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Abstract

This paper is concerned with the Γ-limits of Ambrosio-Tortorelli-type functionals,
for maps u defined on an open bounded set Ω ⊂ Rn and taking values in the unit
circle S1 ⊂ R2. Depending on the domain of the functional, two different Γ-limits are
possible, one of which is nonlocal, and related to the notion of jump minimizing lifting,
i.e., a lifting of a map u whose measure of the jump set is minimal. The latter requires
ad hoc compactness results for sequences of liftings which, besides being interesting
by themselves, also allow to deduce existence of a jump minimizing lifting.

Key words: Jump minimizing liftings, Γ-convergence, S1-valued maps, free boundary
problems.
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1 Introduction

This paper is devoted to the asymptotic analysis, via Γ-convergence, of regularized free
discontinuity functionals for maps defined on a connected bounded open set Ω ⊂ Rn with
Lipschitz boundary and taking values in the unit circle S1 ⊂ R2. More specifically, define
the two functional domains

ÂS1 :=
{

(u, v) ∈W 1,1(Ω; S1) ×W 1,2(Ω): v|∇u| ∈ L2(Ω), 0 ≤ v ≤ 1
}
⊂ L1(Ω;S1) × L1(Ω),

AS1 :=
{

(u, v) ∈W 1,2(Ω; S1) ×W 1,2(Ω): 0 ≤ v ≤ 1
}
⊂ L1(Ω;S1) × L1(Ω).

(1.1)
For ε ∈ (0, 1] let us consider the corresponding family of Ambrosio-Tortorelli-type func-
tionals

ÂT
S1
ε ,ATS1

ε : L1(Ω; S1) × L1(Ω) → [0,+∞]

given by

ÂT
S1
ε (u, v) :=

ATε(u, v) if (u, v) ∈ ÂS1 ,

+∞ otherwise in L1(Ω; S1) × L1(Ω),

(1.2)
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and

ATS1
ε (u, v) :=

ATε(u, v) if (u, v) ∈ AS1 ,

+∞ otherwise in L1(Ω; S1) × L1(Ω),

(1.3)

where

ATε(u, v) :=

∫
Ω

(
v2|∇u|2 + ε|∇v|2 +

(v − 1)2

4ε

)
dx, (1.4)

with |∇u|2 indicating the Frobenius norm of ∇u. It is clear that

AS1 ⊂ ÂS1 , ATS1
ε ≥ ÂT

S1
ε .

Our main results, connecting these functionals with Mumford-Shah-type functionals,
read as follows.

Theorem 1.1 (Γ-convergence of ÂT
S1
ε ). Let Ω ⊆ Rn be a connected bounded open set with

Lipschitz boundary. We have

Γ − L1 lim
ϵ→0+

ÂT
S1
ε = MSS1 ,

where MSS1 : L1(Ω; S1) × L1(Ω) → [0,+∞] is given by

MSS1(u, v) :=


∫
Ω
|∇u|2dx+ Hn−1(Su) if u ∈ SBV 2(Ω;S1), v = 1 a.e. ,

+∞ otherwise in L1(Ω; S1) × L1(Ω).

(1.5)

Theorem 1.2 (Γ-convergence of ATS1
ε ). Let Ω ⊆ Rn be a connected and simply-connected

bounded open set with Lipschitz boundary. We have

Γ − L1 lim
ϵ→0+

ATS1
ε = MSlift,

where MSlift : L1(Ω; S1) × L1(Ω) → [0,+∞] is given by

MSlift(u, v) :=


∫
Ω
|∇u|2 dx+m2[u] if u ∈ SBV 2(Ω;S1), v = 1 a.e.

+∞ otherwise in L1(Ω; S1) × L1(Ω),

(1.6)

with
m2[u] := inf{Hn−1(Sφ) : φ ∈ GSBV 2(Ω), eiφ = u a.e. in Ω}. (1.7)

In (1.5) and (1.7) the symbol Hn−1(Sφ) stands for the (n− 1)-dimensional Hausdorff
measure of the jump set Sφ of φ, a lifting1 of u, and SBV 2(Ω; S1) (resp. GSBV 2(Ω))
is the space of S1-valued maps with special bounded variation in Ω (resp. the space of
generalized special bounded variation functions in Ω) whose absolutely continuous part
of the gradient is square integrable and whose jump set has finite (n − 1)-dimensional
Hausdorff measure. To better understand the above results, some comments are in order.

(i) In Theorem 1.1 the Γ-limit in (1.5) is the classical Mumford-Shah functional for
S1-valued maps, and indeed part of the proof is an adaptation of known results,
together with some applications of the properties of liftings of nonsmooth maps;

1See Section 2.3.
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Figure 1: The dotted segment denotes the set Sfθσ where 〚θσ〛 varies between 0 and 2π,

the continuous segment denotes the set SIθσ where 〚θσ〛 = 2π.

(ii) the second, more interesting, Γ-limit in Theorem 1.2 is nonlocal, it does not have
an integral representation and depends on the minimization problem in (3.1). The
singular term m2[u] is the penalization of a particular lifting of u, the one which
minimizes the measure of the jump. It is clear that MSlift ≥ MSS1 .

These two theorems show the huge difference made by the choice of the two do-
mains (1.1) where defining the approximating functionals, in particular the requirements
u ∈ W 1,1(Ω; S1), v|∇u| ∈ L2(Ω), as opposite to the more standard requirement u ∈
W 1,2(Ω; S1). The reason of the corresponding different limit behaviours is topological in
nature, and it is better explained by the following example, see also [26, pag. 30].

The example of the vortex map. Let n = 2, Ω = B1(0) ⊂ R2, and consider the vortex
map uV (x) = x

|x| for any x ∈ B1(0) \ {0}. Then uV ∈ W 1,p(B1(0);S1) for any p ∈ [1, 2)

and u /∈W 1,2(B1(0);S1). Thus in particular

MSS1(uV , 1) = +∞ since uV /∈ SBV 2(Ω; S1).

Also, any lifting of uV jumps (in B1(0)) at least on some curve connecting the origin to
∂B1(0). Now, let us modify uV in a small neighbourhood of the origin to get a function
which is in SBV 2(Ω; S1), by introducing a small jump. To this purpose consider the lifting
of uV given by the argument function2 θ jumping on the positive real axis. Hence, in Ω,
Sθ = (0, 1)×{0} with jump opening 〚θ〛 = 2π. Now, for 0 < r < R ≤ 1 define the annulus
Ar,R = BR(0) \ Br(0), and let σ ∈ (0, 1). Consider the following perturbation of θ and
uV on B1(0) \ {0}: let χσ ∈ C∞(Bσ(0), [0, 1]) be such that χσ ≡ 0 in Bσ/4(0), χσ ≡ 1 in

A3/4σ,σ, 0 < χσ < 1 in Aσ/4,3σ/4, |∇χσ| ≤ C
σ for some C > 0,

θσ(x) :=

{
χσ(x)θ(x) if x ∈ Bσ(0) \ {0},
θ(x) if x ∈ Aσ,1(0),

u(σ) := eiθσ .

Thus we have (see Figure 1)

2I.e., the imaginary part of the complex logarithm.
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Sθσ = Sfθσ ∪ SIθσ where Sfθσ =
(σ

4
,

3σ

4

)
× {0} , SIθσ =

(3σ

4
, 1
)
× {0} ,

moreover 〚θσ〛 varies from 0 to 2π on Sfθσ and 〚θσ〛 ≡ 2π on SIθσ . This in turn implies

u(σ) = uV on A3σ/4,1 and Su(σ) = Sfθσ . We also have u(σ) ∈ SBV 2(B1(0);S1), and

MSS1(u(σ), 1) < +∞, and m2[u
(σ)] turns out to be the length of the shortest segment

joining the right extremum of Su(σ) to the boundary of Ω. Indeed any lifting φ of u(σ)

has the following properties: Sφ ⊃ Sfθσ , φ is a lifting of uV on A3σ/4,1 and φ is a lifting
of (1, 0) on Bσ(0). Hence, in order to be minimal it must be Sφ = Sθσ and therefore
m2[u

(σ)] = H1(Sθσ) = 1 − σ/4.
The map u(σ) is one of the possible maps on which one may compute the two Γ-limits

above. It turns out that the gradient integrability of the approximating maps is crucial to
devise the two behaviours. In particular in Theorem 1.2, due to topological obstructions
related to the fact that u(σ) has non-zero degree on any circle ∂Bρ(0) with 3σ/4 ≤ ρ < 1
(as it coincides with the vortex map outside a small neighbourhood of the origin), the re-
covery sequence gives rise to the contribution m2[u

(σ)]. Indeed, a naive approach to get the
upper bound would be to adapt the classical construction given in [7, 8]. More precisely,
the latter consists in regularising u(σ) in a neighbourhood with width ≪ ε of its jump set
Su(σ) , being careful to keep values on the unit circle S1, and then define vε accordingly.
However this leads to an approximating function uε : B1(0) → S1 which coincides with the
vortex map far from the origin, and so necessarily uε has non-zero degree, which in turn
implies3 that uε /∈W 1,2(B1(0), S1). In particular, uε cannot be used to produce a recovery
sequence in Theorem 1.2, but it provides a suitable construction for the upper bound in
Theorem 1.1, being of class W 1,1(B1(0);S1) and satisfying vε|∇uε| ∈ L2(B1(0)). In order
to construct a recovery sequence in the second case it is needed to consider approximat-
ing functions with zero degree. This is possible by modifying u(σ) in a neighbourhood of
the jump set of a minimal lifting (for example θσ) and then define vε accordingly. Thus,
passing to the limit one gets the contribution H1(Sθσ) = m2[u

(σ)].

Main challenges of the proofs. From the previous example we learned that the nature
of the Γ-limit (1.6) is related to topological obstructions when approximating a S1-valued
map whose approximate gradient is square integrable. In particular, the non locality of
MSlift leads to non trivial difficulties in the proof of the lower bound inequality. The basic
idea consists in rewriting the approximating functionals in terms of liftings. Namely, given
u ∈ W 1,2(Ω;S1) take a lifting φ ∈ W 1,2(Ω) of u, so that from the identity |∇u| = |∇φ| it
follows

ATε(u, v) =

∫
Ω

(
v2|∇φ|2 + ε|∇v|2 +

(v − 1)2

4ε

)
dx , (1.8)

which is the Ambrosio-Tortorelli functional for the pair (φ, v). Now, if for any sequence
(uεk , vεk) → (u, 1) in L1(Ω; S1) × L1(Ω) we would be able to prove that φεk → φ in
L1(Ω), with φεk ∈ W 1,2(Ω) lifting of uεk , we could conclude by applying the classical
results [7,8], since the limit φ is a lifting of u. Unfortunately this is in general not true, as
the energy provides a control of ∇φεk only in regions where vεk is far from zero. Moreover
a sequence of liftings might escape to infinity (since we can always add integer multiples
of 2π). For this reason, the main issue concerning the lower bound in Theorem 1.2 is to
get a compactness result on sequences of liftings. This leads us to another main result

3Indeed, if uε ∈ W 1,2(B1(0), S1), then by [15, Theorem 1.1] uε has a lifting in W 1,2(B1(0)), which is
not possible since uε has non zero degree (cf. [15, Theorem 1.2]).
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contained in Theorems 3.1 and 3.3, which provides compactness and lower semi-continuity
for a sequence of liftings associated to a single map u and more generally, to a converging
sequence (uεk). We stress that these compactness results have a local feature, in the sense
that liftings converge up to locally subtract a suitable constant. Similar compactness
results obtained by slight modifying the given sequence of functions can be found in [30]
(see also [19] where the compactness result in GSBDp is used in the proof of our result).
Theorems 3.1 and 3.3, besides being interesting by themselves, allow us, together with a
refined local argument, to show the lower bound inequality in Theorem 1.2. Furthermore
Theorem 3.1 provides existence of a solution to (1.7), that is, the infimum in (1.7) is
actually a minimum. More precisely, in Corollary 3.2, we show that the following more
general minimum problem has a solution. Let p > 1 and u ∈ SBV p(Ω;S1); then there
exists a lifting φmin ∈ GSBV p(Ω) of u such that

Hn−1(Sφmin) = inf
{
Hn−1(Sφ) : φ ∈ GSBV p(Ω), eiφ = u a.e. in Ω

}
. (1.9)

It is worth to notice that, somehow surprisingly, the minimum in (1.7) is not attained in
the class SBV (Ω), as a consequence of an example discussed in Section 3.1. This shows
that the analysis of (1.7) is rather delicate.

The problem of finding a lifting minimizing the length of the jump set somehow re-
sembles the related question of finding a lifting minimizing its BV -seminorm [15]. As for
the latter, which is strongly linked with Plateau and optimal transport problems [16], the
structure of a jump minimizing lifting might be related to optimal transport questions
with different cost functions. We discuss in more details this issue in Subsection 3.2.

Further directions and open problems. Lifting theory is useful in several, apparently
unrelated, contexts where topological singularities arise, such as screw dislocations in crys-
tals, vortices in superconductors, the non-parametric Plateau problem in codimension-two
and optimal transport problems. This shows similarities between different problems to
which a suitable version of the Ambrosio-Tortorelli approximations for S1-valued maps
might be addressed. In the following we briefly review some open problems which will be
investigated in future works.

Dislocations and vortices. Dislocations are line-defects in metals that locally alter the
crystalline structure and are the main source of plastic slips. From a mathematical point
of view they can be identified with codimension-two singularities. In particular, in a sim-
plified framework one can consider two-dimensional semi-discrete models for dislocations
either of screw or edge type, which correspond to point singularities in a two-dimensional
domain (see [4, 23, 25, 26, 31, 37] and references therein). It is well known that models for
screw dislocations share similarities with Ginzburg Landau models for superconductors [2].
In particular, in recent works [23,26] it was proposed a free-discontinuity model for screw
dislocations. The latter is given by an energy of Mumford-Shah type for S1-valued maps
which penalizes the measure of the jump set. From the analysis pursued in [23,26] it turns
out that such a model is equivalent (to the leading order) to the Ginzburg Landau one.
This seems to suggest that an Ambrosio Tortorelli approximation for screw dislocations,
as well as for vortices in superconductors, is possible. In addition, this offers the possibility
to extend the results of [23,26] to the three-dimensional setting (see [21,22,32] for models
in dimension three).

The Plateau and optimal transport problems. The Cartesian Plateau problem consists in
finding an area-minimizing surface among all Cartesian surfaces spanning an appropriate
Jordan space curve. While the codimension-one setting has been exhaustively understood
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[34] very few is known in codimension two. This has to do with the fact that the relaxed
Cartesian area in codimension larger than one is not subadditive, and thus has no integral
representation. A couple of examples in codimension two where the computation of the
relaxed graph area is possible are the vortex map uV and the triple junction function [1].
Both are S1-valued maps with singularities, and the corresponding relaxed area has a
nonlocal feature involving liftings, similarly as in (1.6) (cf. [9, 10, 12, 38] and references
therein). Also, the singular contribution appearing in the case of S1-valued maps is related
with optimal transport problems with different cost functions. In the specific case of S1-
valued Sobolev maps, the singularities should be optimally connected each other, in a
similar fashion as for the minimal connection of dipoles in the minimization of the BV -
seminorm of liftings [16] (see also [13, 39]). Connecting the singularities in the relaxed
Cartesian area is related with finding an optimal Cartesian vertical current filling the
holes of the graph of the given map u, and this often requires the study of a Plateau
problem in codimension-one with partial free boundary [11].

In the simplified setting of S1-constrained relaxation [33, pg. 611 eq. 4], the optimal
value of the graph area has a singular contribution characterized in terms of S1 verti-
cal Cartesian currents [33, pg. 612, Theorem 1] and that is again related to an optimal
transport question on how to connect the singularities of u. A future development of the
present research is to approximate the relaxed area functional on S1-valued functions by
an Ambrosio-Tortorelli energy where the bulk term has linear growth in the gradient (in
the same spirit of [3]).

We emphasize that phase-field models based on the Ambrosio-Tortorelli functionals
have been already employed to study problems related with optimal transport questions
(see e.g. [27] and references therin, and [20] for the relation with the steiner tree problem).
While the link of Corollary 3.2 with the optimal transport question involves the cost
function ψ ≡ 1 (see Subsection 3.2), we believe that the analysis of the Ambrosio-Tortorelli
functional for S1-valued maps with linear growth (instead of quadratic) would give rise to
a minimization question similar to (1.9) involving different cost functions. Also this will
be object of future development.

Content of the paper. In Section 2 we collect some notation and recall some useful tools
which will be employed to prove the main results. In Section 3 we provide an example
where the jump minimizing lifting is not in SBV (Ω) but just in GSBV (Ω). Furthermore,
we describe a connection with optimal transport, we state the two compactness results
Theorem 3.1, Theorem 3.3 and the existence of a minimizer to (1.7), Corollary 3.2. In
Section 4 we provide the proofs of Theorems 3.1 and 3.3. Eventually in Section 5,
after establishing some density and approximation results in SBV (Ω), both for S1-valued
functions and for liftings, we prove Theorem 1.1; in the proof we do not make use of the
results of Section 5.1, but we utilize the results of Section 3. Finally, Section 5.3 is devoted
to the proof of Theorem 1.2.

2 Notation and preliminaries

In this section we collect some notation, and recall some notions concerning SBV and
GSBV functions [6] and lifting theory [15]. In what follows:

- n ≥ 1 is a fixed integer and p > 1 is a fixed real number;

- ∂∗A denotes the reduced boundary of finite perimeter set A ⊂ Rn ;
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- | · | and Hn−1 denote the Lebesgue measure and the (n − 1)-dimensional Hausdorff
measure in Rn, respectively;

- χA denotes the characteristic function of the set A ⊂ Rn;

- for a, b ∈ Rn the symbol a⊗ b denotes the tensor product between a and b;

- S1 := {(x, y) ∈ R2 : x2 + y2 = 1} is the unit circle in R2.

2.1 SBV and GSBV functions

Let U ⊂ Rn be open and bounded, and m ≥ 1 an integer. We denote by BV (U ;Rm) the
space of vector-valued functions with bounded variation in U , and with | · |BV and ∥ · ∥BV
the BV seminorm and norm, respectively, i.e.

|u|BV := |Du|(U), ∥u∥BV := ∥u∥L1 + |u|BV ,

see [6]. We say that u ∈ BV (U ;Rm) belongs to the space of special functions with bounded
variation in U , i.e., u ∈ SBV (U ;Rm), if its distributional gradient is a finite Rm×n-
valued Radon measure without Cantor part, that is,

Du = ∇uLn + 〚u〛 ⊗ νuHn−1 Su ,

where ∇u is the approximate gradient of u, Su is the approximate jump set of u, 〚u〛 =
u+ − u− is the jump opening and νu is the unit normal, see [6, Def. 3.67] to Su. A
measurable function u : U → Rm belongs to the space of generalised special functions
with bounded variation in U , that is, u ∈ GSBV (U ;Rm), if ϕ ◦ u ∈ SBVloc(U) for any
ϕ ∈ C1(Rm) with ∇ϕ compactly supported.4 If m = 1 we write BV (U) = BV (U ;R),
SBV (U) = SBV (U ;R) and GSBV (U) = GSBV (U ;R).

Remark 2.1 (Equivalent definition of GSBV for m = 1). GSBV (U) can be equiva-
lently defined as the space of measurable functions u : U → R such that u ∧M ∨ (−M) ∈
SBVloc(U) for any M > 0.

For p > 1 we set

SBV p(U ;Rm) = {u ∈ SBV (U ;Rm) : ∇u ∈ Lp(U ;Rm×n) and Hn−1(Su) < +∞},

and

GSBV p(U ;Rm) = {u ∈ GSBV (U ;Rm) : ∇u ∈ Lp(U ;Rm×n) and Hn−1(Su) < +∞}.

Again, whenm = 1 we write SBV p(U) = SBV p(U ;Rm) andGSBV p(U) = GSBV p(U ;Rm).
We set

BV (U ; S1) = {u ∈ BV (U ;R2) : |u| = 1 a.e. in U} ,
SBV (U ;S1) = {u ∈ SBV (U ;R2) : |u| = 1 a.e. in Ω} ,

and for p > 1

SBV p(U ;S1) = {u ∈ SBV (U ;S1) : ∇u ∈ Lp(U ;R2×2), Hn−1(Su) < +∞} .

Eventually, a (finite or countable) family (Ei) of finite perimeter subsets of a finite perime-
ter set F is called a Caccioppoli partition of F if the sets Ei are pairwise disjoint, and
their union is F . The next technical observation will be needed later (Section 5.2).

4Recall that f ∈ SBVloc(U) if f ∈ SBV (K) for every K ⊂ U compact.
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Remark 2.2 (Approximation of a BV function by smooth functions). Let A ⊂ Rn
be a bounded open set with Lipschitz boundary and φ ∈ BV (A). By [6, Theorem 3.9],
for any δ > 0, there exists a function φδ ∈ C∞(A) such that∫

A
|φ− φδ| dx < δ ,

∫
A
|∇φδ| dx ≤ |Dφ|(A) + δ .

Moreover, by inspecting the proof,

φ = φδ Hn−1 − a.e. on ∂A ,

in the sense of BV -traces on ∂A (see e.g. [6, page 181]). To see this last property we recall
that

φδ :=
∑
h≥1

(φψh) ∗ ρh ,

where

• (ψh)h≥1 is a partition of unity relative to the covering (Ah)h≥1 of A defined as

A1 := {x ∈ A : dist (x, ∂A) > 2−1} ,

Ah := {x ∈ A : (h+ 1)−1 < dist (x, ∂A) < (h− 1)−1} for h ≥ 2 ;

• (ρh)h≥1 is a family of mollifiers such that

supp ((φψh) ∗ ρh) ⊂ Ah ,∫
A

[
|(φψh) ∗ ρh − φψh| + |(φ∇ψh) ∗ ρh − φ∇ψh|

]
dx < 2−hδ .

Thus, for Hn−1-a.e. x0 ∈ ∂A, we have

|φ(x0) − φδ(x0)| ≤ lim
r↘0

2

ωn

1

rn

∫
A∩Br(x0)

|φ(y) − φδ(y)| dy

≤ lim
r↘0

2

ωn

1

rn

∫
A∩Br(x0)

∑
h≥1

∣∣∣φ(y)ψh(y) − (φψh) ∗ ρh(y)
∣∣∣ dy .

(2.1)

Now we observe that Ah ∩ Br(x0) ̸= ∅ if and only if 1
h+1 < r, i.e., h > 1

r − 1. Hence for
y ∈ Br(x0), the sum on the right hand side of (2.1) reduces to∑

h≥ 1
r
−1

∣∣∣φ(y)ψh(y) − (φψh) ∗ ρh(y)
∣∣∣ ≤ ∑

h≥ 1
r
−1

2−hδ = 2−
1
r
+2δ .

We conclude

|φ(x0) − φδ(x0)| ≤ lim
r↘0

2

ωn

1

rn
2−

1
r
+2δrn = 0 .

8



2.2 Γ-approximation and compactness for the Mumford-Shah functional

We recall two classical results [7,8] (see also [28] for the generalization to the vector case),
and [6, Theorem 4.8].

Theorem 2.3 (Ambrosio-Tortorelli). Let Ω ⊂ Rn be an open set with Lipschitz bound-
ary, and

A := {(u, v) ∈W 1,2(Ω;Rm) ×W 1,2(Ω): 0 ≤ v ≤ 1}.

Then the functionals

ATε(u, v) :=


∫
Ω

(
v2|∇u|2 + ε|∇v|2 +

(v − 1)2

4ε

)
dx if (u, v) ∈ A ,

+∞ otherwise in L1(Ω;Rm) × L1(Ω) ,

Γ − L1-converge to the Mumford-Shah functional

MS(u, v) :=


∫
Ω
|∇u|2 dx+ Hn−1(Su) if u ∈ GSBV 2(Ω;Rm), v = 1 a.e.

+∞ otherwise in L1(Ω;Rm) × L1(Ω) ,

as ε→ 0+.

Remark 2.4. By inspecting the proof of Theorem 2.3 one actually deduces the following
properties:

(i) Decoupling. Let εk ↘ 0, and let ((uk, vk))k≥1 ⊂ A be a sequence converging to
(u, 1) in L1(Ω;Rm) × L1(Ω) with supk∈N ATεk(uk, vk) < +∞. Then

lim inf
k→+∞

∫
Ω
v2k|∇uk|2 dx ≥

∫
Ω
|∇u|2 dx ,

lim inf
k→+∞

∫
Ω

(
εk|∇vk|2 +

(vk − 1)2

4εk

)
dx ≥ Hn−1(Su) .

(2.2)

(ii) Γ-convergence on a larger domain. The result still holds if one replaces A with
the larger class

Â := {(u, v) ∈W 1,1(Ω;Rm) ×W 1,2(Ω): v|∇u| ∈ L2(Ω), 0 ≤ v ≤ 1}.

Theorem 2.5 (Compactness in SBV ). Let p > 1, Ω ⊂ Rn be a bounded open set and
(φk)k≥1 ⊂ SBV (Ω) be a sequence satisfying

sup
k∈N

(∫
Ω
|∇φk|p dx+ Hn−1(Sφk

)
)
< +∞,

and
sup
k∈N

∥φk∥∞ < +∞. (2.3)

Then there exists a subsequence of (φk) weakly-star converging in BV (Ω) to a function
belonging to SBV (Ω).
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Removing assumption (2.3) leads to the following result, which is the GSBV p variant
of [19, Theorem 1.1], and that will be applied in the proof of Lemma 4.1 to an appropriate
sequence of liftings.

Theorem 2.6 (Compactness). Let p > 1, Ω ⊂ Rn be an open set and (ϕk)k≥1 ⊂
GSBV p(Ω) be a sequence satisfying

sup
k∈N

(∫
Ω
|∇ϕk|p dx+ Hn−1(Sϕk)

)
< +∞.

Then there exist a (not-relabelled) subsequence and a function φ∞ ∈ GSBV p(Ω) such that:

E := {x ∈ Ω : |ϕk(x)| → +∞} has finite perimeter,

φ∞ = 0 on E,

ϕk → φ∞ a.e. on Ω \ E ,
∇ϕk → ∇φ∞ in L1(Ω \ E;Rn) ,

Hn−1(Sφ∞ ∪ ∂∗E) ≤ lim inf
k→+∞

Hn−1(Sϕk).

2.3 Liftings of S1-valued maps

Let Ω ⊂ Rn be a bounded connected and simply connected open set with Lipschitz bound-
ary, and u : Ω → S1 be a measurable function. A lifting of u is a measurable function
φ : Ω → R such that

u(x) = eiφ(x) for a.e. x ∈ Ω .

Given a Borel set B ⊆ Ω, we say that φ : B → R is a lifting of u on B if the previous
equality holds a.e. on B. Clearly, if φ is a lifting of u, then so is φ+ 2πm for all m ∈ Z.

If u has some regularity, a natural question is whether φ can be chosen with the same
regularity. The answer is partially positive, see [15,24] for more details:

(1) If u ∈ Ck(Ω;S1) for some k ≥ 0, then u has a lifting φ ∈ Ck(Ω), unique (mod.
2π), [15, Lemma 1.1];

(2) If u ∈ Ck(Ω;S1) ∩ W 1,p(Ω; S1) for some p ∈ [1,+∞], then u has a lifting φ ∈
Ck(Ω) ∩W 1,p(Ω); If n = 1 and u ∈ W 1,p(Ω; S1) for some p ∈ [1,+∞), then u has a
lifting φ ∈W 1,p(Ω);

(3) If n ≥ 2 and u ∈W 1,p(Ω;S1) for some p ∈ [2,+∞), then u has a lifting φ ∈W 1,p(Ω).
Moreover φ is unique (mod 2π);

(4) If n ≥ 2, then for every p ∈ [1, 2) there exists u ∈W 1,p(Ω; S1) for which there are no
liftings φ ∈W 1,p(Ω), see [15, Theorem 1.2, Remark 1.9].

A well-known example of property (4) when n = 2 is the vortex map uV discussed in the
introduction. Indeed it can be shown [15, Pages 17-19] that there are no liftings of u in
W 1,1(B1) (and thus there are no liftings in W 1,p(B1) for all p ∈ [1, 2)).

Next we recall some regularity results on lifting of BV maps.

Theorem 2.7 (Davila-Ignat). Let u ∈ BV (Ω; S1). Then there exists a lifting φ ∈ BV (Ω)
such that ∥φ∥L∞ ≤ 2π and |φ|BV ≤ 2|u|BV .
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Proof. See [24, Theorem 1.1], and also [15, Theorem 1.4].

Remark 2.8. If u ∈ SBV (Ω; S1) then φ of Theorem 2.7 can be chosen in SBV (Ω). If
u ∈ SBV p(Ω;S1) for some p > 1 then φ of Theorem 2.7 can be chosen in SBV p(Ω) ∩
L∞(Ω; [0, 2π]).

As usual, for any lifting φ ∈ SBV (Ω) of u we write5 Sφ = SIφ ∪ Sfφ where

SIφ := {x ∈ Sφ : 〚φ〛(x) ∈ 2πZ}, Sfφ := Sφ \ SIφ.

Notice that in particular Sfφ = Su.
Let u ∈ BV (Ω; S1) and consider the minimum problem

inf{|φ|BV : φ ∈ BV (Ω), eiφ = u a.e. in Ω}.

Then there exists a minimizer φ ∈ BV (Ω) such that |φ|BV ≤ 2|u|BV and 0 ≤
∫
Ω φdx ≤

2π|Ω| [15, page 25]. As explained in the introduction, we are instead concerned with
the existence of a lifting which minimizes the measure of the jump set. This will be the
argument of the next section.

3 On jump minimizing liftings

In view of the applications in Section 5, we are concerned with the analysis of the following
minimization problem, which has an independent interest: let p > 1, let u ∈ SBV p(Ω; S1)
and define

mp[u] := inf
{
Hn−1(Sφ) : φ ∈ GSBV p(Ω), eiφ = u a.e. in Ω

}
. (3.1)

We observe that, in (3.1), the set of φ between parentheses is non empty, due to Remark
2.8. The reason of utilizing the space GSBV p(Ω) instead that SBV p(Ω) can be understood
from the following example.

3.1 An example

In this section we will show that, in general, a lifting minimizing the right-hand side of
(3.1) cannot be found in SBV p(Ω), for any p ≥ 1. The strategy consists in constructing
a real-valued function φ such that, letting u := eiφ, the following hold:

• φ ∈ GSBV p(Ω) \ SBV (Ω);

• Sφ = Su;

• Ω \ Sφ is arcwise connected.

In this way φ is the only minimizer (modulo addition of a constant in 2πZ) of (3.1) for
u.

5SI
φ stands for the “integer” part of the jump, and Sf

φ for the “fractional” part.
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Figure 2: The rectangles Tn and Bn in a portion of Ω = (0, 1)2.

We consider Ω := (0, 1)2 ⊂ R2, and three sequences (Rn), (Tn), (Bn) of open rectangles
contained in Ω defined, for an even integer n ≥ 2, as follows:

Rn has vertices

(
1

2n+1
, 0

)
,

(
1

2n−1
, 0

)
,

(
1

2n−1
,

1

10n
+

1

n2

)
,

(
1

2n+1
,

1

10n
+

1

n2

)
;

Tn has vertices

(
1

2n+1
,

1

n2

)
,

(
1

2n−1
,

1

n2

)
,

(
1

2n−1
,

1

10n
+

1

n2

)
,

(
1

2n+1
,

1

10n
+

1

n2

)
;

Bn+1 has vertices

(
1

2n+2
, 0

)
,

(
1

2n
, 0

)
,

(
1

2n
,

1

10n+1

)
,

(
1

2n+2
,

1

10n+1

)
.

Observe that the Rn’s are pairwise disjoint and the closures Tn of Tn are pairwise disjoint.
Also the Bn’s are pairwise disjoint, but their boundaries share some part of the lateral
edges (see Fig. 2). Furthermore, for all n,m ≥ 2 even,

Tn ⊂ Rn, Bn+1 ⊂ Rn ∪Rn+2, Tn ∩Bm = ∅.

Now, we define a map6 φ : Ω → R

φ :=


n2 in Tn for n ≥ 2 even,

(n+ 1)2 in Bn+1 for n ≥ 2 even,

4 in Ω \
⋃

n≥2
n even

Rn.

(3.2)

It remains to define φ on ⋃
n≥2
n even

Rn \ (
⋃
n≥2
n even

(Tn ∪Bn+1)).

6The value 4 has not particular meaning: any positive constant could be chosen as well. A similar
comment applies to (3.3)
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To this purpose we set

φ := 4 in the open rectangle with vertices

(
1

4
, 0

)
,

(
1

2
, 0

)
,

(
1

2
,

1

4
+

1

102

)
,

(
1

4
,

1

4
+

1

102

)
.

(3.3)

Further, we consider two sequences (Vn), (Wn) of open rectangles, defined for any even
n ≥ 2, as follows:

Vn has vertices

(
1

2n+1
,

1

10n+1

)
,

(
1

2n
,

1

10n+1

)
,

(
1

2n
,

1

n2

)
,

(
1

2n+1
,

1

n2

)
,

Wn has vertices

(
1

2n+2
,

1

10n+1

)
,

(
1

2n+1
,

1

10n+1

)
,

(
1

2n+1
,

1

(n+ 2)2

)
,

(
1

2n+2
,

1

(n+ 2)2

)
,

see Fig. 2.
By (3.2) the value of φ on the top edge of Vn is n2, whereas on the bottom edge is

(n+ 1)2, and we define φ on Vn as the affine interpolation of these two values. The value
of φ on the top edge of Wn is (n + 2)2, whereas on the bottom edge is (n + 1)2, and we
define φ on Wn as the affine interpolation of these two values. Observe that, looking from
top to bottom, φ increases in Vn and decreases in Wn. Clearly,

φ /∈ L∞(Ω), (3.4)

φ is piecewise constant in Ω \ (
⋃
n≥2
n even

(Vn ∪Wn)), piecewise affine in
⋃
n≥2
n even

Vn ∪Wn, (3.5)

and

|∇φ| =
∣∣∣ ∂φ
∂x2

∣∣∣ =
(n+ 1)2 − n2

1
n2 − 1

10n+1

≈ n3 on Vn,

|∇φ| =
∣∣∣ ∂φ
∂x2

∣∣∣ =
(n+ 2)2 − (n+ 1)2

1
(n+2)2

− 1
10n+1

≈ (n+ 1)3 on Wn,

being the height of Vn (resp. Wn) of order 1
n2 (resp. 1

(n+1)2
). However, the bases of Vn

and Wn have length 1
2n+1 and 1

2n+2 respectively, so

∥∇φ∥pLp(Vn)
≈ |vn|n3p =

n3p−2

2n+1
=: an, ∥∇φ∥pLp(Wn)

≈ |wn|(n+ 1)3p =
(n+ 1)3p−2

2n+2
=: bn.

In particular
∇φ ∈ Lp(Ω;R2) ∀p ≥ 1, (3.6)

since
∑

n an < +∞ and
∑

n bn < +∞. On the other hand, denoting ΣT the union (for
n ≥ 4 even) of the top and left edges of the Tn’s, by ΣB the union (for n ≥ 4 even) of the
lateral edges of the Bn’s, and by ΣVW the union of the lateral edges of all Vn’s and Wn’s,
we see that the jump set Sφ of φ is exactly

Sφ = ΣT ∪ ΣB ∪ ΣVW ;

furthermore,
Ω \ Sφ is arcwise connected, (3.7)
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and it is easy to check that
H1(Sφ) < +∞. (3.8)

In particular, from (3.5), (3.8) and (3.6) we deduce φ ∈ GSBV p(Ω), for any p ≥ 1.
However,

φ /∈ SBV (Ω).

Indeed, although Dφ has no Cantor part, the total variation |Djφ|(Ω) of the jump part
Djφ of Dφ is infinite. This can be seen by observing that, on each lateral edge of Vn, the
jump opening 〚φ〛 is of order n on a segment of length of order n−2. Thus

|Djφ|(Ω) ≥
∑
n≥2
n even

n−1 = +∞.

We claim that φ is the unique (up to addition of a constant) solution of (3.1) for

u := eiφ.

We have u ∈ BV (Ω;S1) and |∇u| = |∇φ|. Now, we observe that

Su = Sφ, (3.9)

namely H1(Su∆Sφ) = 0, and therefore

u ∈ SBV p(Ω; S1).

Equality (3.9) is due to the fact that the subset of Sφ where 〚φ〛 ∈ 2πZ is H1-negligible.
This additionally implies that any lifting ψ of u must satisfy Sψ ⊇ Su, and so

H1(Sψ) ≥ H1(Sφ). (3.10)

We conclude from (3.9) and (3.10) that φ is a minimizer of (3.1), and φ /∈ SBV p(Ω), for
any p ≥ 1. Finally, from (3.7) it follows that φ is unique, modulo addition of a constant
in 2πZ.

3.2 A connection with optimal transport: an example

We observe in this subsection that the minimization problem (3.1) has a strict relation
with a question arising from optimal transport (see [35, 36] for the setting and similar
formulations). To do so, we give an example in a special case, leaving the more general
ones to future treatments: for a connected and simply-connected bounded open set Ω ⊂ R2,
we fix 1 < p < 2, N ∈ N, and a Sobolev map u ∈W 1,p(Ω; S1) with distributional Jacobian
determinant

Det(∇u) = π
N∑
i=1

(δxi − δyi), (3.11)

(see [15]). We set µ :=
∑N

i=1 δxi and ν :=
∑N

i=1 δyi , where the points xi’s and y′is belong
to Ω are not necessarily distinct, and we consider the class of all integer multiplicity
1-currents whose boundary is µ− ν, namely

T (µ, ν) := {T ∈ D1(Ω) : T = (R, θ, τ) is an i.m.c. such that ∂T = µ− ν}.

14



Here T = (R, θ, τ) is the integer multiplicity current given by

T (ω) =

∫
R
θ(x)⟨ω(x), τ(x)⟩dH1 ∀ω ∈ D1(Ω),

with R ⊂ Ω a 1-rectifiable set, τ a tangent 1-vector to it, and θ : R→ Z a H1-measurable
function. A classical optimal transport problem can be formulated on the class T (µ, ν) in
the following way: one fixes a cost function ψ : Z× S1 → R+ and study the minimization
problem

Ψ(µ, ν) := inf
{∫

R
ψ(θ, τ)dH1 : (R, θ, τ) ∈ T (µ, ν)

}
. (3.12)

We refer to In the special case ψ ≡ 1 we have Ψ(µ, ν) =
∫
R ψ(θ, τ)dH1 = H1(R) and we

claim that

mp[u] = inf{H1(R) : (R, θ, τ) ∈ T (µ, ν)}, (3.13)

which shows the connection between our minimization problem (3.1) and optimal trans-
port. We sketch the main steps to prove this, leaving details to future developments. Let
φ ∈ SBV p(Ω) be a lifting7 of u; then

Dφ = ∇φ L2 +Djφ, (3.14)

and since Djφ = 〚φ〛nSφH1 Sφ, its rotated8 (Djφ)⊥ = 〚φ〛n⊥Sφ
H1 Sφ can be identified

with 2π times the 1-current

Tφ = (Sφ,
〚φ〛
2π

, n⊥Sφ
)

which has integer multiplicity. We claim that

∂Tφ = µ− ν in D0(Ω);

indeed, if we identify Tφ ∈ D1(Ω) with a vector-valued measure and the elements of D0(Ω)
with scalar measures, ∂Tφ ∈ D0(Ω) corresponds to minus the divergence of Tφ, and so

∂Tφ = − 1

2π
Div((Djφ)⊥) =

1

2π
Div(∇⊥φ) (3.15)

where we have used that
Div(D⊥φ) = Curl(Dφ) = 0.

Here Curl(Dφ) is defined in a distributional sense. Recalling the definition of distributional
Jacobian determinant for Sobolev maps [15, Page 12, formula (1.33)] one has

Det(∇u) =
1

2
Div(u1∇⊥u2 − u2∇⊥u1) =

1

2
Div(∇⊥φ) (3.16)

so we conclude ∂Tφ = µ− ν.
In particular Tφ is admissible for (3.12), i.e., Tφ ∈ T (µ, ν), and we obtain

mp[u] ≥ inf{H1(R) : (R, θ, τ) ∈ T (µ, ν)}. (3.17)

7We here suppose, for simplicity, that the infimum in (3.1) can be obtained restricting on the space
SBV p(Ω).

8We take the conterclockwise π/2-rotation.
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To see that also the opposite inequality holds, let T = (R, θ, τ) be admissible for (3.12),
and let us decompose T =

∑+∞
i=1 Ti in indecomposable components, so that by Federer

decomposition theorem [29, Sections 4.2.25 and 4.5.9] Ti is either a loop with multiplicity
±1 or a Lipschitz parametrized path from one point yj to some xk. Up to erasing the
loops (operation that does not increase the energy in (3.12)) we may suppose that there
are exactly N such Lipschitz paths, T =

∑N
i=1 Ti. In particular Ti = (Ri, 1, τ) is such that

Ri is a closed set image of [0, 1] under the Lipschitz injective map γi, and so R = ∪Ni=1Ri
is closed. Consider then the open set Ω \R and let φ be a lifting of u in Ω \R with jump
set of minimal length. We claim that H1(Sφ ∩ (Ω \R)) = 0; this is equivalent to say that
there exists a lifting of u on Ω\R with no jumps. The latter can be shown by the following
observation: we connect the components of R with a curve σ in such a way Ω \ (R ∪ σ) is
simply-connected. Then by [15, Lemma 1.8] the lifting φ has no jumps9 on Ω \ (R ∪ σ).
To see that there is no jump of φ on σ, it is enough to observe that, given any closed loop
Γ in Ω \R, the topological degree of u on Γ must be null (by construction of R).

From the claim, since φ ∈ SBV p(Ω) satisfies Sφ ⊂ R, we easily infer

mp[u] ≤ inf{H1(R) : (R, θ, τ) ∈ T (µ, ν)} (3.18)

by the arbitrariness of T .
In a similar manner, we see how the problem in (3.1) and the aforementioned transport

problem can be used to solve Steiner-type problems. Again, assume for simplicity that the
singularities of u ∈W 1,p(Ω;S1) satisfy (3.11). Assume also that xi = x for all i = 1, . . . , N ,
and that the points yi are all distinct and different from x. We look for the connected set
of minimal length containing the N + 1 points in the family C = {x, yi : i = 1, . . . , N}. To
do this, consider a compact connected set K with H1(K) < +∞, containing C and let us
suppose that dist(C, ∂Ω) > H1(K); then the Steiner problem for C can be proven to be

mp[u] = inf{H1(L) : L is connected, L ⊃ C}, (3.19)

and the jump set of a jump minimizing lifting for u is a minimizer of the right-hand side
in the above expression.

3.3 Main results on sequences of liftings

The main results of the first part of the paper are the following.

Theorem 3.1 (Compactness and lower semi-continuity). Let p > 1, u ∈ SBV p(Ω; S1)
and (φk)k≥1 ⊂ GSBV p(Ω) be a sequence of liftings of u with

sup
k∈N

Hn−1(Sφk
) < +∞.

Then there exist a Caccioppoli partition (Ei)i≥1 of Ω and a not-relabelled subsequence of
indices k for which the following holds:

(a) there exists a lifting φ∞ ∈ GSBV p(Ω) of u in Ω,

(b) there exists a sequence (d
(i)
k )k≥1 ⊂ Z for any i ∈ N,

9Although the domain Ω \ (R ∪ σ) is not Lipschitz, the same result can be obtained by approximating
it with suitable Lipschitz subdomains.
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so that

lim
k→+∞

(φk(x) − 2πd
(i)
k ) = φ∞(x) ∀i ∈ N, for a.e. x ∈ Ei ,

lim
k→+∞

|φk(x) − 2πd
(i)
k | = +∞ ∀i ∈ N, for a.e. x ∈ Ω \ Ei ,

(3.20)

and
lim inf
k→+∞

Hn−1(Sφk
) ≥ Hn−1(Sφ∞) . (3.21)

Corollary 3.2 (Existence). Let p > 1. Then there exists a minimizer φ ∈ GSBV p(Ω)
of (3.1).

As pointed out in the introduction, in general a minimizer of (3.1) does not exist in
SBV p(Ω).

The generalization of Theorem 3.1 to a sequence (uk), needed in the proof of Theorem
1.2, reads as follows.

Theorem 3.3. Let p > 1, u, uk ∈ SBV p(Ω; S1) be such that

uk
∗
⇀ u in BV (Ω; S1), (3.22)

and let φk ∈ GSBV p(Ω) be a lifting of uk, for all k ≥ 1. Suppose

sup
k∈N

Hn−1(Sφk
) < +∞ .

Then there exist a Caccioppoli partition (Ei) of Ω and a not-relabelled subsequence of
indices k for which the following holds:

(a) there exists a lifting φ∞ ∈ GSBV p(Ω) of u in Ω,

(b) there exist a sequence (d
(i)
k )k≥1 ⊂ Z for any i ∈ N,

so that

lim
k→+∞

(φk(x) − 2πd
(i)
k ) = φ∞(x) ∀i ∈ N, for a.e. x ∈ Ei ,

lim
k→+∞

|φk(x) − 2πd
(i)
k | = +∞ ∀i ∈ N, for a.e. x ∈ Ω \ Ei ,

(3.23)

and
lim inf
k→+∞

Hn−1(Sφk
) ≥ Hn−1(Sφ∞) . (3.24)

4 Proofs of Theorems 3.1 and 3.3

Next Lemmas 4.1 and 4.2, independent one each other, are the building blocks of an
iterative argument needed for the proof of Theorem 3.1. Some arguments in the proof of
Lemma 4.2 will be also used in the proof of Theorem 1.2.

Lemma 4.1 (Localized compactness). Let p > 1, let Ω ⊂ Rn be a bounded open set
with Lipschitz boundary, and u ∈ SBV p(Ω;S1). Let (φk)k≥1 ⊂ GSBV p(Ω) be a sequence
of liftings of u, and suppose

C := sup
k≥1

Hn−1(Sφk
) < +∞. (4.1)
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Let F ⊂ Ω be a nonempty finite perimeter set in Ω. Then, for a not-relabelled subsequence,
there exist a sequence of integers (dk)k≥1 ⊂ Z, a finite perimeter set

E ⊆ F

in Ω, and a function φ∞ ∈ GSBV p(Ω), such that:

φ∞ is a lifting of u in E , φ∞ = 0 in Ω \ E , (4.2)

lim
k→+∞

(φk(x) − 2πdk) = φ∞(x) for a.e. x ∈ E ,

lim
k→+∞

|φk(x) − 2πdk| = +∞ for a.e. x ∈ F \ E,
(4.3)

|E| ≥ nnωn|F |n

2n(2C + Hn−1(∂∗F ))n
> 0,

Hn−1(F ∩ ∂∗E) = Hn−1(F ∩ ∂∗(F \ E)) ≤ C.

(4.4)

If furthermore
|φk(x) − 2πdk| → +∞ for a.e. x ∈ Ω \ E, (4.5)

then

lim inf
k→+∞

Hn−1
(
Sφk

∩A
)
≥ Hn−1

(
(Sφ∞ ∪ ∂∗E) ∩A

)
for any open set A ⊆ Ω. (4.6)

Proof. Define10 vk := φk − φ1 ∈ GSBV p(Ω) which, since φk and φ1 are liftings of u, is
piecewise constant (i.e., the absolutely continuous and Cantor parts of Dvk vanish) and
takes values in 2πZ. Therefore, it induces a Caccioppoli partition {V k

m : m ∈ Z} of F ,
where

for any m ∈ Z V k
m := {x ∈ F : vk(x) = 2πm} has finite perimeter,

vk =
∑
m∈Z

2πmχV k
m
,

∑
m∈Z

|V k
m| = |F |.

Moreover, since ∂∗V k
m ⊂ Sφk

∪ Sφ1 ∪ ∂∗F , the perimeter of the partition satisfies

1

2

∑
m∈Z

P (V k
m) ≤ Hn−1(Sφk

∪ Sφ1) + Hn−1(∂∗F )

≤ Hn−1(Sφk
) + Hn−1(Sφ1) + Hn−1(∂∗F )

≤ 2C + Hn−1(∂∗F ) ,

(4.7)

where C is the constant in (4.1). Now, for any k ∈ N, k ≥ 1, we select dk ∈ Z for which

|V k
dk
| = max

{
|V k
m| : m ∈ Z

}
.

In particular, from (4.7),

P (V k
dk

) ≤ 2(2C + Hn−1(∂∗F )). (4.8)

10There is no special reason in the choice of φ1; any element of the sequence (φk) could be chosen as
well.
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Using also the isoperimetric inequality, we find

|F | =
∑
m∈Z

|V k
m| ≤ |V k

dk
|
1
n

∑
m∈Z

|V k
m|1−

1
n ≤

|V k
dk
|
1
n

nω
1/n
n

∑
m∈Z

P (V k
m)

≤
|V k
dk
|1/n

nω
1/n
n

2(2C + Hn−1(∂∗F )).

Thus passing to the limit

lim inf
k→+∞

|V k
dk
| ≥ nnωn|F |n

2n(2C + Hn−1(∂∗F ))n
. (4.9)

Hence, from (4.8) and (4.9), there are a not-relabelled subsequence and a finite perime-
ter set

G ⊂ F

such that

(χ
V k
dk

) converges to χG a.e. in F and weakly star in BV (Ω; {0, 1}) as k → +∞. (4.10)

Consequently,

|G| ≥ nnωn|F |n

2n(2C + Hn−1(∂∗F ))n
. (4.11)

Next, we define
φ̂k := φk − 2πdk.

Notice that Hn−1(Sφ̂k
) ≤ Hn−1(Sφk

) ≤ C; moreover by construction

φ̂k = φ1 on V k
dk

∀k ∈ N,

and, from (4.10),

φ̂k → φ1 pointwise a.e. in G .

However, there could be other regions of F out of G, where the sequence (φ̂k) converges
pointwise, that we need to identify. To this aim, let us consider, for all integers N ≥ 1,
the sequence of truncated functions (φ̂k ∧N) ∨ (−N), which is precompact in SBV p(Ω).
Using a diagonal argument, we select a further (not-relabelled) subsequence such that
(φ̂k ∧N) ∨ (−N) converge in L1(Ω) and pointwise a.e. in F for all N ∈ N. Define

FN :=

{
x ∈ F : lim

k→∞
|(φ̂k(x) ∧N) ∨ (−N)| = N

}
.

Then FN ⊃ FN+1, and ⋂
N∈N

FN := {x ∈ F : |φ̂k(x)| → +∞}.

As a consequence, setting

E := F \
⋂
N

FN , (4.12)
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we have
G ⊆ E ⊆ F, (4.13)

E has finite perimeter in Ω11, and setting

φ∞(x) =

{
limk φ̂k(x) in E

0 in Ω \ E
for a. e. x ∈ Ω,

we have φ∞ ∈ GSBV p(Ω), φ∞ = φ1 a.e. in G, and φ∞ is a lifting of u in E. At the same
time

|φ̂k(x)| → +∞ for a.e. x ∈ F \ E.

Thus, using also (4.11) and (4.13), which imply |E| ≥ |G| ≥ nnωn|F |n
2n(2C+Hn−1(∂∗F ))n

, statements

(4.2)-(4.4) are proven.
It remains to prove (4.6). Assume |φ̂k| → +∞ a.e. in Ω \ E. Then, by Theorem 2.6,

for any subsequence (φ̂kh) we can extract a further subsequence (φ̂khj ) such that

Hn−1((Sφ∞ ∪ ∂∗E) ∩A) ≤ lim inf
j→+∞

Hn−1(Sφkhj
∩A) for any open set A ⊆ Ω.

Hence, the same holds for the original sequence (φ̂k),

Hn−1((Sφ∞ ∪ ∂∗E) ∩A) ≤ lim inf
k→+∞

Hn−1(Sφk
∩A) for any open set A ⊆ Ω,

which shows (4.6). This additionally implies

P (E,F ) ≤ C = sup
k∈N

Hn−1(Sφk
),

which shows the last equality in (4.4).

Lemma 4.2. Let p > 1 and (φk)k≥1 ⊂ GSBV p(Ω) be a sequence of functions with

C := sup
k∈N

Hn−1(Sφk
) < +∞. (4.14)

Let N ≥ 1 be an integer, E1, . . . , EN ⊂ Ω be pairwise disjoint nonempty finite perimeter
sets and φ1

∞, . . . , φ
N
∞ be functions in GSBV p(Ω) with the following properties: for any

i = 1, . . . , N ,

φ(i)
∞ = 0 a.e. in Ω \ Ei ,

lim inf
k→+∞

Hn−1(Sφk
∩B) ≥ Hn−1

(
(S
φ
(i)
∞

∪ ∂∗Ei) ∩B
)
for any open ball B ⊂ Ω.

(4.15)

Define ΦN ∈ GSBV p(Ω) as

ΦN (x) :=


φ
(i)
∞ (x) if x ∈ Ei for some i = 1, . . . , N ,

0 if x ∈ Ω \
(
∪Ni=1 Ei

)
.

Then
lim inf
k→+∞

Hn−1(Sφk
) ≥ Hn−1

(
SΦN

∪
(
Ω ∩ ∂∗

(
∪Ni=1 Ei

)))
, (4.16)

and
Hn−1

(
Ω ∩ ∂∗

(
∪Ni=1 Ei

))
= Hn−1

(
Ω ∩ ∂∗

(
Ω \ ∪Ni=1Ei

))
≤ C. (4.17)

11E has finite perimeter in F , and F has finite perimeter in Ω, therefore E has finite perimeter in Ω.
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Proof. The equality in (4.17) follows from Ω∩ ∂∗E = Ω∩ ∂∗(Ω \E), and the inequality is
a consequence of (4.16) and (4.14). So, let us prove (4.16).

To shortcut the notation we set, for all i = 1, . . . , N ,

Σi := Ω ∩ ∂∗Ei, Si := S
φ
(i)
∞

\ ∂∗Ei ,

and

Σ :=
N⋃
i=1

Σi , S :=
N⋃
i=1

Si,

are (n− 1)-rectifiable with Hn−1(Σ) < +∞, Hn−1(S) < +∞. We fix δ ∈ (0, 1) and, for
any i = 1, . . . , N , for Hn−1-a.e. x ∈ Si we choose a radius r(x) such that

Bρ(x) ⊆ Ω ,

Hn−1(Bρ(x) ∩ Si) ≥ (1 − δ)ωn−1ρ
n−1,

Hn−1(Bρ(x) ∩ Σ) +

N∑
m̸=i
m=1

Hn−1(Bρ(x) ∩ Sm) ≤ δωn−1ρ
n−1

∀ρ ∈ (0, r(x)). (4.18)

We collect all such balls Bρ(x) satisfying (4.18) in a family denoted Bi. Furthermore,
possibly reducing the value of r(x), for any i = 1, . . . , N and for Hn−1-a.e. x ∈ Σi we may
suppose that

Bρ(x) ⊆ Ω ,

Hn−1(Bρ(x) ∩ Σi) ≥ (1 − δ)ωn−1ρ
n−1,

Hn−1(Bρ(x) ∩ S) +
N∑
m̸=i
m=1

Hn−1(Bρ(x) ∩ Σm) ≤ δωn−1ρ
n−1,

ρ ∈ (0, r(x)), (4.19)

and we collect such balls in a family Bi+N . The family ∪2N
n=1Bn, forms a Vitali covering

of Σ ∪ S, and so by Vitali covering theorem we can choose countable many points xk ∈ Ω
and radii ρk ∈ (0, r(xk)) such that the family

B :=

B ∈
2N⋃
j=1

Bj : B = Bρk(xk) for some k ∈ N


consists of mutually disjoint balls and covers Σ ∪ S up to a Hn−1-negligible set, with

+∞∑
k=1

ρn−1
k < +∞.

In addition

Hn−1(S ∪ Σ) =
∑
B∈B

Hn−1(B ∩ (S ∪ Σ)) ≥ (1 − δ)ωn−1

+∞∑
k=1

ρn−1
k , (4.20)

the inequality following from (4.18) and (4.19). From the same formulas, for any n =
1, . . . , N , and B = Bρ(x) ∈ Bi, i ̸= j, it holds

Hn−1(B ∩ Sj) ≤
N∑
m̸=i
m=1

Hn−1(B ∩ Sm) ≤ δωn−1ρ
n−1.
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This, together with (4.20), imply

∑
B∈B\Bj

Hn−1(B ∩ Sj) ≤ δωn−1

+∞∑
k=1

ρn−1
k ≤ δ

1 − δ
Hn−1(S ∪ Σ). (4.21)

Similarly, for all h = 1, . . . , N ,∑
B∈B\BN+h

Hn−1(B ∩ Σh) ≤ δ

1 − δ
Hn−1(S ∪ Σ). (4.22)

From (4.21) and (4.22) it follows∑
B∈B∩Bj

Hn−1(B ∩ Sj) =
∑
B∈B

Hn−1(B ∩ Sj) −
∑

B∈B\Bj

Hn−1(B ∩ Sj)

≥ Hn−1(Sj) −
δHn−1(S ∪ Σ)

1 − δ
, (4.23)

for all j = 1, . . . , N , and analogously for all h = 1, . . . , N ,∑
B∈B∩BN+h

Hn−1(B ∩ Σh) ≥ Hn−1(Σh) − δHn−1(S ∪ Σ)

1 − δ
. (4.24)

From (4.15), for any j = 1, . . . , N we obtain

lim inf
k→+∞

Hn−1(Sφk
∩B) ≥ Hn−1(S

φj
∞
∩B) ≥ Hn−1(Sj ∩B) , (4.25)

and for all h = 1, . . . , N

lim inf
k→+∞

Hn−1(Sφk
∩B) ≥ Hn−1(B ∩ ∂∗Eh) ≥ Hn−1(Σh ∩B) . (4.26)

Now, summing (4.25) over all B ∈ B∩Bj and (4.26) over all B ∈ B∩BN+h, and then over
n, h respectively, we infer

N∑
j=1

∑
B∈B∩Bj

Hn−1(Sj ∩B) +

N∑
h=1

∑
B∈B∩BN+h

Hn−1(Σh ∩B)

≤ lim inf
k→+∞

2N∑
j=1

∑
B∈B∩Bj

Hn−1(Sφk
∩B) ≤ lim inf

k→+∞
Hn−1(Sφk

),

(4.27)

where the penultimate inequality is a consequence of Fatou’s Lemma. Combining (4.27)
with (4.23) and (4.24) we get

N∑
j=1

Hn−1(Sj) +

N∑
h=1

Hn−1(Σh) − 2δNHn−1(S ∪ Σ)

1 − δ
≤ lim inf

k→+∞
Hn−1(Sφk

) .

By the arbitrariness of δ > 0 we conclude

Hn−1(S ∪ Σ) ≤ lim inf
k→+∞

Hn−1(Sφk
) ,

that implies (4.16).

22



4.1 Proof of Theorem 3.1

Let M := supk∈NHn−1(Sφk
) < +∞. To show compactness of (φk), we utilize an iterative

argument.
Base case N = 1. We set

F1 := Ω. (4.28)

From Lemma 4.1 we find, for a not-relabelled subsequence, a finite perimeter set E1 ⊆ F1,

a sequence (d
(1)
k )k≥1 ⊂ Z and a function φ

(1)
∞ ∈ GSBV p(Ω), such that

φ(1)
∞ is a lifting of u in E1, φ(1)

∞ = 0 in F1 \ E1 ,

|E1| ≥
nnωn|F1|n

2n(2M + Hn−1(∂Ω))n
,

and
(φk(x) − 2πd

(1)
k ) → φ(1)

∞ (x) for a.e. x ∈ E1 ,

|φk(x) − 2πd
(1)
k | → +∞ for a.e. x ∈ F1 \ E1.

(4.29)

Moreover, since F1 = Ω, from the final part of the statement of Lemma 4.1, we have

lim inf
k→+∞

Hn−1(Sφk
∩A) ≥ Hn−1((S

φ
(1)
∞

∪ ∂∗E1) ∩A) for any open set A ⊆ F1, (4.30)

see (4.6).
Iterative case N ⇝ N+1. Let N ≥ 2 be an integer, E1, . . . , EN ⊂ Ω be pairwise disjoint
nonempty finite perimeter sets, and define, together with (4.28),

Fi := Ω \
i−1⋃
j=1

Ej for i = 2, . . . , N,

so that
E1 ⊆ F1, E2 ⊆ F2, . . . , EN ⊆ FN .

Suppose that:

(i) For all i = 1, . . . , N , there exists a function φ
(i)
∞ ∈ GSBV p(Ω) which is a lifting of u

in Ei, and φ
(i)
∞ = 0 in Ω \ Ei;

(ii) For all i = 1, . . . , N we have

|Ei| ≥
nnωn|Fi|n

2n(2M + Hn−1(∂∗Fi))n
≥ nnωn|Fi|n

2n(3M + Hn−1(∂Ω))n
;

(iii) For all i = 1, . . . , N , there exist sequences (d
(i)
k )k ⊂ Z, such that

(φk(x) − 2πd
(i)
k ) → φ(i)

∞ (x) for a.e. x ∈ Ei ,

|φk(x) − 2πd
(i)
k | → +∞ for a.e. x ∈ Ω \ Ei ,

lim inf
k→+∞

Hn−1(Sφk
∩A) ≥ Hn−1((S

φ
(i)
∞

∪ ∂∗Ei) ∩A) for any open set A ⊆ Ω.

(4.31)
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We now want to find a finite perimeter set EN+1 ⊆ Ω disjoint from ∪Ni=1Ei and a

function φ
(N+1)
∞ ∈ GSBV p(Ω), such that, for a not-relabelled subsequence, E1, . . . , EN+1,

(φk), and φ
(N+1)
∞ satisfy properties (i)-(iii) above, with N replaced by N + 1.

To this purpose we set, for N ≥ 1,

FN+1 := Ω \
( N⋃
i=1

Ei

)
,

and we let ΦN ∈ GSBV p(Ω) be defined as

ΦN (x) :=

{
φ
(i)
∞ (x) if x ∈ Ei for i = 1, . . . , N ,

0 if x ∈ Ω.
(4.32)

If FN+1 = ∅ there is nothing to prove. Assume then FN+1 ̸= ∅. From Lemma 4.2 we have

lim inf
k→+∞

Hn−1(Sφk
) ≥ Hn−1(SΦN

∪ (Ω ∩ ∂∗(∪Ni=1Ei))) , (4.33)

and
Hn−1

(
Ω ∩ ∂∗(∪Ni=1Ei)

)
= Hn−1(Ω ∩ ∂∗FN+1) ≤M . (4.34)

Next, applying Lemma 4.1 to F = FN+1, there exist a sequence (d
(N+1)
k )k≥1 ⊂ Z, a finite

perimeter set EN+1 ⊆ FN+1 (and thus EN+1 ∩ (∩Ni=1Ei) = ∅) and a function φ
(N+1)
∞ ∈

GSBV p(Ω) such that

φ(N+1)
∞ = 0 in Ω \ EN+1 , φ(N+1)

∞ is a lifting of u in EN+1 ,

|EN+1| ≥
nnωn|FN+1|2

2n(2M + Hn−1(∂∗FN+1))2
, (4.35)

and

(φk(x) − 2πd
(N+1)
k ) → φ(N+1)

∞ (x) for a.e. x ∈ EN+1 ,

|φk(x) − 2πd
(N+1)
k | → +∞ for a.e. x ∈ FN+1 \ EN+1 ,

lim inf
k→+∞

H1(Sφk
∩A) ≥ H1((S

φ
(N+1)
∞

∪ ∂∗EN+1) ∩A) for any open set A ⊆ FN+1.

(4.36)

Combining (4.34) and (4.35) we readily get

|EN+1| ≥
nnωn|FN+1|2

2n(2M + Hn−1(∂∗FN+1))2
≥ nnωn|FN+1|2

2n(3M + Hn−1(∂Ω))2
> 0 .

Moreover by (4.31), also

|φk(x) − 2πd
(N+1)
k | → +∞ for a.e. x ∈ Ω \ EN+1 . (4.37)

Thus the sets E1, . . . , EN+1 satisfy (i)-(iii) with (d
(i)
k )k≥1 ⊂ Z and φ

(i)
∞ ∈ GSBV p(Ω) for

i ∈ {1, . . . , N + 1}.

Conclusion. We now combine the base case and the iterative case to conclude the proof.
First we note that each time we apply the iterative case we have to extract a subsequence.
Hence, taking a diagonal (not-relabelled) subsequence of (φk)k≥1, this yields a sequence

24



(Ei)i≥1 of mutually disjoint finite perimeter sets in Ω such that for everym ≥ 1, E1, . . . , Em

satisfy properties (i)-(iii) (with m in place of N) with the corresponding (d
(i)
k )k≥1 ⊂ Z and

φ
(i)
∞ ∈ GSBV p(Ω) for i ∈ {1, . . . ,m}. In particular, from (4.33),

lim inf
k→+∞

Hn−1(Sφk
) ≥ Hn−1(SΦm ∪ (Ω ∩ ∂∗(∪mi=1Ei))) , ∀m ≥ 1 (4.38)

with Φm as in (4.32) for N = m. We next show that

|Ω \ (∪+∞
i=1Ei)| = 0.

To this aim, since
∑+∞

m=1 |Em| < +∞, the sequence (|Em|) tends to zero as m → +∞12,

and by the inequality |Em| ≥ nnωn|Fm|2
2n(3M+Hn−1(∂Ω))2

we also infer that |Fm| → 0. In particular,

|Ω \ (∪+∞
i=1Ei)| = lim

m→+∞
|Ω \ (∪m−1

i=1 Ei)| = lim
m→+∞

|Fm| = 0 .

Finally we define

φ∞(x) := φ(i)
∞ (x) if x ∈ Ei for some i ∈ N.

We now show that φ∞ ∈ GSBV p(Ω) and that (3.21) holds true. By definition of φ∞ and
Φm it follows that

Hn−1(Sφ∞) ≤ lim
m→+∞

Hn−1(SΦm) ≤ lim
m→+∞

Hn−1(SΦm ∪ (Ω ∩ ∂∗(∪mi=1Ei))).

This together with (4.38) yields (3.21). Eventually, being φ∞ limit of liftings of u, it is
itself a lifting of u in Ω and therefore from the identity |∇u| = |∇φ∞| we infer φ∞ ∈
GSBV p(Ω).

4.2 Proof of Theorem 3.3

Let φ ∈ SBV p(Ω) ∩ L∞(Ω) be a lifting of u with

|φ|BV ≤ 2|u|BV ≤ C, (4.39)

whose existence is ensured by Theorem 2.7 and Remark 2.8. The idea of the proof is
to construct a sequence (ψ̃k)k≥1 ⊂ SBV p(Ω) ∩ L∞(Ω) (see (4.48)) having the following
properties:

ψ̃k → 0 in L1(Ω) and weakly∗ in BV (Ω),

φ̃k := φk − ψ̃k = φ+ 2π
∑
z∈Z

zχF z
k
,

sup
k∈N

Hn−1(φ̃k) < +∞,

(4.40)

with (F zk )z∈Z a Caccioppoli partition of Ω for all k ≥ 1, see also (4.50). Note that each φ̃k
is a lifting of the limit map u. Hence we can apply Theorem 3.1 to the sequence (φ̃k), and
eventually from the convergence of (a not relabelled subsequence of) (φ̃k)k≥1 and Theorem
2.6 deduce compactness and lower semicontinuity for the original sequence (φk)k≥1. We
now give the details of the proof.

12Note that it might be Ei = ∅ for i ≥ ī, this case is simpler to treat.
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Step 1: construction of ψ̃k. For k ≥ 1 define first

ψk := φk − φ ∈ GSBV p(Ω).

Since φ is a lifting of u, we have 〚φ〛 ∈ 2πZ on Sφ \Su, thus, using also (4.39), Hn−1(Sφ) =
Hn−1(Su) + Hn−1(Sφ \ Su) < +∞, and |∇u| = |∇φ| a.e. on Ω. Moreover, since Sψk

⊆
Sφk

∪ Sφ and |∇ψk| ≤ |∇φk| + |∇φ| = |∇uk| + |∇u| a.e. on Ω, we have, using also (3.22),

sup
k≥1

(∫
Ω
|∇ψk| dx+ Hn−1(S

ψ̃k
)
)
≤ C < +∞ . (4.41)

For every k ∈ N and z ∈ Z we define

ψzk := (ψk ∧ 2πz) ∨ 2π(z − 1) ∈ SBV p(Ω) ,

whose jump set decomposes as

Sψz
k

= S1
ψz
k
∪ S2

ψz
k
∪ S3

ψz
k
∪ S4

ψz
k
,

with

S1
ψz
k

:= {x ∈ Sψz
k

: 2π(z − 1) < (ψzk)−(x) < (ψzk)+(x) < 2πz} ,

S2
ψz
k

:= {x ∈ Sψz
k

: 2π(z − 1) = (ψzk)−(x) < (ψzk)+(x) < 2πz} ,

S3
ψz
k

:= {x ∈ Sψz
k

: 2π(z − 1) < (ψzk)−(x) < (ψzk)+(x) = 2πz} ,

S4
ψz
k

:= {x ∈ Sψz
k

: 2π(z − 1) = (ψzk)−(x) < (ψzk)+(x) = 2πz},

where (ψzk)± are the two traces of ψzk on Sψz
k
. As ψk ∈ GSBV p(Ω) we have, up to a

Hn−1-negligible set, ⋃
z∈Z

S1
vzk

∪
⋃
z∈Z

S2
vzk

∪
⋃
z∈Z

S3
vzk

⊆ Svk . (4.42)

Notice that, for Hn−1-a.e. x ∈ Sψk
, x belongs to at most 2 sets appearing in the union on

the left-hand side of (4.42); hence in particular from (4.41), for all k ≥ 1∑
z∈Z

(
Hn−1(S1

ψz
k
) + Hn−1(S2

ψz
k
) + Hn−1(S3

ψz
k
)
)
≤ 2Hn−1(Sψk

) ≤ C , (4.43)

for some constant C > 0. Furthermore by definition of ψzk,∫
Ω
|∇ψk|dx =

∑
z∈Z

∫
Ω
|∇ψzk| dx ≤ C ∀k ∈ N. (4.44)

Consider now the function τ zk ∈ SBV p(Ω), defined by

τ zk :=
∣∣∣ψzk − 2π

(
z − 1

2

)∣∣∣,
which satisfies 0 ≤ τ zk ≤ π,∫

Ω
|∇ψzk|dx =

∫
Ω
|∇τ zk |dx, |〚τ zk 〛| ≤ |〚ψzk〛| Hn−1 − a.e. on Sτzk ,
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Sτzk ⊆ S1
ψz
k
∪ S2

ψz
k
∪ S3

ψz
k
,

owing to the fact that τ zk has null jump on S4
ψz
k
. In particular, we infer from (4.43) and

(4.44) that ∑
z∈Z

|Dτ zk |(Ω) ≤ C ∀k ∈ N, (4.45)

for some positive constant C.
Now, for t ≥ 0, let (Ezk)t := {x ∈ Ω : τ zk (x) < t}; by the coarea formula,∫ π

0
Hn−1(∂∗(Ezk)t) dt = |Dτ zk |(Ω) ,

hence, summing over z and using (4.45),∫ π

0

∑
z∈Z

(Hn−1(∂∗(Ezk)t)) dt =
∑
z∈Z

∫ π

0
Hn−1(∂∗(Ezk)t) dt ≤ C.

Whence, for any k ∈ Z we can find a number tk ∈ (0, π/2) such that∑
z∈Z

Hn−1(∂∗(Ezk)tk) ≤ C , (4.46)

with C > 0 independent of k. We observe that

(Ezk)tk =

{
x ∈ Ω : 2π

(
z − 1

2

)
− tk < ψzk(x) = ψk(x) < 2π

(
z − 1

2

)
+ tk

}
.

For every k let (F zk )z∈Z be the Caccioppoli partition of Ω defined as

F zk :=
{
x ∈ Ω : ψk(x) ∈

(
2π

(
z − 1

2

)
− tk, 2π

(
z + 1 − 1

2

)
− tk

)}
.

Thus ∂∗F zk ⊂ ∂∗(Ezk)tk ∪ ∂∗(Ez+1
k )tk and∑

z∈Z
Hn−1(∂∗F zk ) ≤ 2

∑
z∈Z

Hn−1(∂∗(Ezk)tk) ≤ C , (4.47)

and so for each k ∈ N the family (F zk )z∈Z is a Caccioppoli partition of Ω, with equibounded
(in k) total perimeter.

We finally introduce the map ψ̃k ∈ SBV p(Ω) ∩ L∞(Ω) as

ψ̃k :=
∑
z∈Z

(
ψk − (2π(z − 1

2
) − tk)

)
χF z

k
− π − tk = ψk − 2π

∑
z∈Z

zχF z
k
, (4.48)

which satisfies −π ≤ ψ̃k ≤ π. Moreover, since S
ψ̃k

⊆ Sψk
∪
⋃
z∈Z ∂

∗F zk , by (4.47) we deduce
that

Hn−1(S
ψ̃k

) + ∥ψ̃k∥BV ≤ C, (4.49)

for all k ≥ 1. Therefore, up to a not relabelled subsequence, we can also suppose

ψ̃k → ψ̃ in L1(Ω) and weakly∗ in BV (Ω)
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for some ψ̃ ∈ SBV p(Ω) ∩ L∞(Ω). As asserted in (4.40), we now want to show that ψ̃ = 0
a.e. on Ω. Let us go back to the functions uk that, up to subsequences, are converging
pointwise a.e. to u. Hence for a.e. x we have

uk(x) − u(x) = eiφ(x)(ei(φk(x)−φ(x)) − 1) → 0 .

This in turn implies that the map x 7→ dist(φk(x) − φ(x), 2πZ) = dist(ψk(x), 2πZ) is
converging pointwise a.e. to 0, and by the dominated convergence theorem, in L1(Ω).
Then there is k̄ ≥ 0 such that for a.e. x ∈ Ω and for all k ≥ k̄ there is K = K(x, k) ∈ Z
such that

x ∈ FKk and |ψ̃k(x)| = |ψk(x) − 2πK| → 0 as k → +∞,

and so by the dominated convergence theorem we conclude ψ̃ = 0.

Step 2: compactness and lower semicontinuity. We first observe that ψk − ψ̃k ∈
GSBV p(Ω) takes values in 2πZ. As a consequence, the maps φ̃k = φk− ψ̃k = ψk− ψ̃k +φ
are all liftings of u and from (4.49) we also have

sup
k≥1

Hn−1(Sφ̃k
) < +∞. (4.50)

We now apply Theorem 3.1 to the sequence (φ̃k)k≥1, and deduce the existence of a Cac-

cioppoli partition (Ei)i≥1 of Ω, of sequences (d
(i)
k )k≥1 ⊂ 2πZ for all i ≥ 1, and of a lifting

φ∞ ∈ GSBV p(Ω) of u, such that

lim
k→+∞

(φ̃k(x) − 2πd
(i)
k ) = φ∞(x) for a.e. x ∈ Ei ,

lim
k→+∞

|φ̃k(x) − 2πd
(i)
k | = +∞ for a.e. x ∈ Ω \ Ei ,

for all i ≥ 1. As a consequence, by Step 2,

lim
k→+∞

(φk(x) − 2πd
(i)
k ) = φ∞(x) for a.e. x ∈ Ei ,

lim
k→+∞

|φk(x) − 2πd
(i)
k | = +∞ for a.e. x ∈ Ω \ Ei ,

for all i ≥ 1.
It remains to show (3.24). For all i ≥ 1 let φ

(i)
∞ := φ∞ in Ei and φ

(i)
∞ := 0 in Ω \ Ei.

By Theorem 2.6 and the fact that Sφk
= S

φk−2πd
(i)
k

it follows

lim inf
k→+∞

Hn−1(Sφk
∩A) ≥ Hn−1((S

φ
(i)
∞

∪ ∂∗Ei) ∩A) ,

for any open set A ⊂ Ω. Then by Lemma 4.2 for all N ≥ 1 we get

lim inf
k→+∞

Hn−1(Sφk
) ≥ Hn−1(S

φ
(N)
∞

∪ (∂∗(∪Ni=1Ei))) ,

where

φ(N)
∞ :=

{
φ
(i)
∞ if x ∈ Ei for some i = 1, . . . , N ,

0 if x ∈ Ω \ (∪Ni=1Ei) .

Hence, observing that φ∞ = φ
(N)
∞ in ∪Ni=1Ei, and letting N → +∞ we get

lim inf
k→+∞

Hn−1(Sφk
) ≥ Hn−1(Sφ∞ ∪ (∂∗(∪+∞

i=1Ei))) ≥ Hn−1(Sφ∞) .
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5 Γ-convergence of functionals on S1- valued maps

In this section we prove Theorems 1.1 and 1.2. The proof of Theorem 1.1 follows by
suitably adapting the arguments of [7, 8, 28]. Instead, the proof of Theorem 1.2 (and
more specifically the lower bound inequality) requires some new ideas which rely on the
compactness result for liftings (Theorem 3.3). For convenience we introduce the localised
Modica-Mortola-type (or Allen-Cahn type) functionals

MMε(v,A) :=

∫
A

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx ∀v ∈W 1,2(Ω),

for every open set A ⊆ Ω.

5.1 Some density and approximation results for S1-valued maps

For E ⊂ Rn we denote by Mn−1(E) its (n− 1)-dimensional Minkowski content, i.e.,

Mn−1(E) = lim
ρ↘0

|{x ∈ Rn : dist (x,E) < ρ}|
2ρ

,

provided the limit exists.

Proposition 5.1 (Density in SBV 2(Ω; S1)). Let Ω ⊂ Rn be a bounded open set with
Lipschitz boundary, u ∈ SBV 2(Ω; S1) and let Ω̂ ⊂ Rn be a bounded open set with Ω ⊂⊂ Ω̂.
Then u has an extension û ∈ SBV 2(Ω̂;S1) with

Hn−1(Sû ∩ ∂Ω) = 0.

Moreover, there exists a sequence (ûk) ⊂ SBV 2(Ω̂; S1) such that:

(i) ûk converges to û in L1(Ω̂; S1);

(ii) ∇ûk converges to ∇û in L2(Ω̂;Rn×n);

(iii) limk→∞Hn−1(Sûk) = Hn−1(Sû);

(iv) limk→∞Hn−1(Sûk ∩ Ω) = Hn−1(Sû ∩ Ω) = Hn−1(Su);

(v) Hn−1(Sûk \ Sûk) = 0 and Hn−1(Sûk ∩K) = Mn−1(Sûk ∩K) for every compact set

K ⊂ Ω̂.

Note that (ii)-(iii) guarantee the convergence of MSS1(ûk, 1) to MSS1(û, 1) in Ω̂.

Proof. The proof follows by suitably adapting [14, Lemma 4.11] and [7, Proposition 5.3]
to the S1-constrained case. For this reason we give here only the main steps. According to
Remark 2.8 there exists a lifting φ ∈ SBV 2(Ω) of u. Since ∂Ω is Lipschitz, by a standard
reflection argument we can construct an extension φ̂ ∈ SBV 2(Ω̂) of φ such that

Hn−1(Sφ̂ ∩ ∂Ω) = 0.

By defining
û : Ω̂ → S1, û := eiφ̂,

we immediately get that û is an extension of u, and∫
Ω̂
|∇û|2 dx =

∫
Ω̂
|∇φ̂|2 dx , Hn−1(Sû) ≤ Hn−1(Sφ̂) ,
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and thus û ∈ SBV 2(Ω̂; S1). Moreover

Hn−1(Sû ∩ ∂Ω) ≤ Hn−1(Sφ̂ ∩ ∂Ω) = 0. (5.1)

By [17, Lemma 4.3] we know that, for every integer k > 0, there exists ûk ∈ SBV 2(Ω̂; S1)
such that ∫

Ω̂
|∇ûk|2 dx+ Hn−1(Sûk) + k

∫
Ω̂
|ûk − û|dx

= min
w∈SBV 2(Ω̂;S1)

(∫
Ω̂
|∇w|2 dx+ Hn−1(Sw) + k

∫
Ω̂
|w − û| dx

)
.

Clearly ∥ûk∥∞ = 1 and∫
Ω̂
|∇ûk|2 dx+ Hn−1(Sûk) + k

∫
Ω̂
|ûk − û| dx ≤

∫
Ω̂
|∇û|2 dx+ Hn−1(Sû) < +∞ . (5.2)

Thus, in particular, (ûk) converges to û in L1(Ω̂;S1) as k → +∞, and (i) follows. By [5]
we also get, up to a not relabelled subsequence,

∇ûk ⇀ ∇û in L2(Ω̂;Rn×n) , lim inf
k→+∞

Hn−1(Sûk) ≥ Hn−1(Sû) .

This and (5.2) imply∫
Ω̂
|∇û|2 dx+ Hn−1(Sû) = lim

k→+∞

(∫
Ω̂
|∇ûk|2 dx+ Hn−1(Sûk)

)
,

from which we readily deduce (ii) and (iii). Again by [5] and (5.1) we have

Hn−1(Sû ∩ Ω) ≤ lim inf
k→+∞

Hn−1(Sûk ∩ Ω) ≤ lim inf
k→+∞

Hn−1(Sûk ∩ Ω) ,

Hn−1(Sû \ Ω) = Hn−1(Sû \ Ω) ≤ lim inf
k→+∞

Hn−1(Sûk \ Ω) ,

which in turn imply (iv). Moreover, invoking [17, Lemma 4.5] we have Hn−1(Sûk\Sûk) = 0.
Finally, thanks to the density estimate in [17, Lemma 4.9] and arguing exactly as in [7,
Proposition 5.3] it can be shown that

Hn−1(Sûk ∩K) = Mn−1(Sûk ∩K) ,

for every compact set K ⊂ Ω̂ and (v) is proven.

A similar result holds also for liftings:

Proposition 5.2 (Density result for liftings). Let Ω and Ω̂ ⊂ Rn be as in Proposi-
tion 5.1. Let u ∈ SBV 2(Ω; S1) and φ ∈ SBV 2(Ω) ∩ L∞(Ω) be a lifting of u. Then φ has
an extension φ̂ ∈ SBV 2(Ω̂)∩L∞(Ω̂) satisfying Hn−1(Sφ̂∩∂Ω) = 0. Moreover, there exists

a sequence (φ̂k) ⊂ SBV 2(Ω̂) such that:

(i) φ̂k converges to φ̂ in L1(Ω̂);

(ii) ∇φ̂k converges to ∇φ̂ in L2(Ω̂;Rn);

(iii) limk→∞Hn−1(Sφ̂k
) = Hn−1(Sφ̂);
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(iv) limk→∞Hn−1(Sφ̂k
∩ Ω) = Hn−1(Sφ̂ ∩ Ω) = Hn−1(Sφ);

(v) Hn−1(Sφ̂k
\ Sφ̂k

) = 0 and Hn−1(Sφ̂k
∩K) = Mn−1(Sφ̂k

∩K) for every compact set

K ⊂ Ω̂;

(vi) ûk := eiφ̂k converges to u in L1(Ω; S1).

Note that (ii)-(iii) guarantee the convergence of MS(φ̂k, 1) to MS(φ̂, 1) in Ω̂.

Proof. From [14, Lemma 4.11] we can find φ̂ as in the statement and (φ̂k) ⊂ SBV 2(Ω̂)
that satisfy (i)–(v). This in turn implies also (vi).

5.2 Proof of Theorem 1.1

If εk ↘ 0 and ((uk, vk))k≥1 ⊂ L1(Ω; S1)×L1(Ω, [0, 1]) is a sequence converging to (u, v) in
L1(Ω;S1) × L1(Ω), arguing exactly as in [28], one gets

lim inf
k→+∞

ATS1
εk

(uk, vk) ≥ MSS1(u, v).

Therefore, we only need to prove the upper bound. Let εk ↘ 0 and u ∈ SBV 2(Ω;S1).
We have to find a sequence ((uk, vk)) ⊂ ÂS1 converging to (u, 1) in L1(Ω; S1) × L1(Ω) for
which

lim sup
k→+∞

ATS1
εk

(uk, vk) ≤ MSS1(u, 1) . (5.3)

We note that, in general, we cannot take ((uk, vk)) ⊂ AS1 , as it happens for the example
described in the introduction.

We fix a bounded open set Ω̂ ⊂⊂ Rn, with Ω ⊂⊂ Ω̂. By Proposition 5.1 it suffices to
show (5.3) for u ∈ SBV 2(Ω̂;S1) with

Hn−1(Su ∩ ∂Ω) = 0 , Hn−1(Su \ Su) = 0 , Hn−1(Su ∩K) = Mn−1(Su ∩K) , (5.4)

for every compact set K ⊂ Ω̂.
By Theorem 2.7 and Remark 2.8 there exists a lifting φ ∈ SBV 2(Ω̂) of u. For any

0 < ρ≪ 1 define
(Su)ρ := {x ∈ Ω̂ : dist(x, Su) < ρ}.

Let 0 < ξk with limk→+∞ ξk/εk = 0 be such that (Su)ξk has Lipschitz boundary. By
Remark 2.2 applied to A = (Su)ξk and δ = εk, there exists φk ∈ C∞((Su)ξk) such that∫

(Su)ξk

|φ− φk|dx < εk ,

∫
(Su)ξk

|∇φk|dx ≤ |Dφ|
(
(Su)ξk

)
+ εk , (5.5)

and, in the sense of BV -traces,

φk = φ a.e. on ∂(Su)ξk . (5.6)

We define ωk ∈ SBV 2(Ω̂) as follows:

ωk :=

{
φk in (Su)ξk
φ in Ω̂ \ (Su)ξk

.
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Then by (5.5) the sequence (ωk) converges to φ strictly in BV (Ω̂) and

Sωk
⊆ Sφ.

We set

uk := eiωk =

{
eiφk in (Su)ξk
u in Ω̂ \ (Su)ξk

so that
uk ∈W 1,1(Ω̂;S1) (5.7)

and (uk) converges to u in L1(Ω; S1). Since we modified u only in a neighbourhood of Su
in general uk /∈W 1,2(Ω̂;S1), as it happens in the example in the introduction.

The construction of (vk) is done as in [18]. Precisely, we define (vk) ⊂W 1,2(Ω̂) as

vk(x) :=

{
0 x ∈ (Su)ξk

1 − exp
(
− dist (x,Su)−ξk

2εk

)
x ∈ Ω̂ \ (Su)ξk

,

Then (vk) converges to 1 in L1(Ω̂) as k → +∞. Moreover

vk|∇uk| ∈ L2(Ω̂)

and hence, using (5.7), we get the crucial inclusion

(uk, vk) ⊂ ÂS1 .

It remains to show (5.3). To this aim we have

lim sup
k→+∞

∫
Ω
v2k|∇uk|2 dx ≤ lim sup

k→+∞

∫
Ω\(Su)ξk

|∇u|2 dx ≤
∫
Ω
|∇u|2 dx . (5.8)

Moreover

MMεk(vk,Ω) =
|(Su)ξk ∩ Ω|

εk
+ MMεk(vk,Ω \ (Su)ξk). (5.9)

From (5.4) it follows

lim sup
k→+∞

|(Su)ξk ∩ Ω|
2εk

= lim sup
k→+∞

|(Su)ξk ∩ Ω|
2ξk

ξk
εk

= 0. (5.10)

Now, we estimate the second term on the right hand-side of (5.9). At almost all points
in Ω \ (Su)ξk there holds

|∇vk| =
1

2εk
exp

(
− dist (x, Su) − ξk

2εk

)
|∇ dist (x, Su)| =

1

2εk
exp

(
− dist (x, Su) − ξk

2εk

)
,

from which, using also the coarea formula we deduce

MMεk (vk,Ω \ (Su)ξk) =
1

2εk

∫
Ω\(Su)ξk

exp

(
− dist (x, Su) − ξk

εk

)
dx

=
1

2εk

∫ +∞

ξk

e
− t−ξk

εk Hn−1(∂Et) dt ,

(5.11)
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with Et := {x ∈ Ω: dist(x, Su) > t}. Next, having that

Hn−1(∂Et) =
d

dt

(∫ t

0
Hn−1(∂Es) ds

)
=

d

dt
|(Su)t ∩ Ω|,

integrating by parts first, and using the change of variable s = t−ξk
εk

we obtain

1

2εk

∫ +∞

ξk

e
− t−ξk

εk Hn−1(∂Et) dt

= − 1

2εk
|(Su)ξk | +

1

2ε2k

∫ +∞

ξk

e
− t−ξk

εk |(Su)t ∩ Ω|dt

= − 1

2εk
|(Su)ξk | +

∫ +∞

0
(s+ εk)e

−s |(Su)sεk+ξk ∩ Ω|
2(sεk + ξk)

ds.

(5.12)

Gathering together (5.9)–(5.12) we find

MMεk(vk,Ω) =
1

2εk
|(Su)ξk ∩ Ω| +

∫ +∞

0
(s+ εk)e

−s |(Su)sεk+ξk ∩ Ω|
2(sεk + ξk)

ds . (5.13)

From (5.4) it follows

lim sup
k→+∞

|(Su)sεk+ξk ∩ Ω|
2(sεk + ξk)

= Hn−1(Su ∩ Ω) .

This, together with the fact that
∫ +∞
0 (s+ εk)e

−s ds→ 1 as k → +∞, imply

lim sup
k→+∞

MMεk(vk,Ω) ≤ Hn−1(Su ∩ Ω) . (5.14)

Eventually, combining (5.8), (5.10) and (5.14) we infer (5.3).

5.3 Proof of Theorem 1.2

Step 1: Lower bound. Let εk ↘ 0 as k → +∞. We have to show that, for every sequence
((uk, vk))k≥1 ⊂ L1(Ω; S1) × L1(Ω) converging to (u, v) in L1(Ω; S1) × L1(Ω),

lim inf
k→+∞

ATS1
εk

(uk, vk) ≥ MSlift(u, v) . (5.15)

We may assume
sup
k∈N

ATS1
εk

(uk, vk) ≤ C < +∞ (5.16)

so that (uk, vk) ∈ AS1 , v = 1 a.e. in Ω and, up to a not relabelled subsequence,

lim inf
k→+∞

ATS1
εk

(uk, vk) = lim
k→+∞

ATS1
εk

(uk, vk),

lim inf
k→+∞

MMεk(vk,Ω) = lim
k→+∞

MMεk(vk,Ω).

From Theorem 2.3 and the decoupling property (2.2), it follows that

lim inf
k→+∞

ATS1
εk

(uk, vk) ≥
∫
Ω
|∇u|2 dx+ Hn−1(Su) ,

lim inf
k→+∞

∫
Ω
v2k|∇uk|2 dx ≥

∫
Ω
|∇u|2 dx ,

lim inf
k→+∞

MMεk(vk,Ω) ≥ Hn−1(Su) .
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In particular, from (5.16), u ∈ SBV 2(Ω; S1). Hence it remains to show

lim
k→+∞

MMεk(vk,Ω) ≥ m2[u]. (5.17)

For every k ≥ 1 we start by selecting a lifting φk ∈ W 1,2(Ω) of uk. Since |∇uk| = |∇φk|
we have

+∞ > C ≥ ATS1
εk

(uk, vk) =

∫
Ω

(
v2k|∇φk|2 + εk|∇vk|2 +

(vk − 1)2

4εk

)
dx .

Thus, using the coarea formula,

C ≥ MMεk(vk,Ω) ≥
∫
Ω

(1 − vk)|∇vk|dx =

∫ 1

0
(1 − t)Hn−1(∂∗F tk) dt (5.18)

for any k ≥ 1, where F tk := {x ∈ Ω : vk(x) ≤ t}. Let η′, η′′ ∈ (0, 1), η′ < η′′ be fixed. By
(5.18) and the mean value theorem there exists t(k) ∈ (η′, η′′) such that

C ≥ (1 − η′′)(η′′ − η′)Hn−1(∂∗F
t(k)
k ) . (5.19)

Moreover

C ≥
∫
Ω
v2k|∇φk|2 dx ≥ (η′)2

∫
Ω
χ
Ω\F t(k)

k

|∇φk|2 dx . (5.20)

Then, setting
ϕk := φkχΩ\F t(k)

k

∈ SBV 2(Ω),

we have Sϕk ⊂ ∂∗F
t(k)
k and, for the absolutely continuous parts of the gradients, ∇ϕk =

∇φkχΩ\F t(k)
k

and so, from (5.20) and (5.19),∫
Ω
|∇ϕk|2 dx+ Hn−1(Sϕk) ≤ C(η′, η′′) (5.21)

for some C(η′, η′′) > 0 depending on η′, η′′ and independent of k. Let also

uk := eiϕk = ukχΩ\F t(k)
k

+ (1, 0)χ
F

t(k)
k

,

which, by (5.19), are uniformly bounded in BV (Ω; S1). Since

|F t(k)k | → 0, (5.22)

the sequence (uk) weakly star converges to u in BV (Ω; S1). Hence, using (5.21), we can
apply Theorem 3.3 to the sequence (ϕk)k≥1 (with p = 2) and get, for a not-relabelled

subsequence, a Caccioppoli partition (Ei)i∈N of Ω, sequences (d
(i)
k )k≥1 ⊂ Z for any integer

i ≥ 1 and a lifting φ∞ ∈ GSBV 2(Ω) of u, such that

lim
k→+∞

(ϕk(x) − 2πd
(i)
k ) = φ∞(x) ∀i ∈ N, for a.e. x ∈ Ei ,

lim
k→+∞

|ϕk(x) − 2πd
(i)
k | = +∞ ∀i ∈ N, for a.e. x ∈ Ω \ Ei.

Again, using (5.22), the same holds for φk, i.e.,

lim
k→+∞

(φk(x) − 2πd
(i)
k ) = φ∞(x) ∀i ∈ N, for a.e. x ∈ Ei ,

lim
k→+∞

|φk(x) − 2πd
(i)
k | = +∞ ∀i ∈ N, for a.e. x ∈ Ω \ Ei.

(5.23)
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Then (5.17) follows if we show

lim inf
k→+∞

MM(vk,Ω) ≥ Hn−1(Sφ∞), (5.24)

since, being φ∞ a lifting of u, we have

Hn−1(Sφ∞) ≥ m2[u].

For any integer K ≥ 1 we consider the truncated function

φi,Kk := ((φk − 2πd
(i)
k ) ∧K) ∨ (−K) ∈W 1,2(Ω) , (5.25)

and
ϕi,Kk := φi,Kk χ

Ω\F t(k)
k

.

Since S
ϕi,Kk

⊂ ∂∗F
t(k)
k and 〚ϕi,Kk 〛 ≤ K, we have

|Dϕi,Kk |(Ω) =

∫
Ω
|∇ϕk|χ{|φk−2πd

(i)
k |<K} dx+

∫
S
ϕ
i,K
k

〚ϕi,Kk 〛 dHn−1

≤
∫
Ω
|∇ϕk|dx+KHn−1(∂∗F

t(k)
k ) ≤ C .

Hence, up to a subsequence (depending on K), (ϕi,Kk ) converges to some ϕi,K∞ in L1(Ω).

Moreover from (5.23) it holds ϕi,K∞ := (φ∞ ∧ K) ∨ (−K) in Ei and Ω \ Ei = F+
i ∪ F−

i

are such that ϕi,K∞ = ±K in F±
i . As |F t(k)k | → 0 it follows that φi,Kk converges to ϕi,K∞ in

L1(Ω). Hence the sequence ((φi,Kk , vk)) converges to (ϕi,K∞ , 1) in L1(Ω) × L1(Ω) and∫
A

(
v2k|∇φ

i,K
k |2 + εk|∇vk|2 +

(vk − 1)2

4εk

)
dx ≤ C ,

for any open set A ⊂ Ω, for some C > 0 independent of k. Thus, from the decoupling
property (2.2),

lim inf
k→+∞

∫
A
v2k|∇φ

i,K
k |2 dx ≥

∫
A
|∇ϕi,K∞ |2 dx ,

lim inf
k→+∞

MMεk(vk, A) ≥ Hn−1(S
ϕi,K∞

∩A).

(5.26)

In particular ϕi,K∞ ∈ SBV 2(Ω). We fix an integer N ≥ 1 and set, for all i = 1, . . . , N ,

ΣK
i := (S

ϕi,K∞
∩ ∂∗Ei) ∩ Ω , SKi := S

ϕi,K∞
\ ∂∗Ei ,

ΣN,K :=
N⋃
i=1

ΣK
i , SN,K :=

N⋃
i=1

SKi .

We now argue exactly as in the proof of Lemma 4.2, so, given δ ∈ (0, 1), after defining the
families of balls B and Bj (j = 1, . . . , 2N), we arrive at

∑
B∈B∩Bj

Hn−1(B ∩ SKj ) ≥ Hn−1(SKj ) − δHn−1(SN,K ∪ ΣN,K)

1 − δ
, (5.27)
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for all j = 1, . . . , N , and∑
B∈B∩BN+h

Hn−1(B ∩ ΣK
h ) ≥ Hn−1(ΣK

h ) − δHn−1(SN,K ∪ ΣN,K)

1 − δ
, (5.28)

for all h = 1, . . . , N . From (5.26) we know that, for all j = 1, . . . , N ,

lim inf
k→+∞

MMεk(vk, B) ≥ Hn−1(SKj ∩B) , (5.29)

for any B ∈ B ∩ Bj , and for all h = 1, . . . , N

lim inf
k→+∞

MMεk(vk, B) ≥ Hn−1(ΣK
h ∩B) , (5.30)

for any ball B ∈ B ∩ BN+h. So, summing (5.29) over all B ∈ B ∩ Bj and (5.30) over all
B ∈ B∩BN+h, and then over j, h respectively, we conclude again, using (5.27) and (5.28),

lim inf
k→+∞

MMεk(vk,Ω) = lim
k→+∞

MMεk(vk,Ω)

≥
N∑
j=1

Hn−1(SKj ) +
N∑
h=1

Hn−1(ΣK
h ) − 2δNHn−1(SN,K ∪ ΣN,K)

1 − δ

and by the arbitrariness of δ > 0,

lim
k→+∞

MMεk(vk,Ω) ≥ Hn−1(SN,K ∪ ΣN,K) .

The left hand-side in the above inequality is a limit, hence it does not depend on the
subsequence, and so in particular on K and N . Letting first N → +∞ and then K → +∞
we finally get

lim inf
k→+∞

MMεk(vk,Ω) ≥ Hn−1(Sφ∞) ,

and (5.17) follows.

Step 2: Upper bound. Let εk ↘ 0 and u ∈ SBV 2(Ω; S1). We have to find a sequence
((uk, vk)) ⊂ AS1 converging to (u, 1) in L1(Ω; S1) × L1(Ω) and

lim sup
k→+∞

ATS1
εk

(uk, vk) ≤ MSlift(u, 1) . (5.31)

We notice that we cannot follow the strategy used in the proof of the upper bound in The-
orem 1.1, since that construction cannot ensure the functions uk to belong to W 1,2(Ω;S1).

By Corollary 3.2 we can select a jump minimizing lifting φ ∈ GSBV 2(Ω) of u, u = eiφ

and
Hn−1(Sφ) = m2[u]. (5.32)

The main difference with the construction in Theorem 1.1 is that we will modify u in a
neighbourhood of Sφ instead of Su. We divide the proof into two cases.

Case 1: φ ∈ L∞(Ω). Let Ω̂, with Ω ⊂⊂ Ω̂ ⊂⊂ R2, be open. Since φ ∈ SBV 2(Ω) ∩
L∞(Ω), by Proposition 5.2 we can assume, without loss of generality, that φ ∈ SBV 2(Ω̂)
with

Hn−1(Sφ ∩ ∂Ω) = 0 , Hn−1(Sφ \ Sφ) = 0 , Hn−1(Sφ ∩K) = Mn−1(Sφ ∩K) , (5.33)
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for every compact set K ⊂ Ω̂. In this way, arguing as in [7,8] we can construct (φk, vk) ∈
W 1,2(Ω̂) ×W 1,2(Ω̂) such that (φk, vk) → (φ, 1) in L1(Ω̂) × L1(Ω̂) and

lim sup
k→+∞

ATεk(φk, vk) ≤ MS(φ, 1) . (5.34)

Next we let uk := eiφk ∈ W 1,2(Ω̂;S1), so that (uk, vk) → (u, 1) in L1(Ω̂;S1) × L1(Ω̂).
Moreover, from (5.32), (5.34), |∇uk| = |∇φk| and |∇u| = |∇φ| we get

ATεk(φk, vk) = ATS1
εk

(uk, vk) , MS(φ, 1) = MSlift(u, 1)

and so
lim sup
k→+∞

ATS1
εk

(uk, vk) ≤ MSlift(u, 1) .

Case 2: φ /∈ L∞(Ω). For N ∈ N, N ≥ 1 we let φ(N) := φ∧N ∨ (−N) ∈ L∞(Ω). Then,
as N → +∞, we have

φ(N) → φ in L1(Ω) , ∇φ(N) → ∇φ in L2(Ω;Rn) ,

so that

u(N) := eiφ
N → eiφ = u in L1(Ω; S1) , ∇u(N) → ∇u in L2(Ω;Rn×n) .

In addition,
Hn−1(Sφ(N)) ≤ Hn−1(Sφ) .

This in turn implies

lim sup
N→+∞

(∫
Ω
|∇φ(N)|2 dx+ Hn−1(Sφ(N))

)
≤

∫
Ω
|∇φ|2 dx+ Hn−1(Sφ)

≤
∫
Ω
|∇u|2 dx+m2[u].

(5.35)

For each N ≥ 1 we can argue as in case 1 and find a sequence (u
(N)
k , v

(N)
k ) → (u(N), 1) in

L1(Ω; S1) × L1(Ω) satisfying

lim sup
k→+∞

ATS1
εk

(u
(N)
k , v

(N)
k ) ≤

∫
Ω
|∇φ(N)|2 dx+ Hn−1(S(N)

φ ) . (5.36)

Combining (5.35) with (5.36) we have

lim sup
N→+∞

lim sup
k→+∞

ATS1
εk

(u
(N)
k , v

(N)
k ) ≤

∫
Ω
|∇u|2 dx+m2[u].

Now we conclude using a diagonal argument. Namely, for any fixed N ≥ 1 there exists
kN ≥ 1 such that for k ≥ kN :

• ∥u(N)
k − u(N)∥L1(Ω;S1) + ∥v(N)

k − 1∥L1(Ω) ≤ 1
N ;

• ATS1
εk

(u
(N)
k , v

(N)
k ) ≤

∫
Ω
|∇φ(N)|2 dx+ Hn−1(S(N)

φ ) +
1

N
.

Without loss of generality we may assume kN+1 ≥ kN . Now, for every k ≥ 1, we take

(uk, vk) := (u
(N)
k , v

(N)
k ) if k ∈ [kN , kN+1) ∩ N and the proof is concluded.
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