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Abstract

We investigate a dynamic inverse problem using a regularization which implements the so-called
Wasserstein-1 distance. It naturally extends well-known static problems such as lasso or total varia-
tion regularized problems to a (temporally) dynamic setting. Further, the decision variables, realized
as BV curves, are allowed to exhibit discontinuities, in contrast to the design variables in classical
optimal transport based regularization techniques. We prove the existence and a characterization of a
sparse solution. Further, we use an adaption of the fully-corrective generalized conditional gradient
method to experimentally justify that the determination of BV curves in the Wasserstein-1 space is
numerically implementable.
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1 Introduction
Consider an inverse problem composed of a fidelity term and regularization term,

inf
v∈V

F(Av)+αR(v),

where α ∈ R∗+ is a regularization parameter, A : V →W is a forward operator from a model space V to
a data space W , F : W → R∪{∞} is a fidelity, and R is a regularizer.

In this article, we are particularly interested in so-called sparse optimization where the regularizer R
enforces a ‘sparsity property’. We briefly recall some well-known instances in this context. The first is
termed ℓ1-regularization or lasso [52], for example in the formulation

inf
v∈RN
∥Av− f∥2

2 +α∥v∥1,

where A ∈ RN×N , f ∈ RN , and ∥ · ∥p denotes the ℓp-norm, that is ∥v∥p
p = |v1|p + . . .+ |vN |p. If A is

orthonormal, then it is straightforward to check that the solution is unique and given by Sα/2(A⊺ f ),
where thresholding operator Sα/2 is applied component-wise and given by

Sα/2(x) =

{
0 if x≤ α/2,
x− sign(x)α/2 else.

Hence, the larger α , the more zero entries in the solution, which is called sparsity in this context. A
variant of this problem is given by (see for instance [39, Ch. 6])

inf
v∈RN
∥Av− f∥2

2 +α∥Mv∥1,

where M ∈ RM×N . For example, one can take matrix M =
(M1

M2

)
∈ R2N×N , with M1,M2 ∈ RN×N , as a

discretization of the two-dimensional gradient operator applied to some grayscale image with N = N1N2
pixels stored in the vector v. Then the problem can be seen as a discretization of so-called total variation
regularization (cf. [42]). The regularizer R(v) = ∥Mv∥1 then enforces sparsity of the (discrete) gradient
which particularly yields sharp edges in the image (which is to be reconstructed from possibly noisy data
f ). A solution can be obtained by reformulating the problem as a quadratic program [27]. In a spatially
continuous setting, one may replace RN by some non-empty bounded Lipschitz domain U ⊂ Rn and
regularizer v 7→ ∥Mv∥1 by the total variation of a BV function [14],

inf
v∈BV (U)

F(Av)+ |Dv|(U),
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where we assume that A : BV (U)→ Rm is continuous and linear with A(BV (U)) = Rm and F : Rm→
R∪ {∞} is coercive, convex, lower semicontinuous, and proper. In this setting, there exists a sparse
solution [14, Thm. 4.8]

vopt = c+
L

∑
i=1

ci

|D1Ei|(U)
1E i,

where c ∈ R,ci ∈ R∗+,L ≤ dim(Rm/A(R)), and the Ei ⊂ U are simple (see [14, Def. 4.4 & 4.5]), in
particular each E i cannot be decomposed into two sets with positive volume such that the sum of their
perimeters equals the perimeter of E i, that is |D1E i|(U) (1E i denoting the characteristic function of E i).
Hence, sparsity in this configuration can be interpreted as being piecewise constant, where ‘piecewise’
is relative to the simple sets E i (respectively their intersections). Recall that, by the Riesz representation
theorem and the definition of |Dv|(U), we can interpret the distributional gradient of v ∈ BV (U) as a
vector-valued Radon measure Dv ∈M (U ;Rn). For general vector-valued Radon measures, one may
consider the problem in [20],

inf
v∈M (X ;Rk)

∥Av−g∥2
H +α∥v∥M ,

where X is a locally compact and separable metric space, H is a Hilbert space (g∈H), A : M (X ;Rk)→H
is the adjoint of some continuous and linear A∗ : H →C0(X ;Rk), and ∥ · ∥M denotes the total variation
norm. For X ⊂ Rn non-empty, bounded, and open, k = 1, finite-dimensional H, and A(M (X ;R)) = H,
there exists a minimizer which can be written [14, Thm. 4.2]

vopt =
N

∑
i=1

λ
i
δxi,

where N ≤ dim(H),λ i ∈ R, and xi ∈ X (δxi denotes the Dirac measure centered at xi).
In this paper, we investigate sparsity for a dynamic inverse problem whose regularizer is related to

the above problems. As a motivation, recall that the above regularizers enforce the decision variables to
be concentrated on few simple geometric objects, for example time points of a discrete signal v ∈ RN

if R(v) = ∥v∥1, spikes of v ∈M (X ;R) if R(v) = ∥v∥M , adjoint pixels of v ∈ RN if R(v) = ∥M1v∥1 +
∥M2v∥1, or simple sets in the support of v ∈ BV (U) if R(v) = |Dv|(U). In the dynamic, time-dependent
case, this simpleness should be reflected in objects which evolve over time. Another property of the
above regularizers is that they separate the contributions of the different geometric objects: ℓ1-norm
R = ∥ · ∥ℓ1 is a sum over the entries, total variation R = ∥ · ∥M is a supremum over partitions (this also
applies to R(v) = |Dv|(U) if Dv is interpreted as a vector-valued measure). Therefore, this separating
property should be observed in the dynamics as well.

A natural setup which implements the above mentioned simpleness and separating can be obtained by
considering a well-known distance from optimal transport theory: We have seen that R(v) = ∥v∥M (X)
is used in the case of vector-valued Radon measures v ∈M (X ;Rk). This norm actually appears in
the Beckmann formulation of the Wasserstein-1 distance [44, Thm. 4.6] between (compactly supported)
probability measures ρ+,ρ− ∈P(Rn),

W1(ρ
+,ρ−) = min

v
∥v∥M ,

where the minimum is over vector-valued Radon measures v ∈M (Rn;Rn) with distributional diver-
gence equal to ρ+− ρ−. One can restrict this minimization to compactly supported and ‘loop-free’
v and each candidate minimizer can be interpreted as a continuous curve t 7→ µt ∈ (P(Rn),W1) (see
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section 3.3), where t represents a time variable. Such µ and their evolution with respect to W1 are a
reasonable choice for a dynamic inverse problem implementing the above characteristics which we will
briefly clarify. First, the Wasserstein-1 distance favors trajectories on which there is no direct interac-
tion between the different mass particles which reflects the desired simpleness. More specifically, the
Wasserstein-1 distance minimizes

∫
|x− y|dπ(x,y) over π , where |x− y|dπ(x,y) is the (infinitesimal)

transportation cost (in terms of Euclidean distance) of moving (infinitesimal) amount of mass dπ(x,y)
from x to y — there is no efficiency gain when particles bundle because the transportation cost is linear
in the mass. Regularization with variation var(µ) would ensure that the total accumulated travel distance
of all mass particles is kept small. In particular, if the curve µ is only concentrated in one (Euclidean)
curve in Rn, then it will tend to be close to a traverse in the corresponding dynamic inverse problem (in
a discrete setting with data measured at finitely many time points). Second, the separating property is
given by Smirnov’s decomposition [50, Thm. C]: one can write the total variation ∥v∥M (where v can be
interpreted as a normal 1-current in Rn whose boundary is equal to ρ−−ρ+) as an integral over the con-
tributions of the different particle trajectories. We do not only allow for continuous curves (which may
show diffusive behaviour), but also curves with jumps. The possibility to jump allows for the adjustment
to heavily scattered data even on a small time scale — however, such jumps are penalized through the
regularization. This approach (and the resulting weak assumption on the regularity of a curve) extends
the optimal transport based regularization techniques used so far, as we will highlight in more detail
below. Finally, as in the above examples, the total mass should also appear in the regularizer. Hence,
we consider R+P(Rn) instead of P(Rn) (the Wasserstein-1 distance apparently just rescales). Our
proposed regularizer of µ ∈ R+BV ([0,T ];(P(Ω),W1)) (Ω⊂ Rn compact and convex, [0,T ] some time
interval) is given by

T ω(µ)+ essvar(µ),

where T ω(µ)∈R+ represents the time integral of the temporally constant mass ω(µ) of µ and essvar(µ)
is its essential variation (for convenience, we normalize the time interval and add regularization param-
eters to both terms). We show that this regularizer enforces a sparsity property similar to those listed
above. In particular, we prove the existence and representation of a sparse minimizer for the corre-
sponding inverse problem under mild assumptions. We also provide numerical experiments based on an
adaption of the algorithm proposed in [18] (employing our sparse characterization). We use a discretiza-
tion procedure (via temporal deblurring) which suits to our class of admissible paths. Our numerical
experiments demonstrate that sparse or diffuse ground truths with jumps can be accurately reconstructed.

We mention that in [28] the authors study a regularizer defined on normal 1-currents in some non-
empty, bounded, and open subset of Rn. The regularizer is given as the sum of mass (which is equal to
∥ ·∥M ) and boundary mass. In comparison, this regularizer acts on (static) 1-currents and the penalty on
the boundary may be seen as a quantization of the number of jumps.

In general, the main goal in the modeling of dynamic inverse problems is to incorporate knowledge
about the behaviour of a dynamic source which is to be reconstructed from possibly noisy measurements.
A crucial challenge is to correlate the observations given at different time instances. The choice of an
appropriate regularizer is often a non-trivial task considering, inter alia, the available data, measurement
procedure, or physical laws. For example, in [46, 47] the authors require ‘temporal smoothness’ to model
observed displacements in X-ray computed tomography or current density reconstruction.

In recent years, temporal regularization using optimal transport theory has gained a lot of interest.
The underlying assumption is that the dynamics under consideration follow certain physical principles.
Examples of related inverse problems can be found in positron emission tomography (PET) [48, 22],
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magnetic resonance imaging (MRI) [19], single-particle tracking [16, 23], and particle image velocime-
try (PIV) [45]. These works use the so-called Benamou–Brenier formulation of the Wasserstein-2 dis-
tance W2(ρ

+,ρ−) between ρ+,ρ− ∈P(Ω) [6],

W2(ρ
+,ρ−)2 = inf

ρ,v
T
∫
[0,T ]

∫
Ω

|vt |2dρtdt,

where the infimum is over sufficiently regular time-dependent mass distributions ρ = ρt and velocity
fields v = vt on Ω which satisfy the continuity equation ∂tρ +div(ρv) = 0 and initial respectively final
condition ρ0 = ρ+ and ρT = ρ− (otherwise, the squared Wasserstein-2 distance can as well be written as
an infimum over transport plans π as above, with |x− y| replaced by |x− y|2). Note that 1

2T W2(ρ
+,ρ−)2

can be interpreted as an infimization of the time integral over the (total) kinetic energy at time t. Inspired
by this result, a dynamic regularizer has been devised, for example in the form (with T = 1)

R(p,µ) = ∥µ∥M +
∫
(0,1)×Ω

∣∣∣∣ dp
dµ

(t,x)
∣∣∣∣2 dµ(t,x),

where µ is a nonnegative and p (representing the physical momentum) a vector-valued Radon measure on
(0,1)×Ω with p≪ µ , subject to the continuity equation (which, by definition of momentum, becomes
∂t µ + div(p) = 0), cf. [19, 16]. Note that one may formally replace the second term in R by the time
integral of the metric derivative of an absolutely continuous curve [44, Thm. 5.27]

t 7→ µt ∈ (ω(µ)P(Rn),W2).

From the point of view of sparse optimization, it has also been shown that such dynamic regularization
enforces sparsity: under reasonable assumptions (in particular, finite dimensional data space), there
always exists a reconstruction of the form (after disintegration)

t 7→ µ
opt
t =

N

∑
i=1

λ
i
δ

γ i
t

with λ i ∈ R∗+ and absolutely continuous curves γ i : [0,1]→ Ω [17]. This characterization, which can
also be extended to the unbalanced case [15], is a consequence of [50], see [4, Thm. 8.2.1]. Moreover,
the sparse structure has been successfully used to design sparse optimization algorithms that directly
optimize the curve µ by inserting or deleting curves of type γ and optimizing the weights λ [16, 23]. A
feature of the above framework is that the reconstructed curve t 7→ µt respectively the underlying paths
t 7→ γ i

t are absolutely continuous. As a consequence of this regularization bias, these models are only
suitable for the tracking and reconstruction of dynamic sources that do not show spatial discontinuities
across time. Although these regularizations are useful in many applications (as pointed out above),
this prior limits the reconstruction of a ground truth that exhibits a dynamic with jumps, which appear,
for example, in (stochastic) processes (in particular, càdlàg processes) or object tracking in computer
vision, see [5, 29, 25, 10] for some related problems. Jumps may also be produced by defects or not
adequately calibrated measurement devices. Conversely, their detection can support the maintenance or
recalibration. In this paper, we address this issue by building a mathematical framework that allows for
the tracking of temporally discontinuous sources using the regularizer µ 7→ T ω(µ)+ essvar(µ) applied
to a BV curve t 7→ µt ∈ (ω(µ)P(Ω),W1). Note that there also exists a dynamic formulation of the
Wasserstein-1 distance [2].
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Beside our choice of a regularizer, we mention that there are generalizations of the Wasserstein-1 dis-
tance whose use in the regularization of inverse problems might also be interesting to further investigate.
In [49] the authors study a Wasserstein-1-type model in which the mass can vary over time, in [37, 36]
the authors introduce a multi-material transport problem (it also admits a temporally dynamic formula-
tion [30]) which, in the single-material case, can be interpreted as Wasserstein-1 transport, and in [12,
21, 33, 31] the authors investigate the Wasserstein-1 distance with respect to the so-called (generalized)
urban metric (for which the Euclidean distance is a special case).

The paper is organized as follows. In section 1.1 we set up our dynamic inverse problem with the
regularizer from above. Our main results are summarized in section 1.2. Section 2 is devoted to some
preliminaries for the proofs and numerical part. In section 3 we show our main result, the existence of a
sparse minimizer (sections 3.1 and 3.2). We close it with a discussion on a generalization (section 3.3).
In section 4 we describe the algorithm (section 4.1), which we use in our numerical experiments, and
specify its discretization and implementation details (sections 4.2 and 4.3). Finally, in section 4.4 we
display numerical results.

1.1 Inverse tracking problem for BV curves
Let Ω⊂ Rn be non-empty, compact, and convex.

Definition 1.1 (Admissible BV curves, weight functional). We define the set of admissible BV curves
(not necessarily normalized) as

A = R+BV ([0,1];W1(Ω)),

where W1(Ω) = (P(Ω),W1) denotes the Wasserstein-1 space of probability measures equipped with the
Wasserstein-1 distance. If µ ∈A , then we write ω(µ) for the weight of µ , i.e. we have µ = ω(µ)ρ for
some ρ ∈ BV ([0,1];W1(Ω)).

An example of a shortest càdlàg representative of ρ ∈ BV ([0,1];W1(Ω)) matching some given data
at different time instances is given in figure 1.

Remark 1.2 (Structure of A ). The set of admissible BV curves A is a convex cone in the vector space
L2

w([0,1];M (Ω)) (see section 2.1).

Definition 1.3 (Regularizer for BV curves). We define (α,β ∈ R∗+ fixed)

Rα,β (µ) = αω(µ)+β essvar(µ),

where essvar(µ) denotes the essential variation of µ ∈A (see section 2.2).

Problem 1.4 (BV curve tracking problem). A BV curve tracking problem is any inverse problem of the
form

inf
µ∈A

F (K(µ))+Rα,β (µ),

where forward operator K maps each admissible BV curve to an element of some data space Y and F is
a fidelity. In particular, we make the following assumptions (which ensure existence, cf. proposition 1.5):

• Y is a Hilbert space,

• F : Y → R∪{∞} is bounded from below, proper, and weakly lower semi-continuous,
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1 t

ρ̄t

0.2 0.4 0.6 0.8

Figure 1: Example of a shortest càdlàg curve ρ̄ : [0,1]→W1(Ω) matching given data (displayed in gray)
at time points t = 0,0.2, . . . ,1, where Ω ⊂ R. In the one-dimensional case, Wasserstein-1 transport is
well-understood (by the linearity of the transportation cost combined with the fact that each particle
can only move in two directions), see [44, Ch. 2]. For example, we have ρ̄t = δxt for t ∈ [0,0.3], ρ̄t =
1
2δxt +

1
2δy for t ∈ [0.3,0.4), and ρ̄t = (2L (ℓt))

−1L ℓt +
1
2δz for t ∈ (0.4,0.6). Here L ℓt denotes the

restriction of one-dimensional Lebesgue measure L = L 1 to line segment ℓt (which would be replaced
by the one-dimensional Hausdorff measure if n > 1). Note that the jumps at t = 0.4 and t = 0.6 are
càdlàg (in particular, the right-hand limits correspond to the given data). At t = 1 the curve ρ̄ jumps to
data consisting of a line segment and a Dirac mass. In this example, each particle (with infinitesimal
small mass) moves linearly with respect to t (which does not need to be satisfied), waits, or jumps.

• K : A → Y is continuous in the following sense: if (µ j) ⊂ A and µ ∈ A with µ
j

t ⇀∗ µt for
a.e. t ∈ [0,1] (in short, we have µ j ⇀∗ µ a.e.), then K(µ j)⇀ K(µ) (weakly) in Y .

The existence of a minimizer follows readily from the direct method in the calculus of variations and
[3, Thm. 2.4 (i)] (see beginning of section 3).

Proposition 1.5 (Existence). Problem 1.4 admits a solution.

Remark 1.6 (Stability). A natural choice (which for Y = Rm corresponds to least square fitting) for F
is F f (y) = 1

2∥y− f∥2
Y , where f ∈ Y is some given reference data. In this setting, which we will use in

the numerical part (section 4), the following stability property is satisfied: Let ( f j) ⊂ Y with f j → f̂
(strongly) in Y . Further, assume that each µ j is a solution of problem 1.4 with F = F f j . Then, up to a
subsequence, we have µ j ⇀∗ µ̂ a.e. for some µ̂ ∈A and µ̂ is a solution of problem 1.4 with F = F f̂ .
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Example 1.7 (K with values in infinite-dimensional Hilbert space). Let Φ ∈ C([0,1]×Ω2). For any
µ ∈ L2

w([0,1],M (Ω)) define K̂µ : Ω→ R by

(K̂µ)(x) =
∫
[0,1]

∫
Ω

Φt(x,y)dµt(y)dL (t).

Let (xi) ⊂ Ω with xi→ x ∈ Ω. For each i we have
∫

Ω
Φt(xi,y)dµt(y) ≤ maxΦ∥µt∥M for a.e. t ∈ [0,1].

Further, it holds t 7→ ∥µt∥M ∈ L1([0,1]) by definition of L2
w([0,1],M (Ω)). Thus, twofold application

of Lebesgue’s dominated convergence theorem implies (K̂µ)(xi)→ (K̂µ)(x), hence K̂µ ∈ C(Ω). In
particular, we can interpret K̂ as a linear map L2

w([0,1],M (Ω))→ L2(Ω). Now define K = K̂|A . Take
a sequence (µ j)⊂A such that µ j ⇀∗ µ a.e. Write µ j = ω(µ j)ρ j and µ = ω(µ)ρ as in definition 1.1.
Choosing the test function φ ≡ 1 we obtain ω(µ j)→ ω(µ), in particular ω(µ j) is bounded. Using this,
µ j ⇀∗ µ a.e., and dominated convergence again, we get∫

Ω

|Kµ
j−Kµ|2dL n =

∫
Ω

∣∣∣∣∫
[0,1]

∫
Ω

Φd(µ j−µ)dL

∣∣∣∣2 dL n→ 0,

that is Kµ j → Kµ (strongly) in L2(Ω) so that K satisfies the assumption in problem 1.4. Thanks to the
regularity of Φ, we can simply apply the Arzelà–Ascoli theorem to show that K̂ is a compact operator
implying that the inverse problem K̂µ = f with data f ∈ C(Ω) is ill-posed in the sense of Hadamard
[39, Thm. 3.3.2]. Therefore, problem 1.4 can be seen as a sparse regularization of it. One may interpret
K̂µ = f as a variant of the Fredholm integral equation of first kind (a classical ill-posed linear inverse
problem) — the regularity of Φ is needed to ensure that K̂ is well-defined (typically, one requires lower
L2-regularity of the kernel). Indeed, the (constant) curve µ ≡ gL n with g ∈ L2(Ω) is an element of
L2

w([0,1],M (Ω)). Taking Φ independent of t we have (K̂µ)(x) =
∫

Ω
Φ(x,y)g(y)L n(y).

Note that forward operator K cannot implement pointwise evaluation of µ ∈ L2
w([0,1],M (Ω)). This

aspect is also addressed in the discretization in example 1.11.

1.2 Main results
First, we use the superposition principle in [1] to characterize the extremal points of sublevel sets of the
regularizer Rα,β . Define

L−c (Rα,β ) =
{

µ ∈A
∣∣Rα,β (µ)≤ c

}
for any c ∈ R+.

Proposition 1.8 (Extremal points of L−c (Rα,β )). For every c ∈ R+ we have

ext(L−c (Rα,β )) = {µ ∈A |Rα,β (µ) ∈ {0,c}, µ̄t = ω(µ)δxt for all t ∈ [0,1)},

where µ̄ is any càdlàg representative of µ .

We will then use proposition 1.8 and the representer theorem in [9] to prove the existence of a sparse
minimizer and its characterization. To this end, we require the following.

Assumption 1.9 (Convex setup and finiteness of data). The fidelity F is convex. Further, the forward
operator K is a linear map from A to a finite-dimensional data space Y = Rm which can be linearly
extended to L2

w([0,1];M (Ω)).
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Theorem 1.10 (Existence of sparse solution). Let assumption 1.9 be satisfied. Then there exists a solu-
tion µopt ∈A of problem 1.4 with

µ
opt
t =

N

∑
i=1

λ
i
δxi

t

for a.e. t ∈ [0,1], where N ≤ m = dim(Y ), λ i ∈ R+, and t 7→ xi
t ∈ BV ([0,1];Ω) for i = 1, . . . ,N.

As a variant, one may fix N and minimize over weights λ 1, . . . ,λ N ∈ R∗+ and curves x1, . . . ,xN ∈
BV ([0,1];Ω). This optimization may be seen as regression by BV curves with small length and impor-
tance λ i. The data may be represented by a (static) point cloud in Ω or recorded over time, for example, it
may be given by finitely many maps X1, . . . ,XNS : [0,1]→Ω, where each X i represents a sample path of
a càdlàg process {Xt | t ∈ [0,1]}, that is almost surely every path X : [0,1]→Ω is càdlàg [40, p. 4]. Note
that the sparse solution in theorem 1.10 does not contain any diffusive behaviour which, in principle, is
admissible in Wasserstein-1 transport, for example when a line segment is irrigated by a point source
(see figure 1).

Example 1.11 (K with values in finite-dimensional Hilbert space). Recall the definition of forward op-
erator K̂ : L2

w([0,1];M (Ω))→ L2(Ω) from example 1.7. Let x1, . . . ,xL ∈ Ω. Instead of considering
Φ ∈C([0,1]×Ω2) one may locate Φi ∈C([0,1]×Ω) around xi for all i = 1, . . . ,L. For example, each
Φi may represent the sensitivity (which can be different for different time points t) of a sensor placed
at xi convolved with some point spread function, that is Φi

t = θ i
t ∗ϕ i

t , where θ i
t is the sensitivity (not

necessarily continuous) and ϕ i
t models a physical spreading process (for example, spreading of light

with ϕ independent of t and i or spreading through diffusive material properties with ϕ i depending on
i), see [53, Section 3.1]. Then

∫
[0,1]

∫
Ω

Φi
t(y)dµt(y)dL (t) represents the (total) information collected

by the sensor placed at xi. In applications, this information is obtained by temporal sampling and one
is typically interested in the information collected at specific time instances instead. We may include a
temporal blurring which naturally circumvents the fact that K̂µ cannot realize pointwise evaluation of
µ: Let t0 < t1 < .. . < tM be given time points in [0,1]. For each time t j we may consider∫

[0,1]
φ j(t)

∫
Ω

Φ
i
t(y)dµt(y)dL (t),

where φ j ∈ C([0,1]) models the temporal blur at t j. In summary, we have Ψi
j = φ jΦ

i ∈ C([0,1]×Ω).
Now define linear K̃ : L2

w([0,1];M (Ω))→ RL×(M+1) by

(K̃µ)i
j =

∫
[0,1]

∫
Ω

Ψ
i
jdµdL

for each i = 1, . . . ,L and j = 0,1, . . . ,M. As in example 1.7, it is not difficult to see that K̃ satisfies the
continuity property in problem 1.4 so that we can define K as the restriction of K̃ to A . The non-locality
in time may be regulated by φ j given as the density of a truncated normal distribution (for a prioritization
of time points close to t j regulated by the variance) or an indicator function 1[0,1]∩[t j−δ j,t j+δ j] (for a
uniform weighting of information close to t j, which still yields a well-defined operator K). The physical
spreading described by ϕ i

t may as well be given by a Gaussian filter (which is typical for the spreading
of light).
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2 Preliminaries
In this section, we introduce our notation and recapitulate the notions of BV curves and their càdlàg
representatives.

2.1 Basic notation
We use the following standard notation.

• We write R+ = [0,∞) and R∗+ = (0,∞). Further, we set I = [0,1] for the unit interval. We predom-
inantly use this notation if t ∈ I represents the time variable.

• Ω⊂ Rn denotes some non-empty, compact, and convex (spatial) domain.

• If F : X → R∪{∞} and c ∈ R, then we write L−c (F) for the sublevel set {x ∈ X |F(x)≤ c}.

• We write et(γ) ∈Ω for the evaluation of a curve γ : I→Ω at t ∈ I.

• If X is a topological space, then we write B(X) for its Borel σ -algebra. The restriction µ B of a
map µ : B(X)→ R (e.g. Radon measure) to B ∈B(X) is defined by

(µ B)(B̃) = µ(B∩ B̃)

for all B̃ ∈B(X).

• The pushforward f#µ of a measure µ on X1 under a measurable map f : X1→ X2 is the measure
defined by f#µ(M) = µ( f−1(M)) for all measurable subsets M ⊂ X2.

• We denote the one-dimensional Lebesgue measure by L .

• Let A ⊂ R be Lebesgue measurable. For 1 ≤ p ≤ ∞ we define Lp(A) as the Lebesgue space of
equivalence classes of Lebesgue measurable functions f : A→ R with

∫
A | f |pdL < ∞ if p < ∞,

esssupA | f |< ∞ if p = ∞. Further, if (X ,d) is a metric space, then we let Lp(A;(X ,d)) denote the
set of equivalence classes of Lebesgue measurable maps f : A→ (X ,d) for which d( f ,x) ∈ Lp(A)
for some (and thus all if A is bounded) x ∈ X . In each of the two definitions (of Lp(A) and
Lp(A;(X ,d))) two maps belong to the same class if they coincide a.e. in A.

• We write P(Ω) for the space of probability measures on Ω,

P(Ω) = {ρ : B(Ω)→ [0,1] |ρ σ -additive with ρ(Ω) = 1}.

• The Wasserstein-1 space is defined by W1(Ω)= (P(Ω),W1). It is equipped with the Wasserstein-1
distance W1 given by

W1(ρ
+,ρ−) = inf

π

∫
Ω×Ω

|x− y|dπ(x,y),

where the infimum is over transport plans between ρ+ and ρ−, that is π ∈P(Ω×Ω) with π(B×
Ω) = ρ+(B) and π(Ω×B) = ρ−(B) for all B∈B(Ω). The space W1(Ω) is complete and separable
since Ω is complete and separable [54, Thm. 6.18].
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• The space of Radon measures on Ω (which by the Riesz representation theorem can be identified
with the topological dual of the continuous functions C(Ω) with uniform norm ∥ · ∥∞) is given by

M (Ω) = {µ : B(Ω)→ R |µ σ -additive}.

The corresponding operator norm is called total variation and we denote it by

∥µ∥M = sup
∥φ∥∞≤1

∫
Ω

φdµ.

We indicate the weak-∗ convergence in M (Ω) by ⇀∗ , that is µ i ⇀∗ µ in M (Ω) if and only if
⟨φ ,µ i⟩=

∫
φdµ i→

∫
φdµ = ⟨φ ,µ⟩ for all φ ∈C(Ω).

• Let A⊂R be closed. Along with the above duality M (Ω) =C(Ω)∗, we define L2
w(A;C(Ω)) as the

space of equivalence classes of Lebesgue measurable maps f : A→C(Ω) with
∫

A ∥ f∥2
∞dL < ∞.

The space L2
w(A;C(Ω)) with norm

∥φ∥L2
w
=

√∫
A
∥φ∥2

∞dL

is a separable Banach space (see [24, Section 8.18.1] or [55, Thm. I.5.18]). Its (topological) dual is
given by L2

w(A;M (Ω)) [24, Thm. 8.20.3], the space of equivalence classes of weakly measurable
maps f : A→M (Ω)1 with

∫
A ∥ f∥2

M dL < ∞. The dual norm becomes

∥µ∥L2
w
=

√∫
A
∥µ∥2

M dL

and the dual pairing is given by ⟨φ ,µ⟩L2
w
=
∫

A⟨φ ,µ⟩dL . In each of the two definitions (of
L2

w(A;C(Ω)) and L2
w(A;M (Ω))) two maps belong to the same class if they coincide a.e. in A.

(The subscript in L2
w(A;C(Ω)) is justified by the fact that (Lebesgue) measurability and weak mea-

surability coincide for C(Ω)-valued maps, which follows from the Pettis measurability theorem
and the separability of C(Ω).)

• Finally, we recall some terminology from convex analysis (see [26, p. 1] and [41, Section 8]). Let
V be a real vector space and C ⊂ V convex. An extremal point (or extreme point) of C is a point
v ∈C such that C \ {v} is convex (this notion goes back to Minkowski). We write ext(C) for the
set of extremal points of C. We say that C is linearly closed if the intersection of C with every
one-dimensional affine space of V is closed. A ray of V is any set of the form {v+ tw | t > 0} for
v,w ∈ V and w ̸= 0. The lineality space of C is defined as lin(C) := rec(C)∩ (−rec(C)), where
rec(C) = {v ∈V |C+R∗+v⊂C} denotes the recession cone of C.

2.2 BV curves and càdlàg representatives
In this section, we recall the notions of BV curves and their càdlàg representatives in a metric space
(X ,d) (following [1]). For a more comprehensive theory of BV curves in metric spaces the reader may
consult [3]. In this article, we are particularly interested in (X ,d) = W1(Ω).

1By [24, Sections 1.11.1 & 1.11.3] a map f : I→M (Ω) is weakly measurable if it is Lebesgue measurable with respect
to Borel σ -algebra on M (Ω) induced by the subspace topology of M (Ω) = C(Ω)∗ ⊂C(Ω)′. The algebraic dual C(Ω)′ is
equipped with the weak topology, i.e. the weakest topology for which each functional f 7→ ℓ( f ) is continuous (ℓ ∈C(Ω)′).

11



Definition 2.1 (Variation). The variation of a map µ : I→ (X ,d) on J ⊂ I is defined by

var(µ,J) = sup

{
N

∑
i=1

d(µti,µti−1)

∣∣∣∣∣ t0 < t1 < .. . < tN , ti ∈ J

}
.

We abbreviate var(µ) = var(µ, I).

Definition 2.2 (Essential variation, BV curves). The essential variation of µ ∈ L1(I;(X ,d)) on J ⊂ I is
given by

essvar(µ,J) = inf{var(µ̃,J) |µ = µ̃ a.e.} .

We write essvar(µ) = essvar(µ, I). If essvar(µ) < ∞, then we call µ a BV curve in (X ,d). We write
BV (I;(X ,d)) for the space of BV curves in (X ,d).

Remark 2.3 (BV Wasserstein curves). We have R+BV (I;Wp(Ω))⊂ R+BV (I;W1(Ω)) = A for all p ∈
[1,∞), where Wp(Ω) = (P(Ω),Wp) denotes the Wasserstein-p space with Wp(ρ

+,ρ−)p = infπ

∫
|x−

y|pdπ(x,y) (infimum over transport plans π between ρ+ and ρ−). This follows easily from the estimate
(invoking Hölder’s inequality)

W1(ρ
+,ρ−)≤Wp(ρ

+,ρ−)≤ diam(Ω)
p−1

p W1(ρ
+,ρ−)

1
p .

Hence, our set A of decision variables contains all the (equivalence classes of) classical Wasserstein
curves with arbitrary weight and bounded (essential) variation.

The following lemma is a version of a standard result. We briefly recall the argument since we did
not find it for our setting.

Lemma 2.4 (Lp regularity of BV curves). We have BV (I;(X ,d))⊂ Lp(I;(X ,d)) for every 1≤ p≤ ∞.

Proof. Let µ ∈ BV (I;(X ,d)) and x ∈ X with d(µ,x) ∈ L1(I). Pick any representative µ̃ of µ with
var(µ̃)< ∞. Then d(µ,x)≤ d(µ̃, µ̃0)+d(µ̃0,x)≤ var(µ̃)+d(µ̃0,x) a.e. Thus, for p < ∞ we have (using
the convexity of t→ t p and the boundedness of I = [0,1])

∫
I d(µ,x)pdL ≤ 2p−1(var(µ̃)p+d(µ̃0,x)p)<

∞, and for p = ∞ we get esssupI d(µ,x)≤ supI d(µ̃,x)≤ var(µ̃)+d(µ̃0,x)< ∞.

As in [1], we use [51, Ch. 6] to generalize the definition of variation measure to the metric space
setting.

Definition 2.5 (Variation measure). Let µ ∈ BV (I;(X ,d)). Define a non-decreasing function V : I→ R
by V (t) = essvar(µ,(0, t)) for all t ∈ I. The variation measure |Dµ| : B(I)→R+ of µ is defined as the
Lebesgue–Stieltjes measure [51, Section 6.3.3, Thm. 3.5] which satisfies

|Dµ|((a,b]) =V (b)−V (a)

for all (a,b]⊂ I with a < b.

We recall the definition of càdlàg curves. Every µ ∈ BV (I;(X ,d)) can be represented by such a curve
µ̄ : I→ (X ,d). Further, a càdlàg representative µ̄ is uniquely determined on [0,1).
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Definition 2.6 (Càdlàg curves in (X ,d), spaces DE(Ω),DW (Ω)). A map µ : I → (X ,d) is called a
càdlàg curve if µ is right-continuous and the left limit limt̃↗t µt̃ exists for every t ∈ I (continue à droite,
limite à gauche). We write DE(Ω) for the set of càdlàg curves γ : I→Ω (with d the Euclidean distance)
and DW (Ω) for the càdlàg curves µ : I→W1(Ω) (with d =W1 the Wasserstein-1 distance).

Remark 2.7 (Skorohod metric). If (X ,d) is complete and separable, then the space of càdlàg curves
D = {γ : I → (X ,d) | γ càdlàg} equipped with the Skorohod J1 metric dD is complete and separable
[8, Thm. 12.2 & p. 131] (cf. text passage below [1, Thm. 2.10]). Thus, this property is statisfied for both
DE(Ω) and DW (Ω). We recall the definition of dD (see construction in [8, p. 123-126]). Let Λ be the set
of strictly increasing homeomorphisms λ : I→ I. A complete metric is obtained by requiring that λ is
close to the identity in the sense that

f (λ ) = sup
s,t∈I
s<t

∣∣∣∣log
λ (t)−λ (s)

t− s

∣∣∣∣
is small. The Skorohod J1 metric is then given by

dD(γ1,γ2) = inf
λ∈Λ

max{ f (λ ),∥γ1− γ2 ◦λ∥∞}.

Next, we apply the compactness statement [3, Thm. 2.4 (i)] to our setting. Recall the definitions of
admissible set A and regularizer Rα,β (definitions 1.1 and 1.3). It is readily established that we can
assume α = β = 1 in the proofs (the arguments for general α,β ∈ R∗+ are the same).

Notation 2.8 (Regularizer R). We write R = R1,1, that is R(µ) = ω(µ)+essvar(µ) for every µ ∈A .

Lemma 2.9 (Compactness in (A ,Rα,β )). Let (µ j)⊂A with sup j Rα,β (µ
j)< ∞. Then, up to a subse-

quence, we have µ j ⇀∗ µ a.e. and Rα,β (µ)≤ liminf j Rα,β (µ
j) for some µ ∈A .

Proof. Since R(µ j) = ω(µ j) + essvar(µ j) is uniformly bounded, we get ω(µ j)→ ω ∈ R+ up to a
subsequence. Recall that µ j = ω(µ j)ρ j with ρ j ∈ BV (I;W1(Ω)).

Case ω > 0: If ω > 0, then sup j essvar(ρ j) = sup j ω(µ j)−1 essvar(µ j) must be finite (neglect the
finite number of indices for which ω(µ j) = 0). Moreover, we clearly have sup j

∫
I W1(ρ

j,δ0)dL < ∞

because Ω is bounded. Further, metric space W1(Ω) is separable and every bounded and closed set in
W1(Ω) is compact by the Banach–Alaoglu theorem (W1 metrizes weak-∗ convergence). Hence, by [3,
Thm. 2.4 (i)] there is some ρ ∈ BV (I;W1(Ω)) such that (up to a subsequence) lim j W1(ρ

j,ρ) = 0 a.e. and
essvar(ρ)≤ liminf j essvar(ρ j). Therefore, we obtain ρ j ⇀∗ ρ a.e., thus µ j ⇀∗ µ = ωρ a.e. In summary,
we have

R(µ) = ω(µ)R(ρ)≤ ω(µ) liminf
j

R(ρ j) = liminf
j

ω(µ j)R(ρ j) = liminf
j

R(µ j).

Case ω = 0: If ω = 0, then we directly obtain µ j ⇀∗ 0 a.e. Noting R(0) = 0 yields the inequality.

3 Existence of sparse solution for BV curve tracking
In this section, we always take α = β = 1 to make the proofs more readable (recall notation 2.8). The
arguments are the same for general α,β ∈ R∗+ (as we already noticed in lemma 2.9). First, we prove the
existence of a minimizer for problem 1.4 (proposition 1.5) and the stability property in remark 1.6. The
first statement is a direct consequence of lemma 2.9.
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Proof of proposition 1.5. Recall that F is bounded from below and proper. Therefore, we can pick a
minimizing sequence (µ j) ⊂ A . Since R(µ j) is uniformly bounded, we can apply lemma 2.9: there
exists µ ∈A such that µ j ⇀∗ µ a.e. and R(µ)≤ liminf j R(µ j) (up to a subsequence). By the regularity
of K (it satisfies K(µ j) ⇀ K(µ)) and F (it is weakly lower semicontinuous) we obtain F (K(µ)) ≤
liminf j F (K(µ j)). Hence, the BV curve µ is a minimizer of problem 1.4.

Proof of the stability statement in remark 1.6. The argument is similar to [19, Thm. 4.7]. By the triangle
inequality, the optimality of the µ j, R(0) = 0, and f j→ f̂ we have

F f̂ (K(µ j))+R(µ j) =
1
2
∥K(µ j)− f̂∥2

Y +R(µ j)≤ ∥K(µ j)− f j∥2
Y +R(µ j)+∥ f j− f̂∥2

Y

≤ 2
(

1
2
∥K(µ j)− f j∥2

Y +R(µ j)

)
+∥ f j− f̂∥2

Y ≤ ∥K(0)− f j∥2
Y +∥ f j− f̂∥2

Y ≤C < ∞

for some constant C > 0. Hence, by the proof of proposition 1.5 there exists µ̂ ∈ A with µ j ⇀∗ µ̂

a.e. (up to a subsequence) and F f̂ (K(µ̂))+R(µ̂) ≤ liminf j F f̂ (K(µ j))+R(µ j). Further, note that
(by taking the liminf on both sides of the first inequality in the above estimate and using f j→ f̂ again)
liminf j F f̂ (K(µ j))+R(µ j) ≤ liminf j F f j(K(µ j))+R(µ j). Using this, the optimality of the µ j, and
the definition of F f (together with f j→ f̂ ) we get

F f̂ (K(µ̂))+R(µ̂)≤ liminf
j

F f j(K(µ j))+R(µ j)≤ liminf
j

F f j(K(µ))+R(µ) = F f̂ (K(µ))+R(µ)

for all µ ∈A , which shows the optimality of µ̂ .

3.1 Characterization of extremal points in L−c (R)

In this section, we characterize the extremal points of the sublevel sets (proposition 1.8)

L−c (R) = {µ ∈A |R(µ)≤ c}.

We will need the following statement.

Lemma 3.1 (Bound for essential variation of pushforward under evaluation map). Let Γ ∈B(DE(Ω))
and η ∈ R+P(DE(Ω)∩{var < ∞}) with

∫
DE(Ω) |Dγ|(I)dη(γ)< ∞. Assume that η(Γ) ∈ R∗+. Then the

map t 7→ µt = (et)#(η Γ) satisfies

essvar(µ)≤
∫

Γ

var(γ)dη(γ).

Proof. First, we remark that
∫

Γ
var(γ)dη(γ) is well-defined because γ 7→ var(γ) is lower semicontinuous

[1, Lem. 2.13]2 (which also implies that DE(Ω)∩{var < ∞} is Borel measurable). By [1, Thm. 3.1] the
integral

∫
DE(Ω) |Dγ|(I)dη(γ) is well-defined, µ ∈ η(Γ)DW (Ω), and

|Dµ| ≤
∫

Γ

|Dγ|dη(γ). (1)

2It is also finite. Indeed, we have var(γ) = var(γ;(0,1))+ γ
−
1 = |Dγ|(0,1)+ γ

−
1 [1, Lem. 2.5 (1)] and γ

−
1 = limt↗1 |γ(t)−

γ(1)| ≤ diam(Ω) (γ−1 exists because γ is càdlàg). Thus
∫

Γ
var(γ)dη(γ)≤

∫
DE (Ω) |Dγ|(I)dη(γ)+diam(Ω)< ∞ by assumption.
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Using the definition of essvar and the characterizing properties of càdlàg curves we get

essvar(µ)≤ var(µ) = var(µ;(0,1))+µ
−
1 ,

where we use the abbreviation (for the jump at t = 1)

µ
−
1 = lim

t↗1
W1(µt ,µ1).

For each t ∈ I we define a transport plan (as in [11, Def. 3.4.9]) πt ∈ η(Γ)P(Ω×Ω) by

⟨ϕ,πt⟩=
∫

Γ

ϕ(γ(t),γ(1))dη(γ)

for all ϕ ∈ C(Ω×Ω) (the integrand γ 7→ ϕ(γ(t),γ(1)) is Borel measurable by [1, Prop. 2.15] for all
ϕ ∈C(Ω×Ω)). Moreover, the transport plans πt are admissible for W1(µt ,µ1) since

πt(B×Ω) = (η Γ)(e−1
t (B)) = µt(B) and πt(Ω×B) = µ1(B)

for all B ∈B(Ω). Hence, we obtain

µ
−
1 ≤ limsup

t↗1

∫
Ω×Ω

|x− y|dπt(x,y) = limsup
t↗1

∫
Γ

|γ(t)− γ(1)|dη(γ),

where we used ϕ(x,y) = |x−y| in the equality. Note that (as in footnote 2) γ 7→ |γ(t)− γ(1)| is bounded
(uniformly in t ∈ I) by γ 7→ diam(Ω). Thus, using dominated convergence,

limsup
t↗1

∫
Γ

|γ(t)− γ(1)|dη(γ) =
∫

Γ

γ
−
1 dη(γ).

In summary, we obtain (invoking [1, Lem. 2.5 (1)] in the first equality and inequality (1) plus the above
estimate in the second inequality)

essvar(µ)≤ var(µ;(0,1))+µ
−
1 = |Dµ|((0,1))+µ

−
1

≤
∫

Γ

|Dγ|((0,1))dη(γ)+
∫

Γ

γ
−
1 dη(γ) =

∫
Γ

var(γ)dη(γ).

Proof of proposition 1.8. Fix c ∈ R+. First, we note that zero is always an extremal point of L−c (R)
because R(0) = R(λ µ +(1−λ )ν) with λ ∈ (0,1),µ,ν ∈ L−c (R) implies µ = ν = 0 by µ,ν ≥ 0 and
definition of R. We abbreviate

E = {µ ∈A |R(µ) ∈ {0,c}, µ̄t = ω(µ)δxt for all t ∈ [0,1)}.

ext(L−c (R))⊂ E : Let µ ∈ ext(L−c (R)). By the above we can assume µ ̸= 0, thus R(µ) = c. Indeed, if
we had R(µ) ∈ (0,c), then µ = λ ·0+(1−λ )(1−λ )−1µ and R((1−λ )−1µ) = (1−λ )−1R(µ) ≤ c
for λ ∈ (0,1) sufficiently small, thus 0,(1−λ )−1µ ∈ L−c (R) which would imply that µ is not extremal.
Let µ̄ be a càdlàg representative of µ with var(µ̄) = essvar(µ) (which is finite by R(µ) < ∞). By
[1, Thm. 3.3] there exists a measure η ∈ ω(µ)P(DE(Ω)) (concentrated on DE(Ω)∩{var < ∞}) with
(et)#η = µ̄t for all t ∈ I such that

|Dµ̄|=
∫
DE(Ω)

|Dγ|dη(γ)
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as well as (see footnote on [1, p. 18])

var(µ̄) =
∫
DE(Ω)

var(γ)dη(γ). (2)

We want to show that µ̄t = ω(µ)δxt for every t ∈ [0,1). To this end, we use a similar approach as in the
proof of the claim in [17, Thm. 6]. By contradiction, assume that there exist t0 ∈ [0,1) and B0 ∈B(Ω)
with µ̄t0(B0), µ̄t0(Ω\B0) ∈ R∗+. Now set

Γ0 = DE(Ω)∩ e−1
t0 (B0).

Set Γ0 is Borel measurable by [1, Prop. 2.15]. Define

λ1 =
1
c

(
η(Γ0)+

∫
Γ0

var(γ)dη(γ)

)
and λ2 =

1
c

(
η(DE(Ω)\Γ0)+

∫
DE(Ω)\Γ0

var(γ)dη(γ)

)
.

We have η(Γ0)> 0 since
η(Γ0) = η(e−1

t0 (B0)) = µ̄t0(B0)> 0.

Therefore, we get λ1 > 0. Similarly, we obtain λ2 > 0. Moreover,

c(λ1 +λ2) = η(DE(Ω))+
∫
DE(Ω)

var(γ)dη(γ) = ω(µ)+ essvar(µ) = R(µ) = c

by equation (2) and the choice of µ̄ . Therefore, we get λ1,λ2 ∈ (0,1) with λ1 + λ2 = 1. Now define
µ̄1

t , µ̄
2
t ∈ R∗+P(Ω) by

µ̄
1
t = λ

−1
1 (et)#(η Γ0) and µ̄

2
t = λ

−1
2 (et)#(η (DE(Ω)\Γ0))

for all t ∈ I. Note that we directly get
µ̄ = λ1µ̄

1 +λ2µ̄
2.

Now we show that µ̄1, µ̄2 are representatives of µ1,µ2 ∈ L−c (R) with µ1 ̸= µ2 (which yields the desired
contradiction). First, note that µ1 ∈ L−c (R) by (the argument for µ2 is similar)

R(µ1) = ω(µ1)+ essvar(µ1) = λ
−1
1 (η(Γ0)+ essvar(t 7→ (et)#(η Γ0)))≤ c,

where the inequality follows from the definition of λ1 and lemma 3.1. Finally, we show µ1 ̸= µ2. We
have

λ1µ̄
1
t0(B0) = (et0)#(η Γ0)(B0) = η(Γ0)> 0 and λ2µ̄

2
t0(B0) = (et0)#(η (DE(Ω)\Γ0))(B0) = 0,

thus µ̄1
t0(B0) ̸= µ̄2

t0(B0). We prove that there exists t1 ∈ (t0,1) with µ̄1
t ̸= µ̄2

t for all t ∈ (t0, t1). For a
contradiction, assume that there is a sequence (si) ⊂ (t0,1) with si ↘ t0 and µ̄1

si
= µ̄2

si
for all i. Since

µ̄1, µ̄2 are càdlàg by [1, Thm. 3.1], we obtain

0 = lim
i

W1(µ̄
1
t0, µ̄

1
si
) = lim

i
W1(µ̄

1
t0, µ̄

2
si
),

thus µ̄1
t0 = µ̄2

t0 (which contradicts µ̄1
t0(B0) ̸= µ̄2

t0(B0)).
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ext(L−c (R))⊃ E : Let µ ∈ E . The case R(µ) = 0 is trivial. Hence, we can assume R(µ) = c. Write
µ = λ µ1 +(1−λ )µ2 with λ ∈ (0,1) and µ1,µ2 ∈ L−c (R). We show µ1 = µ2 = µ . We have

c = R(µ)≤ λR(µ1)+(1−λ )R(µ2)≤ λc+(1−λ )c = c.

Therefore, we get R(µ1) = R(µ2) = c. Write µ1 = ω(µ1)ρ1 and µ2 = ω(µ2)ρ2 with ρ1,ρ2 ∈
BV (I,W1(Ω)). Let µ̄, ρ̄1, ρ̄2 be càdlàg representatives of µ,ρ1,ρ2. For every t ∈ [0,1) and every
B ∈B(Ω) we have (using µ̄t = ω(µ)δxt )

λω(µ1)ρ̄1
t (B)+(1−λ )ω(µ2)ρ̄2

t (B) = µ̄t(B) =

{
ω(µ) if xt ∈ B,
0 else.

In particular, we obtain
ρ̄

1
t (Ω\{xt}) = ρ̄

2
t (Ω\{xt}) = 0,

thus ρ̄1
t = ρ̄2

t = δxt for every t ∈ [0,1). Using R(µ1) = R(µ2) = c, we finally conclude ω(µ1) =
ω(µ2) = ω(µ) as we wanted to prove.

3.2 Application of a representer theorem
In this section, we apply proposition 1.8 to prove theorem 1.10. We will use the following abbreviations
(recall the definitions in section 2.1).

Notation 3.2 (Solution set S , weak-∗ topology T∗). We define S as the set of solutions of problem 1.4
(recall proposition 1.5). Further, we write T∗ for the weak-∗ topology on L2

w(I;M (Ω)).

We will show (proposition 3.5) that ext(S ) is non-empty. This will allow us to pick and characterize
an arbitrary element of ext(S ) in the proof of theorem 1.10. In order to show ext(S ) ̸= /0, we use
lemma 3.3 (see below) and the properties of A stated in remark 1.2.

Proof of remark 1.2. First, we argue that A is a subset of L2
w(I;M (Ω)). This actually follows directly

from the fact that W1 induces the weak-∗ topology on P(Ω) [54, Thm. 6.9]. Now it is straightforward
to check that the weak-∗ topology coincides with the weak (subspace) topology on P(Ω) stemming
from C(Ω)′. Hence, any map f : I→P(Ω) is Lebesgue measurable (relative to the weak-∗ topology on
P(Ω)) if and only if it is weakly measurable. Now let µ = ω(µ)ρ ∈A . Then, by definition, any repre-
sentative of ρ is Lebesgue measurable. Further, we clearly have ∥ρ∥L2

w
= 1. Thus, using also the above

equivalence of the measurability notions, we obtain ρ ∈ L2
w(I;M (Ω)). Further, since L2

w(I;M (Ω)) is a
vector space, we also have µ = ω(µ)ρ ∈ L2

w(I;M (Ω)), which proves A ⊂ L2
w(I;M (Ω)). Obviously,

set A is a cone. Its convexity follows from

λ µ
1 +(1−λ )µ2

= (λω(µ1)+(1−λ )ω(µ2))

[
λω(µ1)

λω(µ1)+(1−λ )ω(µ2)
ρ

1 +
(1−λ )ω(µ2)

λω(µ1)+(1−λ )ω(µ2)
ρ

2
]
∈A

for all µ1 = ω(µ1)ρ1,µ2 = ω(µ2)ρ2 ∈ A \ {0} and λ ∈ (0,1). We note that the convex combination
in the angular brackets satisfies the required measurability (by the above) and its distance to δ0 (with
respect to W1) is finite because Ω is bounded.
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The next lemma will be used in the proof of proposition 3.5 and corollary 4.8.

Lemma 3.3 (Properties of R with respect to T∗). The regularizer R is lower semicontinuous with
respect to A ∩T∗. Further, for every c∈R+ the sublevel set L−c (R)⊂ L2

w(I;M (Ω)) is compact relative
to T∗. In particular, if (µ j)⊂ L−c (R), then, up to a subsequence, we have µ j ⇀∗ µ (in T∗) and µ j ⇀∗ µ

a.e.

Proof. Let (µ j)⊂A be an arbitrary sequence with µ j ⇀∗ µ ∈A . We can assume that liminf j R(µ j)<
∞ (otherwise there is nothing to show) and restrict to a subsequence with liminf j R(µ j) = lim j R(µ j).
By lemma 2.9 we have (if necessary, restricting to a further subsequence) µ j ⇀∗ µ̃ a.e. for some µ̃ ∈
A with R(µ̃) ≤ liminf j R(µ j). Therefore, we only need to show that µ = µ̃ . Let φ ∈ L2

w(I;C(Ω))

be arbitrary. We have f j(t) = |⟨φt , µ̃t − µ
j

t ⟩| → 0 for a.e. t ∈ I. Further, we get 0 ≤ f j(t) ≤ f (t) =
∥φt∥∞(ω(µ̃)+ω(µ j)) for a.e. t ∈ I. Note that f ∈ L1(I) by the boundedness of

∫
I ∥φ∥∞dL (since I

is bounded and ∥φ∥L2
w
< ∞) and ω(µ j) (because ω(µ j) ≤ R(µ j)). Thus, by Lebesgue’s dominated

convergence theorem we obtain

lim
j
⟨φ , µ̃−µ

j⟩L2
w
= lim

j

∫
I
⟨φ , µ̃−µ

j⟩dL = lim
j

∫
I

f j(t)dL =
∫

I
lim

j
f j(t)dL = 0,

which (by the uniqueness of weak-∗ limits) implies µ̃ = µ . This proves the lower semicontinuity of
R with respect to A ∩T∗. Now let (ν j) ⊂ L−c (R). Since then R(ν j) is bounded by c, the weights
ω(ν j) are also bounded. Using ∥ν j∥L2

w
= ω(ν j) and the Banach–Alaoglu theorem, we obtain ν j ⇀∗

ν ∈ L2
w(I;M (Ω)) up to a subsequence. By the same argument as above we actually have (if necessary,

restricting to a further subsequence) ν j ⇀∗ ν̃ a.e. for some ν̃ ∈ A with R(ν̃) ≤ liminf j R(ν j) ≤ c and
ν = ν̃ ∈A , which finalizes the proof.

Example 3.4 (Convergence in L−c (R)). In the proof of lemma 3.3, we have seen that (µ j) ⊂ L−c (R)
with µ j ⇀∗ µ ∈ L−c (R) (with respect to T∗) implies µ j ⇀∗ µ a.e. up to a subsequence. This is, in
general, not true (in L−c (R)) for the whole sequence as the following example illustrates: For i and
j ∈ {0,1, . . . ,2i−1−1} define indices and (spatial and time) intervals by

k = k(i, j) = 2i−1 + j and Ωk = Ik =

{
21−i[ j, j+1) if j ̸= 2i−1−1,

21−i[ j, j+1] if j = 2i−1−1.

For each i the intervals Ωk partition Ω = [0,1] and L (Ωk) = 21−i. Now define (see figure 2)

µ
k
t =

{
2i−1L Ωk if t ∈ Ik,
δ0 if t ∈ I \ Ik.

We get ω(µk) = 1 and essvar(µk)≤ 2W1(δ0,2i−1L Ωk)≤ 2, thus R(µk)≤ 3. In particular, we obtain
µk ∈ L−3 (R). Next, we show that µk ⇀∗ µ in L2

w(I;M (Ω)). Let φ : I → (C(Ω),∥ · ∥∞) be continuous.
Then

⟨φ ,µk⟩L2
w
= 2i−1

∫
Ik

∫
Ωk

φt(x)dL (x)dL (t)+
∫

I\Ik

φt(0)dL (t). (3)

We have

2i−1
∫

Ik

∫
Ωk

φt(x)dL (x)dL (t)≤ 2i−1 max
t∈I
∥φt∥∞

∫
Ik

∫
Ωk

1dL (x)dL (t) = 21−i max
t∈I
∥φt∥∞→ 0
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1
δ0

8L Ωk

t = 3
8

t = 1
2

Figure 2: Sketch of the (piecewise constant) BV curve µk with k = k(4,3) (example 3.4).

for i→ ∞. Further, we can estimate∣∣∣∣∫I\Ik

φt(0)dL (t)−
∫

I
φt(0)dL (t)

∣∣∣∣≤ ∫Ik

|φt(0)|dL (t)≤ 21−i max
t∈I
∥φt∥∞→ 0.

This yields that the right-hand side in equation (3) converges to

⟨φ ,µ ≡ δ0⟩L2
w
=
∫

I
φt(0)dL (t).

By density of continuous function in the Bochner space L2
w(I;C(Ω)), we have µk ⇀∗ µ in L2

w(I;M (Ω))3.
On the other hand, for all t ∈ I and ψ ∈C(Ω) we get

⟨ψ,µk
t ⟩=

{
2i−1 ∫

Ωk
ψdL if t ∈ Ik,

ψ(0) if t ∈ I \ Ik.

The right-hand side does, in general, not converge to ⟨ψ,µt⟩= ψ(0) for a.e. t ∈ I. For example, we can
choose ψ(x) = min(2x,1) which yields 2i−1 ∫

Ωk
ψdL = 1 for countably many k and ψ(0) = 0. Hence,

the convergence µk→ µ a.e. is only valid up to a subsequence (e.g. subsequence µkℓ with kℓ = k(ℓ,0)).

Proposition 3.5 (ext(S ) ̸= /0). Let assumption 1.9 be satisfied (the finiteness of Y is not needed). Then
the set ext(S ) is nonempty.

Proof. We apply the Krein–Milman theorem. By remark 1.2 and S ⊂A we have S ⊂ L2
w(I;M (Ω)).

The convexity of S follows directly from the convexity of A and assumption 1.9. The compactness of
S (with respect to T∗) follows from lemma 3.3: If (µ i)⊂S , then (µ i)⊂ L−c (R) for some c ∈ R+ by
optimality and R ≥ 0. Thus, using lemma 3.3 and the properties of F ,K, we obtain µ i ⇀∗ µ ∈A and
µ i ⇀∗ µ a.e. up to a subsequence and (by the proof of proposition 1.5) µ is also optimal, that is µ ∈S .
The Krein–Milman4 theorem yields that the nonempty, convex, and compact set S ⊂ L2

w(I;M (Ω)) is
equal to the convex hull of ext(S ) which, in particular, implies ext(S ) ̸= /0.

3If ε > 0, φ ∈ L2
w(I;C(Ω)), and φε ∈ L2

w(I;C(Ω)) continuous with ∥φ − φε∥L2
w
< ε , then ⟨φ ,µk⟩L2

w
= ⟨φ − φε ,µ

k⟩L2
w
+

⟨φε ,µ
k⟩L2

w
and |⟨φ −φε ,µ

k⟩L2
w
| ≤ ε∥µk∥L2

w
= ε . Thus, we get ⟨φ ,µk⟩L2

w
→ ⟨φ ,µ⟩L2

w
for k→ ∞.

4The weak-∗ topology T∗ is a Hausdorff locally convex vector topology [43, p. 68]. Note that the definition of ’vector
topology’ in [43, Section 1.6] includes the Hausdorff property (cf. [43, Thm. 1.12]).
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Next, we show some further properties of the sublevel sets L−c (R) which we will need in the proof
of theorem 1.10.

Lemma 3.6 (Properties of L−c (R)). Let c ∈ R+. Then L−c (R) is linearly closed, does not contain any
rays, and its lineality space is trivial, that is lin(L−c (R)) = {0}.

Proof. Write S = L−c (R).
S linearly closed: Consider a sequence µ i = µ0+λ iν ∈ S where λ i ∈R with λ i→ λ ∈R and µ0,ν ∈

L2
w(I;M (Ω)),ν ̸= 0. We prove µ = µ0+λν ∈ S. Since supi R(µ i)≤ c, lemma 2.9 implies the existence

of µ̂ ∈ A with µ i ⇀∗ µ̂ a.e. (up to a subsequence) and R(µ̂) ≤ liminfi R(µ i), thus µ̂ ∈ S. Clearly, by
definition of µ i, we also have µ i ⇀∗ µ a.e. Therefore, we obtain µ = µ̂ ∈ S.

S does not contain any rays: By contradiction, assume that S contains a ray R = µ +R∗+ν , where
µ,ν ∈ L2

w(I;M (Ω)),ν ̸= 0. Define µk = µ + kν ∈ R for k ∈ N. Since µk ∈ S, we have c ≥R(µk) =
ω(µk)+ essvar(µk)≥ 0. Therefore, we get

c≥ ω(µk) = ∥µk∥L2
w
= sup

φ

⟨φ ,µk⟩L2
w
= sup

φ

⟨φ ,µ + kν⟩L2
w
= sup

φ

⟨φ ,µ⟩L2
w
+ k⟨φ ,ν⟩L2

w

≥ sup
φ

−∥µ∥L2
w
+ k⟨φ ,ν⟩L2

w
=−∥µ∥L2

w
+ k∥ν∥L2

w
,

where the supremum is over φ ∈ L2
w(I;C(Ω)) with ∥φ∥L2

w
≤ 1. Letting k→ ∞ yields the contradiction.

lin(S) = {0}: Note that always 0 ∈ lin(S) by definition. Clearly, the lineality space lin(S) cannot
be nontrivial, since then rec(S) would be nontrivial and thus S would contain a ray. This was already
excluded.

Proof of theorem 1.10. We apply [9, Thm. 1 & Cor. 2]. Write problem 1.4 as

min
µ∈A

F (K(µ))+R(µ) = min
µ∈L2

w(I;M (Ω))
F (K̂(µ))+ R̂(µ),

where K̂ denotes any linear extension of K to L2
w(I;M (Ω)) (assumption 1.9) and R̂ : L2

w(I;M (Ω))→
R∪{∞} is defined by

R̂(µ) =

{
R(µ) if µ ∈A ,
∞ else.

This problem is convex (assumption 1.9 and remark 1.2). Now let µopt ∈ ext(S ) (proposition 3.5). The
assumptions in [9, Cor. 2] are satisfied: F is convex by assumption 1.9, the solution set S is nonempty
by proposition 1.5, and the sublevel set S = L−c (R̂) = L−c (R) with c = R(µopt) is linearly closed by
lemma 3.6. Further, forward operator K̂ is linear on L2

w(I;M (Ω)) (cf. beginning of [9, Section 3.1]),
regularizer R̂ is convex (see setting in [9, Thm. 1]) because R is (A is convex by remark 1.2), and the
dimension of the smallest face of S at µopt is equal to zero since µopt ∈ ext(S ). If R(µopt)> 0, then
[9, Thm. 1] can be applied by [9, Cor. 2] if lin(S) = {0}, which is true by lemma 3.6. Hence, in this
case we get that µopt is a convex combination of at most m points in ext(S) or m− 1 points of which
each is in ext(S) or in an extremal ray of S (which is a ray R whose intersection with open line segments
(µa,µb) equals (µa,µb)). Since S does not contain any rays (lemma 3.6), we remain in the previous
case (because the convex combination is not necessarily strict). If R(µopt) = 0, then µopt = 0 which is
a convex combination of itself. Now we can apply proposition 1.8,

ext(S) = ext
(

L−R(µopt)(R)
)
= {µ ∈A |R(µ) ∈ {0,R(µopt)}, µ̄t = ω(µ)δxt for all t ∈ [0,1)}.
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Hence, if µopt = ∑
N
i=1 λ̃ iµ i with N ≤m, λ̃ i ∈ [0,1], ∑

N
i=1 λ̃ i = 1, and µ i ∈ ext(S), then µ

opt
t = ∑

N
i=1 λ iδxi

t

for a.e. t ∈ I with λ i = λ̃ iω(µ i) ∈ R+.

3.3 Discussion: extension to P(Ω)× . . .×P(Ω)

One may consider a natural generalization of problem 1.4 in which A =R+BV (I;W1(Ω)) is replaced by
R+BV (I;WH(Ω)), where WH(Ω) = (P(Ω)M,WH) for some metric WH , defined via a norm H : RM×n→
R+, which generalizes W1 (with a slight abuse of notation, we write WH = W1 if M = 1 and H = | · |);
metric WH will be specified below. In this context, one may interpret M as the number of different labels
of moving particles. However, a natural superposition principle in the spirit of [1, Thm. 3.3] (which was
used to characterize the extremal points of L−c (R) in proposition 1.8) does not exist for this setting. In
this section, we aim to illustrate this aspect. As a motivation, let us recall the Beckmann formulation of
the Wasserstein 1-distance [44, Thm. 4.6] between ρ+,ρ− ∈P(Ω),

W1(ρ
+,ρ−) = min

T
∥T∥M ,

where the minimum is over vector-valued Radon measures T : B(Ω)→ Rn with distributional diver-
gence equal to ρ+− ρ− (equivalently, normal 1-currents in Ω whose boundary is equal to ρ−− ρ+).
Now let M > 1 and ρ⃗+ = (ρ+

1 , . . . ,ρ+
M)⊺, ρ⃗− = (ρ−1 , . . . ,ρ−M)⊺ ∈P(Ω)M. Fix a norm H : RM×n→ R+.

Define
WH (⃗ρ

+, ρ⃗−) = min
T⃗
∥T⃗∥H ,

where the minimum is over matrix-valued Radon measures T⃗ : B(Ω)→ RM×n with row-wise distribu-
tional divergence equal to ρ⃗+− ρ⃗− (equivalently, normal 1-currents in Ω with coefficients in RM whose
component-wise boundary is equal to ρ⃗−− ρ⃗+), and ∥ · ∥H denotes the total variation with respect to H,
that is ∥T⃗∥H = sup{H(T⃗ (B1))+H(T⃗ (B2))+ . . . |B1,B2, . . .∈B(Ω) partition of Ω}. If H(θ⊗ e⃗) = h(θ)
for all θ ∈ RM, e⃗ ∈ Rn with |⃗e|= 1 for some norm h : RM → R+, then by [32, Thm. 1.10] WH (⃗ρ

+, ρ⃗−)
can be interpreted as a multi-material transport problem [37, 36] (h(θ) denotes the cost to transport mate-
rial vector θ per unit distance), cf. [38, Ch. 4.2]. Next, we identify an admissible T⃗ in WH (⃗ρ

+, ρ⃗−) with
a càdlàg curve µ : I→WH(Ω). For simplicity, we assume that the divergence-free part of T⃗ is equal to
zero. We follow the proof of [13, Prop. 4.1]. By [50, Thm C] there exists an M-tuple η⃗ = (η1, . . . ,ηM)⊺

of measures ηi : (Θ,B(Θ))→ [0,∞) (Θ denoting a space of Lipschitz curves which are identified modulo
parameterization with topology induced by a metric dΘ, cf. [21, Def. 2.5]) such that∫

Ω

Φ : dT⃗ =
∫

Θ

∫
I
Φ(γ)γ̇dL · d⃗η(γ)

for all Φ ∈ C(Ω;RM×n), where : denotes the Frobenius inner product. By Skorohod’s theorem [8,
Thm. 6.7] η⃗ is induced by an M-tuple χ⃗ = (χ1, . . . ,χM)⊺ of so-called irrigation patterns χi : [0,1]×I→Ω

between ρ
+
i and ρ

−
i [34, 7, 35], that is χi is Borel measurable, χi(p, ·) is absolutely continuous for L -

a.e. p ∈ [0,1] (χi(p, t) represents the position of particle p in the reference space ([0,1],B([0,1]),L
[0,1]) at time t ∈ I), and χi(·,0)#(L [0,1]) = ρ

+
i ,χi(·,1)#(L [0,1]) = ρ

−
i for all i = 1, . . . ,M. Now

define µ : I→WH(Ω) (note that χ⃗(·, t) : [0,1]→ΩM is Borel measurable) by

µt = χ⃗(·, t)#(L [0,1])
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for every t ∈ I. Then µ is a càdlàg curve. Indeed, for every t ∈ I, ε ∈ R \ {0} with t + ε ∈ I, and
φ ∈C(Ω;RM) we have∣∣∣∣∫

Ω

φ ·d(µt−µt+ε)

∣∣∣∣≤ M

∑
i=1

∫
[0,1]
|φi(χ(p, t))−φi(χ(p, t + ε))|dL (p)→ 0

for ε→ 0 by the regularity of φ and continuity of t 7→ χ(p, t) for L -a.e. p∈ [0,1] (Lebesgue’s dominated
convergence theorem). Thus, we have µt+ε ⇀

∗
µt for ε→ 0, hence WH(µt+ε ,µt)→ 0 for ε→ 0 since WH

metrizes weak-∗ convergence by norm equivalence. This shows that µ : I→ WH(Ω) is càdlàg. Never-
theless, a natural superposition principle according to [1, Thm. 3.3] does not exist which is demonstrated
in the following example.

Example 3.7 (Decompositions of |Dµ| for µ : I→ WH). Let M = n = 2, α = 3π

4 , and x =
( cosα

sinα

)
,y =( cosα

−sinα

)
,z =

(
1
0
)
. Further assume that H : R2×2→R+ satisfies H(θ ⊗ e⃗) = h(θ) for all θ ∈R2, e⃗ ∈R2

with |⃗e|= 1 for some norm h : R2→R+. Define Lipschitz curves γ1,γ2 : I→Ω = [−1,1]2 (cf. figure 3a)
by

γ1(t) =

{
(1−2t)x if t ∈ [0, 1

2),
(2t−1)z else,

and γ2(t) =

{
(1−2t)y if t ∈ [0, 1

2),
(2t−1)z else.

Further, let µ : I→WH be the continuous curve given by

µt =

(
δγ1(t)
δγ2(t)

)
associated with T⃗ =

1
2

(
γ̇
⊺
1 H 1 (γ1(I))

γ̇
⊺
2 H 1 (γ2(I))

)
for t ∈ I, where H 1 denotes the one-dimensional Hausdorff measure. Now we may define

ζ = h(1,0)δγ1 +h(0,1)δγ2 ∈ R+P(DE(Ω)).

Then we have

|Dµ|((0,1/2)) = var(µ,(0,1/2)) = h(1,0)var(γ1,(0,1/2))+h(0,1)var(γ2,(0,1/2))

=
∫
DE(Ω)

|Dγ|((0,1/2))dζ (γ).

However, we get

|Dµ|((1/2,1)) = h(1,1)var(γ1,(1/2,1)) ̸=
∫
DE(Ω)

|Dγ|((1/2,1))dζ (γ) if and only if

h(1,1)< h(1,0)+h(0,1).

This issue may be solved by considering (see figure 3b)

γ̃1(t) =

{
γ1(t) if t ∈ [0, 1

2),

γ1(
1
2) else,

γ̃2(t) =

{
γ2(t) if t ∈ [0, 1

2),

γ2(
1
2) else,

and γ̃3(t) =

{
γ1(

1
2) if t ∈ [0, 1

2),
γ1(t) else.

Define ζ̃ = h(1,0)δγ̃1 +h(0,1)δγ̃2 +h(1,1)δγ̃3 . Then |Dµ| =
∫
DE(Ω) |Dγ̃|dζ̃ (γ̃) but ζ̃ is not normalized:

ζ̃ /∈P(DE(Ω)). Further, measure ζ̃ is not in a natural sense defined via µ . Another approach would
be to consider ζ⃗ ∈P(DE(Ω))2 given by

ζ⃗ =

(
δγ1

δγ2

)
.
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x

y

z

γ1

γ2

(a) z = γ1(1) = γ2(1).

x

y

z
γ̃3

γ̃1

γ̃2

(b) {0}= γ̃1([
1
2 ,1]) = γ̃2([

1
2 ,1]) = γ̃3([0, 1

2 ]).

Figure 3: Lipschitz curves γi and γ̃i from example 3.7.

Then we have∫
DE(Ω)

h

(
dζ⃗

d|⃗ζ |
(γ)

)
|Dγ|d|⃗ζ |(γ) = h(1,0)|Dγ1|+h(0,1)|Dγ2| ̸= |Dµ| if and only if

h(1,1)< h(1,0)+h(0,1).

Finally, we can resolve this by defining ξ⃗ ∈P(DE(Ω))2 by

ξ⃗ =
1
2

(
δγ̃1 +δγ̃3

δγ̃2 +δγ̃3

)
.

This yields∫
DE(Ω)

h

(
dξ⃗

d|⃗ξ |
(γ)

)
|Dγ|d|⃗ξ |(γ) = h(1,0)|Dγ̃1|+h(0,1)|Dγ̃2|+h(1,1)|Dγ̃2|= |Dµ|

as desired. Measure ξ⃗ is still not naturally defined via µ . Nevertheless, it is normalized in the sense that
ξ⃗ ∈P(Ω)2. We believe that the formula (with ξ⃗ defined via µ)

|Dµ|=
∫
DE(Ω)

h

(
dξ⃗

d|⃗ξ |
(γ)

)
|Dγ|d|⃗ξ |(γ)

holds in a general setting.

4 Fully-corrective generalized conditional gradient method for BV
curve tracking

In this section, we design an algorithm which computes (approximate) solutions of problem 1.4 by
exploiting the sparse structure given by theorem 1.10 and, in particular, using the characterization of
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extremal points (proposition 1.8). The algorithm will be an instance of the (grid-free) fully-corrective
generalized conditional gradient (FC-GCG) algorithm introduced in [18] applied to our BV curve track-
ing problem. Similar algorithms have been used to approximate solutions of dynamic inverse problems
regularized with Wasserstein-2 transport energies [16, 23]. In order to apply [18, Alg. 1], we require the
following (in addition to the assumptions in problem 1.4).

Assumption 4.1 (Numerical setup). The fidelity F is strictly convex, R-valued, and Fréchet differen-
tiable such that the restriction of DF : Y → Y to any compact subset of Y is Lipschitz. Further, forward
operator K is a linear map which can be linearly extended to a weak-∗-to-strong continuous map on
L2

w(I;M (Ω)).

Note that, compared to assumption 1.9, data space Y is not necessarily finite-dimensional. In our
numerical experiments, we will use Y =RL×(M+1) (implying the validity of theorem 1.10 under assump-
tion 4.1) and a discretization of an instance of the class of forward operators specified in example 1.11.
Further, we will use a quadratic fidelity term as in remark 1.6 (whose Fréchet derivative at y0 applied to
y is just the inner product (y0− f ,y)Y and therefore satisfies assumption 4.1). Moreover, we re-introduce
the regularization parameters α,β ∈ R∗+ to calibrate the (discrete) regularizer in our computations.

Problem 4.2 (Auxiliary problem formulation on L2
w(I;M (Ω))). Let assumption 4.1 be satisfied and

K̂ any linear extension of K to L2
w(I;M (Ω)) which is weak-∗-to-strong continuous. Further, define

R̂α,β : L2
w(I;M (Ω))→ R∪{∞} as in the proof of theorem 1.10,

R̂α,β (µ) =

{
Rα,β (µ) if µ ∈A ,

∞ else.

Then problem 1.4 becomes

min
µ∈L2

w(I;M (Ω))
Jα,β (µ), where Jα,β (µ) = F (K̂µ)+ R̂α,β (µ).

Remark 4.3 (Existence of pre-adjoint of K̂). Clearly, forward operator K̂ : L2
w(I;M (Ω))→ Y is weak-

∗-to-weak continuous. Thus, it admits a continuous and linear pre-adjoint [20, Rem. 3.2]. A simple
application of the Hahn–Banach separation theorem shows that it is unique.

Notation 4.4 (Pre-adjoint of K̂). We write K̂∗ : Y → L2
w(I;C(Ω)) for the pre-adjoint of K̂ in problem 4.2,

that is
⟨K̂∗ f ,µ⟩L2

w
= ( f , K̂µ)Y

for all f ∈ Y,µ ∈ L2
w(I;M (Ω)).

Proposition 4.5 (Embedding into the setting of [18, Section 2]). Consider problem 4.2. Then the as-
sumptions in [18, Section 2] (including [18, Section 2, (A1)-(A3)]) are satisfied.

Proof. Regularizer R̂ is convex by the convexity of A (remark 1.2), lower semicontinuous with compact
sublevel sets (with respect to T∗) by lemma 3.3, and nonnegative homogeneous by definition: R̂(λ µ) =

λR̂(µ) for all λ ∈R+,µ ∈ L2
w(I;M (Ω)) (with the convention 0 ·∞ = 0). The other requirements in [18,

Section 2] readily follow from the setup in problem 4.2.
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4.1 Description of the algorithm
In this section, we explain the FC-GCG algorithm which we will use to compute (approximate) mini-
mizers of problem 4.2 and relate it to the steps of the general FC-GCG algorithm in [18].

In the k-th iteration, the algorithm updates two active sets (term ‘active’ indicates that they are mod-
ified at each iteration), namely a set of BV curves in Ω denoted by Γk = {γk

i }
Nk
i=1 ⊂ BV (I;Ω) and a set of

weights Λk = {λ k
i }

Nk
i=1 ⊂ R∗+ such that the BV curves µk ∈A given by

µ
k =

Nk

∑
i=1

λ
k
i δ

γk
i

converge (up to a subsequence, with respect to T∗) to a solution of problem 4.2 (see corollary 4.8). Note
that each iterate µk is sparse but, a priori, the limit (or ground truth) may be non-sparse. At each iteration
of the algorithm, the sets Γk and Λk are updated to Γk+1 and Λk+1 following several steps which we will
describe below. We use the following abbreviation.

Notation 4.6 (Dual variable pk). In the remainder, we write (often referred to as ‘dual variable’)

pk =−K̂∗DF (K̂µ
k) ∈ L2

w(I;C(Ω)),

see, e.g., [18, Proposition 2.3].

The update of the active sets Γk and Λk consists of the following three steps:
1. Insertion step: A new BV curve γk

Nk+1 ∈ BV (I;Ω) is determined by solving the following varia-
tional problem:

γ
k
Nk+1 ∈ argmax

γ∈BV (I;Ω)

max
{

a(γ)
∫

I
pk

t (γ(t))dL (t),0
}
, (4)

where

a(γ) = (α +β essvar(γ))−1. (5)

Problem (4) corresponds to the insertion step of FC-GCG algorithms defined in [18, (3.1)],

û ∈ argmax
u∈ext(L−1 (Rα,β ))

⟨pk,u⟩L2
w
. (6)

Indeed, due to our characterization of extremal points in proposition 1.8 (compare with [16, (8)]) one can
readily check that problem (6) is equivalent to problem (4). As a consequence, the argmax in problem (4)
is non-empty by [18, Lem. A.1]. Note that, in general, functions pk

t may be non-convex for all t in a
set of positive L -measure which makes problem (4) non-convex. Therefore, its accurate solution is
challenging. For details related to the practical implementation of the optimization in problem (4) we
refer to section 4.3. After problem (4) is solved, the BV curve γk

Nk+1 is added to the active set of curves,
Γk,+ = Γk∪{γk

Nk+1}. This justifies the name insertion step.

2. Coefficients optimization step: The active set Λk is updated to Λk,+ = {λ̂ k
i }

Nk+1
i=1 where λ̂ k

i are
obtained by solving the finite-dimensional problem

λ̂
k = argmin

λ∈RNk+1
+

F

(
Nk+1

∑
i=1

λia(γk
i )K̂δ

γk
i

)
+

Nk+1

∑
i=1

λi, (7)
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where γk
1 , . . . ,γ

k
Nk
∈ Γk are transferred from the (k− 1)-th iteration. This problem corresponds to the

coefficients optimization step of FC-GCG algorithms defined in [18, (3.4)]. Problem (7) is easily solvable
by proximal methods or Newton methods.

3. Pruning: We define Nk+1 as the number of non-zero coefficients in λ̂ k and construct Γk+1 and Λk+1

by removing from Γk,+ and Λk,+ the elements whose indices correspond to the zero coefficients.
Stopping criterion: We add a stopping criterion which is derived from the optimality conditions as-

sociated with problem 4.2. In particular, we terminate the algorithm in iteration k ∈ N with output µk

if
a(γk

Nk+1)
∫

I
pk

t (γ
k
Nk+1(t))dL (t)≤ 1. (8)

This criterion matches the one proposed in [18, Prop. 3.1] where it is formulated as (cf. [18, (3.5)])

max
u∈ext(L−1 (Rα,β ))

⟨pk,u⟩L2
w
≤ 1.

Again, this follows from our characterization of extremal points in proposition 1.8. In our implementa-
tion, we will add a tolerance ε > 0 on the right-hand side of inequality (8).

Remark 4.7 (Insertion of 0 ∈A ). Note that, if

max
γ∈BV (I;Ω)

max
{

a(γ)
∫

I
pk

t (γ(t))dL (t),0
}
= 0,

which corresponds to the insertion of the extremal point û = 0 in problem (6), then it necessarily holds
that maxγ∈BV (I;Ω) a(γ)

∫
I pk

t (γ(t))dL (t) ≤ 1, implying that the stopping criterion in inequality (8) is
satisfied. Therefore, we can replace problem (4) with the simplified insertion step

γ
k
Nk+1 ∈ argmax

γ∈BV (I;Ω)

a(γ)
∫

I
pk

t (γ(t))dL (t). (9)

Algorithm 1 summarizes the steps described above. [18, Thm. 3.3] and proposition 4.5 imply the
convergence properties of the iterates produced by algorithm 1. We state the rate of convergence in
terms of the residuals

r(µk) = Jα,β (µ
k)− min

µ∈A
Jα,β (µ). (10)

Corollary 4.8 (Sublinear convergence of algorithm 1, cf. [18, Thm. 3.3]). The iterates µk ∈A produced
by algorithm 1 (extended with µk = µk0 for k ≥ k0 if the algorithm terminates in iteration k0) converge,
up to subsequences, in T∗ to a minimizer of problem 4.2. Moreover, there exists C ∈ R∗+ such that

r(µk)≤ C
k+1

for all k ∈ N.
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Algorithm 1 Fully-corrective generalized conditional gradient method for BV curve tracking

Require: Λ0 = /0, Γ0 = /0, N0 = 0, µ0 = 0
for k = 0,1,2, . . . do

pk←−K̂∗DF (K̂µk)
γk

Nk+1 ∈ argmaxγ∈BV (I;Ω) a(γ)
∫

I pk
t (γ(t))dL (t)

if k ∈ N and a(γk
Nk+1)

∫
I pk

t (γ
k
Nk+1(t))dL (t)≤ 1 then

return µk

end if
(λ̂ k

1 , . . . , λ̂
k
Nk+1)

⊺ ∈ argmin
λ∈RNk+1

+
F
(

∑
Nk+1
i=1 λia(γk

i )K̂δ
γk

i

)
+∑

Nk+1
i=1 λi

Γk+1←
{

γk
i ∈ Γk∪{γk

Nk+1}
∣∣∣ λ̂ k

i > 0
}

, Λk+1←{λ̂ k
i | λ̂ k

i > 0}

µk+1← ∑
Nk+1
i=1 λ̂ k

i δ
γk

i

Nk+1← #Γk+1

end for

4.2 Discretization approach
In our implementation of algorithm 1, we will use discretizations which are obtained by letting the
temporal blur at discrete time points go to zero. In this section, we will make this conception rigorous.
We will need the following definition.

Definition 4.9 (Nascent (θ , t)-delta functions). Let θ ∈ [0,1] and t ∈ I. A family of functions φ δ ∈
C(I;R+) (indexed by δ ∈ R∗+) is called a family of nascent (θ , t)-delta functions if

• φ δ (s) = 0 for all s ∈ I \ [t−δ , t +δ ],

• the numbers θ δ =
∫
[0,t]φ

δ dL satisfy

θ
δ ∈ [0,1],

∫
[t,1]

φ
δ dL = 1−θ

δ , and θ
δ → θ for δ → 0.

Note that necessarily θ δ ≡ 0 if t = 0 and θ δ ≡ 1 if t = 1. Thus, for t = 0 (respectively t = 1) such a
family only exists if θ = 0 (respectively θ = 1).

Lemma 4.10 (‘(θ , t)-delta’). Let ψ ∈ BV (I;R) and φ δ ∈C(I;R+) a family of nascent (θ , t)-delta func-
tions. Then we have

lim
δ→0

∫
[0,t]

φ
δ

ψdL = θψ̄
−
t and lim

δ→0

∫
[t,1]

φ
δ

ψdL = (1−θ)ψ̄t ,

where ψ̄ is any càdlàg representative of ψ .

Proof. We only prove the first equality (the proof of the second is similar). Let ε ∈ R∗+ and δ = δ (ε) ∈
R∗+ with ψ̄s ∈ [ψ̄−t −ε, ψ̄−t +ε] for all s∈ [t−δ , t]∩ I and δ → 0 for ε→ 0 (possible because ψ̄

−
t exists).

Then, using
∫
[0,t]φ

δ dL = θ δ → θ , φ δ ∈ R+, and φ = 0 on [0, t−δ )∩ I, we obtain

θψ̄
−
t = lim

ε→0

∫
[0,t]

φ
δ dL · (ψ̄−t − ε)≤ lim

ε→0

∫
[0,t]

φ
δ

ψdL ≤ lim
ε→0

∫
[0,t]

φ
δ dL · (ψ̄−t + ε) = θψ̄

−
t .

27



The following statement will be applied to our forward operator from example 1.11.

Proposition 4.11 (Vanishing temporal blur). Let µ ∈A , φ δ ∈C(I;R+) a family of nascent (θ , t)-delta
functions, and Φ : Ω→ R Lipschitz. Then we get

lim
δ→0

∫
[0,t]

φ
δ (s)

∫
Ω

Φ(x)dµs(x)dL (s) = θ

∫
Ω

Φ(x)dµ̄
−
t (x) and

lim
δ→0

∫
[t,1]

φ
δ (s)

∫
Ω

Φ(x)dµs(x)dL (s) = (1−θ)
∫

Ω

Φ(x)dµ̄t(x),

where µ̄ is any càdlàg representative of µ .

Proof. As in lemma 4.10, we only prove the first equality (the proof of the second is similar). Define
ψs =

∫
Ω

Φdµs for a.e. s ∈ I (recall that ψ ∈ L1(I;R) by µ ∈ L2
w(I;M (Ω))). We prove ψ ∈ BV (I;R) and

apply lemma 4.10. We have (Lip(Φ) denoting the Lipschitz constant of Φ, we can assume Lip(Φ) ∈R∗+
because the other case is trivial)

essvar(ψ)≤ var
(

s 7→
∫

Ω

Φdµ̄s

)
= sup

{
N

∑
i=1

∣∣∣∣∫
Ω

Φd(µ̄si− µ̄si−1)

∣∣∣∣
∣∣∣∣∣ s0 < s1 < .. . < sN , si ∈ I

}

= Lip(Φ)sup

{
N

∑
i=1

∣∣∣∣∫
Ω

1
Lip(Φ)

Φd(µ̄si− µ̄si−1)

∣∣∣∣
∣∣∣∣∣ s0 < s1 < .. . < sN , si ∈ I

}

≤ Lip(Φ)sup

{
N

∑
i=1

W1(µ̄si, µ̄si−1)

∣∣∣∣∣ s0 < s1 < .. . < sN , si ∈ I

}
= Lip(Φ)var(µ̄)< ∞

since µ ∈A , where we used the Kantorovich–Rubinstein formula in the second inequality. Hence, we
obtain ψ ∈ BV (I;R). Application of lemma 4.10 yields

lim
δ→0

∫
[0,t]

φ
δ (s)

∫
Ω

ΦdµsdL (s) = θψ̄
−
t = θ

∫
Ω

Φdµ̄
−
t ,

where the last equation follows from the fact that W1 metrizes weak-∗ convergence and Φ ∈C(Ω).

Next, let us define a reasonable discretization of a forward operator as in example 1.11. To this end,
fix a discretization 0 = t0 < .. . < tM = 1 of the time interval I = [0,1] and, for each j = 0,1, . . . ,M, let
φ δ

j ∈C(I;R+) be a family of nascent (θ j, t j)-delta functions (in particular, we have θ0 = 0 and θM = 1).
Define K̃ = K̃(δ ) : L2

w(I;M (Ω))→ RL×(M+1) by

(K̃µ)i
j =

∫
I
φ

δ
j (s)

∫
Ω

Φ
i(x)dµs(x)dL (s), (11)

where Φ1, . . . ,ΦL : Ω→ R are Lipschitz and may correspond to some spatial points x1, . . . ,xL ∈ Ω, see
example 1.11. Recall that φ δ

j can be interpreted as the temporal blur at t j (of order δ ). Given µ ∈A , we
may define matrix K0µ ∈ RL×(M+1) by (proposition 4.11)

(K0µ)i
j = lim

δ→0
(K̃µ)i

j = θ j

∫
Ω

Φ
idµ̄
−
t j
+(1−θ j)

∫
Ω

Φ
idµ̄t j .
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Note that only the evaluation of any càdlàg representative µ̄ of µ is needed and the expression is well-
defined in the sense that it does not depend on the value of µ̄ at t = 1 (because θM = 1). Hence, this defini-
tion yields a natural discrete forward operator. More precisely, only the vectors µ̄+ = (µ̄0,+, . . . , µ̄M,+) =
(µ̄t0 , . . . , µ̄tM) and µ̄− = (µ̄0,−, . . . , µ̄M,−) = (µ̄−t0 , . . . , µ̄

−
tM), which may be seen as time samples of a

càdlàg curve in R+DW (Ω) representing the right and left ‘traces’, are considered. For any pair of vec-
tors ν̄ = (ν̄+, ν̄−) = ((ν̄0,+, . . . , ν̄M,+),(ν̄0,−, . . . , ν̄M,−)) ∈ R+(P(Ω)M+1×P(Ω)M+1), we set (with
a slight abuse of notation)

(K0ν̄)i
j = θ j

∫
Ω

Φ
idν̄

j,−+(1−θ j)
∫

Ω

Φ
idν̄

j,+.

Similarly, given samples (ν̄+, ν̄−) of a càdlàg representative of ν = δγ with γ ∈ BV (I;Ω), we write
γ̄ = (γ̄+, γ̄−) with γ̄+ = (γ̄0,+, . . . , γ̄M,+) = (γ̄t0, . . . , γ̄tM), γ̄

− = (γ̄0,−, . . . , γ̄M,−) = (γ̄−t0 , . . . , γ̄
−
tM) and set

(K0γ̄)i
j = θ jΦ

i(γ̄ j,−)+(1−θ j)Φ
i(γ̄ j,+).

Note that, in principle, each Φi may also be evaluated at values of other reasonable representatives of γ ,
e.g. representatives whose evaluations at the t j lie in between γ̄

−
t j and γ̄

+
t j (recall that Ω is convex). Since

we are particularly interested in càdlàg curves, we use the construction from above.
Next, let us apply the above procedure to discretize the functional γ 7→ a(γ)

∫
I pk(γ)dL in the inser-

tion step of algorithm 1, see problem (9). First, we define

p(µ) =−K̃∗DF (K̃µ) and discretize ⟨p(µ),ν⟩L2
w
=−DF (K̃µ) : K̃ν

for arbitrary µ,ν ∈ L2
w(I;M (Ω)), where : denotes the Frobenius inner product on Y =RL×(M+1). We see

directly that the latter expression depends continuously on the measurements K̃µ and K̃ν (provided that
DF is continuous, which is satisfied by assumption 4.1). Therefore, in the spirit of our discretization
approach via temporal deblurring in the data space, we discretize ⟨p(µ),ν⟩L2

w
as

lim
δ→0
⟨p(µ),ν⟩L2

w
.

In particular, if µ = µk is an iterate of algorithm 1, then we discretize the functional in the insertion step
(problem (9)) by (recall that pk = p(µk))

Dk
0(γ̄

+, γ̄−) = a0(α,β , γ̄+, γ̄−) lim
δ→0
⟨pk,δγ⟩L2

w
, (12)

where γ ∈ BV (I;Ω) is arbitrary with γ̄
±
t j = γ̄ j,± and

a0(α,β , γ̄+, γ̄−) =

(
α +β

M−1

∑
j=0

(|γ̄ j,+− γ̄
j+1,−|+ |γ̄ j,+− γ̄

j,−|)

)−1

(13)

is a discretization of a(γ). Indeed, the right-hand side in equation (12) does not depend on the choice of
γ (proposition 4.11):

Dk
0(γ̄

+, γ̄−) =−a0(α,β , γ̄+, γ̄−)
L

∑
i=1

M

∑
j=0

(DF (K0µ
k))i, j(θ jΦ

i(γ̄ j,−)+(1−θ j)Φ
i(γ̄ j,+)).
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4.3 Implementation details
This section is devoted to the implementation of algorithm 1. We limit ourselves to the one-dimensional
case. It is well-known that in FC-GCG algorithms, the numerical bottleneck lies in the efficient solution
of the (in general non-convex) insertion step (problem (4)), see, for example, [16, Section 5.1] and [18,
Section 1.1]. In particular, this optimization is extremely challenging in higher-dimensional domains.
However, we believe that a numerical realization of algorithm 1 in the case n = 2 is possible by transfer-
ring the approaches in [16, 23]. Further, it is likely that [23] can be applied to speed up the computations
in the insertion step.

First, let us specify our (discrete) forward operator. Assume that n = 1 and fix points x1, . . . ,xL in
some compact interval Ω ⊂ R. Further, pick a discretization 0 = t0 < .. . < tM = 1 of the time interval
I = [0,1]. Given Ci,σi > 0, we define (truncated) Gaussian kernels Φi ∈C(Ω) (independent of t) by

Φ
i(x) =

Ci

σi
e
−|x−xi|2

2σ2
i for i = 1, . . . ,L, (14)

where σ2
i indicates variance and Ci can be chosen arbitrarily (e.g. such that

∫
Ω

ΦidL = 1). We use these
functions in the definition of K̃ = K̃(δ ) (see equation (11)) and define K0 as in section 4.2. Recall that

(K0γ̄)i
j = θ jΦ

i(γ̄ j,−)+(1−θ j)Φ
i(γ̄ j,+)

whenever γ̄ = (γ̄+, γ̄−) with γ̄+ = (γ̄0,+, . . . , γ̄M,+) and γ̄− = (γ̄0,−, . . . , γ̄M,−) corresponds to time sam-
ples of a càdlàg representative of γ ∈ BV (I;Ω) respectively δγ ∈ BV (I;W1(Ω)). As mentioned in sec-
tion 4.2, these vectors can be interpreted as the left and right ‘traces’ of this representative at the discrete
time points t j. In particular, we enforce any reconstructed jump to take place at these points. In the
remainder, we take θ j = 0 for all j ̸= M (recall that θM = 1), which yields evaluation of Φi at the right-
hand limits for t = t0, . . . , tM−1 and evaluation at the left-hand limit for t = tM = 1 (which is reasonable
by the non-uniqueness of a càdlàg representative of γ at t = 1).

Remark 4.12 (Space and time discretization). In order to reduce the computational cost, we consider
the time discretization t0, . . . , tM. This is standard for such particular algorithms [16, 23]. We stress
that the discretization x1, . . . ,xL corresponds to the definition of K̃ (respectively K0). In particular, a
spatial numerical discretization is not needed because algorithm 1 is grid-free (thus it allows for super-
resolution).

We consider the fidelity F : RL×(M+1)→ R+ defined by

F f (y) =
1

2(M+1)
∥y− f∥2

F ,

where f ∈ RL×(M+1) represents given reference data and ∥ · ∥F denotes the Frobenius norm.

Example 4.13 (Formula for Dk
0(γ̄

+, γ̄−)). In the above setting, we have (proposition 4.11)

Dk
0(γ̄

+, γ̄−) =−a0(α,β , γ̄+, γ̄−)

M+1

M−1

∑
j=0

L

∑
i1=1

Φ
i1(γ̄ j,+)

(
N

∑
ℓ1=1

λ
k
ℓ1

Φ
i1((γ̄k

ℓ )
j,+)− f i

j

)

− a0(α,β , γ̄+, γ̄−)

M+1

L

∑
i2=1

Φ
i2(γ̄M,−)

(
N

∑
ℓ2=1

λ
k
ℓ2

Φ
i2((γ̄k

ℓ )
M,−)− f i

M

)
,

where µk = ∑
N
ℓ=1 λ k

ℓ δ
γk
ℓ

is an iterate of algorithm 1.

30



In order to maximize (γ̄+, γ̄−) 7→ Dk
0(γ̄

+, γ̄−), we adopt the multi-start gradient descent approach
in [16, Section 5.1]. First, we sample from the uniform distribution in Ω two (M + 1)-tuples γ̄

+
0 =

(γ̄0,+
0 , . . . , γ̄M,+

0 ) and γ̄
−
0 = (γ̄0,−

0 , . . . , γ̄M,−
0 ). Then, using γ̄

+
0 and γ̄

−
0 as initializations, we run a gradient

ascent algorithm5 to maximize functional Dk
0 obtaining as output vectors γ̄

+
0,∗, γ̄

−
0,∗. We repeat this pro-

cedure for a fixed amount of random initializations q = 0, ...,Q. Then we store the vectors γ̄+qmax,∗, γ̄−qmax,∗
which yield the maximum value of q 7→ Dk

0(γ̄
+
q,∗, γ̄

−
q,∗). These vectors will be the output of the insertion

step. In order to balance between accuracy and efficiency, it is crucial to carefully choose the number of
initializations Q of the gradient ascent algorithm. In all the experiments in section 4.4, we take Q = 150.

4.4 Numerical experiments
In the following experiments, we use Ω = [0,5] and equidistant time discretization 0 = t0 < .. . < tM = 1
with M = 30. We employ the forward operator K̃ given by equations (11) and (14) with equidistant
points 0 = x1 < .. . < x100 = 5 in Ω and Ci ≡ 1√

2π
,σ2

i ≡ 0.02.
Three curves, no noise: In the first numerical experiment, we aim to reconstruct the ground truth

µ̄† ∈DE(Ω) given by
µ̄

† = δ
γ̄

†
1
+δ

γ̄
†
2
+δ

γ̄
†
3
, (15)

where

γ̄
†
1 (t) = t +3.5, γ̄

†
2 (t) =

√
t +2.5, and γ̄

†
3 (t) =

{
1+ t2 if t < 0.5,

2+ t2 if t ≥ 0.5.
(16)

A discretization of the ground truth µ̄† is given in figure 4.

0.0 0.2 0.4 0.6 0.8 1.0
t [0, 1]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

x

1.00
1.00
1.00

Figure 4: Discretization of the ground truth µ̄† defined by equations (15) and (16). The legend shows
the weights associated with the càdlàg curves δ

γ̄
†
i
.

We consider the reference data f = K0µ̄† ∈ RL×(M+1) (recall that K0 equals the pointwise limit of
K̃ = K̃(δ )) and choose regularization parameters α = 5 and β = 2. Our reconstruction is depicted in
figure 5a. Figure 5b shows the convergence of the residuals (equation (10)). Note that, since minJα,β

5The Euclidean norm in equation (13) is approximated by ηε(z) =
√
|z|2 + ε .
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x
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(a) α = 5 and β = 2. (b) Convergence of residuals (log scale).

Figure 5: Reconstruction of the discretized ground truth from figure 4. Note that it is faithful to the
ground truth in the sense that it recovers the jump of γ̄

†
3 . The effect of regularization is observable in the

attenuated weights and decreased variation of each curve (in particular, close to t = 0 and t = 1).

is unknown, we approximate the residuals by evaluating our discretization6 of Jα,β at the last iterate
returned by algorithm 1. The same idea was used in [16]. The corresponding residuals are denoted by
r0(µ̄

k). To highlight the effect of our regularizer Rα,β , we perform another reconstruction using α = 12
and β = 5. It is shown in figure 6a (next to the residuals k 7→ r0(µ̄

k) in figure 6b).

0.0 0.2 0.4 0.6 0.8 1.0
t [0, 1]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

x

0.42
0.22
0.40

(a) α = 12 and β = 5. (b) Convergence of residuals (log scale).

Figure 6: The larger value of β reduces the variation of each of the curves — close to t = 0 and t = 1
the Diracs move with small velocity. The weights of the reconstructed curves are further scaled down
because of the larger value of α .

6It is naturally defined in the spirit of section 4.2 using K0 and an approximation of the essential variation as in a0, see
equation (13).
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Three curves with noise: In the second experiment, we consider the same ground truth as in the
previous example (defined by equations (15) and (16)). Moreover, we perturb the measurements with
Gaussian noise. In particular, we add a matrix N ∈RL×(M+1) whose entries are realizations of normally
distributed (with zero mean and standard deviation equal to 0.2) random variables. Hence, the measure-
ment K0µ̄†+N is used. Further, we take α = 5 and β = 3. In general, we expect that our regularization
allows for a reconstruction which is stable with respect to (sufficiently small) additive noise (since our
regularizer is a natural extension of ‘static’ regularizers with similar properties). This is also due to
remark 1.6 and the choice of our fidelity term. The reconstruction is illustrated in figure 7.
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(a) α = 5 and β = 3.
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0.85
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(b) Superimposition ground truth & reconstruction.

Figure 7: Reconstruction of µ̄† from K0µ̄† +N . The superimposition of ground truth (depicted with
a solid line) and reconstruction highlights the regularization bias. As expected, the reconstruction is
not strongly affected by the noise. Similar regularization effects as in the previous experiments can be
observed.

Crossing curves: In this experiment, we consider the problem of reconstructing two curves which
cross each other at time t = 0.5. More specifically, we use the ground truth given by (see figure 8a)

µ̄
† = δ

γ̄
†
1
+δ

γ̄
†
2

where
γ̄

†
1 (t) = 1+3t and γ̄

†
2 (t) = 4−3t.

Again, we compute the reference data as f =K0µ̄† ∈RL×(M+1). The reconstruction is shown in figure 8b.
A similar effect to the one highlighted in [16, Section 6.2.3] (where a Wasserstein-2-type regularization
is considered) can be observed.

Non-sparse ground truths: Finally, we reconstruct diffuse ground truths which cannot be written as
linear combinations of Diracs in elements of DE(Ω). More precisely, we take µ̄†, ν̄† ∈ DW (Ω) defined
by

µ̄
†
t = L [1+ t,4− t] and ν̄

†
t = L [ζ1(t),ζ2(t)]

with

ζ1(t) =

{
1+ t if t < 0.5,
2+ t if t ≥ 0.5

and ζ2(t) =

{
2+ t if t < 0.5,
3+ t if t ≥ 0.5.
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(a) Ground truth.
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(b) Reconstruction for α = 13 and β = 5.

Figure 8: Reconstruction of two crossing curves. Our algorithm is unable to identify the correct trajec-
tories due to the regularization (which encourages small variation).

We define f = K0µ̄†,g = K0ν̄† ∈ RL×(M+1) as the corresponding reference data. Note that µ̄† is abso-
lutely continuous while ν̄† jumps at t = 0.5. We use regularization parameters α = 3 and β = 2 for the
reconstruction of µ̄† and α = 5 and β = 2 for the reconstruction of ν̄†. The results are shown in figure 9.
Recall that algorithm 1 yields sparse reconstructions despite our choice of the ground truths.

(a) Reconstruction of µ̄† (α = 3,β = 2). (b) Reconstruction of ν̄† (α = 5, β = 2).

Figure 9: Reconstruction of diffuse ground truths. As expected, curve µ̄† is approximated by only using
absolutely continuous curves while ν̄† is approximated by curves with jumps.
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