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ABSTRACT. While the classical Faber-Krahn inequality shows that the ball uniquely minimizes
the first Dirichlet eigenvalue of the Laplacian in the continuum, this rigidity may fail in the
discrete setting. We establish quantitative fluctuation estimates for the first Dirichlet eigenvalue
of the combinatorial Laplacian on subsets of Z¢ when their cardinality diverges. Our approach
is based on a controlled discrete-to-continuum extension of the associated variational problem
and the quantitative Faber-Krahn inequality.
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1. INTRODUCTION

Many classical problems in spectral theory and geometric analysis focus on identifying extremal
domains for various functionals. A prominent example is the Faber—Krahn inequality, which asserts
that among all open sets Q C R? of fixed volume, Euclidean balls uniquely minimize the first
Dirichlet eigenvalue of the Laplacian. In precise terms, if

AQ) = min{/ |Vu(3c)|2 dz:u e H&(Q), llullz20) = 1} ,
Q

then one has
(1.1) A€ = A(Bryg,),

where B, C R? is a ball with the same measure as 2. Moreover the equality holds if and only
if € agrees with B, , up to translations and sets of zero 2-capacity. Even though in Euclidean
space minimizers of the first eigenvalue are rigid, rigidity may fail in more general settings. This
is also the case of graphs.

Spectral graph theory (see for instance [5,[14]) has attracted the interest of a wide mathematical
community as it reveals remarkable connections with differential geometry, Riemannian geometry,
algebraic graph theory, and probability theory (see [3 [8] and references therein). Furthermore,
it has applications in other areas of science such as theoretical chemistry [26], computer science,
and physics [20]. While for regular trees it has been proved in [23] that minimizers of the first
eigenvalue of the combinatorial Laplacian are essentially rigid (up to graph automorphism), this
is not true in general for Bravais lattices. In this paper, we will consider the special case of the
integer lattice Z?. Here, one defines the discrete first Dirichlet eigenvalue of the combinatorial
Laplacian for a finite set X C Z¢ (with cardinality #X = N) by

12) (X)) = min{ded ST Jul) = u(d)|: u(i) = 0in 29\ X, % S (i) = 1} :

i,j€Z¢ i€z

By the discrete to continuum I'-convergence result in [I], as N — oo the discrete first Dirichlet

eigenvalue of the combinatorial Laplacian on Z% converges to the continuum one. Consequently,

one might expect that, under a volume constraint, minimizing sets of An converge to the Euclidean

ball (which minimizes the continuum problem), as proven in [25]. However, there is no precise

characterization of minimal sets for fixed N and one might even expect that minimizers of the
1
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discrete problem are generically not unique. More precisely, there might be arbitrarily large N for
which there exist distinct subsets X, Yy C Z4 such that

(1.3) An(Xn) = An (V) = min{)\N(X): X CZ¢, #X = N} ,

yet for every discrete isometry R: Z¢ — Z%, R(x) = Qz + 7, with Q € O(d,Z) and 7 € Z¢, one
has

#(XvAR(Y)) £0.

Note that this property is in contrast to the characterization of minimizers for the regular trees
as the discrete isometries are the automorphism group of Z%. As it is customary for geometric
problems on lattices, the lack of uniqueness calls for fluctuation estimates, that is, estimates
quantifying the deviation of different minimizers from each other as IV grows. Even more, one can
obtain such fluctuation estimates for almost minimizers of the problem under consideration.

In this paper, we establish, for the first time in the spectral setting, discrete fluctuation estimates
for the first Dirichlet eigenvalue of the combinatorial Laplacian on Z¢. In its simplest formulation,
our main result (see Theorem shows that if Xy, Yy C Z% satisfy , then there exists a
constant Cy > 0, depending only on the dimension, such that

(1.4) #(XNAYN) < Oy N3

We note that in Theorem we prove more general estimates than the one above. They hold
for almost minimizers provided the energy gap from the minimum is not too big (and some non-
uniform control on the perimeter of the sets is assumed). Fluctuation inequalities like the one
in have been the object of recent studies (see [9, 12} 13|, 15| [T6], 211, 22| 24]). In particular,
in [9] the authors proved optimal fluctuations estimates for the edge isoperimetric problem (see
[4, 10]) in the planar setting by establishing a connection between fluctuation estimates and the
quantitative isoperimetric inequalty in the continuum setting. In Section [4 of this paper we follow
the same strategy, this time substituting the quantitative isoperimetric inequality [I7] with the
the quantitative Faber-Krahn inequality from [7]. The latter states that there exists a constant
Cy > 0, depending only on the dimension, such that for any measurable set Q C R? with finite
measure,
| A(Q) — ABr )\
i 0B )| < o (M5 )

We outline our strategy shortly below. Roughly speaking, a fluctuation estimate like the one
in can be obtained from the inequality above by a two steps procedure. In a first step
we associate a continuum measurable set ¢(X) to a discrete configuration X in such a way that
| XA(z + By, NZ%)| ~ [((X)A(z + By, )| In a second step we derive optimal upper bounds on
AC(X))—AN(X). As the first eigenvalue of the Dirichlet Laplacian on a given set is itself obtained
by minimizing the Reyleigh quotient, the approximation procedure requires also the extension of
the function w in the definition of Ay (X) in (I.2). Both the extension of the set X and of the
function u are obtained making use of the Kuhn decomposition of the cube (see Section [2.1). It
is worth mentioning that the error introduced in the extension procedure involves the perimeter
of a discrete set with finite first Dirichlet eigenvalue of the Laplacian. One can get rid of that
dependence in dimension d = 2 in the case of minimizers and for d > 2 in the case of symmetric
minimizers, whose existence is guaranteed by a discrete Riesz rearrangement inequality (see The-

orem and Corollary [2.12]).

The remainder of the paper is organized as follows. In Section 2] we introduce the necessary
preliminaries and define the discrete first eigenvalue of the combinatorial Laplacian. In Section[3we
discuss elementary properties of optimal sets for the first eigenvalue of the combinatorial Laplacian.
Finally, Section[]is devoted to the derivation of all discrete-to-continuum estimates to establish the
main quantitative fluctuation result, thereby highlighting the differences and connections between
the discrete and continuum spectral problems.
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2. NOTATION AND PRELIMINARIES

In the following, given Q C R%, we denote by () its interior and by (£2), its r-neighborhood,
namely

(Q), = {z € RY: dist(z,Q) < r}.

With a little abuse of notation, the symbol | - | denotes both the Lebesgue measure of a set in R?
and the standard Euclidean norm of a vector in R%. For k = 1,...,d we denote by ej the k"
element of the canonical basis of R%. For x € R? and r > 0, Q,.(z) denotes the closed coordinate
cube centered at x and with side lengths r, while B,.(z) the closed Euclidean ball of radius r
centered at . When no confusion is possible we also use the notation B, = B,(0). We denote
by xq the characteristic function of Q € R?. Given two sets E, F C R? we denote by EAF their
symmetric difference. Given two points z,y € R?, we write [z, ] for the closed segment joining z
and y. We denote by Z? the d-dimensional integer lattice and by N the set of pairs of neighboring
points of Z%, namely
N ={(p,q) eZix 7% |p—q =1} .

We set X to be the collection of all subsets X C Z?. For N € N we further set Xy = {X €
X:#X = N}. We denote by Py the set of permutations of the set {1,...,d}. Furthermore,
throughout all the following estimates, we will call Cyy a constant depending only on the dimension
d, whose value may change from line to line.

2.1. Kuhn decomposition. We consider the decomposition of the closed, unit cube [0,1]? C R?
into d! simplices {Tx }rep,, where

Tr={z €R" 0 <2, < Tp1) <+ < apy < 1}
We note that 1:,, N T;/ = () for 7,7’ € Py and 7 # 7'. Given z € Z¢ we set
T:(2)=z+Tx.
We denote by 7 the Kuhn decomposition of R%, namely
T ={T: T = Tyx(z) for some z € Z% and 7 € Py}.
Given z € Z%, we introduce also the notation
T.={T eT:Tn{z} #0}.

Proposition 2.1. The Kuhn decomposition satisfies the following properties:

(a) UzeZd T = R¢

(b) For all z € Z¢ and 7 € P4 we have |Ty(z)| = 1/d!;

(¢c) For any k € {1,...,d}, there exists a unique edge of the simplex T (2) parallel to ey;

(d) For each (i,7) € N, there exist d! distinct simplices sharing the segment [i, j| as a common
edge;

(e) For each point i € 74, there exist (d + 1)! distinct elements of T sharing i as a common
verter.

Proof. Properties (a), (b) and (c) are a trivial consequence of the definition of T (z). Let us prove
(d). We preliminarily observe that, given an edge [i,i + ex] with i € Z? and k € {1,...,d}, and a
permutation 7 € Py, there exists a unique z € Z? such that [i,i + e] C Ty (2). In other words,
(2.1) #{z€Z% [i,i+er) CTu(z)} =1.

Indeed, if 2,2’ € Z? are distinct, then necessarily T} (z) N Ty (2') is either empty or contains a
single point of the lattice. Then by (2.1) we conclude the proof of (d) as

#{(m,2) € Pax Z%: [iyi+ex] CTo(2)} = Y #{z € Z%: [iyi+es] CTo(2)} = Y 1=d!.
TEPy TEPq

To prove (e) we first observe that, since [0, 1] is the periodicity cell of the decomposition, counting
the number of different simplices passing through a point is equivalent to summing the number of
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times each vertex of [0, 1]¢ belongs to a different simplex of the Kuhn decomposition of [0, 1]¢. If
we call this number S(d), then we have

S(dy= > #{mePaicTl= > > xr.)

i€{0,1}¢ i€{0,1}4 T€Py
=> > 1= (@d+1l)=(d+1).
mEPq i€T,N{0,1}4 TEPq

O

2.2. Discrete Dirichlet and Perimeter functionals. In this section, given a discrete set X C
Z% and a function v : X — R, we define several discrete functionals associated with X and u, that
will be considered in the rest of the paper. Along with them, we also define their scaled version,
corresponding to those energy functionals per unit particle, thus highlighting the dependence on
the cardinality of X. To this end, given X C Z¢ we first define the valence of a point p € X as

val(p) = #{qud\X: (p,q) EJ\/}.
With this definition at hand, we can now introduce the so-called ’edge perimeter’ (later on simply

perimeter) of a discrete set, as well as its scaled version, as follows.

Definition 2.2. For X € X, the discrete perimeter of X is defined as
P(X) =" val(p).
peX

For X € Xy the scaled discrete perimeter of X is defined as
Py(X)=N""T P(X).

The Dirichlet energy of a scalar function defined on Z? is given here below, followed by its scaled
version.

Definition 2.3. Given u: Z? — R we define the discrete Dirichlet energy of u as
D(u)= > [u(i) —u(j)]*.
(1,5)eEN
Given X € Xy and u: Z¢ — R such that supp(u) C X, we define the scaled discrete Dirichlet
energy of u in X as
Ex(u) = N~ “T D(u).
Remark 2.4 (Energy scalings). The scalings of EFx and Py are justified by the following I'-
convergence results.
(a) Given a function u: Z¢ — R we define its piecewise-constant interpolation (subordinated
to N=1474) as
Uy(z) =u(NYe) forx € Qyn-1/a(z), ze€ N~Yizd,
For u: Z% — R such that
1 .
N Z u(i)? =1
i€

we have [y || re) = 1. Furthermore, if u = 0 on Z%\ NaQ for some © C R? open and
bounded, we have that supp(un) C () y-1/4,/7 for all N € N.

(b) Thanks to the interpolation in (a), with slight abuse of notation one can read Ey as
defined on L?(R?). Furthermore, given Q C R? open and bounded, one can introduce the
functional

D (0,9) = {EN(U) if v ="y for u: Zd%R,%ZiEZduQ(i)zl,u:00nZd\NéQ,

+00 otherwise .
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For such a functional, thanks to [I, Theorem 3.1 and Remark 3.2] and the properties of
the interpolation described in (a), the following convergence result holds true:

Jga [Vo2dz if ve HY(RY),v=0on R%\
D(L2EY) -l Dy(o.) = lollzseey = 1.
+00 otherwise on L?(R9).

(c) Arguing as above, again with a slight abuse of notation, one can read Py as defined on
LY (R9) as follows :

Py(X) ifv=ay foru=xx:2%— {0,1},#X =N,
Py(v) =

+00 otherwise.
For such a functional, thanks to |2, Theorem 4] and the properties of the interpolation
described in (a), the following convergence result holds true:
f(’)*E‘ ||Z/E||1 dHe-1 ifo = XE € BV(Rd) R ||U||L1(Rd) =1,

D(L'(RY)) - lim Py(v) =
(L'(R%) - lim Py(v) {+OO otherwise on L*(R?).

N—+o0
where 9" E denotes the reduced boundary of the set F and vg its unit outer normal.

2.3. The first eigenvalue of the combinatorial Laplacian. In this section we introduce the
first eigenvalue of the combinatorial Laplacian on subsets of Z? and give some elementary prop-
erties. Given X € Xy, we define its first eigenvalue as

. N 1 .
(2.2) An (X) = min {EN(U)Z u(i)=0in 24\ X, Ngu (Z)zl},

If Xy = NY4QN7Z4 for some bounded and open Q C R?, by Remark b) and the Fundamental
Theorem of I'-convergence [0 [I1], we deduce that

Nl—i>r£oo AN(XN) = A(9).
Definition 2.5. Given NV € N we say that Yy € Xy is a minimal set for Ay if
AN(Yn) < An(X) forall X € Xy .
We moreover set
(2.3) ma,n = Inf{A\n(X): X € Xn}.

2.4. Discrete rearrangements. In this section we briefly recall some definitions and results
related to discrete rearrangements and we refer the reader to [18] and [25] for more details. We
denote by D the following set of vectors

D= {6i,ei+ej,e¢—ej:i,jzl,...,dandi<j}.

In what follows we enumerate the elements of D as {v1,...,v42}. Fork € Nweset vy = v((k—1) mod d2)+1-

Definition 2.6. Given a direction e € D, we say that X C Z% is e-convex if, for every € X and
K € N such that x + Ke € X, we have that x + ke € X forall k =1,..., K — 1. We call a set
X € X direction-convex if it is e-convex for all e € D.

Given e € D we define
H@_{Zdﬁ{x:@c,e):O} ife=ey,
Zin{x: (x,e) € {0,1}} ife=e; +e;.
Given g € Z® we set I (z9) = ¢ + .. Given u: Z? — [0,+00), e € D, and q € II, we define
u?®: Z — [0, +00)
u?®(t) =u(qg+te) teZ.

Note that for every e € D each i € Z% can be uniquely written as i = ¢ + te for some ¢ € II, and
teZ. Given X € X weset (X)?1°={t€Z:q+teec X}.
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Definition 2.7. Let u: Z — [0, +00) be a function with finite support. Let {«; }ien with a; > ;41
be the values taken by u. We define the symmetric decreasing rearrangement of u as

a9 ifi <0,
U* (Z) _ 1-24 o ~
9; ifi>0.
Given d > 2, e € D and u: Z? — [0, +00) with finite support, we define the symmetric decreasing
rearrangement of u in direction e as
w (i) := (uP)*(t) fori=q-+te.
Furthermore, setting u® = v and u*¥ = (u*~1)*"*, the symmetric decreasing rearrangement of u is

defined as

w* = lim u*.
k——+oo

Given a finite set X € X we define its symmetric rearrangement in direction e as
Re(X) := supp(xX) »
while its symmetric rearrangement is defined as
R(X) := supp(xk)-
We say that a finite set X € &X' is symmetric if
R.(X)=X foralleeD.

Remark 2.8. We remark the following properties of the Riesz rearrangement:

(a) In [I8] it has been shown that for u: Z¢ — [0, +00) with finite support u* is well-defined.
Hence, if X C Z% is a finite set R(X) is well defined, too.
(b) By the definition of the rearrangement it follows that

dout(i) =) (uli))?.
iezd i€z
(¢) Note that for X € Xy it holds that #R.(X) = #R(X) = N.

Before stating a discrete version of the Riesz rearrangement inequality, we introduce the notion
of supermodular function.

Definition 2.9. A function G: R x R — R is said to be supermodular if
Glz,y+t)+ Gz +s,y) <Gz +s,y+1t)+G(z,y) forany z,y € R,s,t>0.

The following discrete one-dimensional Riesz rearrangement inequality has been proved in [19]
Proposition 4.3].

Theorem 2.10 (1-dimensional Riesz rearrangement inequality). Let u,v: Z — [0,400) and let
H:N — [0,400) be non-increasing. Let G: R x R — R be a supermodular function such that
G(0,0) = 0. Then,

> G uli), () H(li=jl) < Y G u (@), 0" () H (i — jl) -
i,5€EZ i,jEZ
Similarly, the following theorem in higher dimensions has been proved in [I8, Theorem 1.2].

Theorem 2.11 (Riesz rearrangement inequality). Let u,v: Z¢ — [0,+00) be two functions with
finite support and let H: N — [0,400) be non-increasing. Let G: [0,+00) x [0,400) — [0, +00)
be a supermodular function such that G(0,0) = 0. Then,

Y Gl vG) H(li—dl) < D G (@),0"(G) H (li = jll) -
i,jGZd i,jGZd
The following corollary is a consequence of the previous two Theorems.

Corollary 2.12. Let u: Z? — [0, +-00) have finite support.
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(a) For any e € D, the symmetric decreasing rearrangement of u in direction e satisfies

Do @ =t G < D0 (u) —u()
(4,5)EN (4,5)EN
In particular, for any X € Xy it follows that Ay (Re(X)) < Ay (X).
(b) The symmetric rearrangement of u satisfies

Yo @) P Y0 Jul) — ()

(i,5)EN (i.5)EN
In particular, for any X € Xy, it follows that Ay (R(X)) < An(X).

Proof. Let u: Z* — [0, +-00) with finite support. First of all, note that the function G: RxR — R
defined by G(z,y) = —|z — y|? is supermodular.

Proof of (a). Let e € D. In this proof we distinguish different cases and make use of Theoremm
with G(z,y) = —|z — y|* and different choices for H, u, and v.

If e = e, for some n = 1,...,d, the inequality follows choosing H(t) = x0,1}(t), and u = v =
u?e(t) with t € Z and ¢ € II. for the interactions in direction e,, while for the interactions in
direction ey, k # n, one chooses H(t) = xq0}(t), and v = u®*(t), v = u?™*¢(t), k # n with t € Z
and q € Il..

In the case e = e, + e, the inequality for the direction e;, j ¢ {k,n} follows as above by
choosing H(t) = xo}(t), u = u®¢(t) and v = u?*%¢(t), with ¢t € Z and q € II.. For the directions
e € {en, e} the result follows from |25, Section 5.2] by noting that the lines in direction e = e,, +e,
are contained in the 2-dimensional plane span,{e,,ex}.

Proof of (b). This follows from Theorem El with G(z,y) = —|z —y[?, H(t) = x{0,1;(t), and
u = v. This concludes the proof of the corollary. O

3. PROPERTIES OF OPTIMAL SETS

In this section we prove some properties of functions minimizing (2.2) and of discrete sets opti-
mizing (2.3). We start by introducing the notion of connectedness of subsets of Z¢. The following
elementary lemma is proved here for the reader’s convenience.

Lemma 3.1. There exists Cq > 0 such that for all N € N there holds
myn < Cq.

Proof. For each N € N, we construct a competitor X € Xy such that

(3.1) v (X) < Cy

for some Cy > 0 independent of N € N. We only need to prove (3.1) for N large enough. First,
we perform the construction for N = (2k + 1)¢ for k € N. To this end, let X = [k, k]9 N Z¢ and
u: Z% — R be defined by

u(i) = Cyn(k—1) forallicd[-1,]%nz 0<1<k,
where Cy x > 0 is such that > ;.za u?(i) = N. We show that there exists c¢q > 0 such that
]. 1 1
(32) — N4 SC(LN <e¢gN™4.
cd

Note that (971 < # (8[—[,1}‘1 ﬂZd) < 2d1%~! and therefore for k large enough an elementary
calculation shows

k k
87ICH NP < CIN DY (B =D <Y T wP(i) < CF n2d Y (k- 121 < 2405 k2
1=0 iezd 1=0
Recalling that 37;c74 u?(i) = N the inequalities in (3.2)) follow. Finally, using (8.2), we obtain

k
d—2

Ex(u) = N7 3" Ju(i) —u()? < N=F 03 y2d 3197 < 2d ANk < 2ded =: Cy.
(1,5)EN 1=0
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Setting Nin = (2k+1)? < N < (2k+3)? — 1 = Nyay the claim follows by taking as a competitor
the one constructed before for N = Ny, rescaling it to keep the mass constraint and eventually
noting that Npax < 29N in. O

Definition 3.2. We say that X C Z? is connected if, for all p,q € X, there exist M € N and
points p1,...,py € X such that

{pO:p7 Pv=4q,
(pk,pk—1) EN Vk=1,..., M.

Given X € X we call a connected component of X any maximal (with respect to set inclusion)
connected subset of X.
Proposition 3.3. Let X C Z¢ be a connected set. Then, the following holds:

(a) any minimizer u of is such that u(i) > 0 for each i € X;

(b) there exists a unique function that minimizes (2.9).

Proof of (a). The fact that u(¢) is of constant sign follows directly from
|u(i) = u(f)| > [lu(@)] = [u@)I] for all u(i), u(j) € R.

Without loss of generality we can assume that u(i) > 0 on X. Let us suppose by contradiction
that there exists a minimizer u that vanishes on A C X (maximal with respect to set inclusion)
such that M := #A < #X. Then, for ¢t € (0,1) we consider u': Z% — R defined by

¢ tu(i) ifiezZl\ A,
u(i) = N e
1=t ific A
Let us point out that, for each ¢ € (0,1), it holds that
1 ]_ 1 N 2
¥ W=7 > O+ 5 ( 5 —t2)) (1) =1.
i€Z4 1€Z4\ A i€A

t

Hence, u? is a competitor for the minimum in (2.2). However, the Dirichlet energy of u® is

Yo WO -G = Y WO -GG+ Y W@ -G Y 6 — ()P

(i,5)EN (i,9)EN (i,J)EN (i,)EN
1, JEZI\A i€Z4\A jEA i,jeA
N 2
:t2 N\ -\ (2 S\ - _ 42
Z lu(é) —u(d)|” +2 Z tu(i) 27—t
(i,4)EN (i,5)EN
i,jELZI\A i€Z4\A,jEA
N N
_ 42 o 42 o . s 42
=tD(u) +2y/ 7 (1 - 12) Z ( 2tu(i) +1/ 37 (1t )) .
(i,5)eEN
i€ZIN\A,JEA

Note that, since X is connected and A is maximal with respect to set inclusion, there exist
(1,7) € N with i € Z\ A and j € A such that u(ig) > 0. Since the sum (being finite) on the
right-hand side of the previous equation is continuous in ¢, and for t = 1 we have

> = 2u(i) < —2ulip) <0,
(iJ)EN
i€ZI\A,jEA

there exists ¢t € (0, 1) such that
N . N
2 M(l—tz) E (—2tu(z)+ M(l—t2)> <0.

(1,5)EN
i€ZI\A,jEA
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This yields a contradiction to the minimality of wu.

Proof of (b). Let us suppose that u, v are both minimizers of Ay (X) in (2.2]). Thanks to part (a)
we can assume that u,v > 0 on X. Given t € (0,1), let us define w': Z¢ — R as

(i) 1= (tu2() + (1 — )0 (0) /2.

Since 4 3 iex |wi? =1, w' is a competitor for Ay (X). Moreover, for (i,j) € N it holds that
w' (@) = w' ()P = (tu? (@) + (1 = v*(@)) + (tu?(G) + (1 = 1)v*(5))

= 2(u?(@)u? (5) + (1 = 10 (D)0? () + (1 — ) (WP (0)0°(§) + u? ()0 () /*

= t(u?(i) +u?(5)) + (1 = ) (v°(0) + v*()))

= 2(uP(D)u’(7) + (1= )0 (D)0 () + (1 = ) (W (0)0* (5) +u (7)0* ().
From the previous calculation we deduce that
0 < Ex(w') = An(X) = Ex(w') —tEx(u) — (1 — t)En(v)

= Y ') —w' ()P

(i,5)EN

= 3 (M) ) + (0 - D@20 +76) — 2e(iul) — 201 (i) )

(i,5)EN

—2 ¥ (tu(i)u(j)+(1—t)v(i)v(j)
(N

= (Pu?(D)u? () + (1 = )% (@)% (5) + (1 = 1) (u® ()v* () + uQ(j)UQ(i)))l/2> :

Note that each term in the last sum is non-positive and equals zero if and only if u;v; = u;v;,

as an elementary computation shows. Hence, we have that Q;E? = 58 ; Since X is connected,

u(i) = aw(i) for some a > 0 and for all ¢ € X. By the constraint on the norm, we infer that o = 1
which concludes the proof of (b). O

The following geometric Lemma will be used in the proof of Proposition

Lemma 3.4. Let X,Y C Z¢ have finite cardinality. Then, there exists T € Z% such that there
exists a unique pair (v,y) EN withz € X andy €Y + 7.

Proof. The proof proceeds in two steps. First we show that for any X,Y € Z? with finite cardi-

nality there exists a translation o € Z? such that
(3.3) (i) XN (Y 40)={z} for some z € Z¢;
‘ X c{reZl azg>2) and Y +ocC{yeZd: y;<zi}.

In order to prove the claim of the Lemma, assuming , it suffices to choose 7 = 0 —e4. We are
left with the proof of . To this end, we proceed by induction on the dimension. For d = 1
the proof is trivial. We assume now that the statement is proven for d — 1 and proceed to prove
it for d. To this end, we set

ma(X) := Qrvréi)r(lxd and  My(Y):= max ya

and define 74 := —My(Y) +my(X). We apply the induction assumption for Xq_; = X N (Z3! x
{mg(X)}) and Y41 = Y N (Z971 x {M4(Y)}) to find 7+ € Z4~1 such that holds true (with a
slight abuse of notation we identify X4_; and Y_; as subsets of Z¢~!). Eventually, the translation
T = (7, 74) satisfies (3.3). O
Proposition 3.5. Let Yy € Xn be a minimal set for A\ according to Definition[2.5 Then, the
following properties hold:

(a) Yn is connected;
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(b) Y is direction-convex;
(¢) There exists a constant Cq > 0 (independent of N € N) such that if d =2 or if d > 2 and
Yn is symmetric according to Definition[2.7, then

diam(Yy) < CyN/4 .

Remark 3.6. We note that, thanks to (2.12))(b), for any d > 2 and N € N there exists a symmetric
minimal set Xy € Xp.

Proof of Proposition[3.5 For the proof of (a) we argue by contradiction assuming that Y is not
connected. To fix the ideas (the general case follows by the same argument) we assume that
Yy = C'UC? with C', C? C Z% two disjoint connected components of Yy according to Definition
We denote by u a non-negative function realizing the minimum for Ay (Yy) according to

definition (2.2)), that is
En(u) = An(Yy) and u =0 on Z%\ Yy .
Let 7 € Z4\ {0} be the translation given in Lemma [3.4| for X = C! and Y = C? such that there
exists a unique pair (z,y) € N with x € C! and y € C? + 7. The set Yy = C* U (C? + 1) is
connected and such that #YN = N. We define
af) = U0 FEEC T
u(i—7) ifieC?+r,
and observe that, since @ is a competitor for Ay (YN),
En(a) > An(Yn).
Furthermore, as C'' and C? are two disjoint connected components of Yy, we have
En (i) = En(ixcr) + En(ixceyr) + li(z) — a(y)]® — a(@)* — la(y)
= Ex(u) + |u(z) — u(y = 1) = Ju(@)* = u(y — )|
< En (u) )
with equality if and only if min (u(z),u(y — 7)) = 0. This shows that @ is a minimizer and, ac-

cording to Proposition it satisfies in particular u(z),u(y — 7) > 0, which gives a contradiction
to the minimality of Yy.

Proof of (b). This is a consequence of Corollary (a) and Remark (c).

Proof of (c). The case d = 2 follows from [25] Proposition 6.6]. It remains to prove the case d > 2
for Yy a symmetric and minimal set for Ay. We claim that there exists Cy; > 0 such that for all
1 € Yy there holds

(3.4) lin] < CgNi foralln=1,....d.

Clearly, the claim implies (c). We are thus left to prove (3.4). Assume that there exists i € Yy
such that (without loss of generality) |i4| > x. We then show that there exists Cy > 0 such that

(3.5) #YnN > Cyrt.

Since R, (Yn) = Y, there exist i* € Yy such that
P =i ifne{l,...,d-1},
ji% —ig| < 1.

Thanks to part (b) Yy is direction-convex and therefore contains the segment [i,i*] N Z¢. We can
assume that this segment contains the origin. In fact, if it is not the case, there exists an index
k€ {1,...,d — 1} such that for all j € [i,i*] N Z? we have j; # 0. At this point, we also have

Re, ([i,i*]NZ% = {Re,j: j € ([i,i*] NZ%)} C Y,
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where
. Jn ifn#k,
Rekjn = { . .
—jx ifn=k.

Exploiting the direction-convexity of Y for the direction e, we conclude that ([i,i*] —ix) NZ% C
Y and passes through the origin. This implies that [i,7*]NZ% D {neq: n € N, |n| < k—1}. Again
by symmetry with respect to e = e; + €4 for j # d, we have that {ne;: n € N,|n| <k -1} C Yy
forall j =1,...,d — 1. Due to the directional convexity with respect to e = e; + ¢, for all j # k,
we conclude that

d
C:COHV(U{TLej: n €N, |n| Snl}) NZ*CYy.
j=1

Since C' satisfies #C = Cyr? we obtain (3.5). Since #Yx = N, this implies (3.4)). O
4. MAXIMAL FLUCTUATION ESTIMATES
In this section we prove the main result of the paper, that is stated in the following theorem.

Theorem 4.1. Let {an}n C (0,400) be such that supy any < 400 and let X € Xn satisfy

(41) )\N(X) SmA,N'FOéN.
Then, there exists Cq > 0 such that
(4.2) ;Ielizré# (XA((Byy NZ% +2)) < CyN (N*ﬁPN(X)é +aZ + N*z) :

where ry > 0 is such that | By | = N. In particular, if Xy € Xn is such supy Py(Xn) < 400
and
AN(XN) <man+an,
there holds
(4.3) min # (XnA((Bry NZ) +2))) < CaN (N-% +a3) .

Remark 4.2. We observe that the estimate
supyPn(Xn) < +o0

holds true for any Xy € Xy minimal set, if d = 2 or if d > 2 and X is symmetric. In fact, the
perimeter estimate is implied by Proposition b),(c) as for directional-convex sets there holds

cldiam(XN)d_1 <PXn) < codiam (X )4t

for some dimensional constants ¢y, cy > 0. Thanks to Remark for any d > 2 and N € N there
exists a minimal set Xy € Xy that satisfies the above estimate.

4.1. Embedding of the discrete problem into the continuum setting. In order to follow
the strategy of the proof of the main result highlighted in the Introduction, here we show how
to embed the discrete problem in a continuum setting. This amounts to properly extending both
sets X € X and functions u: Z¢ — R. To this aim, we exploit the Kuhn decomposition of a cube
introduced in Section We begin by extending sets and introducing the map ¢: X — IM(R?),
where 9(RY) denotes the measurable subsets of R?. Given X € X' we set

(4.4) (x)=y Y .
1€X TET (i)

Definition 4.3. Given a function u: Z¢ — R we introduce the function %: R? — R as the function
who is affine on each Kuhn simplex 7" € T and interpolates the values of v on the points of the
lattice.

The next lemma estimates the error in the measure one makes when passing from a discrete
set X to its continuum representation ¢(X).
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Lemma 4.4. Let N € N, X € Xy and let ¢ be the map defined in (4.4). Then, there exists
Cy > 0 such that

(4.5) N < [¢(X)| < N 4+ CaN“T Py(X).
In particular, K(X)’ < Cy4N.
Proof. The lower bound is straightforward since, by the definition of T' € T (i), we have
a@mc | T
TeT(3)
Given X € Xy, we first notice that
((X) < U Q1(4)
i€(X) /g

(recall that (X) 5= {i € Z%: dist(i, X) < Vd}). As a consequence, noting that the union on the
right hand side is a disjoint union, we obtain

K< Y 1] = #X + #((X) g\ X) = N+ #((X) 5\ X).

i€(X) g
Next, note that i € (X) \ X only if there exists j € X with dist(,j) < v/d and val(j) > 1.
Moreover, for each j € Z¢ there exists a constant C;; > 0 (independent of j) such that

#{i € 2%\ X : dist(i, j) < Vd} < Cy.

Hence,

#((X) 7\ X) <C0 Y val(e) = CuN“T Py(X),

zeX

which concludes the proof of (4.5). The last part of the statement follows by construction. O

In what follows, we compare the energy functionals needed to define the discrete and continuum
eigenvalues.

Lemma 4.5. Let u: Z% — R be such that supp(u) = X € Xy. The function i in Deﬁnition
has the following two properties:

(a)
/Rd Vi(z)[2dz = N7 Ex(u),

(b) there exists Cq > 0 such that

1/2
/}Rd a(z)*dz > > |u(i)]* - 2vd (Z |u(i)|2> N En(u)? .

i€Z4 i€Z4

Proof. We first prove (a). To this end, we prove for all k € {1,...,d} that

(4.6) S Jui + ex) — u(i)? = /]R Opitf? da

€2

Note that once (4.6]) is proven, (a) follows by summing over k € {1,...,d}. Let us prove (4.6).
To this end, fix k € {1,...,d} and let i € Z?. We denote by 7 the set of simplices that have
[i,7 + ex] as an edge and observe that, thanks to Proposition C), #Tir=4dl. For T € T} we
note that

Ort(z) =u(i +ep) —u(i) forall z € T'.
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Hence, by Proposition and the fact that 77 N7, = 0 for all Ty, T, € T, Ty # Ty, we obtain

/Um pie)ar= Y [(oi@Par= 30 (7] fuli+en) - uti)?

TETik T€eTik
= a#'ﬁﬂu(i +ep) —u(@)|? = Ju(i +ep) —u(i)]?.
Summing over i € Z¢ we eventually get
Z |u(i + er) — u(i Z /
i€Zd €24 UTGTl

which concludes the proof of (a).
Let us prove (b). Let T € T, € T and let z € T be a vertex of T. By definition of & we have

la(x) — u(z)| = |a(e) — a(z)] < Vd Vi,
As a result, by the triangular inequality, we have
N 2 N
u*(2) > ||i(x) = u(z)| = [u(2)]]” > u*(2) = 2Vd| Vi, [Ju(z)].
Again by the very definition of @& we observe that
Vi P < > i) —uli)f

(1,5)EN
i,JE€EZANT

|0 (x \dx—/ |Okt(z) | da

Making use of the previous inequality, Proposition a) and Cauchy-Schwarz inequality, we have

S Y [ w0z 35 0] (20 -2V, )

i€Zd TEPy i€Z3 TEPy
> Y@ -3 Y vl Y ) - ub)?)”
iezd i€7d T€EP, d! (h,k)EN

h,k€EZINT, (1)

(4.7) >y wee)- YUY T ) (X X - b))

€74 i€Z4 TEPq i€z m€Pg (h,k)eN
h,kEZINT, (1)

2V/d : 3
> uzi——( u2i) (d! uh—uk2> ,
> > = g (2 w@) (@ 3 Juth) - uth)
i1€Z i€Z (h,k)eN
where we used that, due to Proposition m(d

D0 > luh- =30 > xn@m® - xmaR)uh) - ulk)?

i€Zdm€Pa  (h,k)EN i€Zd Tm€Pq (h,k)EN

h,k€ZINT, (1)
S 3T ST e () - xur, ()]ulh) — u(k)?

(h,k)EN i€Zd mEPg
= > duh) —uk)P.
(h,k)eN
Then, we obtain the bound in (b) from (4.7). O

1

4.2. Comparison between discrete and continuum eigenvalues of a set. In the following
lemma, we give an upper bound for the continuum eigenvalue of ¢(X) in terms of the discrete
eigenvalue Ay (X).

Lemma 4.6. Let N € N and X € Xy. Then, there exists Cq > 0 such that
AMC(X)) S N7y (X) + CgN 7.
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Proof. For X € Xy let u: Z* — R be a minimizer of (2.2), that is
. . 1 . . .
N—+E Z lu(i) — u(5)]* = An(X), N Z w (i) =1, wu(i)=0forallicZ\X.
(i,5)EN i€z

Note that the piecewise-affine interpolation @ introduced in Section[{.1]is a competitor for A(¢(X)).
Thus, the claim follows by estimating the Rayleigh quotient of @ for N large enough by means of
Lemma [4.5] as follows:

Jga [V de N“T Ey(u) N AN(X) 1
JealaPde = N — oAy N(NZ Ey(u) N a0 )
1-2Vd (7NN( ))

-

1
1 - 2VAN-4AE(X)

= N"7An(X)

Furthermore, we can use that ﬁ <1+2tforte ]O, %[ to estimate the last right hand side in
the previous inequality for Ay (X) < (16d)" !N and get

Vi 2d 2 14 2 3
W < N R (X) (14 4VAN IR (X)) = N~ EAw(X) + 2VaN~ .
]Rd

The statement of the lemma follows by passing to the infimum over H!(R?) functions which are
zero outside ((X) and satisfy [[u||;2ga) = N. O

4.3. Comparison between minimal eigenvalues in the discrete and continuum setting.
In this section we compare the two minimal eigenvalues for fixed cardinality N (resp. measure in

the continuum) defined in (2.2]) and (1.1).
Lemma 4.7. Let N € N and let my n be as in (2.3). Then, there ezists Cq > 0 such that
manN < )\(31) + CdN_% .

Proof. We first prove the claim for Ny := # (B NZ%), k € N. Note that there exists C;; > 0 such
that

(4.8) |B1| (k" — Cak™ ') < Ny < | By (k% + Cqk*1) .

In the rest of the proof we omit the dependence of N on k to simplify notation. Let u € H}(By)
be such that

/ |Vu|?> dz = \(By), / u?de =1.
B, R

The following scaling property can be readily checked to hold true:
(4.9) ABy) = |Bi|"AN(B),

where B is the Euclidan Ball of unitary measure. By standard elliptic regularity estimates u €
C*(B1). Hence, for any m € N and every multi-index « of order m there exists Cg ., > 0 such
that

(4.10) [ Dul| oo (ray < Cam -

Let uy: Z¢ — R be defined as ug (i) = Cq rpu (%), i € Z%, and where Car > 0 is to be chosen such
that >°;cza uz (i) = N. Using (4.8) and the fact that u € Hj(B1), we can compute Cgj, as follows.
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We first observe that

/N
<
VR
| .
N———
N—
N

|

S

i€ZINBy, i€1z4nB;

Z u? (i) — ][ u?(x)dx | + kd/ u?(x) dz
i€1z4nB, QL ke
i€+ZINB

u? (i) — ][ u?(z)dz | + N +O(k41).
Q4 () |B1]

By the regularity of u in (4.10]), we can estimate

S R0 -f  ule)de| < Caktulus - [Vul~ < Cak
Q1 (9
k

i€+24NB;
This implies that Cy j, satisfies
(4.11) |By|"/? (1 - %) < Cap < |By|'/? (1 + %) .
Since uy (i) = 0 for all i € Z¢\ By, uy is an admissible competitor for Ay (X) with X € Xy given
by X = Bj, NZ%. Therefore we have that

(4.12) man SANXN) SNTTE ST Jug (i) — ()P = En ().
(i,5)eEN

As a consequence, in order to show the estimate for my n, it suffices to estimate En(uy). To this
end we note that, by the regularity of w given in (4.10)), there exists Cy > 0 such that
|ug (i 4 en) — uk(i)|2 < Cikk:d_Q/ |Onu (nc)|2 dz + Cy k%3 Q% (z)’ .
Qp(#) k
Summing over i € Z%, n € {1,...,d} and using ([#.8)),(d.9)), and ([4.11]), we obtain

En(up) = N7H0 37 Jug(d) —w()? < N*H%cg,kkd*?/ Vu (2))* dz + CuN~ITEC3 k23
(i) EN B

< N*1+3\Bl|kd*2/ \Vu (2)? da + CgN i i3

B

< ANBi)+CyN~ 7.

The latter estimate together with concludes the proof in the case that N = # (B NZ?) for
k € N. To treat the general case we note that for each N € N there exists k£ € N such that for
N, = #(Ek N Zd) we have 0 < N — Ny < Cy k1. Finally, the estimate in the statement follows
by using as a test the function uy constructed above and as Xy = Xy, U Zn where Zn C 7% is
chosen such that #Xy = N. O

4.4. Comparison of the asymmetries in the discrete and continuum setting. In this
section, we estimate the asymmetry of a set X € Xy with respect to a (properly discretized) ball
with that of its continuum embedding ¢(X).

Lemma 4.8. Let N € N and X € Xy. Then, there exists Cq > 0 such that for all z € Z% there
holds
d—1
# (XA(z + B,y N2%) < [C(X)A(Byy +2)| + CaN T Py (X),

where ry > 0 is such that |B,,| = N.
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Proof. Without loss of generality we assume z = 0. In order to prove the statement, we claim
that for X, Y C Z¢ we have

(4.13) # (XAY) < |C(X)AL(Y)|+ Cq (P(X) + P(Y)) .
Assuming the claim, we now show how to conclude. If Y = B,., N Z9, then |#Y — N| < C’de%l

which implies P(Y) < C4N “T". Since X € X, N, #X = N, hence, by the isoperimetric inequality
on Z%, there exists Cy > 0 such that P(X) > C’dN%. Thus, we deduce that

P(Y) < CyP(X).
Arguing as in the proof of Lemma for Y = B, NZ% it holds that
(4.14) C(V)AB,, | < C4P(Y) < CaP(X).
Recalling Definition the statement of the lemma eventually follows from , , and

the triangle inequality recalling the scaling P(X) = N T Pn(X). We now prove the claim (4.13)).
We first observe that (4.13]) follows from the estimate

(4.15) #(X\Y) < [C(X)\ (V)| + CaP(Y)
by exchanging the roles of X and Y. The proof of (4.15) is the consequence of the following two
facts. On one hand, by the very definition of ¢ in (4.4)) it follows that
U @+Q)ccx)\¢y).
2€X\((Y)

Hence, we infer that

#(X\CW)) = Y =] U @+ <o)\l

z€X\¢(Y) z€X\¢(Y)
On the other hand, since any x € {(Y)\ Y is a neighbour of a boundary point of Y, it follows that

#reX\Y:ze((Y)} <CyP(Y).
Combining these two inequalities, we get (4.15)) and conclude the proof. O

4.5. Proof of the main result.

Proof of Theorem[{.]l Using Lemma [4.7]and (4.1)), we have that
AN(X) < A(B1) +an + CaN i .
From Lemma [£.6] and the above estimate we infer that

MC(X)) S NTEXB1) + N day + CaN ™1 .

Furthermore, setting ri¢(x) > 0 such that B, ., = [((X)], by the scaling properties of A,
Lemma and the fact that t — ¢4 is concave, we have
2
_z IC(X))? 2 _1
N7a\(B;) = (T ABricxy) S AMBrixy) | 1+ ngN aPn(X)) .

By Lemma we have |[((X)| < C4N and therefore, again by the scaling properties of A, we have
A(C(X)) = A(B

B

Using the subadditivity of the square-root we obtain

/\(C(X)) - A(B'f‘qx)\)
(B

;|<<X>) < CdN_éPN(X) 4+ Cyan + OyN~7 < CdN_éPN(X) + Caon .
Tl

Nl
’Z [N

>% <Cq (N_TlflPN(X) +a ) :

T\C(X)\)



THE QUANTITATIVE FABER-KRAHN INEQUALITY FOR THE COMBINATORIAL LAPLACIAN IN z¢ 17

By [7, Main Theorem| there exists z € RY such that
[COVABy iy +2)] < KXICa (N3 Py(X)E +0}) -
Combining the latter inequality with the estimate in Lemma [£.4] we infer that
(4.16) 'g(X)A(BTWH + z)) < 4N (N*ﬁPN(X)% + afv) .
Let Z € Z? be such that |z — Z| < v/d. Then, the triangle inequality gives that
[(Bry + 2)A(Bryciny + 2)| < [(Bry + 2)AByciny +2)| + | (Brigyy + DABry iy, +2)| -
Thanks to Lemma [£.4] the first term on the right hand side can be estimated as
d—
|(Bry +2)A(Br o +7)| < CaN T Py(X).

The second term on the right hand side can be estimated by evaluating the measure of the
symmetric difference between a ball of radius rj¢(x)| + V/d and a ball of radius TIc(X)] — Vd and
then by using Lemma [£.4}

d d
‘(Bﬁaxn +Z)A(Br (x) JFZ)‘ < |¢(X)| <<1+ vd ) — (1 - vd > )

T1¢(x) T1¢(x)
2dv/d X
< Calt ()| < ¢3!
T|¢(x)] N

< CaN“T (14 CaN~HPy(X)) .
We can thus write that
(4.17) ‘(BTN +2)ABr e + z)’ < CuN“T Py (X) + CuN T .
Combining the estimate in Lemma and (4.17)), we obtain
d _ _ a—1
# (XA(Z'N B,y +7)) <[UX)A(Bry +2)| + CaN 7 Py(X)
d—1
< ‘((X)A(wa)l + z)‘ + )(BrN +2)A(Byy o, + 2)| + CaN T Py (X)
d-1 d-1
< ’g(X)A(B,W)I —|—z)’ + CyN T Py(X) + CuN T .
Eventually, by (4.5)) and (4.16]), we infer that

# (XA(ZN By +72)) < [C(X)A(B +2)| + CuN“T Py(X) + C4N ‘T

T1¢(x)|

1 1 1 d—1 d—1
< 4N (N—ﬂPN(X Py a}(,) F CuN T Py (X) + CuN T
2

=

)
1

< CuN (N~HiPy(X)} 4o} +N7H)

where in the last inequality we used that Py(X) < CyN 7. To conclude, we observe that

supy ay < +oo yields (4.2), while (4.3) follows from the assumptions on Xy and the esti-

mate (4.2]). O
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