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1. Introduction

Many classical problems in spectral theory and geometric analysis focus on identifying extremal
domains for various functionals. A prominent example is the Faber–Krahn inequality, which asserts
that among all open sets Ω ⊂ Rd of fixed volume, Euclidean balls uniquely minimize the first
Dirichlet eigenvalue of the Laplacian. In precise terms, if

λ(Ω) = min

{ˆ
Ω

|∇u(x)|2 dx : u ∈ H1
0 (Ω), ‖u‖L2(Ω) = 1

}
,

then one has

(1.1) λ(Ω) ≥ λ(Br|Ω|) ,

where Br|Ω| ⊂ Rd is a ball with the same measure as Ω. Moreover the equality holds if and only
if Ω agrees with Br|Ω| up to translations and sets of zero 2-capacity. Even though in Euclidean
space minimizers of the first eigenvalue are rigid, rigidity may fail in more general settings. This
is also the case of graphs.

Spectral graph theory (see for instance [5, 14]) has attracted the interest of a wide mathematical
community as it reveals remarkable connections with differential geometry, Riemannian geometry,
algebraic graph theory, and probability theory (see [3, 8] and references therein). Furthermore,
it has applications in other areas of science such as theoretical chemistry [26], computer science,
and physics [20]. While for regular trees it has been proved in [23] that minimizers of the first
eigenvalue of the combinatorial Laplacian are essentially rigid (up to graph automorphism), this
is not true in general for Bravais lattices. In this paper, we will consider the special case of the
integer lattice Zd. Here, one defines the discrete first Dirichlet eigenvalue of the combinatorial
Laplacian for a finite set X ⊂ Zd (with cardinality #X = N) by

(1.2) λN
(
X
)

= min

{
N

2−d
d

∑
i,j∈Zd
|i−j|=1

∣∣u(i)− u(j)
∣∣2 : u(i) = 0 in Zd \X, 1

N

∑
i∈Zd

u(i)2 = 1

}
.

By the discrete to continuum Γ-convergence result in [1], as N → ∞ the discrete first Dirichlet
eigenvalue of the combinatorial Laplacian on Zd converges to the continuum one. Consequently,
one might expect that, under a volume constraint, minimizing sets of λN converge to the Euclidean
ball (which minimizes the continuum problem), as proven in [25]. However, there is no precise
characterization of minimal sets for fixed N and one might even expect that minimizers of the
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discrete problem are generically not unique. More precisely, there might be arbitrarily large N for
which there exist distinct subsets XN , YN ⊂ Zd such that

(1.3) λN (XN ) = λN (YN ) = min
{
λN (X) : X ⊂ Zd, #X = N

}
,

yet for every discrete isometry R : Zd → Zd, R(x) = Qx + τ , with Q ∈ O(d,Z) and τ ∈ Zd, one
has

#
(
XN∆R(YN )

)
6= 0 .

Note that this property is in contrast to the characterization of minimizers for the regular trees
as the discrete isometries are the automorphism group of Zd. As it is customary for geometric
problems on lattices, the lack of uniqueness calls for fluctuation estimates, that is, estimates
quantifying the deviation of different minimizers from each other as N grows. Even more, one can
obtain such fluctuation estimates for almost minimizers of the problem under consideration.

In this paper, we establish, for the first time in the spectral setting, discrete fluctuation estimates
for the first Dirichlet eigenvalue of the combinatorial Laplacian on Zd. In its simplest formulation,
our main result (see Theorem 4.1) shows that if XN , YN ⊂ Zd satisfy (1.3), then there exists a
constant Cd > 0, depending only on the dimension, such that

(1.4) #
(
XN∆YN

)
≤ CdN1− 1

2d .

We note that in Theorem 4.1 we prove more general estimates than the one above. They hold
for almost minimizers provided the energy gap from the minimum is not too big (and some non-
uniform control on the perimeter of the sets is assumed). Fluctuation inequalities like the one
in (1.4) have been the object of recent studies (see [9, 12, 13, 15, 16, 21, 22, 24]). In particular,
in [9] the authors proved optimal fluctuations estimates for the edge isoperimetric problem (see
[4, 10]) in the planar setting by establishing a connection between fluctuation estimates and the
quantitative isoperimetric inequalty in the continuum setting. In Section 4 of this paper we follow
the same strategy, this time substituting the quantitative isoperimetric inequality [17] with the
the quantitative Faber-Krahn inequality from [7]. The latter states that there exists a constant
Cd > 0, depending only on the dimension, such that for any measurable set Ω ⊂ Rd with finite
measure,

inf
z∈Rd

∣∣Ω∆(Br|Ω| + z)
∣∣ ≤ Cd |Ω|Çλ(Ω)− λ(Br|Ω|)

λ(Br|Ω|)

å1/2

.

We outline our strategy shortly below. Roughly speaking, a fluctuation estimate like the one
in (1.4) can be obtained from the inequality above by a two steps procedure. In a first step
we associate a continuum measurable set ζ(X) to a discrete configuration X in such a way that
|X∆(z +Br|Ω| ∩ Zd)| ' |ζ(X)∆(z +Br|Ω|)|. In a second step we derive optimal upper bounds on

λ(ζ(X))−λN (X). As the first eigenvalue of the Dirichlet Laplacian on a given set is itself obtained
by minimizing the Reyleigh quotient, the approximation procedure requires also the extension of
the function u in the definition of λN (X) in (1.2). Both the extension of the set X and of the
function u are obtained making use of the Kuhn decomposition of the cube (see Section 2.1). It
is worth mentioning that the error introduced in the extension procedure involves the perimeter
of a discrete set with finite first Dirichlet eigenvalue of the Laplacian. One can get rid of that
dependence in dimension d = 2 in the case of minimizers and for d > 2 in the case of symmetric
minimizers, whose existence is guaranteed by a discrete Riesz rearrangement inequality (see The-
orem 2.11 and Corollary 2.12).

The remainder of the paper is organized as follows. In Section 2 we introduce the necessary
preliminaries and define the discrete first eigenvalue of the combinatorial Laplacian. In Section 3 we
discuss elementary properties of optimal sets for the first eigenvalue of the combinatorial Laplacian.
Finally, Section 4 is devoted to the derivation of all discrete-to-continuum estimates to establish the
main quantitative fluctuation result, thereby highlighting the differences and connections between
the discrete and continuum spectral problems.
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2. Notation and preliminaries

In the following, given Ω ⊂ Rd, we denote by Ω̊ its interior and by (Ω)r its r-neighborhood,
namely

(Ω)r = {x ∈ Rd : dist(x,Ω) < r} .

With a little abuse of notation, the symbol | · | denotes both the Lebesgue measure of a set in Rd
and the standard Euclidean norm of a vector in Rd. For k = 1, . . . , d we denote by ek the kth

element of the canonical basis of Rd. For x ∈ Rd and r > 0, Qr(x) denotes the closed coordinate
cube centered at x and with side lengths r, while Br(x) the closed Euclidean ball of radius r
centered at x. When no confusion is possible we also use the notation Br = Br(0). We denote
by χΩ the characteristic function of Ω ⊂ Rd. Given two sets E,F ⊂ Rd we denote by E∆F their
symmetric difference. Given two points x, y ∈ Rd, we write [x, y] for the closed segment joining x
and y. We denote by Zd the d-dimensional integer lattice and by N the set of pairs of neighboring
points of Zd, namely

N =
{

(p, q) ∈ Zd × Zd : |p− q| = 1
}
.

We set X to be the collection of all subsets X ⊂ Zd. For N ∈ N we further set XN := {X ∈
X : #X = N}. We denote by Pd the set of permutations of the set {1, . . . , d}. Furthermore,
throughout all the following estimates, we will call Cd a constant depending only on the dimension
d, whose value may change from line to line.

2.1. Kuhn decomposition. We consider the decomposition of the closed, unit cube [0, 1]d ⊂ Rd
into d! simplices {Tπ}π∈Pd , where

Tπ = {x ∈ Rd : 0 ≤ xπ(d) ≤ xπ(d−1) ≤ · · · ≤ xπ(1) ≤ 1} .

We note that T̊π ∩ T̊π′ = ∅ for π, π′ ∈ Pd and π 6= π′. Given z ∈ Zd we set

Tπ(z) = z + Tπ .

We denote by T the Kuhn decomposition of Rd, namely

T = {T : T = Tπ(z) for some z ∈ Zd and π ∈ Pd}.

Given z ∈ Zd, we introduce also the notation

Tz = {T ∈ T : T ∩ {z} 6= ∅} .

Proposition 2.1. The Kuhn decomposition satisfies the following properties:

(a)
⋃
z∈Zd Tz = Rd

(b) For all z ∈ Zd and π ∈ Pd we have |Tπ(z)| = 1/d!;
(c) For any k ∈ {1, . . . , d}, there exists a unique edge of the simplex Tπ(z) parallel to ek;
(d) For each (i, j) ∈ N , there exist d! distinct simplices sharing the segment [i, j] as a common

edge;
(e) For each point i ∈ Zd, there exist (d + 1)! distinct elements of T sharing i as a common

vertex.

Proof. Properties (a), (b) and (c) are a trivial consequence of the definition of Tπ(z). Let us prove
(d). We preliminarily observe that, given an edge [i, i+ ek] with i ∈ Zd and k ∈ {1, . . . , d}, and a
permutation π ∈ Pd, there exists a unique z ∈ Zd such that [i, i+ ek] ⊂ Tπ(z). In other words,

(2.1) #{z ∈ Zd : [i, i+ ek] ⊂ Tπ(z)} = 1 .

Indeed, if z, z′ ∈ Zd are distinct, then necessarily Tπ(z) ∩ Tπ(z′) is either empty or contains a
single point of the lattice. Then by (2.1) we conclude the proof of (d) as

#{(π, z) ∈ Pd × Zd : [i, i+ ek] ⊂ Tπ(z)} =
∑
π∈Pd

#{z ∈ Zd : [i, i+ ek] ⊂ Tπ(z)} =
∑
π∈Pd

1 = d! .

To prove (e) we first observe that, since [0, 1]d is the periodicity cell of the decomposition, counting
the number of different simplices passing through a point is equivalent to summing the number of
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times each vertex of [0, 1]d belongs to a different simplex of the Kuhn decomposition of [0, 1]d. If
we call this number S(d), then we have

S(d) =
∑

i∈{0,1}d
#{π ∈ Pd : i ∈ Tπ} =

∑
i∈{0,1}d

∑
π∈Pd

χTπ (i)

=
∑
π∈Pd

∑
i∈Tπ∩{0,1}d

1 =
∑
π∈Pd

(d+ 1) = (d+ 1)! .

�

2.2. Discrete Dirichlet and Perimeter functionals. In this section, given a discrete set X ⊂
Zd and a function u : X → R, we define several discrete functionals associated with X and u, that
will be considered in the rest of the paper. Along with them, we also define their scaled version,
corresponding to those energy functionals per unit particle, thus highlighting the dependence on
the cardinality of X. To this end, given X ⊂ Zd we first define the valence of a point p ∈ X as

val(p) = #
{
q ∈ Zd \X : (p, q) ∈ N

}
.

With this definition at hand, we can now introduce the so-called ’edge perimeter’ (later on simply
perimeter) of a discrete set, as well as its scaled version, as follows.

Definition 2.2. For X ∈ X , the discrete perimeter of X is defined as

P (X) =
∑
p∈X

val(p) .

For X ∈ XN the scaled discrete perimeter of X is defined as

PN (X) = N−
d−1
d P (X) .

The Dirichlet energy of a scalar function defined on Zd is given here below, followed by its scaled
version.

Definition 2.3. Given u : Zd → R we define the discrete Dirichlet energy of u as

D(u) =
∑

(i,j)∈N

|u(i)− u(j)|2 .

Given X ∈ XN and u : Zd → R such that supp(u) ⊆ X, we define the scaled discrete Dirichlet
energy of u in X as

EN (u) = N−
d−2
d D(u) .

Remark 2.4 (Energy scalings). The scalings of EN and PN are justified by the following Γ-
convergence results.

(a) Given a function u : Zd → R we define its piecewise-constant interpolation (subordinated
to N−1/dZd) as

uN (x) = u(N1/dz) for x ∈ QN−1/d(z) , z ∈ N−1/dZd .

For u : Zd → R such that
1

N

∑
i∈Zd

u(i)p = 1

we have ‖uN‖Lp(Rd) = 1. Furthermore, if u = 0 on Zd \N 1
dΩ for some Ω ⊆ Rd open and

bounded, we have that supp(uN ) ⊆ (Ω)N−1/d
√
d for all N ∈ N.

(b) Thanks to the interpolation in (a), with slight abuse of notation one can read EN as
defined on L2(Rd). Furthermore, given Ω ⊂ Rd open and bounded, one can introduce the
functional

DN (v,Ω) =

®
EN (u) if v = uN for u : Zd → R , 1

N

∑
i∈Zd u

2(i) = 1 , u = 0 on Zd \N 1
dΩ ,

+∞ otherwise .
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For such a functional, thanks to [1, Theorem 3.1 and Remark 3.2] and the properties of
the interpolation described in (a), the following convergence result holds true:

Γ(L2(Rd)) - lim
N→+∞

DN (v,Ω) =


´
Rd |∇v|

2 dx if v ∈ H1(Rd) , v = 0 on Rd \ Ω ,

‖v‖L2(Rd) = 1 ,

+∞ otherwise on L2(Rd) .

(c) Arguing as above, again with a slight abuse of notation, one can read PN as defined on
L1(Rd) as follows :

PN (v) =

®
PN (X) if v = uN for u = χX : Zd → {0, 1} ,#X = N ,

+∞ otherwise.

For such a functional, thanks to [2, Theorem 4] and the properties of the interpolation
described in (a), the following convergence result holds true:

Γ(L1(Rd)) - lim
N→+∞

PN (v) =

®´
∂∗E
‖νE‖1 dHd−1 if v = χE ∈ BV (Rd) , ‖v‖L1(Rd) = 1 ,

+∞ otherwise on L1(Rd) .
where ∂∗E denotes the reduced boundary of the set E and νE its unit outer normal.

2.3. The first eigenvalue of the combinatorial Laplacian. In this section we introduce the
first eigenvalue of the combinatorial Laplacian on subsets of Zd and give some elementary prop-
erties. Given X ∈ XN , we define its first eigenvalue as

(2.2) λN
(
X
)

= min

ß
EN (u) : u(i) = 0 in Zd \X ,

1

N

∑
i∈Zd

u2(i) = 1

™
.

If XN = N1/dΩ∩Zd for some bounded and open Ω ⊂ Rd, by Remark 2.4(b) and the Fundamental
Theorem of Γ-convergence [6, 11], we deduce that

lim
N→+∞

λN (XN ) = λ(Ω) .

Definition 2.5. Given N ∈ N we say that YN ∈ XN is a minimal set for λN if

λN (YN ) ≤ λN (X) for all X ∈ XN .
We moreover set

mλ,N := inf{λN (X) : X ∈ XN} .(2.3)

2.4. Discrete rearrangements. In this section we briefly recall some definitions and results
related to discrete rearrangements and we refer the reader to [18] and [25] for more details. We
denote by D the following set of vectors

D =

ß
ei, ei + ej , ei − ej : i, j = 1, . . . , d and i < j

™
.

In what follows we enumerate the elements ofD as {v1, . . . , vd2}. For k ∈ N we set vk = v((k−1) mod d2)+1.

Definition 2.6. Given a direction e ∈ D, we say that X ⊂ Zd is e-convex if, for every x ∈ X and
K ∈ N such that x + Ke ∈ X, we have that x + ke ∈ X for all k = 1, . . . ,K − 1. We call a set
X ∈ X direction-convex if it is e-convex for all e ∈ D.

Given e ∈ D we define

Πe =

®
Zd ∩ {x : 〈x, e〉 = 0} if e = ek ,

Zd ∩
{
x : 〈x, e〉 ∈ {0, 1}

}
if e = ei ± ej .

Given x0 ∈ Zd we set Πe(x0) = x0 + Πe. Given u : Zd → [0,+∞), e ∈ D, and q ∈ Πe we define
uq,e : Z→ [0,+∞)

uq,e(t) = u(q + te) t ∈ Z .

Note that for every e ∈ D each i ∈ Zd can be uniquely written as i = q + te for some q ∈ Πe and
t ∈ Z. Given X ∈ X we set (X)q,e = {t ∈ Z : q + te ∈ X}.
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Definition 2.7. Let u : Z→ [0,+∞) be a function with finite support. Let {αi}i∈N with αi ≥ αi+1

be the values taken by u. We define the symmetric decreasing rearrangement of u as

u∗(i) =

®
α1−2i if i ≤ 0 ,

α2i if i > 0 .

Given d ≥ 2, e ∈ D and u : Zd → [0,+∞) with finite support, we define the symmetric decreasing
rearrangement of u in direction e as

u∗e(i) := (uq,e)∗(t) for i = q + te .

Furthermore, setting u0 = u and uk = (uk−1)∗vk , the symmetric decreasing rearrangement of u is
defined as

u∗ := lim
k→+∞

uk .

Given a finite set X ∈ X we define its symmetric rearrangement in direction e as

Re(X) := supp(χ∗eX ) ,

while its symmetric rearrangement is defined as

R(X) := supp(χ∗X) .

We say that a finite set X ∈ X is symmetric if

Re(X) = X for all e ∈ D .

Remark 2.8. We remark the following properties of the Riesz rearrangement:

(a) In [18] it has been shown that for u : Zd → [0,+∞) with finite support u∗ is well-defined.
Hence, if X ⊂ Zd is a finite set R(X) is well defined, too.

(b) By the definition of the rearrangement it follows that∑
i∈Zd

u2(i) =
∑
i∈Zd

(u(i)∗)2 .

(c) Note that for X ∈ XN it holds that #Re(X) = #R(X) = N .

Before stating a discrete version of the Riesz rearrangement inequality, we introduce the notion
of supermodular function.

Definition 2.9. A function G : R× R→ R is said to be supermodular if

G(x, y + t) +G(x+ s, y) ≤ G(x+ s, y + t) +G(x, y) for any x, y ∈ R, s, t > 0 .

The following discrete one-dimensional Riesz rearrangement inequality has been proved in [19,
Proposition 4.3].

Theorem 2.10 (1-dimensional Riesz rearrangement inequality). Let u, v : Z → [0,+∞) and let
H : N → [0,+∞) be non-increasing. Let G : R × R → R be a supermodular function such that
G(0, 0) = 0. Then,∑

i,j∈Z
G (u(i), v(j))H (|i− j|) ≤

∑
i,j∈Z

G (u∗(i), v∗(j))H (|i− j|) .

Similarly, the following theorem in higher dimensions has been proved in [18, Theorem 1.2].

Theorem 2.11 (Riesz rearrangement inequality). Let u, v : Zd → [0,+∞) be two functions with
finite support and let H : N → [0,+∞) be non-increasing. Let G : [0,+∞) × [0,+∞) → [0,+∞)
be a supermodular function such that G(0, 0) = 0. Then,∑

i,j∈Zd
G (u(i), v(j))H (‖i− j‖1) ≤

∑
i,j∈Zd

G (u∗(i), v∗(j))H (‖i− j‖1) .

The following corollary is a consequence of the previous two Theorems.

Corollary 2.12. Let u : Zd → [0,+∞) have finite support.
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(a) For any e ∈ D, the symmetric decreasing rearrangement of u in direction e satisfies∑
(i,j)∈N

|u∗e(i)− u∗e(j)|2 ≤
∑

(i,j)∈N

|u(i)− u(j)|2 .

In particular, for any X ∈ XN it follows that λN
(
Re(X)

)
≤ λN (X).

(b) The symmetric rearrangement of u satisfies∑
(i,j)∈N

|u∗(i)− u∗(j)|2 ≤
∑

(i,j)∈N

|u(i)− u(j)|2 .

In particular, for any X ∈ XN , it follows that λN
(
R(X)

)
≤ λN (X).

Proof. Let u : Zd → [0,+∞) with finite support. First of all, note that the function G : R×R→ R
defined by G(x, y) = −|x− y|2 is supermodular.
Proof of (a). Let e ∈ D. In this proof we distinguish different cases and make use of Theorem 2.10
with G(x, y) = −|x− y|2 and different choices for H, u, and v.

If e = en for some n = 1, . . . , d, the inequality follows choosing H(t) = χ{0,1}(t), and u = v =
uq,e(t) with t ∈ Z and q ∈ Πe for the interactions in direction en, while for the interactions in
direction ek, k 6= n, one chooses H(t) = χ{0}(t), and u = uq,e(t), v = uq+ek,e(t), k 6= n with t ∈ Z
and q ∈ Πe.

In the case e = en + ek, the inequality for the direction ej , j /∈ {k, n} follows as above by
choosing H(t) = χ{0}(t), u = uq,e(t) and v = uq+ej ,e(t), with t ∈ Z and q ∈ Πe. For the directions
e ∈ {en, ek} the result follows from [25, Section 5.2] by noting that the lines in direction e = en+ek
are contained in the 2-dimensional plane spanZ{en, ek}.
Proof of (b). This follows from Theorem 2.11 with G(x, y) = −|x − y|2, H(t) = χ{0,1}(t), and
u = v. This concludes the proof of the corollary. �

3. Properties of optimal sets

In this section we prove some properties of functions minimizing (2.2) and of discrete sets opti-
mizing (2.3). We start by introducing the notion of connectedness of subsets of Zd. The following
elementary lemma is proved here for the reader’s convenience.

Lemma 3.1. There exists Cd > 0 such that for all N ∈ N there holds

mλ,N ≤ Cd .

Proof. For each N ∈ N, we construct a competitor X ∈ XN such that

λN (X) ≤ Cd(3.1)

for some Cd > 0 independent of N ∈ N. We only need to prove (3.1) for N large enough. First,
we perform the construction for N = (2k + 1)d for k ∈ N. To this end, let X = [−k, k]d ∩ Zd and
u : Zd → R be defined by

u(i) = Cd,N (k − l) for all i ∈ ∂[−l, l]d ∩ Zd , 0 ≤ l ≤ k ,

where Cd,N > 0 is such that
∑
i∈Zd u

2(i) = N . We show that there exists cd > 0 such that

1

cd
N−

1
d ≤ Cd,N ≤ cdN−

1
d .(3.2)

Note that ld−1 ≤ #
(
∂[−l, l]d ∩ Zd

)
≤ 2dld−1 and therefore for k large enough an elementary

calculation shows

8−dC2
d,Nk

d+2 ≤ C2
d,N

k∑
l=0

(k − l)2ld−1 ≤
∑
i∈Zd

u2(i) ≤ C2
d,N2d

k∑
l=0

(k − l)2ld−1 ≤ 2dC2
d,Nk

d+2 .

Recalling that
∑
i∈Zd u

2(i) = N the inequalities in (3.2) follow. Finally, using (3.2), we obtain

EN (u) = N−
d−2
d

∑
(i,j)∈N

|u(i)− u(j)|2 ≤ N−
d−2
d C2

d,N2d
k∑
l=0

ld−1 ≤ 2dc2dN
−1kd ≤ 2dc2d =: Cd .
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Setting Nmin = (2k+ 1)d ≤ N < (2k+ 3)d−1 = Nmax the claim follows by taking as a competitor
the one constructed before for N = Nmin, rescaling it to keep the mass constraint and eventually
noting that Nmax ≤ 2dNmin. �

Definition 3.2. We say that X ⊂ Zd is connected if, for all p, q ∈ X, there exist M ∈ N and
points p1, . . . , pM ∈ X such that®

p0 = p, pM = q ,

(pk, pk−1) ∈ N ∀k = 1, . . . ,M .

Given X ∈ X we call a connected component of X any maximal (with respect to set inclusion)
connected subset of X.

Proposition 3.3. Let X ⊂ Zd be a connected set. Then, the following holds:

(a) any minimizer u of (2.2) is such that u(i) > 0 for each i ∈ X;
(b) there exists a unique function that minimizes (2.2).

Proof of (a). The fact that u(i) is of constant sign follows directly from∣∣u(i)− u(j)
∣∣ ≥ ∣∣|u(i)| − |u(j)|

∣∣ for all u(i), u(j) ∈ R .

Without loss of generality we can assume that u(i) ≥ 0 on X. Let us suppose by contradiction
that there exists a minimizer u that vanishes on A ⊆ X (maximal with respect to set inclusion)
such that M := #A < #X. Then, for t ∈ (0, 1) we consider ut : Zd → R defined by

ut(i) :=

{
tu(i) if i ∈ Zd \A ,»

N
M (1− t2) if i ∈ A .

Let us point out that, for each t ∈ (0, 1), it holds that

1

N

∑
i∈Zd

(ut(i))2 =
1

N

∑
i∈Zd\A

t2u2(i) +
1

N

∑
i∈A

Å…
N

M
(1− t2)

ã2

= t2 + (1− t2) = 1 .

Hence, ut is a competitor for the minimum in (2.2). However, the Dirichlet energy of ut is∑
(i,j)∈N

|ut(i)− ut(j)|2 =
∑

(i,j)∈N
i,j∈Zd\A

|ut(i)− ut(j)|2 + 2
∑

(i,j)∈N
i∈Zd\A,j∈A

|ut(i)− ut(j)|2 +
∑

(i,j)∈N
i,j∈A

|ut(i)− ut(j)|2

= t2
∑

(i,j)∈N
i,j∈Zd\A

|u(i)− u(j)|2 + 2
∑

(i,j)∈N
i∈Zd\A,j∈A

∣∣∣∣∣t u(i)−
…
N

M
(1− t2)

∣∣∣∣∣
2

= t2D(u) + 2

…
N

M
(1− t2)

∑
(i,j)∈N

i∈Zd\A,j∈A

Ç
−2t u(i) +

…
N

M
(1− t2)

å
.

Note that, since X is connected and A is maximal with respect to set inclusion, there exist
(i, j) ∈ N with i ∈ Z \ A and j ∈ A such that u(i0) > 0. Since the sum (being finite) on the
right-hand side of the previous equation is continuous in t, and for t = 1 we have∑

(i,j)∈N
i∈Zd\A,j∈A

− 2u(i) ≤ −2u(i0) < 0 ,

there exists t ∈ (0, 1) such that

2

…
N

M
(1− t2)

∑
(i,j)∈N

i∈Zd\A,j∈A

Ç
−2t u(i) +

…
N

M
(1− t2)

å
< 0 .
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This yields a contradiction to the minimality of u.

Proof of (b). Let us suppose that u, v are both minimizers of λN (X) in (2.2). Thanks to part (a)
we can assume that u, v > 0 on X. Given t ∈ (0, 1), let us define wt : Zd → R as

wt(i) := (tu2(i) + (1− t)v2(i))1/2 .

Since 1
N

∑
i∈X |wti |2 = 1, wt is a competitor for λN (X). Moreover, for (i, j) ∈ N it holds that

|wt(i)− wt(j)|2 =
(
t u2(i) + (1− t)v2(i)

)
+
(
t u2(j) + (1− t)v2(j)

)
− 2(t2u2(i)u2(j) + (1− t)2v2(i)v2(j) + t(1− t)(u2(i)v2(j) + u2(j)v2(i)))1/2

= t
(
u2(i) + u2(j)

)
+ (1− t)

(
v2(i) + v2(j)

)
− 2(t2u2(i)u2(j) + (1− t)2v2(i)v2(j) + t(1− t)(u2(i)v2(j) + u2(j)v2(i)))1/2 .

From the previous calculation we deduce that

0 ≤ EN (wt)− λN (X) = EN (wt)− tEN (u)− (1− t)EN (v)

=
∑

(i,j)∈N

|wt(i)− wt(j)|2

−
∑

(i,j)∈N

Å
t(u2(i) + u2(j)) + (1− t)(v2(i) + v2(j))− 2tu(i)u(j)− 2(1− t)v(i)v(j)

ã
= 2

∑
(i,j)∈N

Å
tu(i)u(j) + (1− t)v(i)v(j)

− (t2u2(i)u2(j) + (1− t)2v2(i)v2(j) + t(1− t)(u2(i)v2(j) + u2(j)v2(i)))1/2

ã
.

Note that each term in the last sum is non-positive and equals zero if and only if uivj = ujvi,

as an elementary computation shows. Hence, we have that u(i)
v(i) = u(j)

v(j) . Since X is connected,

u(i) = αv(i) for some α > 0 and for all i ∈ X. By the constraint on the norm, we infer that α = 1
which concludes the proof of (b). �

The following geometric Lemma will be used in the proof of Proposition 3.5.

Lemma 3.4. Let X,Y ⊂ Zd have finite cardinality. Then, there exists τ ∈ Zd such that there
exists a unique pair (x, y) ∈ N with x ∈ X and y ∈ Y + τ .

Proof. The proof proceeds in two steps. First we show that for any X,Y ∈ Zd with finite cardi-
nality there exists a translation σ ∈ Zd such that

(i)X ∩ (Y + σ) = {z} for some z ∈ Zd ;

(ii)X ⊂ {x ∈ Zd : xd ≥ zd} and Y + σ ⊂ {y ∈ Zd : yd ≤ zd} .
(3.3)

In order to prove the claim of the Lemma, assuming (3.3), it suffices to choose τ = σ− ed. We are
left with the proof of (3.3). To this end, we proceed by induction on the dimension. For d = 1
the proof is trivial. We assume now that the statement is proven for d − 1 and proceed to prove
it for d. To this end, we set

md(X) := min
x∈X

xd and Md(Y ) := max
y∈Y

yd

and define τd := −Md(Y ) +md(X). We apply the induction assumption for Xd−1 = X ∩ (Zd−1 ×
{md(X)}) and Yd−1 = Y ∩ (Zd−1 × {Md(Y )}) to find τ̂ ∈ Zd−1 such that (3.3) holds true (with a
slight abuse of notation we identify Xd−1 and Yd−1 as subsets of Zd−1). Eventually, the translation
τ = (τ̂ , τd) satisfies (3.3). �

Proposition 3.5. Let YN ∈ XN be a minimal set for λN according to Definition 2.5. Then, the
following properties hold:

(a) YN is connected;
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(b) YN is direction-convex;
(c) There exists a constant Cd > 0 (independent of N ∈ N) such that if d = 2 or if d > 2 and

YN is symmetric according to Definition 2.7, then

diam(YN ) ≤ CdN1/d .

Remark 3.6. We note that, thanks to (2.12)(b), for any d ≥ 2 and N ∈ N there exists a symmetric
minimal set XN ∈ XN .

Proof of Proposition 3.5. For the proof of (a) we argue by contradiction assuming that YN is not
connected. To fix the ideas (the general case follows by the same argument) we assume that
YN = C1∪C2 with C1, C2 ⊂ Zd two disjoint connected components of YN according to Definition
3.2. We denote by u a non-negative function realizing the minimum for λN (YN ) according to
definition (2.2), that is

EN (u) = λN (YN ) and u = 0 on Zd \ YN .

Let τ ∈ Zd \ {0} be the translation given in Lemma 3.4 for X = C1 and Y = C2 such that there

exists a unique pair (x, y) ∈ N with x ∈ C1 and y ∈ C2 + τ . The set ŶN = C1 ∪ (C2 + τ) is

connected and such that #ŶN = N . We define

û(i) =

®
u(i) if i /∈ C2 + τ ,

u(i− τ) if i ∈ C2 + τ ,

and observe that, since û is a competitor for λN (ŶN ),

EN (û) ≥ λN (ŶN ) .

Furthermore, as C1 and C2 are two disjoint connected components of YN , we have

EN (û) = EN (ûχC1) + EN (ûχC2+τ ) + |û(x)− û(y)|2 − |û(x)|2 − |û(y)|2

= EN (u) + |u(x)− u(y − τ)|2 − |u(x)|2 − |u(y − τ)|2

≤ EN (u) ,

with equality if and only if min (u(x), u(y − τ)) = 0. This shows that û is a minimizer and, ac-
cording to Proposition 3.3, it satisfies in particular u(x), u(y − τ) > 0, which gives a contradiction
to the minimality of YN .

Proof of (b). This is a consequence of Corollary 2.12 (a) and Remark 2.8 (c).

Proof of (c). The case d = 2 follows from [25, Proposition 6.6]. It remains to prove the case d > 2
for YN a symmetric and minimal set for λN . We claim that there exists Cd > 0 such that for all
i ∈ YN there holds

|in| ≤ CdN
1
d for all n = 1, . . . , d .(3.4)

Clearly, the claim implies (c). We are thus left to prove (3.4). Assume that there exists i ∈ YN
such that (without loss of generality) |id| ≥ κ. We then show that there exists Cd > 0 such that

#YN ≥ Cdκd .(3.5)

Since Red(YN ) = YN , there exist i∗ ∈ YN such that®
i∗n = in if n ∈ {1, . . . , d− 1} ,
|i∗d − id| ≤ 1 .

Thanks to part (b) YN is direction-convex and therefore contains the segment [i, i∗]∩Zd. We can
assume that this segment contains the origin. In fact, if it is not the case, there exists an index
k ∈ {1, . . . , d− 1} such that for all j ∈ [i, i∗] ∩ Zd we have jk 6= 0. At this point, we also have

Rek([i, i∗] ∩ Zd) = {Rekj : j ∈ ([i, i∗] ∩ Zd)} ⊂ YN ,
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where

Rekjn =

®
jn if n 6= k ,

−jk if n = k .

Exploiting the direction-convexity of YN for the direction ek, we conclude that ([i, i∗]− ik)∩Zd ⊂
YN and passes through the origin. This implies that [i, i∗]∩Zd ⊃ {ned : n ∈ N , |n| ≤ κ−1}. Again
by symmetry with respect to e = ej + ed for j 6= d, we have that {nej : n ∈ N , |n| ≤ κ− 1} ⊂ YN
for all j = 1, . . . , d− 1. Due to the directional convexity with respect to e = ej + ek for all j 6= k,
we conclude that

C := conv

(
d⋃
j=1

{nej : n ∈ N , |n| ≤ κ− 1}

)
∩ Zd ⊂ YN .

Since C satisfies #C = Cdκ
d we obtain (3.5). Since #YN = N , this implies (3.4). �

4. Maximal Fluctuation Estimates

In this section we prove the main result of the paper, that is stated in the following theorem.

Theorem 4.1. Let {αN}N ⊆ (0,+∞) be such that supN αN < +∞ and let X ∈ XN satisfy

λN (X) ≤ mλ,N + αN .(4.1)

Then, there exists Cd > 0 such that

min
z∈Zd

#
(
X∆((BrN ∩ Zd) + z)

)
≤ CdN

(
N−

1
2dPN (X)

1
2 + α

1
2

N +N−
1
d

)
,(4.2)

where rN > 0 is such that |BrN | = N . In particular, if XN ∈ XN is such supN PN (XN ) < +∞
and

λN (XN ) ≤ mλ,N + αN ,

there holds

(4.3) min
z∈Zd

#
(
XN∆((BrN ∩ Zd) + z))

)
≤ CdN

(
N−

1
2d + α

1
2

N

)
.

Remark 4.2. We observe that the estimate

supNPN (XN ) < +∞
holds true for any XN ∈ XN minimal set, if d = 2 or if d > 2 and XN is symmetric. In fact, the
perimeter estimate is implied by Proposition 3.5(b),(c) as for directional-convex sets there holds

c1diam(XN )d−1 ≤ P(XN ) ≤ c2diam(XN )d−1

for some dimensional constants c1, c2 > 0. Thanks to Remark 3.6, for any d ≥ 2 and N ∈ N there
exists a minimal set XN ∈ XN that satisfies the above estimate.

4.1. Embedding of the discrete problem into the continuum setting. In order to follow
the strategy of the proof of the main result highlighted in the Introduction, here we show how
to embed the discrete problem in a continuum setting. This amounts to properly extending both
sets X ∈ X and functions u : Zd → R. To this aim, we exploit the Kuhn decomposition of a cube
introduced in Section 2.1. We begin by extending sets and introducing the map ζ : X →M(Rd),
where M(Rd) denotes the measurable subsets of Rd. Given X ∈ X we set

ζ(X) =
⋃
i∈X

⋃
T∈T (i)

T .(4.4)

Definition 4.3. Given a function u : Zd → R we introduce the function û : Rd → R as the function
who is affine on each Kuhn simplex T ∈ T and interpolates the values of u on the points of the
lattice.

The next lemma estimates the error in the measure one makes when passing from a discrete
set X to its continuum representation ζ(X).
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Lemma 4.4. Let N ∈ N, X ∈ XN and let ζ be the map defined in (4.4). Then, there exists
Cd > 0 such that

(4.5) N ≤
∣∣ζ(X)

∣∣ ≤ N + CdN
d−1
d PN (X) .

In particular,
∣∣ζ(X)

∣∣ ≤ CdN .

Proof. The lower bound is straightforward since, by the definition of T ∈ T (i), we have

Q1(i) ⊆
⋃

T∈T (i)

T .

Given X ∈ XN , we first notice that

ζ(X) ⊆
⋃

i∈(X)√d

Q1(i)

(recall that (X)√d = {i ∈ Zd : dist(i,X) ≤
√
d}). As a consequence, noting that the union on the

right hand side is a disjoint union, we obtain

|ζ(X)| ≤
∑

i∈(X)√d

|Q1(i)| = #X + #((X)√d \X) = N + #((X)√d \X) .

Next, note that i ∈ (X)√d \ X only if there exists j ∈ X with dist(i, j) ≤
√
d and val(j) ≥ 1.

Moreover, for each j ∈ Zd there exists a constant Cd > 0 (independent of j) such that

#{i ∈ Zd \X : dist(i, j) ≤
√
d} ≤ Cd .

Hence,

#
(
(X)√d \X

)
≤ Cd

∑
x∈X

val(x) = CdN
d−1
d PN (X) ,

which concludes the proof of (4.5). The last part of the statement follows by construction. �

In what follows, we compare the energy functionals needed to define the discrete and continuum
eigenvalues.

Lemma 4.5. Let u : Zd → R be such that supp(u) = X ∈ XN . The function û in Definition 4.3
has the following two properties:

(a) ˆ
Rd
|∇û(x)|2 dx = N

d−2
d EN (u) ,

(b) there exists Cd > 0 such that

ˆ
Rd
|û(x)|2 dx ≥

∑
i∈Zd
|u(i)|2 − 2

√
d

(∑
i∈Zd
|u(i)|2

)1/2

N
d−2
2d EN (u)

1
2 .

Proof. We first prove (a). To this end, we prove for all k ∈ {1, . . . , d} that∑
i∈Zd
|u(i+ ek)− u(i)|2 =

ˆ
Rd
|∂kû|2 dx .(4.6)

Note that once (4.6) is proven, (a) follows by summing over k ∈ {1, . . . , d}. Let us prove (4.6).
To this end, fix k ∈ {1, . . . , d} and let i ∈ Zd. We denote by Ti,k the set of simplices that have
[i, i + ek] as an edge and observe that, thanks to Proposition 2.1(c), #Ti,k = d!. For T ∈ Ti,k we
note that

∂kû(x) = u(i+ ek)− u(i) for all x ∈ T .
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Hence, by Proposition 2.1 and the fact that T̊1 ∩ T̊2 = ∅ for all T1, T2 ∈ T , T1 6= T2, we obtainˆ⋃
T∈Ti,k

|∂kû(x)|2 dx =
∑

T∈Ti,k

ˆ
T

|∂kû(x)|2 dx =
∑

T∈Ti,k

|T | · |u(i+ ek)− u(i)|2

=
1

d!
#Ti,k|u(i+ ek)− u(i)|2 = |u(i+ ek)− u(i)|2 .

Summing over i ∈ Zd we eventually get∑
i∈Zd
|u(i+ ek)− u(i)|2 =

∑
i∈Zd

ˆ⋃
T∈Ti,k

|∂kû(x)|2 dx =

ˆ
Rd
|∂kû(x)|2 dx ,

which concludes the proof of (a).
Let us prove (b). Let T ∈ T , x ∈ T and let z ∈ T be a vertex of T . By definition of û we have

|û(x)− u(z)| = |û(x)− û(z)| ≤
√
d |∇û|T | .

As a result, by the triangular inequality, we have

u2(x) ≥
∣∣|û(x)− u(z)| − |u(z)|

∣∣2 ≥ u2(z)− 2
√
d|∇û|T ||u(z)| .

Again by the very definition of û we observe that

|∇û|T |
2 ≤

∑
(i,j)∈N
i,j∈Zd∩T

|u(i)− u(j)|2 .

Making use of the previous inequality, Proposition 2.1(a) and Cauchy-Schwarz inequality, we have∑
i∈Zd

∑
π∈Pd

ˆ
Tπ(i)

û2(x) dx ≥
∑
i∈Zd

∑
π∈Pd

|Tπ(i)|
Ä
u2(i)− 2

√
d|∇û|Tπ(i)

||u(i)|
ä

≥
∑
i∈Zd

u2(i)−
∑
i∈Zd

∑
π∈Pd

1

d!
2
√
d |u(i)|

( ∑
(h,k)∈N

h,k∈Zd∩Tπ(i)

|u(h)− u(k)|2
) 1

2

≥
∑
i∈Zd

u2(i)− 2
√
d

d!

(∑
i∈Zd

∑
π∈Pd

u2(i)
) 1

2
(∑
i∈Zd

∑
π∈Pd

∑
(h,k)∈N

h,k∈Zd∩Tπ(i)

|u(h)− u(k)|2
) 1

2

(4.7)

≥
∑
i∈Zd

u2(i)− 2
√
d√
d!

(∑
i∈Zd

u2(i)
) 1

2
(
d!

∑
(h,k)∈N

|u(h)− u(k)|2
) 1

2

,

where we used that, due to Proposition 2.1(d),∑
i∈Zd

∑
π∈Pd

∑
(h,k)∈N

h,k∈Zd∩Tπ(i)

|u(h)− u(k)|2 =
∑
i∈Zd

∑
π∈Pd

∑
(h,k)∈N

χTπ(i)(h) · χTπ(i)(k)|u(h)− u(k)|2

=
∑

(h,k)∈N

∑
i∈Zd

∑
π∈Pd

χh−Tπ (i) · χk−Tπ (i)|u(h)− u(k)|2

=
∑

(h,k)∈N

d! |u(h)− u(k)|2 .

Then, we obtain the bound in (b) from (4.7). �

4.2. Comparison between discrete and continuum eigenvalues of a set. In the following
lemma, we give an upper bound for the continuum eigenvalue of ζ(X) in terms of the discrete
eigenvalue λN (X).

Lemma 4.6. Let N ∈ N and X ∈ XN . Then, there exists Cd > 0 such that

λ
(
ζ(X)

)
≤ N− 2

dλN
(
X
)

+ CdN
− 3
d .
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Proof. For X ∈ XN let u : Zd → R be a minimizer of (2.2), that is

N−1+ 2
d

∑
(i,j)∈N

|u(i)− u(j)|2 = λN (X) ,
1

N

∑
i∈Zd

u2(i) = 1 , u(i) = 0 for all i ∈ Zd \X .

Note that the piecewise-affine interpolation û introduced in Section 4.1 is a competitor for λ(ζ(X)).
Thus, the claim follows by estimating the Rayleigh quotient of û for N large enough by means of
Lemma 4.5 as follows:

´
Rd |∇û|

2 dx´
Rd |û|2 dx

≤ N
d−2
d EN (u)

N − 2
√
d
√
N(N

d−2
d EN (u))

1
2

=
N

d−2
d λN (X)

N

1

1− 2
√
d

Å
N
d−2
d λN (X)
N

ã 1
2

= N−
2
dλN (X)

1

1− 2
√
dN−

1
dλ

1
2

N (X)
.

Furthermore, we can use that 1
1−t ≤ 1 + 2t for t ∈

]
0, 1

2

[
to estimate the last right hand side in

the previous inequality for λN (X) ≤ (16d)−1N
2
d and get

´
Rd |∇û|

2 dx´
Rd |û|2 dx

≤ N− 2
dλN (X)

(
1 + 4

√
dN−

1
dλ

1
2

N (X)
)

= N−
2
dλN (X) + 2

√
dN−

3
d .

The statement of the lemma follows by passing to the infimum over H1(Rd) functions which are
zero outside ζ(X) and satisfy ‖u‖L2(Rd) = N . �

4.3. Comparison between minimal eigenvalues in the discrete and continuum setting.
In this section we compare the two minimal eigenvalues for fixed cardinality N (resp. measure in
the continuum) defined in (2.2) and (1.1).

Lemma 4.7. Let N ∈ N and let mλ,N be as in (2.3). Then, there exists Cd > 0 such that

mλ,N ≤ λ
(
B1

)
+ CdN

− 1
d .

Proof. We first prove the claim for Nk := #(Bk ∩ Zd), k ∈ N. Note that there exists Cd > 0 such
that

|B1|
(
kd − Cdkd−1

)
≤ Nk ≤ |B1|

(
kd + Cdk

d−1
)
.(4.8)

In the rest of the proof we omit the dependence of N on k to simplify notation. Let u ∈ H1
0 (B1)

be such that ˆ
B1

|∇u|2 dx = λ(B1) ,

ˆ
Rd
u2 dx = 1 .

The following scaling property can be readily checked to hold true:

λ(B1) = |B1|−
2
dλ(B) ,(4.9)

where B is the Euclidan Ball of unitary measure. By standard elliptic regularity estimates u ∈
C∞(B1). Hence, for any m ∈ N and every multi-index α of order m there exists Cd,m > 0 such
that

‖Dαu‖L∞(Rd) ≤ Cd,m .(4.10)

Let uk : Zd → R be defined as uk(i) = Cd,ku
(
i
k

)
, i ∈ Zd, and where Cd,k > 0 is to be chosen such

that
∑
i∈Zd u

2
k(i) = N . Using (4.8) and the fact that u ∈ H1

0 (B1), we can compute Cd,k as follows.



THE QUANTITATIVE FABER-KRAHN INEQUALITY FOR THE COMBINATORIAL LAPLACIAN IN Zd 15

We first observe that∑
i∈Zd∩Bk

Å
u

Å
i

k

ãã2

=
∑

i∈ 1
kZd∩B1

u2 (i)

=
∑

i∈ 1
kZd∩B1

Ñ
u2 (i)−

 
Q 1
k

(i)

u2(x) dx

é
+ kd

ˆ
Rd
u2(x) dx

=
∑

i∈ 1
kZd∩B1

Ñ
u2 (i)−

 
Q 1
k

(i)

u2(x) dx

é
+

N

|B1|
+O(kd−1) .

By the regularity of u in (4.10), we can estimate

∑
i∈ 1

kZd∩B1

∣∣∣∣∣∣u2 (i)−
 
Q 1
k

(i)

u2(x) dx

∣∣∣∣∣∣ ≤ Cdkd−1‖u‖L∞ · ‖∇u‖L∞ ≤ Cdk
d−1 .

This implies that Cd,k satisfies

(4.11) |B1|1/2
Å

1− Cd
k

ã
≤ Cd,k ≤ |B1|1/2

Å
1 +

Cd
k

ã
.

Since uk(i) = 0 for all i ∈ Zd \Bk, uk is an admissible competitor for λN (X) with X ∈ XN given
by X = Bk ∩ Zd. Therefore we have that

mλ,N ≤ λN (XN ) ≤ N−1+ 2
d

∑
(i,j)∈N

|uk(i)− uk(j)|2 = EN (uk) .(4.12)

As a consequence, in order to show the estimate for mλ,N , it suffices to estimate EN (uk). To this
end we note that, by the regularity of u given in (4.10), there exists Cd > 0 such that

|uk(i+ en)− uk(i)|2 ≤ C2
d,kk

d−2

ˆ
Q 1
k

( ik )

|∂nu (x)|2 dx+ Cdk
d−3

∣∣∣∣Q 1
k

Å
i

k

ã∣∣∣∣ .
Summing over i ∈ Zd, n ∈ {1, . . . , d} and using (4.8),(4.9), and (4.11), we obtain

EN (uk) = N−1+ 2
d

∑
(i,j)∈N

|uk(i)− uk(j)|2 ≤ N−1+ 2
dC2

d,kk
d−2

ˆ
B1

|∇u (x)|2 dx+ CdN
−1+ 2

dC2
d,kk

d−3

≤ N−1+ 2
d |B1|kd−2

ˆ
B1

|∇u (x)|2 dx+ CdN
−1+ 2

d kd−3

≤ λ(B1) + CdN
− 1
d .

The latter estimate together with (4.12) concludes the proof in the case that N = #(Bk ∩Zd) for
k ∈ N. To treat the general case we note that for each N ∈ N there exists k ∈ N such that for
Nk = #(Bk ∩ Zd) we have 0 ≤ N −Nk ≤ Cdk

d−1. Finally, the estimate in the statement follows
by using as a test the function uk constructed above and as XN = XNk ∪ ZN where ZN ⊂ Zd is
chosen such that #XN = N . �

4.4. Comparison of the asymmetries in the discrete and continuum setting. In this
section, we estimate the asymmetry of a set X ∈ XN with respect to a (properly discretized) ball
with that of its continuum embedding ζ(X).

Lemma 4.8. Let N ∈ N and X ∈ XN . Then, there exists Cd > 0 such that for all z ∈ Zd there
holds

#
(
X∆(z +BrN ∩ Zd)

)
≤ |ζ(X)∆(BrN + z)|+ CdN

d−1
d PN (X) ,

where rN > 0 is such that |BrN | = N .
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Proof. Without loss of generality we assume z = 0. In order to prove the statement, we claim
that for X,Y ⊂ Zd we have

# (X∆Y ) ≤ |ζ(X)∆ζ(Y )|+ Cd (P (X) + P (Y )) .(4.13)

Assuming the claim, we now show how to conclude. If Y = BrN ∩ Zd, then |#Y −N | ≤ CdN
d−1
d

which implies P (Y ) ≤ CdN
d−1
d . Since X ∈ XN , #X = N , hence, by the isoperimetric inequality

on Zd, there exists Cd > 0 such that P (X) ≥ CdN
d−1
d . Thus, we deduce that

P (Y ) ≤ CdP (X) .

Arguing as in the proof of Lemma 4.4, for Y = BrN ∩ Zd it holds that

(4.14) |ζ(Y )∆BrN | ≤ CdP (Y ) ≤ CdP (X) .

Recalling Definition 2.2, the statement of the lemma eventually follows from (4.13), (4.14), and

the triangle inequality recalling the scaling P (X) = N
d−1
d PN (X). We now prove the claim (4.13).

We first observe that (4.13) follows from the estimate

# (X \ Y ) ≤ |ζ(X) \ ζ(Y )|+ CdP (Y )(4.15)

by exchanging the roles of X and Y . The proof of (4.15) is the consequence of the following two
facts. On one hand, by the very definition of ζ in (4.4) it follows that⋃

x∈X\ζ(Y )

(x+Q1) ⊂ ζ(X) \ ζ(Y ) .

Hence, we infer that

#
Ä
X \ ζ(Y )

ä
=

∑
x∈X\ζ(Y )

|Q1| =

∣∣∣∣∣∣∣
⋃

x∈X\ζ(Y )

(x+Q1)

∣∣∣∣∣∣∣ ≤ |ζ(X) \ ζ(Y )| .

On the other hand, since any x ∈ ζ(Y )\Y is a neighbour of a boundary point of Y , it follows that

#{x ∈ X \ Y : x ∈ ζ(Y )} ≤ CdP (Y ) .

Combining these two inequalities, we get (4.15) and conclude the proof. �

4.5. Proof of the main result.

Proof of Theorem 4.1. Using Lemma 4.7 and (4.1), we have that

λN (X) ≤ λ(B1) + αN + CdN
− 1
d .

From Lemma 4.6 and the above estimate we infer that

λ(ζ(X)) ≤ N− 2
dλ(B1) +N−

2
dαN + CdN

− 3
d .

Furthermore, setting r|ζ(X)| > 0 such that Br|ζ(X)| = |ζ(X)|, by the scaling properties of λ,

Lemma 4.4 and the fact that t 7→ t
2
d is concave, we have

N−
2
dλ(B1) =

Å |ζ(X)|
N

ã 2
d

λ(Br|ζ(X)|) ≤ λ(Br|ζ(X)|)

Å
1 +

2

d
CdN

− 1
dPN (X)

ã
.

By Lemma 4.4 we have |ζ(X)| ≤ CdN and therefore, again by the scaling properties of λ, we have

λ(ζ(X))− λ(Br|ζ(X)|)

λ(Br|ζ(X)|)
≤ CdN−

1
dPN (X) + CdαN + CdN

− 1
d ≤ CdN−

1
dPN (X) + CdαN .

Using the subadditivity of the square-root we obtainÇ
λ(ζ(X))− λ(Br|ζ(X)|)

λ(Br|ζ(X)|)

å 1
2

≤ Cd
(
N−

1
2dPN (X)

1
2 + α

1
2

N

)
.
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By [7, Main Theorem] there exists z ∈ Rd such that∣∣∣ζ(X)∆(Br|ζ(X)| + z)
∣∣∣ ≤ |ζ(X)|Cd

(
N−

1
2dPN (X)

1
2 + α

1
2

N

)
.

Combining the latter inequality with the estimate in Lemma 4.4, we infer that

(4.16)
∣∣∣ζ(X)∆(Br|ζ(X)| + z)

∣∣∣ ≤ CdN (N− 1
2dPN (X)

1
2 + α

1
2

N

)
.

Let z ∈ Zd be such that |z − z| ≤
√
d. Then, the triangle inequality gives that

|(BrN + z)∆(Br|ζ(X)| + z)| ≤
∣∣∣(BrN + z)∆(Br|ζ(X)| + z)

∣∣∣+
∣∣∣(Br|ζ(X)| + z)∆(Br|ζ(X)| + z)

∣∣∣ .
Thanks to Lemma 4.4, the first term on the right hand side can be estimated as∣∣∣(BrN + z)∆(Br|ζ(X)| + z)

∣∣∣ ≤ CdN d−1
d PN (X) .

The second term on the right hand side can be estimated by evaluating the measure of the
symmetric difference between a ball of radius r|ζ(X)| +

√
d and a ball of radius r|ζ(X)| −

√
d and

then by using Lemma 4.4:∣∣∣(Br|ζ(X)| + z)∆(Br|ζ(X)| + z)
∣∣∣ ≤ |ζ(X)|

(Ç
1 +

√
d

r|ζ(X)|

åd
−
Ç

1−
√
d

r|ζ(X)|

åd)
≤ Cd|ζ(X)|

Ç
2d
√
d

r|ζ(X)|

å
≤ Cd

|ζ(X)|
N

1
d

≤ CdN
d−1
d

Ä
1 + CdN

− 1
dPN (X)

ä
.

We can thus write that

(4.17)
∣∣∣(BrN + z)∆(Br|ζ(X)| + z)

∣∣∣ ≤ CdN d−1
d PN (X) + CdN

d−1
d .

Combining the estimate in Lemma 4.8 and (4.17), we obtain

#
(
X∆(Zd ∩BrN + z)

)
≤ |ζ(X)∆(BrN + z)|+ CdN

d−1
d PN (X)

≤
∣∣∣ζ(X)∆(Br|ζ(X)| + z)

∣∣∣+
∣∣∣(BrN + z)∆(Br|ζ(X)| + z)

∣∣∣+ CdN
d−1
d PN (X)

≤
∣∣∣ζ(X)∆(Br|ζ(X)| + z)

∣∣∣+ CdN
d−1
d PN (X) + CdN

d−1
d .

Eventually, by (4.5) and (4.16), we infer that

#
(
X∆(Zd ∩BrN + z)

)
≤ |ζ(X)∆(Br|ζ(X)| + z)|+ CdN

d−1
d PN (X) + CdN

d−1
d

≤ CdN
(
N−

1
2dPN (X)

1
2 + α

1
2

N

)
+ CdN

d−1
d PN (X) + CdN

d−1
d

≤ CdN
(
N−

1
2dPN (X)

1
2 + α

1
2

N +N−
1
d

)
,

where in the last inequality we used that PN (X) ≤ CdN
1
d . To conclude, we observe that

supN αN < +∞ yields (4.2), while (4.3) follows from the assumptions on XN and the esti-
mate (4.2). �
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