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Abstract. In this work we establish the optimality and the stability of the ball for the Sobolev
trace operator W 1,p(Ω) ↪→ Lq(∂Ω) among convex sets of prescribed perimeter for any 1 < p < +∞
and 1 ≤ q ≤ p. More precisely, we prove that the trace constant σp,q is maximal for the ball
and the deficit is estimated from below by the Hausdorff asymmetry. With similar arguments, we
prove the optimality and the stability of the spherical shell for the Sobolev exterior trace operator
W 1,p(Ω0 \ Θ) ↪→ Lq(∂Ω0) among open sets obtained removing from a convex set Ω0 a suitably
smooth open hole Θ ⊂⊂ Ω0, with Ω0 \Θ satisfying a volume and an outer perimeter constraint.
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1. Introduction

Let d ≥ 2, Ω ⊂ Rd be a bounded Lipschitz domain and fix p > 1. Let us denote by p∗ the critical
trace exponent, that is p∗ = p(d − 1)/(d − p) if p < d and p = +∞ if p ≥ d. Let 1 ≤ q < p∗. The
main object of this paper is the best constant in the Sobolev trace inequality, namely the largest
number σp,q(Ω) such that

σp,q(Ω)∥u∥Lq(∂Ω) ≤ ∥u∥W 1,p(Ω)

for any u ∈W 1,p(Ω); equivalently, σp,q(Ω) is the reciprocal of the norm of the usual trace operator
T p,qΩ :W 1,p(Ω) ↪→ Lq(∂Ω). In view of the compactness of the embedding, the quantity σp,q(Ω) can
be espressed in a variational way as follows

(1) σp,q(Ω) = min
ψ∈W 1,p(Ω)

ψ ̸≡0

Åˆ
Ω
|∇ψ|p dx+

ˆ
Ω
|ψ|p dx

ã1/pÅˆ
∂Ω

|ψ|q dHd−1

ã1/q .

If w ∈W 1,p(Ω) is a minimizer of (1), then it satisfies

(2)


−∆pw + |w|p−2w = 0 in Ω

|∇w|p−2∂w

∂ν
= λ|w|q−2w on ∂Ω,

for some λ > 0 depending on ∥w∥Lq(∂Ω), where we denote by ν the unit outer normal to the
boundary; if ∥w∥Lq(∂Ω) = 1, λ = σpp,q(Ω).

A minimizer of (1) or, equivalently, a solution for (2), exists for any q ∈ [1, p∗[ in view of the
compactness of the tace operator T p,qΩ . When p = q, we reduce, in fact, to a Steklov-type nonlinear
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eigenvalue problem. To be clearer, denoting σp(Ω) := σp,p(Ω), we have

(3) σp(Ω) = min
ψ∈W 1,p(Ω)

ψ ̸≡0

Üˆ
Ω
|∇ψ|p dx+

ˆ
Ω
|ψ|p dx

ˆ
∂Ω

|ψ|p dHd−1

ê1/p

.

In this case, any minimizer w ∈W 1,p(Ω) of (3) satisfies

(4)


−∆pw + |w|p−2w = 0 in Ω

|∇w|p−2∂w

∂ν
= λ|w|p−2w on ∂Ω,

for some λ > 0 depending on ∥w∥Lp(∂Ω); if ∥w∥Lp(∂Ω) = 1, λ = σpp(Ω).
Our aim is to optimize σp,q(·) in a a suitable class of sets, focusing on the trace term in the

choice of the constraint. In particular, we prove that the ball is maximal among convex sets with
prescribed perimeter. In addition, we provide a quantitative enhancement of the result in terms of
an appropriate asymmetry functional, i.e. a non negative functional Ω 7→ α(Ω) vanishing only if Ω
itself is a ball.

The main results of the first part of the paper are the following. The first is the maximality of
the ball for σp,q.

Main Theorem 1 (Isoperimetric inequality for convex sets). Let p ∈]1,+∞[ and q ∈ [1, p], let
Ω ⊂ Rd be convex and Ω⋆ be the ball having the same perimeter as Ω. Then

(5) σp,q(Ω
⋆) ≥ σp,q(Ω),

with the equality holding if and only if Ω is a ball.

The second result is the stability of inequality (5). We slightly modify the notation from the
previous statement in order to emphasise the dependence of the constants on the size of the involved
sets.

Main Theorem 2 (Stability of the ball). Let 0 < R < +∞, p ∈]1,+∞[ and q ∈ [1, p]. There
exist two positive constants C(p, q, d,R) and δ0(p, q, d,R) such that, for every convex set Ω with
P (Ω) = P (BR), if σp,q(BR)− σp,q(Ω) ≤ δ0, then Ω is nearly spherical and

(6) σp,q(BR)− σp,q(Ω) ≥ Cg(AH(Ω)).

The quantitative inequalities for the classical Steklov problem have been studied, e.g., in [12, 27].
The stability of the ball for the least eigenvalue σpp of the Steklov-type problem (4) has been treated
among convex nearly spherical sets sets in the linear case p = 2 in [23, 20].

Actually, the aim of the paper is twofold. Indeed, we ask ourselves whether analogous results
can be achieved for a similar functional defined on domains with hole. Let us consider Ω0 ⊂ Rd
open, bounded and convex and Θ ⊂⊂ Ω0 a nonempty open set smooth enough to have a normal
unit at least in a weak sense. We consider the functional

(7) σ̃p,q(Ω0 \Θ) = min
ψ∈W 1,p(Ω0\Θ)

ψ ̸≡0

Çˆ
Ω0\Θ

|∇ψ|p dx+

ˆ
Ω0\Θ

|ψ|p dx
å1/pÅˆ

∂Ω0

|ψ|q dHd−1

ã1/q .

The positive quantity σ̃p,q(Ω0 \ Θ) is again linked to a Sobolev trace inequality. More precisely,
we deal with the exterior trace operator T̃ p,q

Ω0\Θ
: W 1,p(Ω0 \Θ) ↪→ Lq(∂Ω0), mapping a function in
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W 1,p(Ω0 \Θ) onto its trace only on ∂Ω0. In this framework, σ̃p,q(Ω0 \Θ) is the largest number such
that

σ̃p,q(Ω0 \Θ)∥u∥Lq(∂Ω0) ≤ ∥u∥W 1,p(Ω0\Θ)

for any u ∈ W 1,p(Ω0 \ Θ), i.e. it is the reciprocal of the operator norm of T̃ p,q
Ω0\Θ

. The minimizers
of (7) are weak solutions of the nonlinear problem

(8)



−∆pw + |w|p−2w = 0 in Ω0 \Θ

|∇w|p−2∂w

∂ν
= λ|w|q−2w on ∂Ω0

|∇w|p−2∂w

∂ν
= 0 on ∂Θ,

with λ > 0 depending again on the trace norm ∥w∥Lq(∂Ω0), with λ = σ̃pp,q(Ω0 \Θ) if ∥w∥Lq(∂Ω0) = 1.
Let us complete this overview with the case p = q. Setting σ̃p(Ω0 \Θ) := σ̃p,p(Ω0 \Θ), we have

the following variational characterization

(9) σ̃p(Ω0 \Θ) = min
ψ∈W 1,p(Ω)

ψ ̸≡0

Üˆ
Ω0\Θ

|∇ψ|p dx+

ˆ
Ω0\Θ

|ψ|p dx
ˆ
∂Ω0

|ψ|p dHd−1

ê1/p

and minimizers solve the nonlinear Steklov-Neumann nonlinear eigenvalue problem

(10)



−∆pw + |w|p−2w = 0 in Ω0 \Θ

|∇w|p−2∂w

∂ν
= λ|w|p−2w on ∂Ω0,

|∇w|p−2∂w

∂ν
= 0 on ∂Θ

where λ = σ̃pp(Ω0 \Θ) in case of normalization ∥w∥Lp(∂Ω0) = 1.
The maximality of the spherical shell is proved in the following

Main Theorem 3 (Isoperimetric inequality for holed sets). Let p ∈]1,+∞[, q ∈ [1, p] and let
Ω0 ⊂ Rd be convex and Θ ⊂⊂ Ω0 an open set sufficiently small for the weak well posedness of
Problem (8). Let AR1,R2 be the spherical shell such that P (Ω0) = P (BR2) and |Ω0 \Θ| = |AR1,R2 |.
Then

(11) σ̃p,q(AR1,R2) ≥ σ̃p,q(Ω0 \Θ),

with the eqaulity holding if and only if Ω0 \Θ = AR1,R2.

Once approached the study of the isoperimetric result above, we asked ourselves about a possible
quantitative enhancement of the previous theorem. We started our analysis referring to [21]. That
paper, as far as we are aware, provides the first quantitative result within the setting of domains
featuring holes where both the outer and inner boundaries are perturbed independently. In that
research an asymmetry functional for sets of the form Ω0 \Θ has been introduced. This functional
is designed to handle two distinct boundary perturbations, with ∂Ω0 and ∂Θ governed by different
boundary conditions and with Ω0 \ Θ required to meet specific constraints (namely, the outer
perimeter and the volume). We will introduce the so-called hybrid asymmetry αhyb(·) in Definition
2.25 and delve into the motivation of that choice in Section 2.
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Let us introduce the framework for the stability result. Let 0 < R1 < R2 < +∞ and denote by
ϑR1,R2 a positive constant such that ϑR1,R2 ≤ min{R1, R2 −R1}/2. We set

TR1,R2 = {Ω ⊆ Rd : Ω = Ω0 \Θ, Ω0,Θ convex, |Ω| = |AR1,R2 |, P (Ω0) = P (BR2),

dH(Θ,Ω0) ≥ ϑR1,R2 and ρ(Θ) ≥ ϑR1,R2},
(12)

where ρ(·) is the inradius and dH(·, ·) is the Hausdorff distance. We prove the following stability
result in TR1,R2 .

Main Theorem 4 (Stability of the spherical shell). Let 0 < R1 < R2 < +∞, p ∈]1,+∞[ and
q ∈ [1, p]. There exist two positive constants C(p, q, d,R1, R2) and δ0(p, q, d,R1, R2) such that, for
every open set Ω0 \Θ ∈ TR1,R2, if σ̃p,q(AR1,R2)− σ̃p,q(Ω0 \Θ) ≤ δ0, then Ω0 \Θ is (R1, R2)-nearly
annular and

(13) σ̃p,q(AR1,R2)− σ̃p,q(Ω0 \Θ) ≥ Cαhyb(Ω0 \Θ),

where αhyb(·) is the hybrid asymmetry functional in Definition 2.25.

The study of σ̃p,q is mainly motivated by the following facts. On one hand, the problem of the
optimal constant for the exterior trace has been widely studied imposing a Dirichlet condition on
∂Θ (see, e.g., [10]), so we found reasonable to analyse what happens replacing it with a Neumann
condition on the hole. On the other hand, σ̃p,q is linked to the nonlinear Robin-Neumann eigenvalue
with negative boundary parameter λ̃p(·, β). This latter admits AR1,R2 as unique maximizer (see
[41] for the proof), but its the stability (conjectured in [21, Open Problem 5.2]) remained an open
problem. We obtain this quantitative result as an adaptation of the proof of Main Theorem 4.
Regarding the case p = q (and in particular p = q = 2), a number of authors have recently
been exploring the Laplace and p-Laplace eigenvalue problem in the scenario where the outer and
inner boundaries are subject to different conditions. We cite, first of all, the pioneeristic paper
[42], which paved the way to study this kind of mixed problems. Among the others, considering
first the boundary condition on ∂Ω0 and then on ∂Θ, we cite the Robin-Neumann case in [41],
the Neumann-Robin case (with positive boundary parameter) [22, 34], the Dirichlet-Neumann case
[5, 6],the Dirichlet-Dirichlet case[8, 19], the Steklov-Dirichlet case [24, 28, 29, 35, 40, 43] and the
Steklov-Robin case [30]. Recently, a comparison Talenti type result has been studied in the same
class of sets, see [7].

On the other hand, the quantitative versions of the spectral inequalities on holed domain are
still in the early stages of development. We mention [40], where a result in this direction is proved
for the first Steklov-Dirichlet Laplacian eigenvalue among the class of holed domains where the
inner hole Θ is a given ball well cointained in Ω0. The inner ball can be only translated and so the
only perturbation of the boundary acts on ∂Ω0. Up to our knowledge, the only result in which the
perturbation acts independently on both boundaries is presented in [21].

We point out that for both the convex and the holed case, the results depend on the size of the
admissible sets; this is evident in particular in the stability results, since the constants in Main
Theorem 2 and in Main Theorem 4 are given in terms of the radius of the ball and in terms of the
radii of the spherical shell, respectively. Even the fact that we consider q only in [1, p] and not on
the whole compactness interval [1, p∗[ depends on a technical issue deeply linked to the size of the
admissible sets. Indeed, we will see in Proposition 2.4 and Proposition 2.8 that problems (2) and
(8) have radial solution respectively on BR and AR1,R2 , regardless of the radii, only if q ∈ [1, p].
Now, the proofs of the main results rely on the well established web-function method, based on the
construction of a suitable test function by dearranging a positive radial minimizer for the ball or
the spherical shell. We will go into detail about the properties of the minimizers for radial shapes
and about the "radiality thresholds" in Section 2.2. In particular, in Remark 2.6 we point out that
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our choice to present the results for p ∈]1,+∞[ and q ∈ [1, p] regardless of the radii is motivated
by our shape-optimization focused perspective, even if the main theorems hold in a more general
range of parameters.

For what concerns the stability of the exterior trace constant for the domains with holes, the
main difference from [21] is that here we do not have explicit minimizers as in the linear case. More
specifically, the eigenfunction for σ̃22 is a linear combination of two Bessel functions, whereas in the
general nonlinear case we do not have an explicit representation of the minimizing function. Then,
in order to apply our dearrangement technique, it is needed to check carefully all the functional
properties (radial simmetry and radial monotonicity) required. Moreover, as already noticed in [21],
the inner hole with Neumann boundary condition cannot be treated as in [25], since a cancellation
of the inner boundary integrals occurs due to the boundary condition. So, it seems that we cannot
use the standard Fuglede approach to treat either the asymmetry of the outer boundary or the
deviation of the hole. We will go in detail to present the hybrid asymmetry functional: even if it
seems far from being optimal and, at a first sight, a bit artificial, it matches with our purposes.
Indeed, we were mainly focused on finding the optimal shapes for σ̃p,q and, for a possible quantitative
enhancement, we were only looking for an actual asymmetry functional (i.e. a positive quantity
equal to zero if and only if Ω0 \Θ = AR1,R2) to quantify the distance from the spherical shell. Even
if we spend several pages for its definition, motivation and meaning, αhyb is not the core of our
discussion.

We point out that also in this case, since we have to handle two different constrains, the hybrid
asymmetry functional is the result of two different terms. The appearence of a mixed asymmertry
as a combination of one term per each object seems to be natural in problems in which you can
perturb more features independently. In addition to the already cited [21], see also [1], where the
authors combine three asymmetry terms to control, respectively, the symmetry of the domain, the
symmetry of the datum and the symmetry of the solution for a Poisson equation.

The structure of this paper is the following. In Section 2 we recall some of the basic notation
and state (prove, if new) some useful properties of the solution of the nonlinear problem; we also
recall some geometric tools and introduce the hybrid asymmetry functional αhyb(·). In Section 3
we provide the proofs of Main Theorems 1 and 2. In Section 4 we prove Main Theorems 3 and 4,
going in detail on the arguments to get the quantitative estimate. In Section 5, some consequences
of Main Theorems 2 and 4 are given in terms of stability of Robin spectral problems with negative
boundary parameter; finally, some open problems are discussed.

2. Notation and Preliminary results

2.1. Notations and basic tools of measure theory. Throughout this paper, we denote by
| · | and Hk(·), the d−dimensional Lebesgue measure and the k−dimensional Hausdorff measure in
Rd, respectively. The unit open ball in Rd will be denoted by B1 and the unit sphere in Rd by
Sd−1; we also define ωd := |B1|. More generally, we denote with Br(x0), that is the ball centered
at x0 with radius r, and, for any 0 < R1 < R2 < +∞, we denote by AR1,R2 the spherical shell
BR2 \ BR1 . Furthermore, we denote by χE the characteristic function of a measurable set E and,
for any measurable funciton f ≥ 0, by V olf (E) its weighted volume

´
E f dx.

When not specified, Ω0 \Θ will denote a subset of Rd, d ≥ 2, such that Ω0 is an open, bounded
and convex set and Θ is an open set such that Θ ⊂ Ω0 and sufficiently smooth to define (at least
in a weak sense) a nonlinear Neumann boundary condition.

The distance of a point from the boundary ∂Ω0 is the function

d(x) = inf
y∈∂Ω0

|x− y|, x ∈ Ω0,
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moreover, the inradius of Ω0 is the radius of the largest ball contained in Ω0, i.e.

ρ(Ω0) = max{d(x), x ∈ Ω0}.

We recall now some basic notions about the Hausdorff distance. If E,F are two convex sets in Rd,
the Hausdorff distance between E,F is defined as

dH(E,F ) := inf {ε > 0 : E ⊂ F + εB1, F ⊂ E + εB1} ,
where F + εB1 is intended in the sense of the Minkowski sum.

We will denote by E♯ and E⋆ the balls having respectively the same volume and the same
perimeter as E.

Since we deal with a perimeter constraint, we recall its rigorous definition.

Definition 2.1. Let E ⊆ Rd be measurable and let Ω ⊆ Rd be open. We define the perimeter of E
in Ω as

P (E,Ω) := sup

ßˆ
E

div(φ) dx : φ ∈ C1
c (Ω;Rd), ∥φ∥∞ ≤ 1

™
and we say that E is of finite perimeter in Ω if P (E,Ω) < +∞. If Ω = Rd we simply say that E
is of finite perimeter and denote its perimeter by P (E).

Let us recall that, if E is sufficiently regular (e.g. if E is a bounded Lipschitz domain, in particular
a convex set), it holds P (E,Ω) = Hd−1(∂E ∩ Ω).

An important tool for our proofs is the following.

Theorem 2.2 (Coarea formula). Let Ω ⊂ Rd be a measurable set, f : Ω → R be a Lipschitz
function and let u : Ω → R be a measurable function. Then,

(14)
ˆ
Ω
u(x)|∇f(x)| dx =

ˆ
R
dt

ˆ
(Ω∩f−1(t))

u(y) dHd−1(y).

To get acquainted about the sets of finite perimeter, the coarea formula and related topics see,
for instance, [3].

2.2. The nonlinear problem: properties of the solutions. In this section we collect some
basic properties of the minimizers of (1) and (7). In particular, we will focus on the case when the
convex domain for σp,q is a ball and the domain with a hole for σ̃p,q is a spherical shell. We omit
the proofs that appear straightforward and present those we deem more significant.

We start with an overview about the case p = q, analyzing σp(Ω) and the minimizers of (3); the
proofs are not given here as they can be found in [38].

Proposition 2.3. Let 1 < p < +∞ and let Ω ⊂ Rd be a bounded Lipschitz domain. The following
items hold.

(i) There exists a minimizer w ∈W 1,p(Ω) of (3), which is a weak solution to (4).
(ii) σp(Ω) is simple, i.e. all the associated eigenfunctions are scalar multiple of each other and

do not change sign. Moreover, σp(Ω) is isolated.
(iii) Let R > 0 and let zp be the positive minimizer of problem (3) on the ball BR. Then, z is

radially symmetric and increasing, in the sense that z(x) =: Ψ(|x|), with Ψ′(r) > 0.

In the general case p ̸= q the situation is more involved. One would expect the ball to continue
to have a radial solution. Instead, a very surprising situation occurs: the radiality of the solution
is guaranteed only when 1 ≤ q < p regardless of the radius; otherwise, it is not. Those results are
proved in [37] for 1 < q < p; for the case q = 1 < p, they can be achieved adapting the proofs of
[13], where the authors treated the case p = 2. We collect these results in the following proposition.
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Proposition 2.4. Let 1 < p < +∞ and R > 0 be fixed. Let zp be the radial positive normalized
minimizer for σp(BR) and 1 ≤ q < p∗.

(i) If there exists a radial minimizer for σp,q(BR) then it is a multiple of zp.
(ii) Assume there exists a radial minimizer for σp,q0(BR). If 1 ≤ q < q0 then any minimizer for

σp,q(BR) is a multiple of zp.
(iii) Let 1 < q < p. Then the solution of the boundary value problem (2) on BR is unique and it

is a multiple of zp. In particular any minimizer for (1) on BR is a multiple of zp.
(iv) If q = 1, σp,1(Ω) admits unique minimizer for any Lipschitz set Ω; in particular, the mini-

mizer for σp,1(BR) is radial.

If p < q < p∗, the radiality of the solution of (1) on BR holds only in a certain range of radii.
More precisely, the following proposition holds

Proposition 2.5 ([37], Theorem 2). Let 1 < p < +∞ be fixed and let us denote by zp the solution
of (4).

(i) Let r > 0. There exists Q(r) ≥ p such that, if q > Q(r), then there is no radial minimizer
for σp,q(Br).

(ii) Let p < q < p∗. There exists R(q) such that, for any r > R(q) there is no radial minimizer
for σp,q(Br).

(iii) There exists a function of the radius Q̄ :]0,+∞[→ [1, p∗[ such that

q ≤ Q̄(r) ⇒ any minimizer for σp,q(Br) is a multiple of zp, then it is radial

q > Q̄(r) ⇒ there is no radial minimizer for σp,q(Br)

Finally, it holds p ≤ Q̄(r) ≤ Q(r)

Remark 2.6 (further radial cases). In view of Proposition 2.5, the radiality of the solution on the
ball still holds when either the radius of the ball or the trace exponent q are sufficiently small. In these
further radial cases the proof remains the same as the case 1 ≤ q ≤ p, having unfortunately a size
restriction for the admissible sets. However, as our primary goal is to present shape optimization
results whose validity is regardless on the size of the admissible sets, we will concentrate on the range
1 ≤ q ≤ p and present the results for any positive radius. Nevertheless, we will always keep in mind
that the main results of the paper still hold even in the further radial cases where size limitations
on the admissible sets exist.

In view of the previous remark, even for the functional σ̃p,q, we focus on the cases in which the
radiality is guaranteed regardless of the size of AR1,R2 . We are interested in getting the analogous
results of Proposition 2.3 and Proposition 2.4 for domains with holes. We start with the case
p = q. We omit the proof since it is a straightforward adaptation of standard arguments; for some
refercences, follow, for instance, Section 2.1 in [41], in particular Propositions 2.2, 2.3 and 2.5.

Proposition 2.7. Let 1 < p < +∞ let Ω0,Θ ⊂ Rd be two Lipschitz domains such that Θ ⊂⊂ Ω0.
If p = q, the following items hold.

(i) There exists a minimizer w ∈W 1,p(Ω0 \Θ) of (9), which is a weak solution to (10).
(ii) σ̃p(Ω0 \Θ) is simple, i.e. all the associated eigenfunctions are scalar multiple of each other

and do not change sign. Moreover, σ̃p(Ω0 \Θ) is isolated.
(iii) Let R > 0 and let z be the positive minimizer of problem (9) on the spherical shell AR1,R2.

Then, z is radially symmetric and increasing, in the sense that z(x) =: Ψ(|x|), with Ψ′(r) >
0 in ]R1, R2[.

If p ̸= q, the radiality of the solution on AR1,R2 is guaranteed whenever 1 ≤ q < p, without any
restriction on R1 and R2.



8 SIMONE CITO1

Proposition 2.8. Let 1 < p < +∞ and R2 > R1 > 0 be fixed. Let zp be the radial positive
normalized minimizer for σ̃p(AR1,R2) and 1 ≤ q < p∗.

(i) If there exists a radial minimizer for σ̃p,q(AR1,R2) then it is a multiple of zp.
(ii) Assume there exists a radial minimizer for σp,q0(AR1,R2). If 1 ≤ q < q0 then any minimizer

for σp,q(AR1,R2) is a multiple of zp.
(iii) Let 1 < q < p. Then the solution of the boundary value problem (8) is unique and it is a

multiple of zp. In particular any minimizer for (7) is a multiple of zp.
(iv) If q = 1, σ̃p,1(Ω0\Θ) admits unique minimizer for any Ω0,Θ ⊂ Rd Lipschitz with Θ ⊂⊂ Ω0;

in particular, the minimizer for σ̃p,1(AR1,R2) is radial.

Proof. First of all, if the minimizer v for σ̃p,q(AR1,R2) is radial, then it is constant on ∂BR2 . Arguing
as in the proof of [37, Proposition 2], v is a multiple of zp, proving (i).

Let us prove (ii) now. Assume that σ̃p,q0(AR1,R2) has radial minimizer; in view of (i) it is (a
multiple of) zp. Let now v be a minimizer for σ̃p,q(AR1,R2) and let us prove that v is radial. If v
is constant on ∂BR2 , then v is a multiple of zp in view of the same argument as in the proof of
[37, Proposition 2] and thus is radial. Assume now, by contradiction, that v is not constant on the
boundary. The Hölder inequality gives the estimateÇˆ

∂BR2

vq dHd−1

å 1
q

< P (BR2)
q0−q
q0q

Çˆ
∂BR2

vq0 dHd−1

å 1
q0

where the inequality is strict since v is assumed not to be constant on ∂BR2 . On the other hand,
since zp is constant on ∂BR2Çˆ

∂BR2

zqp dHd−1

å 1
q

= P (BR2)
q0−q
q0q

Çˆ
∂BR2

zq0p dHd−1

å 1
q0

Now, zp is a minimizer for σ̃p,q0(AR1,R2) and just a competitor for σ̃p,q(AR1,R2); conversely, v is a
minimizer for σ̃p,q(AR1,R2) and just a competitor for σ̃p,q0(AR1,R2). This entails the strict estimate

σ̃p,q0(AR1,R2) ≤

Çˆ
AR1,R2

|∇v|p dx+

ˆ
AR1,R2

vp dx

å1/pÇˆ
∂BR2

vq0 dHd−1

å1/q0
< P (BR2)

q0−q
q0q

Åˆ
Ω
|∇v|p dx+

ˆ
Ω
vp dx

ã1/pÅˆ
∂Ω
vq dHd−1

ã1/q
= P (BR2)

q0−q
q0q σ̃p,q(AR1,R2) =

Çˆ
∂BR2

zqp dHd−1

å 1
qÇˆ

∂BR2

zq0p dHd−1

å 1
q0

σ̃p,q(AR1,R2)

≤

Çˆ
∂BR2

zqp dHd−1

å 1
qÇˆ

∂BR2

zq0p dHd−1

å 1
q0

Çˆ
AR1,R2

|∇zp|p dx+

ˆ
AR1,R2

zpp dx

å1/pÇˆ
∂BR2

zqp dHd−1

å1/q
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≤

Çˆ
AR1,R2

|∇zp|p dx+

ˆ
AR1,R2

zpp dx

å1/pÇˆ
∂BR2

zq0p dHd−1

å1/q0
= σ̃p,q0(AR1,R2),

giving a contradiction. Thus, if 1 ≤ q < q0, any minimizer v for σ̃p,q(AR1,R2) must be constant on
∂BR2 , and so radial and multiple of zp, proving (ii).

Item (iii) is a direct consequence of (i) and (ii).
Finally, the first part of item (iv) can be proved via standard tools, while the radiality issue is a

direct consequence of the uniqueness of the solution. □

Remark 2.9 (Immediate geometric upper bounds). Testing (1) and (7) with the characteristic
functions of Ω and Ω0 \Θ respectively we get

σp,q(Ω) ≤
|Ω|1/p

P (Ω)1/q
, σ̃p,q(Ω0 \Θ) ≤ |Ω0 \Θ|1/p

P (Ω0)1/q
.

Remark 2.10 (the case p = q = 1). The results presented in the paper hold for p ∈]1,+∞] and
q ∈ [1, p]. The case p = q = 1 is different and immediate. The constant σ1(Ω) has been studied in
[4]. There the authors prove that

σ1(Ω) ≤ min

ß |Ω|
P (Ω)

, 1

™
,

with the equality holding for some particular sets. Among them, the most relevant example for our
purposes is the ball, where equality holds and one has

σ1(BR) = min

ß |BR|
P (BR)

, 1

™
= min

®
ωdR

d

dωdRd−1
, 1

´
= min

ß
R

d
, 1

™
Thus, problem

max
¶
σ1(Ω) : Ω ⊂ Rd convex, P (Ω) = dωdR

d−1
©

admits BR as a trivial solution. Indeed, for any Ω ⊂ Rd convex with P (Ω) = dωdR
d−1, it holds

Ω⋆ = BR; so P (Ω⋆) = P (Ω), |Ω| ≤ |Ω⋆| and one has

σ1(Ω) ≤ min

ß |Ω|
P (Ω)

, 1

™
≤ min

ß |Ω⋆|
P (Ω⋆)

, 1

™
= σ1(Ω

⋆).

If σ1(Ω⋆) = |Ω⋆|
P (Ω⋆) , i.e. if the radius R(Ω⋆) of Ω⋆ is less than the dimension d, then the ball Ω⋆

is the only maximizer, since, if Ω ̸= Ω⋆, it holds, the second inequality above is strict. Otherwise,
if σ1(Ω⋆) = 1, the unicity of the maximizer is not assured, since the existence of another possible
convex set Ω ̸= Ω⋆ with σ1(Ω) = 1 does not seem excluded.

By adapting the same argument as in [4], we get the same conclusion for the maximality of AR1,R2

for σ̃1.

2.3. Nearly sperical and nearly annular sets; Hausdorff asymmetry indices. In this sec-
tion we introduce some notions related with the closeness to the radial shapes. We start recalling
the nearly spherical sets (see [25, 26]).

Definition 2.11 (nearly spherical sets). Let Ω0 ⊂ Rd be an open bounded set with 0 ∈ Ω0. The
set Ω0 is said a R−nearly spherical set parametrized by u if there exist a constant R > 0 and
u ∈W 1,∞(Sd−1), with ||u||W 1,∞ ≤ R/2, such that

∂Ω0 =
¶
y ∈ Rd : y = ξ(R+ u(ξ)), ξ ∈ Sd−1

©
.
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In [21], authors introduced the counterpart of the nearly spherical shells in the frameworks of
domains with holes.

Definition 2.12 (nearly anular sets). Let Ω0 \ Θ ⊂ Rd an open set where Ω0 and Θ are open,
Θ ⊂⊂ Ω0 and 0 ∈ Θ. We say that Ω0 \Θ is a (R1, R2)−nearly annular set if there exist 0 < R1 <
R2 < +∞ and u, v ∈W 1,∞(Sd−1), with ||u||W 1,∞ < R2/2, ||v||W 1,∞ ≤ R1/2, such that

∂Ω0 =
¶
y ∈ Rd : y = ξ(R2 + u(ξ)), ξ ∈ Sd−1

©
and

∂Θ =
¶
y ∈ Rd : y = ξ(R1 + v(ξ)), ξ ∈ Sd−1

©
.

The key points of the quantitative enhancements proved in this paper are the estimates of the
deviations of an admissible convex set from the ball having the same perimeter and of a convex
domain with smooth open hole from the spherical shell having the same volume and the same outer
perimeter. So, we recall the following Hausdorff asymmetry indices, very useful in the framework
of convex sets:

A⋆
H(E) = min

x∈Rd
{dH(E,Br(x)), P (E) = P (Br(x))} ,

A♯
H(E) = min

x∈Rd
{dH(E,Br(x)), |E| = |Br(x)|} .

They give the deviations of E from the balls having the same perimeter or the same volume as E
respectively.

A⋆
H and A♯

H are linked by the following estimate.

Lemma 2.13 ([27], Lemma 2.9). Let d ≥ 2, δ > 0 and let E ⊂ Rd be a bounded, convex, with
P (E)− P (E♯) ≤ δ then

(15) AH
⋆(E) ≤ C(d)AH

♯(E).

With these definitions, we can recall the quantitative isoperimetric inequality proved in [25, 26].
Even if we do not apply directly the following remarkable tool, we state it since it introduces the
modulus of continuity g(·) that will be very useful to handle our quantitative results.

Theorem 2.14 (Fuglede). Let d ≥ 2, and let E be a bounded open and convex set with |E| = ωd.
There exists δ, C, depending only on n, such that if P (E)− P (E♯) ≤ δ then then

(16) P (E)− P (E♯) ≥ Cg
(
A♯

H(E)
)
,

where g is defined by

(17) g(s) =


s2 if d = 2

f−1(s2) if d = 3

s
d+1
2 if d ≥ 4

and f(t) =
»
t log(1t ) for 0 < t < e−1.

We will make use of a modified version of the previous theorem, in terms of isovolumetric deficit
|Ω⋆| − |Ω|.

Lemma 2.15 ([2], Lemma 2.4). Let Ω ⊂ Rd be a bounded, open and convex set and let Ω⋆ be the
ball satisfying P (Ω) = P (Ω⋆) = L. Then, there exist δ, C, depending only on d and L, such that, if

(18) |Ω⋆| − |Ω| ≤ δ

then
|Ω⋆| − |Ω| ≥ Cg

(
A⋆

H(Ω)
)
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where g is the function defined in (17).

In the following section, we introduce another asymmetry index that is very helpful when dealing
with convex sets.

2.4. Some useful tools involving quermassintegrals. Let us recall some basic facts about
convex sets. Let K ⊂ Rd be a non-empty, bounded, convex set, let B be the unitary ball centered
at the origin and ρ > 0. We can write the Steiner formula for the Minkowski sum K + ρB as

|K + ρB| =
d∑
i=0

Ç
d

i

å
Wi(K)ρi.

We usually refer to the coefficients Wi(K) as quermassintegrals of K. Some remarkable cases are

W0(K) = |K|, W1(K) =
P (K)

d
, Wd(K) = ωd.

Quermassintegrals play a fundamental role when considering shape optimization problems on
convex sets, as they provide powerful tools to handle convex super or sublevel sets. To this aim,
we consider the Aleksandrov-Fenchel inequalities

(19)
Å
Wj(K)

ωd

ã 1
d−j

≥
Å
Wi(K)

ωd

ã 1
d−i

0 ≤ i < j ≤ d− 1,

where equality holds if and only if K is a ball. When i = 0 and j = 1, formula (19) reduces to the
classical isoperimetric inequality, i.e.

P (K) ≥ dω
1
d
d |K|

d−1
d .

An important role is played by (19) with i = 1 and j = 2, that is

(20) W2(K) ≥ d−
d−2
d−1ω

1
d−1

d P (K)
d−2
d−1 .

Several improvements of inequalities involving the quermassintegrals are available in literature,
see e.g. [36] for recent results involving also the boundary momenta. In [32] a quantitative version
of the Alexandrov-Fenchel inequalities is proved, and we will report it for j = 2 and i = 1. In order
to do that we have to define some objects.

Let Ω ⊂ Rd be an open convex set. We define support function of Ω the map

h(Ω, u) := max
x∈Ω

(x · u), u ∈ Sd−1

and width function of Ω the map

w(Ω, u) := h(Ω, u) + h(Ω,−u) for u ∈ Sd−1.

More precisely, the width w(Ω, u) is the distance between the two support hyperplanes of Ω or-
thogonal to u. Roughly speaking, w(Ω, u) gives the thickness of Ω in the direction u. We point out
that the diameter of Ω can be given in terms of w(Ω, ·) as follows:

D(Ω) = max
u∈Sd−1

w(Ω, u).

The mean value of the width function is called the mean width and it is denoted by

w(Ω) :=
2

dωd

ˆ
Sd−1

h(Ω, u) du.

Finally, the Steiner point of Ω s(Ω) ∈ Ω is defined as

s(Ω) =
1

ωd

ˆ
Sd−1

h(Ω, u)udu.
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Definition 2.16. Let Ω ⊂ Rd be a bounded open convex set. The Steiner ball BΩ of the convex set
Ω is the ball centered at the Steiner point s(Ω) with diameter equal to w(Ω)

In Section 4 we deal with domains with holes of the form Ω0 \ Θ. In order to quantify the
deviation of the convex set Ω0 from being a ball we make use of a quantitative version of (19) in
terms of the Hausdorff distance between Ω0 and its Steiner ball BΩ0 (see [32] for the proof).

Theorem 2.17 (Quantitative Alexandrov-Fenchel inequalities). Let Ω0 be a convex body and BΩ0

the Steiner ball of Ω0. Then,

(21)
W2(Ω0)

d−1 − ωdW1(Ω0)
d−2

W1(Ω0)d−2
≥ c(d,Ω0)dH(Ω0, BΩ0)

d+3
2 .

From (21), it follows that

(22) W2(Ω0)− ω
1

d−1

d d−
d−2
d−1P (Ω0)

d−2
d−1 ≥ cdH(Ω0, BΩ0)

d+3
2(d−1)

We will exploit the latter improved Aleksandrov-Fenchel inequality to estimate from below
σ̃p,q(AR1,R2) − σ̃p,q(Ω0 \ Θ) in terms of the asymmetry of convex set Ω0. Our technique is based
on the application of (22) to the sublevel sets Ω0,t for the test function wΩ0 (see (29)) which only
depends on the distance from the boundary of Ω0. Anyway, our goal is to obtain the lower estimate
not in terms of the asymmetry of Ω0,t, but in terms of the asymmetry of Ω0 itself. For that reason,
we need to control uniformly from below the asymmetry of the level subsets with the asymmetry
of Ω0. This technique is usually called propagation of the asymmetry ; it has been carried out in
many situations (see also [33] and [11] for the results inspiring Lemma 2.18, involving the Fraenkel
asymmetry), even in noneuclidean setting (see, for instance, [17] or [18] for two applications in the
Gauss space).

In our framework, we make use of the following result proved in [39].

Lemma 2.18 (Propagation of the Hausdorff asymmetry). Let Ω0 ⊆ Rd be a bounded and convex
set with positive measure and let U ⊂ Ω0 be with |U | > 0 and such that

(23) dH(Ω0, U) ≤ 1

2(d+ 2)
dH(Ω0, BΩ0),

where BΩ0 is the Steiner ball of Ω0. Then, we have

(24) dH(U,BU ) ≥
1

2
dH(Ω0, BΩ0).

2.5. Some results on inner parallel sets and web-functions. We now recall some basic tools
for handling a web-function, an evocative term coined by F. Gazzola (see [31]) for functions whose
values are determined solely by the distance from the domain boundary. The name brings to mind
the structure of a spider’s web, an analogy drawn from the appearance of their level lines. We first
introduce the notion of inner and outer parallel set.

Definition 2.19. Let Ω ⊂ Rd be a convex set and ρ(Ω) be its inradius. For any t ∈ [0, ρ(Ω)], we
define the inner parallel set at distance t relative to Ω the set

Ωt := { x ∈ Ω : d(x) > t }
where d(x) is the distance of x ∈ Ω from the boundary of Ω. For any s ≥ 0, we define the outer
parallel set at distance s relative to Ω the set

Ωs :=
¶
x ∈ Rd : d(x,Ω) < s

©
.

For the inner parallel sets the following differential estimate holds.
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Lemma 2.20 ([2], Lemma 2.5). Let Ω be a bounded, convex, open set in Rd. Then for almost every
t ∈ (0, rΩ)

(25) − d

dt
P (Ωt) ≥ d(d− 1)W2(Ωt)

and the equality holds if Ω is a ball.

A standard combination of the previous lemma with the chain rule, together with the equality
|∇d(x)| = 1 almost everywhere, entails the following result (see also [2, Lemma 2.6] and [41, Lemma
2.8]).

Lemma 2.21. Let f : [0,+∞) → [0,+∞) be a nondecreasing C1 function with f(0) = 0. Set
u(x) = f(d(x)) and

Et = { x ∈ Ω : u(x) > t }
then

(26) − d

dt
P (Et) ≥ d(d− 1)

W2(Et)

|∇u|u=t
A consequence of the previous lemma is that, if f is nonincreasing and we consider its sublevel

sets
Êt = { x ∈ Ω : u(x) < t }

then

(27)
d

dt
P (Êt) ≥ d(d− 1)

W2(Êt)

|∇u|u=t
.

2.6. The hybrid asymmetry for domains with holes. In this section we mention some basic
facts about the asymmetry functional for domains with holes, introduced by the current author, G.
Paoli and G. Piscitelli in [21]. We first explain our starting, intuitive idea. Let z be the positive
minimizer for σ̃p,q(AR1,R2) with ∥z∥Lq(∂BR2

) = 1. If Ω0 = BR2 and Θ ̸= BR1 , the most natural way
to estimate the deviation of Ω0 \ Θ = BR2 \ Θ from AR1,R2 = BR2 \ BR1 seems to compare the
volume integrals of z; in this case, z is only a test function for BR2 \Θ, not a minimizer, even if the
outer container Ω0 = BR2 is a ball, the same as the spherical shell. The positive term giving the
quantitative estimate on the deviation is given by a weighted integral on Θ△BR1 . Of course, since
the outer convex set is Ω0 = BR2 , the deviation from AR1,R2 depends only on the deviation of Θ
from BR1 , as expected. The technical step forward is to reply the idea for a general outer convex
set Ω0.

In order to do that, we need a suitable test function for Ω0\Θ related to the normalized minimizer
z for the spherical shell AR1,R2 . Let us denote by

zm := inf
AR1,R2

z = z|∂BR1
, zM := sup

AR1,R2

z = z|∂BR2

and define in BR2 the function

(28) z :=

®
z in AR1,R2 ,

zm in BR1 .

Since z is radial, the function ℓ(t) := |∇z|z=t = |∇z|z=t is well defined in ]zm, zM [. We now
introduce

(29) wΩ0(x) :=

®
G(d(x)) if d(x) < R2 −R1

zm if d(x) ≥ R2 −R1
x ∈ Ω0,
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where d(x) = d(x; ∂Ω0) and G̃ is defined by

G̃−1(t) =

ˆ zM

t

1

ℓ(τ)
dτ,

for any t ∈]zm, zM [. The following properies hold:

|∇wΩ0 |u=t = |∇z|v=t,
(wΩ0)m := inf

Ω0

wΩ0 ≥ zm,

(wΩ0)M := sup
Ω0

wΩ0 = zM = G̃(0).

The map wΩ0 depends only on the distance from the outer boundary ∂Ω0 and is constant on the
boundaries of the inner parallels to Ω0; in other words, wΩ0 is a web-function.

We point out that wΩ0 can be used as a test function for every admissible holed set with outer
box Ω0.

We now introduce the shellifying hole KΩ0 , which plays for Ω0 the same role as the concentric
spherical hole B2 when the container is B1.

Definition 2.22. Under the hypotheses and notation above, we denote by KΩ0 the inner parallel
set relative to Ω0 having the same volume of Θ, i.e. the set

KΩ0 = {x ∈ Ω0 : d(x) > tΩ0},
with tΩ0 ∈ (0, ρ(Ω0)) such that |KΩ0 | = |Θ|.

In other words, the admissible domain Ω0 \KΩ0 enjoys the property that the outer and the inner
boundary have uniform distance tΩ0 .

Now we can give the following definition of weak inner asymmetry of the hole.

Definition 2.23 (weak inner Asymmetry). Under the hypotheses and the notation above, we denote
with the symbol Ã(Θ;Ω0) and call weak weighted Fraenkel-type asymmetry of Θ relative to the set
Ω0, the nonnegative quantity

(30) Ã(Θ;Ω0) :=

ˆ
Θ\KΩ0

(|∇wΩ0 |p + wpΩ0
(x)− zpm) dx.

On the other hand, to estimate the deviation of the container Ω0 from a ball, we use the following
quantity.

Definition 2.24 (outer Asymmetry). Under the hypotheses and the notation above, we denote with
the symbol α̃out(Ω0) and call outer asymmetry of Ω0 relative to the set Ω0, the nonnegative quantity

(31) α̃out(Ω0) := (zM − T (Ω0))
3d

d+3
2(d−1)

H (Ω0;BΩ0).

where T (Ω0) ∈ [zm, zM [ is defined in Proposition 4.1.

We are now in a position to define our asymmetry functional for domains with holes.

Definition 2.25 (Hybrid asymmetry). We define the hybrid asymmetry of Ω0 \Θ as

(32) αhyb(Ω0 \Θ) := max
¶
α̃out(Ω0), Ã(Θ;Ω0)

©
.

The definition of hybrid asymmetry above is motivated by the following, natural, question. If
Ω0 is the container, what is the most suitable hole to compare Θ with? Intuitively, it is neither a
ball Br such that |Br| = |Θ| nor the cavity of the maximal spherical shell AR1,R2 (i.e. BR1), but
rather the inner parallel KΩ0 with the same measure as Θ.



OPTIMALITY AND STABILITY OF THE RADIAL SHAPES FOR THE SOBOLEV TRACE CONSTANTS 15

Figure 1. AH(Ω0) is drawn in orange; the green set is the integration domain in
the definition of Ã(Θ;Ω0).

This answer is motivated by the fact that ∂KΩ0 and ∂Ω0 lie at uniform distance tΩ0 (see Definition
2.22), recollecting the analogous property of the spherical shell AR1,R2 , for which the boundaries
∂BR1 and ∂BR2 lie at uniform distance R2 − R1. It is worth noting, however, that KΩ0 = BR1 if
and only if Ω0 = BR2 .

We point out that the hybrid asymmetry just introduced is zero if and only if Ω0 \Θ = AR1,R2 ,
and so, (32) actually quantifies a deviation of an admissible set from the optimal set AR1,R2 .

The quantity α̃out(Ω0) quantifies the deviation of the domain Ω0 from its Steiner ball with respect
to the Hausdorff distance. The quantity Ã(Θ;Ω0) gives information about how far is Θ from the
optimal cavity relatively to Ω0, namely KΩ0 . Anyway, both terms are necessary, as will be clarified
in Remark 2.26. Specifically, if Θ has a small Hausdorff distance from KΩ0 , then the dominant
term in the hybrid asymmetry is α̃out(Ω0); it could even happen that Ã(Θ;Ω0) = 0, even though
Θ ̸= KΩ0 , as we will see in the following remark. Conversely, if Ω0 = BR2 , then α̃out(Ω0) = 0. In
this case any admissible hole Θ ̸= BR1 satisfies Ã(Θ;BR2) > 0, and consequently, in this scenario,
the largest term is Ã(Θ;BR2).

Remark 2.26. We point out that Ã(Θ;Ω0) ≥ 0, but it could be zero even if Θ ̸= KΩ0. This happens
whenever

tΩ0 > R2 −R1 and 0 < dH(Θ,KΩ0) < tΩ0 − (R2 −R1),

since wΩ0 ≡ zm on Θ \KΩ0. In this case Ã(Θ;Ω0) = 0, even if Θ ̸= KΩ0. Nevertheless, in that
case, inequality tΩ0 > R2 −R1 implies Ω0 ̸= BR2, thus the global asymmetry satisfies

αhyb(Ω0 \Θ) = max
¶
α̃out(Ω0), Ã(Θ;Ω0)

©
= α̃out(Ω0) > 0.

In other words, if Θ has a small Hausdorff distance from KΩ0, then the largest term in the compu-
tation of αhyb(Ω0 \Θ) is α̃out(Ω0).
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KΩ0

Ω0

Θ

BR1

BR2

R2 -R1

Figure 2. The darker green set is the actual integration domain in the definition of Ã(Θ;Ω0).

On the other hand, if Ω0 = BR2, then α̃out(Ω0) = 0 and tΩ0 = R2 − R1. So, in this case,
KΩ0 = BR1 and any admissible hole Θ ̸= BR1 satisfies Ã(Θ;BR2) > 0, since wΩ0 = z ⪈ zm on
Θ \BR1. Consequently, we have

αhyb(Ω0 \Θ) = max
¶
α̃out(BR2), Ã(Θ;BR2)

©
= Ã(Θ;BR2) > 0.

Nevertheless, whenever tΩ0 = R2 −R1, we have

α̃out(Ω0) = 0 ⇔ Ω0 = BR2 , Ã(Θ;Ω0) = 0 ⇔ Θ = KΩ0 .

This happens, for instance, if Ω0 is itself the outer parallel of a convex set).
In conclusion, it actually holds αhyb(Ω0 \Θ) = 0 if and only if Ω0 \Θ = AR1,R2 .

We point out another interesting feature of the hybrid asymmetry. The functional αhyb actually
quantifies both the distance from being spherical of Ω0, and the global distance of Ω0 \ Θ from
the "shell-structured" set Ω0 \KΩ0 . As a consequence, it detects the best competitor between, for
instance, two domains having the same Hausdorff or Fraenkel distance from the spherical shell, but
with different mass distribution around the hole.

In other words, αhyb is lower if a Ω0 \ Θ enjoys a shell-like structure (it is useful in the case of
two equal containers with the same hole, but in different relative position, see Figure 3).

Let us notice that |∇w(Ω0)|p + wpΩ0
− zpm = 0 in KΩ0 \Θ, so Ã(Θ,Ω0) can be also written as

Ã(Θ,Ω0) =

ˆ
Θ△KΩ0

(|∇w(Ω0)|
p + wpΩ0

− zpm)dx = V ol(|∇w(Ω0)
|p+wp

Ω0
−zpm)(Θ△KΩ0),

hence the name "weighted Fraenkel-type" asymmetry.

3. Proof of the Main Results: convex domains

In this section we provide the proof of the main results for convex sets. The core of the section is
the next proposition, that gives us the maximality of the ball for σp,q. The proof follows a similar
scheme to Theorem 1.2 in [2].

Proposition 3.1. Let Ω ⊂ Rd be convex and let Ω⋆ be the ball having the same perimeter as Ω.
Then

σp,q(Ω
⋆) ≥ σp,q(Ω) + C(p, q, d, P (Ω⋆))(|Ω⋆| − |Ω|).



OPTIMALITY AND STABILITY OF THE RADIAL SHAPES FOR THE SOBOLEV TRACE CONSTANTS 17

Ω0

Θ

BR1

BR2

Ω0

Θ

BR1

BR2

Figure 3. The blue set on the left is clearly more symmetric than the blue set
on the right. The hybrid asymmetry recognizes their difference; nevertheless their
canonical Hausdorff and Fraenkel distances from the gray spherical shell are the
same.

Proof. In order to avoid the introduction of too many new symbols, in this proof we repeat some
of the notation used in the previous sections. Let us denote by z the minimizer for σp,q(Ω⋆) with
∥z∥Lq(∂Ω⋆) = 1 and let zm and zM its infimum and supremum, respectively. Let us build a suitable
positive test function w ∈W 1,p(Ω) such that

(33)
ˆ
Ω⋆

zp dx ≥
ˆ
Ω
wp dx+ zpm(|BR| − |Ω|),

(34)
ˆ
Ω⋆

|∇z|p dx ≥
ˆ
Ω
|∇w|p dx,

(35)
ˆ
∂Ω⋆

zq dHd−1 =

ˆ
∂Ω
wq dHd−1 = 1.

As was anticipated, we will make use of the web-functions method. Let us set ℓ(t) := |∇z|z=t for
any zm < t < zM . We define w ∈W 1,p(Ω) as usual, by setting

w(x) := G(d(x)), x ∈ Ω,

where G : [0, ρ(Ω)] → [zm, zM ] is the inverse of the function

G−1(t) :=

ˆ zM

t

1

ℓ(τ)
dτ with zm < t < zM .

The web-function w belongs to W 1,p(Ω), it is positive and the following statements hold:

(36)

wM := sup
Ω
w = zM ,

wm := inf
Ω
w ≥ zm,

|∇w|w=t = |∇z|z=t = ℓ(t), wm < t < wM .
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To get (33), (34) and (35), we need to handle the sublevel sets of z and w. We introduce

Êt := {x ∈ Ω : w(x) < t}, B̂t := {x ∈ Ω⋆ : z(x) < t},

Et := {x ∈ Ω : w(x) > t} = Ω \ Êt, Bt := {x ∈ Ω⋆ : z(x) > t} = Ω⋆ \ B̂t.

For the function w = G(d(x)) formula (27) holds; combining the latter with the Aleksandrov-
Fenchel inequality (20) between P (·) and W2(·) we have

d

dt
P (Êt) ≥ d(d− 1)

W2(Êt)

ℓ(t)
≥ d(d− 1)d−

d−2
d−1ω

1
d−1

d

(P (Êt))
d−2
d−1

ℓ(t)
,

while for the ball B̂t equalities hold:

d

dt
P (B̂t) = d(d− 1)

W2(B̂t)

ℓ(t)
= d(d− 1)d−

d−2
d−1ω

1
n−1

d

(P (B̂t))
d−2
d−1

ℓ(t)
.

Now, P (ÊzM ) = P (Ω) = P (Ω⋆) = P (BzM ). Then, by classical comparison theorems for differential
inequalities we get

(37) P (Êt) ≤ P (B̂t), zm ≤ t ≤ zM .

In order to have (33), we set
µ̂(t) := |Êt| , ν̂(t) := |B̂t|

and
µ(t) := |Et| = |Ω| − µ̂(t) , ν(t) := |Bt| = |Ω⋆| − ν̂(t).

The previous distribution functions are absolutely continuous; in order to obtain a comparison in
their intervals of definition, we apply the coarea formula (14) on the sublevel sets Êt and B̂t as
follows:

µ̂(t) =

ˆ
Êt

|∇w|
|∇w|

dx =

ˆ t

zm

Åˆ
w=s

1

|∇w|
dHd−1

ã
ds,

ν̂(t) =

ˆ
B̂t

|∇z|
|∇z|

dx =

ˆ t

zm

Åˆ
z=s

1

|∇z|
dHd−1

ã
ds.

We thus obtain

µ̂′(t) =

ˆ
w=t

1

|∇w|
dHd−1 =

P (Êt)

ℓ(t)
≤ P (B̂t)

ℓ(t)

=

ˆ
z=t

1

|∇z|
dHd−1 = ν̂ ′(t), zm ≤ t < zM .

Then, µ̂′(t) ≤ ν̂ ′(t) in [zm, zM ] and so µ̂− ν̂ is decreasing therein. Consequently, inequality −µ′(t) ≤
−ν ′(t) in [zm, zM ] holds, and the function ν − µ is then decreasing in [zm, zM ]. Since ν(zM ) =
µ(zM ) = 0, we conclude that µ(t) ≤ ν(t) in [zm, zM ]. We point out also that, by construction,
µ(t) = |Ω| and ν(t) = |Ω⋆| for any t ∈ [0, zm]. This yields the following estimateˆ
Ω
wp dx =

ˆ wM

0
ptp−1µ(t) dt =

ˆ zM

0
ptp−1µ(t) dt =

ˆ zm

0
ptp−1µ(t) dt+

ˆ zM

zm

ptp−1µ(t) dt

≤
ˆ zm

0
ptp−1µ(t) dt+

ˆ zM

zm

ptp−1ν(t) dt =

ˆ zM

0
ptp−1ν(t) dt−

ˆ zm

0
ptp−1(ν(t)− µ(t)) dt

=

ˆ
Ω⋆

zp dx− zpm(|Ω⋆| − |Ω|),

i.e. inequality (33) is proved.
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Furthermore, (37) entails the following estimate for the integrals of the gradients on the level
sets with t ∈ [zm, zM ]:

ˆ
w=t

|∇w|p−1 dHd−1 = ℓ(t)p−1P (Êt) ≤ ℓ(t)p−1P (B̂t) =

ˆ
z=t

|∇z|p−1 dHd−1.

Using again the coarea formula we obtain (34):
ˆ
Ω
|∇w|p dx =

ˆ wM

wm

ˆ
w=t

|∇w|p−1 dHd−1 dt ≤
ˆ zM

zm

ˆ
z=t

|∇z|p−1 dHd−1 dt =

ˆ
Ω⋆

|∇z|p.

We finally observe that (35) is an immediate consequence of the definition of w, which is constant
on ∂Ω, getting the same value as z|∂Ω⋆ = zM ; so, in view of the equality P (Ω) = P (Ω⋆):

ˆ
∂Ω
wq dHn−1 = wqMP (Ω) = zqMP (Ω

⋆) =

ˆ
∂Ω⋆

zq dHn−1 = 1.

Plugging (33), (34) and (35) in (1) we obtain

σp,q(Ω
⋆) =

Åˆ
Ω⋆

|∇z|p dx+

ˆ
Ω⋆

zp dx

ã1/pÅˆ
∂Ω⋆

zq dHd−1

ã1/q ≥

Åˆ
Ω
|∇w|p dx+

ˆ
Ω
wp dx+ zpm(|Ω⋆| − |Ω|)

ã1/pÅˆ
∂Ω
wq dHd−1

ã1/q
≥

(
σpp,q(Ω) + zpm(|Ω⋆| − |Ω|)

)1/p
= σp,q(Ω)

Å
1 +

zpm(|Ω⋆| − |Ω|)
σpp,q(Ω)

ã1/p
≥ σp,q(Ω)

Å
1 +

zpm(|Ω⋆| − |Ω|)
p · σpp,q(Ω)

ã
= σp,q(Ω) +

zpm(|Ω⋆| − |Ω|)
p · σp−1

p,q (Ω)

≥ σp,q(Ω) +
zpmP (Ω)

p−1
q

p|Ω|
p−1
p

(|Ω⋆| − |Ω|) ≥ σp,q(Ω) +
zpmP (Ω⋆)

p−1
q

p|Ω⋆|
p−1
p

(|Ω⋆| − |Ω|)

= σp,q(Ω) +
zpm
p

Ñ
P (Ω⋆)

1
q
− d

p(d−1)

d
d

d−1ω
1

d−1

d

ép−1

(|Ω⋆| − |Ω|),

where the inequality between the second and the third line is due to Bernoulli’s inequality. □

Now we are in position to prove both Main Theorem 1 and Main Theorem 2 stated in the
introduction.

Proof of Main Theorem 1. It is a straightforward consequence of Proposition 3.1, since |Ω⋆| ≥ |Ω|
and all the equalities in the proof occur if and only if Ω = Ω⋆. □

Proof of Main Theorem 2. It is a straightforward consequence of Proposition 3.1 and Lemma 2.15.
□

Remark 3.2. For the nonlinear eigenvalue σpp(·), Proposition 3.1 reduces to

σpp(Ω
⋆) ≥ σpp(Ω) + zpm(|Ω⋆| − |Ω|).
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4. Proof of the main results: domains with holes

In this section, we give the proof of the results for domains with holes. For the comfort of the
reader, we will divide the proofs mainly in three parts: we first prove the optimality of AR1,R2 ;
then we provide quantitative enhancements of inequality (11) in terms of the inner and of the outer
asymmetry and finally we achieve the stability result.

For the maximality of the spherical shell (Main Theorem 3) we adapt the proof of Proposition
3.1. We point out that the most relevant difference in this case is due to the cancellation of the
term of deficit of measure, due the volume constraint |Ω0 \Θ| = |AR1,R2 |.

Proof of Main Theorem 3. We follow the same scheme as in Proposition 3.1. So, we omit the parts
that are repeated verbatim.

Let us consider the function wΩ0 introduced in Section 2.6 and recall that wΩ0 ∈ W 1,p(Ω0),
wΩ0(x) = zm if d(x) ≥ R2 −R1 and

|∇wΩ0 |u=t = |∇z|v=t,
(wΩ0)m := min

Ω0

wΩ0 ≥ zm,

(wΩ0)M := max
Ω0

wΩ0 = zM = G̃(0).

Repeating the same arguments as in the proof of Proposition 3.1, we obtain the following com-
parison between the integrals involving z and wΩ0 on BR2 and Ω0, respectively:

(38)
ˆ
BR2

zp dx ≥
ˆ
Ω0

wpΩ0
dx+ zpm(|BR2 | − |Ω0|)

(39)
ˆ
BR2

|∇z|p dx ≥
ˆ
Ω0

|∇wΩ0 |p dx

(40)
ˆ
∂BR2

zq dHd−1 =

ˆ
∂BR2

zq dHd−1 =

ˆ
∂Ω0

wqΩ0
dHd−1

Our aim is to get the following, similar, estimates for the volume integrals on the domains with holes
(equality (40) for the boundary terms can be directly plugged in the variational characterization of
σ̃p,q):

(41)
ˆ
AR1,R2

zp dx ≥
ˆ
Ω
wpΩ0

dx

(42)
ˆ
AR1,R2

|∇z|p dx ≥
ˆ
Ω
|∇wΩ0 |p dx

To obtain (41), we start splitting the integrals in (38) separating the plain parts (respectively
Ω0 \Θ and AR1,R2) and the holes (respectively Θ and BR1):ˆ

AR1,R2

zp dx+

ˆ
BR1

zp dx ≥
ˆ
Ω0\Θ

wpΩ0
dx+

ˆ
Θ
wpΩ0

dx+ zpm(|BR2 | − |Ω0|).
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We recall that z = z on AR1,R2 , z = zm in BR1 and wΩ0 ≥ zm in Ω0 (so, in particular, on Θ). We
thus concludeˆ

AR1,R2

zp dx ≥
ˆ
Ω0\Θ

wpΩ0
dx+

ˆ
Θ
wpΩ0

dx− zpm|Ω0|+ zpm|BR2 | − zpm|BR1 |

≥
ˆ
Ω0\Θ

wpΩ0
dx+ zpm (|BR2 | − |BR1 | − |Ω0|+ |Θ|)

=

ˆ
Ω0\Θ

wpΩ0
dx+ zpm

(
|AR1,R2 | − |Ω0 \Θ|

)
=

ˆ
Ω0\Θ

wpΩ0
dx,

i.e. we have (41). Moreover, (39) easily implies (42):ˆ
Ω0\Θ

|∇wΩ0 |
p dx ≤

ˆ
Ω0

|∇wΩ0 |
p dx ≤

ˆ
BR2

|∇z|p dx =

ˆ
AR1,R2

|∇z|p dx.

We achieve the thesis plugging (40), (41) and (42) in (1):

σ̃p,q(AR1,R2) =

Çˆ
AR1,R2

|∇z|p dx+

ˆ
AR1,R2

zp dx

å1/pÇˆ
∂BR2

zq dHd−1

å1/q
≥

Çˆ
Ω0\Θ

|∇w|p dx+

ˆ
Ω0\Θ

wp dx

å1/pÅˆ
∂Ω0

wq dHd−1

ã1/q
≥ σ̃p,q(Ω0 \Θ)

We conclude observing that all the previous inequalities become equalities if and only if Ω0 \Θ =
AR1,R2 . □

A crucial difference with the convex case in Proposition 3.1 is the following. Proposition 3.1
actually gives a quantitative result in view of the nonnegative term |Ω⋆| − |Ω| that vanishes if and
only if Ω is a ball itself. If Ω is nearly spherical, |Ω⋆| − |Ω| can be estimated from below with the
Hausdorff asymmetry in view of Lemma 2.15. Instead, in the proof of Main Theorem 3, the volume
constraint |Ω0 \ Θ| = |AR1,R2 | entails a cancellation of the additional volume term passing from
(38) to (41).

In the linear case p = q = 2, we overcome the problem using a Fuglede approach. Indeed, in
[21], the argument of [20], holding for convex sets, is adapted to Ω0 \ Θ. A quantitative estimate
of σ̃22(AR1,R2) − σ̃22(Ω0 \ Θ) is then obtained in terms of the asymmetry of Ω0, provided that it is
nearly spherical. In other words, if Ω0 is nearly spherical, for the linear eigenvalue σ̃22 one has

σ̃22(AR1,R2)− σ̃22(Ω0 \Θ) ≥ Cg(AH(Ω0))

for some constant depending ongly on d,R1, R2. In order to have an analogous result in the nonlin-
ear case, we adopt a different strategy based on the quantitative Aleksandrov-Fenchel inequalities
(Proposition 2.17). The idea is to use a propagation of the asymmetry argument; anyway, there
are some relevant differences with respect to the classical cases. Firstly, here we deal with a maxi-
mization problem, not a minimization as in the Dirichlet case studied, for instance, in the classical
references [11, 33]. In addition, we need to compare the perimeters of two sublevel sets which do
not match either a perimeter or a volume constraint; they are only linked by the "dearrangement"
procedure and by the reference level t.

In order to simplify the notation, throughout the section we define the following convex sets:

(43) Ω0,t = {x ∈ Ω0 | wΩ0(x) < t}, A0,t = {x ∈ BR2 | z(x) < t}.



22 SIMONE CITO1

It is well known (see, e.g., [41]) that P (A0,t) ≥ P (Ω0,t) for any t ∈ [zm, zM ]. In order to give a
quantitative enhancement of (11), we need a quantitative version of that inequality, at least for
sublevel sets that are close to the maximal value.

Proposition 4.1. Let Ω0 be a convex domain. Then, there exists a constant T (Ω0) ∈]zm, zM [ such
that, for any t ∈ [T (Ω0), zM ], it holds

(44) P (A0,t) ≥ P (Ω0,t) + C(d)G̃−1(t)d
d+3

2(d−1)

H (Ω0;BΩ0)

Proof. For any zm < t < zM , combining (27) and (22) for the sublevel set Ω0,t we have

(45)
d

dt
P (Ω0,t) ≥ d(d− 1)

W2(Ω0,t)

ℓ(t)
≥ C(d)

(P (Ω0,t))
d−2
d−1

ℓ(t)
+ C(d)

dH(Ω0,t, BΩ0,t)
d+3

2(d−1)

ℓ(t)
,

where
C(d) = d(d− 1)d−

d−2
d−1w

1
d−1

d .

Since A0,t is a ball, it holds

(46)
d

dt
P (A0,t) = C(d)

(P (A0,t))
d−2
n−1

ℓ(t)
,

Let us consider

T1(Ω0) := inf

ß
s ∈ [zm, zM ] : dH(Ω0,s, BΩ0,s) ≥

dH(Ω0, BΩ0)

2
and

ℓ(zM )

2
≤ ℓ(s) ≤ 2ℓ(zM )

™
(notice that T1(Ω0) ̸= zM ). Now, we divide the proof in two different cases.

Case d = 2. In this case, it is enough to consider T (Ω0) := T1(Ω0). Indeed, (45) and (46) become,
respectively

(47)
d

dt
P (Ω0,t) ≥ C(d)

1

ℓ(t)
+ C(d)

dH(Ω0,t, BΩ0,t)
d+3

2(d−1)

ℓ(t)

and

(48)
d

dt
P (A0,t) = C(d)

1

ℓ(t)
.

Subtracting (48) from (47) and integrating from t to zM we get that, for any t ∈ [zm, zM ]:
ˆ zM

t

d

ds
[P (Ω0,s)− P (A0,s)] ds ≥ C(d)

ˆ zM

t

dH(Ω0,s, BΩ0,s)
d+3

2(d−1)

ℓ(s)
ds

Noticing thatˆ zM

t

d

ds
[P (Ω0,s)− P (A0,s)] ds = P (Ω0)− P (BR2)− P (Ω0,t) + P (A0,t) = P (A0,t)− P (Ω0,t),

we conclude

(49) P (A0,t) ≥ P (Ω0,t) + C(d)

ˆ zM

t

dH(Ω0,s, BΩ0,s)
d+3

2(d−1)

ℓ(s)
ds

By definition, for any s ∈ [T (Ω0), zM ], it holds

dH(Ω0,s, BΩ0,s) ≥
dH(Ω0, BΩ0)

2
.
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Plugging the estimate in (49) we finally get for any t ∈ [T (Ω0), zM ]

P (A0,t) ≥ P (Ω0,t) + C ′(d)dH(Ω0, BΩ0)
d+3

2(d−1)

ˆ zM

t

1

ℓ(s)
ds,

where the last integral is G̃−1(t) and C ′ takes into account all the previous constants.

Case d > 2. In higher dimension, the situation is more involved, since putting together (45) and
(46) we just have

P (A0,t) ≥ P (Ω0,t)+C(d)

ˆ zM

t

dH(Ω0,s, BΩ0,s)
d+3

2(d−1)

ℓ(s)
ds+C(d)

ˆ zM

t

(P (Ω0,t))
d−2
d−1 − (P (A0,s))

d−2
d−1

ℓ(s)
ds,

where the last summand is negative and so not helpful for our purposes. In other words, it does not
seem available a comparison on the whole interval [zm, zM ]. We adopt a slightly different strategy.
Thus, for any t ∈ [T1(Ω0), zM ] (45) becomes

d

dt
P (Ω0,t) ≥ C(d)

(P (Ω0,t))
d−2
d−1

ℓ(t)
+ C ′(d)

dH(Ω0, BΩ0)
d+3

2(d−1)

2ℓ(zM )
.

On the other hand, in t = zM one has

d

dt
P (Ω0,t)

∣∣∣∣
t=zM

≥ C(d)
(P (Ω0))

d−2
d−1

ℓ(zM )
+ C ′(d)

dH(Ω0, BΩ0)
d+3

2(d−1)

2ℓ(zM )

= C(d)
(P (BR2))

d−2
d−1

ℓ(zM )
+ C ′(d)

dH(Ω0, BΩ0)
d+3

2(d−1)

2ℓ(zM )

=
d

dt
P (A0,t)

∣∣∣∣
t=zM

+ C ′(d)
dH(Ω0, BΩ0)

d+3
2(d−1)

2ℓ(zM )
,

i.e. the final derivative of P (Ω0,t) is strictly larger than the final derivative of P (A0,t). As a
consequence, there exists T2(Ω0) ∈ [zm, zM [ such that

d

dt
P (A0,t) ≥

d

dt
P (A0,t) + C ′(d)

dH(Ω0, BΩ0)
d+3

2(d−1)

4ℓ(zM )
.

Let us set T (Ω0) := max{T1(Ω0), T2(Ω0)}. By construction, the estimate above becomes

d

dt
P (A0,t) ≥

d

dt
P (A0,t) + C ′(d)

dH(Ω0, BΩ0)
d+3

2(d−1)

8ℓ(t)
.

Integrating as in the 2 dimensional case the thesis is achieved. □

We point out that the quantity G̃−1(t) could also be replaced by zM−t, with a small modification
of the multiplicative constant, since the denominators ℓ(zM ) and ℓ(s) appearing in the additional
term are comparable.

Some comments are in order. We introduced the "critical level" T (Ω0) in order to handle basically
three things. Firstly, it is necessary a range of levels in which Lemma 2.18 holds. Even if it seems
natural that the inner parallel of a given convex set Ω0 has larger asymmetry than Ω0 (roughly
speaking, the more you go inside, the more you shrink), it does not seem available a proof of this
fact up to our knowledge. A second issue is the lack of a quantitative comparison between P (A0,t)
and P (Ω0,t) for d > 2 holding for any t, not only near zM . Finally, the uniform bound on ℓ(s) in
[T (Ω0), zM ] could be removed if, for instance, z was convex. Anyway, the additional term appearing
in (44) is strictly positive whenever Ω0 ̸= BR2 and equals zero if and only if Ω0 = BR2 .
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Now we obtain a quantitative result in terms of outer asymmetry.

Proposition 4.2 (outer asymmetry). Let 0 < R1 < R2 < +∞. Then, for every admissible set
Ω0 \Θ ⊂ Rd such that P (Ω0) = P (BR2) and |Ω0 \Θ| = |AR1,R2 |, it holds

σ̃p,q(AR1,R2)− σ̃p,q(Ω0 \Θ) ≥ C(d, p, q, R1, R2)α̃out(Ω0).

Proof. The proof is based on a refinement of the comparison argument of Main Theorem 3, plugging
(44) instead of the simple inequality between perimeters. We set

µ(t) := |Ω0,t|, ν(t) := |A0,t|.

It holds

−ν ′(t) = P (A0,t)

ℓ(t)
≥ P (Ω0,t)

ℓ(t)
= −µ′(t), zm ≤ t < zM

and, in particular, when (44) holds

−ν ′(t) = P (A0,t)

ℓ(t)
≥ P (Ω0,t)

ℓ(t)
+ C(d)d

d+3
2(d−1)

H (Ω0;BΩ0)
G̃−1(t)

ℓ(t)

= −µ′(t) + C(d)d
d+3

2(d−1)

H (Ω0;BΩ0)
G̃−1(t)

ℓ(t)
, T (Ω0) ≤ t < zM .

Notice that, in view of its definition, it holds

G̃−1(t)

ℓ(t)
= − d

dt

ñ
(G̃−1(t))2

2

ô
.

This then implies ν(t) ≥ µ(t) + |Ω0| − |BR2 | for any zm ≤ t < zM . In particular, for any t ∈
[T (Ω0), zM ]:

ν(t)− |BR2 | = −
ˆ zM

t
ν ′(s) ds

= −
ˆ zM

t
µ′(s) ds− C(d)d

d+3
2(d−1)

H (Ω0;BΩ0)

ˆ zM

t

d

ds

ñ
(G̃−1(s))2

2

ô
ds

= µ(t)− |Ω0|+ C(d)d
d+3

2(d−1)

H (Ω0;BΩ0)

ñ
(G̃−1(t))2

2

ô
.

In other words, for any t ∈ [zm, zM ]:

(50) ν(t) ≥ µ(t) + |BR2 | − |Ω0|+ C(d)d
d+3

2(d−1)

H (Ω0;BΩ0)

ñ
(G̃−1(t))2

2

ô
χ[T (Ω0),zM ](t).

Integrating (50) one has

(51)
ˆ
BR2

zp dx ≥
ˆ
Ω0

wpΩ0
dx+ zpm(|BR2 | − |Ω0|) + C(d)d

d+3
2(d−1)

H (Ω0;BΩ0)

ˆ zM

T (Ω0)
(G̃−1(t))2 dt.

We conclude estimating last integral. By definition of T (Ω0) it holdsˆ zM

T (Ω0)
(G̃−1(t))2 dt =

ˆ zM

T (Ω0)

Åˆ zM

t

1

ℓ(s)
ds

ã2
dt ≥ 1

4

ˆ zM

T (Ω0)

Åˆ zM

t

1

ℓ(zM )
ds

ã2
dt

=
1

4ℓ(zM )

ˆ zM

T (Ω0)
(zM − t)2 dt =

(zM − T (Ω0))
3

12ℓ(zM )
.
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We thus use the latter estimate in (51) and split the plain part and the hole, obtaining

(52)
ˆ
AR1,R2

zp dx ≥
ˆ
Ω
wpΩ0

dx+
1

12ℓ(zM )
α̃out(Ω0),

i.e. an enhanced version of (41). Plugging (52) in the variational charachterizatin of σ̃p,q and
applying the Bernoulli’s inequality we get:

σ̃p,q(AR1,R2) =

Çˆ
AR1,R2

|∇z|p dx+

ˆ
AR1,R2

zp dx

å1/p

≥
Çˆ

Ω0\Θ
|∇wΩ0 |p dx+

ˆ
Ω0\Θ

wpΩ0
dx+

1

12ℓ(zM )
α̃out(Ω0)

å1/p

≥
Å
σ̃pp,q(Ω0 \Θ) +

1

12ℓ(zM )
α̃out(Ω0)

ã1/p
= σ̃p,q(Ω0 \Θ)

Ç
1 +

α̃out(Ω0)

12ℓ(zM )σ̃pp,q(Ω0 \Θ)

å1/p

≥ σ̃p,q(Ω0 \Θ)

Ç
1 +

α̃out(Ω0)

12ℓ(zM )p · σ̃pp,q(Ω0 \Θ)

å
= σ̃p,q(Ω0 \Θ) +

α̃out(Ω0)

12ℓ(zM )p · σ̃p−1
p,q (Ω0 \Θ)

≥ σ̃p,q(Ω0 \Θ) +
P (Ω0)

p−1
q

12ℓ(zM )p|Ω0 \Θ|
p−1
p

α̃out(Ω0)

= σ̃p,q(Ω0 \Θ) +
P (BR2)

p−1
q

12ℓ(zM )p|AR1,R2 |
p−1
p

α̃out(Ω0).

Since, by (8), ℓ(zM )p−1 = σ̃p,q(AR1,R2)z
q−1
M , the thesis is achieved. □

As highlighted in the introduction, the hole’s deviation is estimated in terms of the deviation of
Θ from the configuration where Ω0 \Θ has the structure of a shell.

Proposition 4.3 (inner asymmetry). Let 0 < R1 < R2 < +∞. Then, for every Ω0 \Θ ⊂ Rd with
Ω0 convex and Θ an admissible hole such that Θ ⊂ Ω0, P (Ω0) = P (BR2) and |Ω| = |AR1,R2 |, it
holds

σ̃p,q(AR1,R2)− σ̃p,q(Ω0 \Θ) ≥ C(d, p, q, R1, R2)Ã(Θ;Ω0),

where Ã(Θ;Ω0) is defined in (30).

Proof. Let z ∈W 1,p(AR1,R2) be the minimizer for σp,q(AR1,R2) with ∥z∥Lq(∂BR2
) = 1. Let us define

the test function wΩ0 ∈ W 1,p(Ω0) as in (29) and denote tΩ0 ,KΩ0 as in Definition 2.25. We recall
that tΩ0 ≥ R2 −R1 and so wΩ0 = zm in KΩ0 .

Notice that we can use Ω0 and as a test function for both Ω0\Θ and Ω0\KΩ0 , since wΩ0 depends
only on Ω0. We then get estimates (38), (39) and (40) for the domain Ω0 \KΩ0 :ˆ

Ω0\KΩ0

|∇wΩ0 |p dx ≤
ˆ
AR1,R2

|∇z|p dx,
ˆ
Ω0\KΩ0

wpΩ0
dx ≤

ˆ
AR1,R2

zp dx,

ˆ
∂Ω0

wqΩ0
dHn−1 =

ˆ
∂BR2

zq dHd−1 = 1.

(53)
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The idea is to split smartly the volume integrals of over Ω0, choosing a different hole each time.
We start with

´
Ω0
wpΩ0

dx. If we focus on the hole Θ we getˆ
Ω0

wpΩ0
dx =

ˆ
Ω0\Θ

wpΩ0
dx+

ˆ
Θ\KΩ0

wpΩ0
dx+

ˆ
KΩ0

∩Θ
wpΩ0

dx.(54)

On the other hand, using KΩ0 as a hole, (53) entailsˆ
Ω0

wpΩ0
dx =

ˆ
Ω0\KΩ0

wpΩ0
dx+

ˆ
KΩ0

\Θ
wpΩ0

dx+

ˆ
KΩ0

∩Θ
wpΩ0

dx

≤
ˆ
AR1,R2

zp dx+ zpm|Θ \KΩ0 |+
ˆ
KΩ0

∩Θ
wpΩ0

dx,

(55)

where we have used that wΩ0 = zm in KΩ0 and |KΩ0 \Θ| = |Θ \KΩ0 |. Putting together (54) and
(55), we get

(56)
ˆ
Ω0\Θ

wpΩ0
dx ≤

ˆ
AR1,R2

zp dx−
ˆ
Θ\KΩ0

(wpΩ0
− zpm) dx.

Arguing analogously for
´
Ω0\Θ |∇wΩ0 |p dx we get

(57)
ˆ
Ω0\Θ

|∇wΩ0 |p dx ≤
ˆ
AR1,R2

|∇z|p dx−
ˆ
Θ\KΩ0

|∇wΩ0 |p dx.

The conclusion follows plugging into (7) estimates (53), (56) and the equality in (57):

σ̃p,q(AR1,R2) =

Çˆ
AR1,R2

|∇z|p dx+

ˆ
AR1,R2

zp dx

å1/p

≥
Çˆ

Ω0\Θ
|∇wΩ0 |p dx+

ˆ
Θ\KΩ0

|∇wΩ0 |p dx+

ˆ
Ω0\Θ

wpΩ0
dx+

ˆ
Θ\KΩ0

(wpΩ0
− zpm) dx

å1/p

≥
Ä
σ̃pp,q(Ω0 \Θ) + Ã(Θ;Ω0)

ä1/p
= σ̃p,q(Ω0 \Θ)

Ç
1 +

Ã(Θ;Ω0)

σ̃pp,q(Ω0 \Θ)

å1/p

≥ σ̃p,q(Ω0 \Θ)

Ç
1 +

Ã(Θ;Ω0)

p · σ̃pp,q(Ω0 \Θ)

å
= σ̃p,q(Ω0 \Θ) +

Ã(Θ;Ω0)

p · σ̃p−1
p,q (Ω0 \Θ)

≥ σ̃p,q(Ω0 \Θ) +
P (Ω0)

p−1
q

p|Ω0 \Θ|
p−1
p

Ã(Θ;Ω0) = σ̃p,q(Ω0 \Θ) +
P (BR2)

p−1
q

p|AR1,R2 |
p−1
p

Ã(Θ;Ω0).

□

Propositions 4.1 and 4.2 immediately entail the following

Corollary 4.4. For any admissible set Ω0 \ Θ, there exists a positive constant C(d, p, q, R1, R2)
such that

σ̃p,q(AR1,R2)− σ̃p,q(Ω0 \Θ) ≥ C(d, p, q, R1, R2)αhyb(Ω0 \Θ).

4.1. Reduction to nearly annular sets. Our aim is now to prove that the previous quantitative
improvement can be stated in terms of stability of σ̃p,q in the class TR1,R2 , defined in (12). The
crucial point is to show that σ̃p,q takes values close to the optimum if and only if Ω0 \Θ ∈ TR1,R2

is nearly annular. In order to obtain it, we proceed as in [21], Section 4.3, showing to the readers,
for their convenience, some of the proofs we deem more relevant.
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We start by giving the so-called "isodiametric control" of σ̃p,q. In other words, we show that
if σ̃p,q(Ω0 \ Θ) is not much smaller than σ̃p,q(AR1,R2), then diam(Ω0) is controlled by a uniform
constant.

Isodiametric controls of eigenvalues, like the type discussed here, are a standard tool in shape
maximization problems. This control usually contributes to compactness when tackling global
existence problems (consider, for instance, the isodiametric control of the Robin spectrum detailed in
[15] and of the Steklov spectrum presented in [9], both of which are valid even for higher eigenvalues
across a broader range of sets).

It is worth noting that the subsequent result extends to holed domains beyond the class TR1,R2 .
Consequently, we provide the proof in a more general context, as it is trivial for domains belonging
to TR1,R2 .

Lemma 4.5. Let 0 < R1 < R2 < +∞. There exists a positive constant C(d, p, q, R1, R2) such that,
for every Ω0 \Θ ⊂ Rd with Ω0 and Θ open convex sets such that Θ ⊂⊂ Ω0, P (Ω0) = P (BR2) and
|Ω0 \Θ| = |AR1,R2 |, if

σ̃p,q(Ω0 \Θ) ≥
σ̃p,q(AR1,R2)

2
,

then
diam(Ω0) ≤ C(d, p, q, R1, R2).

Proof. The proof is a straightforward adaptation to our context of the analogous result for the
Robin-Neumann eigenvalues, see [21, Lemma 4.4] (see [20, Lemma 3.5] for the proof for the Robin
eigenvalues in the convex case).

It is based on the following contradiction argument. If there exists a sequence Ω0j \Θj such that

σ̃p,q(Ω0j \Θj) ≥
σ̃p,q(AR1,R2)

2
and diam(Ω0j) → +∞,

the convexity of Ω0j and the constraint P (Ω0j) = P (BR2), together with inequality

|A| ≤ ρP (A)

(see, for instance, [14, Prop. 2.4.3]), would imply that |Ω0j | vanishes as j goes to +∞. Now, using
the charachteristic function of Ω0j \Θj as a test, we obtain (see Remark 2.9)

σ̃p,q(AR1,R2)

2
≤ σ̃p,q(Ω0j \Θj) ≤

|Ω0j \Θj |1/p

P (Ω0j)1/q
→ 0,

a contradiction. □

Some form of continuity or semicontinuity is required to simplify the problem to nearly annular
sets. To achieve this, we prove the upper semicontinuity of σ̃p,q with respect to Hausdorff conver-
gence. We start by establishing the lower semicontinuity of the boundary integral. For the special
case p = q = 2, see [21, Lemma 4.5]; the general case can be proved, for example, adapting [16,
Lemma 4.2] to our case.

Lemma 4.6. Let p > 1, 1 < q < p∗ and Ej , E ⊂ Rd be bounded convex domains such that Ej → E

in the sense of Hausdorff. Let wj , w ∈W 1,p(Rd). If wj ⇀ w in W 1,p(Rd), then it holdsˆ
∂E
wq dHd−1 ≤ lim inf

j

ˆ
∂Ej

wqj dH
d−1

We are now in a position to prove the upper semicontinuity for σ̃p,q.
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Lemma 4.7. Let Ω0j \Θj ,Ω0 \Θ ∈ TR1,R2, with Ω0j \Θj → Ω0 \Θ in the sense of Hausdorff (and
in measure). Then

lim sup
j→+∞

σ̃p,q(Ω0j \Θj) ≤ σ̃p,q(Ω0 \Θ).

Proof. Let u ∈W 1,p(Ω0 \Θ) a minimizer for σ̃p,q(Ω0 \Θ), and let u ∈W 1,p(Rd) an extension of u
to the whole of Rd. Note that u is a test function for Ω0j \Θj for every j ∈ N. Moreover, under the
given hypotheses, the convex sets Ω0j converge to Ω0 in the Hausdorff and measure senses. Hence,
we have ˆ

∂Ω0

uqdHd−1 =

ˆ
∂Ω0

uqdHd−1 ≤ lim inf
j→+∞

ˆ
∂Ω0j

uqdHd−1

as a consequence of Lemma 4.6. Moreover, both volume integrals are continuous in view of the
convergence in measure Ωj → Ω and this entails the upper semicontinuity of the quotients in (7).
Therefore, we have

σ̃p,q(Ω0 \Θ) =

Çˆ
Ω0\Θ

|∇u|p dx+

ˆ
Ω0\Θ

|u|p dx
å1/pÅˆ

∂Ω0

|u|q dHd−1

ã1/q
≥ lim sup

j→+∞

Çˆ
Ω0j\Θj

|∇u|p dx+

ˆ
Ω0j\Θj

|u|p dx
å1/pÇˆ

∂Ω0j

|u|q dHd−1

å1/q
≥ lim sup

j→+∞
σ̃p,q(Ω0j \Θj).

□

The uniqueness of AR1,R2 as the maximizer of σ̃p,q(·), coupled with the upper semicontinuity of
σ̃p,q(·) and the isodiametric control in Lemma 4.5, ensures the following convergence result. The
proof is not shown here, it is a actually contained in [21, Lemma 4.7].

Lemma 4.8. Let {Ω0j \ Θj}j∈N ⊂ TR1,R2 be a maximizing sequence for σ̃p,q with Ω0j \ Θj is
barycentered at the origin. Then

dH(Ω0j \Θj , AR1,R2) → 0.

The above lemma allows us to consider only nearly annular sets with their barycenter at the
origin for our main stability result. The proof, based on a straightforward contradiction argument,
is omitted here as it directly replicates [21, Lemma 4.8].

Lemma 4.9. Let 0 < R1 < R2 < +∞. There exists a positive constant δ0 = δ0(n, β,R1, R2) such
that, if Ω0 \Θ ∈ TR1,R2 and

σ̃p,q(AR1,R2)− σ̃p,q(Ω0 \Θ) ≤ δ0

then, up to a translation, Ω0 \Θ is a (R1, R2)−nearly annular set.

Now that we have finally reduced ourselves to nearly annular sets, we can conclude the proof of
Main Theorem 4.

Proof of Main Theorem 4. It is an immediate consequence of Corollary 4.4 and Lemma 4.9. □
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5. Further remarks and open problems

In this section we collect some consequences of the previous reults and state some open problems
arising from our analysis.

5.1. Stability of the spherical shell for the Robin-Neumann problems with negative
boundary parameter. The techniques presented throughout the paper can be used to get anal-
ogous stability results for the spherical shell respectively for the Robin-Neumann eigenvalues with
negative boundary parameter. We briefly recall the functional involved. Let us fix β < 0. Given
Ω0 \Θ with Ω0 Lipschitz and Θ ⊂⊂ Ω0 sufficiently smooth, the first Robin-Neumann eigenvalue of
the p-Laplace operator with boundary parameter β is the least number such that

−∆pw = λ̃p(β,Ω0 \Θ)|w|p−2w in Ω0 \Θ

|∇w|p−2∂w

∂ν
+ β|w|p−2w = 0 on ∂Ω0

∂w

∂ν
= 0 on ∂Θ;

λ̃p(β,Ω) < 0 and it can be chatachterized in a variational way as follows:

λ̃p(β,Ω0 \Θ) = min
ψ∈W 1,p(Ω0\Θ)

ψ ̸≡0

ˆ
Ω0\Θ

|∇ψ|p dx+ β

ˆ
∂Ω0

|ψ|p dHd−1

ˆ
Ω0\Θ

|ψ|p dx
.

The following result can be obtained repeating verbatim the arguments in Section 4, replacing in
the definition of αhyb the Lq(∂BR2)-normalized positive minimizer z for σ̃p,q(AR1,R2) with the first
positive Lp(AR1,R2)-normalized eigenfunction of AR1,R2 . Moreover, it gives a first positive answer
to [21, Open Problem 5.1].

Theorem 5.1. Let 0 < R1 < R2 < +∞ and p ∈]1,+∞[. There exist two positive constants
C(p, q, d,R1, R2) and δ0(p, q, d,R1, R2) such that, for every open set Ω0\Θ ∈ TR1,R2, if λ̃p(β,AR1,R2)−
λ̃p(β,Ω0 \Θ) ≤ δ0, then Ω0 \Θ is (R1, R2)-nearly annular and

λ̃p(β,AR1,R2)− λ̃p(β,Ω0 \Θ) ≥ C(d, p, β,R1, R2)αhyb(Ω0 \Θ).

5.2. Open problems. We conclude showing some possible perspective of research.

Open Problem 5.2. The question about the optimal geometries for σp,q and σ̃p,q remains open
regarding the case where p < q < p∗ and the minimizers for the associated variational problems
are not radial. In that scenario, the minimizers are the product of a radial component and of a
component depending only on the distance from the north pole (see Section 5 in [37]). It would
be interesting to understand what the expected maximizing shape is, at least numerically. If the
expected maximum is the ball or the spherical shell, it would be interesting to understand how to set
up a rearrangement technique for different exponents.

Open Problem 5.3. The choice of constraining the outer perimeter and the volume of the holed
domains Ω0\Θ for maximizing σ̃p,q dates back to [42]. The choice of fixing the perimeter of the con-
vex set Ω in the maximization of σp,q is trace-focused and is suggested by the web-function method.
It would be interesting to understand what happens modifying the constraints (e.g., maximizing σp,q
among convex sets with fixed measure) of enlarging the class of admissble sets (e.g., starshaped
domains).
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Open Problem 5.4. The hybrid asymmetry αhyb(·) is actually a distance from the spherical shell
and enjoys the remarkable property of recognizing the more symmetric between two holed sets that
have the same containter Ω0 and different holes, e.g. if they have the same inner set Θ in different
relative positions. Anyway, we are aware that it is not immediate to understand its meaning and
that it is not very elegant or clear at a first sight. Even its sharpness seems far from being true. For
this reason, an interesting challenge could be to find a way to improve the asymmetry functionals
for holed domains introduced here and in [21].
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