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1. Introduction

This note deals with the Generalized Aw-Rascle-Zhang model introduced in [4], namely

(1.1)

{
∂tρ+ ∂x[V (ρ, u)ρ] = 0
∂tu+ V (ρ, u)∂xu = 0.

In the previous expression, the unknown ρ : R+ × R → R denotes the density of cars, and V their
velocity, whereas the unknown u : R+ × R → R represents the driving style of drivers (for instance,
their empty road velocity, that is the velocity they choose when the road is completely free). As such,
it is a Lagrangian marker governed by the transport equation at the second line of (1.1), whereas
the first line of (1.1) expresses the conservation of the total amount of cars. System (1.1) is formally
equivalent to the system of conservation laws

(1.2)

{
∂tρ+ ∂x[V (ρ, u)ρ] = 0
∂t[ρu] + ∂x[V (ρ, u)ρu] = 0,

which, contrary to (1.1), admits a standard notion of solution in the sense of distributions. In the
following we will be only concerned with solutions (ρ, u) such that u is a Lipschitz continuous function,
and hence we will use the formulation (1.1) rather than (1.2): the second equation of (1.1) will be
satisfied as an identity between L∞ functions. The use of (1.1) eases the analysis of the vanishing ρ
case, which requires special care when one uses (1.2).

In this note we deal with the Cauchy problem posed by coupling (1.1) with the initial data

(1.3) ρ(0, ·) = ρ0, u(0, ·) = u0,

and, as in [4], we assume, in view of modeling considerations, that

(1.4) 0 ≤ ρ0 ≤ 1, u0 ∈ L∞(R), u0 ≥ 0

and that1

(1.5) V ∈ C2(R2;R), V ≥ 0, ∂1V ≤ 0, ∂2V ≥ 0, V (1, w) = 0 for every w,

where ∂1V and ∂2V denote the partial derivatives of V with respect to ρ and u, respectively. In the pre-
vious equations and in the following we normalize to 1 the maximal possible car density, corresponding
to bumper-to-bumper packing.

In the present note we establish well-posedness results for (1.1),(1.3) in a suitable class of functions.
Our analysis is motivated by the companion paper [8], to which we refer for a wider description of the

∗: corresponding author.
1To simplify the exposition we require that the conditions (1.5) are satisfied on the whole R2. In the following however

we show that the entropy admissible solution (ρ, u) ∈ [0, 1] × [0, ‖u0‖L∞ ] and hence as a matter of fact it suffices to
require that the conditions are satisfied in that range.
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model and a more complete list of references. Here we only refer to [5] for an in-depth introduction to
traffic flow models.

First, we define our notion of solution of (1.1).

Definition 1.1. We term (ρ, u) ∈ L∞loc(R+ × R) ∩ C0(R+, L
1
loc(R)) ×W 1∞(R+,R)) an entropy ad-

missible solution of (1.1) if the equation at the first line is satisfied in the sense of distributions, the
second as an equality between L∞ functions, and the following entropy condition holds:

(1.6) ∂t|ρ− k|+ ∂x

[
sign[ρ− k]

[
V (ρ, u)ρ− V (k, u)k

]]
+ sign[ρ− k]k∂2V (k, u)∂xu ≤ 0

in the sense of distributions on R+ × R, for every k ∈ R.

Note that, since ρ ∈ C0(R+, L
1
loc(R)) and u is a Lipschitz continuous function, we can give a

meaning to the values ρ(t, ·) and u(t, ·) at every t. An entropy admissible solution of the Cauchy
problem (1.1),(1.3) is then an entropy admissible solution of (1.1) which attains the initial datum (1.3).

With the above definition in place, we can now state our well-posedness result.

Theorem 1.2. Assume V satisfies (1.5) and that the initial data (ρ0, u0) satisfy (1.4), ρ0 ∈ BV (R)
and

(1.7) u0 ∈W 1∞(R), u′0 = z0ρ0, z0 ∈ L∞(R)

and

(1.8) z′0 = ρ0ψ0, for some ψ0 ∈ L∞(R).

Then there is a unique entropy admissible solution of (1.1),(1.3) in the class of functions (ρ, u) ∈
L∞loc(R+;BV (R)) × L∞(R+;W 1∞(R)) such that ∂xu = ρz with z ∈ W 1∞(R+ × R). Also, this unique
solution satisfies

0 ≤ ρ ≤ 1, TotVar ρ(t, ·) ≤ D(t), for every t ≥ 0,(1.9)

0 ≤ u0 ≤ ‖u0‖L∞ , ‖z‖L∞ ≤ ‖z0‖L∞ , ∂xz = ρψ, ‖ψ‖L∞ ≤ ‖ψ0‖L∞ ,(1.10)

where D(t) is a suitable constant depending on t, V, ‖ρ0‖L1 , ‖z0‖L∞ , ‖ψ0‖L∞ and TotVar ρ0. Given
T > 0, we also have the stability estimate

(1.11) ‖u1(t, ·)−u2(t, ·)‖C0 +‖ρ1(t, ·)−ρ2(t, ·)‖L1 ≤ K
[
‖u1(0, ·)−u2(0, ·)‖C0 +‖ρ1(0, ·)−ρ2(0, ·)‖L1

]
for every t ∈ [0, T ], where K is a suitable constant only depending on V and on the quantities
T, ‖ρi(0, ·)‖L1, ‖zi(0, ·)‖L∞ , ‖ψi(0, ·)‖L∞, TotVar ρi(0, ·) for i = 1, 2.

As mentioned before, the primary motivation for our analysis comes from [8], where we recover (1.1)
as the local limit of a nonlocal model. In the proof of the uniqueness part we adapt an argument due
to Tveito and Winther [13], whereas the proof of the existence part is based on an iteration argument
as in [8]. We conclude this introduction with a comparison with some previous works.

Comparison with works on a model for polymer flooding in oil recovery. System (1.1) has
been extensively studied as a model for a multiphase flow used in oil recovery, see for instance [6, 12, 13]
and [10], the last one also containing and in-depth discussion on an extended list of references.

As pointed ou for instance in [12, §3], (1.1) is an hyperbolic system of conservation laws in the
variables (ρ,m = ρu). The eigenvalues of the Jacobian matrix of the flux are λ1 = V + ρ∂1V and
λ2 = V , and hence the systems is strictly hyperbolic if for instance ρ is positive and bounded away from
and 0 and ∂1V < 0, a strictly stronger condition than the third one in (1.5). The second characteristic
field belongs to the Temple class (that is, integral curves of the eigenvectors are straight lines), and is
genuinely nonlinear under assumptions that are fairly reasonable in the traffic flow framework. The
second vector field is linearly degenerate. When the system is strictly hyperbolic, the by-now classical
Glimm-Bressan theory applies, see [3], and yields global-in-time existence and uniqueness for small
total variation data.
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By using the special structure of (1.1), various works like [6, 12] established global-in-time existence
results under much more general assumptions on the data. The reason why we could not directly
apply these results is because they impose conditions on the function V that are natural in view of
applications to oil recovery, but not so much in the vehicular traffic framework, for instance they
typically require that the function ρ 7→ ρV (ρ, u) is s-shaped. Note, however, that these assumptions
imply that there is a curve inside the range of values that the solutions attain where the eigenvalues
switch order (that is, λ1 < λ2 on one side of the curve, and λ1 > λ2 on the other side). Conversely, in
the traffic flow framework, strictly hyperbolicity is lost on the boundary of the phase space domain,
which in principle should make the analysis easier. It seems, therefore, reasonable to expect that one
could, for instance, adapt the techniques of [6, 10, 12], and obtain global-in-time existence results
under assumptions that are natural in view of applications to traffic flows. Note, however, that the
uniqueness result in [13] requires much stronger regularity on u than the one given by the existence
results in [6, 12], and this higher regularity is also what we need in the nonlocal-to-local limit result
in [8]. We also refer to [11] for uniqueness results for the Riemann problem.

Wrapping up, the novelties of the present note are that we adapt the uniqueness result in [13] to cover
assumptions that are natural in the framework of traffic models, and that we provide a new global-
in-time existence proof (under restrictive assumptions on the initial data), based on a argument very
different from the one in [12]. Using the formulation (1.1) allows us to avoid the problems stemming
from the fact that the function u obtained using (1.2) is not uniquely defined on the sets where ρ
vanishes. We also refer to the ongoing project [1] for other results on the Generalized Aw-Rascle-
Zhang system.

Outline. The exposition is organized as follows. In §2 we establish the existence part of Theorem 1.2,
in §3 the uniqueness and stability part.

Notation. We denote by C(a1, . . . , an) a constant only depending on the quantities a1, . . . , an. Its
precise value can vary from occurrence to occurrence.

2. Existence

To establish the existence part of Theorem 1.2 proceed as follows: in §2.1 we construct the approx-
imating sequence, in §2.2 we pass to the limit and in §2.3 we establish the proof of Lemma 2.1.

2.1. Construction of the approximation. First of all, we point out that with no loss of regularity
we can assume that the initial datum is compactly supported, that is

(2.1) ρ0(x) = 0 for a.e x /∈ [−R,R] for some R > 0.

Indeed, once we establish the existence part of Theorem 1.2 under the further assumption (2.1), we
can remove it by relying on a fairly standard approximation argument. We then proceed according to
the following steps.
Step 1: we set ρ1(t, x) := ρ0(x), u1(t, x) = u0(x). Next, we fix τ0, to be determined in the following,
and (ρn, un) satisfying

(2.2) 0 ≤ ρn ≤ 1 on ]0, τ0[×R, ‖ρ(t, ·)‖L1(R) ≤ ‖ρ0‖L1 , TotVarρn(t, ·) ≤M0 for every t ∈]0, τ0[,

with M0 to be determined in the following, and

‖un‖L∞ ≤ ‖u0‖L∞ , ∂xun = ρnzn, ‖zn‖L∞ ≤ ‖z0‖L∞(2.3)

∂xzn = ρnψn, ‖ψn‖L∞ ≤ ‖ψ0‖L∞ .(2.4)

On the time interval t ∈]0, τ0[, we construct ρn+1 as the entropy admissible solution of the Cauchy
problem

(2.5)

{
∂tρn+1 + ∂x[V (ρn+1, un)ρn+1] = 0
ρn+1(0, ·) = ρ0,
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which immediately yields

(2.6) ‖ρn+1(t, ·)‖L1 ≤ ‖ρ0‖L1 .

Step 2: we show that

(2.7) 0 ≤ ρn+1 ≤ 1 on ]0, τ0[×R.

Towards this end, we point out that the definition of entropy admissible solution (1.6) is equivalent to
requiring for every k ∈ R the equations

(2.8) ∂t[ρ− k]+ + ∂x

[
1ρ≥k

[
V (ρ, u)ρ− V (k, u)k

]]
+ 1ρ≥kk∂2V (k, u)∂xu ≤ 0

and

(2.9) ∂t[ρ− k]− − ∂x
[
1ρ≤k

[
V (ρ, u)ρ− V (k, u)k

]]
− 1ρ≤kk∂2V (k, u)∂xu ≤ 0,

are both satisfied in the sense of distributions. In the previous expression [·]+ and [·]− denote the
positive and negative part, respectively. By space-integrating over R the inequality (2.8) with k = 1
and recalling (1.4) and the identity V (1, u) ≡ 0 we obtain the upper bound in (2.7). By doing the
same to (2.9) with k = 0 we get the lower bound. This handwaving computation can be made rigorous
by (for instance) a fairly standard vanishing viscosity approximation argument.
Step 3: we establish a bound on the total variation of ρn+1. Again, we only provide a formal proof,
which can be formally justified through a standard vanishing viscosity argument. We set ∂xρn+1 :=
rn+1, which yields

0 = ∂trn+1 + ∂x[V (ρn+1, un)rn+1] + ∂x[∂xV (ρn+1, un)ρn+1]

= ∂trn+1 + ∂x

[
[V (ρn+1, un) + ∂1V ρn+1]rn+1

]
+ ∂x[∂2V ∂xunρn+1].

(2.10)

By recalling that ∂xun = ρnzn we get

∂x[∂2V ∂xunρn+1] =[∂21V rn+1 + ∂22V ∂xun]∂xunρn+1

+ ∂2V ρn+1[∂xznρn + zn∂xρn] + ∂2V ∂xunrn+1

and by plugging the above formula into (2.10), multiplying times sign[rn+1] and space integrating we
get

d

dt

∫
R
|rn+1(t, x)|dx ≤ ‖∂xun‖L∞‖ρn+1‖L∞

(
‖∂21V ‖C0

∫
R
|rn+1(t, x)|dx+ ‖∂22V ‖C0

∫
R
|∂xun(t, x)|dx

)
+ ‖∂2V ‖C0‖ρn+1‖L∞

[
‖∂xzn‖L∞‖ρn‖L1 + ‖zn‖L∞

∫
R
|∂xρn(t, x)|dx

]
+ ‖∂2V ‖C0‖∂xun‖L∞

∫
R
|rn+1(t, x)|dx

(2.2),(2.3),(2.4)

≤ C(V, ‖z0‖L∞)

∫
R
|rn+1(t, x)|dx+ C(V, ‖z0‖L∞ , ‖ψ0‖L∞ , ‖ρ0‖L1) + C(V, ‖z0‖L∞)M0.

(2.11)

By applying the Comparison Theorem for ODEs we conclude that

sup
t∈[0,τ0]

∫
R
|rn+1(t, x)|dx ≤ [TotVar ρ0] exp(C̃τ0) + [M0 + 1][exp(C̃τ0)− 1],(2.12)

for some C̃ = C(V, ‖z0‖L∞ , ‖ψ0‖L∞ , ‖ρ0‖L1). We now set

(2.13) M0 := 4TotVarρ0 + 4

and choose τ0 in such a way that

(2.14) [exp(C̃τ0)− 1] ≤ 2τ0 ≤ 1/2
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and by using (2.12) we arrive at

(2.15) TotVar ρn+1(t, ·) ≤ [1/2 + 1]TotVarρ0 + 1/2[M0 + 1] ≤M0 for t ∈ [0, τ0].

Step 4: we define un+1. Note that we cannot exactly rely on the classical method of characteristics
owing to the low regularity of ρn+1 and henceforth of the vector field V (ρn+1, un). To circumvent this
obstruction, we consider the Cauchy problem obtained by coupling the equation

(2.16) ∂t[vn+1] + ∂x[V (ρn+1, un)vn+1] = 0

with the initial datum vn+1(0, ·) = ψ0ρ0. Given (2.5), existence and uniqueness results for (2.16) are
available under very weak regularity assumptions on V (ρn+1, un) and ρn+1, see [9, §4]. In the following
for technical reasons we rely on [2, Theorem 2.5] applied with p = ρn+1, b = V (ρn+1, un). We conclude
that there is a unique solution of the Cauchy problem satisfying |vn+1| ≤ ‖ψ0‖L∞ρn+1. Note by setting
ψn+1 := vn+1/ρn+1 if ρn+1 > 0 and ψn+1 = 0 otherwise we obtain

(2.17) vn+1 = ψn+1ρn+1, ‖ψn+1‖L∞ ≤ ‖ψ0‖L∞

Note furthermore that ‖vn+1(t, ·)‖L1 ≤ ‖ψn+1(t, ·)‖L∞‖ρn+1(t, ·)‖L1 ≤ ‖ψ0‖L∞‖ρ0‖L1 .
To define zn+1, we point out that, owing to the identity z′0 = ρ0ψ0 and to the L1 and L∞ bounds

on ρ0 and ψ0, respectively, the function z0 is of bounded total variation and hence the limit z∞ :=
limx→−∞ z0(x) exists and is finite. We then set

(2.18) zn+1(t, x) := z∞ +

∫ x

−∞
ρn+1ψn+1(t, x)dx,

which is an L∞(R+;W 1,∞(R)) function owing to the L1 and the L∞ bounds on ρn+1 and ψn+1, and
furtheremore satisfies the initial condition zn+1 = z0ψ0 due to (1.8). Note that, owing to (2.16), we
have the identity

(2.19) ∂tzn+1 + V (ρn+1, un)∂xzn+1 = 0 a.e. (t, x) ∈ R+ × R.

We now want to establish the estimate

(2.20) |zn+1(t, x)| ≤ ‖z0‖L∞ for every (t, x) ∈ R+ × R.

If V (ρn+1, un) were a regular vector field, we could apply the classical method of characteristic
and (2.20) would straigthforwardly follow from (2.19). Owing to the low regularity of V (ρn+1, un), the
proof of (2.20) is slightly more involved, and we now provide its details.

We fix a test function ϕ and use ϕzn+1 as a test function in the definition of distributional solution
of (2.5). We conclude that vn+1 = ρn+1zn+1 satisfies the very same continuity equation (2.16), now
coupled with the initial datum ρ0z0. We apply again [2, Theorem 2.5] and conclude that the Cauchy
problem obtained by coupling (2.16) with the initial datum ρ0z0 admits a unique solution satisfying
|vn+1| ≤ Mρn+1 for some M > 0, and that one can take M = ‖z0‖L∞ . By uniqueness, this solution
must coincide with ρn+1zn+1, and this implies that

(2.21) |zn+1(t, x)| ≤ ‖z0‖L∞ for ρn+1L2 a.e. (t, x) ∈ R+ × R.

We now show that (2.21) implies (2.20). We fix t > 0, and point out that owing to (2.18) zn+1(t, ·) is a
Lipschitz continuous function. Let Λn+1(t) denote the open set of x-s such that zn+1(t, x) > ‖z0‖L∞ .
We decompose Λn+1(t) as a countable union of disjoint intervals,

Λn+1(t) =
∞⋃
k=1

Ik.

We now fix k ∈ N and assume by contradiction that Ik 6= ∅. If Ik = R, then owing to (2.21) we have
ρn+1(t, ·) = 0 a.e on R, and owing to (2.18) this yields zn+1(t, ·) = z∞. Since z∞ is the asymptotic
state of z0, then |z∞| ≤ ‖z0‖L∞ and hence this contradicts the definition of Λn+1(t). If Ik 6= R, then
Ik =]ak, bk[ and at least one between ak and bk is finite. Just to fix the ideas, let us assume that



6 E. MARCONI AND L. V. SPINOLO

ak ∈ R, then we observe that owing to (2.21) we must have ρn+1 = 0 a.e. on Λn+1(t). We conclude
that for every x ∈ Ik we have

|zn+1(t, x)| =
∣∣∣∣zn+1(t, ak) +

∫ x

ak

vn+1(t, x)dx

∣∣∣∣ ≤ |zn+1(t, ak)|+
∫ x

ak

|ψn+1| ρn+1(t, x)︸ ︷︷ ︸
=0

dx

= |zn+1(t, ak)| ≤ ‖z0‖L∞ ,
where in the last equality we have used that ak /∈ Λn+1(t). This contradicts the definition of Λn+1(t)
an hence establishes (2.20).

We now set

(2.22) un+1(t, x) := u∞ +

∫ x

−∞
zn+1ρn+1(t, x)dx,

where u∞ is the limit at −∞ of function u0, which is of bounded total variation owing to the identity
u′0 = ρ0z0. By following the same argument as before we get2

(2.23) 0 ≤ un+1(t, ·) ≤ ‖u0‖L∞
and also

(2.24) ∂tun+1 + V (ρn+1, un+1)∂xun+1 = 0 a.e (t, x) ∈ R+ × R.

Note furthermore that the previous analisis yields

(2.25) ∂xun+1 = ρn+1zn+1

and

(2.26) ∂xzn+1 = ρn+1ψn+1, ‖ψn+1‖L∞ ≤ ‖ψ0‖L∞ .
Step 5: by combining (2.6), (2.7) and (2.15) we get that ρn+1 satisfies (2.2), by combining (2.25),(2.23)
and (2.26) we get that un+1 satisfies (2.3) and (2.4), which implies that we can iterate the construction
for every n ∈ N.

2.2. Passage to the limit. We fix the same τ0 as in (2.14). We recall the bounds (2.7) and (2.15)
and control the time derivative by using the equation at the first line of (2.5) combined with the
Volpert Chain Rule and the bound on ∂xun obtained by combining (2.20) and (2.25). We apply the
Helly-Fréchet-Kolmogorov Compactness Theorem and we conclude that there is {ρnk

} such that

(2.27) ρnk
→ ρ strongly in L1([0, τ0]× R),

for some limit function ρ such that TotVar ρ(t, ·) ≤ M0 for a.e. t ∈ [0, τ0]. Note that the above
convergence occurs in L1 and not only in L1

loc because owing to (2.1) for every t ∈ [0, τ0] the function

ρn+1(t, ·) vanishes outside the interval [−R̃, R̃] for some R̃ depending on R and τ0 but independent of
n.

Next, we recall the bound (2.25), the identity ∂xzn+1 = ρn+1ψn+1 (which follows from (2.18)) and
the bound in (2.17). We also use the equation (2.19) to deduce a uniform bound on the time derivative.
We apply the Arzelà Ascoli Theorem and conclude that there is subsequence (which to simplify the
notation we do not relabel) such that {znk

} converges to some limit function z uniformly on the
compact subsets of [0, τ0]×R. Note furthermore that ∂xznk

an ∂tznk
converge to ∂xz and ∂tz weakly∗

in L∞([0, τ0] × R) and that we have the identity ∂xz = ρψ, where ψ is an accumulation point of the
sequence {ψn}n∈N in the weak∗ topology and as such satisfies the bound in (1.10).

By combining (2.27) with the uniform convergence of {znk
} we can pass to the limit in the iden-

tity (2.22) and conclude that the sequence {unk
} converges uniformly on [0, τ0]×R to the limit function

(2.28) u(t, x) := u∞ +

∫ x

−∞
zρ(t, x)dx.

2Note that the bound from below in (2.23) is not mentioned in the statement of [2, Theorem 2.5], but it is a straight-
forward consequence of the proof, given that u0 ≥ 0.
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By passing to the limit in (2.23) we obtain the first two inequalities in (1.10). Assume for a moment
that we have shown that the sequence {unk−1} converges to the very same limit u given by (2.28)3

Then we can pass to the limit in the distributional formulation (and in the entropy inequality) for the
equation at the first line of (2.5) and obtain an entropy admissible solution of the equation at the first
line of (1.1). By passing to the limit in the identity (2.24) we also obtain the equation at the second
line of (1.1). Note furtheremore that the identity ∂xu = zρ and the bound ‖z‖L∞ ≤ ‖z0‖L∞ directly
follow from (2.28) and from (2.20) and the uniform convergence of {znk

}.
The above argument establishes existence of an admissible solution of the Cauchy problem obtained

by coupling (1.1) with (1.3) defined on the time interval [0, τ0]. To define a global in time solution,

it suffices to point out that the value of the constant C̃ in (2.12) and henceforth the value of τ0
in (2.14) does not depend on the total variation of the initial datum. By using the bounds (2.21)

and ‖ρ(t, ·)‖L1 ≤ ‖ρ0‖L1 we conclude that the constants C̃ and τ0 only depend on quantities that are
preserved by the admissible solution and hence that we can iterate the construction and in this way
establish global in time existence.

To conclude the proof of the existence part of Theorem 1.2 we are thus left to show that the sequence
{unk−1} converges to the same limit as {unk

}. Towards this end, we introduce the functional

Φn(t) := ‖[ρn − ρn+1](t, ·)‖L1 + ‖[∂xun − ∂xun−1](t, ·)‖L1

and introduce the following result.

Lemma 2.1. We have

(2.29) lim
n→+∞

Φn(t)→ 0 for every t ≥ 0.

We pospone the proof of Lemma 2.1 to the next paragraph and we now show that (2.29) implies the
sequence {unk−1} converges to the same limit as {unk

} on [0, τ0]×R. We recall that, owing to (2.22),
limx→−∞ un(t, x) = u∞ for every n and every t ∈ [0, τ0], which in particular implies

(2.30) ‖un − un−1‖C0 ≤ ‖∂xun − ∂xun−1‖L1 .

By combining (2.30) with (2.29) we then conclude that limn→+∞ ‖un(t, ·)−un−1(t, ·)‖C0 = 0 for every
t ≥ 0.

2.3. Proof of Lemma 2.1. We apply the stability result proven in [7, Theorem 2.6] (see also Remark
2.8 therein about entropy solutions) for conservation laws with space-time dependent fluxes P =
P (t, x, ρ), Q = Q(t, x, ρ). In our setting the fluxes take the form

(t, x, ρ) 7→ P (t, x, ρ)
.
= ρn+1V (ρn+1, un(t, x)), (t, x, ρ) 7→ Q(t, x, ρ)

.
= ρn+1V (ρn, un−1(t, x)).

and the stability estimate in [7] implies that for every t ≥ 0 we have

∫
R
|ρn+1(t, x)− ρn(t, x)|dx ≤

∫
R
|ρn+1(0, x)− ρn(0, x)|dx︸ ︷︷ ︸

=0

+ C(V )

∫ t

0
(‖zn(s)‖L∞ + ‖zn−1(s)‖L∞)

∫
R
|ρn+1(s, x)− ρn(s, x)|dxds

+ C(V )

∫ t

0

∫
R

(|∂xun||un − un−1|+ |∂xun − ∂xun−1|) dxds︸ ︷︷ ︸
:=J

+C(V )M0

∫ t

0
‖(un(s, ·)− un−1(s, ·))‖L∞︸ ︷︷ ︸
≤‖[∂xun−∂xun−1](s,·)‖L1 by (2.30)

ds

(2.31)

3By compactness, {unk−1} converges up to subsequences to some limit function v, but in principle u and v could be
different.
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where M0 is the same as in (2.2). We now control the term J as follows:

J ≤
∫ t

0
‖[un − un−1](s, ·)‖L∞

∫
R
|∂xun|(s, x)dx︸ ︷︷ ︸
≤‖z0‖L∞‖ρ0‖L1

ds+

∫ t

0
‖[∂xun − ∂xun−1](s, ·)‖L1ds

(2.30)

≤ C(‖z0‖L∞ , ‖ρ0‖L1)

∫ t

0
‖[∂xun − ∂xun−1](s, ·)‖L1ds,

(2.32)

and conclude that

(2.33)

∫
R
|ρn+1(t, x)− ρn(t, x)|dx ≤ C(V,M0, ‖z0‖L∞ , ‖ρ0‖L1)

∫ t

0
Φn(s)ds

We now point out that

‖[∂xun − ∂xun−1](t, ·)‖L1 = ‖[ρnzn − ρn−1zn−1](t, ·)‖L1

≤ ‖ρn[zn − zn−1](t, ·)‖L1 + ‖zn−1‖L∞‖[ρn − ρn−1](t, ·)‖L1

(2.33)

≤ ‖ρn[zn − zn−1]‖L1 + C(V,M0, ‖z0‖L∞ , ‖ρ0‖L1)

∫ t

0
Φn−1(s)ds

(2.34)

and that

∂t[ρnzn] + ∂x[V (ρn, un−1)ρnzn] = 0, ∂t[ρn−1zn−1] + ∂x[V (ρn−1, un−2)ρn−1zn−1] = 0,

which implies (by using the equation for ρn and ρn−1 and the Volpert Chain Rule)

0 = ∂t
[
ρn[zn − zn−1]

]
+ ∂t

[
zn−1[ρn − ρn−1]

]
+ ∂x

[
V (ρn, un−1)ρn[zn − zn−1]

]
+ ∂x

[
zn−1[V (ρn, un−1)ρn − V (ρn−1, un−2)ρn−1]

]
= ∂t

[
ρn[zn − zn−1]

]
+ ∂tzn−1[ρn − ρn−1] + zn−1∂t[ρn − ρn−1] + ∂x

[
V (ρn, un−1)ρn[zn − zn−1]

]
+ ∂xzn−1[V (ρn, un−1)ρn − V (ρn−1, un−2)ρn−1] + zn−1∂x

[
V (ρn, un−1)ρn − V (ρn−1, un−2)ρn−1]

(2.5)
= ∂t

[
ρn[zn − zn−1]

]
+ ∂tzn−1[ρn − ρn−1] + ∂x

[
V (ρn, un−1)ρn[zn − zn−1]

]
+ ∂xzn−1[V (ρn, un−1)ρn − V (ρn−1, un−2)ρn−1]

(2.19)
= ∂t

[
ρn[zn − zn−1]

]
− V (ρn−1, un−2)∂xzn−1[ρn − ρn−1] + ∂x

[
V (ρn, un−1)ρn[zn − zn−1]

]
+ ∂xzn−1[V (ρn, un−1)ρn − V (ρn−1, un−2)ρn−1].

By recalling the equation (2.5) for ρn and the Volpert Chain Rule we infer that the Lipschitz continuous
function zn − zn−1 satisfies

0 = ρn
[
∂t[zn − zn−1] + V (ρn, un−1)∂x[zn − zn−1]

]
− V (ρn−1, un−2)∂xzn−1[ρn − ρn−1]

+ ∂xzn−1[V (ρn, un−1)ρn − V (ρn−1, un−2)ρn−1],

which by multiplying times sign(zn − zn−1) yields

0 = ρn
[
∂t|zn − zn−1|+ V (ρn, un−1)∂x|zn − zn−1|

]
− sign(zn − zn−1)V (ρn−1, un−2)∂xzn−1[ρn − ρn−1]

+ sign(zn − zn−1)∂xzn−1[V (ρn, un−1)ρn − V (ρn−1, un−2)ρn−1] = 0.

By using again the equation for ρn we then arrive at

0 = ∂t
[
ρn|zn − zn−1|

]
− sign(zn − zn−1)V (ρn−1, un−2)∂xzn−1[ρn − ρn−1] + ∂x

[
V (ρn, un−1)ρn|zn − zn−1|

]
+ sign(zn − zn−1)∂xzn−1[V (ρn, un−1)ρn − V (ρn−1, un−2)ρn−1]
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and by integrating the above inequality in space and time we arrive at

∫
R
ρn|zn − zn−1|(t, ·)dx ≤ C(V )‖∂xzn−1‖L∞

(∫ t

0

∫
R
|ρn − ρn−1|dxds+

∫ t

0

∫
R
ρn|un−1 − un−2|dxds

)
(2.7),(2.17)

≤ C(V, ‖ψ0‖L∞)

∫ t

0

∫
R
|ρn − ρn−1|dxds

+ C(V, ‖ψ0‖L∞)

∫ t

0
‖[un−1(s, ·)− un−2(s, ·))‖L∞

∫
R
ρn(s, x)dx︸ ︷︷ ︸
≤‖ρ0‖L1

ds

(2.30)

≤ C(V, ‖ψ0‖L∞ , ‖ρ0‖L1)

∫ t

0
Φn−1(s)ds

(2.35)

By recalling (2.33) and (2.34) we eventually conclude that

Φn(t) ≤ C(V,M0, ‖z0‖L∞ , ‖ρ0‖L1)

∫ t

0
Φn(s)ds+ C(V, ‖ψ0‖L∞)

∫ t

0
Φn−1(s)ds,

which owing to the Grönwall Lemma implies that for every 0 ≤ τ ≤ t we have

Φn(t) ≤ Φn(τ) exp
(
C(V,M0, ‖z0‖L∞ , ‖ρ0‖L1)[t− τ ]

)
+ C(V,M0, ‖z0‖L∞ , ‖ρ0‖L1)[exp

(
C(V,M0, ‖z0‖L∞ , ‖ρ0‖L1)[t− τ ]

)
− 1] sup

s∈[τ,t]
Φn−1(s).

(2.36)

We now argue iteratively: first, we choose τ = 0 and δ > 0 in such a way that

[exp
(
C(V,M0, ‖z0‖L∞ , ‖ρ0‖L1δ)− 1] ≤ 1/2.

Owing to (2.36) and to the equality Φn(0) = 0 this implies supt∈[0,δ] Φn(t) ≤ 1/2 supt∈[0,δ] Φn−1(t)

and hence, by induction on n, supt∈[0,δ] Φn(t) ≤ (1/2)n supt∈[0,δ] Φ0(t). Next, we plug this inequality

into (2.36) applied with τ = δ, and get

sup
t∈[δ,2δ]

Φn(t) ≤ 3/2 (1/2)n sup
t∈[0,δ]

Φ0(t) + 1/2 sup
t∈[δ,2δ]

Φn−1(t),

which by induction yields supt∈[δ,2δ] Φn(t) ≤ (n + 1)(1/2)n[3/2 supt∈[0,2δ] Φ0(t)]. By iterating the above

argument we arrive at (2.29).

3. Uniqueness and stability

We follow the same argument as in the proof of Lemma 2.1 and we provide the details for the sake
of completeness. We fix T > 0 and t ∈ [0, T ] and we apply [7, Theorem 2.6] with

(t, x, ρ) 7→ P (t, x, ρ)
.
= ρV (ρ, u1(t, x)), (t, x, ρ) 7→ Q(t, x, ρ)

.
= ρV (ρ, u2(t, x)),

which yields

∫
R
|ρ1(t, x)− ρ2(t, x)|dx ≤

∫
R
|ρ1(0, x)− ρ2(0, x)|dx

+ C(V )

∫ t

0
(‖z1(s)‖L∞ + ‖z2(s)‖L∞)

∫
R
|ρ1(s, x)− ρ2(s, x)|dxds

+ C(V, ‖ρ1‖L∞ , ‖ρ2‖L∞)

∫ t

0

∫
R

(|∂xu1||u1 − u2|+ |∂xu1 − ∂xu2|) dxds︸ ︷︷ ︸
:=L

+ C(V, ‖ρ1‖L∞ , ‖ρ2‖L∞)M0

∫ t

0
‖(u1(s, ·)− u2(s, ·))‖L∞ds

(3.1)
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where M0 is such that TotVar ρ1(s, ·) ≤M0 and TotVar ρ2(s, ·) ≤M0 for every t ∈ [0, T ]. By using the
identity ∂xu1 = ρ1z1 and the estimate ‖ρ1(t, ·)‖L1 ≤ ‖ρ0‖L1 we control the term L as follows:

(3.2) L ≤ ‖ρ0‖L1‖z1‖L∞
∫ t

0
‖[u1 − u2](s, ·)‖L∞ +

∫ t

0
‖[∂xu1 − ∂xu2](s, ·)‖L1ds.

We now want to show that

(3.3) lim
x→−∞

u1(t, x) = lim
x→−∞

u1(0, x), lim
x→−∞

u2(t, x) = lim
x→−∞

u2(0, x) for every t > 0

Note that all the above limit exist and are finite because u1(t, ·) and u2(t, ·) are all functions of
bounded variation owing to the identities ∂xui(t, ·) = ρizi(t, ·) and to the L1 and L∞ bounds on ρi and
zi, respectively. By contradiction, assume that there is t > 0 such that one of the equalities in (3.3)
fails, for instance limx→−∞ u1(t, x) 6= limx→−∞ u1(0, x)(x). This yield the existence of t > 0 and d > 0
such that

(3.4)

∫ −R+1

−R
|u1(t, x)− u1(0, x)|dx ≥ d for every R sufficiently large.

On the other hand, by using the equation at the first line of (1.1) we have∫ −R+1

−R
|u1(t, x)− u1(0, x)|dx =

∫ −R+1

−R

∣∣∣∣∫ t

0
∂τu1(τ, x)dτ

∣∣∣∣ dx (1.1)

≤
∫ t

0

∫ −R+1

−R
|V (ρ1, u1)∂xu1(τ, x)|dτdx

≤ C(V )

∫ t

0

∫ −R+1

−R
|∂xu1(τ, x)|dτdx→ 0 as R→ +∞.

To establish the convergence at the last line of the above expression we have used the Lebesgue
Dominated Convergence Theorem combined with the identity ∂xu1(t, ·) = ρ1z1(t, ·), which dictates
(owing to the bounds on ρ1 and z1) that ∂xu1 is a bounded and summable function. The above
convergence contradicts (3.4) and establishes (3.3). By using (3.3) we then get

(3.5) ‖(u1(s, ·)− u2(s, ·))‖L∞ ≤ |u1∞ − u2∞|+ ‖∂xu1(s, ·)− ∂xu2(s, ·)‖L1 ,

where ui∞ denotes the asymptotic state of ui(0, ·) as x→ −∞. We now point out that

(3.6) ‖∂xu1 − ∂xu2‖L1 = ‖ρ1z1 − ρ2z2‖L1 ≤ ‖ρ1[z1 − z2]‖L1 + ‖z2‖L∞‖ρ1 − ρ2‖L1

so we are actually left to control ‖ρ1[z1 − z2]‖L1 . By combining the equations at the first and second
line of (1.1) with the identity ∂xui = ρizi we get

(3.7) ∂t[ρ1z1] + ∂x[V (ρ1, u1)ρ1z1] = 0, ∂t[ρ2z2] + ∂x[V (ρ2, u2)ρ2z2] = 0.

We also have

(3.8) ρ1[∂tz1 + V (ρ1, u1)∂xz1] = 0, ρ2[∂tz2 + V (ρ2, u2)∂xz2] = 0,

This yields

0
(3.7)
= ∂t

[
ρ1[z1 − z2]

]
+ ∂t

[
z2[ρ1 − ρ2]

]
+ ∂x

[
V (ρ1, w1)ρ1[z1 − z2]

]
+ ∂x

[
z2[V (ρ1, u1)ρ1 − V (ρ2, u2)ρ2]

]
= ∂t

[
ρ1[z1 − z2]

]
+ ∂tz2[ρ1 − ρ2] + z2∂t[ρ1 − ρ2] + ∂x

[
V (ρ1, u1)ρ1[z1 − z2]

]
+ ∂xz2[V (ρ1, u1)ρ1 − V (ρ2, u2)ρ2] + z2∂x

[
V (ρ1, u1)ρ1 − V (ρ2, u2)ρ2]

]
(1.1)
= ∂t

[
ρ1[z1 − z2]

]
+ ∂tz2[ρ1 − ρ2] + ∂x

[
V (ρ1, u1)ρ1[z1 − z2]

]
+ ∂xz2[V (ρ1, u1)ρ1 − V (ρ2, u2)ρ2].

(3.9)

Note furthermore that

∂tz2[ρ1 − ρ2] = ρ1∂t[z2 − z1] + ρ1∂tz1 − ∂tz2ρ2
(3.8)
= ρ1∂t[z2 − z1]− ∂xz1V (ρ1, u1)ρ1 + ∂xz2V (ρ2, u2)ρ2

= ρ1∂t[z2 − z1] + V (ρ2, u2)ρ2∂x[z2 − z1] + ∂xz1[V (ρ2, u2)ρ2 − V (ρ1, u1)ρ1]
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and by plugging the above equation into (3.9), multiplying the result by sign(z1 − z2) and arguing as
in the proof of Lemma 2.1 we arrive at

0 = ∂t
[
ρ1|z1 − z2|

]
+ ρ1∂t|z2 − z1|+ V (ρ2, u2)ρ2∂x|z2 − z1|+ sign(z1 − z2)∂xz1[V (ρ2, u2)ρ2 − V (ρ1, u1)ρ1]

+ ∂x
[
V (ρ1, u1)ρ1|z1 − z2|

]
+ sign(z1 − z2)∂xz2[V (ρ1, u1)ρ1 − V (ρ2, u2)ρ2].

(3.10)

By using the Integration by Parts Formula combined with the equation for ρ1 (or more rigorously by
combining a suitable approximation argument with the definition of distributional solution for ρ1) we
get ∫ t

0

∫
R
ρ1∂t|z2 − z1|(s, x)dxds =

∫
R
ρ1|z2 − z1|(t, x)−

∫
R
ρ1(0, x)|z2 − z1|(0, x)

−
∫ t

0

∫
R
V (ρ1, u1)ρ1∂x|z2 − z1|(s, x)dxds.

By space and time integrating (3.10) and using the above identity we arrive at

∫
R
ρ1|z1 − z2|(t, x)dx ≤

∫
R
ρ1|z1 − z2|(0, x)dx

+

∫ t

0

∫
R
|V (ρ1, u1)ρ1 − V (ρ2, u2)ρ2|[|∂xz2|+ |∂xz1|](s, x)dxds

≤
∫
R
ρ1|z1 − z2|(0, x)dx+ C(V, ‖∂xz1‖L∞ , ‖∂xz2‖L∞)

[∫ t

0
‖[u1 − u2](s, ·)‖L∞

∫
R
ρ1(s, x)dx︸ ︷︷ ︸
≤‖ρ0‖L1

ds

+

∫ t

0
‖[ρ1 − ρ2](s, ·)‖L1ds

]
(3.5)

≤
∫
R
ρ1|z1 − z2|(0, x)dx+ C(V, ‖∂xz1‖L∞ , ‖∂xz2‖L∞ , ‖ρ1(0, ·)‖L1)

[
t|u1∞ − u2∞|

+

∫ t

0
‖[∂xu1 − ∂xu2](s, ·)‖L1ds+

∫ t

0
‖[ρ1 − ρ2](s, ·)‖L1ds.

]

(3.11)

Next, we point out that

(3.12)

∫
R
ρ1|z1 − z2|(0, x)dx

0≤ρ1(0,·)≤1
≤ ‖∂xu1(0, ·)− ∂xu2(0, ·)‖L1 + ‖z2(0, ·)‖L∞‖[ρ1 − ρ2](0, ·)‖L1

and we set

Φ(t) = ‖[ρ1 − ρ2](t, ·)‖L1 + ‖[∂xu1 − ∂xu2](t, ·)‖L1 .

By combining (3.1), (3.2) (3.5), (3.6), (3.11) and (3.12), and using ‖∂xui‖L∞ ≤ ‖ρi‖L∞‖zi‖L∞ , we have

Φ(t) ≤ Ĉ
[
Φ(0) + |u1∞ − u2∞|T +

∫ t

0
Φ(s)ds

]
, for every t ∈ [0, T ],

where the constant Ĉ depends on V , the total variation of ρ1, ρ2 and ‖z1‖L∞ , ‖ρ1(0, ·)‖L1 , ‖z2‖L∞ , ‖∂xz2‖L∞ ,
‖ρ1‖L∞ and ‖ρ2‖L∞ . Owing to the Gronwall Lemma this yields

Φ(t) ≤ eĈt[Φ(0) + T |u1∞ − u2∞|],

that is (1.11). The above estimate yields in particular the identities u1 = u2 and ρ1 = ρ2 if the solutions
have the same initial data.
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63, 35131 Padova, Italy

E-mail address: elio.marconi@unipd.it

L.V.S. CNR-IMATI “E. Magenes”, via Ferrata 5, I-27100 Pavia, Italy.
E-mail address: spinolo@imati.cnr.it


	1. Introduction
	Comparison with works on a model for polymer flooding in oil recovery
	Outline
	Notation

	2. Existence
	2.1. Construction of the approximation
	2.2. Passage to the limit
	2.3. Proof of Lemma 2.1

	3. Uniqueness and stability
	Availability of data and materials
	Competing interests
	Acknowledgments
	References

