕ(sg(u),J×R).

2.3. Local minimizers. In this section we recall the notion of Λ-local minimizer.

Definition 2.5. Let ϕ be an anisotropy on R2 and Λ ≥ 0.
• We call a function u ∈ BVloc(I) a Λ-local minimizer of Aϕ in I if

Aϕ(u,J)≤ Aϕ(u+ψ,J)+Λ

∫
J
|ψ|ds

whenever J ∈ Ob(I) and ψ ∈C1
c (J).

• For an open set Ω ⊆R2 and Λ ≥ 0, we call a set E ∈ BVloc(Ω;{0,1}) a Λ-local minimizer of Pϕ in Ω if

Pϕ(E,Ω′)≤ Pϕ(F,Ω′)+Λ|E∆F |

for any open Ω′ ⋐ Ω and F ∈ BVloc(Ω;{0,1}) with E∆F ⋐ Ω′.

When Λ = 0, following the literature, we shortly call u (resp. E) a local minimizer.

By approximation, one can show that u ∈ BVloc(I) is a Λ-local minimizer of Aϕ in I if and only if

Aϕ(u,J)≤ Aϕ(v,J)+Λ

∫
J
|u− v|ds

whenever J ∈ Ob(I) and v ∈ BVloc(I) with supp(u− v)⋐ J.

Remark 2.6. If I is bounded and u ∈ L∞(I)∩BVloc(I) is a Λ-local minimizer of Aϕ in I, then u ∈ BV (I).
Indeed, for any open interval J ⋐ I consider the test function v = uχI\J. Then

Aϕ(u,J)≤ ϕ(e2)|J|+4∥u∥∞ +2Λ∥u∥∞|J|.

Now letting J ↗ I we find Aϕ(u, I) < +∞ and hence u ∈ BV (I). In particular, the traces of u on ∂ I are
well-defined.

These two notions are linked as follows.

Proposition 2.7. Let u ∈ BVloc(I).
• If the subgraph sg(u) is a Λ-local minimizer of Pϕ in I ×R, then u is a Λ-local minimizer of Aϕ in I.
• If ϕ is partially monotone and u is a Λ-local minimizer of Aϕ in I, then sg(u) is a Λ-local minimizer of

Pϕ in I ×R.



6 G. BELLETTINI AND SH. KHOLMATOV

At the moment we do not have any explicit example showing the necessity of partial monotonicity in the
second assertion of the proposition.

Proof. Let sg(u) be a Λ-local minimizer of Pϕ in I×R, and fix J ∈Ob(I) and ψ ∈C1
c (J). Then sg(u)∆sg(u+

ψ)⋐ J×R and hence, for any bounded open set Ω′ ⋐ I×R compactly containing sg(u)∆sg(u+ψ) we have

Pϕ(sg(u),J×R)−Pϕ(sg(u+ψ),J×R) = Pϕ(sg(u),Ω′)−Pϕ(sg(u+ψ),Ω′)≤ Λ|sg(u)∆sg(u+ψ)|.
By Lemma 2.4 and the equality ∫

J
|u− v|ds = |[sg(u)∆sg(v)]∩ [J×R]|,

the inequality above is equivalent to

Aϕ(u,J)−Aϕ(u+ψ,J)≤ Λ

∫
J
|(u+ψ)−u|ds = Λ

∫
J
|ψ|ds,

and hence u is a Λ-local minimizer of Aϕ in I.
Conversely, assume that ϕ is partially monotone and u is a Λ-local minimizer of Aϕ in I. Let F ∈BVloc(I×

R;{0,1}) be such that sg(u)∆F ⋐ J× (a,b)⋐ I ×R for some J ∈ Ob(I) and a,b ∈ R. Let v be the function,
whose subgraph is the vertical rearrangement of F, i.e.,

v(s) = a+H1({x2 ∈ (a,b) : (s,x2) ∈ F}), s ∈ I.

Note that by the definition of the rearrangement, for a.e. s ∈ I, v(s) satisfies

|u(s)− v(s)|=H1((sg(u)∆F)∩{x1 = s})
so that by the Fubini-Tonelli theorem,∫

J′
|u− v|ds =

∫
J′
H1((sg(u)∆F)∩{x1 = s}

)
ds = |(sg(u)∆F)∩ (J′×R)| for any J′ ∈ Ob(I). (2.3)

Repeating the same arguments of [4, Section 4] (see also [18]) we can show that v∈BV 1
loc(I), supp(u−v)⋐ J,

L1(J′)≤
∫

J′×R
| ⟨DχF , e2⟩ | and

∫
J′
|Dv| ≤

∫
J′×R

| ⟨DχF , e1⟩ | for any J′ ∈ Ob(I), (2.4)

where the Radon measures −⟨DχF , e1⟩ and −⟨DχF , e2⟩ are the horizontal and vertical components of DχF ,
which coincide with ⟨νF , e1⟩H1 ∂ ∗F and ⟨νF , e2⟩H1 ∂ ∗F, respectively. Since ϕo is partially monotone,
by (2.4)

Aϕ(v,J) =
∫

J′
ϕ

o(−Dv,1) =
∫

J′
ϕ

o(|Dv|,L1)≤
∫

J′×R
ϕ

o(| ⟨DχF , e1⟩ |, | ⟨DχF , e2⟩ |
)

=
∫

J′×R
ϕ

o(⟨DχF , e1⟩ ,⟨DχF , e2⟩
)
=

∫
J′×R

ϕ
o(DχF) = Pϕ(F,J′×R) (2.5)

for all J′ ∈ Ob(I).
Now, by Lemma 2.4 and the Λ-local minimality of u,

Pϕ(sg(u),J×R)−Pϕ(sg(v),J×R) = Aϕ(u,J)−Aϕ(v,J)≤ Λ

∫
J
|u− v|ds. (2.6)

Applying (2.3) and (2.5) with J′ = J and recalling that sg(u)∆F ⋐ J× (a,b), from (2.6) we conclude

Pϕ(sg(u),J× (a,b))−Pϕ(F,J× (a,b)) =Pϕ(sg(u),J×R)−Pϕ(F,J×R)
≤Pϕ(sg(u),J×R)−Pϕ(sg(v),J×R)≤ Λ|sg(u)∆F |.

Thus, by definition, sg(u) is a Λ-local minimizer of Pϕ in I ×R. □

Note that if ϕ is partially monotone, then Aϕ(u, ·) = Aϕ(−u, ·), and hence u is Λ-local minimizer if and
only if so is −u. Thus, from Proposition 2.7 we get the following corollary.

Corollary 2.8. Let u ∈ BVloc(I). For any partially monotone anisotropy ϕ, the following assertions are
equivalent:
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• u is a Λ-local minimizer of Aϕ in I;
• −u is a Λ-local minimizer of Aϕ in I;
• the subgraph sg(u) of u is a Λ-local minimizer of Pϕ in I ×R;
• the (strict) epigraph epi(u) := {(s, t) ∈ I ×R : u(s)< t} is a Λ-local minimizer of Pϕ in I ×R.

2.4. Density estimates. The proof of the next lemma is well-known in the literature (see e.g. [8, 13]) and
can be proven, for instance, using the filling-in or cutting-out with balls.

Lemma 2.9. Given an anisotropy ϕ, Λ ≥ 0 and an open set Ω ⊆ R2, let E ∈ BVloc(Ω;{0,1}) be a Λ-local
minimizer of Pϕ in Ω. Assume that E = E(1), i.e., E coincides with its Lebesgue points. Then for any Ω′ ⋐ Ω

there exist constants r0 := r0(ϕ,Λ,dist(∂Ω′,∂Ω))> 0 and q0 := q0(ϕ,Λ) ∈ (0,1/2) such that

P(E,Br(x))≤
r
q0

, x ∈ Ω
′, r ∈ (0,r0),

q0 ≤
|E ∩Br(x)|
|Br(x)|

≤ 1−q0, x ∈ ∂E, r ∈ (0,r0),

and

P(E,Br(x))≥ q0r, x ∈ ∂E, r ∈ (0,r0).

From Lemma 2.9 and a covering argument we immediate deduce that every Λ-local minimizer E = E(1)

in Ω satisfies

∂E = ∂ ∗E, H1(
Ω

′∩ (∂E \∂
∗E)

)
= 0 and H1(

Ω
′∩ (E \ E̊)

)
<+∞ for any open Ω

′ ⋐ Ω. (2.7)

In particular, possibly changing a negligible set, E can be assumed open or closed.

Remark 2.10. Any Λ-local minimizer E of Pϕ in Ω satisfies

Pϕ(E,Bρ(x))≤ Pϕ(F,Bρ(x))+Λ
√

πρ
√
|E∆F |

whenever x ∈ ∂E, Bρ(x) ⋐ Ω and E∆F ⋐ Bρ(x). Thus, E is ω-minimal in the sense of [20] with ω(ρ) =
Λ
√

πρ. In particular, by [20, Theorem 3.4], the set Σ of all points x ∈ Ω∩∂E around which Ω∩∂E is not a
Lipschitz graph is discrete and is empty if W ϕ is not a quadrilateral1.

3. CLASSIFICATION OF LOCAL MINIMIZERS

In this section we classify the minimizers of Aϕ , i.e., study functions u ∈ BVloc(I) satisfying Aϕ(u,J) ≤
Aϕ(v,J) for any open set J ⋐ I and v ∈ BVloc(I) with supp(u− v)⋐ J.

Theorem 3.1 (Characterization of local minimizers). Let ϕ be a partially monotone anisotropy, I ⊆R be an
interval and u ∈ BVloc(I). Let Γu := (I ×R)∩∂ ∗sg(u) be the generalized graph of u and νsg(u) : Γu → S1 be
the unit normal field, outer to (I ×R)∩ sg(u), defined H1-a.e. on Γu. Then u is a local minimizer of Aϕ in I
if and only if there exists a vector N ∈ R2 such that

ϕ(N) = 1 and
〈
N, νsg(u)

〉
= ϕ

o(νsg(u)) H1-a.e. on Γu. (3.1)

Moreover, u is monotone in I.

In the literature the vector N satisfying (3.1) is sometimes called a Cahn-Hoffman vector field associated
to the rectifiable curve Γu.

1In fact, ω-minimal sets are defined for any anisotropy, not necessarily even and [20, Theorem 3.4] shows that in general Σ is
discrete. Moreover, if W ϕ is neither a triangle nor a quadrilateral, then Σ is empty.
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Proof. We expect this result to be well-known in the literature; for completeness we provide the proof.

⇒ . We apply a calibration argument as in [4, Example 2.4]. Assume that there exists a vector N satisfying
(3.1) and let F ∈ BVloc(I ×R;{0,1}) be such that F∆sg(u)⋐ J×R for some J ⋐ I. Then

Pϕ(F,J×R) =
∫
(J×R)∩∂ ∗F

ϕ
o(νF)dH1 ≥

∫
(J×R)∩∂ ∗F

⟨νF , N⟩ dH1.

On the other hand, by the divergence theorem

0 =
∫

F\sg(u)
divN dx−

∫
sg(u)\F

divN dx =
∫
(J×R)∩∂ ∗F

⟨νF , N⟩ dH1 −
∫
(J×R)∩∂ ∗sg(u)

〈
νsg(u), N

〉
dH1,

and thus∫
(J×R)∩∂ ∗F

⟨νF , N⟩ dH1 =
∫
(J×R)∩∂ ∗sg(u)

〈
νsg(u), N

〉
dH1 =

∫
(J×R)∩∂ ∗sg(u)

ϕ
o(νsg(u))dH1 = Pϕ(sg(u),J×R).

Hence sg(u) is a local minimizer of Pϕ in I ×R. Then Corollary 2.8 implies that u is a local minimizer of
Aϕ in I.

⇐ . Assume that u is a local minimizer of Aϕ in I. Since |Du|(J) < +∞ for any open interval J ⋐ I, we
have u ∈ L∞(J). In particular, u ∈ BVloc(I).

Let J ⋐ I be any interval, whose boundary points are not on the jump set of u; such an interval exists
because u has at most countably many jumps. Let v be the function such that v = u in I \ J and linear in J
such that the traces of u and v on ∂J coincide. By the local boundedness of u, sg(u)∆sg(v)⋐ I×R. Then by
the local minimality of u and the anisotropic minimality of segments [10],

Pϕ(sg(u),J×R)≥ Pϕ(sg(v),J×R)≥ Pϕ(sg(u),J×R),

and hence Pϕ(sg(u),J ×R) = Pϕ(sg(v),J ×R). Choose a N ∈ R2 satisfying ϕ(N) = 1 and
〈
ν[p,q], N

〉
=

ϕo(ν[p,q]) on [p,q]. As above, by the divergence formula

0 =
∫

sg(v)\sg(u)
divN dx−

∫
sg(u)\sg(v)

divN dx =
∫
(J×R)∩∂ ∗sg(v)

⟨νF , N⟩ dH1 −
∫
(J×R)∩∂ ∗sg(u)

〈
νsg(u), N

〉
dH1.

Thus,

Pϕ(sg(v),J×R) = Pϕ(sg(u),J×R) =
∫
(J×R)∩∂ ∗sg(u)

ϕ
o(νsg(u))dH

1 ≥
∫
(J×R)∩∂ ∗sg(u)

⟨νF , N⟩ dH1

=
∫
(J×R)∩∂ ∗sg(v)

〈
νsg(v), N

〉
dH1 =

∫
(J×R)∩∂ ∗sg(v)

ϕ
o(νsg(v))dH1 = Pϕ(sg(v),J×R), (3.2)

where in the fourth equality we used that v is linear in J. Thus, all inequalities in (3.2) are in fact equalities.
Since ϕo(νsg(u))≥

〈
νsg(u), N

〉
H1-a.e. on (J×R)∩∂ ∗sg(u) and∫

(J×R)∩∂ ∗sg(u)
ϕ

o(νsg(u))dH
1 =

∫
(J×R)∩∂ ∗sg(u)

⟨νF , N⟩ dH1,

from the Chebyshev inequality it follows that ϕo(νsg(u)) = ⟨νF , N⟩ H1-a.e. on (J ×R)∩ ∂ ∗sg(u). Now,
consider a sequence Jk ↗ I of open relatively compact intervals and the associated constant vectors Nk ∈
∂W ϕ . Notice that each Nk satisfies

ϕ(Nk) = 1 and ϕ
o(νsg(u)) = ⟨νF , Nk⟩ H1-a.e. on (Jk ×R)∩∂

∗sg(u). (3.3)

Since ∂W ϕ is compact, there is no loss of generality in assuming Nk → N for some N ∈ ∂W ϕ . Note that,
given k̄ ∈ N, all Nk with k ≥ k̄ satisfy (3.3) in Jk̄. Since Nk appear linearly in the second relation of (3.3), it
follows that any vector in the closed convex hull Kk̄ of ∪k≥k̄Nk also satisfies (3.3). Clearly, N belongs to Kk̄
for all k̄. As Jk ↗ I, it follows that N satisfies (3.1).
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Finally, let us show that u is monotone, i.e., it admits a monotone representative. Indeed, suppose that
there exist (a,b)⋐ I and t ∈R such that (a, t),(b, t) ∈ Γu. Let us define the competitor v = uχI\(a,b)+ tχ(a,b).
By the local minimality of u, for any open interval J with (a,b)⋐ J ⋐ I we have

0 ≤ Aϕ(v,J)−Aϕ(u,J) =
∫
(a,b)

(
ϕ

o(0,1)dL1 −ϕ
o(−Du,1)

)
+ϕ

o(e1)
(
|v+(a)− v−(a)|− |u+(a)−u−(a)|+ |v+(b)− v−(b)|− |u+(b)−u−(b)|

)
, (3.4)

where in the equality we used (2.2). By the definition of v and the choice of t, u−(a) = v−(a), u+(b) = v+(b),
v+(a) = v−(b) = t and

|v+(a)− v−(a)| ≤ |u+(a)−u−(a)|, |v+(b)− v−(b)| ≤ |u+(b)−u−(b)|.

Moreover, by the partial monotonicity of ϕo we have∫ b

a
ϕ

o(−u′,1)ds ≥
∫ b

a
ϕ

o(0,1)ds,

and hence, by (3.4) and (2.2) we have

0 ≤ ϕ
o(e1)

(
|u+(a)−u−(a)|− |v+(a)− v−(a)|+ |u+(b)−u−(b)|− |v+(b)− v−(b)|

)
≤

∫ b

a
ϕ

o(0,1)ds−
∫ b

a
ϕ

o(−u′,1)ds−ϕ
o(Dsu,0)(a,b)≤ 0.

Thus, all inequalities are in fact equalities, u+(a) = u−(b) = t, u′ = 0 a.e. in (a,b) and Dsu = 0. This implies
u = v in (a,b). This observation shows that for any λ ∈R the set {u = λ} is either empty, or one point or an
interval. Therefore, u is monotone. □

Example 3.2 (Strictly convex anisotropies). Assume that ϕo is strictly convex, i.e.,

ϕ
o(x+ y)< ϕ

o(x)+ϕ
o(y) whenever |x|= |y| with x ̸=±y.

Then for any interval I ⊆ R, the function u ∈ BVloc(I) is a local minimizer of Aϕ if and only if u is linear.
Indeed, by the strict convexity of ϕ, for any N ∈ ∂W ϕ there exists a unique ν ∈ S1 such that ⟨N, ν⟩= ϕo(ν).
Thus, by Theorem 3.1 u is a local minimizer of Aϕ in I if any only if Γu admits a constant unit normal
H1-a.e., which is equivalent to say that u is linear.

Example 3.3 (Square anisotropy). Let W ϕ = [−1,1]2 and I ⊆ R be an interval, Then u is a local minimizer
of Aϕ if and only if u is monotone. Indeed, by Theorem 3.1 every local minimizer is monotone. Conversely,
consider any nondecreasing function u : I →R. By monotonicity, the unit normals νu to Γu lie in the smaller
closed arc of S1 between −e1 (jump part) and e2 (constant part). Thus, any constant vector N = (−1,1) ∈
∂W ϕ satisfies

⟨N, νu⟩= | ⟨νu, e1⟩ |+ | ⟨νu, e2⟩ |= ϕ
o(νu) H1-a.e. on Γu.

Hence, by Theorem 3.1, u is a local minimizer.

Example 3.4 (Lens-shaped anisotropies). Given a > 0, let γ ∈ C1([−a,0]) be a strictly increasing concave
function with γ(−a) = 0 and γ ′(0) = 0. Let W ϕ be the convex set symmetric with respect to the coordinate
axes such that ((−∞,0)× (0,+∞))∩ ∂W ϕ is the graph of γ. Let I ⊆ R be an interval. Then u ∈ BVloc(I) is
a local minimizer of Aϕ in I if any only if either u is linear, or u is monotone and piecewise linear, and all
segments/half-lines of its graph are tangent2 to W ϕ at exactly one of the two points ± e1

ϕ(e1)
.

2I.e., their normal belongs to ∂ϕ(e1).
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4. REGULARITY OF Λ-MINIMIZERS

Now consider the case Λ > 0. In this case a general characterization of Λ-local minimizers as in Theorem
3.1 seems not available. In this section, under some assumptions of ϕ, we show that if the L∞-norm of a
Λ-minimizer of Aϕ in I is sufficiently small, then u is Lipschitz in I.

Theorem 4.1 (Regularity of Λ-minimizers). Let ϕ be a partially monotone anisotropy such that W ϕ does
not have vertical facets (so that ±e1 is an “outer normal” to W ϕ only at ±e1

ϕ(e1)
). Given a bounded open

interval I ⊂ R and Λ > 0, let u ∈ BVloc(I) be a Λ-local minimizer of Aϕ in I satisfying

∥u∥∞ < min
{

α0ϕ(e1)
4Λ

, α0
2Λϕ(e2)

, |I|ϕ(e1)
4Λϕ(e2)

}
, (4.1)

with

α0 = α0(ϕ) := Pϕ (W ϕ )

(2Pϕ (W ϕ )+1)
√

|W ϕ |
> 0. (4.2)

Then u is Lipschitz in I. Moreover, if ϕ is C2 and elliptic, then u ∈C1,1(I), that is, u is continuously differen-
tiable and its derivative u′ is Lipschitz in I.

Note that every partially monotone elliptic anisotropy satisfies the assumption of the theorem. Moreover,
by Remark 2.6, u∈BV (I). Furthermore, by the partial monotonicity of ϕ and Corollary 2.8, the subgraph and
epigraph of u are Λ-local minimizers of Pϕ in I×R. Notice also that when W ϕ is not a quadrilateral, Remark
2.10 ensures that the boundaries of these sets in I ×R are locally given by a Lipschitz graph. However, this
graphicality property of sg(u) and epi(u) does not yield that u itself is Lipschitz; for instance, u may have
jump discontinuities (see the function ua,b in (1.4)).

The proof of Theorem 4.1 is postponed to the end of the section after some ancillary results. We start with
the following property of Wulff shapes.

Lemma 4.2. Let a bounded D ∈ BV (R2;{0,1}) and a Wulff shape W ϕ
r with r > 0 be such that W ϕ

r ∩D = /0
and H1(∂ ∗D∩∂W ϕ

r )> 0. Then∫
∂ ∗D\∂W ϕ

r

ϕ
o(νD)dH1 −

∫
∂ ∗D∩∂W ϕ

r

ϕ
o(νD)dH1 ≥ α0 min

{√
|D|, |D|

r

}
, (4.3)

where α0 > 0 is given in (4.2).

Proof. The proof is similar to [10, Proposition 6.3]. Recall that the isoperimetric inequality (see e.g. [9])
says

Pϕ(E)≥ cϕ

√
|E|, E ∈ BV (R2;{0,1}), (4.4)

where cϕ := Pϕ (W ϕ )√
|W ϕ |

, and the equality in (4.4) holds if and only if E = x+ rW ϕ = W ϕ
r (x) for some x ∈ R2

and r ≥ 0. When ϕ is Euclidean, cϕ =
√

4π.
Fix any α > 1. First consider the case∫

∂ ∗D\∂W ϕ
r

ϕ
o(νD)dH1 ≤ α

∫
∂ ∗D∩∂W ϕ

r

ϕ
o(νD)dH1 (4.5)

Since W ϕ
r ∩D = /0, by [15, Theorem 16.3] one has ∂ ∗(D∪W ϕ

r ) ≈H1 [∂ ∗D \W ϕ
r ]∪ [∂ ∗W ϕ

r \ ∂ ∗D], where
A ≈µ B stands for µ(A∆B) = 0. Therefore,∫

∂ ∗D\∂W ϕ
r

ϕ
o(νD)dH1 −

∫
∂ ∗D∩∂W ϕ

r

ϕ
o(νD)dH1 =

∫
∂ ∗(D∪W ϕ

r )
ϕ

o(νD∪W ϕ
r
)dH1 −

∫
∂W ϕ

r

ϕ
o(νW ϕ

r
)dH1

= Pϕ(D∪W ϕ
r )−Pϕ(W ϕ

r )≥ cϕ

(√
|D∪W ϕ

r |−
√

|W ϕ
r |
)
=

cϕ |D|√
|D∪W ϕ

r |+
√

|W ϕ
r |
, (4.6)
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where in the first inequality we used the isoperimetric inequality (4.4). Moreover, by (4.5) and again by the
isoperimetric inequality and the assumption D∩W ϕ

r = /0,

cϕ

√
|D∪W ϕ

r | ≤ Pϕ(D∪W ϕ
r ) =

∫
∂ ∗D\∂W ϕ

r

ϕ
o(νD)dH1 +

∫
∂ ∗W ϕ

r \∂D
ϕ

o(νW ϕ
r
)dH1

≤ α

∫
∂ ∗D∩∂W ϕ

r

ϕ
o(νD)dH1 +

∫
∂ ∗W ϕ

r \∂D
ϕ

o(νW ϕ
r
)dH1 ≤ α

∫
∂ ∗W ϕ

r

ϕ
o(νW ϕ

r
)dH1 = αPϕ(W ϕ

r ).

Thus, recalling cϕ

√
|W ϕ

r |= Pϕ(W
ϕ
r ), from (4.6) we get∫

∂ ∗D\∂W ϕ
r

ϕ
o(νD)dH1 −

∫
∂ ∗D∩∂W ϕ

r

ϕ
o(νD)dH1 ≥ cϕ |D|

(α+1)Pϕ (W
ϕ
r )

= |D|
(α+1)r

√
|W ϕ |

. (4.7)

Now consider the case ∫
∂ ∗D\∂W ϕ

r

ϕ
o(νD)dH1 > α

∫
∂ ∗D∩∂W ϕ

r

ϕ
o(νD)dH1 (4.8)

so that ∫
∂ ∗D\∂W ϕ

r

ϕ
o(νD)dH1 −

∫
∂ ∗D∩∂W ϕ

r

ϕ
o(νD)dH1 >

(
1− 1

α

)∫
∂ ∗D\∂W ϕ

r

ϕ
o(νD)dH1. (4.9)

Then by the isoperimetric inequality, (4.9) and (4.8) we get

cϕ |D|1/2 ≤Pϕ(D) =
∫

∂ ∗D\∂W ϕ
r

ϕ
o(νD)dH1 +

∫
∂ ∗D∩∂W ϕ

r

ϕ
o(νD)dH1

≤
(

1+
1
α

) ∫
∂ ∗D\∂W ϕ

r

ϕ
o(νD)dH1 ≤ α +1

α −1

(∫
∂ ∗D\∂W ϕ

r

ϕ
o(νD)dH1 −

∫
∂ ∗D∩∂W ϕ

r

ϕ
o(νD)dH1

)
.

Combining this inequality with (4.7) we deduce∫
∂ ∗D\∂W ϕ

r

ϕ
o(νD)dH1 −

∫
∂ ∗D∩∂W ϕ

r

ϕ
o(νD)dH1 ≥ min

{
(α−1)cϕ

√
|D|

α+1 , |D|
(α+1)r

√
|W ϕ |

}
.

Now, choosing α := 1+ 1
Pϕ (W ϕ ) we get (4.3). □

Next we “improve” the regularity of subgraph and epigraph of Λ-minimizers u. For simplicity, let Eu and
Fu be the open representatives of sg(u) and epi(u), respectively (see Lemma 2.9), and let

Γu := (I ×R)∩∂Eu = (I ×R)∩∂Fu

be the (generalized) graph of u in I. By Remark 2.10 Γu is a locally Lipschitz curve3 (thus an arcwise
connected set) and, as the traces of u on ∂ I are well-defined (see Remark 2.6), its topological closure Γu
consists of the union of Γu and two points on ∂ I, whose vertical coordinates correspond to the traces of u.

Proposition 4.3 (Contact ϕ-ball condition). Let ϕ be a partially monotone anisotropy in R2, I ⊂ R be a
bounded open interval, Λ > 0 and u ∈ BVloc(I) be a Λ-local minimizer of Aϕ in I with

∥u∥∞ ≤ α0ϕ(e1)

4Λ
, (4.10)

where α0 is given by (4.2). Then for any r ∈ (0, α0
Λ
) :

(a) if W̊ ϕ
r (y)∩Fu = /0 with Γu ∩∂W̊ ϕ

r (y) ̸= /0, then Γu ∩∂W ϕ
r (y) is connected (possibly singletons);

(b) if W̊ ϕ
r (z)∩Eu = /0 with Γu ∩∂W̊ ϕ

r (z) ̸= /0, then Γu ∩∂W ϕ
r (z) is connected (possibly a singleton);

(c) for any x ∈ Γu there exist ϕ-balls W ϕ
r (y) and W ϕ

r (z) such that W̊ ϕ
r (y)∩Eu = /0, W̊ ϕ

r (z)∩Fu = /0, and
Γu ∩∂W ϕ

r (y) and Γu ∩∂W ϕ
r (z) are connected sets (possibly a singleton) containing x.

3Possibly out of a discrete set when W ϕ is a quadrilateral.
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Eu

Wφ
r (y)

D

x

qp
y

FIG. 1.

Note that the ϕ-balls W̊ ϕ
r (y) and W̊ ϕ

r (z) need not to lie in I ×R. The
assertion (c) is related to the rW ϕ -condition in the literature, see e.g. [3,
Definition 5].

Proof. (a) Assume by contradiction that there exist r ∈ (0, α0
Λ
) and a ϕ-

ball W ϕ
r (y) such that W̊ ϕ

r (y)∩Fu = /0 and the intersection Γu ∩∂W̊ ϕ
r (y) is

not connected. Let us denote by p ̸= q the upmost left and upmost right
points of this intersection; in case there are several upmost left and/or
upmost right points we select those with the smallest vertical coordinate.
Note that p,q ∈ I ×R.

Let D be the nonempty open set enclosed by the subcurves of Γu and
∂W̊ ϕ

r (y) between p and q, not intersecting W̊ ϕ
r (y), see Fig. 1. Since W ϕ is

symmetric with respect to the coordinate axes, y± r e1
ϕ(e1)

are the upmost
left and upmost right points of W ϕ

r (y) and hence,〈
y− r e1

ϕ(e1)
, e1

〉
≤ min{⟨p, e1⟩ ,⟨q, e1⟩} ≤ max{⟨p, e1⟩ ,⟨q, e1⟩} ≤

〈
y− r e1

ϕ(e1)
, e1

〉
.

Thus, recalling that p and q lie on the graph of u,

D ⊂
[
⟨y, e1⟩− r

ϕ(e1)
,⟨y, e1⟩+ r

ϕ(e1)

]
× [−∥u∥∞,∥u∥∞]

and therefore

0 < |D| ≤ 4∥u∥∞r
ϕ(e1)

. (4.11)

First assume that
D ⋐ I ×R.

Then by Λ-minimality, for any open set Ω′ ⋐ I ×R, compactly contaning D ⊂ Eu, we have

Pϕ(Eu,Ω
′)≤ Pϕ(Eu \D,Ω′)+Λ|D|. (4.12)

Since D∩W ϕ
r (y) = /0 and H1(∂ ∗D∩∂W ϕ

r (y))> 0 (because W ϕ
r (y) touches ∂Eu at two different points), we

can apply Lemma 4.2 to get

Pϕ(Eu,Ω
′)−Pϕ(Eu\D,Ω′)=

∫
∂ ∗D\∂W ϕ

r (y)
ϕ

o(νD)dH1−
∫

∂ ∗D∩∂W ϕ
r (y)

ϕ
o(νD)dH1 ≥α0 min

{√
|D|, |D|

r

}
,

and thus

α0 min
{√

|D|, |D|
r

}
≤ Λ|D|. (4.13)

Now, if
√
|D| ≤ |D|

r , then by (4.13), (4.11) and the assumption r < α0
Λ

we have

α0 ≤ Λ
√
|D|< Λ

√
4∥u∥∞α0
Λϕ(e1)

so that ∥u∥∞ > α0ϕ(e1)
4Λ

,

which contradicts (4.10). On the other hand, if |D|
r <

√
|D|, then again by (4.13) and the choice of r,

α0

Λ
≤ r <

α0

Λ
,

a contradiction.
In case

D∩ (∂ I ×R) ̸= /0,
we fix ε > 0 and choose an interval J ⋐ I with |I \ J| < ε and replace D with Dε := D∩ (J ×R). Note that
for small ε, Dε is non-empty and satisfies Dε ∩W ϕ

r (y) = /0 and H1(∂ ∗Dε ∩∂W ϕ
r (y))> 0. Thus, we can use

Eu \Dε as a competitor in (4.12) to get (4.13) with Dε in place of D. Now letting ε → 0+ we conclude (4.13)
and the remaining part of the contradictory argument runs as above.

(b) is proven as (a).
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(c) Fix any x ∈ Γu, r ∈ (0, α0
Λ
) and consider the set

Σ := {y ∈ R2 : distϕ(y,Fu) = distϕ(y,Γu) = r}.
Note that Σ contains two little arcs outside the strip I×R, and hence, tangent balls may have centers outside
it. Note that for any y ∈ Σ the ϕ-ball W̊ ϕ

r (y) is “tangent” to Γu at some point and does not intersect Fu. In
view of (a) and (b), it suffices to show that there exists ȳ ∈ Σ such that x ∈ ∂W ϕ

r (ȳ). Indeed, otherwise, as Γu
is a graph (an arcwise connected set), we could find y ∈ Σ such that Γu∩∂W ϕ

r (y) contains two distinct points
p and q, and x lies in the relative interior of the subcurve of Γu with endpoints p and q, but does not belong
to ∂W ϕ

r (y). However, by (a), the set Γu ∩∂W ϕ
r (y) is connected, and hence x ∈ ∂W ϕ

r (y), a contradiction.
For a similar reason, for any x ∈ Γu and r ∈ (0, α0

Λ
) there exists W ϕ

r (y) such that W̊ ϕ
r (y)∩Eu = /0 and

x ∈ Γu ∩∂W ϕ
r (y). □

One corollary of Proposition 4.3 is the following lipschitzianity of u.

Corollary 4.4. Let ϕ be a partially monotone anisotropy such that W ϕ does not have vertical facets and,
given a bounded open interval I ⊂R and Λ > 0, let u ∈ BVloc(I) be a Λ-local minimizer of Aϕ in I satisfying
(4.1). Then u is Lipschitz in I.

Proof. For simplicity, suppose I = (−a,a) for some a > 0. We claim that there exists λ > 0 such that

⟨νEu , e2⟩ ≥ λ H1-a.e. on (I ×R)∩∂
∗Eu, (4.14)

where νEu is the generalized outer unit normal to Eu. Indeed, by contradiction, assume that there exists a
sequence (xk)⊂ (I×R)∩∂ ∗Eu such that ⟨νEu(xk), e2⟩→ 0. Possibly passing to a not relabelled subsequence,
replacing u with −u and changing the orientation of I (i.e., using the mirror symmetry with respect to the
vertical axis) if necessary, we may assume (xk)⊂ (−a,0]×R and νEu(xk) · e1 →−1 as k →+∞.

Eu

νEu (xk)
Wφ

r (yk)

−a a0

yk
xk

Eu

νEu (xk)

Wφ
r (yk)

−a a0

y′
k

xk Wφ
ρ (y′

k)
yk

(a) (b)

FIG. 2.

Given ε ∈ (0,1), from Proposition 4.3 (c) select r := α0
(1+ε)Λ and W ϕ

r (yk) so that W̊ ϕ
r (yk)∩Fu = /0 and

xk ∈ ∂Γu ∩∂W ϕ
r (yk). Since νEu(xk) is an “outer normal” also to W ϕ

r (yk) at xk and W ϕ has no vertical facets,
it follows that

⟨xk − yk, e2⟩ → 0.
In particular,

xk − yk = ske1 + tke2 with sk → r
ϕ(e1)

and tk → 0. (4.15)

First assume that, up to a not relabelled subsequence, yk ∈ (−a,a]×R for all k ≥ 1, see Fig. 2 (a). Then,
recalling that W̊ ϕ

r (yk)∩ (I ×R)⊂ Eu, we have

∥u∥∞ ≥
〈

yk +
re2

ϕ(e2)
, e2

〉
= ⟨yk, e2⟩+ r

ϕ(e2)
= ⟨xk, e2⟩+ r

ϕ(e2)
− tk, (4.16)

where yk +
re2

ϕ(e2)
is the top point of W ϕ

r (yk) in the vertical direction and in the last equality we used (4.15).
As xk lies on the graph of u, ⟨xk, e2⟩ ≥ −∥u∥∞, and thus, from (4.16) and the definition of r we deduce

2∥u∥∞ ≥ α0
(1+ε)Λϕ(e2)

− tk.
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Now first letting k →+∞ and then ε → 0+ we deduce

∥u∥∞ ≥ α0
2Λϕ(e2)

,

which contradicts (4.1).
Now assume that yk ∈ (a,+∞)×R for all k ≥ 1, see Fig. 2 (b). In this case, by the partial monotonicity of

ϕ, we have r > ρ := aϕ(e1) and hence ρ < α0
Λ
. Applying Proposition 4.3 (c) with r = ρ we can find W ϕ

ρ (y′k)
such that W̊ ϕ

ρ (y′k)∩Fu = /0 with xk ∈ Γu ∩∂W ϕ

ρ (y′k). As above,
〈
xk − y′k, e2

〉
→ 0, i.e.,

xk − y′k = s′ke1 + t ′ke2 with s′k →
ρ

ϕ(e1)
and t ′k → 0.

Since W̊ ϕ

ρ (y′k)∩ (I ×R)⊂ Eu, we can repeat the same arguments leading to (4.16) to get

∥u∥∞ ≥
〈

y′k +
ρe2

ϕ(e2)
, e2

〉
=
〈
y′k, e2

〉
+ ρ

ϕ(e2)
= ⟨xk, e2⟩+ ρ

ϕ(e2)
− t ′k ≥−∥u∥∞ + ρ

ϕ(e2)
− t ′k.

Now letting k →+∞ and recalling the definition of ρ we get

∥u∥∞ ≥ aϕ(e1)
2Λϕ(e2)

= |I|ϕ(e1)
4Λϕ(e2)

,

which again contradicts (4.1).
These contradictions show the validity of (4.14). In view of (4.14) and [19, Lemma 3.10], it follows that

Γu := (I×R)∩∂Eu is the graph of a Lipschitz function (with a Lipschitz constant
√

1/λ 2 −1) in the vertical
direction. Thus, u admits a Lipschitz representative. □

Now we are ready to prove the regularity of Λ-local minimizers.

Proof of Theorem 4.1. By Corollary 4.4, u is Lipschitz in I. Assume now ϕ is C2, elliptic and partially
monotone. Then so is ϕ0. Moreover, the boundary of W ϕ is a closed C2-curve without segments. By
Proposition 4.3, the subgraph Eu := sg(u) of u satisfies uniform4 interior and exterior ϕ-ball conditions at
every point of (I ×R)∩∂Eu. In view of Proposition 2.2 (c) this implies that Eu and Fu satisfies the classical
ball condition of radius ρ > 0 with a suitable ρ > 0 depending only on α0, Λ and the constant r̄ in Proposition
2.2 (c). This allows us to obtain an L∞-bound for the second derivative of u in terms of 1/ρ, which yields
u′ is also Lipschitz in I, see for instance [12, Section 2] for details. This and the lipschitzianity of u imply
u ∈C1,1(I). □

4.1. Some generalizations. In this section we relax the Λ-local minimality assumption on u in Theorem
4.1. To this aim, we start with the following

Definition 4.5 ((γ,Λ)-local minimizer). Given an anisotropy ϕ in R2, γ > 0, Λ ≥ 0, and a bounded open
interval I ⊂ R, we say a function u ∈ BVloc(I)∩L∞(I) is a (γ,Λ)-local minimizer provided that its subgraph
Eu := sg(u) satisfies

Pϕ(Eu,Ω)≤ Pϕ(F,Ω)+Λ|Eu∆F | (4.17)

for any open set Ω ⋐ I × (−γ,γ) and F ∈ BVloc(I ×R;{0,1}) with Eu∆F ⋐ Ω.

Note that (γ,Λ)-local minimizers are not necessarily Λ-local minimizers, as local perturbations are taken
only in I × (−γ,γ). Still, we can readily check that the density estimates in Lemma 2.9 and properties in
(2.7) hold, and therefore we can speak about closed and open representatives of Eu. Moreover, in case I and
u are bounded, we can apply (4.17) with the set D in the proof of Proposition 4.3 provided for instance

γ >
α0ϕ(e1)

2Λ
; (4.18)

for such γ, if ϕ is partially monotone and u satisfies (4.10), all assertions of Proposition 4.3 are valid. This
was sufficient to prove Theorem 4.1. Thus, we have shown:

4The radii of the tangent Wulff shapes can be choosen a constant r ∈ (0, α0
Λ
) along the graph of u.
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Theorem 4.6. Let ϕ be a partially monotone anisotropy in R2 such that W ϕ does not have vertical facets,
γ > 0 satisfy (4.18), Λ > 0 and I ⊂R be a bounded interval. Then every (γ,Λ)-local minimizer u of Aϕ in I,
satisfying the L∞-bound (4.1), is Lipschitz in I. If, additionally, ϕ is elliptic and C2, then u ∈C1,1(I).

5. APPLICATIONS

5.1. Minimizers of the perturbed area. Let ϕ be an anisotropy in R2, I ⊂ R be a bounded open interval
and g ∈ L∞(I). Given p ≥ 1, consider the functional in (1.7), i.e.,

G (u) := Aϕ(u, I)+
∫

I
|u−g|pds, u ∈ L1(I),

where we set G (u) = +∞ if u /∈ BV (I) or u−g /∈ Lp(I).

Lemma 5.1. There exists a minimizer u ∈ L1(I) of G . Moreover, u ∈ BV (I)∩ L∞(I) and ∥u∥∞ ≤ ∥g∥∞.
Finally, if p > 1, then u is unique.

Note that if p = 1, then in general minimizers are not unique, see the Introduction.

Proof. The proof is standard and we provide it for completeness. Let (uk)⊂ L1(I) be a minimizing sequence.
We may assume G (uk)≤ G (0) for all k, therefore,

Aϕ(uk, I)≤ G (0) and
∫

I
|u−g|pds ≤ G (0).

By the convexity of ϕo and (2.1) we have

G (0)≥ Aϕ(uk, I)≥ Vϕ(uk, I)−ϕ
o(e2)|I| ≥ c

∫
I
|Duk|−ϕ

o(e2)|I|.

Moreover, by the Hölder inequality,∫
I
|uk|ds ≤

∫
I
|uk −g|ds+∥g∥∞|I| ≤

(∫
I
|uk −g|pds

)1/p
|I|1−

1
p ∥g∥∞|I| ≤ (G (0))1/p +∥g∥∞|I|.

Thus, the sequence (uk)k is bounded in BV (I) and by the L1-compactness in BV, up to a not relabelled
subsequence, uk → u in L1(I) for some u ∈ BV (I). By the Riesz-Fischer lemma, we may also assume uk → u
a.e. in I. Then by the L1

loc(I)-lower semicontinuity of Aϕ(·, I),
liminf
k→+∞

Aϕ(uk, I)≥ Aϕ(u, I)

and by the Fatou’s lemma

liminf
k→+∞

∫
I
|uk −g|pds ≥

∫
I
|u−g|pds.

Thus, u ∈ BV (I) is a minimizer of G .
To show that ∥u∥∞ ≤ ∥g∥∞, let v := max{u,−∥g∥∞}. Since |u−g| ≥ |v−g| a.e. in I, we have∫

I
|u−g|pds ≥

∫
I
|v−g|pds

with the strict inequality if the set {u <−∥g∥∞} has positive measure. Moreover, by Lemma 2.4∫
I
ϕ

o(−Du,1) = Pϕ(sg(u), I ×R) = Pϕ(epi(u), I ×R).

Since
Pϕ(epi(v), I ×R) = Pϕ(epi(u)∩ [I × (−∥g∥∞,+∞)], I ×R)≤ Pϕ(epi(u), I ×R),

where in the last inequality we used a cutting with half-spaces argument, see e.g. [4], it follows that

Aϕ(u, I) = Pϕ(epi(u), I ×R)≥ Pϕ(epi(v), I ×R)≥ Aϕ(v, I).

Thus G (u) ≥ G (v) with the strict inequality if the set {u < −∥g∥∞} has positive measure. Then the mini-
mality of u implies u ≥−∥g∥∞ a.e. in I. Similarly, we can show u ≤ ∥g∥∞ a.e. in I.

The uniqueness of u in case p > 1 directly follows from the strict convexity of the Lp-norm. □
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Remark 5.2. In fact,
−∥g−∥∞ ≤−∥u−∥∞ ≤ ∥u+∥∞ ≤ ∥g+∥∞,

where a± = max{±a,0} are the positive and negative parts of a.

The next proposition establishes a bridge between minimizers of G and (γ,Λ)-minimizers of Aϕ .

Proposition 5.3. Assume that ϕ is partially monotone and let u ∈ BV (I)∩L∞(I) be a minimizer of G . Then
u is a (γ,Λ)-minimizer of Aϕ in I for any γ > 2∥g∥∞, where

Λ := p(γ +∥g∥∞)
p−1.

Proof. By Lemma 5.1, ∥u∥∞ ≤ ∥g∥∞. Let Eu := sg(u) be the subgraph of u and consider any F ∈ BVloc(I ×
R;{0,1}) with Eu∆F ⋐ I × (−γ,γ). Let v be the vertical rearrangement of F as in the proof of Proposition
2.7. By construction, v ∈ BVloc(I), supp(u− v)⋐ I and hence v ∈ BV (I). In addition, by the Fubini-Tonelli
theorem and the partial monotonicity of ϕ,

|Eu∆F |=
∫

I
|u− v|ds and Pϕ(F, I ×R)≥ Pϕ(sg(v), I ×R) = Aϕ(v, I), (5.1)

see for instance the proof of Proposition 2.7. Moreover, since γ > 2∥u∥∞ and F does not cross the horizontal
sides of the rectangle I × (−γ,γ), we have ∥v∥∞ < γ. Thus, by the minimality of u and (5.1),

Pϕ(Eu, I ×R) = Aϕ(u, I)≤ Aϕ(v, I)+
∫

I

(
|v−g|p −|u−g|p

)
ds

≤ Pϕ(F, I ×R)+ pmax{|v−g|p−1, |u−g|p−1}
∫

I
|u− v|ds ≤ Pϕ(F, I ×R)+Λ|Eu∆F |, (5.2)

where in the last inequality we used

max{|v−g|p−1, |u−g|p−1} ≤max{(∥v∥∞ +∥g∥∞)
p−1,(∥u∥∞ +∥g∥∞)

p−1}
≤max{(γ +∥g∥∞)

p−1,(2∥g∥∞)
p−1} ≤ (γ +∥g∥∞)

p−1.

Since Eu∆F ⋐ I × (−γ,γ), comparing (5.2) with (4.17) we conclude that u is a (γ,Λ)-local minimizer of
Aϕ . □

From Proposition 5.3 and Theorem 4.6 we deduce the following

Theorem 5.4 (Regularity of minimizers). Let ϕ be a partially monotone anisotropy in R2 such that W ϕ does
not have vertical facets, I ⊂ R be a bounded open interval and p ≥ 1. Let

σ :=
(

1
4p−1 p min

{
α0ϕ(e1)

4 , α0
2ϕ(e2)

, |I|ϕ(e1)
4ϕ(e2)

})1/p
, (5.3)

where α0 > 0 is defined in (4.2). Let g ∈ L∞(I) be such that

∥g∥∞ < σ . (5.4)

Then every minimizer u of the functional G in (1.7) is Lipschitz in I. Moreover, if ϕ is elliptic and C2, then
u ∈C1,1(I).

Proof. Let γ := 3σ and Λ := (γ +σ)p−1 p = (4σ)p−1 p > 0. By (5.3),

σ = min
{

α0ϕ(e1)
4Λ

, α0
2Λϕ(e2)

, |I|ϕ(e1)
4Λϕ(e2)

}
.

Thus, γ satisfies (4.18). Since ∥g∥∞ < σ = γ/3, by Proposition 5.3 u is a (γ,Λ)-local minimizer of Aϕ in I.
Moreover, by Lemma 5.1, ∥u∥∞ ≤ ∥g∥∞ and hence, from (5.3) and (5.4) it follows that u satisfies (4.1). Now
the assertions directly follow from Theorem 4.6. □
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When ϕ is Euclidean and p = 1, (5.3) reads as

σ =
1
4

min
{

α0, |I|
}
, (5.5)

where α0 = 2
√

π

4π+1 . Thus, Theorem 5.4 implies that every minimizer of G belongs to C1,1(I) provided that
∥g∥∞ < σ . This positively answers to Conjecture 1.1 in case n = k = 1, except for the dependence of σ on
|I|. Note that our σ depends on |I|, while the σ of [5] (with p = 2) depends only on 1/

√
|I|.

The following example shows that in general the local C1,1-regularity of u in Theorem 5.4 cannot be
improved.

Example 5.5. Let I = (−1,1), ϕ be Euclidean and

g(s) =

{
a if s ∈ (0,1),
−a if s ∈ (−1,0)

for some a ∈ (0,1). Then the C1,1(I)\C2(I)-function (see Fig. 3 (a))

u(s) =



a if s ∈ [
√

2a−a2,1),

a−1+
√

1− (s−
√

2a−a2)2 if s ∈ [0,
√

2a−a2],

1−a−
√

1− (s+
√

2a−a2)2 if s ∈ [−
√

2a−a2,0],

−a if s ∈ (−1,−
√

2a−a2]

is the unique minimizer of G . Indeed, for simplicity, set

h(s) :=
u′(s)√

1+u′(s)2
=


0 if s ∈ [

√
2a−a2,1]

−s+
√

2a−a2 if s ∈ [0,
√

2a−a2]

s+
√

2a−a2 if s ∈ [−
√

2a−a2,0]
0 if s ∈ [−1,−

√
2a−a2]

so that h ∈ Lip([−1,1])∩C∞([−1,1]\{0,±
√

2a−a2}) with

h′ =


0 a.e. in {u = g},
−1 a.e. in {u < g},
1 a.e. in {u > g}.

(5.6)

As h(±1) = 0, for any v ∈ BV (−1,1) by integrating by parts we have∫ 1

−1
(u− v)h′ds = (u− v)h

∣∣1
−1 −

∫ 1

−1
hu′ds+

∫ 1

−1
hdDv

=−
∫ 1

−1

u′2ds√
1+u′2

+
∫ 1

−1

u′dDv√
1+u′2

=−
∫ 1

−1

√
1+u′2ds+

∫ 1

−1

ds+u′dDv√
1+u′2

.

On the other hand, by the explicit expression of h′,∫ 1

−1
(u− v)h′ds =

∫ 1

−1
(u−g)h′ds+

∫ 1

−1
(g− v)h′ds =

∫ 1

−1
|u−g|ds+

∫ 1

−1
(g− v)h′ds.

Combining these two equalities, we deduce∫ 1

−1

√
1+u′2ds+

∫ 1

−1
|u−g|ds =

∫ 1

−1

ds+u′dDv√
1+u′2

+
∫ 1

−1
(v−g)h′ds. (5.7)
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By the Hölder inequality5 and the bound ∥h′∥∞ ≤ 1,∫ 1

−1

ds+u′dDv√
1+u′2

≤
∫ 1

−1

√
1+ |Dv|2 and

∫ 1

−1
(v−g)h′ds ≤

∫ 1

−1
|v−g|ds.

Therefore, from (5.7) we deduce G (u)≤ G (v).
Next, let us show the uniqueness of u. Let v ∈ BV (−1,1) be any other minimizer of G . By Remark 5.2,

(b)(a)

−a

1

−1

a

−
√

2a − a2

√
2a − a2

−a

1

−1

a

FIG. 3. The graph of u in (a) and convex/concave nondecreasing envelope of v in (b).

−a ≤ v ≤ a. Let v∗ : [0,1]→ R be the smallest nondecreasing concave function with v∗ ≥ v a.e. in [0,1] and
v∗ be the largest nondecreasing convex function with v∗ ≤ v a.e. in [0,1]. Set v̄ := v∗χ(0,1]+ v∗χ[−1,0). As
g− v ≥ g− v̄ ≥ 0 in (0,1) and v−g ≥ v̄−g ≥ 0 in (−1,0), we have∫ 1

−1
|g− v|ds ≥

∫ 1

−1
|g− v̄|ds

with strict inequality if {v ̸= v̄} has positive Lebesgue measure. Moreover, as we are replacing noncon-
cave/nonconvex parts of the graph of v with line segments (see Fig. 3 (b)), Aϕ(v, I) ≥ Aϕ(v̄, I). Thus,
G (v̄)≤ G (v). This inequality shows that we may assume v = v̄. In this case, by (2.2)∫ 1

−1

u′ dDv√
1+u′2

=
∫ 1

−1

u′v′ds√
1+u′2

+
√

2a−a2 (v+(0)− v−(0)).

Thus, as above, from (5.7), the Hölder inequality and (5.6) we get

G (u) =
∫ 1

−1

√
1+u′2ds+

∫ 1

−1
|u−g|ds =

∫ 1

−1

(1+u′v′)ds√
1+u′2

+
√

2a−a2 (v+(0)− v−(0))+
∫ 1

−1
|v−g|ds

≤
∫ 1

−1

√
1+ v′2ds+

√
2a−a2 (v+(0)− v−(0))+

∫ 1

−1
|v−g|ds ≤ G (v), (5.8)

where in the last inequality we used
√

2a−a2 < 1. Since both u and v are minimizers, all inequalities in
(5.8) are in fact equalities. In particular, u′ = v′ a.e. in (−1,1) and v+(0) = v−(0). This implies u = v+C
for some real constant C. Then, recalling u(±1) =±a and −a ≤ v ≤ a, we deduce C = 0, i.e., u = v.

Notice that Example 5.5 shows that the threshold σ in (5.5) is not optimal, in general.

Data availability. The paper has no associated data.

5If λ and µ are bounded Radon measures in a bounded open set I ⊂ Rn and p,q ∈C(I), there holds∫
I

pdµ +qdλ ≤
∫

I

√
p2 +q2 d

√
µ2 +λ 2,

where ∫
U

√
µ2 +λ 2 := sup

{∫
U

φdµ +ψdλ : (φ ,ψ) ∈Cc(U ;R2), ∥φ
2 +ψ

2∥∞ ≤ 1
}

is the total variation of (µ,λ ) in the open set U ⊂ I. We apply this inequality with p = (1+u′2)−1/2, q = u′(1+u′2)−1/2, µ = L1

and λ = Dv.
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