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Abstract. We extend the theory of gradient flows beyond metric spaces by studying evolu-

tion variational inequalities (EVIs) driven by general cost functions c, including Bregman and

entropic transport divergences. We establish several properties of the resulting flows, including
stability and energy identities. Using novel notions of convexity related to costs c, we prove

that EVI flows are the limit of splitting schemes, providing assumptions for both implicit and

explicit iterations.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Evolution Variational Inequalities with general cost c . . . . . . . . . . . . . 4

2.1 Conditions for compatibility of the topology σ with (c, ϕ) . . . . . . . . . . . . 4
2.2 Equivalent formulations and main properties of the EVI . . . . . . . . . . . . . 6
2.3 On slopes and local characterizations . . . . . . . . . . . . . . . . . . . . . . . 14

3 Existence of EVI solutions as limit of splitting schemes . . . . . . . . . . . . 18
3.1 Definition of the scheme through alternating minimization . . . . . . . . . . . 19
3.2 Sufficient conditions: compatibility of energy and cost . . . . . . . . . . . . . . 22
3.3 Existence of the flow for implicit schemes . . . . . . . . . . . . . . . . . . . . . 24
3.4 Existence of the flow for splitting schemes . . . . . . . . . . . . . . . . . . . . . 28

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1. Introduction

Context. The theory of gradient flows in metric spaces [AGS08], in particular in spaces of mea-
sures, is a cornerstone in the analysis of evolutionary systems. A reference tool in this context
are minimizing movements, relating evolution to incremental minimization. The minimizing-
movements approach is however not restricted to metric spaces. Indeed, it has been already
applied out of the metric setting, including the case of Bregman divergences [Br67, eq.(1.4)] and
their mirror flows [NY83]. These appear in entropic regularizations in optimal transport, see
[Le14] and [PC19] for reviews. When leaving the metric setting, one is confronted with the ques-
tion of which of the different formulations of gradient-flow evolution, namely, EDI, EDE, or EVI,
as discussed in [AG13, San17] and in Section 2.3, should be considered.

Main contributions. In this article, we investigate the generalization of Evolution Variational
Inqualities (EVIs) to general costs on general sets X. This provides a partial extension of the
theory of [MS20] beyond the case of the square distance d2 on a complete metric space X. Our
notion of gradient flow takes the form

d+

dt
c(x, xt) + λc(x, xt) ≤ ϕ(x)− ϕ(xt) ∀t > 0, x ∈ D(ϕ), (1.1)
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where X is a set, c : X × X → [0,+∞) is a cost function, ϕ : X → (−∞,+∞] with domain
D(ϕ) = {x ∈ X : ϕ(x) < +∞}. We call (1.1) EVI and we say that a curve x : (0,+∞) → X
is a EVI solution and write x(·) ∈ EVIλ(X, c, ϕ) whenever (1.1) holds for some λ ∈ R. We show
in Theorem 2.4 that the differential formulation (1.1) has several equivalent integral expressions.
For symmetric costs c(x, y) = c(y, x), in Theorem 2.10 we establish that the set EVIλ(X, c, ϕ)
of solutions still enjoys some of properties which hold in metric spaces. For example, the EVI is
λ-contractive and one can prove an energy identity of the form

d

dt
ϕ(xt+) = − lim

h↓0

2c(xt, xt+h)

h2
=: −|ẋt+|2c , (1.2)

where |ẋt+|c plays the role of the metric derivative. Symmetry and nonnegativity of the cost are
crucially used in order to obtain this. On the other hand, no notion of local slope is needed. In
fact, although expression (1.1) is global in nature as it holds for all test points x, we discuss in
Section 2.3 a local formulation of the form ∇2,1c(xt, xt)ẋt ∈ ∂ϕ(xt), where ∇2,1 is the mixed-
Hessian and ∂ϕ is the Fréchet subdifferential.

For geodesic metric spaces (X, d) and c = d2/2, the EVI (1.1) has been related to some notion
of convexity of ϕ w.r.t. d2, see [MS20, Section 3.3]. Moreover, in metric spaces one may prove
existence of solutions to (1.1) via minimizing movements and the implicit Euler scheme.

For general sets X and general costs c, a corresponding notion of convexity has been recently
brought to evidence in [LAF23] by the first-named author. This notion takes the name of cross-
convexity and delivers an extension of usual convexity. For c = d2/2, cross-convexity takes the
form of a discrete EVI, as in [AGS08, Corollary 4.1.3]. For c being a Bregman divergence, cross-
convexity corresponds to the so-called three-point inequality in mirror descent, see, e.g., [CT93,
Lemma 3.2]. In essence, cross-convexity can be interpreted as a compatibility property between
energy and cost, see Section 3.2. In the cross-convex setting, existence of a solution x(·) to (1.1)
for a given initial point x0 can be obtained by taking the limit τ → 0 in the following alternating

minimization (see (3.2)–(3.3)) based on the c/τ -transform f c/τ (y) := supx′∈X [f(x′)− c(x′,y)
τ ],

yτi+1 ∈ argmin
y∈X

{
c(xτ

i , y)

τ
+ g(xτ

i ) + f c/τ (y)

}
, (1.3)

xτ
i+1 ∈ argmin

x∈X

{
c(x, yτi+1)

τ
+ g(x) + f c/τ (yτi+1)

}
. (1.4)

These iterations correspond to a splitting scheme over ϕ = f + g, with one explicit step on f and
one implicit on g. Schemes of this form were extensively studied in [LAF23]. Under some cross-
convexity requirements (see Assumption 3.5), for c symmetric, a lower-bounded ϕ, and τ small
enough, we show in Theorem 3.7 the following error estimate between the discrete-time scheme
and its continuous-time limit:

c (x̄τ
t , xt) ≤ 2τ(ϕ(x0)− inf ϕ) ∀t ≥ 0, (1.5)

where x̄τ (·) is the piece-wise constant in time interpolant of the discrete values {xτ
i } on the uniform

partition {iτ}.
We now list three examples of costs c of interest.

Example 1.1. (distances, dp) Let (X, d) be a complete metric space and c = dp for p ≥ 1. Then,
for f = 0, (1.4) is the usual implicit Euler discretization. Flows with asymmetric distances were
also considered in [RMS08, CRZ09, OZ23].

Similarly to [AGS08], a key example in the following is X = P(X), that is the set of non-
negative Borel measures over the measurable space X with total mass 1. Our analysis covers
in particular that of [AGS08] if the cost c is the Wasserstein-2 distance. Two other prominent
costs, on which we will showcase our assumptions and theorems, are the Kullback–Leibler and the
Sinkhorn divergences.
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Example 1.2. (Kullback–Leibler divergence, KL) The Kullback–Leibler divergence or relative en-
tropy over probability measures is

KL(µ|µ̄) =

{ ∫
X log

(
dµ
dµ̄ (x)

)
dµ(x) if µ ≪ µ̄,

+∞ otherwise ,

where, for any µ, ν ∈ P(X), we write µ ≪ ν when µ is absolutely continuous w.r.t ν, i.e., when
it admits a Radon–Nikodym derivative dµ/dν. The KL is a Bregman divergence of the entropy
KL(·|ρ) where ρ is interpreted as a reference positive measure (the Lebesgue measure on X ⊂ Rd,
for instance). Note that KL is not symmetric and does not satisfy the triangle inequality.

Example 1.3. (Sinkhorn divergence, Sϵ) Assume X ⊂ Rn to be compact. Fix ϵ > 0 and take a
ground cost cX ∈ C1(X×X;R) such that exp(−cX/ϵ) is a positive definite and universal reproducing
kernel, see [FSV+18]. Then, the entropic optimal transport (EOT) dissimilarity is defined as

OTϵ(µ, ν) = min
π∈Π(µ,ν)

∫
X×X

cX(x, y)dπ(x, y) + ϵKL(π|µ⊗ ν) = εKL(π|e−cX/εµ⊗ ν), (1.6)

where we denote by Π(µ, ν) the set of couplings having first marginal µ and second marginal ν. As
OTϵ(µ, µ) ̸= 0 in general [FSV+18, Section 1.2], the Sinkhorn divergence was defined in [GPC18]
as

Sϵ(µ, ν) = OTϵ(µ, ν)−
1

2
OTϵ(µ, µ)−

1

2
OTϵ(ν, ν) (1.7)

which indeed fulfills Sϵ(µ, µ) = 0. We refer to the introduction of [CDPS17] for a thorough
presentation on OTϵ and to that of [LLM+24, p. 5] for Sϵ. A self-contained discussion on the
limiting behaviours for ϵ → 0 or ϵ → ∞ can be found in [NS23]. As evidenced in [LLM+24,
Section 7.1], neither Sϵ nor

√
Sϵ satisfy the triangle inequality, even though Sϵ is symmetric and

metrizes the convergence in law [FSV+18, Theorem 1].

Other natural examples of costs include doubly nonlinear evolution equations in a vector space
X, Ψ : X → R, and cτ (x, y) = τΨ((x − y)/τ), see [RMS08]. In our framework, we can only deal
with homogeneous potentials Ψ. In fact, existence of formulations of the form (1.1) for Ψ not
homogeneous do not presently seem available.

Related work. Reference works on EVIs in metric spaces are the three great expositions in
[AGS08, AG13, MS20]. Notably, our theory is designed to recover some of these metric results in
the case of (X, d) being a complete metric space and c = d2/2. The continuous setting of Section 2
is somewhat closer to [MS20, Section 3], whereas the discrete setting of Section 3 takes inspiration
from [AG13, Section 3.2.4], especially in its use of dyadic partitions.

Several extensions of the canonical gradient flows in metric settings have already been consid-
ered. In particular, [OZ23] deals with asymmetric distances and EDEs on Finsler manifolds, and
[Cra17] studies EVIs when λd2 in (1.1) is replaced by λω(d2) for ω : R+ → R+, as motivated by the
celebrated Osgood’s criterion. Beyond metric spaces, [RS24] developed a theory for minimizing
movements under so-called action costs a(τ, x, y). This theory actually covers our choice c(x, y)/τ ,
stopping short of discussing the EVI formulation, nonetheless.

Compactness and completeness are the two alternative tools which are used to ascertain the
existence of minimizing-movement limiting curves. Preferring one over the other naturally brings
to alternative arguments, see e.g. [RW24]. Specifically, [MS20] is exclusively using completeness
whereas [OZ23] is based on compactness. In our analysis, we elaborate on both approaches, by
providing corresponding sets of assumptions.

In the metric setting, a discrete implicit-implicit splitting schemes based on the discrete EVI
has been advanced in [CM11, Eq. (1.1)]. An explicit Euler scheme to deal with evolutions in the
space of probability measures has been studied in [CSS23], where also the notion of EVI solution
is used. To our best knowledge, we provide here the first theory for both implicit and explicit
schemes in this EVI context and in such generality.
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Plan of the paper. The paper is organized as follows. Section 2 is devoted to formulate the EVI
with general costs: in Section 2.1 we discuss the topological framework we adopt, and in particular
the interplay between the cost function and the underlying topology. In Section 2.2, we present
the equivalent formulations of the EVI and discuss the properties of EVI solutions. Section 2.3
discusses possible local formulations of the EVI, as well as how the EVI in the metric case leads
to the metric slope, and hence to the EDE and EDI. In Section 3, we discuss the existence of
EVI solutions for ϕ = f + g via an alternating minimization scheme. This is done first in Section
3.3 in the specific case of the implicit scheme when f = 0, and then in full generality in Section
3.4. Prior to this, sufficient compatibility conditions between the energy and cost, extending those
from the metric setting, are discussed in Section 3.2.

2. Evolution Variational Inequalities with general cost c

Basic notation. In the following, we set R+ = (0,+∞). We use the shorthand l.s.c. for lower
semicontinuous. Given the real function u : R+ → R, we indicate its right derivative at t > 0
(whenever existing) as u′(t+). The right Dini derivatives are denoted by

d+

dt
u(t) = lim sup

s↓t

u(s)− u(t)

s− t
,

d

dt+
u(t) = lim inf

s↓t

u(s)− u(t)

s− t
.

Letting X be a nonempty set, we indicate a trajectory x : R+ → X with the symbol x(·)
or (xt)t>0. The point at time t > 0 on the trajectory is denoted by xt. The image of the
map x over I ⊂ R+ is indicated by {xt}t∈I . Given a function ϕ : X → (−∞,+∞], we set
D(ϕ) = {x ∈ X : ϕ(x) < +∞} to be its domain and we say that ϕ is proper if D(ϕ) ̸= ∅.

Given a directed set A (i.e., a nonempty set with a preorder ≤ such that every pair of elements
has an upper bound), we recall that a net in X is a mapping x : A → X, which we also indicate as
(xa)a∈A. We say that (yb)b∈B is a subnet of (xa)a∈A if there exists a nondecreasing final function
J : B → A such that yb = xJ(b) for all b ∈ B. We use the symbol σ− lima xa to indicate the limit

of (xa)a∈A with respect to the topology σ. We also write xα
σ−→ x.

Costs. We assume to be given a cost c : X ×X → R. We say that the cost is dissipative if

c ≥ 0 and c(x, x′) = 0 if and only if x = x′. (Diss)

This in particular entails the dissipativity of both discrete-time and continuous-time evolutions
driven by ϕ = f+g. More precisely, in Section 3, for splitting schemes on ϕ = f+g, nonnegativity
is used to weave the two iterations together. For the explicit scheme, i.e. g = 0, nonnegativity is not
necessary since c-concavity ensures that ϕ = f decreases. Costs fulfilling (Diss) that are symmetric
have some surprising connections with notions of tropical monotonicity [AFG24, Proposition 4.1].
As also made clear in Section 3, we often handle specific expressions, in which differences of cost
appear, so that replacing the lower bound 0 in (Diss) by any other constant is admissible.

2.1. Conditions for compatibility of the topology σ with (c, ϕ). To discuss convergence and
continuity we need to introduce a topology σ on the space X. This topology σ will be required
to be compatible with the cost c and the energy ϕ. We start by specifying such compatibility
requirement in Definition 2.1, providing later some sufficient conditions for such compatibility to
hold.

Definition 2.1 (Compatible topology). Given c satisfying (Diss) and ϕ : X → (−∞,+∞], we
say that a Hausdorff topology σ on X is compatible with the pair (c, ϕ) if

(1) c-convergent nets in sublevels of ϕ are σ-convergent: if (xα)α∈A ⊂ {ϕ ≤ r} for some

r ∈ R, x ∈ X, and c(xα, x) → 0 or c(x, xα) → 0, then xα
σ−→ x.

(2) ϕ is σ-lower semicontinuous and c is jointly σ-lower semicontinuous.

We say that σ is forward-Cauchy-compatible with the pair (c, ϕ) if furthermore

(3) c-forward-Cauchy sequences in sublevels of ϕ are σ-convergent: if (xn)n ⊂ {ϕ ≤ r} ⊂ X
for some r ∈ R satisfies

∀ε > 0∃Nε ∈ N s.t. c(xn, xm) < ε ∀n ≥ m > Nε,
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then there exists x ∈ X such that xn
σ−→ x.

Note that we do not require c to be symmetric. When this is the case, we simply refer to c-
Cauchy sequences, omitting the term forward. As the topology σ is not assumed to be metrizable,
in the following we deal with nets instead of sequences.

Example 1.1 (continued). Let ω : [0,+∞) → [0,+∞) be a nonnegative, strictly increasing function
such that ω(0) = 0. Let (X, d) be a complete metric space with induced topology σd, and let
c := ω(d). If ϕ is σd-lower semicontinuous, then σd is compatible with (c, ϕ) and c is jointly σd-
continuous. In [CRZ09, RMS08, OZ23] asymmetric distances are also considered: assume (X, d)
is an asymmetric metric space (that is, d satisfies all the axioms of a distance but symmetry) and
let σ be the topology induced by the forward balls (cf. [OZ23, Definition 2.1], [CRZ09, Definition
2.1]). Then, the assumptions 4.2, 4.3, 4.7 of [CRZ09] on σ and ϕ are fulfilled in our setting, that
is, σ is forward-Cauchy compatible with (c, ϕ).

Example 1.2 (continued). For X ⊂ P(X) with X being a Polish space and c = KL, σ can be
chosen to be the weak topology on measures which is dominated by the strong topology induced
by the TV distance. By Pinsker’s inequality, valid on measurable spaces [vEH14, Theorem 31],
KL dominates the TV distance, whence (1) is satisfied. Moreover, it is known that KL is jointly
σ-lower semicontinuous [vEH14, Theorem 19], so that (2) holds for all ϕ which are σ-l.s.c. To
ensure finite values for c, we can take X to be a σ-closed subset of P(X) such that KL(x|y) < +∞
for all x, y ∈ X, e.g., fixing a measure ρ and setting µ ∈ X if and only if µ = fρ with f ∈ [a, b]
ρ-a.s. with 0 < a < b < +∞. In the latter case, X is naturally identified with a subset of L1(ρ)
and one could consider on X the L1(ρ)-topology σρ which is stronger than σ. Consequently, KL is
jointly σρ-continuous on X, so that σρ is compatible with (c, ϕ) for any σρ-lower semicontinuous
functional ϕ : X → (−∞,+∞].

Example 1.3 (continued). For X = P(X) with compact X, c = Sϵ and σ the weak topology on
measures, by [FSV+18, Theorem 1], Sϵ is jointly σ-continuous, so (2) holds whenever ϕ is σ-l.s.c.
Moreover, Sϵ metrizes the weak convergence, hence (1) is satisfied. Since X = P(X) is σ-compact,
owing to Lemma 2.2 below one has that forward-Cauchy-compatibility also holds.

We now present some sufficient conditions for the compatibility of σ with the pair (c, ϕ). The
first condition applies to the case of a function ϕ with σ-compact sublevels.

Lemma 2.2 (ϕ with σ-compact sublevels). Let c be a cost on X satisfying (Diss), let σ be a
Hausdorff topology on X such that c is jointly σ-lower semicontinuous, and such that the sublevels
of ϕ : X → (−∞,+∞] are σ-compact. Then, σ is forward-Cauchy-compatible with (c, ϕ).

Proof. Since σ is Hausdorff, the sublevels of ϕ are closed, so that ϕ is σ-lower semicontinuous and
property (2) of Definition 2.1 is satisfied.

Let us show that property (1) holds: let (xα)α∈A ⊂ X be a net in a sublevel of ϕ and x ∈ X be
such that c(x, xα) → 0. Let (xβ)β∈B be any subnet of (xα)α∈A which is σ-converging to a point
y ∈ X. By joint σ-lower semicontinuity of c, we have

0 = lim inf
β∈B

c(x, xβ) ≥ c(x, y)

which implies that x = y by (Diss). This, together with the σ-compactness of sublevels of ϕ, shows
that the net (xα)α∈A σ-converges to x.

In order to check the c-forward-Cauchy property (3) of Definition 2.1, let (xn)n ⊂ {ϕ ≤ r} ⊂ X
for some r ∈ R and suppose that (xn)n is c-forward-Cauchy. As the sublevel {ϕ ≤ r} is σ-compact,
we can find a σ-convergent subnet (xJ(λ))λ∈Λ, where Λ is a directed set and J : Λ → N is a final
monotone function, namely, σ− limλ xJ(λ) = x for some x ∈ X. Fix ε > 0 and let Nε ∈ N be such
that c(xn, xm) < ε for every n ≥ m ≥ Nε. Since J is a final function, we can find some λε,m ∈ Λ
such that λ ≥ m ≥ Nε for every λ ≥ λε,m. Thus we have

c(xJ(λ), xm) < ε for every m ≥ Nε, λ ≥ λε,m.

Passing first to the lim infλ and using the joint σ-lower semicontinuity of c, we get that

c(x, xm) ≤ ε for every m ≥ Nε,
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which means that xn c-converges to x. By the first part of this proof, we deduce that xn σ-
converges to x, which proves the assertion. □

Alternatively to checking that a given topology is compatible, one can use the cost c to construct
one. Given a symmetric cost c satisfying (Diss), referred to as a semimetric in part of the literature,
see [BP22, Section 2], one can define a topology σc on X by prescribing that a set A ⊂ X is open
(hence, A ∈ σc) if for every x ∈ A there exists r > 0 such that

Bc(x, r) := {y ∈ X : c(x, y) < r} ⊂ A.

Notice that in general σc is not Hausdorff, Bc(x, r) /∈ σc, c-convergent sequences do not have the
c-Cauchy property, and c is not jointly σc-continuous. However, if c is a regular semimetric in the
sense of Lemma 2.3 below, these patologies do not appear.

Lemma 2.3 (c regular semimetric). Suppose that c is a symmetric cost satisfying (Diss) and that
it is additionally regular, i.e.

lim
r→0

sup
y∈X

sup
z,w∈Bc(y,r)

c(z, w) = 0, (2.1)

or, equivalently, that Φc : R+ × R+ → R+ defined as

Φc(r1, r2) := sup{c(x, y) | ∃ p ∈ X : c(p, x) ≤ r1, c(p, y) ≤ r2} (2.2)

is continuous at (0, 0). Moreover, assume that (X, c) is c-complete (i.e., c-Cauchy sequences are
c-convergent) and ϕ is σc-lower semicontinuous. Then, σc is compatible with (c, ϕ) and c is jointly
σc-continuous.

Proof. The equivalence between (2.1) and (2.2) can be found in [BP17, Lemma 1]. By [CJT18,
Theorem 3.2], the regularity and completeness of c imply the existence of a complete metric ϱ on
X which is uniformly equivalent to c, i.e.,

(1) for every ε > 0 there exists δ > 0 such that ϱ(x, y) < ε whenever c(x, y) < δ;
(2) for every ε > 0 there exists δ > 0 such that c(x, y) < ε whenever ϱ(x, y) < δ.

This gives in particular that σc is induced by ϱ so that σc is Hausdorff, ϱ is σc-continuous (hence
also c is), and that c-convergent sequences are ϱ-convergent, hence also σc-convergent. □

2.2. Equivalent formulations and main properties of the EVI. In this section, we introduce
the notion of EVI solution and discuss some of its properties. To start with, we present a result
on equivalent characterizations of trajectories.

Theorem 2.4 (Equivalent EVI definitions). Let λ ∈ R, ϕ : X → (−∞,+∞], c satisfy (Diss), and
the topology σ be compatible with the pair (c, ϕ). Given the trajectory x(·) : R+ → X, for either
λ ≥ 0 or λ < 0 and c additionally separately σ-continuous, the following are equivalent:

i) x(·) is σ-continuous, xt ∈ D(ϕ) for all t > 0, and x(·) satisfies the EVI in differential
form:

d+

dt
c(x, xt) + λc(x, xt) ≤ ϕ(x)− ϕ(xt) ∀t > 0, x ∈ D(ϕ). (2.3)

ii) For all x ∈ D(ϕ), the maps t 7→ ϕ(xt) and t 7→ c(x, xt) belong to L1
loc(R+), (s, t) 7→

c(xs, xt) is Lebesgue measurable on R+ × R+, and x(·) satisfies the EVI in integral form

c(x, xt)− c(x, xs) + λ

∫ t

s

c(x, xr) dr ≤ (t− s)ϕ(x)−
∫ t

s

ϕ(xr) dr ∀ 0 < s ≤ t. (2.4)

iii) x(·) satisfies the EVI in exponential-integral form

eλ(t−s)c(x, xt)− c(x, xs) ≤ Eλ(t− s) (ϕ(x)− ϕ(xt)) ∀ 0 < s ≤ t, x ∈ D(ϕ), (2.5)

where Eλ(t) :=
∫ t

0
eλr dr =

{
eλt−1

λ for λ ̸= 0
t for λ = 0.

Furthermore, if x(·) satisfies any of the above, then t 7→ ϕ(xt) is lower semicontinuous and non-
increasing, and we have the oriented local Lipschitzianity relation

0 ≤ c(xs, xt) ≤ E−λ(t− s)(ϕ(xs0)− ϕ(xt0)) ∀ 0 < s0 ≤ s ≤ t ≤ t0. (2.6)
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Proof. The proof follows the blueprint of [MS20, Theorem 3.3], the main difference being that
here we do not assume that c is jointly σ-continuous, but merely jointly σ-l.s.c. and we do not use
the triangle inequality. This calls for some adaptation of the argument. Along this proof, we use
the short-hand notation ϕ̃ = ϕ ◦ x.

i) ⇒ ii): Fix s > 0 and let ζ(t) := c(x, xt) and η(t) := λ
2 c(x, xt) + ϕ(xt)− ϕ(x). Both functions

are lower semicontinuous, since ϕ, c(x, ·), and λc(x, ·) are such, and x(·) is σ-continuous. Then,

[MS20, Lemma A.1] gives that ζ, η ∈ L1
loc(R+) and t 7→ ζ(t)+

∫ t

s
η(r) dr is nonincreasing on [s,+∞)

which is precisely (2.4). The lower semicontinuity, whence the measurability of (s, t) 7→ c(xs, xt)
follows from the σ-continuity of x(·) and from the joint σ-lower semicontinuity of c.

iii) ⇒ i): Inequality (2.5) in particular implies that ϕ(xt) < +∞, so that we can choose
x = xs ∈ D(ϕ) in (2.5). Since c(xs, xs) = 0 by (Diss), this gives

0 ≤ eλ(t−s)

Eλ(t− s)
c(xs, xt) ≤ ϕ(xs)− ϕ(xt). (2.7)

This proves that ϕ̃ is nonincreasing, hence also locally bounded in R+. As Eλ is continuous and
Eλ(0) = 0, we can take limits in (2.5), obtaining for all t0 > 0 and x ∈ D(ϕ)

lim sup
t↓t0

c(x, xt) ≤ c(x, xt0) ≤ lim inf
s↑t0

c(x, xs).

The second inequality entails that t 7→ c(x, xt) is left σ-l.s.c. Evaluating at x = xt0 gives
lim supt↓t0 c(xt0 , xt) = 0, hence that limt↓t0 c(xt0 , xt) = 0. The compatibility with σ in Defini-
tion 2.1-(1) gives that x(·) is right σ-continuous, whence t 7→ c(x, xt) is also right l.s.c., hence l.s.c.

Since ϕ̃ is nonincreasing, x(·) is right σ-continuous and ϕ is σ-l.s.c., we have that ϕ̃ is l.s.c. As the
lim sup of a sum is larger than the sum of a lim sup and a lim inf, we moreover have that

d+

dt

∣∣
t=t0

(eλ(t−t0)c(x, xt)) ≥
d+

dt

∣∣
t=t0

c(x, xt) + lim inf
h↓0

λc(x, xt0+h) ∀t0 > 0.

Note that we have lim infh↓0 λc(x, xt0+h) ≥ λc(x, xt0) both for λ ≥ 0, as c is jointly σ-l.s.c., and
λ < 0, as c is assumed to be separately σ-continuous in this case. By dividing by (t− s) in (2.5)
and taking the limit t ↓ s, we hence obtain (2.3).

To conclude, we have to show that x(·) is left σ-continuous. Letting t > 0, we use the nonin-

creasingness of ϕ̃ and (2.7) to obtain for s ∈ [t/2, t]

0 ≤ c(xs, xt) ≤
Eλ(t− s)

eλ(t−s)
(ϕ(xs)− ϕ(xt)) ≤

Eλ(t− s)

eλ(t−s)
(ϕ(xt/2)− ϕ(xt)). (2.8)

Taking the lim sup as s ↑ t, we deduce lims↑t c(xs, xt) = 0 so that, by the compatibility with σ in

Definition 2.1-(1), we get that xs
σ→ xt and x(·) is left σ-continuous at t.

ii) ⇒ i): First of all, by taking limits in (2.4), for all t0 > 0 and x ∈ D(ϕ), we have that
lim supt↓t0 c(x, xt) ≤ c(x, xt0). Reasoning as in the previous implication, we deduce that x(·) is

right σ-continuous. Now we show that ϕ̃ is nonincreasing, first when restricted to its Lebesgue
points, and then in general.

Let 0 < t0 < t1 be Lebesgue points for ϕ̃. For a.e. s ∈ [t0, t1] we write (2.4) for t = s + h and
x = xs. Integrating w.r.t. s ∈ [t0, t1] we obtain

∫ t1

t0

c(xs, xs+h) ds+ λ

∫ t1

t0

∫ s+h

s

c(xs, xr) dr ds

≤
∫ t1

t0

∫ s+h

s

(
ϕ̃(s)− ϕ̃(r)

)
dr ds =: h2η(h). (2.9)
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Now, let us work on the r.h.s. to relate it to ϕ̃(t0)− ϕ̃(t1). We write∫ t1

t0

∫ s+h

s

(
ϕ̃(s)− ϕ̃(r)

)
dr ds =

∫ t1

t0

∫ h

0

(
ϕ̃(s)− ϕ̃(s+ r)

)
dr ds

=

∫ h

0

∫ r

0

(
ϕ̃(t0 + ξ)− ϕ̃(t1 + ξ)

)
dξ dr

=

∫ h

0

∫ h

0

(
ϕ̃(t0 + ξ)− ϕ̃(t1 + ξ)

)
χ[0,r](ξ) dξ dr

=

∫ h

0

(
ϕ̃(t0 + ξ)− ϕ̃(t1 + ξ)

)
(h− ξ) dξ

= h2

∫ 1

0

(
ϕ̃(t0 + hξ)− ϕ̃(t1 + hξ)

)
(1− ξ) dξ. (2.10)

We set u(h) :=
∫ t1
t0

c(xs, xs+h) ds so that (2.9) yields

u(h) + λ

∫ h

0

u(r) dr ≤ h2η(h) ∀h > 0.

An application of Gronwall’s lemma entails

h−2u(h) ≤ ehλ
−

sup
δ∈[0,h]

η(δ) (2.11)

with λ− := max{0,−λ} so that, passing to the lim suph↓0 in (2.9), we get

0
0≤c

≤ lim sup
h↓0

∫ t1

t0

c(xs, xs+h)

h2
ds ≤ lim

h↓0
η(h) =

1

2
(ϕ̃(t0)− ϕ̃(t1)), (2.12)

where the last equality follows by, e.g., [SS05, Theorem 2.1] and the fact that t0 and t1 are Lebesgue

points of ϕ̃. Hence, ϕ̃ is nonincreasing when restricted to its Lebesgue points. However, since ϕ
is l.s.c.and x(·) is right σ-continuous, for every Lebesgue point t0 and any t > t0 we have that

ϕ̃(t0) ≥ ϕ̃(t). We deduce in particular that xt ∈ D(ϕ) for every t > 0 and that, if s, t and h > 0

are given in such a way that that 0 < s < s + h < t, then ϕ̃(t) ≤ ϕ̃(t0) for every Lebesgue point

t0 of ϕ̃ in (s, s+ h). This in particular, gives that ϕ̃(t) ≤ 1
h

∫ h

0
ϕ̃(s+ r) dr.

We now fix 0 < s < t and take any h > 0 such that s+ h < t. By applying (2.4) to x = xs and

t = s+h, discarding the nonnegative term c(xs, xs+h), and using the above bound for ϕ̃(t) we get

ϕ̃(t)− |λ|
∫ 1

0

c(xs, xs+rh) dr ≤ ϕ̃(s) ∀ 0 < s < s+ h < t.

Passing to lim suph↓0 and using the joint σ-lower semicontinuity of c and the σ-right continuity of

x(·), an application of Fatou’s lemma (recall that c is bounded from below) gives ϕ̃(t) ≤ ϕ̃(s) for
every 0 < s < t, as desired.

Using that ϕ̃ is nonincreasing, we show next that x(·) is left σ-continuous. Choosing x = xs in
(2.4) and setting v(t) := c(xs, xt) we obtain

v(t) ≤ |λ|
∫ t

s

v(r) dr +

∫ t

s

(ϕ̃(s)− ϕ̃(r)) dr ∀ 0 < s ≤ t. (2.13)

Now fix any t > 0 and take any 0 < s0 < t < t0. By applying Gronwall’s lemma to (2.13) and
integrating by parts we deduce

v(t) ≤
∫ t

s

(ϕ̃(s)− ϕ̃(r)) dr +

∫ t

s

∫ r

s

(ϕ̃(s)− ϕ̃(u)) du |λ|e|λ|(t−r) dr

≤
∫ t

s

(ϕ̃(s0)− ϕ̃(t0)) dr +

∫ t

s

∫ r

s

(ϕ̃(s0)− ϕ̃(t0)) du |λ|e|λ|(t−r) dr

= (ϕ̃(s0)− ϕ̃(t0))

∫ t−s

0

e|λ|r dr
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for every s0 < s < t. Taking the lim sups↑t in the above inequality we deduce that lim sups↑t c(xs, xt) ≤
0, thus giving, via the usual compatibility conditions, that x(·) is left σ-continuous.

Furthermore, since ϕ̃ is l.s.c., we have

ϕ(xs) ≤ lim inf
h↓0

ϕ̃(s+ h) ≤ lim inf
h↓0

1

h

∫ s+h

s

ϕ̃(r) dr. (2.14)

So, when dividing (2.4) by (t − s) and taking the lim sup for t ↓ s, the r.h.s. can be bounded
from above by ϕ(x)− ϕ(xs) and we obtain (2.3) using Fatou’s lemma for λ ≥ 0 and the separate
σ-continuity of c and the dominated convergence theorem for λ < 0.

i) ⇒ iii): Multiplying (2.3) by eλt gives

d+

dt
(eλtc(x, xt)) = lim sup

h↓0

eλ(t+h)c(x, xt+h)− eλtc(x, xt)

h

= lim sup
h↓0

[
eλ(t+h) c(x, xt+h)− c(x, xt)

h
+ c(x, xt)

eλ(t+h) − eλt

h

]
≤ lim sup

h↓0

[
eλ(t+h) c(x, xt+h)− c(x, xt)

h

]
+ lim sup

h↓0

[
c(x, xt)

eλ(t+h) − eλt

h

]
= eλt

d+

dt
c(x, xt) + λeλtc(x, xt) ≤ eλt(ϕ(x)− ϕ(xt)).

Integrating the latter through [MS20, Lemma A.1] and using the fact that ϕ̃ does not increase,
which is shown in ii) ⇔ i), this proves that (2.5) holds. □

Remark 2.5 (Separate and joint lower semicontinuity). It would also be possible to formulate and
prove Theorem 2.4 by assuming the cost c to be merely separately σ-lower semicontinuous in the
case λ ≥ 0, discarding the joint measurability of (s, t) 7→ c(xs, xt) in ii). Indeed, the only point
where this is used is in (2.9) when writing a double integral, and the latter can be dropped using
that λc ≥ 0 when λ ≥ 0. In the case λ < 0, one should nevertheless assume c to be additionally
jointly σ-continuous, in order for the full proof to work.

Remark 2.6 (On the EVI formulations and the estimates). Arguably, the differential (2.3) and
integral (2.4) formulations of the EVI are the natural generalization of the classical formulations
of the metric case in [MS20, Theorem 3.3]. The one with the exponential (2.5) is nevertheless very
useful to achieve estimates. Its drawback is that it misses the energy identity by a factor 2, as
easily seen when taking λ = 0 and x = xs in (2.5), or noticing that for x = xt the l.h.s. is negative.
As a corrective, for symmetric costs, the missing term is expressed in (2.18) below. Notice also
that the formulation in (2.5) does not depend on the topology σ.

Definition 2.7 (EVI solution). Let ϕ : X → (−∞,+∞], and c satisfy (Diss). A trajectory
x : R+ → X satisfying (2.5) in Theorem 2.4 for some λ ∈ R is called a EVI solution for the triplet
(X, c, ϕ) and we write x(·) ∈ EVIλ(X, c, ϕ). Equivalently, x(·) ∈ EVIλ(X, c, ϕ) if it satisfies either
(2.3) or (2.4) for a topology σ on X which is compatible with the pair (c, ϕ) (with c additionally
separately σ-continuous, if λ < 0).

Remark 2.8 (Definition up to time t = 0). The equivalences of Theorem 2.4 holds also for a curve
x : [0,+∞) → X down to time t = 0, provided that the cost c is additionally separately σ-
continuous (and not just jointly σ-lower semicontinuous). Indeed, in this case relation ii) written
for 0 < s ≤ t is equivalent to ii) written for 0 ≤ s ≤ t which is in turn equivalent to iii) for
0 ≤ s ≤ t. To conclude, it is enough to observe that the implication iii) ⇒ i) works exactly as
above upon replacing t0 > 0 with t0 ≥ 0.

On the basis of these observations, if c is additionally separately σ-continuous, one can extend
the definition of EVI solutions to curves x : [0,+∞) → X and, without introducing new notation,
use the same symbol EVIλ(X, c, ϕ). In particular, notice that every curve (xt)t≥0 ∈ EVIλ(X, c, ϕ)
is σ-continuous in [0,+∞).

We now introduce a concept analogue to the metric derivative in the case c = d2/2.
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Definition 2.9 (c-cost derivative). Let c be a symmetric cost satisfying (Diss) and let x :
[0,+∞) → X. We say that x(·) has a c-cost derivative at time t ≥ 0 if

|ẋt+|2c := lim
h↓0

2c(xt, xt+h)

h2
(2.15)

exists and is finite.

Note that by using EVI it is easy to give a lower (resp. upper) bound to c(xt, xt+h) (resp.
c(xt+h, xt)). The symmetry requirement in the above definition allows us to conclude that the
two are indeed equal. Symmetry will also be crucial in the proof of Theorem 2.10, e.g., to prove
the contraction estimate (2.16), which is obtained summing two EVIs with the curves involved
playing different roles.

The following theorem is in the spirit of [MS20, Theorem 3.5], and its forerunner [DS14, Theo-
rem 6.9], a distinctive aspect being however the fact that in the current general setting, the metric
slope does not appear.

Theorem 2.10 (Properties of EVI solutions). Let λ ∈ R, ϕ : X → (−∞,+∞], c be a sym-
metric cost satisfying (Diss), σ be compatible with the pair (c, ϕ), and let x : R+ → X belong to
EVIλ(X, c, ϕ). Then the following holds.

• λ-contraction. Let x̃(·) ∈ EVIλ(X, c, ϕ). Then,

c(xt, x̃t) ≤ e−2λ(t−s)c(xs, x̃s) ∀ 0 < s ≤ t. (2.16)

• Energy identity and regularizing effect. For every t > 0 the following right limits exist
and are equal:

d

dt
ϕ(xt+) = − lim

h↓0

2c(xt, xt+h)

h2
= −|ẋt+|2c . (2.17)

Moreover the map t 7→ e2λt|xt+|2c is nonincreasing and the map t 7→ ϕ(xt) is (locally semi-, if
λ < 0) convex in R+. As a consequence, t 7→ ϕ(xt) is differentiable outside a countable set
T ⊂ R+.

• A priori estimates. For every x ∈ D(ϕ), we have the following refinement of (2.5):

eλ(t−s)c(x, xt)− c(x, xs) +
(Eλ(t− s))2

2
|ẋt+|2c ≤ Eλ(t− s) (ϕ(x)− ϕ(xt)) ∀ 0 < s ≤ t. (2.18)

• Asymptotic behaviour as t → +∞. Assume that ϕ is bounded from below. If λ > 0 and
either i) σ is Cauchy-compatible with (c, ϕ) or ii) the sublevel sets ϕ are σ-compact, then ϕ has
a unique minimum point x̄ and

λc(x̄, xt) ≤ ϕ(xt)− ϕ(x̄) ≤ λc(x̄, xt0)

eλ(t−t0) − 1
and

c(x̄, xt) ≤ c(x̄, xt0)e
−2λ(t−t0) ∀ 0 < t0 < t. (2.19)

If λ = 0 and there exists a minimizer x̄ of ϕ, then t 7→ c(x̄, xt) is nonincreasing and

ϕ(xt)− ϕ(x̄) ≤ c(x̄, xt0)

t− t0
∀ 0 < t0 < t. (2.20)

For λ ≥ 0 and x̄ a minimizer of ϕ, we furthermore have, for every 0 < t0 < t, that

2λ(ϕ(xt)− ϕ(x̄)) ≤ |ẋt+|2c , |ẋt+|c ≤ |ẋt0+|ce−λ(t−t0), |ẋt+|c ≤
√
2c(x̄, xt0)

Eλ(t− t0)
. (2.21)

If λ = 0, ϕ has σ-compact sublevel sets, and c is jointly σ-continuous, then xt σ-converges to
a minimizer of ϕ as t → +∞.

Remark 2.11 (Time t = 0). Following up on Remark 2.8, we briefly discuss the possibility of
extending some of the results of Theorem 2.10 to the case of a EVI solution x : [0,+∞) → X
defined at time t = 0, as well. Recall that, in this case, the cost function c is assumed to be
additionally separately σ-continuous in order for the three formulations in Theorem 2.4 (written
down to time t = 0) to be equivalent. We have the following:
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(1) (λ-contractivity and uniqueness) If x̃ : [0,+∞) → X belongs to EVIλ(X, c, ϕ) and c is
jointly σ-continuous at (x0, x̃0), the contractivity estimate (2.16) holds also for 0 ≤ s ≤ t.
In particular, if x0 ∈ D(ϕ) and c is jointly σ-continuous at (x0, x0), there exists at most
one EVI solution starting from x0.

(2) (Stability w.r.t. the initial condition) If xn : [0,+∞) → X belong to EVIλ(X, c, ϕ), xn
0

σ→
x0, and c is jointly σ-continuous at the points (xn

0 , x0) for every n ∈ N, then xn
t

σ→ xt for
all t ≥ 0. This directly follows from (2.16) written for xn(·) and x(·) at times 0 = s ≤ t.

Proof of Theorem 2.10. λ-contraction. Fix 0 < s ≤ t. We write (2.5) for xt with test point
x = x̃t, we multiply it by eλ(t−s) and, using the symmetry of c, we sum it to (2.5) written for x̃t

with test point x = xs. The terms eλ(t−s)c(x̃t, xs) compensate by symmetry and we obtain

e2λ(t−s)c(x̃t, xt)− c(xs, x̃s)

≤ Eλ(t− s) (ϕ(xs)− ϕ(xt)) + Eλ(t− s)
(
eλ(t−s) − 1

)
(ϕ(x̃t)− ϕ(xt))

for every 0 < s ≤ t < +∞. Reversing the roles of x(·) and x̃(·), summing up and multiplying by
e2λs we get

2e2λtc(xt, x̃t)− 2e2λsc(xs, x̃s) ≤ e2λsEλ(t− s) (ϕ(xs)− ϕ(xt) + ϕ(x̃s)− ϕ(x̃t))

for every 0 ≤ s ≤ t < +∞. We now fix s > 0, divide by t− s > 0, and pass to the lim sup as t ↓ s.
Observing that limr↓0 Eλ(r)/r = 1 and using that ϕ̃ is σ-l.s.c. so that the r.h.s. is nonpositive in
the limit, we obtain

d+

ds
e2λsc(xs, x̃s) ≤ 0 for every s > 0.

An application of [MS20, Lemma A.1] gives (2.16).

Energy identity and Regularizing effect. We start from (2.11) in the proof of the im-
plication ii) ⇒ i) in Theorem 2.4: recalling the definition of η and u in (2.9) and below (2.10),

respectively, and using again the notation ϕ̃ = ϕ ◦ x, one has that for every 0 < t0 < t1 it holds∫ t1

t0

c(xs, xs+h)

h2
ds ≤ ehλ

−
sup

0≤δ≤h

∫ 1

0

(
ϕ̃(t0 + δξ)− ϕ̃(t1 + δξ)

)
(1− ξ) dξ

≤ ehλ
−

sup
0≤δ≤h

∫ 1

0

(
ϕ̃(t0)− ϕ̃(t1 + δξ)

)
(1− ξ) dξ,

where we used that ϕ̃ is nonincreasing. Note that (2.11) is written for Lebesgue points 0 < t0 < t1
of ϕ̃ but it holds in general (the Lebesgue property is used only later in (2.12)). Passing to the
lim sup as h ↓ 0 we obtain

lim sup
h↓0

∫ t1

t0

c(xs, xs+h)

h2
ds

≤ lim sup
h↓0

∫ 1

0

(
ϕ̃(t0)− ϕ̃(t1 + hξ)

)
(1− ξ) dξ ≤ 1

2
(ϕ̃(t0)− ϕ̃(t1)), (2.22)

where the last inequality follows from Fatou’s lemma and the local boundedness of ϕ̃. We divide
(2.22) by t1 − t0 and we take a lim inf as t1 ↓ t0, obtaining

− d+

dt0
ϕ(xt0) = lim inf

t1↓t0

ϕ̃(t0)− ϕ̃(t1)

t1 − t0
≥ lim inf

t1↓t0
lim sup

h↓0

1

t1 − t0

∫ t1

t0

2c(xs, xs+h)

h2
ds

≥ lim sup
h↓0

lim inf
t1↓t0

1

t1 − t0

∫ t1

t0

2c(xs, xs+h)

h2
ds ≥ lim sup

h↓0

2c(xt0 , xt0+h)

h2

where we again used Fatou’s lemma in the last inequality, as well as the joint σ- lower semiconti-
nuity of c. This shows that

− d+

dt0
ϕ(xt0) ≥ lim sup

h↓0

2c(xt0 , xt0+h)

h2
for every t0 > 0. (2.23)
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To show the converse inequality, we write (2.4) for x = xt+h and times t and t + h, and we use
(2.6) to get

c(xt+h, xt)

h2
≥

∫ 1

0

ϕ(xt+hr)− ϕ(xt+h)

h
dr − |λ|

∫ 1

0

c(xt+h, xt+rh)

h
dr

≥
∫ 1

0

ϕ(xt+hr)− ϕ(xt+h)

h
dr − |λ|(ϕ(xt)− ϕ(xt+h))

∫ 1

0

e−λh(1−r) − 1

−λh
dr

=

∫ 1

0

ϕ(xt+hr)− ϕ(xt+h)

h
dr − |λ|

2
(ϕ(xt)− ϕ(xt+h))(1 + o(1))

as h ↓ 0. We can thus pass to the lim sup as h ↓ 0 and, using the inequality lim sup(an + bn) ≥
lim sup an + lim inf bn, discarding thus through lower semicontinuity the nonnegative term in |λ|,
we obtain

lim sup
h↓0

c(xt, xt+h)

h2
≥ lim sup

h↓0

∫ 1

0

ϕ(xt+hr)− ϕ(xt) + ϕ(xt)− ϕ(xt+h)

h
dr

≥ lim sup
h↓0

ϕ(xt)− ϕ(xt+h)

h
+ lim inf

h↓0

∫ 1

0

ϕ(xt+hr)− ϕ(xt)

hr
r dr

≥ − d

dt+
ϕ(xt) +

1

2

d

dt+
ϕ(xt) = −1

2

d

dt+
ϕ(xt)

≥ −1

2

d+

dt
ϕ(xt) ≥ lim sup

h↓0

c(xt, xt+h)

h2
, (2.24)

where we used (2.23) in the last inequality and, to pass from the second to the third line, we have
used the following inequality

lim inf
h↓0

∫ 1

0

ϕ(xt+hr)− ϕ(xt)

hr
r dr ≥ 1

2

d

dt+
ϕ(xt). (2.25)

To prove (2.25), we cannot use Fatou’s lemma since the integrand is nonpositive. Instead let us
denote the r.h.s. by 2κ ∈ [−∞, 0]. If κ = −∞, there is nothing to prove, so suppose κ > −∞. For
every ε > 0, by the very definition of lim inf, we find δε > 0 such that

ϕ(xt+h′)− ϕ(xt)

h′ ≥ κ− ε for every h′ ∈ (0, δε).

In particular

ϕ(xt+hr)− ϕ(xt)

hr
r ≥ r(κ− ε) for every h ∈ (0, δε), r ∈ (0, 1),

so that ∫ 1

0

ϕ(xt+hr)− ϕ(xt)

hr
r dr ≥ 1

2
(κ− ε) for every h ∈ (0, δε).

Passing to the lim inf as h ↓ 0 and then to the limit as ε ↓ 0, gives (2.25).
The chain of inequalities (2.24) implies in particular that the right Dini derivative of t 7→ ϕ(xt)

exists at every point t > 0 and coincides with − lim suph↓0
2c(xt,xt+h)

h2 . Now that the existence
of the right Dini derivative of t 7→ ϕ(xt) has been established, the same computations that led
to (2.24), repeated with lim inf instead of lim sup (and thus using the inequality lim inf(an +

bn) ≥ lim inf an + lim inf bn) yield the existence of the limit limh↓0
c(xt,xt+h)

h2 for every t > 0, thus
establishing (2.17).

By (2.16) and the fact that t 7→ xt+h belongs to EVIλ(X, c, ϕ) for every h > 0, we deduce
that t 7→ e2λt|ẋt+|2c is nonincreasing in R+. The equality in (2.17) gives that t 7→ e2λt d

dtϕ(xt+) is
nondecreasing. As a consequence, the right derivative of the map

t 7→ e2λtϕ(xt)− 2λ

∫ t

0

e2λsϕ(xs) ds
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is nondecreasing. This in particular implies that t 7→ ϕ(xt) is convex on R+ if λ ≥ 0 and locally
semi-convex on R+ for λ < 0.

A priori estimates. To show (2.18) let us start by noting that, by taking derivatives in τ and
using the definition of Eλ, for τ ≥ 0 we have

(Eλ(τ))
2

2
e−2λτ =

(E−λ(τ))
2

2
=

1

2

(∫ τ

0

e−λr dr

)2

=

∫ τ

0

E−λ(r)e
−λr dr.

Hence, using the fact that of t 7→ eλt|ẋt+|c is nonincreasing on R+, the energy identity (2.17), the
almost everywhere differentiability of t 7→ ϕ(xt), and by integrating by parts, we obtain

(Eλ(t− s))2

2
|ẋt+|2c ≤

∫ t−s

0

E−λ(r)e
−λre2λr|ẋ(s+r)+|2c dr

(2.17)
= −

∫ t−s

0

E−λ(r)e
λr

(
d

dr
ϕ(x(s+r))

)
dr

=

∫ t−s

0

eλrϕ(x(s+r)) dr − E−λ(t− s)eλ(t−s)ϕ(xt)

=

∫ t

s

eλ(r−s) (ϕ(xr)− ϕ(xt)) dr

(2.3)

≤ −
∫ t

s

(
eλ(r−s)c(xr, x)

)′
dr +

∫ t

s

(
eλ(r−s)(ϕ(x)− ϕ(xt)

)
dr

= − eλ(t−s)c(x, xt) + c(x, xs) + Eλ(t− s) (ϕ(x)− ϕ(xt)) .

Asymptotic behaviour as t → +∞. Since t 7→ ϕ(xt) is nonincreasing and bounded from
below, it converges to some A ∈ R as t → +∞ and {xt}t>0 is contained in a sublevel set of ϕ. In
the case λ > 0, taking 0 < s ≤ t (2.5) reads

0 ≤ c(x, xt) ≤ e−λ(t−s)Eλ(t− s)
(
ϕ(x)− ϕ(xt)

)
+ e−λ(t−s)c(x, xs) ∀x ∈ D(ϕ). (2.26)

Hence, for x = xs we obtain

0 ≤ c(xs, xt) ≤
eλ(t−s) − 1

λeλ(t−s)
(ϕ(xs)− ϕ(xt)) ≤

|ϕ(xs)− ϕ(xt)|
λ

. (2.27)

Since c is symmetric, the inequality holds for any t, s ≥ 0. If i) σ is Cauchy-compatible, then x(·)
converges to some x̄ ∈ X as t → +∞. Otherwise, let us assume that ii) the sublevel sets of ϕ are
σ-compact. Fix t0 > 0 and set At0 := {x |ϕ(x) ≤ ϕ(xt0)}. It is enough to show that, given two
subnets (xtη )η and (xtγ )γ converging to points x̄, x̄′ ∈ At0 , we necessarily have that x̄ = x̄′. By
(2.27), we have

0 ≤ c(xtη , xtγ ) ≤
|ϕ(xtη )− ϕ(xtγ )|

λ
∀η, γ.

Using the joint σ- lower semicontinuity of c and the fact that limt→+∞ ϕ(xt) = A, we deduce that
c(x̄, x̄′) = 0 so that x̄ = x̄′.

Let us show that x̄ is the unique minimizer of ϕ. Taking the lim inf as t → +∞ in (2.26) and,
using the σ- lower semicontinuity properties of c and ϕ, we get

0 ≤ λc(x, x̄) ≤ ϕ(x)− lim sup
t→+∞

ϕ(xt) ≤ ϕ(x)− ϕ(x̄) ∀x ∈ D(ϕ), (2.28)

which shows that x̄ is a minimizer of ϕ and that it is unique by the nondegeneracy of c coming
from (Diss) .

Similarly, for given 0 < t0 < t, considering (2.5) for s = t0, and x = x̄, we obtain

−c(x̄, xt0) ≤ eλ(t−t0)c(x̄, xt)− c(x̄, xt0) ≤ Eλ(t− t0) (ϕ(x̄)− ϕ(xt)) for every 0 < t0 ≤ t
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which implies ϕ(xt)−ϕ(x̄) ≤ λc(x̄,xt0
)

eλ(t−t0)−1
. In combination with (2.28) evaluated at x = xt, the latter

gives the first inequality in (2.19).
Note that (2.28) is nothing but relation (2.3) written for the constant trajectory t 7→ x̄, prov-

ing that it indeed belongs to EVIλ(X, c, ϕ). Therefore, the second part of (2.19) is simply the
contractivity (2.16) for the curves t 7→ xt and t 7→ x̄ with s = t0.

In the case λ = 0, we use the fact that t 7→ ϕ(xt) is nonincreasing and the integral formulation
(2.4) with x = x̄ and s = t0 to obtain that, for every 0 < t0 ≤ t, it holds

(t− t0)(ϕ(xt)− ϕ(x̄)) ≤
∫ t

t0

(ϕ(xr)− ϕ(x̄)) dr
(2.4)

≤ c(x̄, xt0)− c(x̄, xt)
c≥0

≤ c(x̄, xt0). (2.29)

This gives that t 7→ c(x̄, xt) is nonincreasing and proves (2.20).
The second inequality in (2.21) follows by the already proven fact that t 7→ e2λt|ẋt+|2c is non-

increasing on R+. The first one follows from the same fact, energy identity (2.17), and has to be
proven only for λ > 0:

ϕ(xt)− ϕ(x̄) = −
∫ +∞

t

d

dr
ϕ(xr) dr =

∫ +∞

t

e−2λre2λr|ẋr+|2c dr

≤ e2λt|ẋt+|2c
∫ +∞

t

e−2λr dr =
|ẋt+|2c
2λ

.

Using (2.18) with x = x̄ and s = t0 we obtain that, for every 0 < t0 ≤ t, it holds

eλ(t−t0)c(x̄, xt) + Eλ(t− t0) (ϕ(xt)− ϕ(x̄)) +
(Eλ(t− t0))

2

2
|ẋt+|2c ≤ c(x̄, xt0). (2.30)

As the first two terms on the l.h.s. are nonnegative, the third inequality in (2.21) eventually ensues.
Finally, let us assume that λ = 0 and ϕ has σ-compact sublevel sets, so that it has at least

one minimizer x̄. Since {xt}t>0 is contained in a sublevel set of ϕ, there exists a subnet (xtη )η
converging to a point x̄′. By (2.20), using the lower semicontinuity of ϕ, we deduce that

ϕ(x̄′) ≤ lim inf
η

ϕ(xtη ) ≤ lim inf
η

[
ϕ(x̄) +

c(x̄, xt0)

tη − t0

]
= ϕ(x̄),

where t0 > 0 is any value such that tη > t0 eventually in η. Therefore also x̄′ is a minimum point
of ϕ. Since t 7→ c(x̄′, xt) is nonincreasing, there exists the limit ℓ := limt→+∞ c(x̄′, xt) ∈ [0,+∞).
Since c is jointly σ-continuous we deduce that limη c(xtη , x̄

′) = 0. Hence, we necessarily have that
limt→+∞ c(xt, x̄

′) = 0. By compatibility, this implies that xt σ-converges to x̄′ as t → +∞. □

2.3. On slopes and local characterizations. In this section, we temporarily depart from the
study of EVI solutions and comment on some alternative formulations of local nature. Indeed, in
the metric case c = d2/2 one could consider a hierarchy of weaker notions, which go under the name
of Energy-Dissipation Equality/Inequality (EDE and EDI, for short), as well as of subdifferential
formulation, [AG13]. In the metric case, one has the chain of implications [AG13, Section 3.2]

EV I ⇒ EDE ⇒ EDI ⇒ subdifferential formulation.

Except for the EVI, which is global, the other formulations are of local nature, see Definition 2.12.
Reversing these implications requires a global property, such as some notion of convexity. This
will be considered in Proposition 2.19.

In addition, EDE and EDI formulations require the notion of slope, which still needs to be
introduced in the present case of general costs, see Lemma 2.13 below.

2.3.1. On general costs and slopes.

Definition 2.12 (Local c-variational inequality). Let ϕ : X → (−∞,+∞], and let c be a sym-
metric cost satisfying (Diss). We say that a function x : (0,+∞) → D(ϕ) satisfies the local
c-variational inequality if, for all t > 0 and all functions z : [t,+∞) → D(ϕ) with zt = xt, we
have

0 ≥ lim sup
h↓0

c(zt+h, xt+h)− c(zt+h, zt)− c(xt, xt+h)

h2
+

ϕ(zt)− ϕ(zt+h)

h
. (2.31)
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The first term in (2.31) is remindful of a triangle-inequality term. Note however that in general
we cannot separate the dependence in x(·) and z(·) in (2.31), in order to introduce a notion of
slope. Nonetheless, some of the corresponding information is contained in (2.31), as the following
lemma, specializing indeed to the metric case, shows.

Lemma 2.13 (Slope in the metric case). Let λ ≥ 0, ϕ : X → (−∞,+∞], c be a symmetric cost
satisfying (Diss), σ be compatible with the pair (c, ϕ), and assume, in addition, that c is jointly
σ-continuous. If x(·) belongs to EVIλ(X, c, ϕ), then x(·) solves the local c-variational inequality in
the sense of Definition 2.12.

Moreover , if (X, d) is a geodesic metric space, p ∈ (0, 2], and c = dp

2 , then, if x(·) solves the
local c-variational inequality in the sense of Definition 2.12 we have that

|∂ϕ(xt)|d,p := lim sup
x

d→xt

[
(ϕ(xt)− ϕ(x))+

d
p
2 (xt, x)

]
≤ lim sup

h↓0

d
p
2 (xt+h, xt)

h
, (2.32)

with equality if x(·) belongs to EVIλ(X, dp

2 , ϕ).

Remark 2.14. Since for p ∈ (0, 2], we have that δ := d
p
2 is a distance. Lemma 2.13 shows that, for

c = δ2

2 , trajectories in EVIλ(X, dp

2 , ϕ) satisfy the energy identity

d

dt
ϕ(zt+) = −|ẋt+|2δ2/2 = −1

2
|∂ϕ(xt)|2δ,2.

In this case, trajectories in EVIλ(X, dp

2 , ϕ) may be seen as curves of maximal slope for ϕ with

respect to the local slope |∂ϕ(xt)|δ,2 and the c-cost derivative |ẋt+|2δ2/2. This leads to the classical

EDE or EDI formulations when integrated on time. The restriction to p ∈ (0, 2] in (2.32) comes
from the subadditivity of power functions, and the presence of p

2 from a simple estimate, see
Lemma 2.15. Note that the slope |∂ϕ(xt)|d,p is obtained constructively from (2.31). In particular,
no chain-rule nor upper-gradient notions [AGS08] have been used.

Proof of Lemma 2.13. Let t > 0 and let [t,+∞) ∋ s 7→ zs ∈ D(ϕ) be such that zt = xt. Given
h > 0, consider (2.18) and apply it on [t, t+ h] by choosing x = zt+h. We get

eλhc(zt+h, xt+h)− c(zt+h, xt) +
(Eλ(h))

2

2
|ẋ(t+h)+|2c ≤ Eλ(h) (ϕ(zt+h)− ϕ(xt+h))

=
Eλ(h)

h
h (ϕ(zt+h)− ϕ(zt) + ϕ(xt)− ϕ(xt+h)) . (2.33)

Divide by h2 and take the lim sup as h ↓ 0. Using that limh↓0
Eλ(h)

h = 1, c(zt+h, xt) = c(zt+h, zt)
since xt = zt and the energy identity (2.17), we obtain

lim sup
h↓0

[
c(zt+h, xt+h)− c(zt+h, zt)

h2
+

ϕ(zt)− ϕ(zt+h)

h

]
+ lim inf

h↓0

1

2
|ẋ(t+h)+|2c

≤ − d

dt
ϕ(xt+)

(2.17)
= |ẋt+|2c .

The latter entails (2.31) by moving all the terms to the l.h.s. and by using that

lim inf
h↓0

1

2
|ẋ(t+h)+|2c = lim inf

h↓0
lim
r↓0

c(xt+h, xt+h+r)

r2

≥ lim sup
r↓0

lim inf
h↓0

c(xt+h, xt+h+r)

r2
≥ lim sup

r↓0

c(xt, xt+r)

r2
=

1

2
|ẋt+|2c ,

where we used that c is jointly σ-lower semicontinuous and that x(·) is σ-continuous.
We consider now the case where (X, d) is a geodesic metric space, p ∈ [1, 2], and c = dp/2. Fix

t > 0 and x ∈ D(ϕ) with x ̸= xt. Take a curve z(·) such that dp(zt, zt+h) = h2dp(zt, x).
We use the triangle inequality to get that the l.h.s. of (2.31) has a lower bound of the form

|d(zt+h, xt)− d(xt+h, xt)|p − dp(zt+h, zt)− dp(xt+h, xt)

≤ dp(zt+h, xt+h)− dp(zt+h, zt)− dp(xt+h, xt).
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We are going to separate the dependence in z and x through the following fact.

Lemma 2.15 (Bound via powers). Let p > 0 and F : R+ × R+ → R be given by F (a, b) =
|a− b|p − ap − bp. Then

F (a, b) ≥ −2ap/2bp/2 if p ∈ (0, 2],

F (a, b) ≤ −2ap/2bp/2 if p ∈ [2,+∞).

Proof. Let p ∈ (0, 2] and set t = p/2 ∈ (0, 1]. The assertion follows by recalling that the map
r ∈ R+ 7→ rt is subadditive, as this implies that |a − b|2t ≥ |at − bt|2, which immediately gives
F (a, b) ≥ −2ap/2bp/2.

If p ∈ (2,+∞] we argue similarily, by recalling that in this case t = p/2 > 1 and the map
r ∈ R+ 7→ rt is superadditive. □

As a consequence of the Lemma we have

dp(zt+h, xt+h)− dp(zt+h, zt)− dp(xt+h, xt) ≥ F (d(zt+h, xt), d(xt+h, xt))

≥ −2dp/2(zt+h, xt)d
p/2(xt+h, xt).

Inserting this bound in (2.31) we obtain

0 ≥ lim sup
h↓0

−hdp/2(zt+h, zt)d
p/2(xt+h, xt)

h2
+

ϕ(zt)− ϕ(zt+h)

h
. (2.34)

Divide by dp/2(zt+h, zt) to get

lim sup
h↓0

dp/2(xt+h, xt)

h
≥ lim sup

h↓0

ϕ(zt)− ϕ(zt+h)

dp/2(zt, zt+h)
. (2.35)

Since the l.h.s. is nonnegative and that the inequality holds for arbitrary x = zt+h, we obtain

lim sup
h↓0

d
p
2 (xt+h, xt)

h
≥ lim sup

x→xt

(ϕ(xt)− ϕ(x))+

d
p
2 (xt, x)

(2.36)

which is relation (2.32). □

2.3.2. A local characterization of EVIλ(X, c, ϕ). We now turn to a local characterization of EVI
solutions.

Proposition 2.16 (Local characterization). Let λ ≥ 0, ϕ : X → (−∞,+∞], c be a cost satisfying
(Diss), σ be compatible with the pair (c, ϕ), and let x : R+ → X belong to EVIλ(X, c, ϕ). For any
t0 > 0 and any curve γ : [0,+∞) → X with γ0 = xt0 , we have that

[ẋ, γ]c,t0 := lim inf
s↓0

1

s

d+

dt
c(γs, xt)|t=t0 ≤ ϕ′(xt0 ; γ) := lim inf

s↓0

ϕ(γs)− ϕ(xt0)

s
(2.37)

where the inequality is intended in [−∞,+∞].

Proof. Notice first that we can restrict ourselves to the case λ = 0 since c is nonnegative and to
curves such that γs ∈ D(ϕ) for all s ∈ (0, 1]. Hence setting x = γs in (2.3) and dividing by s, we
get

1

s

d+

dt
c(γs, xt)|t=t0 ≤ ϕ(γs)− ϕ(xt0)

s
taking the lim inf on both sides, we obtain (2.37). □

Remark 2.17. Equation (2.37) corresponds to the generalization to the case of a general cost c of
the classical subdifferential formulation. Indeed, consider first for simplicity that X is a Hilbert
space with norm ∥ · ∥, let c = ∥ · ∥2/2, and assume that ϕ is differentiable. Then, taking v ∈ X
and γs = xt0 + sv, we obtain [ẋ, γ]c,t0 = ⟨−ẋt0 , v⟩ ≤ ⟨∇ϕ(xt0), v⟩. Since this holds for all v ∈ X,
we get that ẋt0 = −∇ϕ(xt0). In fact, one could obtain the same conclusion by arguing directly at
the level of (2.31), taking zt+h = xt + hv.
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More generally, assume that (X, d) is a locally Hilbertian manifold, that c ∈ C2 with c = 0 on
the diagonal, and that ϕ ∈ C1. Setting γ̇0 = v for arbitrary v ∈ Txt0

M we get

lim inf
s↓0

ϕ(γs)− ϕ(xt0)

s
≥ [ẋ, γ]c,t0 = lim inf

s↓0

1

s
⟨∇2c(γs, xt0), ẋt0⟩

=

〈
lim
s↓0

∇2c(γs, xt0)−∇2c(γ0, xt0)

s
, ẋt0

〉
= ⟨∇1,2c(xt0 , xt0)v, ẋt0⟩ (2.38)

which is precisely the definition of the elements of the Fréchet subdifferential ∂ϕ, hence

∇2,1c(xt0 , xt0)ẋt0 ∈ ∂ϕ(xt0).

We thus recover the seminal observation of Kim and McCann [KM10, Section 2] that the
“geometric information of c” is contained in its mixed-Hessian ∇2,1c. Moreover two costs with the
same mixed Hessian will induce the same gradient flows, as shown for Wc and W2 by [RW24].

We will now consider the converse to Proposition 2.16, that is whether the local equation (2.37)
implies that x(·) ∈ EVIλ(X, c, ϕ). To this aim, some global property will be needed. Concerning
ϕ, this will be some suitable form of λ-convexity. Nonetheless, as the cost c is integrated along
trajectories, some form of convexity for c can be useful, as well. The latter is naturally connected
to curvature conditions of c. Note, however, that the (Alexandrov) curvature does not affect the
validity of (2.39) in geodesic metric spaces, see [MS20, Lemma 3.13].

More precisely, our goal is to prove that, under some suitable assumption on c, for some class
of curves γ(·) such that γ0 = xt0 and γ1 = x is left free, we have

[ẋ, γ]c,t0 := lim inf
s↓0

1

s

d+

dt
c(γs, xt)|t=t0 ≥ d+

dt
c(γ1, xt)|t=t0 . (2.39)

This would indeed correspond to [MS20, eq. (3.56), Lemma 3.13], which holds for a complete
geodesic space (X, d), c = d2/2, and with γ being any geodesic. We hence anticipate that one
is asked to restrict the class of admissible curves γ(·) in the case of general costs c, as well. In
preparation for Proposition 2.19, we recall the following Definition from [LTV25, Definitions 2.6,
2.7].

Definition 2.18 (NNCC space and variational c-segment). Let c : X ×X → [−∞,+∞] be given.
We say that (X ×X, c) is a Nonnegatively Cross-Curved (NNCC) space if for every (x0, x1, ȳ) ∈
X × X × X such that c(x0, ȳ) and c(x1, ȳ) are finite, there exists a function γ : [0, 1] → X with
γ0 = x and γ1 = x1 such that

c(γs, ȳ)− c(γs, y) ≤ (1− s)[c(γ(0), ȳ)− c(γ(0), y)]

+ s [c(γ(1), ȳ)− c(γ(1), y)] ∀y ∈ X, s ∈ (0, 1), (2.40)

with the rule (+∞) + (−∞) = +∞ for the r.h.s. In this case, we say that the function γ(·) is a
variational c-segment.

Relation (2.40) is often referred to as the NNCC inequality. Being required for all y ∈ X, it
is a quite strong property. In particular, variational c-segments may not exist. Correspondingly,
situations where variational c-segments exist are of special interest. In the metric setting c = d2/2,
NNCC spaces are a specific subclass of complete PC metric spaces ([LTV25, Proposition 2.26]).
In particular, the Wasserstein space is NNCC [LTV25, Theorem 3.11].

Proposition 2.19 ((2.37) implies EVI for NNCC spaces). Let λ ≥ 0, ϕ : X → (−∞,+∞], c
be a cost satisfying (Diss), and σ be compatible with the pair (c, ϕ). Let x : R+ → D(ϕ) be a
σ-continuous function. Assume that

i) (X ×X, c) is a NNCC space;
ii) for all x0, x ∈ X there exists a variational c-segment γ : [0, 1] → X with γ0 = x0 and

γ1 = x, and M : [0, 1] → R ∪ {+∞} with

ϕ(γt) ≤ (1− t)ϕ(x0) + tϕ(x)− λtc(x, x0) +M(t) (2.41)

such that lim inft↓0
M(t)

t = 0;
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iii) (2.37) holds along these variational c-segments.

Then, x(·) ∈ EVIλ(X, c, ϕ).

Note that relation (2.41) holds if t 7→ ϕ(γt)− λt2c(x, x0) is convex. Moreover, it follows also if

t 7→ ϕ(γt)− λc(γt, x0) is convex and lim inft↓0
λc(γt,x0)

t = 0. These two cases coincide when (X, d)

is a geodesic metric space, c = d2/2 and γ is a geodesic. The former is closer to the condition on
generalized geodesics of [AGS08], while the latter is more inline with the theory of NNCC spaces
and (2.40) (see also Remark 3.11).

Proof of Proposition 2.19. Let t0 > 0, h > 0, x ∈ X and take x0 = ȳ = xt0 , x1 = x, y = xt0+h in
(2.40), noticing that, since γ(·) does not depend on y,

c(γs, xt0)− c(γs, xt0+h) ≤ (1− s)[c(xt0 , xt0)− c(xt0 , xt0+h)] + s [c(x, xt0)− c(x, xt0+h)].

As c(xt0 , xt0) = 0 and c(xt0 , xt0+h) ≥ 0, we can drop the (1-s)-term of the r.h.s., and obtain

c(γs, xt0+h)− c(γs, xt0) ≥ s [c(x, xt0+h)− c(x, xt0)].

Divide by h and take the lim sup as h ↓ 0 to obtain

d+c(γs, xt)

dt |t=t0
≥ s

d+c(x, xt)

dt |t=t0
. (2.42)

Dividing by s and taking the lim inf for s ↓ 0, we obtain (2.39).
Consider now (2.41), divide by t, and take the lim inf as t ↓ 0 to obtain

d+

dt
c(x, xt)|t=t0

(2.39)

≤ [ẋ, γ]c,t0
(2.37)

≤ ϕ′(xt0 ; γ)
(2.41)

≤ ϕ(x)− ϕ(xt0)− λc(x, xt0) (2.43)

so x(·) satisfies (2.3), hence x(·) ∈ EVIλ(X, c, ϕ). □

Corollary 2.20. Let 0 ≤ λ1 ≤ λ2, ϕ : X → (−∞,+∞], c be a cost satisfying (Diss), and σ be
compatible with the pair (c, ϕ). Then, EV Iλ2(X, c, ϕ) ⊂ EV Iλ1(X, c, ϕ). Conversely, for (X, c)
being a NNCC space, if x(·) ∈ EV Iλ1

(X, c, ϕ) and ϕ is λ2-convex along variational c-segments as
in (2.41), then x(·) ∈ EV Iλ2

(X, c, ϕ).

Proof. The first part follows immediately from (2.3). The converse stems from (2.43) applied to
λ = λ2, since (2.37) is independent of λ in the case λ ≥ 0. □

3. Existence of EVI solutions as limit of splitting schemes

In this section, we are interested in describing a natural minimizing movements scheme that
converges to the EVI. Unlike previous works, we will not focus solely on the implicit (Euler)
iteration, but also on a more general splitting scheme. The key idea, following [LAF23], is to
perform a majorization-minimization of the functional ϕ := f + g where f : X → R and g : X →
(−∞,+∞], noticing that for any set X, τ > 0, and any cost function c : X ×X → R we have

ϕ(x) = f(x) + g(x) ≤ g(x) +
c(x, y)

τ
+ f c/τ (y) =: Φ(x, y) (3.1)

using the c-transform f c/τ (y) := supx′∈X f(x′) − c(x′,y)
τ . Given x0 ∈ X, we then perform an

alternating minimization of Φ, assuming that the iterates exist,

yτn+1 ∈ argmin
y∈X

g(xn) +
c(xn, y)

τ
+ f c/τ (y), (3.2)

xτ
n+1 ∈ argmin

x∈X
g(x) +

c(x, yn+1)

τ
+ f c/τ (yn+1). (3.3)

The alternating minimization of Φ does not provide a minimizer of ϕ in general. This is however
the case if ϕ is c/τ -concave (Definition 3.1), which entails that ϕ(x) = infy∈X Φ(x, y).

In the relevant subcase f = 0 we only have implicit iterations. If c(·, y) is lower bounded
for each y ∈ X, then, introducing c̃(x, y) := c(x, y) − infx′∈X c(x′, y), we have that c̃ ≥ 0 and
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Φ(x, y) = g(x) + c̃(x,y)
τ in (3.1), which clearly defines a minimizing movement scheme. To ensure

that no information about g is lost, we require that 0 = infy∈X c̃(x, y).
Léger and the first-named author in [LAF23] extensively studied the discrete iterations with

τ > 0 fixed and proved convergence of (ϕ(xn))n∈N to the infimum of Φ under the so-called five-
point property. We are instead interested in taking the limit τ → 0 and recovering a trajectory in
EVIλ(X, c, ϕ). In Section 3.1, we prove that this is possible if f and g satisfy that f is c/τ-concave
for all small τ and some cross-convexity property from [LAF23] holds. The latter reduces to a form
of discrete EVI. Similarly to the discrete EVI in the metric case [AG13], this cross-convexity is
implied by a more readable compatibility condition between the functional and the cost, described
by some convexity of two functionals along the same curve, see Section 3.2.

Since we consider separate properties on f and g due to the splitting structure, we consider also
two auxiliary variables ξ, z ∈ X corresponding to (3.2) with f = 0 and (3.3) with g = 0. Their
role is made clear in Section 3.1.

3.1. Definition of the scheme through alternating minimization. We start with the def-
initions of the fundamental objects we are going to use. Throughout the section, X will be a
nonempty set and c : X ×X → R will be a given cost. Note that in the first part of this section
we do not need to assume the cost to be nonnegative, as we did in the previous Section 2.

Definition 3.1 (c-transform, c-concavity). The c-transform of a function U : X → R is the
function U c : X → (−∞,+∞] defined by

U c(y) := sup
x∈X

U(x)− c(x, y), y ∈ X. (3.4)

We say that a function U : X → R is c-concave if there exists a function h : X → (−∞,+∞] such
that

U(x) = inf
y∈X

c(x, y) + h(y) for every x ∈ X. (3.5)

Note that, if U is c-concave, then U c is the smallest h such that (3.5) holds.

Since c has finite values, c-concave functions cannot take the value +∞. The next lemma shows
that a c-concave function is also c/τ -concave for τ ∈ (0, 1], provided the cost satisfies a suitable
condition.

Lemma 3.2. Let c′ : X × X → R be given. Every c-concave function is c′-concave if and only
if x 7→ c(x, y) is c′-concave for every y ∈ X. In particular, given τ ∈ (0, 1], any c-concave
function is c/τ -concave if and only if, for all y ∈ X, there exists hy : X → (−∞,+∞] such that
τc(·, y) = infy′∈X c(·, y′) + hy(y

′).
If (X, d) is an intrinsic metric space, namely, there exist ϵ-midpoints in the following sense

∀ϵ > 0, ∀x ∈ X, x′ ∈ X, ∃y ∈ X, max(d(x, y), d(x′, y)) ≤ 1

2
d(x, x′) + ϵ, (3.6)

then d2(·,x)
2n is d2-concave for all x ∈ X and n ∈ N.

Proof. Suppose every c-concave function is c′-concave. For every y ∈ X, the function x 7→ c(x, y)
is c-concave (it is enough to take h as the indicator function of {y} in the definition of c-concavity)
whence it is c′-concave.

Suppose now that x 7→ c(x, y) is c′-concave for every y ∈ X. This is equivalent to say that, for
every y ∈ X, there exists a function hy : X → (−∞,+∞] such that c(x, y) = infy′∈X c′(x, y′) +
hy(y

′). If U : X → R is c-concave, there exists h : X → R ∪ {+∞} such that

U(x) = inf
y∈X

c(x, y) + h(y) for every x ∈ X.

We deduce

U(x) = inf
y∈X

[
inf

y′∈X
c′(x, y′) + hy(y

′)

]
+ h(y) = inf

y′∈X

{
c′(x, y′) + inf

y∈X
[hy(y

′) + h(y)]

}
, x ∈ X.

Notice that the quantity h′(y′) := infy∈X [hy(y
′) + h(y)] cannot attain the value −∞ since other-

wise we would obtain U(x) = −∞, in contrast with U(x) ∈ R.
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Let (X, d) be an intrinsic metric space. By the triangle inequality, we have for any x, x′, y ∈ X

1

2
d2(x, x′) ≤ d2(x, y) + d2(x′, y).

Taking the infimum over y we deduce that 1
2d

2(x, x′) ≤ infy∈X d2(x, y) + d2(x′, y). Take y to be

an ϵ-midpoint. We get d2(x, yϵ) + d2(x′, yϵ) ≤ 2( 12d(x, x
′) + ϵ)2. Hence taking the limit as ϵ ↓ 0,

we obtain 1
2d

2(x, x′) = infy∈X d2(x, y) + d2(x′, y).

Replacing d by d√
2
, the same proof shows that 1

4d
2(x, ·) is d2

2 concave, and an immediate

induction gives the result for all 2n with n ∈ N. □

While c-concavity is a classical notion, here used for explicit schemes, we now introduce the
key notion of [LAF23]: cross-convexity. It is based on iterates and should be seen as requiring the
analogue of the discrete EVI in gradient flows on metric spaces [AGS08, Corollary 4.1.3].

Definition 3.3. Let U : X → R be a function and let x0 ∈ X and y0 ∈ X. We define the (possibly
empty) sets

Pc(U, y0) := argmin
x∈X

{c(x, y0)− U(x)},

Qc(U, x0) := argmin
y∈X

{c(x0, y) + U c(y)},

Rc(x0) := argmin
y∈X

c(x0, y),

Sc(x0) := {ξ0 ∈ X |x0 ∈ argmin
x∈X

c(x, ξ0)}.

Definition 3.4 (c-cross-concavity/convexity). Let µ ≥ 0 be given. A function U : X → R is said
to be

• µ-strongly c-cross-concave if

U(x)− U(x1) ≤ [c(x, y0)− c(x1, y0)]− [c(x, y1)− c(x1, y1)]− µ [c(x, y1)− c(x1, y1)]

for every (x, y0) ∈ X ×X and every x1 ∈ Pc(U, y0), y1 ∈ Rc(x1);
• µ-strongly c-cross-convex if

U(x)− U(x0) ≥ − [c(x, ξ0)− c(x0, ξ0)] + [c(x, y0)− c(x0, y0)] + µ [c(x, ξ0)− c(x0, ξ0)]

for every (x, x0) ∈ X ×X and every ξ0 ∈ Sc(x0), y0 ∈ Qc(U, x0).

Because of the definition of the iterates and of the focus on y0 and Pc for cross-concavity and
on x0 and Qc for cross-convexity, the two notions are not symmetric: having −U c-cross-concave
does not imply that U is c-cross-convex. In Section 3.2, we provide some simpler curve-based
sufficient assumptions for these two notions to hold.

Example 1.1 (continued). For τ > 0 and c = d2

2τ , c-cross-concavity is precisely the discrete EVI
considered in [AGS08, Corollary 4.1.3]. Cross-convexity is similar concept, but applies to an

explicit scheme. The d2

2τ -concavity can be understood as a local d2

2τ -bound on the growth.

Example 1.2 (continued). Let X be a subset of a Banach space, X∗ the dual of the closure of its
span, and assume there exists a strictly convex u : X → R such that for all y ∈ X there exists
u′(y) ∈ X∗ such that for all x

c(x, y) = u(x)− u(y)− ⟨u′(y), x− y⟩. (3.7)

In particular if u′(y) is the Gateaux derivative of u at y, then (3.7) states that c is the Bregman
divergence of u. The KL is not Gateaux differentiable for nondiscrete X ⊂ Rd, but (3.7) still holds,

see [AFKL22, Example 2] with u(µ) = KL(µ|ρ) and u′(µ) = 1 + ln( dµ
dρ ).

Cross-concavity is the three-point inequality in mirror descent, see e.g [CT93, Lemma 3.2]. It
reads similarly to cross-convexity which takes the form: for all x0, x ∈ X, since Sc(x0) = {x0} by
strict convexity of u,

[U(x)− µu(x)]− [U(x0)− µu(x0)] ≥ ⟨u′(y0)− u′(x)− µu′(x0), x− x0⟩ (3.8)
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with y0 ∈ Qc(U, x0). On the other hand, c-concavity reads U(x) = infy∈X c(x, y) + h(y) which
implies that U − u is concave upper semicontinuous as an infimum of affine functions.

We work under the following fundamental hypotheses, which will be progressively reinforced
by additional assumptions when needed.

Assumption 3.5. Let c : X ×X → R, f : X → R, g : X → (−∞,+∞] be given and assume that
there exist τ̄ > 0 and λf , λg ∈ R such that:

(1) f is λfτ -strongly c/τ -cross-convex and c/τ -concave for every 0 < τ < τ̄ .
(2) −g is λgτ -strongly c/τ -cross-concave for every 0 < τ < τ̄ .
(3) for every x0 ∈ X there exists y0 ∈ Qc/τ (f, x0) and x1 ∈ Pc/τ (−g, y0) such that Sc(x1) ̸= ∅

and Rc(x1) ̸= ∅.
Under the above Assumption 3.5, starting from x0 ∈ X we can implement the following scheme:

for i ∈ N and 0 < τ < τ̄ we define

xτ
0 := x0, yτi ∈ Qc/τ (f, x

τ
i ), xτ

i+1 ∈ Pc/τ (−g, yτi ), ξτi ∈ Sc(x
τ
i ), zτi ∈ Rc(x

τ
i ). (3.9)

yi−1 yi
g

↘
f

↗
xi

0

↗
0

↘
ξi zi

Table 1. Diagram of the iterates of the splitting scheme (3.9), omitting the role
of c and τ .

While xτ
i+1 ∈ Pc/τ (−g, yτi ) clearly corresponds to an implicit iteration on g, we refer to [LAF23,

Section 3] for the interpretation of yτi ∈ Qc/τ (f, x
τ
i ) as an explicit iteration on f . In particular, it

is shown in [LAF23] that, if X is an Euclidean space, for c/τ -concave f , this iteration corresponds
to gradient, mirror or Riemmanian descent for c taken respectively to be the squared Euclidean
norm, a Bregman divergence, or a squared Riemannian distance.

Definition 3.6. Under Assumption 3.5, for 0 < τ < τ̄ , given points (xτ
i )i ⊂ X and (yτi )i, (z

τ
i )i ⊂

X as in (3.9), we define the following interpolating curves x̄τ , ȳτ , z̄τ : [0,+∞) → X as

x̄τ
t := xτ

⌊t/τ⌋, ȳτt := yτ⌊t/τ⌋, z̄τt := zτ⌊t/τ⌋ t ∈ [0,+∞).

Our aim is to prove the following theorem.

Theorem 3.7 (Existence of EVI solutions via splitting scheme). Let c be a cost satisfying (Diss)
with Assumption 3.5 in place; suppose in addition that

(1) ϕ = f + g is lower bounded;
(2) there exists a Hausdorff topology σ on X such that σ is compatible with (c, ϕ) and c is

σ-continuous;
(3) Either

(a) σ is Cauchy-compatible with (c, ϕ) and c is symmetric, or
(b) the sublevel sets of ϕ are σ-sequentially compact.

Then, for every x0 ∈ X and τ ∈ (0, τ̄) the family of curves (x̄τ/2n) (constructed according to
Definition 3.6 starting from x0) converges (up to a subsequence in case (b)) pointwise (w.r.t. σ)
as τ ↓ 0 to a σ-continuous curve x : [0,+∞) → X which satisfies

c(x, xt)− c(x, xs) + (λf + λg)

∫ t

s

c(x, xr) dr

≤ (t− s)ϕ(x)−
∫ t

s

ϕ(xr) dr ∀ 0 ≤ s ≤ t, x ∈ X. (3.10)
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If EVIλ(X, c, ϕ) contains a unique trajectory x(·) starting from x0, then, x̄
τ (·) σ-converges point-

wise to this x(·), which does not depend on τ . In case (a), we also have the following error
estimate

c (x̄τ
t , xt) ≤ 2τ(ϕ(x0)− inf ϕ) ∀t ≥ 0, τ ∈ (0, τ̄). (3.11)

The proof of Theorem 3.7 is deferred to Section 3.4. In terms of assumptions, the key differences
with Section 2 are that we assume ϕ to be lower bounded in order to have a lower bound on (ϕ(xτ

n))n
independent of τ and n. We also require c to be σ-continuous so as to take limits in −c(x, z̄τt ),
where lower semicontinuity of c would not be sufficient to conclude.

Before moving on, let us mention that the assumptions of Theorem 3.7 may be weakened in
some specific situations. A specific setting where this seems to be possible is the case in which
c dominates a (power of a) distance d2. In this case, the a-priori bounds obtained below (see
(3.25), for instance) would guarantee that the approximating trajectories are equicontinuous w.r.t
to d2. In combination with a compactness assumption on the subslevels of ϕ, this would allow to
use an Ascoli–Arzelà argument to obtain convergence. In the linear-space setting of X being a
Hilbert or a Banach space, one may even avoid asking for the compactness of the sublevels of ϕ
and alternatively handle the limit passage by lower-semicontinuity arguments. We give below an
application of Theorem 3.7 to Example 1.2.

Corollary 3.8. Let X ⊂ Rd be a closed subset, 0 < a < b < +∞, ρ ∈ P(X), and let X = {µ ∈
P(X) |µ = hρ with h(·) ∈ [a, b] ρ-a.s.}. Let σρ be the strong L1(ρ) topology on X, and set c = KL.
Let f, g : X → R be convex, σρ-lower semicontinuous, and such that g has σρ compact sublevel
sets and is lower-bounded and f is lower bounded. Assume furthermore that there exists τ̄ > 0
such that for every 0 < τ < τ̄ , there exists hτ : X → (−∞,+∞) with

KL(µ|ρ)
τ

− f(µ) = max
µ′∈X

〈
µ,

1

τ
ln

(
dµ′

dρ

)〉
− hτ (µ

′). (3.12)

Then, for every x0 ∈ X and τ ∈ (0, τ̄) the family of curves (x̄τ/2n) (constructed according to
Definition 3.6 starting from x0) converges up to a subsequence pointwise (w.r.t. σ) as τ ↓ 0 to a
σ-continuous curve x : [0,+∞) → X satisfying (3.10).

Corollary 3.8 proves that the limit curve belongs EVIλ(X, c, ϕ). Based on the discussion around
(2.38), taking derivatives ∇2,1 in (3.7), this flow formally corresponds to the mirror flow

−[∇2(KL(·|ρ))(xt0)]ẋt0 ∈ ∂ϕ(xt0)

restricted to the set X.

Proof. We just have to check the assumptions of Theorem 3.7. Since c clearly satisfies (Diss)
and (1), (2) and (3)b hold, it only remains to check Assumption 3.5. Since the sublevels of g are

compact for σρ and g(·) + KL(·|µ0)
τ is σρ-lower semicontinuous for all µ0 ∈ X, the set Pc/τ (−g, y0)

is nonempty. We use Lemmas 3.12 and 3.13 below, along with the discussion in Example 3.2 below
on c = KL. Equation (3.12) is just a rewriting of the c/τ -concavity of (3.5). □

3.2. Sufficient conditions: compatibility of energy and cost. We now provide some more
readable sufficient assumptions, inspired by [AG13, Section 3.2.4], also known as C2G2 (Compat-
ible Convexity along Generalized Geodesics) in [San17].

Assumption 3.9 (Compatibility to obtain cross-concavity). The function g : X → (−∞,+∞]
is such that there exists λ ∈ R such that, for any y0 ∈ Y and x1 ∈ X and y1 ∈ Rc(x1), and for
all x ∈ X, there exists functions γ : [0, 1] → X and M : [0, 1] → (−∞,+∞] such that, for every
t ∈ [0, 1]

g(γ(t)) ≤ (1− t)g(x1) + tg(x)− λt[c(x, y1)− c(x1, y1)] +Mt, (3.13)

c(γ(t), y0) ≤ (1− t)c(x1, y0) + tc(x, y0)− t[c(x, y1)− c(x1, y1)] +Mt (3.14)
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with lim inft↓0
Mt

t = 0. Specifically, γ(·) fulfills

lim inf
t↓0

g(γ(t))− g(x1)

t
≤ g(x)− g(x1)− λ[c(x, y1)− c(x1, y1)], (3.15)

lim inf
t↓0

c(γ(t), y0)− c(x1, y0)

t
≤ c(x, y0)− c(x1, y0)− [c(x, y1)− c(x1, y1)]. (3.16)

Assumption 3.10 (Compatibility to obtain cross-convexity). There exists τ̄ > 0 such that f
is c/τ -concave for all τ ∈ (0, τ̄). There exists λ ∈ R such that, for any x0 ∈ X, and all ξ0 ∈
Sc(x0), y0 ∈ Qc(f, x0), for all x ∈ X and τ ∈ (0, τ̄), there exists functions γ : [0, 1] → X,
z : [0, 1] → Y and M : [0, 1] → (−∞,+∞] such that γ(0) = x0, z(0) = y0 and, for every t ∈ [0, 1],
f(γ(t))− f c/τ (z(t)) = 1

τ c(γ(t), z(t)) and

f(γ(t)) ≤ (1− t)f(x0) + tf(x)− λt[c(x, ξ0)− c(x0, ξ0)] +Mt, (3.17)

c(γ(t), z(t)) ≥ (1− t)c(x0, z(t)) + tc(x, z(t))− t[c(x, ξ0)− c(x0, ξ0)]−Mt, (3.18)

with lim inft→0[c(x, z(t))− c(x0, z(t))] ≤ c(x, z(0))− c(x0, z(0)) and lim inft↓0
Mt

t = 0.

Remark 3.11. In the analysis, it is paramount to choose which functions should be convex along
which curves. Nonetheless, we mostly use assumptions for t → 0 only. By introducing the function
t 7→ Mt we intend to cover both convexity of t 7→ ϕ(γt)−λt2c(x, x0) and of t 7→ ϕ(γt)−λc(γt, x0) as
already discussed around (2.41) after Proposition 2.19. For instance, for (3.13)–(3.14) and p > 1,
taking Mt = max(1, λ)tp[c(x, y1)− c(x1, y1)], we recover the (p, λ)-convexity of Ohta and Zhao in
the case c = dp [OZ23, Definition 4.1].

Lemma 3.12. Let τ > 0 and assume that for all y0 ∈ Y the set Pc/τ (−g, y0) is nonempty. Then,
Assumption 3.9 implies the λτ -strong c/τ -cross-concavity of −g.

Proof. Fix x1 ∈ Pc/τ (−g, y0), multiply (3.14) by 1/τ and sum with (3.13) to obtain

g(x1) +
1

τ
c(x1, y0) ≤ g(γ(t)) +

1

τ
c(γ(t), y0)

≤ (1− t)g(x1) + tg(x)− λtc(x, y1)

+
1− t

τ
c(x1, y0) +

t

τ
c(x, y0)−

t

τ
[c(x, y1)− c(x1, y1)] + (1 +

1

τ
)Mt (3.19)

Observe that the terms not depending on t simplify, divide by t, and take the limit t → 0. We
obtain that, for every x ∈ X and every x1 ∈ Pc(−g, y0) and y1 ∈ Rc(x1),

g(x1) +
1

τ
c(x1, y0) ≤ g(x) +

1

τ
c(x, y0)−

λτ + 1

τ
[c(x, y1)− c(x1, y1)] (3.20)

which is precisely the cross-concavity of −g. □

Lemma 3.13. Take τ ∈ (0, τ̄). Then, Assumption 3.10 implies the c/τ -cross-convexity of f .

Proof. Use that f(x0)− c(x0,z(t))
τ ≤ f c/τ (z(t)) = f(γ(t))− c(γ(t),z(t))

τ , multiply (3.18) by 1/τ and
sum with (3.17) to obtain

f(x0) ≤ f(γ(t))− c(γ(t), z(t))

τ
+

c(x0, z(t))

τ

≤ (1− t)f(x0) + tf(x) +
1− λτ

τ
t[c(x, ξ0)− c(x0, ξ0)]

+
t

τ
c(x0, z(t))−

t

τ
c(x, z(t)) + (1 +

1

τ
)Mt. (3.21)

Take the limit t → 0. We obtain that, for every x ∈ X, every ξ0 ∈ Sc(x0), and y0 = z(0) ∈
Qc/τ (f, x0),

f(x0) ≤ f(x) +
1− λτ

τ
[c(x, ξ0)− c(x0, ξ0)] +

1

τ
lim inf
t→0

[c(x, z(t))− c(x0, z(t))]. (3.22)

As the last term is bounded by (c(x, z(0))− c(x0, z(0))), this proves the cross-convexity of f . □
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Remark 3.14 (Explicit vs. implicit). Notice that the existence of z(t) in Assumption 3.10 implies
that f is c/τ -concave over γ([0, 1]), but since x0 = γ(0) is left free, we should nevertheless request
c/τ -concavity over the whole X. Moreover, the c/τ -concavity of f does not imply the existence
of z(t) which we hence have to assume. Informally, this second trajectory z(t), the smoothness
required by the lim inf, and the role of τ do not appear in Assumption 3.9 as implicit schemes for
g do not rely on smoothness and require only a lower bound on the Hessian of g. On the contrary,
explicit schemes require smoothness and the Hessian of f is assumed to fulfill a lower and an upper
bound. We refer to [LAF23] for more details on this aspect.

Example 1.1 (continued). For geodesic metric spaces (X, d) and c = d2, (3.14) and (3.18) are
implied by Alexandrov curvature conditions, for γ(·) being a geodesic between x0 and x.

In particular, if X is a Hilbert space and c(x, y) = ∥x−y∥2

2 , this implies that (3.18), with
c(x0, z(0)) = 0, and (3.14), with c(x1, z1) = 0, are both satisfied and turn into equalities. We then
see that (3.17) and (3.13) are nothing but the usual λ-convexity of f or g for Mt = t2[c(x, y1) −
c(x1, y1)]. If X is a smooth reflexive Banach space, then Assumption 3.9 for g = ∥ · ∥2/2, setting
f = 0 (resp. Assumption 3.10 for f = ∥ · ∥2, 2, setting g = 0), implies that X is Hilbert. Indeed,
using Theorem 3.7 one can find a trajectory in EVIλ(X, c, g) starting from any x0 ∈ X, and we
can apply [vRT12, Corollary 4.5].

When considering a geodesic spaceX with nonzero curvature, an interesting phenomenon arises.
If X is nonpositively curved (NPC) in the sense of Alexandrov, we can consider a geodesic γ(t) for
Assumption 3.9, but not for Assumption 3.10; the opposite holds if X is positively curved (PC).
In other words, when X is NPC, every λ-convex function g satisfies Assumption 3.9, and one finds
a EVI solution by Theorem 3.7, as also stated in [MS20, Theorem 3.14]. Conversely, in PC spaces,
Assumption 3.9 implies that −g is c/τ -cross-concave for τ ∈ (0, 1/λ−), which in turn implies that
g is λ-convex, as shown in [LAF23, Proposition 4.14].

IfX is the Wasserstein space equipped with the distanceW2, which is positively curved, [AGS08,
Remark 9.2.8] discusses how Assumption 3.9 with Mt = t2[c(x, y1) − c(x1, y1)] corresponds to
convexity along generalized geodesics. This assumption implies [AGS08, Assumption 4.0.1], which
leads to the discrete EVI and consequently to the continuous EVI. However, they also emphasize
that convexity along generalized geodesics is a stronger requirement, as it implies convexity along
standard geodesics. Note that (3.14) holds in both NPC spaces (along geodesics) and in NNCC
spaces (along variational d2-segments), with NNCC being a subclass of PC spaces.

In summary, explicit schemes are particularly well-suited for positively curved spaces and c-
concave, λ-convex functions (which are therefore c-cross-convex) while in NPC spaces, λ-convex
functions are more naturally handled via implicit schemes. The strong focus on implicit schemes
in the Wasserstein space is likely motivated by the fact that some relevant functionals, such as the
entropy, show some convexity but are not W 2

2 -concave. Furthermore, as our discussion suggests,
implicit schemes are conceptually simpler: they require only a single bound and demand less
regularity. Finally, as shown in [LTV25, Theorem 3.11], the Wasserstein space is NNCC (as
defined in Definition 2.18), so its structure is shaped not only by its positive curvature but also
by its NNCC nature.

Example 1.2 (continued). For c as in (3.7) with X convex, in particular c = KL, taking γ(t) =
(1− t)x1 + tx, one can argue similarly to [LTV25, Example 2.9] to show that (X ×X, c) satisfies
Definition 2.18 with (2.40) being an equality. So (3.14) and (3.18) hold with equality. Taking f
and g convex will then give (3.13) and (3.17). The c/τ -concavity on f implies that u

τ −f is convex
l.s.c., the existence of z(t) corresponds to having a nonempty subdifferential at all points.

Example 1.3 (continued). For Sϵ, preliminary work following [LLM+24] seems to indicate that po-
tential functionals of the form V(µ) =

∫
V (x)dµ(x) with V convex C1 are candidates for satisfying

Assumption 3.9 or 3.10. A rigorous verification of this fact remains an open problem at this stage.

3.3. Existence of the flow for implicit schemes. In this section, we focus on implicit iterations
and may hence simplify Assumption 3.5 as follows.

Assumption 3.15. Let c : X×Y → R and g : X → R be given and assume that there exist τ̄ > 0
and λ ≥ 0 such that
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(1) −g is λτ -strongly c/τ -cross-concave for every 0 < τ < τ̄ ;
(2) for every x0 ∈ X and every 0 < τ < τ̄ there exists some y0 ∈ Rc(x0) such that

Pc/τ (−g, y0) ̸= ∅.

Under the above Assumption 3.15, given an arbitrary starting point x0 ∈ X and τ ∈ (0, τ̄) we
consider the following scheme, which corresponds to (3.9) with zτi = yτi since f = 0.

Definition 3.16 (Scheme for ϕ = g). For all i ∈ N we iteratively define

xτ
0 := x0, yτi ∈ Rc(x

τ
i ), xτ

i+1 ∈ Pc/τ (−g, yτi ). (3.23)

Note that Assumption 3.15 guarantees the existence of two sequences (xτ
i )i ⊂ X and (yτi )i ⊂

X solving the scheme (3.23). We define the interpolating curves x̄τ : [0,+∞) → X and ȳτ :
[0,+∞) → X as

x̄τ
t := xτ

⌊t/τ⌋, ȳτt := yτ⌊t/τ⌋, t ∈ [0,+∞). (3.24)

Lemma 3.17. Under Assumption 3.15, let x̄τ and ȳτ be defined as in (3.24). For any 0 ≤ s =
mτ < nτ = t, we have that

c(x, ȳτt )− c(x, ȳτs )

t− s
+

1

t− s

n−1∑
i=m

[
c(xτ

i+1, y
τ
i )− c(xτ

i+1, y
τ
i+1)

]
+

λτ

t− s

n−1∑
i=m

c(x, yτi+1)

≤ g(x)− τ

t− s

n−1∑
i=m

g(xτ
i+1) ∀x ∈ X. (3.25)

Relation (3.25) is a discrete version of the EVI in integral form (2.4), our goal is to show that
we can indeed take the limit in τ .

Proof. Since −g is λτ -strongly c/τ -cross-concave, by the definition of the scheme, we have

c(x, yτi+1)− c(x, yτi )

τ
+

c(xτ
i+1, y

τ
i )− c(xτ

i+1, y
τ
i+1)

τ
+ λc(x, yτi+1)

≤ g(x)− g(xτ
i+1) ∀x ∈ X, i ∈ N. (3.26)

We sum (3.26) from i = m to i = n− 1 to get

c(x, ȳτt )− c(x, ȳτs )

τ
+

1

τ

n−1∑
i=m

c(xτ
i+1, y

τ
i )−

1

τ

n−1∑
i=m

c(xτ
i+1, y

τ
i+1) + λ

n−1∑
i=m

c(x, yτi+1)

≤ (n−m)g(x)−
n−1∑
i=m

g(xτ
i+1) (3.27)

and dividing by (n−m) we obtain (3.25). □

If c satisfies (Diss), then (3.23) defines a descent scheme over g, as well as a first step toward a
Cauchy estimate involving the symmetrization of c.

Lemma 3.18 (g nonincreasing and first Cauchy-like estimate). Let c be a cost satisfying (Diss)
and let Assumption 3.15 hold. Then, the map t 7→ g(x̄τ

t ) is nonincreasing. Moreover, for any
0 ≤ nτ = t and p ∈ N, we have

[c(x̄
τ/2p

t , ȳτt ) + c(x̄τ
t , ȳ

τ/2p

t )]

+

n−1∑
i=0

[c(x̄
τ/2p

iτ , ȳτ(i+1)τ )− c(x̄
τ/2p

(i+1)τ , ȳ
τ
iτ ) + c(x̄τ

iτ , ȳ
τ/2p

(i+1)τ )− c(x̄τ
(i+1)τ , ȳ

τ/2p

iτ )]

+ 2

n−1∑
i=0

c(x̄τ
(i+1)τ , ȳ

τ
iτ ) + 2

n2p−1∑
j=0

c(x̄
τ/2p

(j+1)τ/2p , ȳ
τ/2p

jτ/2p)

≤ τ(2g(x0)− g(x̄τ
t )− g(x̄

τ/2p

t )). (3.28)
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Proof. Assumption (Diss) and the fact that yτi ∈ Rc(x
τ
i ) imply that c(xτ

i , y
τ
i ) = 0. As xτ

i+1 ∈
Pc/τ (−g, yτi ) and c ≥ 0 we have that

g(xτ
i+1)

c≥0

≤
c(xτ

i+1, y
τ
i )

τ
+ g(xτ

i+1)
xτ
i+1∈Pc/τ (−g,yτ

i )

≤ c(xτ
i , y

τ
i )

τ
+ g(xτ

i )
c(xτ

i ,y
τ
i )=0

= g(xτ
i ).

This proves that (g(xτ
i ))i is nonincreasing.

Since c ≥ 0 from (Diss), by using (3.27) with t = (i + 1)τ , s = iτ , n = i + 1, and m = i, and
recalling that c(xτ

i+1, y
τ
i+1) = 0 as yτi+1 ∈ Rc(x

τ
i+1), for all i ∈ N we get

c(x, ȳτ(i+1)τ )− c(x, ȳτiτ )

τ
+

c(xτ
i+1, y

τ
i )

τ
≤ g(x)− g(x̄τ

(i+1)τ ) ∀x ∈ X. (3.29)

Write now (3.25) for the time step τ/2p, and for the choices n = (i+1)2p and m = i2p. Still using
that c ≥ 0 and the fact that c(xτ

i+1, y
τ
i+1) = 0 we get

c(x, ȳ
τ/2p

(i+1)τ )− c(x, ȳ
τ/2p

iτ )

τ
+

1

τ

(i+1)2p−1∑
j=i2p

c(x̄
τ/2p

(j+1)τ/2p , ȳ
τ/2p

jτ/2p)

≤ g(x)− g(x̄
τ/2p

(i+1)τ ) ∀x ∈ X, i ∈ N. (3.30)

By summing (3.29) with x = x̄
τ/2p

iτ and (3.30) with x = x̄τ
(i+1)τ , and then (3.29) with x = x̄

τ/2p

(i+1)τ

and (3.30) with x = x̄τ
iτ we obtain

c(x̄
τ/2p

iτ , ȳτ(i+1)τ )− c(x̄
τ/2p

iτ , ȳτiτ ) + c(x̄τ
(i+1)τ , ȳ

τ/2p

(i+1)τ )− c(x̄τ
(i+1)τ , ȳ

τ/2p

iτ )

+ c(x̄τ
(i+1)τ , ȳ

τ
i ) +

(i+1)2p−1∑
j=i2p

c(x̄
τ/2p

(j+1)τ/2p , ȳ
τ/2p

jτ/2p) ≤ τ(g(x̄
τ/2p

iτ )− g(x̄
τ/2p

(i+1)τ )),

c(x̄
τ/2p

(i+1)τ , ȳ
τ
(i+1)τ )− c(x̄

τ/2p

(i+1)τ , ȳ
τ
iτ ) + c(x̄τ

iτ , ȳ
τ/2p

(i+1)τ )− c(x̄τ
iτ , ȳ

τ/2p

iτ )

+ c(x̄τ
(i+1)τ , ȳ

τ
i ) +

(i+1)2p−1∑
j=i2p

c(x̄
τ/2p

(j+1)τ/2p , ȳ
τ/2p

jτ/2p) ≤ τ(g(x̄τ
iτ )− g(x̄τ

(i+1)τ )).

Taking the sum of the above inequalities and summing from i = 0 to i = n−1 we obtain (3.28). □

Proposition 3.19 (Cauchy estimate). Let c be a cost satisfying (Diss) and let Assumption 3.15
hold. Assume additionally that c decomposes as c = c1 + c2 with

(1) c1 ≥ 0 symmetric: c1(x1, x2) = c1(x2, x1) for all x1, x2 ∈ X;
(2) c2 fulfilling the triangle inequality:

c2(x1, x2) ≤ c2(x1, x3) + c2(x3, x2) ∀x1, x2, x3 ∈ X.

Then, for every 0 ≤ nτ = t and every p ∈ N, we have

c(x̄
τ/2p

t , x̄τ
t ) + c(x̄τ

t , x̄
τ/2p

t ) ≤ τ(2g(x0)− g(x̄τ
t )− g(x̄

τ/2p

t )).

Proof. From the nondegeneracy of c coming from (Diss) we get that xτ
i = yτi for all τ ∈ (0, τ̄)

and all i ∈ N. The assertion of the proposition follows from (3.28), as soon as we check that the
quantity Ac defined by

Ac :=

n−1∑
i=0

[c(x̄
τ/2p

iτ , ȳτ(i+1)τ )− c(x̄
τ/2p

(i+1)τ , ȳ
τ
iτ ) + c(x̄τ

iτ , ȳ
τ/2p

(i+1)τ )− c(x̄τ
(i+1)τ , ȳ

τ/2p

iτ )]

+ 2

n−1∑
i=0

c(x̄τ
(i+1)τ , ȳ

τ
iτ ) + 2

n2p−1∑
j=0

c(x̄
τ/2p

(j+1)τ/2p , ȳ
τ/2p

jτ/2p) (3.31)

is nonnegative. Note that Ac = Ac1 +Ac2 . From the symmetry of c1 ≥ 0 we obtain

Ac1 = 2

n−1∑
i=0

c1(x̄
τ
(i+1)τ , ȳ

τ
iτ ) + 2

n2p−1∑
j=0

c1(x̄
τ/2p

(j+1)τ/2p , ȳ
τ/2p

jτ/2p) ≥ 0. (3.32)
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Using the triangle inequality and the fact that xτ
i = yτi and x

τ/2p

i = y
τ/2p

i , for every i =
0, . . . , n− 1 one has that

c2(x̄
τ
(i+1)τ , ȳ

τ
iτ ) + c2(x̄

τ
iτ , ȳ

τ/2p

(i+1)τ ) + c2(x̄
τ/2p

(i+1)τ , ȳ
τ/2p

iτ ) ≥ c2(x̄
τ
(i+1)τ , ȳ

τ/2p

iτ ),

c2(x̄
τ/2p

(i+1)τ , ȳ
τ/2p

iτ ) + c2(x̄
τ/2p

iτ , ȳτ(i+1)τ ) + c2(x̄
τ
(i+1)τ , ȳ

τ
iτ ) ≥ c2(x̄

τ/2p

(i+1)τ , ȳ
τ
iτ ).

At the same time, again the triangle inequality gives

2

n2p−1∑
j=0

c2(x̄
τ/2p

(j+1)τ/2p , ȳ
τ/2p

jτ/2p) ≥ 2

n−1∑
i=0

c2(x̄
τ/2p

(i+1)τ , ȳ
τ/2p

iτ ).

By combining these inequalities one gets that

Ac2 ≥
n−1∑
i=0

[c2(x̄
τ/2p

iτ , ȳτ(i+1)τ )− c2(x̄
τ/2p

(i+1)τ , ȳ
τ
iτ ) + c2(x̄

τ
iτ , ȳ

τ/2p

(i+1)τ )− c2(x̄
τ
(i+1)τ , ȳ

τ/2p

iτ )]

+ 2

n−1∑
i=0

c2(x̄
τ
(i+1)τ , ȳ

τ
iτ ) + 2

n−1∑
i=0

c2(x̄
τ/2p

(i+1)τ , ȳ
τ/2p

iτ ) ≥ 0. (3.33)

Inequalities (3.32)–(3.33) imply that Ac = Ac1 +Ac2 ≥ 0, whence the thesis. □

Theorem 3.20 (Existence of EVI solutions via implicit scheme). Let c be a cost satisfying (Diss)
and let Assumption 3.15 hold. Suppose in addition that

(1) g is lower bounded;
(2) there exist a topology σ on X such that σ is compatible with (c, g) and c is additionally

σ-continuous;
(3) Either

(a) σ is Cauchy-compatible with (c, g) and c decomposes as in Proposition 3.19, or
(b) the sublevel sets g are sequentially compact for σ.

Then, for every x0 ∈ X and τ ∈ (0, τ̄) the family of curves (x̄τ/2n) (constructed according to
(3.23) starting from x0) converges (up to a subsequence in case (b)) pointwise (w.r.t. σ) as τ ↓ 0
to a σ-continuous curve x : [0,+∞) → X which may depend on τ and satisfies

c(x, xt)− c(x, xs) + λ

∫ t

s

c(x, xr) dr ≤ (t− s)g(x)−
∫ t

s

g(xr) dr ∀ 0 ≤ s ≤ t, x ∈ X. (3.34)

If EVIλ(X, c, g) contains a unique trajectory x(·) starting from x0, then, x̄
τ (·) σ-converges point-

wise to this x(·), which does not depend on τ . In case (a), we also have the following error
estimate

c (x̄τ
t , xt) ≤ 2τ(g(x0)− inf g) ∀t ≥ 0, τ ∈ (0, τ̄). (3.35)

Proof. We apply Lemma 3.17, written for the time step τ/2n. Discarding the second nonnegative
term in the l.h.s., testing against any x ∈ X, we obtain, whenever 0 ≤ s ≤ t and j, k ∈ N are such
that jτ ≤ s2n < (j + 1)τ and kτ ≤ t2n < (k + 1)τ , that

c(x, x̄
τ/2n

t )− c(x, x̄τ/2n

s ) + λτ

k−1∑
i=j

c(x, x
τ/2n

i+1 ) + τ

k−1∑
i=j

g(x
τ/2n

i+1 )

= c(x, x̄
τ/2n

t )− c(x, x̄τ/2n

s ) +

∫ (k−1)τ2−n

jτ2−n

(
λc(x, x̄τ/2n

r ) + g(x̄τ/2n

r )
)
dr

≤ (t− s)g(x). (3.36)

Notice that, choosing x = x̄
τ/2n

s and dropping the term λc ≥ 0, we get

c(x̄
τ/2n

t , x̄τ/2n

s ) ≤ (t− s)(g(x̄τ/2n

s )−A) ≤ (t− s)(g(x0)−A) ∀ 0 ≤ s ≤ t, (3.37)

where A is a lower bound for g. Now we split the proof in the two cases (a) and (b) as above.
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In case (a), by Proposition 3.19, we get that

c
(
x̄
τ/2n

t , x̄
τ/2m

t

)
≤ τ(g(x0)−A)

2m∧n−1
∀t ≥ 0, τ ∈ (0, τ̄), m, n ∈ N. (3.38)

This shows that the sequence (x̄
τ/2n

t )n∈N is c-Cauchy for every t ≥ 0 so that, by Cauchy-
compatibility, it converges (w.r.t. σ) as n → +∞ to a point xt ∈ X.

In case (b), let us set

φn(t) := sup

{
N∑
i=1

c(x̄
τ/2n

ti−1
, x̄

τ/2n

ti ) : 0 = t0 < t1 < · · · < tN−1 < tN = t, N ∈ N

}
, t ≥ 0.

Clearly, φn is a nondecreasing function such that φn(t) ≤ t(g(x0)− A) by (3.37) for every t ≥ 0,
and

c(x̄
τ/2n

t , x̄τ/2n

s ) ≤ φn(t)− φn(s) for every 0 ≤ s ≤ t. (3.39)

By Helly’s theorem, up to passing to a unrelabeled subsequence, we can assume that there exists a
nondecreasing function φ : [0,+∞) → R such that φn(t) → φ(t) for every t ≥ 0. Take a countable
dense subset A of [0,+∞) such that φ is continuous on Ac. By the diagonal principle and the
sequential compactness of {x | g(x) ≤ g(x0)}, we can find a subsequence nk ↑ +∞ and points

(xt)t∈A ⊂ X such that x̄
τ/2nk

t σ-converges to xt as k → +∞. We now show that, for every t ∈ Ac,

we have that there exists a point xt ∈ X such that x̄
τ/2nk

t σ-converges to xt. Let t ∈ Ac and let

nkh
↑ +∞ and ut ∈ X be such that x̄

τ/2
nkh

t σ-converges to ut as h → +∞. Let (tj)j ⊂ A be such
that tj ↓ t as j → +∞ and let us write (3.39) for t < tj , namely,

c(x̄
τ/2

nkh

tj , x̄
τ/2

nkh

t ) ≤ φnkh
(tj)− φnkh

(t) for every j, h ∈ N.

Using the σ-continuity of c, we can pass to the limit as h → +∞ and we get

c(xtj , ut) ≤ φ(tj)− φ(t).

By the continuity of φ at t, we can pass to the limit as j → +∞ and we obtain that

lim
j→+∞

c(xtj , ut) = 0.

Hence, by compatibility of c with σ, we have that ut is the σ-limit of xtj and does not depends on

the chosen subsequence, thus identifying it as the limit of x̄
τ/2nk

t as k → +∞. This in particular

proves the existence of x : [0,+∞) → X such that x̄
τ/2nk

t σ-converges to xt for every t ≥ 0.
In both cases (a) and (b), we can pass to the limit as nk → +∞ in (3.36) and in (3.37) and

get that x(·) satisfies (3.34) and, by virtue of the compatibility of c with σ and of (3.37), it is
σ-continuous. Assume that EVIλ(X, c, g) contains a unique trajectory x(·) starting from x0. In
case (a), we just take n = 0 and take m → +∞ in (3.38) to derive (3.35). Equation (3.35) also
shows the pointwise convergence when taking the limit τ → 0. In case (b), every converging

subsequence w.r.t. n of (x̄
τ/2n

t )t∈A converges to a curve in EVIλ(X, c, g), hence to x(·). This also
shows that, for every t > 0 and every neighborhood V of xt, there exists N ∈ N such that, for
every τ ∈ (0, τ̄

2N
), x̄τ

t ∈ V . This concludes the proof. □

3.4. Existence of the flow for splitting schemes. In this section, we prove Theorem 3.7. The
main steps are nearly identical to the implicit case f = 0. We refer to Section 3.1 for the relations
between the iterates.

Lemma 3.21. Under Assumption 3.5 the scheme in (3.9) satisfies for every i ∈ N and every
0 < τ < τ̄

1

τ
[c(x, yτi )− c(x, ξτi )] +

1

τ
[c(xτ

i , ξ
τ
i )− c(xτ

i+1, y
τ
i )] + λf (c(x, ξ

τ
i )− c(xτ

i , ξ
τ
i ))

≤ f(x)− f(xτ
i+1) ∀x ∈ X, ξτi ∈ Sc(x

τ
i ) (3.40)

with yτi , x
τ
i , ξ

τ
i as per (3.9).
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If we additionally assume that c satisfies (Diss), i.e., zτi ∈ Rc(x
τ
i ) exists with c(xτ

i , z
τ
i ) = 0,

then we have zτi ∈ Sc(x
τ
i ) and

1

τ
[c(x, zτi+1)− c(x, zτi )] + λfc(x, z

τ
i ) + λgc(x, z

τ
i+1) ≤ ϕ(x)− ϕ(xτ

i+1) ∀x ∈ X, (3.41)

with ϕ = f + g.

Proof. Fix ξτi ∈ Sc(x
τ
i ) and yτi defined as per (3.9). By definition of the c-transform we can bound

f(xτ
i+1) ≤

c(xτ
i+1,y

τ
i )

τ + f c/τ (yτi ). Since f is c/τ -concave, we get that f(xτ
i ) =

c(xτ
i ,y

τ
i )

τ + f c/τ (yτi ).
Thus

f(xτ
i+1) ≤ f(xτ

i )−
c(xτ

i , y
τ
i )

τ
+

c(xτ
i+1, y

τ
i )

τ
. (3.42)

The λfτ -strongly c/τ -cross-convexity of f at xτ
i gives

f(xτ
i ) ≤ f(x) +

1

τ
[c(x, ξτi )− c(xτ

i , ξ
τ
i )]−

1

τ
[c(x, yτi )− c(xτ

i , y
τ
i )]− λf (c(x, ξ

τ
i )− c(xτ

i , ξ
τ
i )). (3.43)

Summing (3.42) and (3.43), we get (3.40).
On the other hand, by the x-update (cf. (3.9)) we have

g(xτ
i+1) +

c(xτ
i+1, y

τ
i )

τ
≤ g(xτ

i ) +
c(xτ

i , y
τ
i )

τ
. (3.44)

Summing (3.42) and (3.44) yields

f(xτ
i+1) + g(xτ

i+1) ≤ f(xτ
i ) + g(xτ

i ), (3.45)

Using strong cross-concavity of −g at yτi gives us

g(xτ
i+1) ≤ g(x)− 1

τ
[c(x, zτi+1)− c(xτ

i+1, z
τ
i+1)] +

1

τ
[c(x, yτi )− c(xτ

i+1, y
τ
i )]

− λg(c(x, z
τ
i+1)− c(xτ

i+1, z
τ
i+1)). (3.46)

Since c(xτ
i , z

τ
i ) = 0 and c ≥ 0 by (Diss), we have that for all x′ ∈ X, c(xτ

i , z
τ
i ) = 0 ≤ c(x′, zτi ). So

zτi ∈ Sc(x
τ
i ) and we can choose ξτi = zτi . In particular, yτi depends on zτi , and we can use zτi in

(3.40).
After summing (3.40) with ξτi = zτi and (3.46) and using that c(xτ

i , z
τ
i ) = 0, we obtain (3.41). □

Remark 3.22 (EVI for explicit/splitting scheme). If g = 0 we can take ξτi = yτi−1 in (3.40) and
prove that (f(xτ

i ))i is a decreasing sequence, see (3.42). The term [c(xτ
i , y

τ
i−1) − c(xτ

i+1, y
τ
i )] is

then telescopic but has unknown sign. Nevertheless, if (Diss) holds, then this term vanishes since
c(xτ

i+1, y
τ
i ) = 0, and we obtain

1

τ
[c(x, yτi )− c(x, yτi−1)] + λf (c(x, ξ

τ
i )− c(xτ

i , ξ
τ
i )) ≤ f(x)− f(xτ

i+1) (3.47)

which is a our candidate discrete EVI for the explicit scheme.
Our EVI (3.41) for the splitting scheme differs from the EVI (3.26) of the implicit scheme as

the term c(xτ
i+1, y

τ
i ) is missing. This is because (3.41) is obtained adding up inequalities, among

which the c-concavity of f , which for f = 0 boils down to the uninformative c(xτ
i+1, y

τ
i ) ≥ 0.

Lemma 3.23. Let c be a cost satisfying (Diss) and let Assumption 3.5 hold. Let x̄τ and z̄τ be as
in Definition 3.6 for an arbitrary starting point x0 ∈ X. We have, for any 0 ≤ s = mτ < nτ = t,
that

c(x, z̄τt )− c(x, z̄τs )

t− s
+

λgτ

t− s

n−1∑
i=m

c(x, zτi+1) +
λfτ

t− s

n−1∑
i=m

c(x, zτi ) ≤ ϕ(x)− ϕ(xτ
n) ∀x ∈ X. (3.48)

Proof. Using Lemma 3.21, we get

c(x, zτi+1)− c(x, zτi )

τ
+ λgc(x, z

τ
i+1) + λfc(x, z

τ
i ) ≤ ϕ(x)− ϕ(xτ

i+1) ∀x ∈ X i ∈ N. (3.49)
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We sum (3.49) from i = m to i = n− 1 to get

c(x, z̄τt )− c(x, z̄τs )

τ
+

n−1∑
i=m

[λgc(x, z
τ
i+1) + λfc(x, z

τ
i )] ≤ (n−m)ϕ(x)−

n−1∑
i=m

ϕ(xτ
i+1)

and dividing by (n−m) we have

c(x, z̄τt )− c(x, z̄τs )

t− s
+

τ

t− s

n−1∑
i=m

[λgc(x, z
τ
i+1) + λfc(x, z

τ
i )]

≤ ϕ(x)− τ

t− s

n−1∑
i=m

ϕ(xτ
i+1) ≤ ϕ(x)− ϕ(xτ

n), (3.50)

where we used that ϕ(xτ
i+1) ≤ ϕ(xτ

i ) for every i ∈ N. □

Proposition 3.24. Let c be a cost satisfying (Diss) and let Assumption 3.5 hold. Assume addi-
tionally that λf ≥ 0, λg ≥ 0, and that c is symmetric. Then, for any 0 ≤ s = mτ < nτ = t and
p ∈ N, we have

c(x
τ/2p

t , zτt ) ≤ τ(ϕ(x0)− ϕ(xτ
nτ )). (3.51)

Proof. Since c ≥ 0, we can drop the λ-term in the l.h.s. of (3.49) (3.50). We write these inequalities
for two sequences, based on steps τ and τ/2p, respectively, getting

c(x, z̄τ(i+1)τ )− c(x, z̄τiτ )

τ
≤ ϕ(x)− ϕ(xτ

(i+1)τ ) ∀x ∈ X, (3.52)

c(u, z
τ/2p

(i+1)τ )− c(u, z
τ/2p

iτ )

τ
≤ ϕ(u)− ϕ(x

τ/2p

(i+1)τ ) ∀u ∈ X. (3.53)

Summing (3.52) with x = x
τ/2p

(i+1)τ and (3.53) with u = xτ
iτ we obtain

c(x
τ/2p

(i+1)τ , z
τ
(i+1)τ )− c(x

τ/2p

(i+1)τ , z
τ
iτ ) + c(xτ

iτ , z
τ/2p

(i+1)τ )− c(xτ
iτ , z

τ/2p

iτ ) ≤ τ(ϕ(xτ
iτ )− ϕ(xτ

(i+1)τ )).

By symmetry, we have c(x
τ/2p

(i+1)τ , z
τ
iτ ) = c(xτ

iτ , z
τ/2p

(i+1)τ ), so that summing from i = 0 . . . n − 1, we

obtain
c(x

τ/2p

t , zτt ) ≤ τ(ϕ(x0)− ϕ(xτ
nτ )). □

Starting from the discrete EVI (3.48) and using the Cauchy property in (3.51), the proof of
Theorem 3.7 is then identical to that of Theorem 3.20.
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