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Abstract. We prove local Lipschitz regularity for weak solutions to a parabolic orthotropic p-Laplacian-

type equation in the Heisenberg group Hn, for the range 2 ≤ p ≤ 4.
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1. Introduction

In this paper, we establish the local Lipschitz regularity of weak solutions to a quasilinear, degenerate
parabolic equation in the Heisenberg group Hn. Specifically, we extend the results of [13] to the non-
stationary setting, adapting the methodologies introduced in [8].

Given a domain Ω in the Heisenberg group Hn and T > 0, we consider the equation

(1.1) ∂tu = divH(Df(∇Hu)), in Q := Ω× (0, T ),

where f : R2n → R is defined as

(1.2) f(z) =
1

p

n∑
i=1

(
z2i + z2i+n

) p
2 ,

with p ≥ 1, and Df = (D1f, . . . ,D2nf) denotes its Euclidean 2n-dimensional gradient. Here, ∇Hu =
(X1u, . . . ,X2nu) represents the horizontal gradient of a weak solution u ∈ Lp((0, T ), HW 1,p(Ω)), where
HW 1,p(Ω) denotes the Sobolev space associated with ∇H .
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If we define

λi(z) =
(
z2i + z2i+n

) p−2
2 , ∀i ∈ {1, . . . , n},

λi(z) =
(
z2i−n + z2i

) p−2
2 , ∀i ∈ {n+ 1, . . . , 2n},

then equation (1.1) can be rewritten as

(1.3) ∂tu =

2n∑
i=1

Xi(λi(∇Hu)Xiu), in Q = Ω× (0, T ).

We prove the local Lipschitz regularity for solutions in the range 2 ≤ p ≤ 4 and, as byproducts, the local Lq

integrability both for the non-horizontal and the time derivatives of solutions.
Our main result is the following.

Theorem (Main Theorem). Let 2 ≤ p ≤ 4. If u ∈ Lp((0, T ), HW 1,p(Ω)) is a weak solution to (1.3) in
Q = Ω× (0, T ), then

∇Hu ∈ L∞
loc(Q,R2n),

and, for any B(x0, r)× (t0 − µ 4r2, t0) ⊂ Q, there exists a constant c = c(n, p, L) > 0 such that

(1.4) sup
B(x0,r)×(t0−µ r,t0)

|∇Hu| ≤ cµ
1
2 max

{(ˆ t0

t0−µ 4r2

ˆ
B(x0,r)

|∇Hu|p dxdt
) 1

p

, µ
p

2(2−p)

}
.

Moreover ∂tu, Zu ∈ Lq
loc(Ω), for any 1 ≤ q < ∞.

The present paper, along with [7] and [8], represents the first instances in the literature that study
higher regularity for weak solutions of non-stationary degenerate quasilinear equations in the sub-Riemannian
setting. In these references, the authors investigate the regularity of solutions to equation (1.1), modeled on
the p-Laplace equation, i.e. when

f(z) =
1

p

(
δ + |∇Hu|2

) p
2 .

In [7], the authors prove the smoothness of solutions in the non-degenerate case, namely δ > 0, while in [8],
they establish the Lipschitz regularity for solutions in the degenerate case (δ = 0), with 2 ≤ p ≤ 4. Both
studies are based on techniques introduced by Zhong in [21], where the optimal regularity for solutions in
the stationary case is addressed.

However, none of these results apply to our equation (1.1). Indeed, all of them rely on the fact that the
loss of ellipticity of the operator divHDf occurs only at a single point z = 0, whereas equation (1.3) is much
more degenerate, as it degenerates in the unbounded set

n⋃
i=1

{λi(z) = 0} =

n⋃
i=1

{
z2i + z2i+n = 0

}
⊂ R2n,

which is the union of 2n− 2 dimensional submanifolds. For this reason, we do not expect Hölder regularity
of the gradient in the spatial variable, but only boundedness of the gradient. Such result, in the Euclidean
setting, was proven in [4]: Theorem 1 shows that this is also the case in the setting of the Heisenberg group
for the range 2 ≤ p ≤ 4. We believe that the boundedness of the gradient is true for the entire range
1 < p < ∞, but it requires a different technique. For a comprehensive overview of degenerate parabolic
equations in the Euclidean setting, modeled on the p-Laplacian, we refer to [17].

The study of the stationary case of equation (1.3), motivated by its relation to the optimal transport
problem with congestion in the Heisenberg group (see [12] and [14]), was recently addressed in [13], where
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the authors proved the local Lipschitz regularity for solutions for the range p ≥ 2, adapting to the orthotropic
case the techniques introduced by Zhong in [21].

Regarding the stationary case of equation (1.3) in the Euclidean setting, it is worth mentioning [5], where
the Lipschitz regularity for solutions is addressed for q ≥ 2, even in a more degenerate case, and [16] for an
alternative proof based on viscosity methods. In the particular case of the plane, Bousquet and Brasco [1]
proved that weak solutions are C1 for 1 < p < ∞. Moreover, derivatives of solutions have a logarithmic
modulus of continuity: see [20] for the case 1 < q < 2, and [19] for the case q ≥ 2. See also [2] and [3] for
the same result in the anisotropic case.

The proof of Theorem 1 relies on adapting the results from [13] to the parabolic setting and using a
Poincaré-type inequality for smooth functions originally established in [15]. As a first step, we approximate
equation (1.3) with a uniformly elliptic one through the Riemannian approximation of the Heisenberg group.
The smoothness of solutions for this approximating equation directly follows from standard regularity results
for parabolic equations.

The main ingredient in the proof of the local Lipschitzity for solutions is the Caccioppoli-type estimate
for the first derivatives of approximating solutions in Theorem 6.1, which is uniform in the approximating
parameters. A key result in proving this Caccioppoli-type inequality is the aforementioned Poincaré-type
inequality for smooth functions (Lemma 5.3). This inequality allows us to establish a uniform local bound
for the non-horizontal derivative of approximating solutions and is the only point in the paper where we
impose the limited range 2 ≤ p ≤ 4.

From Theorem 6.1, a local uniform bound for the gradient of the approximating solutions follows through
a Moser-type iteration, leading to the Lipschitz regularity for solutions as we pass to the limit. Additionally,
the local Lq integrability for the non-horizontal derivative of solutions, for any 1 < q < ∞, easily follows
by letting the approximating parameters tend to zero. Moreover, using a standard argument, where the
Heisenberg setting plays no role, we also establish the local Lq integrability of the time derivative of solutions,
for any 1 < q < ∞.

The plan of the paper is as follows. In Section 2, we introduce the Heisenberg group and its Riemannian
approximation, establishing the notations used throughout the paper. In Section 3, we approximate our
equation with a uniformly elliptic one, using the Riemannian approximation of the Heisenberg group. Section
4 is dedicated to proving Caccioppoli-type inequalities for derivatives of approximating solutions, which
involve the derivative of solutions in the non-horizontal direction. In Section 5, we establish a uniform
(in the approximating parameters) integrability estimate for the vertical derivative of the approximating
solutions, using a Poincaré-type inequality. In Section 6, we use the results from the previous section to
prove the main Caccioppoli-type inequality for the first derivatives of approximating solutions (Theorem
1.3). This inequality is uniform in the approximating parameters and does not involve the derivative of
approximating solutions in the non-horizontal direction. In Section 7, we iterate the previous Caccioppoli-
type inequality using the Moser iteration scheme to obtain a local uniform bound on the L∞ norm of the
approximating solutions. Section 8 focuses on a uniform integrability estimate for the time derivative of
approximating solutions. Finally, in Section 9, we prove the main theorem by letting the approximating
parameters tend to zero.

2. Preliminaries

In this section we fix our notation: we introduce the Heisenebrg group Hn and we collect some preliminary
results that will be used throughout the rest of the paper.
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2.1. The Heisenberg group. Let n ≥ 1, we identify the Heisenberg group Hn with the Euclidean space
R2n+1, equipped with the group multiplication

xy =

(
x1 + y1, . . . , x2n + y2n, z + s+

1

2

n∑
i=1

(xiyn+i − xn+iyi)

)
,

for any two points x = (x1, . . . , x2n, z), y = (y1, . . . , y2n, s) ∈ Hn.
The left invariant vector fields corresponding to the canonical basis of the Lie algebra

Xi = ∂xi −
xn+i

2
∂t, Xn+i = ∂xn+i +

xi

2
∂t, 1 ≤ i ≤ n,

are also called horizontal vector fields and we denote by ∇Hu =
∑2n

i=1 XiuXi
∼= (X1u, . . . ,X2nu) the hori-

zontal gradient of any smooth function u : Hn → R. Given a smooth horizontal vector field ϕ =
∑2n

i=1 ϕiXi,

its horizontal divergence is divHϕ =
∑2n

i=1 Xiϕi.
The only non-trivial commutator

Z = ∂z = [Xi, Xn+i] = XiXn+i −Xn+iXi, 1 ≤ i ≤ n,

is also called vertical vector field. We denote by N := 2n+ 2 the homogeneous dimension of Hn.
Let us introduce the Carnot-Carathéodory distance d. An absolutely continuous curve γ : [0, 1] → R2n+1

is said to be horizontal if its tangent vector γ̇(t) ∈ span (X1(γ(t)), . . . , X2n(γ(t))), at almost every t ∈ [0, 1].
Due to the stratification of the space the Hörmander condition is satisfied, and the Rashevsky-Chow’s
theorem guarantees that any couple of points can be joined with an horizontal curve [11]. It is then possible
to give the following definition of distance. Given x, y ∈ Hn, the Carnot-Carathéodory distance between
them is defined as

d(x, y) := inf

{ˆ 1

0

|γ̇(t)| dt : γ is horizontal, γ(0) = x, γ(1) = y

}
,

where |·| denotes the norm associated with the left-invariant sub-Riemannian metric g, defined by g (Xi, Xj) =
δi,j , for i, j = 1, . . . , 2n.

All of the balls are defined with respect to the Carnot-Carathéodory distance:

B(x, r) = {y ∈ Hn : d(x, y) < r}, x ∈ Hn, r > 0.

The Haar measure in Hn is the Lebesgue measure of R2n+1.
If 1 ≤ p < ∞ and Ω ⊂ Hn, the horizontal Sobolev space HW 1,p(Ω) is the Sobolev space associated

with the p-energy EΩ,p(u) =
1
p

´
Ω
|∇Hu|p dx, i.e. it consists of functions u ∈ Lp(Ω) such that the horizontal

distribution gradient ∇Hu is in Lp(Ω,R2n).
The space HW 1,p(Ω) is a Banach space with respect to the norm

∥u∥HW 1,p(Ω) = ∥u∥Lp(Ω) + ∥∇Hu∥Lp(Ω,R2n).

The space HW 1,p
0 (Ω) is the closure of C∞

0 (Ω) in HW 1,p(Ω) with this norm.

Definition 2.1. Let (x0, t0) ∈ Ω × (0, T ). For r, µ > 0, the parabolic cylinder Qµ,r(x0, t0) ⊂ Q of center
(x0, t0) is the set

Qµ,r(x0, t0) = B(x0, r)× (t0 − µ r2, t0).

We call parabolic boundary of the cylinder Qµ,r(x0, t0) ⊂ Q the set

∂Qµ,r(x0, t0) := B(x0, r)× {t0 − µ r2} ∪ ∂B(x0, r)× [t0 − µ r2, t0).
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2.2. Riemannian approximation of the Heisenberg group. The left-invariant sub-Riemannian struc-
ture ofHn arises as the pointed Hausdorff-Gromov limit of Riemannian manifolds, in which the non-horizontal
direction is increasingly penalized.

Let ε > 0, we denote by gε the left-invariant Riemannian metric for which the frame defined by

Xε
1 = X1, ..., X

ε
2n = X2n, X

ε
2n+1 = εZ

is orthonormal.
It has been proved by Gromov in [18] that the left invarian Riemannian manifolds (Hn, gε) converge to

the left invariant sub-Riemannian manifold (Hn, g), as ε → 0+, in the pointed Hausdorff-Gromov sense, i.e.
the gε-Riemannian balls Bε satisfy Bε → B, as ε → 0+, in the Hausdorff-Gromov sense.

If u : Hn → R is any smooth function, the gradient associated with the Riemannian metric gε is

∇εu :=

2n+1∑
i=1

Xε
i uX

ε
i =

2n∑
i=1

XiuXi + ε2ZuZ ∼= (X1u, . . . ,X2nu, εZu) .

For a smooth vector field ϕ =
∑2n+1

i=1 ϕiX
ε
i will also denote

divεϕ =
2n+1∑
i=1

Xε
i ϕi.

Formally we have

∇εu → ∇Hu, divεϕ → divHϕ, as ε → 0+.

We note explicitly that, again formally, we have

|∇εu|ε := |∇εu|gε =

2n∑
i=1

(Xiu)
2 + ε2(Zu)2 → |∇Hu|, as ε → 0+.

Given Ω ⊂ Hn, we will adopt the unconventional notation W 1,p,ε(Ω) to indicate the Sobolev space associated
with the p-energy EΩ,p,ε(u) =

1
p

´
Ω
|∇εu|p dx, i.e. the space of functions u ∈ Lp(Ω) such that the distribution

gradient ∇εu is in Lp(Ω,R2n+1).
The space W 1,p,ε(Ω) is a Banach space with respect to the norm

∥u∥W 1,p,ε(Ω) = ∥u∥Lp(Ω) + ∥∇εu∥Lp(Ω,R2n+1).

Definition 2.2. Let (x0, t0) ∈ Ω× (0, T ). For r, µ > 0, the Riemannian parabolic cylinder Qε
µ,r(x0, t0) ⊂ Q

of center (x0, t0) is the set

Qε
µ,r(x0, t0) = Bε(x0, r)× (t0 − µ r2, t0).

We call parabolic boundary of the cylinder Qε
µ,r(x0, t0) ⊂ Q the set

∂Qε
µ,r(x0, t0) := Bε(x0, r)× {t0 − µ r2} ∪ ∂Bε(x0, r)× [t0 − µ r2, t0).

The following Sobolev embedding theorem is important for the Moser iteration.

Lemma 2.3. Let v ∈ C∞(Q) such that, for any 0 < t < T , the function v(·, t) has compact support in
Ω× {t}. Then, there exists c = c(n) > 0 such that, for any ε ∈ [0, 1], one has

∥v∥
L

2N
N−2

,2
(Q)

≤ c∥∇εv∥L2,2(Q,R2n+1).

We note that, as ε decreases to zero, the background geometry shifts from Riemannian to sub-Riemannian
but the constant C in the Lemma 2.3 is stable with respect to ε, see [6].
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3. The approximating equation

The proof of Theorem 1 is based on uniform a-priori estimates for solutions of a regularized partial differ-
ential equation that approximate (1.3). The approximation procedure we introduce below is a regularization
scheme widely used in literature to prove a-priori estimates for weak solutions of PDEs in the Heisenebrg
group and it strongly relies on the Riemannian approximation of the Heisenebrg group, see for instance [7,
8, 9, 10] and [13].

Let Ω ⊂ Hn be a domain and T > 0 and let consider the equation

(3.1) ∂tu = divH(Df(∇Hu)), in Q = Ω× (0, T ),

where f : R2n → R is the function

f(z) =
1

p

n∑
i=1

(
z2i + z2i+n

) p
2 ,

p ≥ 1. If we denote by

λi(z) =
(
z2i + z2i+n

) p−2
2 , ∀i ∈ {1, . . . , n},

λi(z) =
(
z2i−n + z2i

) p−2
2 , ∀i ∈ {n+ 1, . . . , 2n},

then

Df(z) =
(
λ1(z)z1, . . . , λ2n(z)z2n

)
and therefore equation (1.1) reads as

∂tu =

2n∑
i=1

Xi(λi(∇Hu)Xiu), in Q = Ω× (0, T ),

and it satisfies the following structure condition:

n∑
i=1

λi(z)
(
ξ2i + ξ2i+n

)
≤ ⟨D2f(z)ξ, ξ⟩ ≤ (p− 1)

n∑
i=1

λi(z)
(
ξ2i + ξ2i+n

)
.

We say that a function u ∈ Lp
(
(0, T ), HW 1,p(Ω)

)
is a weak solution of (3.1) if

(3.2)

ˆ T

0

ˆ
Ω

u ∂tϕ dxdt =

ˆ T

0

ˆ
Ω

2n∑
i=1

Dif(∇Hu)Xiϕ dxdt,

for every ϕ ∈ C∞
0 (Q).

As in [13], we denote by fδ : R2n+1 → R the function

fδ(z) =
1

p

n∑
i=1

(
δ + z2i + z2i+n + z22n+1

) p
2 ,

with δ > 0, and we consider the Riemannian parabolic equation

(3.3) ∂tu = divε(Dfδ(∇εu)),

where Dfδ denotes the Euclidean gradient of fδ in R2n+1 and divε and ∇ε are the Riemannian divergence
and gradient, respectively, see Subsection 2.2.
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If we denote by

λi,δ(z) := (δ + z2i + z2i+n + z22n+1)
(p−2)/2, ∀i ∈ {1, . . . , n},

λi,δ(z) := (δ + z2i−n + z2i + z22n+1)
(p−2)/2, ∀i ∈ {n+ 1, . . . , 2n},

λ2n+1,δ(z) :=

n∑
i=1

λi,δ(z),

(3.4)

then the gradient of fδ can be written as follows

(3.5) Dfδ(z) =
(
λ1,δ(z)z1, · · · , λ2n,δ(z)z2n, λ2n+1,δ(z)z2n+1

)
.

Hence, the explicit expression of the regularized equation becomes

∂tu =

2n+1∑
i=1

Xε
i (λi,δ(∇εu)X

ε
i u),

and the structure condition

(3.6)

n∑
i=1

λi,δ(z)
(
ξ2i + ξ2i+n + ξ22n+1

)
≤ ⟨D2fδ(z)ξ, ξ⟩ ≤ L

n∑
i=1

λi,δ(z)
(
ξ2i + ξ2i+n + ξ22n+1

)
,

for any ξ ∈ R2n+1, where L = L(n, p) > 1 is a constant.

Definition 3.1 (ε-weak solution). We say that a function uε ∈ Lp
(
(0, T ),W 1,p,ε(Ω)

)
is a weak solution to

the equation (3.3) if

(3.7)

ˆ T

0

ˆ
Ω

u ∂tϕ dxdt =

ˆ T

0

ˆ
Ω

2n+1∑
i=1

Difδ(∇εu)X
ε
i ϕ dxdt,

for any ϕ ∈ C∞
0 (Q).

Since (3.3) is strongly parabolic for every δ, ε > 0, the solutions uδ,ε are smooth in every compact subset
K ⊂ Q0 and they will converge uniformly on compact subsets to the solution u, see Section 9.

In the next lemma collect the partial differential equations solved by the first derivatives of approximating
solutions Xε

ℓuδ,ε, with ℓ ∈ {1, . . . , 2n+ 1}.

Lemma 3.2. Let u be a weak solution of (3.3) in Q and let us denote by vℓ = Xε
ℓuδ,ε, with ℓ = 1, . . . , 2n+1.

If ℓ ∈ {1, . . . , 2n}, then the function vℓ solves the equation

(3.8) ∂tvℓ =

2n+1∑
i,j=1

Xε
i

(
D2

i,jfδ(∇εu)X
ε
ℓX

ε
j u
)
+ sℓZ(Dℓ+sℓnfδ(∇εu)),

where sℓ = (−1)[
ℓ

n+1 ] and [·] denotes the floor function;
If ℓ = 2n+ 1, then v2n+1 solves

(3.9) ∂tv2n+1 =

2n+1∑
i,j=1

Xε
i (D

2
i,jfδ(∇εu)X

ε
ℓX

ε
j u).

For the proof see [7, Lemma]
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4. A Caccioppoli-type inequality for the first derivatives of approximating solutions

The aim of the next three sections is to get higher regularity estimates for weak solutions uδ,ε to (3.3) that
are stable in ε and δ. Through these sections, with an abuse of notation, we will drop the indexes ε, δ and
we will denote by u a weak solution to (3.3). Moreover, we denote by c a positive constant, that may vary
from line to line. Except explicitly being specified, it depends only on the dimension n and on the constants
p and L in the structure condition (3.6). However, it does not depend on the approximating parameters ε
and δ, thus it does not degenerate as ε, δ → 0.

We start with a uniform Caccioppoli-type estimates for the first derivatives of approximating solutions u,
which depends also on the vertical derivatives of such solutions Zu. The term containing the derivative zu
will be removed in Theorem 6.1.

Lemma 4.1. Let u be a weak solution of (3.3) in Q. There exists c = c(n, p, L) > 0 such that, for any
β ≥ 0 and any non-negative function η ∈ C1([0, T ], C∞

0 (Ω)), vanishing on the parabolic boundary of Q, one
has

(4.1)

1

β + 2
sup

0<t<T

ˆ
Ω

η2(δ + |∇εu|2)
β+2
2 dx

+

ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)
(
|∇εX

ε
i u|2 + |∇εX

ε
n+iu|2 + |∇εX

ε
2n+1u|2

)
dxdt

≤ c(β + 1)

ˆ T

0

ˆ
Ω

(
|∇εη|2 + η|Zη|

)
(δ + |∇εu|2)

β+2
2

n∑
i=1

λi,δ(∇εu) dxdt

+
2

β + 2

ˆ T

0

ˆ
Ω

η|∂tη|(δ + |∇εu|2)
β+2
2 dx

+ c(β + 1)2
ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)|Zu|2 dxdt.

Proof. We fix η ∈ C1([0, T ], C∞
0 (Ω)) and we want to use ϕ = η2

(
δ + |∇εu|2

) β
2 Xε

ℓu, with ℓ ∈ {1, . . . , 2n+1}
as test function in the weak formulation of the equations solved by the first derivatives, i.e. the weak
formulation of (3.8) and (3.9).

If ℓ ∈ {1, . . . , 2n}, we use ϕ as test test function in (3.8) and, through an integration by parts in the right
hand side, we obtain

1

2

ˆ T

0

ˆ
Ω

η2
(
δ + |∇εu|2

) β
2 ∂t

[
(Xε

ℓu)
2
]
dxdt

+

2n+1∑
i,j=1

ˆ T

0

ˆ
Ω

D2
i,jfδ(∇εu)X

ε
ℓX

ε
j uX

ε
i

(
η2
(
δ + |∇εu|2

) β
2 Xε

ℓu

)
dxdt

= −sℓ

ˆ T

0

ˆ
Ω

Dℓ+sℓnfδ(∇εu)Z

(
η2
(
δ + |∇εu|2

) β
2 Xε

ℓu

)
dxdt.

We compute Xε
i

(
η2
(
δ + |∇εu|2

) β
2 Xε

ℓu

)
in the latter equation and, using the rule

2n+1∑
i=1

D2
i,jfδ(∇εu)X

ε
i X

ε
ℓu =

2n+1∑
i=1

D2
i,jfδ(∇εu)X

ε
ℓX

ε
i − sℓD

2
ℓ+sℓn,j

fδ(∇εu)Zu,
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we obtain that for every ℓ = 1, . . . , 2n it holds

(4.2)

1

2

ˆ T

0

ˆ
Ω

η2
(
δ + |∇εu|2

) β
2 ∂t

[
(Xε

ℓu)
2
]
dxdt

+

ˆ T

0

ˆ
Ω

η2
(
δ + |∇εu|2

) β
2

2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
ℓX

ε
j uX

ε
ℓX

ε
i u dxdt

+

ˆ T

0

ˆ
Ω

η2Xε
ℓu

2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
ℓX

ε
j uX

ε
i

((
δ + |∇εu|2

) β
2

)
dxdt

= −2

ˆ T

0

ˆ
Ω

ηXε
ℓu(δ + |∇εu|2)

β
2

2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
ℓX

ε
j uX

ε
i η dxdt

+ sℓ

ˆ T

0

ˆ
Ω

η2
(
δ + |∇εu|2

) β
2

2n+1∑
j=1

D2
ℓ+sℓn,j

fδ(∇εu)X
ε
ℓX

ε
j uZu dxdt

− sℓ

ˆ T

0

ˆ
Ω

Dℓ+sℓnfδ(∇εu)Z
(
η2(δ + |∇εu|2)

β
2 Xε

ℓu
)

dxdt = I1ℓ + I2ℓ + I3ℓ .

If ℓ = 2n+ 1, we use ϕ = η2
(
δ + |∇εu|2

) β
2 Xε

ℓu as test function in the weak formulation of (3.9). Again
integrating by parts and computing the derivative we obtain

(4.3)

1

2

ˆ T

0

ˆ
Ω

η2
(
δ + |∇εu|2

) β
2 ∂t

[
(Xε

2n+1u)
2
]
dxdt

+

ˆ T

0

ˆ
Ω

η2
(
δ + |∇εu|2

) β
2

2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
2n+1X

ε
j uX

ε
2n+1X

ε
i u dxdt

+

ˆ T

0

ˆ
Ω

η2Xε
2n+1u

2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
2n+1X

ε
j uX

ε
i

((
δ + |∇εu|2

) β
2

)
dxdt

= −2

ˆ T

0

ˆ
Ω

ηXε
2n+1u(δ + |∇εu|2)

β
2

2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
2n+1X

ε
j uX

ε
i η dxdt =: I12n+1.

Since the left hand side is the same for all values of ℓ = 1, . . . , 2n + 1, we will handle together the last
integral in it: computing the derivative and using again the rule

(4.4)

2n+1∑
k=1

Xε
i X

ε
kuX

ε
ku =

2n+1∑
k=1

Xε
kX

ε
i uX

ε
ku+ siZuXε

i+sinu,
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we obtain

(4.5)

ˆ T

0

ˆ
Ω

η2Xε
ℓu

2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
ℓX

ε
j uX

ε
i

((
δ + |∇εu|2

) β
2

)
dxdt

= β

ˆ
Ω

η2
(
δ + |∇εu|2

) β−2
2

2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
ℓX

ε
j uX

ε
ℓu

2n+1∑
k=1

Xε
kX

ε
i uX

ε
kudx

+ siβ

ˆ
Ω

η2
(
δ + |∇εu|2

) β−2
2 Xε

ℓuZu

2n∑
i,j=1

D2
i,jfδ(∇εu)X

ε
ℓX

ε
j uX

ε
i+sinudx

where we recall that si = (−1)[
i

n+1 ], i = 1, . . . , 2n.
We denote by Iℓ4 the last integral in the right hand side of (4.5) and we set I22n+1 = I32n+1 = 0. Using

(4.5) in (4.2) and (4.3) and summing up over ℓ = 1, . . . , 2n+ 1 we obtain:

1

β + 2

ˆ T

0

ˆ
Ω

η2∂t

[
(δ + |∇εu|2)

β
2 +1
]
dxdt

+

ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

2n+1∑
i,j,ℓ=1

D2
i,jfδ(∇εu)X

ε
ℓX

ε
j uX

ε
ℓX

ε
i u dxdt

+ β

ˆ
Ω

η2
(
δ + |∇εu|2

) β−2
2

2n+1∑
i,j=1

D2
i,jfδ(∇εu)

2n+1∑
ℓ=1

Xε
ℓX

ε
j uX

ε
ℓu

2n+1∑
k=1

Xε
kX

ε
i uX

ε
kudx

=

2n+1∑
ℓ=1

(
Iℓ1 + Iℓ2 + Iℓ3 − Iℓ4

)
Using the structure condition (3.6) and the fact that the third term in the left-hand side is always positive,
it follows that

(4.6)

1

β + 2

ˆ T

0

ˆ
Ω

η2∂t

[
(δ + |∇εu|2)

β
2 +1
]
dxdt

+

ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)
(
|∇εX

ε
i u|2 + |∇εX

ε
n+iu|2 + |∇εX

ε
2n+1u|2

)
dxdt

≤
2n+1∑
ℓ=1

(
Iℓ1 + Iℓ2 + Iℓ3 + |I4|ℓ

)
.

The structure condition (3.6) and the Young inequality imply

(4.7)

2n+1∑
ℓ=1

I1ℓ ≤ 2

ˆ T

0

ˆ
Ω

η(δ + |∇εu|2)
β+1
2

2n+1∑
ℓ=1

∣∣∣∣∣∣
2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
ℓX

ε
j uX

ε
i η

∣∣∣∣∣∣ dxdt

≤ τ

ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)
(
|∇εX

ε
i u|2 + |∇εX

ε
n+iu|2 + |∇εX

ε
2n+1u|2

)
dxdt

+
c

τ

ˆ T

0

ˆ
Ω

|∇εη|2(δ + |∇εu|2)
β+2
2

n∑
i=1

λi,δ(∇εu) dxdt.
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As for Iℓ2, again the structure condition (3.6) and the Young inequality implies that

(4.8)

2n+1∑
ℓ=1

I2ℓ ≤ τ

ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)
(
|∇εX

ε
i u|2 + |∇εX

ε
n+iu|2 + |∇εX

ε
2n+1u|2

)
dxdt

+
c

τ

ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)|Zu|2 dxdt.

Let us estimate I3ℓ , for any ℓ ∈ {1, . . . , 2n+ 1}. Computing the derivative and integrating by parts, one has

I3ℓ =− 2sℓ

ˆ T

0

ˆ
Ω

ηZηDℓ+sℓnfδ(∇εu)(δ + |∇εu|2)
β
2 Xε

ℓu dxdt

− sℓβ

ˆ T

0

ˆ
Ω

η2Xε
ℓuDℓ+sℓnfδ(∇εu)(δ + |∇εu|2)

β−2
2

2n+1∑
k=1

Xε
kuX

ε
kZu dxdt

− sℓ

ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2 Dℓ+sℓnfδ(∇εu)X

ε
ℓZu dxdt

=− 2sℓ

ˆ T

0

ˆ
Ω

ηZηDℓ+sℓnfδ(∇εu)(δ + |∇εu|2)
β
2 Xε

ℓu dxdt

+ sℓβ

2n+1∑
k=1

ˆ T

0

ˆ
Ω

Xε
k

(
η2Xε

ℓuDℓ+sℓnfδ(∇εu)(δ + |∇εu|2)
β−2
2 Xε

ku
)
Zu dxdt

+ sℓ

ˆ T

0

ˆ
Ω

Xε
ℓ

(
η2(δ + |∇εu|2)

β
2 Dℓ+sℓnfδ(∇εu)

)
Zu dxdt.

Therefore, computing derivatives and using commutation rules analogous to (4.4) in the last two integrals,
using the structure condition (3.6), one has

(4.9)

2n+1∑
ℓ=1

I3ℓ ≤τ

ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)
(
|∇εX

ε
i u|2 + |∇εX

ε
n+iu|2 + |∇εX

ε
2n+1u|2

)
dxdt

+ c(β + 1)

ˆ T

0

ˆ
Ω

(
|∇εη|2 + η|Zη|

)
(δ + |∇εu|2)

β+2
2

n∑
i=1

λi,δ(∇εu) dxdt

+
c(β + 1)2

τ

ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)|Zu|2 dxdt.

In the end,

(4.10)

2n+1∑
ℓ=1

|I4ℓ | ≤τ

ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)
(
|∇εX

ε
i u|2 + |∇εX

ε
n+iu|2 + |∇εX

ε
2n+1u|2

)
dxdt

+
c(β + 1)2

τ

ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)|Zu|2 dxdt.

The thesis follows putting together (4.6), (4.7), (4.8), (4.9) and (4.10), choosing for instance τ = 1
8

and using the Leibniz rule on the first term in the left hand side, eventually redefining the constant c =
c(n, p, L). □
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5. An integrability estimate for the vertical derivative of the approximating solutions

In this section we prove a uniform integrability estimate for the vertical derivative of approximating
solutions Zu, see Proposition 5.3. We will use it in the next section to remove the presence of the term
containing Zu in (4.1), see Theorem 6.1.

The first result we need to prove Lemma 5.3 is the following uniform and standard Caccioppoli-type
inequality for Zu.

Lemma 5.1. Let u be a weak solution of (3.3) in Q. For any β ≥ 0 and any non-negative function
η ∈ C1([0, T ], C∞

0 (Ω)), vanishing on the parabolic boundary of Q, one has

(5.1)

ˆ T

0

ˆ
Ω

η2|Zu|β
n∑

i=1

λi,δ(∇εu)
(
(Xε

i Zu)2 + (Xε
n+iZu)2 + (Xε

2n+1Zu)2
)
dxdt

≤ 2L2

(β + 1)2

ˆ T

0

ˆ
Ω

|∇εη|2|Zu|β+2
n∑

i=1

λi,δ(∇εu) dxdt+
2

(β + 1)2

ˆ T

0

ˆ
Ω

η|∂tη||Zu|β+2 dxdt.

Proof. We use ϕ = η2|Zu|βZu as a test function in the equation satisfied by Zu, i.e. (3.9) with ε = 1, to
obtain

ˆ T

0

ˆ
Ω

∂tZuη2|Zu|βZu dxdt =

ˆ T

0

ˆ
Ω

2n+1∑
i,j=1

Xε
i (D

2
i,jfδ(∇εu)X

ε
jZu)η2|Zu|βZu dxdt.(5.2)

Integrating by parts, the left-hand side of (5.2) can be expressed as
ˆ T

0

ˆ
Ω

η2∂tZu|Zu|βZu dxdt =
1

β + 2

ˆ T

0

ˆ
Ω

η2∂t
(
|Zu|β+2

)
dxdt = − 2

β + 2

ˆ T

0

ˆ
Ω

η∂tη|Zu|β+2 dxdt.

An integration by parts in the right-hand side of (5.2) gives

ˆ T

0

ˆ
Ω

2n+1∑
i,j=1

Xε
i (D

2
i,jfδ(∇εu)X

ε
jZu)η2|Zu|βZu dxdt =

−
ˆ T

0

ˆ
Ω

2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
jZuXε

i (η
2|Zu|βZu) dxdt

= −2

ˆ T

0

ˆ
Ω

η|Zu|βZu

2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
jZuXε

i η dxdt

− (β + 1)

ˆ T

0

ˆ
Ω

η2|Zu|β
2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
jZuXε

i Zu dxdt.

Combining the previous equations we obtain

(β + 1)

ˆ T

0

ˆ
Ω

η2|Zu|β
2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
jZuXε

i Zu dxdt

= −2

ˆ T

0

ˆ
Ω

η|Zu|βZu

2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
jZuXε

i η dxdt+
2

β + 2

ˆ T

0

ˆ
Ω

η∂tη|Zu|β+2 dxdt.



13

The structure condition (3.6) and the Young inequality imply

ˆ T

0

ˆ
Ω

η2|Zu|β
n∑

i=1

λi,δ(∇εu)
(
(Xε

i Zu)2 + (Xε
n+iZu)2 + (Xε

2n+1Zu)2
)
dxdt

≤ 2

(β + 1)

ˆ T

0

ˆ
Ω

η|Zu|β+1

∣∣∣∣∣∣
2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
jZuXε

i η

∣∣∣∣∣∣ dxdt+ 2

(β + 1)2

ˆ T

0

ˆ
Ω

η|∂tη||Zu|β+2 dxdt

≤ τ

2

ˆ T

0

ˆ
Ω

η2|Zu|β
n∑

i=1

λi,δ(∇εu)
(
(Xε

i Zu)2 + (Xε
n+iZu)2 + (Xε

2n+1Zu)2
)
dxdt

+
2L2

τ(β + 1)2

ˆ T

0

ˆ
Ω

|∇εη|2|Zu|β+2
n∑

i=1

λi,δ(∇εu) dxdt+
2

(β + 1)2

ˆ T

0

ˆ
Ω

η|∂tη||Zu|β+2 dxdt,

where in the last inequality we used the structure condition (3.6) and the Young inequality. The thesis
follows by choosing τ = 1. □

A key result for the proof of Proposition 5.3 is the following Poincaré-type inequality, which was first
established in [15]. This result does not depend on the equation (3.1), but it holds for any u ∈ C2

loc(Q) and
it is the only point were the restriction 2 ≤ p ≤ 4 plays a role in the paper. We do not use this result directly
but a key estimate in its proof. However, we state the result (in a slightly different way) for the reader’s
convenience.

Lemma 5.2. Let 2 ≤ p ≤ 4 and u ∈ C2
loc(Q), and let us denote by ∇H,ℓ = (Xε

ℓ , X
ε
n+ℓ), for any ℓ ∈

{1, . . . , 2n}. Then, there exists a constant c = c(n, p) such that for any β ≥ 0 and any non negative
η ∈ C1([0, T ], C∞

0 (Ω)) vanishing on the parabolic boundary of Q, we have

ˆ T

0

ˆ
Ω

ηβ+p|Zu|β+p dxdt ≤ c(β + p)∥∇Hη∥∞
ˆ ˆ

supp(η)

(δ + |∇H,ℓu|2)
β+p
2 dxdt

+ c(β + p)

ˆ T

0

ˆ
Ω

η4+β |Zu|β(δ + |∇H,ℓu|2)
p−2
2 |∇H,ℓZu|2 dxdt.

For the proof of this result see [8, Lemma 4.1].

Proposition 5.3. Let 2 ≤ p ≤ 4 and let u be a weak solution to (3.3). Then,

Zu ∈ Lq
loc(Ω× (0, T )),

for any q ≥ 1. Moreover, there exists a constant c = c(n, p, L) such that for any β ≥ 0 and any non negative
η ∈ C1([0, T ], C∞

0 (Ω)) vanishing on the parabolic boundary of Q, we have

(5.3)

(ˆ T

0

ˆ
Ω

ηβ+p|Zu|β+p dxdt

) 1
β+p

≤ c(β + p)∥∇εη∥∞

(ˆ ˆ
supp(η)

(δ + |∇εu|2)
β+p
2 dxdt

) 1
β+p

+ c(β + p)∥η∂tη∥
1
2∞ |supp(η)|

p−2
2(β+p)

(ˆ ˆ
supp(η)

(
δ + |∇εu|2

) β+p
2 dxdt

) 4−p
2(β+p)

.
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Proof. If we denote by ∇H,ℓ = (Xε
ℓ , X

ε
n+ℓ), for any ℓ ∈ {1, . . . , 2n}, and by

(5.4)

I :=

ˆ T

0

ˆ
Ω

ηβ+p|Zu|β+p dxdt

R :=

ˆ ˆ
supp(η)

(δ + |∇H,ℓu|2)
β+p
2 dxdt

M :=

ˆ T

0

ˆ
Ω

η4+β |Zu|β(δ + |∇H,ℓu|2)
p−2
2 |∇H,ℓZu|2 dxdt,

then from the proof of Lemma 5.2 it follows that

(5.5) I ≤ 2(β + p)
(
M

1
2R

4−p
2(β+p) I

2p−4+β
2(β+p) + ∥∇H,ℓη∥L∞R

1
β+p I

β+p−1
β+p

)
.

First of all we observe that

(5.6) R ≤
ˆ ˆ

supp(η)

(δ + |∇εu|2)
β+p
2 dxdt.

On the other hand, we apply the inequality (5.1) to estimate the integral M in the following way:

M ≤
ˆ T

0

ˆ
Ω

(
η

4+β
2

)2
|Zu|β

n∑
i=1

λi,δ(∇εu)
(
(Xε

i Zu)2 + (Xε
n+iZu)2 + (Xε

2n+1Zu)2
)
dxdt

≤ c

ˆ T

0

ˆ
Ω

η2+β |∇εη|2|Zu|β+2
n∑

i=1

λi,δ(∇εu) dxdt

+ c

ˆ T

0

ˆ
Ω

η3+β |∂tη||Zu|β+2 dxdt

≤ c∥∇εη∥2∞ I
β+2
β+p

ˆ ˆ
supp(η)

(
n∑

i=1

λi,δ(∇εu)

) β+p
p−2

dxdt


p−2
β+p

+ c∥η∂tη∥∞ I
β+2
β+p |supp(η)|

p−2
β+p

≤ c∥∇εη∥2∞ I
β+2
β+p

(ˆ ˆ
supp(η)

(
δ + |∇εu|2

) β+p
2 dxdt

) p−2
β+p

+ c∥η∂tη∥∞ |supp(η)|
p−2
β+p I

β+2
β+p ,(5.7)

where we used the Hölder inequality and the fact that

(5.8)

n∑
i=1

λi,δ(∇εu) ≤ n
(
δ + |∇εu|2

) p−2
2 ,

eventually changing the constant c = c(n, p, L). Putting together estimates (5.5) and (5.7), and using (5.6)
and the fact that ∥∇H,ℓη∥∞ ≤ ∥∇εη∥∞, we obtain

I ≤ c(β + p)

(
∥∇εη∥∞ I

β+p−1
β+p

(ˆ T

0

ˆ
supp(η)

(
δ + |∇εu|2

) β+p
2 dxdt

) 1
β+p

+ ∥η∂tη∥
1
2∞ |supp(η)|

p−2
2(β+p) I

β+p−1
β+p

(ˆ T

0

ˆ
supp(η)

(
δ + |∇εu|2

) β+p
2 dxdt

) 4−p
2(β+p)

)
.

The thesis follows by dividing both sides by the quantity I
β+p−1
β+p . □
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6. Main Caccioppoli-type estimate for the first derivatives of approximating solutions

The next theorem contains a standard Caccioppoli-type inequality for the Riemannian gradient of ap-
proximating solutions ∇εu, where the vertical derivative Zu is not involved anymore.

Theorem 6.1. Let 2 ≤ p ≤ 4 and let u be a weak solution to (3.3). There exists a constant c = c(n, p, L)
such that for any β ≥ 0 and any non-negative η ∈ C1([0, T ], C∞

0 (Ω)) vanishing on the parabolic boundary of
Q, we have

(6.1)

sup
0<t<T

ˆ
Ω

η2
(
δ + |∇εu|2

) β+2
2 dx

+

ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)
(
|∇εX

ε
i u|2 + |∇εX

ε
n+iu|2 + |∇εX

ε
2n+1u|2

)
dxdt

≤ c(β + p)5
(
∥∇εη∥2∞ + ∥ηZη∥∞

)ˆ ˆ
supp(η)

(
δ + |∇εu|2

) β+p
2 dx

+ c(β + p)5∥η∂tη∥∞|supp(η)|
p−2
β+p

(ˆ ˆ
supp(η)

(
δ + |∇εu|2

) β+p
2 dx

) β+2
β+p

.

Proof. Lemma 4.1 implies that

sup
0<t<T

ˆ
Ω

η2
(
δ + |∇εu|2

) β+2
2 dx

+

ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)
(
|∇εX

ε
i u|2 + |∇εX

ε
n+iu|2 + |∇εX

ε
2n+1u|2

)
dxdt

≤ c(β + p)2
ˆ T

0

ˆ
Ω

(
|∇εη|2 + η|Zη|

)
(δ + |∇εu|2)

β+2
2

n∑
i=1

λi,δ(∇εu) dxdt

+ c

ˆ T

0

ˆ
Ω

η|∂tη|(δ + |∇εu|2)
β+2
2 dx

+ c(β + p)3
ˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)|Zu|2 dxdt =: I1 + I2 + I3.

It is obvious that I1 is bounded by the first term in right hand side of (6.1). Hence, the thesis follows if the
other two terms are also bounded by the right hand side of (6.1). Let us estimate I2: the Hölder’s inequality
gives us

ˆ T

0

ˆ
Ω

η|∂tη|(δ + |∇εu|2)
β+2
2 dx ≤ ∥η∂tη∥∞|supp(η)|

p−2
β+p

(ˆ ˆ
supp(η)

(
δ + |∇εu|2

) β+p
2 dx

) β+2
β+p

,
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which is obviously bounded by the second term in the right hand side of (6.1). In the end, for I3 we use the
Hölder inequality, (5.3) and (5.8) to obtainˆ T

0

ˆ
Ω

η2(δ + |∇εu|2)
β
2

n∑
i=1

λi,δ(∇εu)|Zu|2 dxdt

≤

(ˆ T

0

ˆ
Ω

ηβ+p|Zu|β+p dxdt

) 2
β+p

ˆ ˆ
supp(η)

(
(δ + |∇εu|2)

β
2

n∑
i=1

λi,δ(∇εu)

) β+p
β+p−2

dxdt


β+p−2
β+p

≤ c

(ˆ T

0

ˆ
Ω

ηβ+p|Zu|β+p dxdt

) 2
β+p

(ˆ ˆ
supp(η)

(δ + |∇εu|2)
β+p
2 dxdt

) β+p−2
β+p

≤ c(β + p)2∥∇εη∥2∞
ˆ ˆ

supp(η)

(
δ + |∇εu|2

) β+p
2 dxdt

+ c(β + p)2∥η∂tη∥∞|supp(η)|
p−2
β+p

(ˆ ˆ
supp(η)

(
δ + |∇εu|2

) β+p
2 dxdt

) β+2
β+p

,

and the thesis follows. □

The following result is an easy consequence of the previous theorem.

Corollary 6.2. Let 2 ≤ p ≤ 4 and let u be a weak solution to (3.3). There exists a constant c = c(n, p, L)
such that for any β ≥ 0 and any non-negative η ∈ C1([0, T ], C∞

0 (Ω)) vanishing on the parabolic boundary of
Q, we have

(6.2)

sup
0<t<T

ˆ
Ω

η2
(
δ + (Xε

ku)
2
) β+2

2 dx+

ˆ T

0

ˆ
Ω

η2(δ + (Xε
ku)

2)
β+p−2

2 |∇εX
ε
ku|2 dxdt

≤ c(β + p)5
(
∥∇εη∥2∞ + ∥ηZη∥∞

) ˆ ˆ
supp(η)

(
δ + |∇εu|2

) β+p
2 dx

+ c(β + p)5∥η∂tη∥∞|supp(η)|
p−2
β+p

(ˆ ˆ
supp(η)

(
δ + |∇εu|2

) β+p
2 dx

) β+2
β+p

.

7. Uniform Lipschitz estimate for approximating solutions

In the next theorem we establish a uniform local Lipschitz bound for approximating solutions u = uδ,ε:
the argument is based on the Moser iteration scheme and relies the observation that the quantity δ + |∇εu|
is bounded from below by δ and that for every β ≥ 0 it is locally bounded in Lβ+p in a parabolic cylinder,
uniformly in ε. In the iteration, we will consider the Riemannian balls Bε introduced in the subsection 2.2:
we recall here that the balls Bε converge to the sub-Riemannian balls in terms of Hausdorff distance and
therefore the estimate in the following theorem is stable as δ, ε → 0.

Theorem 7.1. Let 2 ≤ p ≤ 4 and u be a weak solution to (3.3) in Ω× (0, T ). Then, for any Qε
µ,2r ⊂ Q, it

holds

(7.1) ∥∇εu∥L∞(Qε
µ,r)

≤ c max


(

1

µrN+2

ˆ ˆ
Qε

µ,2r

(
δ + |∇εu|2

) p
2 dxdt

) 1
p

, µ
p

2(2−p)

 ,

where c = c(n, p, L) > 0. Moreover, from Theorem
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Proof. We consider a non negative cut-off function η ∈ C1 ([0, T ], C∞
0 (Ω)), vanishing on the parabolic bound-

ary of Q, such that |η| ≤ 1 in Q. For any β ≥ 0, we denote by

vk = η(δ + (Xε
ku)

2)
β+p
4 , k = 1, . . . , 2n+ 1,

v = η(δ + |∇εu|2)
β+p
4 .

The Caccioppoli inequality (6.2) implies

(7.2)

sup
0<t<T

ˆ
Ω

vmk dx+

ˆ T

0

ˆ
Ω

|∇εvk|2 dxdt ≤ c(β + p)5
(
∥∇εη∥2∞ + ∥ηZη∥∞

) ˆ ˆ
supp(η)

v2 dx

+ c(β + p)5∥η∂tη∥∞|supp(η)|
p−2
β+p

(ˆ ˆ
supp(η)

v2 dx

) β+2
β+p

,

where m = 2(β+2)
β+p . We note that 4/p < m ≤ 2.

Moreover, ˆ T

0

ˆ
Ω

vqk dxdt ≤
ˆ T

0

(ˆ
Ω

vmk dx

) 2
N
(ˆ

Ω

v
2N

N−2

k dx

)N−2
N

dt

≤ c

(
sup

0<t<T

ˆ
Ω

vmk dx

) 2
N

(ˆ T

0

ˆ
Ω

|∇εvk|2 dxdt

)
,

where we denoted by

q =
2(m+N)

N
= 2 +

4(β + 2)

N(β + p)

and in the second inequality we used the Sobolev inequality in the space variable, with c = c(n). Raising
both sides of the previous inequality to the power N

N+2 , using the Young inequality, (7.2) and summing over
k = 1, . . . , 2n+ 1, we get

(7.3)

2n+1∑
k=1

(ˆ T

0

ˆ
Ω

vqk dxdt

) N
N+2

≤ c(β + p)5
(
∥∇εη∥2∞ + ∥ηZη∥∞

)ˆ ˆ
supp(η)

v2 dxdt

+ c(β + p)5∥η∂tη∥∞|supp(η)|
p−2
β+p

(ˆ ˆ
supp(η)

v2 dx

) β+2
β+p

.

On the other hand,

(7.4)

(ˆ T

0

ˆ
Ω

vq dxdt

) N
N+2

≤ (2n+ 1)β+p
2n+1∑
k=1

(ˆ T

0

ˆ
Ω

vqk dxdt

) N
N+2

,

then putting together (7.3) and (7.4) we get the following inequality that we will iterate:

(7.5)

(ˆ T

0

ˆ
Ω

vq dxdt

) N
N+2

≤ c(β + p)5
(
∥∇εη∥2∞ + ∥ηZη∥∞

)ˆ ˆ
supp(η)

v2 dxdt

+ c(β + p)5∥η∂tη∥∞|supp(η)|
p−2
β+p

(ˆ ˆ
supp(η)

v2 dx

) β+2
β+p

.
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We consider Qµ,2r ⊂ Q and we define a sequence of radii ri = (1 + 2−i)r and a sequence of exponents βi,
such that β0 = 0 and

βi+1 + p = (p+ βi)

(
1 +

2(βi + 2)

N(βi + p)

)
,

that is,

βi = 2(ki − 1), with k =
N + 2

N
.

We denote by Qi = Qε
µ,ri , so that Q0 = Qε

µ,2r and Q∞ = Qε
µ,r. Moreover we choose a standard parabolic

cut-off function ηi ∈ C∞(Qi) such that ηi = 1 in Qi+1 and

|∇εηi| ≤
2i+8

r
, |Zηi| ≤

22i+8

r2
, |∂tηi| ≤

22i+8

µr2
in Qi.

Now we take η = ηi and β = βi in (7.5) and we obtain

(7.6)

(ˆ ˆ
Qi+1

(
δ + |∇εu|2

)αi+1

2 dxdt

) N
N+2

≤ c22iα7
i r

−2

[(ˆ ˆ
Qi

(
δ + |∇εu|2

)αi
2 dxdt

) p−2
αi

+ µ−1
(
µrN+2

) p−2
αi

](ˆ ˆ
Qi

(
δ + |∇εu|2

)αi
2 dxdt

)αi−p+2

αi

,

where c = c(n, p, L) > 0 and αi = βi + p = p− 2 + 2ki. We denote by

Mi =

(
1

µrN+2

ˆ ˆ
Qi

(
δ + |∇εu|2

)αi
2 dxdt

) 1
αi

.

Then we can rewrite (7.6) as

M
αi+1

k
i+1 ≤ cµ

2
N+2 22iα7

i

(
Mp−2

i + µ−1
)
Mαi−p+2

i .

We set

M i = max
{
Mi, µ

1
2−p

}
,

so that the above inequality implies

(7.7) M
αi+1

k

i+1 ≤ cµ
2

N+2 22iα7
iM

αi

i

Iterating (7.7) we obtain

M i+1 ≤

(
Πi

j=0K
ki+1−j

αi+1

j

)
M

α0ki+1

αi+1

0 ,

where
Ki = cµ

2
N+2 22iα7

i .

Letting i tend to ∞, we obtain

sup
Qε

µ,r

|∇εu| ≤ M∞ = lim sup
i→∞

M i ≤ cµ
1
2M

p
2

0 ,

where

M0 = max


(

1

µrN+2

ˆ ˆ
Qε

µ,2r

(
δ + |∇εu|2

) p
2 dxdt

) 1
p

, µ
1

2−p


which concludes the proof. □
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8. Higher integrability for the time derivative of approximating solutions

In this section we prove a uniform local bound for the Lq norm of the time derivative of the approximating
solutions ∂tu, for any q ≥ 1.

We need the following Caccioppoli-type inequality for the time derivative of approximating solutions.

Lemma 8.1. Let u be a weak solution of (3.3) in Q. There exists c = c(n, p, L) > 0 such that, for any
β ≥ 0 and any non-negative function η ∈ C1([0, T ], C∞

0 (Ω)), vanishing on the parabolic boundary of Q, one
has

(8.1)

ˆ T

0

ˆ
Ω

ηβ+4|∂tu|β
n∑

i=1

λi,δ(∇εu)
(
(Xε

i ∂tu)
2 + (Xε

i+n∂tu)
2 + (Xε

2n+1∂tu)
2
)
dxdt

≤
ˆ T

0

ˆ
Ω

ηβ+2|∂tu|β
n∑

i=1

λi,δ(∇εu)|∇εη|2 dxdt

+ c

ˆ T

0

ˆ
Ω

ηβ+3|∂tη| |∂tu|β+2 dxdt.

Proof. First of all we notice that the function ∂tu solves the following equation:

(8.2) ∂t (∂tu) =

2n+1∑
i,j=1

Xε
i

(
D2

i,jfδ(∇εu)X
ε
j ∂tu

)
.

Let η ∈ C1 ([0, T ], C∞
0 (Ω)) be a non-negative cut off function vanishing on the parabolic boundary of Q, we

use ϕ = ηβ+4|∂tu|β∂tu as test function in the weak formulation of (8.2): integrating by parts on the right
hand side and dividing both sides by β + 1 we obtain
(8.3)ˆ T

0

ˆ
Ω

ηβ+4|∂tu|β
2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
j ∂tuX

ε
i ∂tu dxdt

= −β + 4

β + 1

ˆ T

0

ˆ
Ω

ηβ+3|∂tu|β∂tu
2n+1∑
i,j=1

D2
i,jfδ(∇εu)X

ε
j ∂tuX

ε
i η dxdt− 1

β + 1

ˆ T

0

ˆ
Ω

ηβ+4|∂tu|β∂tu ∂t (∂tu) dxdt

= I1 + I2.

Using the structure condition (3.5), the left hand side of (8.3) can be bounded from below by

(LHS) ≥
ˆ T

0

ˆ
Ω

ηβ+4|∂tu|β
n∑

i=1

λi,δ(∇εu)
(
(Xε

i ∂tu)
2 + (Xε

i+n∂tu)
2 + (Xε

2n+1∂tu)
2
)
dxdt.

Let us bound by above the right hand side of (8.3).
For the first term we use (3.6) and the Young inequality:

I1 ≤ τ

ˆ T

0

ˆ
Ω

ηβ+4|∂tu|β
n∑

i=1

λi,δ(∇εu)
(
(Xε

i ∂tu)
2 + (Xε

i+n∂tu)
2 + (Xε

2n+1∂tu)
2
)
dxdt

+
c

τ

ˆ T

0

ˆ
Ω

ηβ+2|∂tu|β
n∑

i=1

λi,δ(∇εu)|∇εη|2 dxdt,

where c = c(n, p, L) > 0.
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Instead the second term in the right hand side can be handled in the following way

I2 = − 1

(β + 1)(β + 2)

ˆ T

0

ˆ
Ω

ηβ+4 ∂t
(
|∂tu|β+2

)
dxdt =

β + 4

(β + 1)(β + 2)

ˆ T

0

ˆ
Ω

ηβ+3∂tη |∂tu|β+2 dxdt

≤ c0

ˆ T

0

ˆ
Ω

ηβ+3|∂tη| |∂tu|β+2 dxdt,

where c0 is a fixed constant. The thesis follows by choosing τ = 1
2 . □

Proposition 8.2. Let u be a weak solution to (3.3), then

∂tu ∈ Lq
loc (Ω× (0, T )) ,

for any q ≥ 1. Moreover, there exists a constant c = c(n, p, L) > 0 such that for any β ≥ 0 and any
non-negative η ∈ C1 ([0, T ], C∞

0 (Ω)), vanishing on the parabolic boundary, it holds

(8.4)

ˆ T

0

ˆ
Ω

ηβ+2|∂tu|β+2 dxdt ≤ c |supp(η)|
(
M2p−2∥∇εη∥2∞ +Mp∥η∂tη∥∞

) β+2
2 ,

where M = supsupp(η)
(
δ + |∇εu|2

) 1
2 .

Proof. Since u solves (3.3), we can rewrite

(8.5) |∂tu|β+2 = |∂tu|β∂tu
2n+1∑
i=1

Xε
i (Difδ(∇εu)) .

From the previous identity and an integration by parts it follows

(8.6)

L :=

ˆ T

0

ˆ
Ω

ηβ+2|∂tu|β+2 dxdt =

2n+1∑
i=1

ˆ T

0

ˆ
Ω

ηβ+2|∂tu|β∂tuXε
i (Difδ(∇εu)) dxdt

= −(β + 2)

2n+1∑
i=1

ˆ T

0

ˆ
Ω

ηβ+1|∂tu|β∂tuDifδ(∇εu)X
ε
i η dxdt

− (β + 1)

2n+1∑
i=1

ˆ T

0

ˆ
Ω

ηβ+2|∂tu|βDifδ(∇εu)X
ε
i (∂tη) dxdt = I1 + I2.

To estimate them we use (3.5) and the Hölder inequality. As for I1, we obtain

(8.7)

|I1| ≤ (β + 2)

ˆ T

0

ˆ
Ω

ηβ+1|∂tu|β+1

∣∣∣∣∣
2n+1∑
i=1

λi,δ(∇εu)X
ε
i uXiη

∣∣∣∣∣ dxdt

≤ (2n+ 1)(β + 2)

ˆ T

0

ˆ
Ω

ηβ+1|∂tu|β+1
(
δ + |∇εu|2

) p−1
2 |∇εη| dxdt

≤ (2n+ 1)(β + 2) |supp(η)|
1

β+2 ∥∇εη∥∞ Mp−1 L
β+1
β+2 ,

where M = supsupp(η)
(
δ + |∇εu|2

) 1
2 .
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As for I2, we obtain

(8.8)

|I2| ≤ (β + 1)

ˆ T

0

ˆ
Ω

ηβ+2|∂tu|β
∣∣∣∣∣
2n+1∑
i=1

λi,δ(∇εu)X
ε
i uXi (∂tu)

∣∣∣∣∣ dxdt

≤ (β + 1)

ˆ T

0

ˆ
Ω

ηβ+2|∂tu|β
(

2n+1∑
i=1

λi,δ(∇εu)(X
ε
i u)

2

) 1
2
(

2n+1∑
i=1

λi,δ(∇εu)(X
ε
i ∂tu)

2

) 1
2

dxdt

(2n+ 1)
1
2 (β + 1)

ˆ T

0

ˆ
Ω

ηβ+2|∂tu|β
(
δ + |∇εu|2

) p
4

(
2n+1∑
i=1

λi,δ(∇εu)(X
ε
i ∂tu)

2

) 1
2

dxdt

≤ (2n+ 1)
1
2 (β + 1)|supp(η)|

1
β+2 M

p
2 L

β
2(β+2) J

1
2 ,

where

J :=

ˆ T

0

ˆ
Ω

ηβ+4|∂tu|β
n∑

i=1

λi,δ(∇εu)
(
(Xε

i ∂tη)
2 + (Xε

i+n∂tη)
2 + (Xε

2n+1∂tη)
2
)
dxdt.

From (8.1) it follows that

(8.9) J ≤ c(Mp−2∥∇εη∥2∞ + ∥η∂tη∥∞)L,

where c = c(n, p, L) > 0. Hence, combining (8.8) and (8.9) we obtain

(8.10) |I2| ≤ c (β + 1) |supp(η)|
1

β+2 M
p
2

(
Mp−2∥∇εη∥2∞ + ∥η∂tη∥∞

) 1
2 L

β+1
β+2 ,

eventually changing the constant c = c(n, p, L) > 0.
Combining (8.6), (8.7) and (8.10) the thesis follows

□

9. Proof of the main theorem

This section is devoted to the proof of Theorem 1. The proof relies on the passage to the limit of the
estimates (5.3), (7.1) and (8.4), that are all stable as the approximating parameters ε and δ approach zero.

Proof. First of all let us recall that

∂tu ∈ Lp′ (
(0, T ), HW 1,−p(Ω)

)
,

where p′ = p
p−1 and HW 1,−p(Ω) is the dual space of HW 1,p

0 (Ω).

Let us fix a parabolic cylinder Qµ,r(x0, t0) such that Qµ,2r(x0, t0) ⊂ Ω.
For the sake of notation in the rest of the proof we drop the centers of the balls and of the parabolic

cylinders. By density, we consider a sequence of smooth functions (φk)k∈N ⊂ C∞(Qµ,r) such that φk → u

in Lp
(
(0, T ), HW 1,p(Ω)

)
, as k → ∞, and ∂tφk → ∂tu in Lp′ (

(0, T ), HW 1,−p(Ω)
)
. We denote by uk

δ,ε the
unique weak solution to

(9.1)

{
∂tu

k
δ,ε = divε

(
Dfδ(∇εu

k
δ,ε)
)
, in Qµ,r,

uk
δ,ε = φk, in ∂Qµ,r.
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We use ϕ = uk
δ,ε − φk as test function in the weak formulation of (9.1): an integration by parts in the first

term gives us ˆ ˆ
Qµ,r

∂tu
k
δ,ε

(
uk
δ,ε − φk

)
dxdt+

2n+1∑
i=1

ˆ ˆ
Qµ,r

Difδ(∇εu
k
δ,ε)X

ε
i u

k
δ,ε dxdt

=

2n+1∑
i=1

ˆ ˆ
Qµ,r

Difδ(∇εu
k
δ,ε)X

ε
i φk dxdt.

We note that the first term in the left hand side can be written asˆ ˆ
Qµ,r

∂tu
k
δ,ε

(
uk
δ,ε − φk

)
dxdt =

1

2

ˆ
B(x0,r)

|uk
δ,ε − φk|2(·, t0) dx+

ˆ ˆ
Qµ,r

∂tφk

(
uk
δ,ε − φk

)
dxdt,

and therefore we end up with

1

2

ˆ
B(x0,r)

|uk
δ,ε − φk|2(·, t0) dx+

2n+1∑
i=1

ˆ ˆ
Qµ,r

Difδ(∇εu
k
δ,ε)X

ε
i u

k
δ,ε dxdt

=

2n+1∑
i=1

ˆ ˆ
Qµ,r

Difδ(∇εu
k
δ,ε)X

ε
i φk dxdt−

ˆ ˆ
Qµ,r

∂tφk

(
uk
δ,ε − φk

)
dxdt.

Using (3.4) and (3.5), we obtain

1

2

ˆ
B(x0,r)

|uk
δ,ε − φk|2(·, t0) dx+

ˆ ˆ
Qµ,r

(
δ + |Xε

i u
k
δ,ε|2

) p−2
2 |Xε

i u
k
δ,ε|2 dxdt

≤
ˆ ˆ

Qµ,r

(
δ + |∇εu

k
ε,δ|2

) p−1
2 |∇εφk| dxdt+ τ

ˆ ˆ
Qµ,r

|∇Huk
ε,δ −∇Hφk|p dxdt+ cτ∥∂tφk∥Lp′ ((0,T ),HW 1,−p(Ω))

≤ cτ

ˆ ˆ
Qµ,r

(
δ + |∇εu

k
ε,δ|2

) p
2 dxdt+ cτ

ˆ ˆ
Qµ,r

|∇Hφk|p dxdt+ cτ∥∂tφk∥Lp′ ((0,T ),HW 1,−p(Ω)) + o(ε)

≤ cτ

ˆ ˆ
Qµ,r

(
δ + |∇εu

k
ε,δ|2

) p
2 dxdt+ cτ

ˆ ˆ
Qµ,r

|∇Hu|p dxdt+ cτ∥∂tu∥Lp′ ((0,T ),HW 1,−p(Ω)) + o(ε) + o(1/k),

where τ > 0 and c, cτ > 0 depend only on p. Moreover, from a simple computationˆ ˆ
Qµ,r

(
δ + |Xε

i u
k
δ,ε|2

) p
2 dxdt = δ

ˆ ˆ
Qµ,r

(
δ + |Xε

i u
k
δ,ε|2

) p−2
2 dxdt+

ˆ ˆ
Qµ,r

(
δ + |Xε

i u
k
δ,ε|2

) p−2
2 |Xε

i u
k
δ,ε|2 dxdt

≤ cτ

ˆ ˆ
Qµ,r

(
δ + |∇εu

k
ε,δ|2

) p
2 dxdt+ cτ

ˆ ˆ
Qµ,r

|∇Hu|p dxdt+ cτ∥∂tu∥Lp′ ((0,T ),HW 1,−p(Ω)) + o(ε) + o(1/k).

Summing up over i = 1, . . . , 2n+ 1 and choosing τ small enough we obtain

(9.2)
1

2

ˆ
B(x0,r)

|uk
δ,ε − φk|2(·, t0) dx+

ˆ ˆ
Qµ,r

(
δ + |∇εu

k
ε,δ|2

) p
2 dxdt

≤ c

ˆ
Qµ,r

|∇Hu|p dxdt+ c∥∂tu∥Lp′ ((0,T ),HW 1,−p(Ω)) + o(ε) + o(1/k),

where c = c(n, p) > 0. Therefore
(
uk
ε,δ

)
ε,δ,k

is a bounded sequence in Lp
(
(t0 − µr2, t0), HW 1,p(B(x0, r)

)
,

uniformly in ε, δ, k, and hence there is u0 ∈ Lp
(
(t0 − µr2, t0), HW 1,p(B(x0, r)

)
such that uk

ε,δ ⇀ u0, up to
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subsequences. Since uk
ε,δ − φk ∈ Lp

(
(t0 − µr2, t0), HW 1,p

0 (B(x0, r)
)
, passing to the limit it follows that

u0 − u ∈ Lp
(
(t0 − µr2, t0), HW 1,p

0 (B(x0, r)
)
,

and therefore u = u0 on the lateral boundary of Qµ,r. From (9.2) it also follows that u(·, t0 − µr2) =
u0(·, t0−µr2), eventually testing (9.1) with ϕ = χ(t)(uk

ε,δ−φk), with χ ∈ C0(t−µr2, t0) χ ≡ 1 on (t−µr2, t̄)

and χ ≡ 0 on (t̄, t0). The comparison principle implies that u = u0 in Qε
µ,r. Moreover, there exists τ ∈ (0, 1)

such that Bε(x0, 2τr) ⊂ B(x0, r), for ε > 0 small enough, and hence from Theorem 7.1 it follows that

∥∇εu
k
ε,δ∥L∞(Qε

µ,τr)
≤ c max


(

1

µrN+2

ˆ ˆ
Qε

µ,2τr

(
δ + |∇εu

k
ε,δ|2

) p
2 dxdt

) 1
p

, µ
p

2(2−p)

 ,

where the constant c > 0 is uniform in ε, δ and k. Passing to the limit we obtain

∥∇Hu∥L∞(Qµ,τr) ≤ c max


(

1

µrN+2

ˆ ˆ
Qµ,r

|∇Hu|p dxdt

) 1
p

, µ
p

2(2−p)

 .

Now the estimate (1.4) follows by a simple covering argument.
Finally, Proposition 5.3 establishes the local Lq integrability of Zuk

ε,δ with uniform Lq bounds, for all

1 ≤ q ≤ ∞. This implies that, up to subsequences, Zuk
ε,δ weakly converges to a Lq

loc function, which in view

of the definition of weak derivative,is also a derivative along the center of the limit of uk
ε,δ, which is a solution

to (1.3). The same argument also applies to the sequence ∂tu
k
ε,δ for which the local Lq uniform bound (8.4)

holds. □
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