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1. Introduction

We consider the system

(1.1)

{
∂tρ+ ∂x[V (ξ, u)ρ] = 0
∂tu+ V (ξ, u)∂xu = 0,

ξ(t, x) =

ˆ +∞

x
ρ(t, y)η(x− y)dy.

In the above expression, the unknowns are ρ : R+ ×R → R and u : R+ ×R → R, whereas the velocity
field V : R2 → R and the the convolution kernel η : R → R are given functions. The above system is
a nonlocal version of the so-called Generalized Aw-Rascle-Zhang vehicular model introduced by Fan,
Herty, and Seibold in [22], namely

(1.2)

{
∂tρ+ ∂x[V (ρ, u)ρ] = 0
∂tu+ V (ρ, u)∂xu = 0.

In both (1.1) and (1.2), ρ represents the car density and V their velocity, whereas the Lagrangian
marker u represents the empty road velocity, that is, the velocity each driver would choose if the road
were completely free. This is an individual feature of each driver, and, as such, it is transported by
the flow as dictated by the second equation in (1.1) and (1.2). The first equation in both systems
expresses the conservation of the total amount of cars. We point out in passing that the second
equation of both (1.1) and (1.2) is in principle highly ill-posed in low regularity regimes of ρ and u as
the product V (ρ, u)∂xu is not well-defined: we will come back to this point in the following.

As in [22], we impose on V the following assumptions, which are fairly reasonable in view of modeling
considerations1:

(1.3) V ∈ C2(R2;R), V ≥ 0, ∂1V ≤ 0, ∂2V ≥ 0, V (1, w) = 0 for every w,

where ∂1V and ∂2V denote the partial derivatives of V with respect to ρ and u, respectively. In the
above equation and in the rest of the paper, we normalize to 1 the maximal possible car density, that
is the density at which all drivers stop.

1To simplify the notation, in (1.3) we assume that all the conditions are satisfies on the whole R2, but since as a
matter of fact in the following we will show that the solutions (ξ, u) of (1.1) and (ρ, u) of (1.2) are always confined in the
rectangle [0, 1]× [ess inf u0, ess supu0], it suffices that the conditions are satisfied in that range.

1



2 E. MARCONI AND L. V. SPINOLO

In (1.1), the presence of the convolution term takes into account the fact that traffic agents tune
their velocity based on the averaged density in a neighborhood of their position, rather than on its
pointwise value only as in (1.1). As it is by now fairly standard in the analysis of nonlocal traffic
models (see for instance [5, 9]), we assume that

(1.4) η ∈ L1 ∩ L∞(R;R+),

ˆ
R
η(x)dx = 1, supp η ⊆ R−, ηmonotone non-decreasing on R−.

The third assumption in the above equation is a “look-ahead-only” condition modeling the fact that
drivers are affected by the downstream traffic density only. The last condition in (1.4) models the
fact that drives pay more attention to closer vehicles rather than those that are further away. In the
following, we focus on the Cauchy problem posed by prescribing the initial data

(1.5) ρ(0, ·) = ρ0, u(0, ·) = u0,

which in view of modeling considerations we assume satisfy

(1.6) 0 ≤ ρ0 ≤ 1, u0 ∈ L∞(R), u0 ≥ 0.

In the present paper we establish well-posedness of (1.1),(1.5) in a suitable class of solutions. We also
show that, under suitable assumptions, the solution of (1.1) approaches the solution of (1.2) when η
converges to the Dirac Delta. Well-posedness results for (1.2),(1.5) are established in the companion
note [27].

The archetypical fluid-dynamic traffic model is the so-called LWR (Lighthill, Whitham, and Richards)
model introduced in [26, 30], namely

(1.7) ∂tρ+ ∂x[V (ρ)ρ] = 0.

Despite its numerous advantages and its wide use in the engineering literature, the LWR model is
affected by some shortcomings. In particular, the model postulates that every driver reacts in the
same way to the traffic conditions, which is not always the case in real-world applications. To overcome
these drawbacks, various works introduced higher-order models, that is, models consisting of several
equations, see in particular [4, 21, 29, 31, 32] and also [23] for an extended overview. In particular, the
model (1.2), introduced in [22], is a second-order model where the way each driver reacts to the traffic
evolution is governed by his/her empty road velocity u.

Another nonlocal version of (1.1) was introduced in [10], where the authors obtained the system

(1.8)

{
∂tρ+ ∂x

[
[V (ρ, u) ∗ η]ρ

]
= 0

∂tu+ [V (ρ, u) ∗ η]∂xu = 0,

as the result of a micro-macro limit argument. The above model, and its nonlocal-to-local limit
towards (1.2), is currently investigated in [1]. Compared to (1.1), a considerable advantage of (1.8)
is that in (1.8) the smoothing effect of the convolution acts on both ρ and u, which is a remarkable
boon to its analytic treatment. On the other hand, the fact that in (1.1) the velocity function V
is only affected by the convolution term through the perceived density might be advantageous from
the modeling viewpoint, as in this way V depends on the exact value of the Lagrangian marker u
as in (1.1), rather than on a smoothed version as in (1.8). Other traffic models involving systems of
nonlocal equations are discussed for instance in [3] and [8].

We now establish the well-posedness of the Cauchy problem (1.1),(1.5).

Theorem 1.1. Assume (1.3),(1.4), (1.6) and ρ0 ∈ L1(R). Assume furthermore that

(1.9) u0 ∈W 1∞(R), u′0 = z0ρ0, z0 ∈ L∞(R).
Then there is T = C(V, ∥z0∥L∞) (that is, T only depends on the velocity function V and on ∥z0∥L∞)
such that there is exactly one solution of (1.1),(1.5) in the class (ρ, u) ∈ L∞

loc([0, T [;L
∞(R+)) ×

L∞
loc([0, T [;W

1∞(R)). Also, the unique solution satisfies the bound

(1.10) 0 ≤ ρ(t, x) ≤ 1

1− tC(V )∥z0∥L∞
a.e. (t, x) ∈]0, T [×R,
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the two-sided estimate

(1.11) 0 ≤ ξ(t, x) ≤ 1 for every (t, x) ∈ R+ × R
and also

(1.12) inf u0 ≤ u ≤ supu0, ∂xu = ρz, ∥z∥L∞ ≤ ∥z0∥L∞ .

We also have the following propagation of regularity results: if we further assume

(1.13) z′0 = ρ0ψ0, for some ψ0 ∈ L∞(R)
then

(1.14) ∂xz = ψρ, with ∥ψ∥L∞ ≤ ∥ψ0∥L∞ ;

if moreover ρ0 ∈W 1∞(R), then

(1.15) ρ ∈W 1∞
loc ([0, T [×R) and ∂xu ∈W 1∞

loc ([0, T [×R).

Some remarks are here in order. First, the only reason why we only have local-in-time well-posedness
is because we cannot rule out a finite time blow-up of the L∞ norm of the density ρ. However, it is fairly
easy to see that, under some further assumptions, one can replace (1.10) with a uniform-in-time control,
which yields global-in-time well-posedness, see Remark 2.2 or Lemma 2.4 in §2. Second, an interesting
point of Theorem 1.1 is that the car density ρ, albeit always nonnegative, can exceed the value 1,
whereas the convoluted density ξ, the one on which the velocity depends, satisfies (1.11). It would be
interesting to assess whether this is just a drawback of the nonlocal GARZ system (1.1) or has some
modeling interpretation. A first very tentative guess could be for instance to postulate that, owing to
road safety rules, ρ = 1, the density at which drivers stop, does not exactly correspond to bumper-to-
bumper packing, but rather to a lower density which could be exceeded in some exceptional2 situations.
Third, as mentioned before, a drawback of (1.1) compared to (1.8) is that the regularizing effect of the
convolution only acts on ρ. This means that, if u has low regularity, so in general does V (·, u), and this
in turn implies that the classical method of characteristics, which is widely used [19, 24] in the study
of nonlocal conservation laws, does not apply (at least, not in its elementary form requiring Lipschitz
regularity of V ). To circumvent this obstruction, in Theorem 1.1 we impose Lipschitz-type regularity on
u0, and then show (this being the nonobvious point) that this is propagated by the solution semigroup.
The regularity assumption imposed on u in (1.9) is actually stronger than Lipschitz continuity, as we
are also loosely speaking imposing that u is constant on the sets where ρ vanishes. Note, however,
that discussing the value of u (the drivers’ empty road velocity) on sets where ρ (the drivers’ density)
vanishes is a sort of mathematical artifact, and hence this further assumption is fairly innocuous
from the modeling viewpoint. Fourth, we point out that, since u belongs to L∞

loc([0, T [;W
1∞(R)), the

product V (ξ, u)∂xu is well-defined and there is no need to provide a distributional formulation of the
equation at the second line of (1.1), which holds as an identity between L∞ functions. Finally, the
solutions obtained in Theorem 1.1 are stable with respect to perturbations in the initial data, see
Corollary 2.5.

We now discuss the singular nonlocal-to-local limit: we fix a parameter ε > 0, and consider the
Cauchy problem

(1.16)

{
∂tρε + ∂x[V (ξε, uε)ρε] = 0
∂tuε + V (ξε, uε)∂xuε = 0

where ξε(t, x) :=
1

ε

ˆ +∞

x
η

(
x− y

ε

)
ρε(t, y)dy,

which is nothing else but (1.1) with η replaced by ηε(·) := η(·/ε)/ε. In the vanishing ε limit, ηε converges
weakly∗ in the sense of measures to the Dirac Delta, and hence (1.16) formally boils down to (1.2).
In recent years, several works have been devoted to the analysis of the singular nonlocal-to-local limit
in the case of the scalar LWR model (1.7). Despite the existence of counter-examples ruling out a
general convergence result [17], in the specific framework of traffic models, with anisotropic convolution

2Note that the fact that the convoluted density ξ is bounded by 1 imposes constraints on the measure of the set where
ρ exceeds 1
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kernels, one can establish convergence under fairly mild assumptions, see [6, 7, 12, 13, 15, 18, 25]. The
analysis of the nonlocal-to-local limit in the case of systems is much less understood. Indeed, we are
only aware of two works: [11] focuses on a system of balance laws where the nonlocality is confined
in the source term, whereas the system studied in [14] consists of a scalar nonlocal conservation law
coupled with a sort of continuity equation. To the best of our knowledge, the following is the first
nonlocal-to-local limit result for a system of two non-decoupling equations with a nonlocal flux.

Theorem 1.2. Assume that ρε, uε, ξε are the same as in (1.16), and that η(x) = ex1R−. Let the

initial data ρ0 ∈ BV (R) and u0 ∈W 1∞(R) satisfy (1.6), (1.9), (1.13), and let V satisfy (1.3) and the
following conditions:

∂1V (ρ, u) ≤ −αV < 0, for every ρ ∈ [0, 1], u ∈ [inf u0, supu0],(1.17)

−βV ≤ ∂11V (ρ, u) ≤ 0, for every ρ ∈ [0, 1], u ∈ [inf u0, supu0],(1.18)

α2
V > 54β2V .(1.19)

Then there is ε0 only depending on V , ∥z0∥L∞ and ∥ψ0∥L∞ such that for every ε ∈]0, ε0[ the following
holds: the solution (ρε, uε) is defined globally in time and satisfies

(1.20) ∥ρ(t, ·)∥L∞ ≤ 2, for every t ≥ 0.

Also, ∥ρε∥L∞(R+×R) → 1 and, for every t > 0, we have

ρε(t, ·)⇀∗ ρ(t, ·) weakly∗ in L∞(R), ξε(t, ·) → ρ(t, ·) strongly in L1
loc(R),

uε(t, ·) → u(t, ·) uniformly in C0(R) as ε→ 0+,

where (ρ, u) is the solution of the Cauchy problem (1.2),(1.5) such that ρ is an entropy admissible
solution of the conservation law at the first line of (1.2).

Note that [27, Theorem 1.1] states that, under the same assumptions as in the statement of The-
orem 1.2, the Cauchy problem (1.2),(1.5) has a unique solution belonging to a suitable regularity
framework and such that ρ is an entropy admissible solution of the conservation law. Since, under the
hypotheses of Theorem 1.2, any accumulation point of (ρε, uε) belongs to the right regularity frame-
work, this accumulation point is unique. As a matter of fact, the only reason why we require that
ρ0 ∈ BV (R) in the statement of Theorem 1.2 is to make sure that (1.2) has a unique solution. If we
were only interested in compactness (and hence, convergence up to subsequences), we could drop this
requirement.

In the statement of Theorem 1.2, the assumption that η is the exponential function is obviously
highly restrictive, but was imposed in several previous works on the nonlocal-to-local limit, most
notably [6, 11, 12, 13]. From the technical viewpoint, its main advance is entailing the algebraic identity
ρε = ξε − ε∂xξε, which is a boon to the analysis. The proof of Theorem 1.2 relies on Proposition 3.1,
which establishes an Oleinik-type estimate for the convolution term ξε. This in turn yields strong
compactness in L1

loc through a uniform-in-ε control on the total variation. Note that Proposition 3.1
implies that the conservation law at the first line of (1.2) satisfies the classical Oleinik estimate [20, 28],
and this is consistent with the fact that assumptions (1.17) and (1.18) imply that ρ 7→ ρV (ρ, u) is
strictly concave. Note furthermore that, if the function u is constant, the nonlocal system (1.1) boils
down to the nonlocal LWR model. This in particular implies that we can refer to the counter-example
given by [15, Theorem 6] and conclude that in general the total variation of the solution ρε(t, ·) blows
up in the vanishing ε limit, for every t > 0. This is the reason why in the proof of Theorem 1.2 we
establish a uniform bound on the total variation of the convolution term ξε, rather than of the solution
ρε: this is idea was first introduced in [13] and also used in [18].

Outline. The exposition is organized as follows. In §2 we establish Theorem 1.1, Lemma 2.4 (a global-
in-time existence results) and Corollary 2.5 (a stability result). In §3 we give the proof of Theorem 1.2.
For the reader’s convenience we conclude the introduction by collecting the main notation used in the
paper.
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Notation. We denote by C(a1, . . . , an) any constant only depending on the quantities a1, . . . , an. Its
precise value can vary form occurrence to occurrence. We also use the the shorthand notation

(1.21) C(V ) = C
(
max{|V (ξ, u)|+ |∇V (ξ, u)|+ |D2V (ξ, u)| : ξ ∈ [0, 1], |u| ≤ ∥u0∥L∞}

)
.

General mathematical symbols.

• 1E : the characteristic function of the set E, the one attaining the value 1 on E and 0 elsewhere.
• L1(Ω), L∞(Ω): the Lebesgue spaces of summable and essentially bounded functions, respec-
tively, defined on the measurable set Ω ⊆ Rd;

• W 1∞(Ω) the Sobolev space of bounded and Lipschitz continuous functions defined on Ω;
• BV (Ω): the Banach space of summable functions with bounded total variation defined on Ω;
• Xloc(Ω): the space of functions f defined on Ω such that f ∈ X(K) for every K compact set
contained in Ω;

• C0(Ω): the Banach space of continuous and bounded functions defined on the open set Ω;
• C1(Ω), C2(Ω): the space of bounded, continuously differentiable and twice continuously differ-
entiable functions, respectively, defined on the open set Ω;

• C∞(Ω): the space of infinitely differentiable functions defined on the open set Ω;
• f#µ: the push-forward of the measure µ through the measurable map f : X → Y , namely

(1.22) f#µ(E) := µ(f−1(E)), for every E ⊆ Y measurable

Symbols introduced in the present paper.

• ρ: the car density, see (1.1);
• u: the empty road velocity, see (1.1);
• z: the same function as in (1.12);
• ξ: the convolution term, see (1.1);
• ψ: the same function as in (1.14);
• αV , βV : see (1.17) and (1.18), respectively
• h := ∂xξ, see the first lines of the proof of Proposition 3.1.

Remark 1.3. We recall [20, Lemma 1.3.3] and conclude that for every T > 0 and every bounded
distributional solution ρ ∈ L∞([0, T ]× R) of the equation at the first line of (1.1) the following holds.
In the equivalence class of ρ (which is an element of a Lebsgue space and, as such, only defined up to
negligible sets) there is a representative such that the map t→ ρ(t, ·) is continuous from R+ to L∞(R)
endowed with the weak∗ topology. In the present paper we always tacitly identify ρ with this weak∗

continuous representative and discuss the values of ρ(t, ·) at any t > 0.

2. Well-posedness of the Cauchy problem (1.1),(1.5)

This section is mainly devoted to the proof of Theorem 1.1. We first establish existence by relying
on an approximation argument, organized as follows: in §2.1 we construct the approximating sequence,
in §2.2 and §2.3 we pass to the limit and in §2.4 we establish the proof of Lemma 2.1. Next, in §2.5 we
establish the uniqueness part of Theorem 1.1, in §2.6 we prove Lemma 2.4, which provides a condition
yielding global-in-time existence, and in §2.7 we establish Corollary 2.5, that is stability with respect
to the initial data.

2.1. Approximation argument. We proceed according to the following steps.
Step 1: we define the approximating sequence {ρn}n∈N. First, we define a sequence {ρ0n}n∈N such
that
(2.1)
ρ0n : R → [0, 1], ρ0n ∈ C∞

c (R), ∥ρ0n∥C0 ≤ ∥ρ0∥L∞ , ∥ρ0n∥L1 ≤ ∥ρ0∥L1 , ρ0n → ρ0 strongly in L1(R).

We also fix a sequence of continuously differentiable functions z0n with ∥z0n∥L∞ ≤ ∥z0∥L∞ and con-
verging pointwise a.e. to z0. Next, we point out that u0 is a bounded variation function owing to the
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identity u′0 = ρz0 and to the L1 and L∞ bound on ρ0 and z0, respectively. We set

(2.2) u∞ := lim
x→−∞

u0(x)

and

(2.3) u0n(x) := u∞ +

ˆ x

−∞
ρ0n(t, x)z0n(x)dx

and observe that u0n ∈W 2∞(R) and u0n → u0 uniformly in C0(R). Finally, we fix a sequence {ηn}n∈N
enjoying (1.4) and such that

(2.4) ηn ∈ C∞(]−∞, 0[) ∩ C0(]−∞, 0]), ηn → η strongly in L1(R).

Next, we set ρ1(t, x) := ρ0n(x), u1(t, x) := u0(x) and, given

(2.5) ρn ∈ C1(]0, T [×R) un ∈ C2(]0, T [×R) for every T > 0

such that

∂xun = ρnzn, ∥zn∥L∞ ≤ ∥z0∥L∞ ,

we iteratively define ρn+1 by solving the Cauchy problem for nonlocal continuity equation

(2.6)

{
∂tρn+1 + ∂x[V (ξn+1, un)ρn+1] = 0
ρn+1(0, ·) = ρ0n+1

where ξn+1 is defined as in formula (1.1) with ρ replaced by ρn+1 and η by ηn+1. Existence and
uniqueness results for (2.6) in the class of bounded functions are by now well known and established
for instance in [24]. Note in particular that the analysis in [24] combined with the regularity of un
implies that V (ξn+1, un) is a continuous function, which is Lipschitz continuous with respect to the
space variable, so that the classical Cauchy Lipschitz Picard Lindelhöf Theorem applies to the following
Cauchy problem

(2.7)


dXn+1

dt
= V (ξn+1, un)(t,Xn+1)

Xn+1(0, x) = x,

which defines the characteristic curve Xn+1(t, ·). The solution ρn+1 can then be described by relying
on the classical method of characteristics as ρn+1(t, ·)L1 = Xn+1(t, ·)♯

(
ρn+1(0, ·)L1

)
, where the push-

forward ♯ is defined by (1.22). Since ρn+1(0, ·) ≥ 0, this implies that

(2.8) ρn+1 ≥ 0

and hence that ξn+1 ≥ 0 owing to the definition of ξn+1 and to the inequality ηn+1 ≥ 0. Owing
to (1.3), 0 ≤ V (ξn+1, un) ≤ V (0, un) and by recalling that un is uniformly bounded owing to (2.5)
we obtain a uniform L∞ bound on V (ξn+1, un). In particular, since ρ0 is compactly supported, then
ρn+1(t, ·) is compactly supported for every t > 0. By using [24, Corollary 5.3, Remark 5.4] we also
obtain ρn+1 ∈ C1(]0, T [×R) for every T > 0.
Step 2: we establish the bound

(2.9) 0 ≤ ξn+1(t, x) ≤ 1.

We have already established the positivity of ξn+1 at the previous step. To establish the second
inequality in (2.9), we compute the material derivative of ξn+1 by direct computations, and arrive at
(2.10)

∂tξn+1 + V (ξn+1, un)∂xξn+1 =

ˆ +∞

x
η′n+1(x− y) [V (ξn+1, un)(t, x)− V (ξn+1, un)(t, y)] ρn+1(t, y)dy,

which in particular implies that ξn+1 is Lipschitz continuous with respect to the t variable as well.
Next, we recall that, for every t ≥ 0, the function ρn+1(t, ·) is compactly supported, which owing
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to Lebesgues’s Dominated Convergence Theorem implies that ξn+1(t, ·) vanishes at both ±∞. We
conclude that, for every t ≥ 0, the function ξn+1(t, ·) has a maximum, and we set

(2.11) g(t) := max
x∈R

ξn+1(t, x),

which is a Lipschitz continous function being the supremum of Lipschitz continuous functions. Since
0 ≤ ξn+1(0, ·) ≤ 1 owing to (1.6), to establish (2.9) it suffices to show that g′(t∗) ≤ 0 for a.e t∗ ∈ R−
such that g(t∗) ≥ 1.

Towards this end, we recall the following elementary property: assume that I ⊆ R is an interval, and
f, g : I → R are two locally Lipschitz continuous functions, f ≤ g. If both f and g are differentiable at
τ ∈ I and f(τ) = g(τ) then f ′(τ) = g′(τ). To establish this property it suffices to set h := g − f ≥ 0
and point out that if h(τ) = 0 then τ is a point of minimum and hence the differentiability of h at τ
yields h′(τ) = 0.

Let us go back to the function g defined by (2.11), fix a point of differentiability t∗ such that g(t∗) ≥ 1
and x∗ such that ξn+1(t∗, x∗) = g(t∗). We denote by a∗ ∈ R the point satisfying Xn+1(t∗, a∗) = x∗ and
we set

f(t) = ξn+1(t,Xn+1(t, a∗)).

Owing to the elementary property we recalled above, to show that g′(t∗) ≤ 0 it suffices to show that
f ′(t∗) ≤ 0. This follows by combining (2.10) and (1.3) with η′ ≥ 0. Note in particular that (1.3)
dictates that V ≥ 0 and that V (ξ, w) = 0 for every ξ ≥ 1.
Step 3: we now establish the bound

(2.12) ρn+1(t, x) ≤
1

1− tC(V )∥z0∥L∞
for every (t, x) ∈]0, T [×R, T = C(V )∥z0∥L∞ .

Towards this end, we argue by induction. The above estimate holds for n = 1. We assume that it is
verified by ρn and establish it for ρn+1. We recall that ρn+1 is continuously differentiable and compute
the material derivative of ρn+1 as

∂tρn+1 + V (ξn+1, un)∂xρn+1 = −ρn+1∂x[V (ξn+1, un)] = −ρn+1∂1V ∂xξn+1 − ρn+1∂2V ∂xun

(2.5)
= −ρn+1∂1V ∂xξn+1 − ρn+1∂2V ρnzn

Next, we point out that, if x∗ is a point where the maximum of ρn+1(t∗, ·) is attained then

∂xξn+1(t∗, x∗) = −ρn+1(t∗, x∗)ηn+1(0) +

ˆ +∞

x∗

η′n+1(x∗ − y)ρn+1(t∗, y)dy ≤ 0

and by recalling that ∂1V ≤ 0 and ρn+1 ≥ 0 this implies that the material derivative evaluated at
(t∗, x∗) satisfies[

∂tρn+1 + V (ξn+1, un)∂xρn+1

]
(t∗, x∗) ≤ −ρn+1∂2V ρnzn(t∗, x∗) ≤ C(V )ρn+1|ρnzn|(t∗, x∗)

(2.5)

≤ C(V )∥z0∥L∞ρn+1ρn(t∗, x∗)
induction

≤ C(V )∥z0∥L∞

1− tC(V )∥z0∥L∞
ρn+1(t∗, x∗),

(2.13)

where in the last inequality we have used the induction assumpion that (2.12) is satisfied by ρn.
With (2.13) in place we can basically argue as in Step 2: we recall that ρn+1(t, ·) is a continuous and
compactly supported function for every t, set

(2.14) gn+1(t) := max
x∈R

ρn+1(t, ·),

fix a point t∗ at which gn+1 is differentiable and x∗ ∈ R such that g(t∗) = ρn+1(t∗, x∗). Next, we set

f(t) := ρn+1(t,Xn+1(t, a∗)),
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where a∗ satisfies Xn+1(t∗, a∗) = x∗. By combining the elementary property recalled at the previous
step with (2.13) we conclude that

g′n+1(t∗) ≤
C(V )∥z0∥L∞

1− tC(V )∥z0∥L∞
gn+1(t∗),

and by the arbitrariness of t∗ and by using the Comparison Theorem for ODEs we arrive at (2.12),
which concludes our induction argument.
Step 4: we now define zn+1 and un+1. First, we recall (2.7), set Yn+1(t, ·) := Xn+1(t, ·)−1 and
zn+1(t, x) := z0n+1(Yn+1(t, x)), which immediately yieds the inequality

(2.15) ∥zn+1∥L∞ ≤ ∥z0∥L∞ .

Being the vector field V (ξn+1, un) continuously differentiable, so is the inverse flow Yn+1(t, ·) and hence
zn+1. Note furthermore that

(2.16) ∂t[ρn+1zn+1] + ∂x[V (ξn+1, un)ρn+1zn+1] = 0

in the sense of distribution. Albeit well known, we provide a proof of (2.16) for the sake of completeness.
It suffices to test against test functions in the form ϕ(t)ν(x), with ϕ ∈ C∞

c (]0,+∞[) and ν ∈ C∞
c (R).

Owing to the identity ρn+1(t, ·)L1 = Xn+1(t, ·)♯
(
ρn+1(0, ·)L1

)
we haveˆ

R
ρn+1zn+1(t, x)ν(x)dx =

ˆ
R
ρn+1(t, x)z0(Y (t, x))ν(x)dx =

ˆ
R
ρ0n+1(y)z0(y)ν(Xn+1(t, y))dy,

which in turn implies owing to an integration by parts in the t variable and recalling (2.7)ˆ ∞

0
∂tϕ(t)

ˆ
R
ρn+1zn+1(t, x)ν(x)dxdt =

ˆ ∞

0
∂tϕ(t)

ˆ
R
ρ0n+1(y)z0(y)ν(Xn+1(t, y))dydt

= −
ˆ ∞

0
ϕ(t)

ˆ
R
ρ0n+1(y)z0(y)V (ξn+1, un)∂xν(Xn+1(t, y))dydt

= −
ˆ ∞

0
ϕ(t)

ˆ
R
ρn+1zn+1V (ξn+1, un)(t, x)∂xν(x)dxdt,

and by the arbitrariness of ϕ and ν this establishes (2.16). We now set

(2.17) un+1(t, x) = u∞ +

ˆ x

−∞
ρn+1zn+1(t, y)dy,

where u∞ is the same as in (2.2). Owing to (2.16), the continuously differentiable function un+1

satisfies

(2.18) ∂tun+1 + V (ξn+1, un)∂xun+1 = 0

on R+ × R. Owing to the classical method of characteristics, we get the bound

(2.19) inf u0n+1 ≤ un+1(t, x) ≤ supu0n+1 for every (t, x) ∈ R+ × R,

where u0n+1(x) is the same as in (2.3). Moreover, since ρn+1, zn+1 are continuously differentiable
functions, then un+1 is of class C2.
Step 5: to conclude the definition of the approximate sequences, we are left to discuss the case where
we have (1.13). First, we fix a sequence of continuous functions ψ0n with ∥ψ0n∥L∞ ≤ ∥ψ0∥L∞ and
converging pointwise a.e. to ψ0. Next, we point out that (1.13) implies that the function z′0 ∈ L1(R),
which in turn implies that

(2.20) z∞ = lim
x→−∞

z0(x)

exists and is finite. Next, we set ψn+1(t, x) := ψ0(Yn+1(t, x)), which implies that ψn+1 is a continuous
function, and

(2.21) zn+1(t, x) := z∞ +

ˆ x

−∞
ρn+1ψn+1(t, y)dy.
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Notice that the functions zn+1 are Lipschitz continuous in the space variable x uniformly with respect
to n for t < T , provided T is the same as in (2.12). Note that in this case zn+1 is not the same as
in the previous cases, but this is irrelevant since they converge to the same limit: in particular the
initial datum zn+1(0, ·) converges to z0 in C0(R) owing to (2.1) and (2.21). Note furthermore that
by arguing as at Step 4 we infer that the continuously differentiable function zn+1 satisfies ∂tzn+1 +
V (ξn+1, un)∂xzn+1 = 0 and by using the classical method of characteristics this in turn implies that
∥zn+1∥L∞ ≤ ∥zn+1(0, ·)∥L∞ , which converges to ∥z0∥L∞ as n goes to +∞. We then define un+1 as
before by using (2.17).
Step 6: we show that, if ρ0 ∈W 1,∞(R), then
(2.22)
∥∂xρn+1(t, ·)∥L∞ , ∥∂xxun(t, ·)∥L∞ ≤ C(t, ∥ρ′0∥L∞ , t, η, V, t̄, ∥ψ0∥L∞ , z∞, ∥ρ0∥L1), for every t ∈]0, T [,

where T is the same as in (2.12). First, we recall the representation formula

ρn+1(t,Xn+1(t, x)) = ρ0n+1(x) exp

[ˆ t

0
∂xV (ξn+1, un)(s,Xn+1(s, x))ds

]
,

which yields

∂xρn+1(t,Xn+1(t, x))
∂Xn+1

∂x
(t, x) = ρ′0n+1(x) exp

[ˆ t

0
∂xV (ξn+1, un)(s,Xn+1(s, x))ds

]
+ ρ0n+1(x) exp

[ˆ t

0
∂xV (ξn+1, un)(s,Xn+1(s, x))ds

]ˆ t

0
∂xxV (ξn+1, un)(s,Xn+1(s, x))

∂Xn+1

∂x
(s, x)ds.

(2.23)

Since

(2.24)
∂Xn+1

∂x
(t, x) = exp

[ˆ t

0
∂xV (ξn+1, un)(s,X(s, x))ds

]
from (2.23) we get

(2.25) ∂xρn+1(t,Xn+1(t, x)) = ρ′0n+1(x) + ρ0n+1(x)

ˆ t

0
∂xxV (ξn+1, un)(s,Xn+1(s, x))

∂Xn+1

∂x
(s, x)ds.

We now recall that ρn+1(t, ·) is a continous and compactly supported function, set

ℓn+1(t) := max
x∈R

|∂xρn+1(t, x)|

and use (2.25) to control it. First of all we point out that, if ρ0 ∈ W 1∞(R), we can construct the
approximating sequence in (2.1) in such a way that ∥ρ′0n∥L∞ ≤ ∥ρ′0∥L∞ . Next, we point out that

(2.26) |∂xV (ξn+1, un)| = |∂1V (ξn+1, un)∂xξn+1 + ∂2V (ξn+1, un)∂xun|

and that

|∂xxV (ξn+1, un)| =
∣∣∂11V (ξn+1, un)(∂xξn+1)

2 + 2∂12V (ξn+1, un)∂xξn+1∂xun

+ ∂1V (ξn+1, un)∂xxξn+1 + ∂22V (ξn+1, un)(∂xun)
2 + ∂2V (ξn+1, un)∂xxun|.

(2.27)

Note that

|∂xξn+1(t, x)| =
∣∣∣∣−ρn+1(t, x)ηn+1(0) +

ˆ +∞

x
η′n+1(x− y)ρn+1(t, y)dy

∣∣∣∣ ≤ C(η)∥ρn+1(t, ·)∥L∞

(2.12)

≤ C(η, V, t̄, ∥z0n∥L∞)

(2.28)
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provided t ≤ t̄ < T and T is the same as in (2.12). Similarly, ∥∂xun∥L∞ = ∥ρnzn∥L∞ ≤ C(η, t̄, V, ∥z0n∥L∞).
Also,

|∂xxξn+1|(t, x) =
∣∣∣∣∂x(−ηn+1(0)ρn+1(t, x) +

ˆ 0

−∞
η′n+1(y)ρn+1(t, x− y)dy

)∣∣∣∣
≤ 2∥∂xρn+1(t)∥L∞∥η′n+1∥L1(R−) ≤ C(η)ℓn+1(t)

(2.29)

and

(2.30) |∂xxun(t, x)| ≤ |∂xρnzn + ρ2nψn|
(2.12)

≤ ∥z0n∥L∞ℓn + C(V, ∥z0n∥L∞ , V, ∥ψ0∥L∞).

We now plug (2.28),(2.29) and (2.30) into (2.27) and use it to control (2.23), noting that owing
to (2.24),(2.26) and (2.28) we have |∂Xn+1/∂x| ≤ C(η, V, t̄, ∥z0n∥L∞). We eventually arrive at

ℓn+1(t) ≤ ∥ρ′0∥L∞ + C(η, V, t̄, ∥z0n∥L∞)

ˆ t

0
[ℓn(s) + ℓn+1(s) + 1]ds

(2.21)

≤ ∥ρ′0∥L∞ + C(η, V, t̄, ∥ψ0∥L∞ , z∞, ∥ρ0∥L1)︸ ︷︷ ︸
:=κ

ˆ t

0
[ℓn(s) + ℓn+1(s) + 1]ds, for every t ≤ t̄

(2.31)

We now argue by induction to show that (2.31) implies

(2.32) ℓn(t) ≤
1

2
[1 + 2∥ρ′0∥L∞ ] exp[2κt]− 1

2
for every n,

which yields the control on ∂xρn+1 and, by using (2.30), on ∂xxun in (2.22). The inequality in (2.32)
is satisfied for n = 0 because ℓ0(t) = ∥ρ′0n∥L∞ . To establish the induction step, we term p the solution
of the ODE p′ = κ[1 + 2p] attaining value ∥ρ′0∥L∞ at t = 0. Note that

p(t) = ∥ρ′0∥L∞ + κ

ˆ t

0
[2p(s) + 1]ds

and that (2.32) (that is, the induction assumption) implies that ℓn(t) ≤ p(t). By using (2.31) we arrive
at

ℓn+1(t)− p(t) ≤ κ

ˆ t

0
[ℓn+1 − p](s)ds,

which yields ℓn+1(t) ≤ p(t) and hence concludes the induction step.

2.2. Passage to the limit. We fix t̄ < T , where T is the same as in (2.12), and from (2.8) and (2.12)
deduce that there is a subsequence {ρnk

}k∈N such that

(2.33) ρnk

∗
⇀ ρ weakly∗ in L∞(]0, t̄[×R)

for some limit bounded function ρ. Since ηnk
→ η in L1(R) owing to (2.4), by combining (2.9) with

Lebesgue’s Dominated Convergence Theorem we conclude that

(2.34) ξnk
→ ξ strongly in L1

loc([0, t̄[×R),

provided ξ is the same as in (1.1). Next, we recall (2.19) and the fact that u0n converges uniformly to
u0. We also combine the decomposition ∂xun = ρnzn with the bounds (2.12) and ∥zn∥L∞ ≤ ∥z0∥L∞ ,
which yields a uniform bound on ∂xun. Next, we use (2.18) to deduce a uniform bound on ∂tun, and
this finally yields the equicontinuity of the sequence {un}. We apply the Arzelà Ascoli Theorem and
conclude that there is a subsequence of {unk

} (which to simplify notation we do not relabel) such that

(2.35) unk
→ u in C0(Ω) for every Ω ⊆ [0, T̃ ]× R compact

and

∂tunk

∗
⇀ ∂tu, ∂xunk

∗
⇀ ∂xu weakly∗ in L∞(]0, T̃ [×R),
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for some Lipschitz continuous function u. Assume for a moment that we have shown that

(2.36) unk−1 → u in C0(Ω) for every Ω ⊆ [0, T̃ ]× R compact,

where u is the same as in (2.35)3, which will be done in the next paragraph. Then by combining (2.36)

and (2.34) we have V (ξnk
, unk−1) → V (ξ, u) strongly in L1

loc(]0, T̃ [×R). This implies that we can pass
to the limit in the distributional formulation of (2.6) and in the pointwise formulation of (2.18), and
obtain a solution of (1.1) satisfying (1.10), (1.11) and also the first inequality in (1.12).

To conclude the proof, we are left to establish the equality ∂xu = ρz for some z satisfying (1.12).
Towards this end, we set

(2.37) z(t, x) := z0(Y (t, x)),

where Y (y, ·) = X(t, ·)−1 andX is defined as in (2.7) with ξn+1 and un replaced by ξ and u, respectively.
Note that V (ξ, u) is a regular vector field and hence the classical Cauchy Lipschitz Picard Lindelhöf
Theorem still applies. Note furthermore that ∥z∥L∞ ≤ ∥z0∥L∞ . We now set

w(t, x) = u∞ +

ˆ x

−∞
ρz(t, y)dy,

where u∞ is the same as in (2.2), and point out that w(0, ·) = u0. By arguing as in Step 4 in
§2.1 we obtain ∂tw + V (ξ, u)∂xw = 0. Since this transport equation has a unique solution satisfying
w(0, ·) = u0, by recalling the equation at the first line of (1.2) we conclude that w = u and this
establishes the identity ∂xu = ρz.

We are now left to establish the regularity results. Towards this end, we assume (1.13) and set
ψ(t, x) := ψ0(Y (t, x)) and

z(t, x) = z∞ +

ˆ x

−∞
ρψ(t, y)dy,

where z∞ is the same as in (2.21), and by arguing as before this yields ∂xz = ρψ, that is (1.14).
To establish (1.15), we pass to the limit in (2.22) to control the space derivatives, then use the first
equation in (1.1) to control ∂tρ and the derivative of second equation in (1.1) to control ∂txu. This
concludes the proof of the existence part of Theorem 1.1.

2.3. Proof of (2.36). We use an argument inspired by [16] and introduce the functional

(2.38) Qn(t) :=

ˆ
R
ρ0(x)|Xn+1(t, x)−Xn(t, x)|dx,

where Xn+1 and Xn are defined as in (2.7). We point out that (1.4) implies that η is a bounded
variation function and state the following result.

Lemma 2.1. There is δ > 0, only depending on depending on the Lipschitz constant of V , ∥z0∥L∞

and TotVar η and on the expression at the right had side of (2.12), such that

(2.39) sup
t∈[0,δ]

Qn(t) → 0 as n→ +∞.

We postpone the proof of Lemma 2.1 to the next paragraph and we show that (2.39) implies (2.36).
Up to extracting a further subsequence (which to simplify notation we do not relabel) we can assume
that

(2.40) unk−1 → v in C0(Ω) for every Ω ⊆ [0, T̃ ]× R compact,

for some continuous limit function v. Establishing (2.36) amounts to show that u = v. We fix x ∈ R
and recall that {Xn(·, x)} is defined as in (2.7) and also recall from Step 1 in §2.1 that the Lipschitz
constant on {Xn(·, x)} is uniformly bounded. We apply the Arzelà Ascoli Theorem and conclude that

3Note indeed that by compactness {unk−1}k∈N has a converging subsequence, but its limit might in principle differ
from u.
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we can extract a further subsequence (which we do relabel to simplify the notation, and which in
principle depends on x) such that

Xnk
(·, x) → X(·, x), Xnk−1(·, x) → Z(·, x)

for some limit functions X(·, x) and Z(·, x) that solve

(2.41)


dX

dt
= V (ξ, u)(t,X)

X(0, x) = x,


dZ

dt
= V (ξ, v)(t, Z)

Z(0, x) = x,

respectively. By the Lipschitz continuity of V (ξ, u) and V (ξ, v), each of the above Cauchy problems
has a unique solution. This implies that the whole sequences {Xnk

(·, x)} and {Xnk−1(·, x)} converge,
with no need to pass to subsequences. In particular, the convergence holds for every x. By using the
Dominated Convergence Theorem we then conclude that

(2.42)

ˆ
R
ρ0(x)|X(t, x)− Z(t, x)|dx = lim

k→+∞
Qnk

(t)
(2.39)
= 0, for every t ∈ [0, δ].

We now fix t ∈ [0, δ] and by passing to the limit in the identities unk
(t,Xnk

(t, x)) = u0(x) =
unk−1(t,Xnk−1(t, x)) we arrive at u(t,X(t, x)) = u0(x) = v(t, Z(t, x))), which can be rewritten as

(2.43) u(t, z) = u0(Y1(t, z)), v(t, z) = u0(Y2(t, z)).

provided Y1(t, ·) and Y2(t, ·) are the inverse functions of X(t, ·) and Z(t, ·), respectively. Let us now
fix z ∈ R: if Y1(t, z) = Y2(t, z) then u(t, z) = v(t, z), so in the following we focus on the case Y1(t, z) ̸=
Y2(t, z) and just to fix the ideas we assume Y1(t, z) < Y2(t, z). Assume for a moment that we have
proved that

(2.44) ρ0(x) = 0 a.e. on [Y1(t, z), Y2(t, z)],

then owing to (1.9) we have u′0 ≡ 0 a.e. on [Y1(t, z), Y2(t, z)] and hence u0(Y1(t, z)) = u0(Y2(t, z)),
which owing to (2.43) implies u(t, z) = v(t, z). To establish (2.44) we argue by contradiction and
assume that the set of points x ∈]Y1(t, z), Y2(t, z)[ such that ρ0(x) > 0 has positive measure. Owing
to (2.42), this implies that there is x0 ∈]Y1(t, z), Y2(t, z)[ with X(t, x0) = Z(t, x0). Since the maps
x 7→ X(t, x) and x 7→ Y (t, x) are both strictly monotone, we have

z = X(t, Y1(t, z)) < X(t, x0), Z(t, x0) < Z(t, Y2(t, z)) = z,

which contradicts the equality X(t, x0) = Z(t, x0) and hence establishes (2.44). This in turn establishes
the identity u = v and hence the local in time existence on the time interval [0, δ]. To establish the
existence on the whole time interval ]0, t̄[ we point out that the right-hand side of (2.12) is uniformly
bounded on ]0, t̄[ and conclude that we can iterate the above argument.

2.4. Proof of Lemma 2.1. We have

dQn

dt

(2.7)

≤
ˆ
R
|V (ξn+1, un)(t,Xn+1)− V (ξn, un−1)(t,Xn)|ρ0(x)dx

≤
ˆ
R
|V (ξn+1, un)(t,Xn+1)− V (ξn+1, un)(t,Xn)|ρ0(x)dx︸ ︷︷ ︸

:=I1

+

ˆ
R
|V (ξn+1, un)(t,Xn)− V (ξn, un−1)(t,Xn)|ρ0(x)dx︸ ︷︷ ︸

:=I2

and

I1 ≤ C(V )

ˆ
R
|ξn+1(t,Xn+1)− ξn+1(t,Xn)|ρ0(x)dx︸ ︷︷ ︸

:=I11

+C(V )

ˆ
R
|un(t,Xn+1)− un(t,Xn)|ρ0(x)dx︸ ︷︷ ︸

:=I12

.
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We have

I12 ≤ ∥∂xun∥L∞

ˆ
R
|Xn+1(t, x)−Xn(t, x)|ρ0(x)|dx

∂xun=ρnzn,(2.15)

≤ ∥ρn∥L∞∥z0∥L∞Qn(t),

and

I11 =

ˆ
R
ρ0(x)

∣∣∣∣ˆ
R
[η(Xn+1(t, x)− y)− η(Xn(t, x)− y)]ρn+1(t, y)|dy

∣∣∣∣ dx
≤ ∥ρn+1∥L∞TotVar η

ˆ
R
ρ0(x)|Xn+1(t, x)−Xn(t, x)|dx = ∥ρn+1∥L∞TotVar η Qn(t).

In the previous expression, we have used the characterization of bounded total variation functions
through different quotients. To control I2 we point out that

I2 ≤ C(V )

ˆ
R
|ξn+1(t,Xn)− ξn(t,Xn)|ρ0(x)dx︸ ︷︷ ︸

:=I21

+C(V )

ˆ
R
|un(t,Xn)− un−1(t,Xn)||ρ0(x)dx︸ ︷︷ ︸

:=I22

.

To control I21 we use the identity ρn(t, ·)L1 = Xn(t, ·)#
(
ρ0L1

)
, namely

(2.45)

ˆ
R
ρn(t, y)φ(y)dy =

ˆ
R
ρ0(x)φ(Xn(t, x))dx for every φ ∈ C0

b (R)

and point out that, since ρn is bounded, by approximation the above identity holds for every φ ∈ L1(R).
This yields

I21 =

ˆ
R
ρ0(x)

∣∣∣∣ˆ
R
η(Xn(t, x)− y)[ρn+1 − ρn](y)

∣∣∣∣ dydx
(2.45)
=

ˆ
R
ρ0(x)

∣∣∣∣ˆ
R

[
η(Xn(t, x)−Xn+1(t, y))− η(Xn(t, x)−Xn(t, y))

]
ρ0(y)dy

∣∣∣∣ dx
≤
ˆ
R
ρ0(y)

ˆ
R
|η(Xn(t, x)−Xn+1(t, y))− η(Xn(t, x)−Xn(t, y))| ρ0(x)dxdy

(2.45)
=

ˆ
R
ρ0(y)

ˆ
R
|η(x−Xn+1(t, y))− η(x−Xn(t, y))| ρn(t, x)dxdy

≤ ∥ρn∥L∞TotVar η Qn(t).

To control I22 we point out that

(2.46) un(t,Xn(t, x)) = u0(x) = un+1(t,Xn+1(t, x))

and decompose I22 as follows:

I22 =

ˆ
R
|un(t,Xn)− un−1(t,Xn)||ρ0(x)dx

≤
ˆ
R
|un(t,Xn)− un−1(t,Xn−1)||ρ0(x)dx︸ ︷︷ ︸

=0 by (2.46)

+

ˆ
R
|un−1(t,Xn−1)− un−1(t,Xn)|ρ0(x)dx

≤ ∥∂xun−1∥L∞

ˆ
R
|Xn(t, x)−Xn−1(t, x)|ρ0(x)dx

∂xun=ρnzn,(2.15)

≤ ∥ρn−1∥L∞∥z0∥L∞Qn−1(t).

We now control the L∞ norm of ρn and ρn+1 through (2.12) and conclude that

dQn

dt
≤ K[Qn(t) +Qn−1(t)],
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for a suitable constant K only depending on the Lipschitz constant of V , ∥z0∥L∞ , TotVar η and on the

expression at the right had side of (2.12) evaluated at t = T̃ . By recalling that Qn(0) = 0 the above
inequality implies

sup
s∈[0,t]

Qn(t) ≤ [eKt − 1] sup
s∈[0,t]

Qn−1(t)

and from there a classical induction argument yields (2.39) provided | exp(Kδ)−1| < 1. This concludes
the Proof of Lemma 2.1.

Remark 2.2. Assume that z0 ≥ 0 and recall the definition of zn given at the beginning of Step 4 in
§2.1, which implies zn ≥ 0. By plugging this inequality in (2.13) and recalling that ρn ≥ 0, ρn+1 ≥ 0,
∂2V ≥ 0 we conclude that the material derivative evaluated at (t∗, x∗) is non-positive, which in turns
yields the maximum principle 0 ≤ ρ ≤ ess sup ρ0. We can then iteratively apply Theorem 1.1 and obtain
a global-in-time existence result (we also obtain uniqueness, by Lemma 2.3 in the following paragraph).

2.5. Uniqueness.

Lemma 2.3. Fix τ > 0 and assume that (ρ1, u1) and (ρ2, u2) are two solutions of (1.1),(1.6) belonging
to the class L∞(]0, τ [×R)× L∞(]0, τ [;W 1,∞(R)). Then ρ1 = ρ2 and u1 = u2.

Proof. We basically follow the same argument as in [16] and in the proof of Lemma 2.1, so we only
touch upon the main steps. For i = 1, 2, we consider ξi given by the formula in (1.1) with ρi in place
of ρ, and the Cauchy problem

(2.47) dXi/dt = V (ξi, ui), Xi(0, x) = x,

which satisfies the assumptions of the Lipschitz Cauchy Picard Lindelöf Theorem and hence admits
exactly one solution, the characteristic curve Xi(·, x). Next, we set

(2.48) Q(t) :=

ˆ
R
|X1(t, x)−X2(t, x)|ρ0(x)dx,

and by repeating the same argument as in the proof of Lemma 2.1 we arrive at

dQ

dt
≤ C(∥∂xu1∥L∞ , ∥ρ1∥L∞ , ∥ρ2∥L∞ ,TotVar η)Q(t),

which owing to the Gronwall Lemma and the equality Q(0) yields Q(t) = 0 for every t ∈]0, τ [. By
arguing as in the proof of Lemma 2.1 we then obtain the identity u1 = u2. To establish the identity
ρ1 = ρ2 we point out that for every φ ∈ C0

c (R) we haveˆ
R
ρ1(t, x)φ(x)dx =

ˆ
R
ρ0(y)φ(X1(t, y))dy

Q(t)≡0
=

ˆ
R
ρ0(y)φ(X2(t, y))dy =

ˆ
R
ρ2(t, x)φ(x)dx

and by the arbitrariness of φ we conclude that ρ1 = ρ2. □

2.6. Global-in-time existence.

Lemma 2.4. Under the same assumptions as in Theorem 1.1, assume furthermore that η is Lipschitz
continuous on R− and that

(2.49) ∂1V η(0) + ∥z0∥L∞∂2V ≤ 0.

Then the solution given in the statement of Theorem 1.1 can be extended globally-in-time.

For other conditions yielding global in time existence, see also Remark 2.2 at the end of §2.4. Note
furthermore that, if we replace η by ηε := η(·/ε)/ε, Lemma 2.49 implies that, if η ∈ W 1∞(R−) and
∂2V is bounded away from 0, there is ε0 such that for every ε ∈]0, ε0[ condition (2.49) is satisfied and
hence the solution of (1.16) is defined globally in time.
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Proof of Lemma 2.4. The analysis in §2.1 implies that to establish the proof of Lemma 2.4 it suffices
to replace (2.12) with a global-in-time bound. We argue as in Step 3 in §2.1 and conclude that the
function gn+1 defined by (2.14) satisfies

g′n+1(t) ≤ ∂1V η(0)g
2
n+1(t) + ∥∂1V ∥L∞(0,1)∥η′∥L∞(R−)∥ρ0∥L1︸ ︷︷ ︸

:=ĉ

gn+1(t) + gn+1(t)gn(t)∥z0∥L∞∂2V.

We now use induction to show that, under (2.49), the above inequality implies gn(t) ≤ exp[ĉt]. Indeed,
assume that gn satisfies the desired bound, then at any point where gn+1(t) = exp[ĉt] we have

g′n+1(t) ≤ g2n+1(t) [∂1V η(0) + ∥z0∥L∞∂2V ]︸ ︷︷ ︸
≤0 by (2.49)

+ĉgn+1(t) ≤ ĉgn+1(t),

and since gn+1(0) ≤ 1 this implies that gn+1 cannot exceed exp[ĉt]. □

2.7. Stability.

Corollary 2.5. Assume {ρ0k}k∈N and {u0k}k∈N are sequences of initial data satisfying the same as-
sumptions as in the statement of Theorem 1.1, and term {(ρk, uk)} the corresponding sequence of
solutions of the Cauchy problem obtained by coupling (1.1) with the initial datum given by (ρ0k, u0k) ,
and by {ξk}k∈N the sequence of convolution terms defined as in (1.1). Assume

ρ0k
∗
⇀ ρ0 weakly

∗ in L∞(R), u0k → u0 uniformly in C0(R), ∥z0k∥L∞ , ∥ρ0k∥L1 ≤M

for some M > 0. Then
(2.50)

ρk
∗
⇀ ρ weakly∗ in L∞(]0, T [×R), uk → u uniformly in C0(Ω), for every Ω ⊆ [0, T [×R compact

and ξk(t, x) → ξ(t, x) for every (t, x) ∈]0, T [×R, provided (ρ, u) denotes the solution of the Cauchy
problem (1.1),(1.6), ξ is as in (1.1) and T = C(V,M).

Proof. We can argue as in §2.2, the only new point is establishing the pointwise convergence ξk(t, x) →
ξ(t, x). Towards this end, it suffices to recall Remark (1.3), which gives a meaning to ρk(t, ·) for every
t, and then apply the same argument as in Step 2 of the proof of Theorem 1.1, item (i) in [16], which

yields ρk(t, ·)
∗
⇀ ρ(t, ·) for every t. □

3. Oleinik estimate for a general function V

This section is devoted to the proof of Theorem 1.2. We first prove the following one-sided Lipschitz
estimate, uniform in the parameter ε as ε→ 0+.

Proposition 3.1. Under the same assumptions as in the statement of Theorem 1.2 there are positive
constants ε0, a, c > 0 only depending on V, ∥z0∥L∞ , ∥ψ0∥L∞ such that

(3.1) ξε(t, y)− ξε(t, x) ≥ −
(
a+

1

ct

)
(y − x) for every t > 0, ε ∈]0, ε0[ and x < y.

Proof. To simplify the notation, in the proof of Proposition 3.1 we write ξ, ρ, u rather than ξε, ρε, uε.
We also set h := ∂xξε. Owing to the stability result provided by Corollary 2.5 we can assume with no
loss of generality that the initial data (ρ0, u0) are smooth and that ρ0 is compactly supported, which
implies that ρ(t, ·) is compactly supported for every t > 0 and hence that lim|x|→∞ h(t, x) = 0 for every
t ≥ 0. Owing to the propagation of regularity property (1.15), h is Lipschitz continuous. We set

(3.2) m(t) := inf
y∈R

h(t, y).

Since h(t, ·) vanish at ±∞, for every t ≥ 0 either h(t, ·) ≥ 0 and m(t) = 0 or m(t) < 0 and there is
x ∈ R such that

(3.3) m(t) = h(t, x) = min
y∈R

h(t, y).
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Note furthermore that m is a Lipschitz continuous function being the infimum of Lipschitz continuous
functions, and as such differentiable at a.e. t ∈ R+. Assume that we have proved that for some suitable
constants c0, c1, c2 > 0 we have the inequality

(3.4) m′(t) ≥ c2m
2(t) + c1m(t)− c0 for a.e. t ≥ 0.

We claim that this implies

(3.5) m(t) ≥ −a− 1

ct

for suitable constants a > 0 and c > 0. Note that (3.5) immediately yields (3.1). To see that (3.4)
implies (3.5) we first of all point out that the polynomial c2x

2 + c1x − c0 has two real and distinct
roots, x = m1 > 0 and x = −m2 < 0. By setting a := 2m2, we can find c ∈]0, c2[ in such a way that

c2x
2 + c1x− c0 ≥ c x2 if x ∈]−∞,−a[.

This implies that, if m(t) ≤ −a, then m′(t) ≥ cm2(t), which by the Comparison Theorem for ODEs
yields m(t) ≥ −1/ct. This in turn shows that (3.4) implies (3.5).

Wrapping up, to establish (3.1) we are left to prove (3.4). Note furthermore that, since m(t) ≤ 0
for every t ≥ 0, at any point t of differentiability for m where m(t) = 0 we have m′(t) = 0, which
obviously implies (3.4). We are therefore left to verify (3.4) at a.e. time t where (3.3) holds. Towards
this end, it suffices to show that

(3.6)
∂h

∂t
(t, x) ≥ c2m

2(t) + c1m(t)− c0

provided x is the same as in (3.3). Before entering the details, we make two last preliminary comments:
first, in the following, we use the algebraic identity

(3.7) ρ = ξ − εh,

which follows from the fact that the kernel is the exponential function. Second, in the rest of the proof
we always assume that (1.20), which can be justified by relying on (1.10) and a continuous induction
argument. Indeed, (1.10) implies that ∥ρ(t, ·)∥L∞ ≤ 3/2 for every t ∈ [0, τ ], for a sufficiently small τ not
depending on ε. In the following, we will show that (1.20) implies (3.1), which in turn owing to (3.7)
implies that on [τ,+∞[

∥ρ(t, ·)∥L∞ ≤ 1 + ε

(
a+

1

ct

)
≤ 1 + ε

(
a+

1

cτ

)
≤ 3

2

provided ε is small enough, which obviously implies (1.20). The rest of the proof is organized in the
following steps.
Step 1 (equation for h). By convolving (1.1) with ηε, we have

∂tξ + V (ξ, u)∂xξ = −1

ε

ˆ +∞

x
exp

(
x− y

ε

)
∂yV (ξ(y), u(y))ξ(y)dy,

and by x-differentiating we get

∂th+ V (ξ, u)∂xh = −∂x[V (ξ, u)]h+
1

ε

[
∂x[V (ξ, u)]ξ(x)− 1

ε

ˆ +∞

x
exp

(
x− y

ε

)
∂y[V (ξ(y), u(y))]ξ(y)dy

]
We now evaluate the previous expression at a minimum point (where ∂xh vanishes) and by recalling
that ∂xu = ρz we get

∂x[V (ξ, u)] = ∂1V (ξ, u)h+ ∂2V (ξ, u)ρz.
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All in all, we arrive at

∂th = −∂1V (t, x)h2(t, x)− ∂2V (t, x)ρ(t, x)h(t, x)z(t, x)

+
1

ε

[
∂1V (t, x)h(t, x)ξ(t, x)− 1

ε

ˆ +∞

x
exp

(
x− y

ε

)
∂1V (t, y)h(t, y)ξ(t, y)dy

]
︸ ︷︷ ︸

:=TA

+
1

ε

[
∂2V (t, x)ρ(t, x)z(t, x)ξ(t, x)− 1

ε

ˆ +∞

x
exp

(
x− y

ε

)
∂2V (t, y)ρ(t, y)z(t, y)ξ(t, y)dy

]
.︸ ︷︷ ︸

:=TB

(3.8)

In the previous expression and in the following sometimes to simplify he notation we sometimes write
V (t, x) rather than V (ξ(t, x), u(t, x)).
Step 2 (estimate of TA). We have

TA =
∂1V (t, x)h(t, x)ξ(t, x)

ε
− ∂1V (t, x)ξ(t, x)

ε2

ˆ +∞

x
exp

(
x− y

ε

)
h(t, y)dy

+
1

ε2

ˆ +∞

x
exp

(
x− y

ε

)[
ξ(t, x)∂1V (ξ(t, x), u(t, x))− ξ(t, y)∂1V (ξ(t, y), u(t, x))

]
h(t, y)dy︸ ︷︷ ︸

:=TA1

+
1

ε2

ˆ +∞

x
exp

(
x− y

ε

)[
∂1V (ξ(t, y), u(t, x))− ∂1V (ξ(t, y), u(t, y))

]
ξ(t, y)h(t, y)dy︸ ︷︷ ︸

:=TA2

(3.9)

and

TA1 = −∂1V (ξ(t, x), u(t, x))

ε2

ˆ +∞

x
exp

(
x− y

ε

)
[ξ(t, y)− ξ(t, x)]h(t, y)dy

+
1

ε2

ˆ +∞

x
exp

(
x− y

ε

)[
∂1V (ξ(t, x), u(t, x))− ∂1V (ξ(t, y), u(t, x))

]
ξ(t, y)h(t, y)dy︸ ︷︷ ︸

:=TA12

(3.10)

We now argue as in [12], use (3.7) and arrive at

1

ε2

ˆ +∞

x
exp

(
x− y

ε

)
[ξ(t, y)− ξ(t, x)]h(t, y)dy =

1

ε2

ˆ +∞

x
exp

(
x− y

ε

)
ρ(t, y)h(t, y)dy

+
1

ε

ˆ +∞

x
exp

(
x− y

ε

)
h2(t, y)dy − ξ(t, x)

1

ε2

ˆ +∞

x
exp

(
x− y

ε

)
h(t, y)dy

(3.11)

Owing to (3.3) we have

(3.12)
1

ε2

ˆ +∞

x
exp

(
x− y

ε

)
ρ(t, y)h(t, y)dy ≥ h(t, x)

1

ε2

ˆ +∞

x
exp

(
x− y

ε

)
ρ(t, y)dy =

h(t, x)ξ(t, x)

ε

and by combining the above estimates we conclude that

TA ≥∂1V (t, x)h(t, x)ξ(t, x)

ε
− ∂1V (t, x)ξ(t, x)

ε2

ˆ +∞

x
exp

(
x− y

ε

)
h(t, y)dy + TA1 + TA2

(3.10),(3.11),(3.12)

≥ −∂1V (ξ(t, x), u(t, x))

ε

ˆ +∞

x
exp

(
x− y

ε

)
h2(t, y)dy + TA12 + TA2

(3.13)
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Next, we point out that

|TA2|
(1.21)

≤ C(V )

ε2

ˆ +∞

x
exp

(
x− y

ε

)
|u(t, x)− u(t, y)|ξ(t, y)|h(t, y)|dy

(1.20),(1.11),(1.12)

≤ C(V )∥z0∥L∞

ε2

ˆ +∞

x
exp

(
x− y

ε

)
[y − x]|h(t, y)|dy.

(3.14)

We now control TA12. First, we decompose it as

TA12 =
1

ε2

ˆ +∞

x
exp

(
x− y

ε

)[
∂1V (ξ(t, x), u(t, x))− ∂1V (ξ(t, y), u(t, x))

]
ξ(t, y)h(t, y)1h(t,y)≥0dy︸ ︷︷ ︸

:=TA121

+
1

ε2

ˆ +∞

x
exp

(
x− y

ε

)[
∂1V (ξ(t, x), u(t, x))− ∂1V (ξ(t, y), u(t, x))

]
ξ(t, y)h(t, y)1h(t,y)≤0dy︸ ︷︷ ︸

:=TA122

(3.15)

To control TA121, we use the Fundamental Theorem of Calculus and write

∂1V (ξ(t, x), u(t, x))− ∂1V (ξ(t, y), u(t, x)) =

ˆ y

x
[−∂11V (ξ(t, u), u(t, x))]h(t, u)du

(1.18),(3.3)

≥ βVm(t)[y − x].

(3.16)

Since we are handling the case m(t) < 0, this yields

TA121 ≥
βVm(t)

ε

ˆ +∞

x
exp

(
x− y

ε

)[
y − x

ε

]
ξ(t, y)h(t, y)1h(t,y)≥0dy

m<0,0≤ξ≤1
≥ βVm(t)

ε

ˆ +∞

x
exp

(
x− y

ε

)[
y − x

ε

]
|h(t, y)|dy.

(3.17)

To control TA122 we use again (3.16) and introduce the decomposition

ˆ y

x
[−∂11V (ξ(t, w), u(t, x))]h(t, w)dw =

ˆ y

x
[−∂11V (ξ(t, w), u(t, x))]h(t, w)1h(t,w)≥0dw

+

ˆ y

x
[−∂11V (ξ(t, w), u(t, x))]h(t, w)1h(t,w)≤0dw,
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TA122 =
1

ε2

ˆ +∞

x
exp

(
x− y

ε

)
ξ(t, y)h(t, y)1h(t,y)≤0

ˆ y

x
[−∂11V (ξ(t, w), u(t, x))]h(t, w)1h(t,w)≥0dwdy

+
1

ε2

ˆ +∞

x
exp

(
x− y

ε

)
ξ(t, y)h(t, y)1h(t,y)≤0

ˆ y

x
[−∂11V (ξ(t, w), u(t, x))]︸ ︷︷ ︸

≥0

h(t, w)1h(t,w)≤0dwdy

ξ≥0
≥ 1

ε2

ˆ +∞

x
exp

(
x− y

ε

)
ξ(t, y)h(t, y)1h(t,y)≤0

ˆ y

x
[−∂11V (ξ(t, w), u(t, x))]h(t, w)1h(t,w)≥0dwdy

(3.3),m<0

≥ m(t)

ε2

ˆ +∞

x
exp

(
x− y

ε

)
ξ(t, y)

ˆ y

x
[−∂11V (ξ(t, w), w(t, x))]h(t, w)1h(t,w)≥0dwdy

=
m(t)

ε2

ˆ +∞

x
[−∂11V (ξ(t, w), u(t, x))]h(t, w)1{h(t,w)≥0}

ˆ +∞

u
exp

(
x− y

ε

)
ξ(t, y)dydw

0≤ξ≤1,m<0
≥ m(t)

ε

ˆ +∞

x
exp

(
x− w

ε

)
[−∂11V (ξ(t, w), u(t, x))]h(t, w)1{h(t,w)≥0}dydw

(1.18)

≥ βVm(t)

ε

ˆ +∞

x
exp

(
x− w

ε

)
|h(t, w)|dw

(3.18)

By plugging (3.14),(3.15),(3.17) and (3.18) into (3.13) and recalling (1.17) we get

TA ≥ 1

ε

ˆ +∞

x
exp

(
x− y

ε

)[
αV

6
h2(t, y)− C(V )∥z∥L∞ |h(t, y)|y − x

ε

]
dy

+
1

ε

ˆ +∞

x
exp

(
x− y

ε

)[
αV

6
h2(t, y) + 2βVm(t)|h(t, y)|y − x

ε

]
dy

+
1

ε

ˆ +∞

x
exp

(
x− y

ε

)[αV

6
h2(t, y) + 2βVm(t)|h(t, y)|

]
dy

+
1

ε

ˆ +∞

x
exp

(
x− y

ε

)
αV

2
h2(t, y)dy.

(3.19)

We now use the elementary inequality

(3.20) h2 − c|h| ≥ −c
2

4
, for every h ∈ R, c > 0,

recall the with identities

(3.21)
1

ε

ˆ +∞

x
exp

(
x− y

ε

)
[y − x]

ε
dy = 1,

1

ε

ˆ +∞

x
exp

(
x− y

ε

)
[y − x]2

ε2
dy = 2
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and control the first line in (3.19):

1

ε

αV

6

ˆ +∞

x
exp

(
x− y

ε

)[
h2(t, y)− C(V )

αV
∥z0∥L∞ |h(t, y)|y − x

ε

]
dy

=
1

ε

αV

6

ˆ x+ε

x
exp

(
x− y

ε

)[
h2(t, y)− C(V )

αV
∥z0∥L∞ |h(t, y)|y − x

ε

]
dy

+
1

ε

αV

6

ˆ +∞

x+ε
exp

(
x− y

ε

)[
h2(t, y)− C(V )

αV
∥z0∥L∞ |h(t, y)|y − x

ε

]
dy

≥ 1

ε

αV

6

ˆ x+ε

x
exp

(
x− y

ε

)
y − x

ε

[
h2(t, y)− C(V )

αV
∥z0∥L∞ |h(t, y)|

]
dy

+
1

ε

αV

6

ˆ +∞

x+ε
exp

(
x− y

ε

)[
h2(t, y)− C(V )

αV
∥z0∥L∞ |h(t, y)|

]
dy

(3.20),(3.21)

≥ −
C(V )∥z0∥2L∞

αV
,

where we recall that the exact value of the constants can vary from line to line. We use analogous
computations to control the second and third line of (3.19) and eventually arrive at

TA ≥ −
C(V )∥z0∥2L∞

αV
−

54β2Vm(t)2

αV
+
αV

2

1

ε

ˆ +∞

x
exp

(
x− y

ε

)
|h(t, y)|2dy.(3.22)

Step 2 (estimate of TB). First, we point out that the term TB has the following structure:

TB = g ∗
(
1

ε
δ0 −

1

ε
ηε

)
= g ∗ (−η′ε) = −∂xg ∗ ηε = −1

ε

ˆ +∞

x
exp

(
x− y

ε

)
∂yg(t, y)dy,

provided g = ∂2V ∂xu ξ. Since

∂yg = ∂222V [∂yu]
2ξ + ∂212V h∂xu ξ + ∂2V ∂

2
yyu ξ + ∂2V ∂yuh

then

TB = − 1

ε

ˆ +∞

x
exp

(
x− y

ε

)[
∂222V [∂yu]

2ξ + ∂212V h∂xu ξ + ∂2V ∂
2
yyu ξ + ∂2V ∂yuh

]
(t, y)dy

.
= TB1 + TB2 + TB3 + TB4.

Owing to (1.12) and (3.7) we have ∂xu = ρz = (ξ − εh)z. Owing to (1.11) and again to (1.12) this
implies

|TB1| ≤ C(V )∥z0∥2L∞ + 2εC(V )∥z0∥2L∞
1

ε

ˆ +∞

x
exp

(
x− y

ε

)
|h(t, y)|dy

+ ε2C(V )∥z0∥2L∞
1

ε

ˆ +∞

x
exp

(
x− y

ε

)
|h(t, y)|2dy

and

|TB2|+|TB4| ≤ 2C(V )∥z0∥L∞
1

ε

ˆ +∞

x
exp

(
x− y

ε

)
|h(t, y)|dy+2εC(V )∥z0∥L∞

1

ε

ˆ +∞

x
exp

(
x− y

ε

)
|h(t, y)|2dy.

We are left to control TB3: we use (1.12) and (1.14) and point out that since ∂xu = ρz then ∂2xxu =
∂xρz + ρ∂xz = ∂xρz + ρ2ψ. We then decompose TB3 as

TB3 = −1

ε

ˆ +∞

x
exp

(
x− y

ε

)
∂2V

(
∂xρz + ρ2ψ

)
ξdy

.
= TB31 + TB32.
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We first control |TB32| and by using (1.11),(1.14) and (3.7) we arrive at

|TB32| ≤ C(V )∥ψ0∥L∞ + 2εC(V )∥ψ0∥L∞
1

ε

ˆ +∞

x
exp

(
x− y

ε

)
|h(t, y)|dy

+ ε2C(V )∥ψ0∥L∞
1

ε

ˆ +∞

x
exp

(
x− y

ε

)
|h(t, y)|2dy.

We now focus on TB31: by differentiating (3.7) we get ∂xρ = h− ε∂xh, which yields

TB31 = −1

ε

ˆ +∞

x
exp

(
x− y

ε

)
∂2V (zhξ − zεξ∂xh) dy

.
= TB311 + TB312.

Owing to (1.11),(1.14) we get

|TB311| ≤ C(V )∥z0∥L∞

ˆ +∞

x

1

ε
exp

(
x− y

ε

)
|h(t, y)|dy

To control TB312 we use the Integration by Parts Formula and arrive at

TB312 = −[∂2V z ξ h](t, x) +

ˆ +∞

x
∂y

[
exp

(
x− y

ε

)
∂2V z ξ

]
hdy

.
= −∂2V (t, x)z(t, x)ξ(t, x)m(t) + TC .

We have

TC =

ˆ +∞

x

[
−1

ε
exp

(
x− y

ε

)
∂2V z ξh+ exp

(
x− y

ε

)
∂y[∂2V ]zξh

+ exp

(
x− y

ε

)
∂2V ∂xzξh+ exp

(
x− y

ε

)
∂2V zh

2

]
dy

.
= TC1 + TC2 + TC3 + TC4.

Owing to (1.11),(1.14) we have

|TC1| ≤ C(V )∥z0∥L∞

ˆ +∞

x

1

ε
exp

(
x− y

ε

)
|h(t, y)|dy,

|TC4| ≤ εC(V )∥z0∥L∞

ˆ +∞

x

1

ε
exp

(
x− y

ε

)
|h(t, y)|2dy.

By using again the identity ∂xz = ρψ = (ξ − εh)ψ, we get

|TC3| ≤ εC(V )∥ψ0∥L∞

ˆ +∞

x

1

ε
exp

(
x− y

ε

)
|h(t, y)|dy+ε2C(V )∥ψ0∥L∞

ˆ +∞

x

1

ε
exp

(
x− y

ε

)
|h(t, y)|2dy.

We also have

TC2 =

ˆ +∞

x
exp

(
x− y

ε

)[
(∂222V )∂xuzξh+ (∂221V )zξh2

]
dy

.
= TC21 + TC22

and, since ∂xu = ρz = (ξ − εh)z and by recalling (1.11) and (1.12), this implies

|TC21| ≤ C(V )∥z0∥2L∞ε

ˆ +∞

x

1

ε
exp

(
x− y

ε

)
|h(t, y)|dy + C(V )∥z0∥2L∞ε2

ˆ +∞

x

1

ε
exp

(
x− y

ε

)
|h(t, y)|2dy,

|TC22| ≤ C(V )∥z0∥L∞ε

ˆ +∞

x

1

ε
exp

(
x− y

ε

)
|h(t, y)|2dy.

We combine all the above estimates and recall that m(t) < 0 to arrive at

|TB| ≤ |TB1|+ |TB2|+ |TB4|+ |TB3|
≤ |TB1|+ |TB2|+ |TB4|+ |TB32|+ |TB311|+ |∂2V |∥z0∥L∞ |m(t)|+ |TC1|+ |TC3|+ |TC4|
+ |TC21|+ |TC22| ≤ −c̃m(t) + c̃0 + c̃1(|h| ∗ ηε)(x) + εc̃2(h

2 ∗ ηε)(x),
(3.23)
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where we have used the inequality ε ≤ 1, the shorthand notation

(3.24) |h| ∗ ηε(x) =
ˆ +∞

x

1

ε
exp

(
x− y

ε

)
|h(t, y)|dy, h2 ∗ ηε(x) =

ˆ +∞

x

1

ε
exp

(
x− y

ε

)
|h(t, y)|2dy

and

c̃ = C(V )∥z0∥L∞ , c̃0 = C(V )
[
∥z0∥2L∞ + ∥ψ0∥L∞

]
, c̃1 = C(V )

[
∥z0∥L∞ + ∥z0∥2L∞ + ∥ψ0∥L∞

]
c̃2 = C(V )

[
∥z0∥L∞ + ∥z0∥2L∞ + ∥ψ0∥L∞

]
,

and the fact that the exact value of C(V ) can vary from occurrence to occurrence.
Step 3 (conclusion). We now plug (3.22) and (3.23) into (3.8), use (3.7) and (1.12) and conclude that
at any point of differentiability of m where m < 0 we have

dm

dt
= −∂1V (t, x)m2(t)− ∂2V (t, x)ρ(t, x)m(t)z(t, x) + TA + TB

≥
[
αV −

54β2V
αV

− ε∥z0∥L∞C(V )

]
m2(t) + [C(V )∥z0∥L∞ + c̃]m(t)−

[
c̃0 +

C(V )∥z0∥2L∞

αV

]
+
[αV

2
− εc̃2

]
(h2 ∗ ηε)(x)− c̃1(|h| ∗ ηε)(x)

We point out that for ε sufficiently small we have αV/2 − εc̃2 > αV/4, we use (3.20) to conclude[αV

2
− εc̃2

]
(|h|2 ∗ ηε)(x)− c̃1(|h| ∗ ηε)(x) ≥ − c̃21

2αV
.

This eventually implies that m satisfies (3.4) provided ε is small enough and

c2 = αV −
54β2V
αV

− ε∥z0∥L∞C(V ) c1 = C(V )∥z0∥L∞ + c̃

c0 = c̃0 +
C(V )∥z0∥2L∞

αV
+

c̃21
2αV

.

Note that, under (1.19), c2 > 0 for ε small enough. This concludes the proof of Proposition 3.1. □

Remark 3.2. As pointed out at the beginning of the proof of Proposition 3.1, the differential inequal-
ity (3.4) implies m′(t) ≥ cm2(t) for a suitable constant c > 0 as soon as m(t) < −a for some positive
constant a > 0. If the initial datum ρ0 satisfies the one-sided Lipschitz condition

ρ0(y)− ρ0(x) ≥ m0[y − x] for every x < y and for some m0 < 0

then we have

ξ(t, y)− ξ(t, x) ≥
[
−a+ 1

1/m0 − ct

]
(y − x) for every x < y and t > 0.

The above estimate is better than (3.1), since the one-side Lipschitz bound does not blow-up as t→ 0.

Proof of Theorem 1.2. We proceed according to the following steps.
Step 1 (compactness of {ξε}ε>0 and {ρε}ε>0). By combining (1.11) and (3.1) we conclude that for
every t, L > 0 we have

(3.25) Tot.Var. {ξε(t, ·); [−L,L]} ≤ 4L

(
α0 +

1

ct

)
+ 1

and that the distribution hε
.
= ∂xξε satisfies

(3.26) hε
.
= ∂xξε ≥ −

(
α0 +

1

ct

)
for every t > 0

and every ε small enough, which in particular implies that hε is actually a measure. We also recall (1.20)
and conclude that, for every vanishing sequence εk → 0+ there are a subsequence (which we do not
relabel) and a bounded function ρ̄ such that ρεk ⇀

∗ ρ̄ weakly∗ in L∞(R+ × R). Note that actually a
slightly stronger result holds: recalling Remark 1.3, we have ρεk(t, ·) ⇀∗ ρ(t, ·) for every t ≥ 0. This
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follows from very the same argument as in Step 2 of the proof of Theorem 1.1, item (i) in [16] and
implies that

(3.27) ξεk(t, ·) = ρεk(t, ·) ∗ ηεk
∗
⇀ ρ(t, ·) in the space of distributions D′(R).

We now consider the sequence {ξεk}k∈N: by combining (1.11) with (3.25) and the Helly-Frechét-
Kolmogorov Compactness Theorem we conclude that, for every t > 0, the sequence {ξεk(t, ·)}k∈N
converges (in principle up to subsequences) in the strong topology of L1

loc(R) to some limit function ρ̃.
Owing to (3.27), we have ρ̃ = ρ̄(t, ·) and by the Urysohn Subsequence Principle we conclude that

(3.28) ξεk(t, ·) → ρ̄(t, ·) strongly in L1
loc(R), for every t > 0.

Step 2 (compactness of {uε}ε>0). Since ∂xuε = ρεzε, by combining (1.12) and (1.20) we obtain
that ∥∂xuε∥L∞(R+×R ≤ 2∥z0∥L∞(R+×R). Owing to (1.1), this implies that the functions ρε are equi-

Lipschitz functions in R+ ×R. By the Arzelà Ascoli Theorem, up to taking a further subsequence, we
have

(3.29) uεk → ū uniformly in C0
loc(R+ × R), ∂tuεk

∗
⇀ ∂tu, ∂xuεk

∗
⇀ ∂xū weakly∗ in L∞(R+ × R).

By combining (3.28) and (3.29) we can pass to the limit in (1.16) and conclude that (ρ̄, ū) satisfies
the equation at the first line of (1.2) in the sense of distributions, and that the equation at the second
lines holds true as an identity between L∞ functions.
Step 3 (entropy admissibility of the limit). We are left to show that ρ̄ is an entropy admissible solution
of the conservation laws at the first line of (1.2). Owing to the uniqueness result in [27, Theorem 1.1],
this implies that the whole family (ρε, uε) converges to (ρ̄, ū) and concludes the proof.

By combining (3.25) with (3.27) and using the lower semicontinuity of the total variation with
respect to the L1 convergence we obtain that ρ̄ ∈ L∞

loc(]0,+∞[ ; BVloc(R)). Since ρ is distributional
solution of (1.2), we deduce that ρ̄ ∈ BVloc(]0,+∞[×R). Since ū is a Lipschitz continuous function,
for every k ∈ R the distribution

µk := ∂t|ρ̄− k|+ ∂x

[
sign[ρ̄− k]

[
V (ρ̄, ū)ρ− V (k, ū)k

]]
+ sign[ρ̄− k]k∂2V (k, u)∂xū

is a locally finite Borel measure and by the Volpert chain-rule for bounded variation functions [2, §3.10],
we deduce that µk is concentrated on the jump set J of ρ. More precisely

µk =

[
ψk(ρ

+, ū)− ψk(ρ
−, ū)

ρ+ − ρ−
− λ(|ρ+ − k| − |ρ− − k|)

]
1√

1 + λ2
H1⌞J,

where ρ± denotes the left and right traces, respectively, of ρ at J ,

λ =
V (ρ+, u)ρ+ − V (ρ−, u)ρ−

ρ+ − ρ−

is the speed of propagation of the shock dictated by the Rankine-Hugoniot conditions and

ψk(ρ, u) = sign[ρ− k]
[
V (ρ, u)ρ− V (k, u)k

]
.

By using (3.27) and passing to the limit in the inequality (3.26) we conclude that ρ̄ satisfies a one-sided
Lipschitz condition, which in turn implies ρ− ≤ ρ+. Since for every u ∈ R the map ρ 7→ V (ρ, u)ρ is
concave, we conclude that the density of µk with respect to H1 is non-positive. This establish the
entropy admissibility of ρ and concludes the proof of Theorem 1.2. □
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