BACH-PINCHED METRICS ON CLOSED MANIFOLDS

L. BRANCA !, G. CATINO 2, D. DAMENO *.

ABSTRACT. Exploiting the deformation method introduced by Aubin in his seminal work to con-
struct constant negative scalar curvature metrics, we show the existence, on every closed manifold

of dimension four, of a metric whose Bach tensor is pinched by the scalar curvature.

1. INTRODUCTION

Let (M,g) be a Riemannian manifold of dimension n > 3: it is well known that the Riemann

curvature tensor Riem, admits the decomposition

. S
Ric, ®g — 5 ! AONE

Riemg =Wy +3 (n—D)(n—2)

1

(n—1)
where W, is the Weyl tensor, Ricy is the Ricci tensor and Sy is the scalar curvature and () denotes
the Kulkarni-Nomizu product. A fundamental question in Riemannian Geometry is to understand
the relations between the curvature and the topology of the underlying manifold: for instance,
an example of this relation is provided by metrics with positive scalar curvature [17, 18, 25, 30],
non-positive sectional curvature or by metrics which are locally conformally flat, i.e. Wy = 0 for
n >4 [4, 16, 24].
On the other hand, there are examples of curvature conditions that are unobstructed: in [2, 3] Aubin
showed that, on every smooth n-dimensional closed (compact with empty boundary) manifold,
there exists a smooth Riemannian metric with constant negative scalar curvature. This result was
then extended to complete non-compact manifolds by Bland and Kalka in [6]. In particular, there
are no topological obstructions to metrics with negative scalar curvature and, more in general,
Lohkamp proved that on every smooth complete Riemannian manifold there are no obstructions
to the existence of metrics with negative Ricci curvature [29].
Note that in [3] Aubin also proved that, if M is a closed Riemannian manifold of dimension n > 4,
then there always exists a metric with non-vanishing Weyl curvature, i.e. |Wg|g > 0 everywhere.
As a consequence, in [13] the authors showed the existence of weak harmonic Weyl metrics on
every closed Riemannian four-manifold, i.e. critical points, in a conformal class, of the normalized
L2-norm of the Cotton tensor. Moreover, in [10] the second author extended Aubin’s construction
of metrics with negative scalar curvature proving that every n-dimensional closed manifold admits

a Riemannian metric with constant negative scalar-Weyl curvature, i.e.

Sg +t{Wyl, = -1,
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for every t € R and, as a consequence, there are no topological obstructions to the existence of
metrics with negative scalar curvature and Weyl-pinched curvature, generalizing a result of Seshadri
in dimension four [31]: namely, on every closed manifold of dimension n > 4, for every € > 0 there
exists a Riemannian metric g = g. such that

Sg <0 and ]ngi < 553 on M.
In this paper, we are interested in the Bach tensor By, which, if n = 4, is locally defined as
1
Bij = Wigjiuk + §Rleikjl~

This geometric quantity, introduced by Bach in the context of Conformal Relativity [5], is a
divergence-free, conformally covariant tensor, i.e., if § = €?“g is a metric conformal to g, B,
satisfies [15]

(1.1) B; = e 2B,.

We say that a Riemannian metric g is Bach-flat if B, = 0 on M: typical examples are provided by
conformally Einstein metrics, locally conformally flat metrics, and, more generally, half conformally
flat metrics. Furthermore, Bach-flat metrics are exactly the critical points of the so-called Weyl

functional
Wio) = [ W, Lav,.

Up to now, no topological obstructions to the existence of Bach-flat metrics on closed smooth
four-manifolds are known, although some partial rigidity and classification results have been proven
[8, 9, 14, 27, 32, 33]: we recall that one of the few examples of non-trivial Bach-flat metrics was
constructed by Abbena, Garbiero and Salamon on a solvable Lie group [1]. In [22], Gursky and
Viaclovsky developed a gluing method to construct Bi-flat metrics, i.e. critical points of the Weyl
functional perturbed with a quadratic scalar curvature term, on connected sums of Einstein four-
manifolds. On the other hand, it is possible to find unobstructed metrics whose Bach tensor
satisfies curvature properties: indeed, using a special metric deformation introduced by Aubin [3],
the second and the third author, together with P. Mastrolia, showed the existence of metrics with
non-vanishing Bach tensor on every four-dimensional closed manifold [11].

Our main result is the following

Theorem 1.1. On every smooth 4-dimensional closed manifold M, for every t € R, there exists a

smooth Riemannian metric g = g; with
1
Sg+tBgl =—-1 on M.
In particular, there are no topological obstructions for negative scalar-Bach curvature metrics.

Therefore, choosing t = 1/4/¢, € > 0, in Theorem 1.1 we obtain the following existence result for
metrics with negative scalar curvature and Bach-pinched curvature:

Corollary 1.2. On every smooth n-dimensional closed manifold, for every ¢ > 0, there exists a

smooth Riemannian metric g = g. with

Sg <0 and |Bg|g<6S§ on M.
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The naive idea of the proof of Theorem 1.1, similar to the one exploited in [2, 3, 10], would be

to start from a reference metric g, to be suitably chosen, to construct a non-conformal Riemannian

1
/ <Sg + t‘BgE) dVg <0
M

and to apply the method used by Gursky in [19] to produce the desired constant negative scalar-

metric g such that

Bach metric. Since we must deal with the modified conformal Laplacian of g
1
—6Ay + Sy + t|Bg|3,

to construct smooth (at least, C*) metrics we have to take into account the lack of regularity of
the operator on {B, = 0}: to overcome this difficulty, throughout the proof we often rely on the
existence of Riemannian metrics with non-vanishing Bach tensor [11] (see Section 4 for further
details). We also want to stress out the fact that, in order to have precise estimates, we had to
compute the full variation formula of the Bach tensor under Aubin’s deformation (see Section 5 for
all the detailed computations).

2. THE SCALAR-BACH CURVATURE

In this section we focus on the variational and conformal aspects of the scalar-Bach curvature,
which are analogous to those of the scalar-Weyl curvature, first studied by Gursky in [19]. Let
(M, g) be a n-dimensional closed (compact with empty boundary) Riemannian manifold. We start
by recalling the definition of the conformal Laplacian is the operator:

4(n—1)

Ly:=—
g n—2

Ay + S,

It satisfies the following well known conformal covariance property: if § = u*(™2)g, where v is a
positive smooth function on M, then

Li0 =u"n2Ly(¢u), Vo€ C2(M).

Observe that this operator plays a prominent role in the resolution of the Yamabe variational
problem: indeed, the scalar curvature of the conformally related metric g is given by
_nt2
Sg=u "2Lgu.
In [19], Gursky introduced a modification of the conformal Laplacian, introducing a new term
depending on the Weyl curvature. Given ¢ € R, we recall the definition of scalar-Weyl curvature

(2.1) Fy =85 +1|Wgl,
and the associated modified conformal Laplacian
4(n—1)
t .
Lyi=—— —5 Bat 1y

where

|Wg|g = \/Wijlepqrsgipgqukrgls
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denotes the norm of the Weyl curvature of ¢g. It was proved in [19] that the pairs (Fg,ﬁg) and

(Sg, Lg) share the same conformal properties. In fact, if g = u?/("=2) g then
2.2 Lip=u Lt Yo € C2(M), and Fy=u n3L!
( : ) §¢—’U, g<¢u)7 ¢€ ( )a an g—u gU-
In an analogous way, for n = 4, given t € R we define the scalar-Bach curvature
1
(2.3) FJ = Sy +1[By|2
and the associated modified conformal Laplacian
. B
£y =60, + F,

where |Bg|g = /BijBpqgPg’? denotes the norm of the Bach tensor of g. A crucial observation
is the fact that the pair (F gB ,f;) preserves the same conformal properties of (Sy, £); indeed, let

g = u%g, then

u?(Bg)ij = (By)ij
and

2

u8’B§‘§ = |B9’37

therefore
. 4 B _ -3 cpt

(2.4) Lo =uZLj(pu), Vo€ C' (M), and Fy =u "ZLju.

In particular, adapting the argument of [19, Proposition 3.2], we have the following:

Lemma 2.1. Let (M, g) be a 4-dimensional closed Riemannian manifold with |Bg|g > 0. Then,
there exists a smooth metric g € [g] with either FQB > 0, FQB <0, or Ff = 0. Moreover, these three

possibilities are mutually exclusive.

Proof. Let ui(g) denote the principle eigenvalue of Dngt and let ¢ denote the eigenfunction relative
to pt(g). By the maximum principle ¢ can be assumed to be positive. In particular ¢ satisfies

f; ¢ = ui(9)9,
that is equivalent to
—6A¢ = —F ¢+ u(9) .
Note that, since |Bg|, > 0, then FgB € C*(M) and thus ¢ € C*°(M). Let us consider the conformal
change § = ¢%g, then § € [g] is smooth and by (2.4)

FP = u(g)e>.
Therefore, Ff is either positive, negative or identically zero, depending on the sign of u:(g) and

these possibilities are mutually exclusive because the sign of p.(g) is conformally invariant. O

In analogy with the Yamabe problem, Gursky introduced the following modified fuctional
/ MU Egu dv,

Y (u) =
(g n/ =2 avy) =27

and

~

Y(M,[g) = inf Y(w,
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which is conformally invariant. Following a classical subcritical regularization argument, he proved
that, if Y/(M, [g]) < 0, then the variational problem of finding a conformal metric § € [g] with
constant scalar-Weyl curvature F' can be solved. See [19, Proposition 3.5] for the proof (in dimension
four). In an analogous way, when n =4 and |By|, > 0, we can consider the functional

N [y uLludV,
Vi) = 2? ude)g
M g
and the conformal invariant
YB(Mm = inf YB(u).
(M, [g]) et (u)

By (2.4), it is easy to see that the functional u }/}B(u) is equivalent to the modified Einstein-

Hilbert functional 5

E2 dV;
7 =u? M
9= oL (M)
In particular the following lemma holds:
Lemma 2.2. Let (M, g) be a 4-dimensional closed Riemannian manifold with [Bg| > 0. If there

exists a metric g’ € [g] such that

/ Fg/ dVg/ <0,
M

then, there exists a (unique) C* metric g € [g] such that Fy = —1.

Proof. Since
/ Fg/ dV;]/ <0,
M

arguing as in [28, Proposition 4.4], there exists v € H*(M) which attains the minimum of Y B (M, [g]).
In particular,

—6Av + Fng = Kv™3;

where K is a negative constant. Then, since |By| 9> 0, Fy is smooth and, by elliptic regularity, we
have that v € C°°(M) and § € [g] such that § = v~2g is smooth. O

Note that these techniques introduced by Gursky have been used in various contexts, such as
[7, 10, 20, 21, 23, 26].

3. AUBIN’S METRIC DEFORMATION

We recall the deformation of a Riemannian metric g, introduced by Aubin in [2, 3] and defined
as

(3.1) g=g+df @df, feC>®M),

throughout this section, the barred quantities are referred to the metric g, while the unbarred ones
are related to g. Locally, given an open chart U C M with coordinate functions dz!,...,dz", we

can rewrite (3.1) as

(3.2) 9ij = 9ij + fif5,



6

where f; = 0;f = g mfz The Levi-Civita connection is locally expressed by the Christoffel symbols

Fk

i) which, with respect to g, are defined as

!
=l ! [ fij
3.3 . =T% 4+ — ,
( ) ij 1J 1+ |Vf’2
where f! = g% fis fij = 0; fi—Ffj fi and I‘fj are the Christoffel symbols of the metric g. In particular,
we have

1
(3.4) dV; = (1 + |Vf\2) 2qv,;
—ij _ i fifi
gz] — gw _ )
1+ |VfJ?

Similarly, starting from (3.3), we can compute the curvature components of the metric g (see [12,
Chapter 2]): for instance, the local components of the (0,4)-Riemann tensor Riem are written as
1
1+ v/

(3.5) Rijit = Rijir + (fufje — fiefi) =t Rijiw + Ef.

Tracing (3.5), we obtain the local expressions for the Ricci tensor Ric and the scalar curvature S:

5 _p 1 Lol 1 e gt
(3'6) Rzg Rzg 1t ‘Vf|2f f th]l + 14 ’V¢‘2 (Af fz] fztf])+
- %ftfl(fijftl — fufi)
(1+1vsP)
=: Rij + Fij;
_ 2 9 1 2 2
‘ —S—— % RS = (AN _
(3.7) S=8- omplel T o (A1) = [Hess ] +
N NS T
(1+vs1)
=S+ H.

Note that the proof of (3.4) and that of the scalar curvature can be found in [3] while the other
transformations can be found in [12, Chapter 2]. Moreover, on a 4-dimensional manifold, we have

1 1 2 1 1/, S?
(3.8) Bij 25 [AR@] — gSm + QRkIRikjl — gSRl] — 6ASgij — 5 <|R1C|2 — 3)9@‘] .
Then
(3.9) Bij = Bij + E(f)j,
where

—_

(310) ()=

2 3

=2
ARy — 25, + %Ry — 2SRy — ~A57, — L[ R = 2 )3
N gSij 2R R §SRij — éASE‘j -5 <‘R1C‘3 - )%‘j

1 2 1 1/, S?
— ARU — §S” + 2RklRik:jl — gSR” — EAS‘% — 5 <’RIC’2 — 3>gij] .



Moreover, we point out that

sos_ Fal'P o (W)
L+ |V /] 1+ V/]

= RijfifI
SdV:/ SdV—/ — YL qV..
/M Y S L+ VR

We now prove the validity of the following integral sufficient condition for the existence of a constant

and thus

negative scalar-Bach curvature, in the conformal class [g] of a metric g:

Lemma 3.1. Let M be a 4-dimensional closed manifold. If there exists a positive smooth function
u € C°(M) such that for a Riemannian metric g on M, satisfying |Bg|g > 0, it holds

/ FPw?dv, + 6/ IVul*>dV, < 0,
M M
then there exists a (unique) C™° metric g € [g] such that ngﬁ =—1.

Proof. Arguing as in [10, Lemma 3.2], we consider the conformal metric g;; = u?g. By (2.4) we
have

B 3 -2 3 Au
Fg :Sg/+t|Bg/]92,:u <Sg+t|Bg|g2—6u>
Therefore, since dVy = u4dVg, using the assumption we obtain
/ FfdVy :/ FPu? dv, +6/ IVul? dV, < 0.
M M M
The conclusion follows now by Lemma 2.2. O

Adapting the method described in [10] and using Lemma 3.1, we are able to find a sufficient
condition for the existence of metrics with constant negative scalar-Bach curvature:

Lemma 3.2. Let (M,g) be a 4-dimensional closed manifold. Suppose that there exists a smooth
function f € C®°(M) such that, for some t > 0, it holds
ifj|?
fipfpfiqfq _ |fz]f fj‘

8 gy [ Bulfo, 3
/M<sg+t|Bg+Eg<f>|f) dv, /M1+Wf|zd%+2 /M A+ [VFP2 A+ VP

where ||, denotes the norm with respect of g + df @ df, Eq(f) is defined as in (3.10) and

dVy <0,

Bytdradrl; = By +Eq(f)l, >0, on M.

Then, there exists a (unique) C*°(M) metric g € [g + df ® df] such that Fy = —1.

4. PROOF OF THEOREM 1.1

This section is dedicated to the proof of Theorem 1.1. We point out that that the technique we
use takes strong inspiration from [2], [3] and [10]. Before we begin the proof, we state the following
useful
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Step 1. First, we focus on the case
t> 0.

From [11], we know that there exist a metric gy such that ]BgO]gO > 0 on M, hence we can choose
a metric g € [go] such that

B
(4.1) F/ >0 on M,

otherwise, Lemma 2.1 would imply the existence of a smooth metric g € [go] such that F, gB < 0and
Theorem 1.1 would follow from Lemma 2.2. Consider a positive smooth function ¢ € C*°(M), a
positive constant £ > 0 and define

g =g, ¢" =4 +dk¢)@dk).

To prove the existence of a metric g such that FEB = —1, we will proceed as follows: first we will
prove that
(4.2) / FLdV, <0,

M

where §” = (1 + k2|V1|?)~2g", for suitable choices of ¢ and k. Then, up to a perturbation of ,
we will prove that ‘Bg//

g > 0 everywhere and the claim will follow by Lemma 3.2. To show (4.2),

observe that
g =g +d(ke) @ d(ki) = ¥ g+ d(2k/D) © d(2k\/D)| =: 5.
Applying the same argument in the proof of [10, Lemma 3.3], we deduce that

(4.3) By = / FhdVy
M

1 R,V 4
— / (Sg’ + t| Bg/ —I—Eg/(kw”]zw) d‘/g/ — / J g g d‘/g/
M M

1/k2 + [V l2,
s f
2 m

9 TP T 21T 9 i VAP
where |-[;,, denotes the norm with respect to g’ + d(kv)) ® d(ky).

dVy,

/R + |[Vgl2)? (/R + [Vgul)?

With respect to the metric g, by standard formulas for conformal transformations (see [12]), we

have
1 Ay 3|VyP?
Sg/_w<5g—3w—|-2 02 ,
Yij  3vppy 1AW
RZ] — RZ] ’(/} + 2 17/}2 2 w gl_]7
1
dVy = *dV,

1

V%w =i — ”

(¢i¢j - ;|V7/)|2gij> :
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where R;J, ng and R;;, B;; are relative to the metrics ¢’ and g, respectively. On the other hand,

observe that
g =g + (k) @ d(k) = g+ d2k/D) @ d(2k\/D)| = g

moreover, in dimension four the Bach tensor is conformally covariant, namely

1
!/
Thus,
1
Bj; + E'(k¢)i; = Bj; = JBij

Zi(BU+E@h¢Ww>
23m+;E@kVWw
which implies that the ”error term” of the Bach tensor satisfies:
Ey (k) = —Ey(2k\/).

In particular, the following relation is satisfied

|Bg

L= By +Ey (k)7 = ’Bg+E (2k/)

‘Q\ NI

Then, following the computations in [3] and [10] we get

t 1 R;i;1;
o= [ (sg + 118y B, RV} - /k;ffé w|2> v,
AN
g

YRR
13 |V|? 1 AP
(4.5) Wz/M s v o f u s o W
3 SotPlig? P ]
* / [(w/k”lWP)? Wi vope) Ve

13/ 31V = [V[2 (i)
k2 (/K + Vo)

Step 2. Let p € M and consider a local, normal, geodesic polar coordinate system p, w1, ...

b dv,.

y Wn—1

defined in an open neighborhood V of p, in order to have

Gop=1, 9pi =0, gij =0 +paij, ¢ =

at p, where the index ¢ corresponds to the coordinate w;, for ¢ = 1,...,n — 1 and the coefficients a;;

are of order 1; from now on, we use the index convention

o, By =1,2.3.p, 4. k,...=1,23.
The Christoffel symbols of the Levi-Civita connection are written as
(4.6) e, = ng‘ =0, Ffj =

p
— 5 (aij + papaij).
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Let B, be the geodesic ball centered at p of radius 0 < r < 7, with ¢ such that B,, C V and let
y = y(x) is a real C* function such that

y@) =1, Yla| > 1
y(r) >0 >0, Vz e R

y'(x) >0, V0 <z <1
y'(z) > 1, V(1/4)V (D) < g < (3/4)Y/ (D)

|y//|§ﬁ asx — 1

(
Let B, = B,(p) be the geodesic ball centered at p of radius 0 < r < r¢, with rg such that B, C M.
For p' € B,., we choose

v =y (g) , p=distg(p', p).
From now on, to simplify the expressions, we will omit arguments in the functions: it will be
clear that if 1, 1,, etc. are computed at p' € By, then y,y,y” will be computed at p/r with
p = disty(p’, p). Moreover, we will denote by C' = C(n,d,t,p) > 0 some universal positive constant

independent of r and k.

Step 3. Arguing as in [10], it is possible to obtain an estimate for the terms not involving the
Bach tensor, when they are restricted to the ball B,.. In particular, applying the same argument of
Step 3 of [10] we obtain that

1 1 1
(4.7) ®p, St/B | By +Eg(2/€\/12)‘§2 dVy + C|B,| + r?/B y”dVg + ﬁ@7

where ®p_ denotes the quantity defined in (4.5) restricted to B,. Note that this intermediate
estimate, when ¢ = 0, coincides with the one of Aubin in [3].

Step 4. We now give an estimate of the remaining terms, in which the Bach tensor appears. Since

g =g+ d2k\/¥) @ d(2k\/1),

for the sake of simplicity, we introduce

(4.8) ni=2/1,

where

and we have

(4.9) =g+ k*dn® dn.
From (3.4), we have
1 , y g
P — = 0. g = g4
S e , g7 =g

In particular, since g > g, for every (0, p)-tensor T we immediately get that

(4.10) Ty ly < | Tyly < C.



where C'is a constant. Note that, by definition of n and (4.6),

1 p
; =0, =_—n! ’(*);
i Mo =351 Y\

2
_ 11/8 -3 4 -1 n(P
lep =~ ry r " 2r 277 y r

L P
Moi =0, Mij = - plaij + papaij)y/(;>v
which imply that there exists C' € R such that
C—ly/ Cy’
(4.11) <np < == Ingl < Criny| <C
r

and, more in general, if r is sufficiently small,

C C'
Na < o ’na5| <

11

Observe that, since y only depends on p, diﬁerentlatlng 7 with respect to an angular coordinate

does not raise the exponent of r at the denominator, while differentiating with respect to p produces

an additional 1/r in the derivative: hence, one can easily note that

C
|Oan..,an | < e
where M = #{i=1,..., N : o; = p}. In particular, we have

(4.12)

C C C
Mpp] < 733 Mool < 732 Mppopl < 7T4§ il < C; 19pmis] < 7§ 10:0pmij| <

Q
= Q

Moreover, by assumption [y”(x)] <4'/(1 — £) and the definition of y, we exploit

W) 1y Cly'| Clnpl Cnpl
4.1 < < < <
(4.13) o0l C<r r2 _rz(g—l)_r(g—l)_r—p
and

1
1) 10,mij| = {4 0~ plaij + pdpaij)y (p)” < Sl < C;‘fg';

Nl "
1 p c c
|8tap77”| = 8t(9p |:47‘77 lp(aij +p8pazj)y,(r>]‘ < 1@? < T‘jzl;

summarizing, we have

aun
10p11p] = |n0p + Tpyna| = o] < r _pp;
C 3 c
10p00] = |Mopp + 2T pMap| = Mool < 7?3(}(3/,) |+ vy +[y"]) < 73
| | |77P‘ CT“T]p|
Pl =9 r—p’
415) (0,0 = | TPV L oPYE oy’ mppy’L | mpy'L Ly mppy"L py"L
: pOpTij , . , 2 , 2 , 3

"
L C
r2 r2’

|04,y mi5] < C.
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I P
9| = '4/7 p(Bai; + palapamy'(r)] < Crlny| < C;

1 _

|0:O1mij| = '477 Lo(0vDyai; + Patalapaij)y/(8> <Crn, <C;
T r

|at pnzj| < C|6p771]’ < TC|T];|7

where L denotes a bounded quantity and C' is a constant. Depending on the term we need to
estimate, we are going to use (4.12) or (4.13) and (4.14).

To give an estimate of the remaining integral depending on the Bach tensor we exploit the following

Lemma 4.1. We have
1 1 C
(1.16) [ [BsEseny| av, = [ Bsidav, < s+ Ce.

for some constant C = C(8,t,p) and a continuous function © = ©(p, +,7) > 0; here |B,| denotes
the volume of B,.

Proof. Given a tensor T in the metric g, we will denote as T the same tensor with respect to the
metric g.
We recall that by (3.10), we have

(4.17)

|§‘§ =

—2
1o 1 - 92— 11— 1f=—p S\
3 ARic — gHess(S) + 2Ric * Riem — §SR1(: — EA g — B (‘RIC‘Q— 3>g

=2
<|RIC‘ - S)g

where * denotes the contraction R,sR.,35. The computations in Section 5 show that

9

% ’AR]C‘ +7|Hess | +2‘R1C*R1em’ —I—*‘SR1C| —|—*‘ASQ‘ + =

g

( ]Aﬁ\,< C(1+:4+ £0);

k
‘ﬁ * Riem|§ < C(l + k%@);
\?ﬁ}, <C(1+ k%@)-

As a consequence, we get

(4.18) }E@ <C+——
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N

Note that, when p — r, we have that 1/(r — p)

f 1ml; <

Remark 4.2. We point out that, in [10, Lemma 4.1], there is a misprint: the power of k should be

is integrable and thus (4.18) implies

C|B|+C@

‘Q\ NI

0

—1 instead of —2, which, however, does not affect the validity of the arguments.

Step 5. Using Lemma 4.1 in (4.7), we obtain

1 1
(4.19) bp < C|B,|+ / y" dVy + —0.
T2 B, k

Now, we have to make sure that \Bg\y > 0 on M: in order to do so, assume that there exists a
point p’ € B, such that \Bg\g = 0 vanishes at p’. If we evaluate the components of By at p/, we
obtain that the equation B,g(p') = 0 is a polynomial equation of finite degree N, g in the variable
k, for o, 8 = 1,2,3, p, up to multiplying the equation for (1 + k:znlz)))‘, where A = A(«, 8) is the
highest power of (1 + k:2173) appearing in the denominators of the expression of B,g (this can be
done since all the denominators in these expressions are of the form (14 k?1),)7, as can be seen in
the previous computations and in Section 5: this means that ]Bglg =0 at p’ if and only if k is a
root of all the polynomials, which implies that

= < = 1
ke A:={ky,....kr}, L<N a75217r21737pNa7ﬂ

where ki, ...,k are the common roots of the polynomials. We observe that, since k£ is a fixed
constant in (4.9), the roots of the polynomials B,s(q) have to be contained in A, for every ¢ € B,
such that \B§|§ = 0 at g. Therefore, in order to have that Bz does not vanish on B,, it is sufficient
to choose k outside of A in (4.9): hence, we can conclude that [Bg|; # 0 on B;.

In order to conclude the proof, we apply the same argument as the one in Step 5 of [10]: for the
sake of completeness, we include it here. Using (4.19) and that, by assumption, 3/(z) > 1 for all
(1/4)Y/ (=1 < 2 < (3/4)/ (=1 we obtain

1
(I)Br < C<1—|—> |Br
T

1 Cy 1
<C|(1+4+-)|B:——=|B:|+ -0,
<c(1+7) 181~ i+

)1/ n—1)

1
P 2dp+ -0
r(% )1/(n 1) k

detg;;

where we used the fact that |B,| ~ ¢r™ as r — 0. In particular, there exist a continuous function
A(p) > 0 and, for p € M fixed, a continuous function ©,(r) > 0 in r, for 0 < r < rg, such that

O(p,1/k,t) < O,(r),

and

(4.20) by < [c (1 + i) - ?2] B|+ %@p(r).
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Since, by (4.1), F7 = S, +t| By \g > 0, given v > 0, there exists a positive radius 0 < r; < rg such
that

A 1 ~
(4.21) 2—C<1+> —1>vF],

™ T1

Whereﬁ (fMFBdV)/Vol( ).
We cons1der h disjoint geodesic balls B,n1 (p;) of radius r = r1, j = 1,..., h, together with the
corresponding function U], as constructed above, such that, for v sufficiently large,

h

1
> B > Lol (an)

j=1
we define A; as before and, on BJ, we choose k; such that the Bach tensor of the deformed metric

does not vanish on B’ and k; ¢ A; for every i = 1,..., h.
On every BJ, we set

Op, (r1) "
k> max< 1, sup 1;.37 , k:QUAj,

j=1,...h | B, (p;)] j=1

which is possible since U?:1 A; is a finite set. From (4.20) and (4.21), for all j =1,..., h, we get

Cpi < —vE B, ()] — B, ()] + 9pj(7°1) —vE] B, (p))]-
If we define
= 1, | on M\ U?:1 BY
il on B,
we obtain
<I>M</MFgBdV uFBZ\B (pj)] = P [ Voly( —VZ]B” i)l | <0;

furthermore, by our choice of k and the fact that \Bg\ > 0 on M, we obtain that |B§]§ >0 on M.
By Lemma 3.2, there exists a metric g € [g] such that P =-1.

Finally, we consider the case ¢ < 0; by [2, 3] we know that, on a closed 4-dimensional manifold,
there exists a Riemannian metric ¢’ with constant scalar curvature —1, which is constructed via the
same deformation we exploited in the previous case, starting from a reference metric. Hence, let g
be a Riemannian metric on M such that |B,| g > 0 at every point of M: exploiting Aubin’s proof
and the previous argument on the choice of k, we can produce a metric g such that | w SgdVg <0
and \B§|, > 0 on M. Therefore, since t < O, obviously fM FgBdVg < 0 and, by Lemma 2.2, there
exists a metric g € [g] such that F; B =

This concludes the proof of Theorem 1.1.
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5. ESTIMATES ON THE DEFORMED BACH TENSOR

In this section we prove the estimate (4.18) that we used in the fourth step of the proof of
Theorem 1.1: for the sake of simplicity, we will write T = T, and T = Ty for every considered
tensor T. We recall that, for the metric g defined in (4.9), we have

(5.1) |B|; = ‘;

1 2 1 1 2 5
ARic — gHess(S) + 2Ric * Riem — gS Ric — 6AS§ —5 (}Ric‘g - 3)9]

g

To prove the validity of (4.18), we analyze the components of B separately, proving that each term
in (5.1) satisfies

1 1
(5.2) HQSC<1++®) in By,
T
where C is a positive constant and © = O(p, %, ) is a positive continuous function. For the sake
of simplicity, given a (0, ¢)-tensor T, we will denote
2 _ _
‘Tal...aq ‘g = Ta1..‘aqT51.‘./g’q9a1ﬂl--- gaqﬁq;
for instance, on a (0, 2)-tensor we have
2 —il—j 2 2
T3z = TiyTug"'g"" = | Tyl < C|T41%;

1 C

2 o ciigen — 12 2,
ioly = Tin Lo 9" = g ol < T el
1 1
2 —pp—pp __ 2 2
Toplg = TopTppg™ 9™ = Wlﬂwb = W\Tppl :

Note that when we consider Aubin’s deformation, we have (see Section 3)

Rapns = Rapos + Exys:

Raﬁ = Raﬁ +Faﬁ;

S =S+ H;
where

R k?
Ein =71, 12.2 (mmjt - 77it77jl);

R N T

R
Eiplt :0;
ER _— k2’7pp77z‘l .

we =14 k2’

k*12Ripjp  CE*(NANGTANG)ij k2n2 nij

Fij:_

1+ k22 1+ k22 (1 + k22)
Fip :O;
_ K2 1i0pp
PP 14+ kgnga

P L Y B ((an)? — |Hess(n)[?) 2K s (B, — o)
T 1 L 1.2,27twp 1 1 122 - T 1 L 1.2.2\2 pp
1+ k202 ARy (1 + k2n2)? p plpp
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L Ck*nancnanc 2k 1p0mu
L+ k22 1+ k22 (L+ k2n2)2

We use the notation nan¢ to denote terms of the type 7;;, where 4, j are angular coordinates (with

=L+

this notation, we have coupled the angular terms 7;7;; and mmé in Fj; and the terms 77121 and 1;;7;;
in H, since for small r, they have the same behavior). Then, by (4.12) and (4.11) we get:

(5.3)

k2 k2 Lr2p?
‘E‘R'lt‘ = ﬁ(ﬂiﬂ?jt - mmﬂ) < 272” <Ccr’< C,
w 1+ k ur k Ur
}Eﬁzt\ =0;
k2 1pmit k2L | C
ER | = pp IV |~ <« Z < 0o
‘ lplp‘ 1+k277;2; = k2773 2= = )
kE*n’R;,i,  Ck? y 202
|Fyj| =|— Mo ipjp (77ANG77ANG)1] NopTlij
! L+ k22 1+ k202 (14 k2n2)?
LkQ 2 Lk2 27,.2 k‘2L 8. 1
k2z,0 k;277p2 — 5 SC-I—C-}-?@ §C<1+k2®>;
np np 7,2]:74(272 + in—Q(y/)2>
‘Fip‘ =0;
k*nin
F | =|—1P |« 0.
| ﬂﬂ| 1+k277[2; = )
\H| =|L + L Ck?nanenane . 2k*npomu
1+ k2n2 1+ k2n?2 (1 + E2n2)?

k2

Note that we have not used (4.13) and (4.14), however il will be useful to have an estimate of F),,

1
§C+C+C’+r2kg®§0<l+9>.

in terms of ﬁ (since we are going to use it later to compute some of the remainders of ARic):

k2772 r
T‘(l + k ’I’]p) r—p

It follows
(5.5)

B, =|Eful, < C|EGu| < Cr* < C;

‘E;th‘y =0;

’ER ’ = 1 kgnppnil C k?277pp"7il k20 g TQQ@ ) g@

I T A e T e T ey e L

1
|Fijly =IFijl, < ClF;| < C<1 + k29>;

|Fi/1|§ =0;
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1
= 2,2
g 1+ k*n;

1

F,,| = k277§77w
PPIg 1 4 k2

1+ kQT]%

C
=

k27727‘; Tlpp

<
1+ k%g -

©;

2
D
1
|H|; =|H|,=[H| <C 1—1—?@ )
As a consequence, exploiting (5.5), a straightforward computation proves that the terms of (4.17)
in which Riem, Ric and S appear satisfy (5.2). For instance,
(5.6) \?ﬁ\g =|SRap + HRop + SFop + HFaﬁ‘g
:’SRZ']' + HRij + SFij + HFZ'j + SRip + HRip + SRpp + HRPP + SFpp + HFPP‘@
<[SlglRislg + [HIg Rijlg + [SG1Fl5 + [H G Fil5 + [S|g| Riplg + [HIg| Ripl;
181y Ryply + 1y Byl + STy oy + 1 H I Fyly

1 1 1 1
coro(ir o) re(is o) ro(is ko) roro(is o)

1 C C
+C+C’<1+k2@)+k2@+k2@
1
co(i+ o).

A similar computation shows that

i, < (14 o) (8], <01+ z0)
and, in particular:

‘ﬁ * Riem|, < C(l + k%@);

(5.7) - 2\ _ 1
’ (‘Rlc‘g — 7)9’5 < C(l + kfg@).
Thus, it remains to analyze the covariant derivatives of Ric and S. Let
= k*n“ng
5.8 o =Ty, —T% = 1
(5-8) By By By T 1+ k22’
then by (4.11), (4.12) and (5.8) we deduce
ik =Gip = Gpp = 0;
Knomij | K2Crin,?
(5.9) Go | = ' W | < O e
1+ Fk U 1+k52|77p‘
k2 k2C
|GZP{ = '1 nl;{Z/’PZ S k2 2 -2 2 S C@,
R (- )
By definition, we need to compute
(5.10) ARic = g?*V,V,(Rpp + Rip + Rij) + 7'ViVi(R,, + Rip + Rij)
1 _ _ o _ _
=15 K202 VoVo(Rpp + Rip + Rij) + g"ViVi(Ryp + Rip + Rij),
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where
(5.11) Vi Ras = Vo Rag — G Rsg — G2 gRas — G0 Fsp — G gFus
and
(5.12)  VoVyRap =VoVyRag+ VoVyFapg — Goo(VyReg) — Go(VyRar) — Go (V1 Rap)
= Goa(VyFrg) = Gog(VyFar) — G5 (Vo Fup)
— 0,G)\ Rop — 05G) 3 Ras — 05G)\ Fopg — 05GS g F s
~G%,0 R(;ﬁ - Bang; — G20, Fs5 — G230, Fas + 15 (G4 Rsp)
+I7,(G2, Reg) + I55(G2 o Rsr) + T5,(G s Ras) + 15 5(GS, Ras)
)+ T0, (G2 Fop) + T (G Fog) + 7 5(GS o Fisr)
+T75(GS Fas) + 150 (G2 5 Frs).

+ F;a( ,BR7'5
+ F;'y(GTﬁFaCs)
Now we give an estimate of )8567%7‘ in terms of suitable C' and ©, where C is a constant and

© = O(1/k,r,p) denotes a continuous function depending on 1/k,r and p; to do so we use the

bounds on 7, 1,,,7;; and on their partial derivatives in p together with

(5.13)

) 2. Tt — —
T%;| < Cp; T, | < Cp*; I =r,,=T0=0.
Then, using (4.11) and (4.12) we have

k277pp77ij k277p8p77ij k4277,2;77pp77ij

L+ k22 1+k*n2 (14 k%n2)?
Ck? Ck? Ck*

<CO+CO+CO < C0;

k2r np

= 2 < COr <

p| _ k277p8l77ij
L+ k22| —

kK215, k*115Mppp _ 2k onz,
L+ k22 1+E2n2 (14 k%n2)?

k2C k2C k*tC
2 —2 2
Bt s

r2
<%@+%6+%@§C@;
T r T

}6 Gpp’ -

4k?

r2

r2 n-

2 T(l//)

0,Gh, = 01GY, = 0,G% = 9,G5, = AGY, = 9,G.,, = G, = 9,Gh; = 0Gl; = 0.
We start computing |0y F,s| and |V, Fug|: we use (4.11) and (4.12) in order to obtain
(5.14)

k> 11pp0l; + K2 npp0pm; 2K oz, n;
1+ k:Qng 1+ k:Qng (1+ k:2173)2

|8prp| =
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C C C
<—0+ -0+ -6 <(C0o;

T T T

k%n,,0im’ k>C
‘alFPP| = 1 an:QlZZ = ok2|s2 —2 =(C6;

R R
0, F| =| — KL K00l 2k'ing L CE*(Omancnana)i N CE Nptpp(NANGIANG)ij
P L+E22 1+ k202 (1+Kk2n2)? 14 k22 (1+k2n2)?

+ k> Nppois + k*1000pmi _ 8k 1,115,1i5
(T+E2n2)2 ° (14+E202)2 (14 k2n2)3

:‘ _ EPnpnp,L n20,L  Ck*(Opmancnanc)ij . CkMpnpp(naNGnANG )ij

(1+k22)2 1+ k22 1+ k22 (1+ k2n2)?
+ k> Npppis + k*1000pmi _ 8k477ﬂ773p77ij
(I+k2n2)%  (L+Em2)?2 (14 k%n2)3

C c. ¢ C
<50+C+CO0+CO+ 50+ 50+ 56 <C(1+6)

K020 Ripjp  CK*(Omancnana)ij — k*1pp0mij
1+ k:277§ 1+ k:2ng (1+ k:277%)2

8pFip :alFip = 0.

|01 Fy5] =

C 1

Note that in the above estimates we have not used (4.13) and (4.14), although it is useful to exploit
them and |n;;| < Crin,l, |0mij| < Crin,| (see (4.15)) to estimate |9 F),| and |0, F;|:

lalep| <. £

>

0,F] < C+;5 + 56,

(5.15)

Combining (5.3), (5.13) with (5.14) we deduce
(5.16) Vo Fppl = 10pFpp| < CO;
|V1Fpp| = |8lep‘ < C0;

Vo Ei| = ‘@Fij — T,y — T, Fy

< |0, Fyj| + ‘Fi)iFlj‘ + ‘Fi)sz‘l

< [0,F3j| + ‘Fi)i

[Fis| + [T 17l
1

1
< C(1+®)+Cp<1+> +Cp<1+ e

k2
IViFj| = |0iFij — T Fyj — Ui Fy
< |OiFij| + T3 Fyj| + Ui Fu

< |0 Fyj| + |T3| [Foy) + [T ]| Fel

1 1 1 1
< C<1+k29> +Cp<1+k2@> +Cp<1+kze> < C<1+k2@>;

)scu+@;
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‘VlFip| = ’—F%Fpp

Fpol + |08, | 1Ful
< CpO + Cp(l + ]:2@> <C(1+0);
V,Fi, = 0.
Note that using (5.15), we obtain

|VZFPP| < r— p’
(5.17) IV, Fij| < C+ 5+ ,g@
|vlFip’ <C

We are now ready to compute |0,05F,3| and |V7V5Fa5|: using (4.11), (4.12) and the definition of
Fop we get

(5.18)
_ ”pppp”f k277pppap77§ _ 2k4npnpp77pppnf kQ”pppapnf
10,0, Fpp| =
’ 1+ k22 L+ k2n2 (1 + k?n2)? 1+ k2n2
k> 110p0p 010} . 2k477ﬂ77/2waﬂ77;" B 2k477:psp77::
1+ k22 (1+ k22)? (1 + k22)?
_ AR 1p0pMppp" B 2k 77977 A1 81{677%”2[»77?
(1+ k2n2)? (14 k2 p) (14 k2n2)3
<CO+CO+CO+CO+CO+CO+CO+CO+CO+CO < CO
k2100011
0L 0L F | :‘ppz < C6;
1+ k2n?2
k*n? L k2 L Ein?n? L k2 oL k’n 8 d,L
10,0,F3;| = op MpTppp plop™ MpTpp%p + P
L+ k22  14+k%2 (14 k2n2)? L+ k22 1+ k22
k:477217pp8pL k:477§772pL k‘477,3;7lpppL kﬁnpnppL npnppa L

(T+E2m2)2  (T+E22)2  (L+k22)%  (L+ K223 (1+k2n2)?
Ck*(8,0,MANGNANG )ij N CE*(OpmancOpmanc)ij  2Ck 1pnp(nancpmana)ij

1+ k2n?2 1+ k2n2 (14 k2n2)?
CE'02,(nanenana)ij — Ck*npnppp(nanenana)i; — Ck*pmpp(Mancpmana )ij
(14 k?n3)? (1 + k2n2)? (L4 k?n3)?
Canlz)n/Q)p(nANGnANG)ij kznppppmj k2nppp8pnij B 2k4npnppnpppmj
(1 +E2n2)3 (T+E2n2)2 (14 k?n2)? (14 k2n2)3

K2 10pp00i | K*1000p00mis 2K 003, 0pmis - Ok mig

A+ k23)2 - (A+E23)? (LR (L+Enp)°

Ck ptppnppenis | CE Moy, Opmis | CROnZm,mis
(1+ k:2173)3 (1+ k‘2173)3 (1+ k2n2)4




<CO+Ce+CO+C0CO0+C+CO+CO+CO+CO+CO+CO

+C@+C@+C®+C@+C@+C@+£@+g@—i—g@—l—g@

k2 k2 k2 k2
C C C C C C

K000 Ripjp  2K2(0:0mancnanc)ij | 2k 5,(0:0mancnane)ij
1+ k2n2 (1+k2n2)2 (1 + k2n2)?

|01, Fij :‘ -

262 (OmancOmanc)i; . 2Ky (0mancOmanc)ij
(1 + k2n2)? (14 k2n2)?

C C
§C+C+ﬁ@+c+ﬁ6

1

0p0pFip| =|0:01Fip| = 0.

Using (5.3), (5.13), (5.14), (5.16) and (5.18), we deduce
(5.19)
VoV o Fpp| =[0p0pFpp| < CO;
’Vtvlep‘ :‘afvlep - Ffl(vapp) - il(vinp)‘ = |atalep - Ffz(vapp) - il(vinp)‘
<CO + (0O + p*Ce < CO;
VoV Fijl =0,V Fij — T5iVola; — F?J'VPFW‘
[0, (8, By — ThiFyy — T Fa) = TV, By = TV, F

:‘apa,,Fij — O Fy; + TL,0,Fy; — 0,0 Fy + T,0,Fy — L,V ,Fy; — TV, Fy
1 1 1
<C(1+0) +C<1 + k:2@> —|—C,o<1 + k:2®> +C<1+ Ic2@>
1
+ C’p<1 + k2@> +Cp(1+0)+Cp(1+0)
<C(1+0);
’VtvlFij‘ :‘atvlFij = I(ViFy) — Ffj(VlFsz‘) — I3 (VsEj)
o FZ(VPF’U) —T5(ViFy;) — Ffj(vlFip)‘
:‘815(3133' — I Fj — FlSjFiS) - Pfi<vlst) - Ffj(VlFsi)
—Tu(VsFiy) = Th(VeFij) = T3(ViFp;) — T7(ViFi,)]
=000y Fij — 0iT};Foj — Tj0, Fyj — 0,13 Fis — D0, Fis
- F?i(VlFSj) - Ffj(vlFsi) - fl(VsFij)
—Dh(VpFy) = DL(ViEy) — Th(ViF)|
<|0:O1Fij| + |0:TF; Foj| + [T50: Fsj| + |05 Fis | + |70 Fis |
+ D5 (ViFsp)| + |05 (ViFe) | + T3V Fij)]

21
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+ DR )| + [T (ViFy)| + [T (ViFp )|
1 1 1
+ ‘FZ(VPFZ'J')‘ + ‘FZ(Vlej)‘ + ‘Ffj(vle‘p)’
VoV oFipl =|0pV pFip = TV pFap = TV o Fia = T VaFyp| = 0;
IViViFip| =|0iViFip =T8NV pFop — T8V pFio — TV o Fipl;

—|01(aFp ~ T} Fyy — T, Fy) = TV pFap = T4V Fia — TaVaFy

:“%Plpz‘Fpp — T30t Fpp — atr{pFij - F{patﬂj - Piivlep —LEViFy, — ngvlFij - Fglijip

1 1 :
|0} Fpp| + |T0.0:Fpp| + C(l + kQ@) + Cp<1 + k2@> + )Pgivlep‘

)

1 .
+ T4V E,,| + Cp (1 + k2@> + ‘rglvjﬂ-p

To obtain a final estimate for |V;V,F;;| and |V;V,F;,|, we use equations (5.4) and (5.17) to finally
deduce:

C C C C
(5.20) [VeViFy| < C+ P— + ﬁ@, IViViFip| < C + — + ﬁ@.

We are now ready to give an estimate of the components of the remainders of ARic:

(5.21) |V ,VpRpp| =|V,V,Ryp + VY,V Fp, — 3GV Ry

= 3GH,V pFpp —20,GY R,y — 28szprp|
<C+00+00+CO+CO+COLO(1+0);

’ﬁtﬁlﬁrﬂ :{vtlepp + ViViEpy = GuV Ry = GV o Fyp + 2T (Gszpp)
+ 2F§P(G’ZOSRPP) + 2Ffl (G,IZPFPP) + 2Ffp (GstPP) ‘
SC+0O0+C+CO+CO+C+CO+CO L CO(1+06);

WprRﬂ =|vapRij + vapFij — Ggpvaij — GszpFij‘

<C+C(14+0)+Co+CO <C(1+0);

WtVlRﬂ :|vtleij + VtVlEj — GfilePj — ijleip — Gflvaij
— GEVIFp — G ViFy, — Gy NV Fij
— QG R,j — 8tGlijip — Gl.OR,j — ijﬁtRi,,
+ TG Rpy;) + T (G;)stj) + Pfj (GZR/JP) + T (Glpz‘R/JS) +15 (ngRip)
+ T4 (GL.Rip) + 17, (GEOJ‘RMJ> + % (Glijps> +17 (Gzijpp) + T4 (Gl E)|

<orolis 2y le)rcrcrcrc(is L1 le
r—p k2 r—p k2
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1 1 1 1 1 1
Cli+ —+=50|+C0(1+—+ 50| +C(1+—+ —
+ < +r_p+k2 >+ < +r_p+k2 )+ < +T_p+k2>
C C
+C+C+C+C+C+C+C+C+C+C+C+C+err_p
C C
<C+ =06 ;
SO+ 59+ - — >
VoV ,Riy| =|V,VpRip — 2G5V, Rip — 0,G5 Rip — G50, Rip + T4,(G,Ryy ) |
<C+CO+CO+CO+CO < O(1+0);
IViViRi,| =|ViViRi, — ViV Fyp — GV R,y — GOV Ry
— GLViFy — 0GRy — WGy — GLOiRyy — GLOE,,
+T5(GYR,yp) + T3 (Gl R,p) + T3, (Gl Rps) + 17 (Gh,Rip)
+ T3, (Gl Rip) + TH(GLFyy) +T3(GrLFpp) |
C
r—p

<C+C 1+L+i@ +C+C+
r—p k2
C C C
+C——+C+C+C+C+C+ —+
r—p rT—p T—0p

1 1
<Cl{l4+—+ =506 .
(i he)
Note that we have used equations (4.10), (5.3), (5.13), (5.14), (5.16) and (5.19) to estimate
{ﬁpﬁpﬁpp‘, ‘ﬁtﬁlﬁpp{ ‘ﬁpﬁpﬁm andjipipﬁip ang Xefhave used (4.10), (5.3), (5.4), (5.13),
(5.15), (5.17) and (5.20) to estimate ’VtVlRij| and }VtVlRip‘. Therefore, using the equations in
(5.21) in (5.12) we conclude

(5.22)

|ARie], =

7 —'vavp(Rp,, + Rip + Rij) + 6"ViVi(R,p + Rip + Rij)
Mo

i ;2773)2 |vpﬁp§pp‘g 0t ;27],2,)3 ‘vpﬁpﬁip‘g +7 +i?2772 IV, V,Rij|
+ 1+ k2 g‘g Vlvtﬁpp‘ + (14_]:2”2)% d"V\ViR;, , + ‘gltﬁlﬁtﬁij ,
S ]12772)2 NA 1t ;772)3 'V, VoRip| + 1 _5;2 5| VoV Rij|
T +;2 2 ‘gl Vlvtﬁpp‘ + (1—}—]402772)5 §d"VIViRiy| + C’gltﬁlﬁtﬁij
1

SAxEee —— —-C(1+6
(1+k2n3)? (1+ k22)2 1+ k2 o)
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1 1 1 1 1 1
“C(1+®)+10(1++29>+C<1++2@>
L+ k*n; (1+ k2n2)2 r—p k r—p k

1 1 1
§C<1+ k2@> +C(1+k2®> +C<1+k26>

1 1 1 1 1
14 = 1+ ——+ — 1+ ——+ —
+C< +k2@>+0( +r_p+k2@>+c( +r_p+k2@>

+

11
< 1+ — 4+ — .
_c< +T_p+k2@)

Now we compute |0, H| using estimates (4.11) and (4.12):

(5 23) ‘a H| —0.L + apL . 2k2L"7p77pp CkzapnANG"?ANG _ Ck477p77pp77ANG77ANG
| P SO T R T T k)2 1+ k22 (1+ E22)2
+ 2k277ppp771[ n 2k2nppapml _ 8k477p77§p77ll
(1+ k277l2,)2 (1+ k%g)Q (1+ k277§)3
C C C
SC—I—C—FC@—I—C@—FC@—F?@—FEG—FEG
<C(1+0);
oL Ck*Oimancnana | 2k*np,0imu
H| =|0iL+ — : oot
0:H] =L + 1+ k2n2 1+ k22 (1 + E2n2)?

1
co(i+ o).

Note that using (4.13), (4.14), and the fact that |n;;| < Cr|n,| we deduce another estimate for
|0,H|, which we will use in the final inequality of |V;V;S]:

C C
. < — _
(5.24) \8,;H]_C+k2@+r_p
Therefore, by (5.23) we obtain
C
(5.25) IVoH| =[0,H| < C+ CO; |V:H| = [0;H| < C + ﬁ@
and by (5.24)
C C
. < — 4+ —0.
(5.26) \VpH]_C—i-r_p-i-kz@

We now compute d,0gH, which we will later need to compute Hess(H) and AH. Towards this
aim we use (4.11) and (4.12) in [0,0,H| and (4.13), (4.14) and |n;;| < Crn,|, |Omi;| < Cr|n,| in
the remaining terms:

27,2
9p0pL CE*1pnppdp L 2k Lmp, 2k Ljppptp

.2 H| = L
(5-20) 1000, H =000l ¥ T Fms ~ T p22)® ~ T 222 (15 A22)2

8k'pmy, L Ck20,0,mancnane  Ck*0mancOpmanc
(1 + k2n2)3 1+ k2n? 1+ k?n2

_ CE"Ypnepdpnananang Ck*n3 nananana  CE" pnpppaNGnaNG
(1+ k‘%]?,)2 (1+ k:Qng)Q (1+ kzng)2
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CangnzpnANGnANG 2k277pppp7711 2k277pppap77ll _ 8k477p77pp77ppp77[l
(1 + k2n2)3 (T+E2n2)2 (1 +k2n2)? (14 k2n2)3
2k*1pp0p0pmut | 2k*1pppOpmi 8k n,m2,0pmu B 843
(1 + Kk2n2)? (1 + k?n2)? (1+k2n2)3 (1 + k2n2)3

16k et 8K pnp 00 48K 0z

(1 + Kk?n2)3 (1 + Kk?n2)3 (1+k2n2)4
c C C c
SC’—{—C—FEG—Fﬁ@—i-ﬁ@—i-ﬁ@—I—C@-l-C@—i-C@—%—C@—FC@—i—C@

C C C C C C C C C C

C

L 2Kk20,L 2 2
10,0, H| =|0,0,L + Q0L 2K°0 Lnpnp, | CkZO10pmancnane | Ck“Opnancomanca

L+ k202 (14 k2n2)? 1+ k2n?2 1+ k212
. C’k’477p77pp8l7]ANG77ANG 2k277pppal77tt 2k?277ppalap77tt _ 8k477p77§pamtt
(1+ k2n2)>? (L+E2n2)?  (1+Kk2n3)? (1+&2n3)?
C C C C C C C
<C+C+ =6 —0+ -6+ =06
SOHOH RO+ o, T RO T et
C C
<C+ —06 :
<CH+ G0+
. 2 . 29, k2 .
0,00 H| =| 0,051 + 3753@2[/2 Ck ataﬂ?AJQVG;?ANG Ck 3177ANC2J6277ANG k Upp(Zt(zszz
L+ k*n, L+ k*n, 1+ k*n; (1 + k2n3)
<C+C+C+C+ %@
C
<C + ﬁ@’

It follows by (5.27),
VoV oH| =[0,0,H| < C(1+0)
IV, ViH| =|V|V,H| = |8,0,H — T},V,H|
<|00,H| + T4,V H]|

1 1 1 1 1
2 <Cl1+—+= 1+4—-0)<C(1+—+=0);
(5.28) _C( —|—r_p+k2@>+0p< +k2@>_0< +r_p+k2@>,

IV, VH| =|0,0;H — T2V H| = ‘ataiH ~ TV, H — riivlﬂ‘
<of1+Lo)replir—L v lo)iplit Lo
= 2 PO = T R2 PUT w2

1 1
<C|l14+—-+ 506
(i ko)
where in the last two inequality we have used (5.13) and (5.26). The Hessian of S is given by

Voﬁ/g? =VaVpS+V,VgH — G;BVTS + G;[;VTH,
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then, to get an estimate on its norm with respect to the metric g, we need to compute

‘vpvpg‘j ‘vivpg}? ‘ﬁiﬁjg‘@
that are
o 1 o 1 o
VoV,Sly = m’%vﬂs‘g = Tkznp\vpvpsl
= (1+;2 5|VoVeS+V,V,H—Gh V.S +GhV,H|
1
yers [C+CO +CO + (o)
1
<oi+Lo)
A I LA S A
P P P

g (1—1—162773)%
—7Wv S+ ViV, H — GV, S + GV, H|
(1 + k212
1
= — < |ViV,S+ V,;V,H|
(1+&2n2)2

<L fe(is L) et bo)]
(1+k2n2)2 k r—p k

11
<cf1 —0);
_C<+T—p k? )

[ViV;S|, = [ViV;$| < C|ViV;S|

—‘VVSJrVVH GV S+ GV H‘

1 1 1
<C+C 1+—+—2@ +Cp+C(1+—+ 56
r—p k r—p k

1 1
< 1 —
- C( TR >
where we have used equations (4.10), (5.9), (5.25) and (5.28) in the estimate of |vap§‘§ and

(4.10), (5.9), (5.26) and (5.28) in the the estimates of ’ﬁiﬁpﬂg and |§iﬁj§‘g. Therefore, we
obtain

(5.29) mmﬂ\vvs]ﬂvvs\ﬂvvs|+}Vb§CO+ 1+1@>

and, by (5.28) and the definition of g, we also have

. - == - 11
(5.30) |AS]. ‘ga'BV VgS‘ 7"V V,8 + 3" ViViS| . < C’(l + p— + l<;2@>'
As a consequence, putting together (5.6), (5.7), (5.22), (5.29) and (5.30), we deduce
= 1 1
. B|_ < 14—+ —
(5.31) \ \g_c( +T_p+k26>,

which implies (4.18).
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