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Abstract

We study the limit behavior of the solutions to the Neumann sieve problem for the Poisson equation
when the sieve-holes are randomly distributed according to a stationary marked point process. We
determine the optimal stochastic integrability for the random radii of the perforations for which stochastic
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1 Introduction

In this article, we study the limit behavior of the solutions to the sequence of boundary value problems
−∆uε = f in Uε,

uε = 0 on ∂U,

∇uε · ν = 0 on both sides of U0 \ Tε.

(1.1)

To define the domain Uε for ε > 0, we let U be an open, bounded set with Lipschitz boundary in RN ,
where N > 2, and we set U+ := {x ∈ U : xN > 0}, U− := {x ∈ U : xN < 0}. Then Uε is obtained by
connecting the upper set U+ and the lower set U−, whose boundaries intersect along a hyperplane, via a set
of (N − 1)-dimensional circular holes. More specifically, we let Tε be the union of (N − 1)-dimensional balls
in U0 := {x ∈ U : xN = 0} with random centers and radii. Then we set Uε := U+ ∪ U− ∪ Tε (see Figure
1). The parameter ε is proportional to the average distance between the centers of the balls. The boundary
of Uε consists of ∂U and the “sieve” U0 \ Tε. In (1.1), we solve the Poisson equation with homogeneous
Dirichlet boundary condition prescribed on ∂U and homogeneous Neumann boundary condition prescribed
on U0 \ Tε. The unit vector ν is normal to the sieve and takes either the value eN or −eN depending on the
side of the sieve, where eN = (0, . . . , 0, 1). The function f belongs to L2(U).

The interest in this kind of problem comes from hydrodynamics, namely from the study of fluid flow
through walls perforated with holes [11, 12, 31], where the goal is to understand the effective behavior of the
fluid as the holes shrink while their number increases. The simplified model (1.1) with the Poisson equation,
also called Neumann’s sieve, was proposed by Sánchez-Palencia in [32]. In this case, the solution uε resembles
the pressure of an incompressible, inviscid fluid where the fluid is subject to tangential motion on the sieve
U0 \ Tε.

In this article, the perforations Tε are randomly generated by a marked point process. The goal of the
paper is to prove the homogenization of Neumann’s sieve problem with minimal assumptions on the marked
point process. We now give a more precise description of the perforations Tε. We define Σ := {x ∈ RN :
xN = 0}, and consider a set of points

P = {(yi, ρi)}i∈N (1.2)

such that yi ∈ Σ and ρi > 0 for all i ∈ N. We assume that (yi) is a sequence without accumulation points.
We consider perforations of the form ⋃

yi∈ 1
εU

0

B
(
εyi, ε

N−1
N−2 ρi

)
∩ U0.
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Uε U0 \ Tε

Figure 1: Illustrations of the domain Uε and the “sieve” U0 \ Tε.

In other words, the centers of the holes correspond to the elements of the sequence (εyi) that lie in U0, while

the radii are proportional to ε
N−1
N−2 , with proportionality constants given by the sequence (ρi). The choice of

the factor ε
N−1
N−2 will be explained below. To generate the set P randomly, we use the framework of marked

point processes, as in the recent work of Giunti, Höfer and Velázquez [20]. Let (Ω,F ,P) be a probability
space. We consider a random variable M , defined on Ω, such that its realization M(ω) is a set of the form
(1.2) satisfying the assumptions stated above. The random variable M is called a marked point process on
Σ with marks in (0,∞). Then we define

Tε(ω) :=
⋃

(y,ρ)∈M(ω)

y∈ 1
εU

0

B
(
εy, ε

N−1
N−2 ρ

)
∩ U0. (1.3)

The main result of this paper is that, under very mild assumptions on the marked point process M , the
solutions to (1.1) converge weakly in H1(U+) and H1(U−) almost surely to the solutions of the coupled
boundary value problems

−∆u+ = f in U+,

u+ = 0 on (∂U)+,

∇u+ · ν = −γ(u+ − u−) on U0,


−∆u− = f in U−,

u− = 0 on (∂U)−,

∇u− · ν = γ(u+ − u−) on U0,

(1.4)

where the sets (∂U)± are defined in the same way as U±, and γ is a positive quantity that can be computed
explicitly (cf. Equation (1.7)). Since γ depends on the realization of the perforations Tε, it is, in general, a
random variable. From a physical perspective, the homogenized equations show that the effective fluid flux
across the surface U0 depends uniformly on the pressure difference u+ − u− throughout U0.

To motivate our assumptions on the marked point process, we briefly review known results for Neumann’s
sieve in the periodic setting, where homogenization was established by Attouch, Damlamian, Murat, and
Picard [18, 27, 30]. More specifically, in (1.1) the authors considered perforations of the form⋃

y∈ZN∩ 1
εU

0

B
(
εy, ε

N−1
N−2 ρ

)
∩ U0,

where ρ > 0 is fixed. In this case, they proved that the homogenized problem is given by (1.4) with

γ =
ρN−2

4
Cap(B(0, 1) ∩ Σ,RN ), (1.5)

where Cap(B(0, 1)∩Σ,RN ) denotes the harmonic capacity of B(0, 1)∩Σ in RN . We recall that the harmonic
capacity of a set A ⊂ Σ with respect to an open set B ⊃ Ā is defined by

Cap(A,B) := inf

{∫
B

|∇v|2 dx : v ∈ H1
0 (B), v = 1 in A

}
.
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It is important to note that γ is proportional to the asymptotic capacity density of the perforations: If
O ⊂ U0 is regular enough, then

1

HN−1(O)

∑
y∈ZN∩ 1

εO

Cap
(
B
(
εy, ε

N−1
N−2 ρ

)
∩ Σ,RN

)
=

1

HN−1(O)

∑
y∈ZN∩ 1

εO

εN−1ρN−2 Cap(B(0, 1) ∩ Σ,RN ) → ρN−2 Cap(B(0, 1) ∩ Σ,RN )

as ε → 0, where HN−1 is the (N − 1)-dimensional Hausdorff measure. Going back to the stochastic setting,
this suggests that we should look for conditions on M such that the limit of the “spatial” averages

lim
ε→0

1

HN−1(O)

∑
(y,ρ)∈M(ω)

y∈ 1
εO

εN−1ρN−2 = lim
ε→0

1

HN−1
(
1
εO
) ∑

(y,ρ)∈M(ω)
y∈ 1

εO

ρN−2

exists and is independent of O.
In this paper, we assume that M is a stationary marked point process with finite intensity such that∫ ∞

0

ρN−2 dλ(ρ) < ∞, (1.6)

where λ is, up to a multiplicative constant, the probability distribution of ρ. Due to the stationarity of M ,
the quantity in (1.6) is equivalent to the expectation of the random variable

1

HN−1
(
1
εO
) ∑

(y,ρ)∈M(ω)
y∈ 1

εO

ρN−2

for any Borel set O ⊂ U0. Under these assumptions, the Ergodic Theorem for marked point processes states
that if O ⊂ U0 is a sufficiently nice set, then there exists a random variable ρ0 such that

lim
ε→0

1

HN−1
(
1
εO
) ∑

(y,ρ)∈M(ω)
y∈ 1

εO

ρN−2 = ρ0(ω)
N−2

almost surely. In analogy with the result in the periodic setting, we prove that the factor γ in (1.4) is almost
surely given by

γ(ω) =
ρ0(ω)

N−2

4
Cap(B(0, 1) ∩ Σ,RN ) (1.7)

in the stochastic setting.
The proof of our main result, Theorem 3.1, relies on Tartar’s method of oscillating test functions. We

explicitly construct functions that mimic the expected oscillatory behavior of solutions to (1.1), as established
in Theorem 3.2. These functions serve as test functions in the weak formulation of (1.1), allowing us
to extract information about the solutions (uε). Our construction adapts techniques from the periodic
case, where the separation between holes simplifies the analysis. However, when perforations are generated
by a marked point process, clustering occurs with high probability. To address this, we follow Giunti,
Höfer, and Velázquez’ approach by treating clusters separately from sufficiently isolated holes. However,
we do not impose any assumptions on the ergodicity of the marked point process or the correlations of the
radii at large distances as in [20]. The stochastic integrability assumption alone (1.6) ensures that clusters
have asymptotically vanishing capacity, which, in turn, allows us to disregard them in the construction of
oscillating test functions.

We note that the treatment of the periodic Neumann sieve in the literature is not limited to the method
of oscillating test functions. In [8, 28] the authors apply the periodic unfolding method to study variants of
Neumann’s sieve. In [2, 3], the classical homogenization result is extended to nonlinear variational problems
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using Γ-convergence. We opted for the method of oscillating test functions because this work is a first step
toward a quantitative analysis in which the use of correctors plays a central role. For problems related to
homogenization in similar geometries, we refer the reader to [1, 4, 11, 12, 13, 15, 19, 22, 23, 24] and references
therein.

The Neumann sieve problem belongs to the broader class of boundary value problems in perforated
domains whose study was initiated by the foundational works of Marchenko and Khruslov [26] and Cioranescu
and Murat [9, 10] (see also [6, 14, 16]). Early work on homogenization in randomly perforated domains is
found in [26, 29]. Our work has been inspired by the recent application of the theory of marked point
processes to the homogenization of Poisson’s equation in random media [20]. Further results have extended
this framework to the homogenization of the Stokes equation [21] and nonlinear variational problems [33].

To conclude the introduction, we outline the organization of the paper. In Section 2, we provide a
self-contained account of the theory of marked point processes relevant to our problem. Of particular
importance is a variant of the Ergodic Theorem stated in Theorem 2.10, which we use frequently in the
paper. A derivation of this result from the more classical Ergodic Theorem for marked point processes
is included in the appendix. In Section 3, we carefully describe the problem and state our main result,
Theorem 3.1. In the same section, the theorem is proved, assuming the existence of the oscillating test
functions stated in Theorem 3.2. In Section 4, we define the important notions of ε-isolated and ε-cluster
points. Roughly speaking, the ε-isolated points correspond to the centers of sufficiently isolated holes in
Tε, while the ε-cluster points correspond to holes that form clusters. In this section, we also introduce the
thinning of point processes and use this notion in Theorem 4.2 to prove that the clusters have asymptotically
vanishing capacities. Section 5 is devoted to the construction of the oscillating test functions. In Section
5.1, we study the so-called “cell problem”, which we use to define the test functions in the neighborhood of
the isolated holes. In Sections 5.2 and 5.3, we establish key properties of these functions in preparation for
the proof of Theorem 3.2. Finally, the proof of Theorem 3.2 is given in Section 6.

2 Preliminaries

In this section, we present the necessary definitions and key results from the theory of marked point processes.

2.1 Fundamentals of marked point processes

For the definitions and results presented in this section, we follow [7, Chapter 4]. All definitions and theorems
will be formulated in the context of Euclidean spaces, as this is sufficient for the purposes of our work. For
a more comprehensive treatment of the subject, we refer the reader to the books [7, 17].

Let d ∈ N. If O ⊂ Rd is open, we denote the Borel σ-algebra on O by B(O). The Lebesgue measure on
Rd is denoted by Ld. If Z is any set, then we denote the cardinality of Z by card(Z).

Intuitively, a point process on Rd is a set of randomly distributed points in Rd. We speak of a marked
point process (in short m.p.p.), if we attach a characteristic (a mark) to each point. In our work, a mark
will simply be a positive number. The set of positive numbers is denoted by R+.

To give the precise definition of an m.p.p. on Rd with positive marks, let us call Y ⊂ Rd×R+ admissible
if it satisfies the following conditions:

(i) Each point has a unique mark, that is, if (y, ρ1), (y, ρ2) ∈ Y , then ρ1 = ρ2,

(ii) The projection of Y onto Rd is locally finite. Equivalently, the set Y ∩ (B ×R+) has finite cardinality
for all bounded Borel sets B ∈ B(Rd).

We define Md to be the set of all admissible Y ⊂ Rd × R+. Let Md be the smallest σ-algebra on Md that
makes all functions Y 7→ card(Y ∩ E) measurable, as E runs through the Borel sets in B(Rd × R+).

Definition 2.1. A marked point process on Rd with positive marks is a measurable mapping M of a
probability space (Ω,F ,P) into (Md,Md). The probability distribution of M is the measure LM defined by
LM (A) = P(M−1(A)) for all A ∈ Md.

Remark 2.1.1. In the literature, point processes are also commonly defined as a class of random measures,
that is, as measure-valued random variables. This is because we can naturally associate to each admissible
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set Y the counting measure E 7→ card(Y ∩E), where E ∈ B(Rd×R+). In the sequel, we denote the measure
associated with Y by the same symbol. Hence, we write Y (E) instead of card(Y ∩ E).

From now on, the term marked point process will refer exclusively to an m.p.p. on Rd with positive
marks. Let M : (Ω,F ,P) → (Md,Md) be an m.p.p. If E ∈ B(Rd × R+), then the function ω 7→ M(ω)(E),
where ω ∈ Ω, is an integer-valued random variable that represents the number of points of M(ω) lying in E.
We denote this random variable simply by M(E). The expected value E[M(E)] gives the average number
of points in E that belong to M . It is easy to check that the expected value defines a Borel measure on
Rd × R+ as a function of E.

Definition 2.2. Let M : (Ω,F ,P) → (Md,Md) be a marked point process. Define Λ(E) := E[M(E)] for
all E ∈ B(Rd × R+). Then Λ is a Borel measure called the intensity measure of M . If Λ(B × R+) < ∞ for
all bounded Borel sets B ∈ B(Rd), then we say that M has finite intensity.

As the next theorem shows, the intensity measure enables the computation of the expected value of a
random variable that depends on the m.p.p. We include the proof here, as it is elementary.

Theorem 2.3 (Campbell’s Theorem). Let M : (Ω,F ,P) → (Md,Md) be a marked point process and let
g : Rd × R+ → [0,∞) be a Borel measurable function. Define

G(Y ) :=
∑

(y,ρ)∈Y

g(y, ρ) =

∫
Rd×R+

g(y, ρ) dY (y, ρ),

where Y ∈ Md. Then

E[G ◦M ] =

∫
Rd×R+

g(y, ρ) dΛ(y, ρ).

Proof. Suppose first that g = χE for some E ∈ B(Rd × R+). Then G ◦M = M(E) and

E[G ◦M ] = Λ(E) =

∫
Rd×R+

g(y, ρ) dΛ(y, ρ). (2.1)

Since both the left- and right-hand sides of (2.1) are linear in g, we can extend the equality to simple
functions and, by applying the Monotone Convergence Theorem, to all nonnegative Borel functions.

Now, we introduce an important class of marked point processes. If Y ∈ Md and τ ∈ Rd, we define

Yτ := {(y + τ, ρ) : (y, ρ) ∈ Y }.

Analogously, if A ∈ Md, then Aτ := {Yτ : Y ∈ A}.

Definition 2.4. A marked point processM : (Ω,F ,P) → (Md,Md) is called stationary if LM (A) = LM (Aτ )
for all τ ∈ Rd and A ∈ Md.

Intuitively, stationarity means that the points of the m.p.p. are distributed spatially homogeneously.
For a concrete interpretation of the definition, let us take B ∈ B(Rd), L ∈ B(R+), and consider the set
A = {Y ∈ Md : Y (B × L) = k}, where k ∈ N. Then Aτ = {Y ∈ Md : Y ((τ + B) × L) = k}. If M is a
stationary m.p.p., then LM (A) = LM (Aτ ). Hence, the probability that M has k points in B×L is equal to
the probability that it has k points in (τ +B)× L.

For a stationary m.p.p., the intensity measure can be factorized as shown in the following proposition.
Since the proof is instructional, we include it here.

Proposition 2.5. Assume M : (Ω,F ,P) → (Md,Md) is a stationary marked point process with finite
intensity. Then there exists a finite Borel measure λ on R+ such that

Λ = λ⊗ Ld. (2.2)
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Proof. Fix L ∈ B(R+). To prove (2.2) it suffices to show that Λ(B ×L) = Λ((τ +B)×L) for all B(Rd) and
τ ∈ Rd. By the definition of stationarity, we know that LM (A) = LM (Aτ ) for all A ∈ Md and τ ∈ Rd. As
a consequence, ∫

Md

χA(Y ) dLM (Y ) =

∫
Md

χA−τ (Y ) dLM (Y ) =

∫
Md

χA(Yτ ) dLM (Y ).

Using the linearity of the integral, we deduce∫
Md

F (Y ) dLM (Y ) =

∫
Md

F (Yτ ) dLM (Y ) (2.3)

for all simple functions F : Md → [0,∞). By the Monotone Convergence Theorem, the equality in (2.3) can
be extended to all nonnegative random variables on Md. Hence, we get

Λ((τ +B)× L) =

∫
Md

Y ((τ +B)× L) dLM (Y ) =

∫
Md

Yτ ((τ +B)× L) dLM (Y )

=

∫
Md

Y (B × L) dLM (Y ) = Λ(B × L) for all τ ∈ Rd.

Therefore, we conclude that there exists a number λ(L) ≥ 0 such that Λ(B × L) = λ(L)Ld(B) for all
B ∈ B(Rd), L ∈ B(R+). By fixing B and varying L, we observe that λ is a finite measure.

Remark 2.5.1. Assume Ld(B) = 1. Then (2.2) yields Λ(B × L) = λ(L) for all L ∈ B(R+). Hence, we can
interpret λ(L) as the mean number of points of M with marks in L per unit volume.

2.2 Ergodic theorem for stationary marked point processes

In this section, we collect some important consequences of stationarity, most notably the Ergodic Theorem,
which provides information on spatial averages of stationary m.p.p. We closely follow [17, Chapter 12.2].

Let M : (Ω,F ,P) → (Md,Md) be an m.p.p. Assume (Ck) ⊂ Rd is an increasing sequence of sets such
that

⋃∞
k=1 Ck = Rd. Often, one is interested in the spatial averages

1

Ld(Ck)

∑
(y,ρ)∈M(ω)

y∈Ck

g(ρ) (2.4)

for a nonnegative function g and ω ∈ Ω. For instance, if we take g(ρ) = ρ, then (2.4) is an approximation to
the average mark size in M(ω) per unit volume.

Below, we present sufficient conditions under which the limit of (2.4) as k → ∞ can be represented as a
conditional expectation with respect to the σ-algebra of translation invariant sets.

Definition 2.6. Let M : (Ω,F ,P) → (Md,Md) be a marked point process. A set A ∈ Md is called invariant
if LM (A△Aτ ) = 0 for all τ ∈ Rd. The σ-algebra of invariant sets is denoted by I.

We denote the σ-algebra {M−1(A) ∈ F : A ∈ I} by M−1(I). By an M−1(I)-measurable random
measure we mean a function ξ : Ω×B(Rd ×R+) → [0,∞] such that ξ(ω, ·) is a Borel measure for all ω ∈ Ω,
and ξ(·, E) is M−1(I)-measurable for all E ∈ B(Rd × R+).

The following lemma shows that the conditional expectation of a random variable with respect to the
σ-algebra M−1(I) can be expressed as an integral with respect to a random measure.

Lemma 2.7 (Lemma 12.2.III [17]). Let M : (Ω,F ,P) → (Md,Md) be a stationary marked point process
with finite intensity. Then there exists an M−1(I)-measurable random measure ξ such that

E[G ◦M |M−1(I)](ω) =
∫
Rd

∫ ∞

0

g(y, ρ) dξ(ω, ρ) dy P-a.s. (2.5)

for all Borel measurable g : Rd × R+ → [0,∞), where

G(Y ) :=

∫
Rd×R+

g(y, ρ) dY (y, ρ).
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In particular,
E[M(B × L) |M−1(I)](ω) = ξ(ω,L)Ld(B) P-a.s. (2.6)

for all bounded B ∈ B(Rd) and for all L ∈ B(R+).

Remark 2.7.1. Assume Ld(B) = 1. Then (2.6) yields E[M(B × L) |M−1(I)](ω) = ξ(ω,L) P-a.s. for all
L ∈ B(R+). Hence, we observe that the random measure ξ is a conditional analogue of the measure λ from
Proposition 2.5. More precisely, ξ(·, L) is the mean number of points of M with marks in L per unit volume
conditioned on the σ-algebra M−1(I).
Remark 2.7.2. If LM (A) = 0 or LM (A) = 1 for all A ∈ I, then M is called ergodic. For stationary ergodic
m.p.p., the conditional expectations in (2.5) and (2.6) reduce to regular expectations. In this case, the
random measure ξ equals λ and the lemma reduces to Campbell’s Theorem.

Definition 2.8. A sequence of Borel sets (Ck) in Rd is called a convex averaging sequence if

(i) Each Ck is convex and bounded,

(ii) Ck ⊂ Ck+1 for all k ∈ N,

(iii) limk→∞ sup{r ∈ R+ : Ck contains a ball of radius r} = ∞.

We are finally ready to state the first version of the Ergodic Theorem for stationary m.p.p.

Theorem 2.9 (Theorem 12.2.IV [17]). Let M : (Ω,F ,P) → (Md,Md) be a stationary marked point process
with finite intensity. Let ξ be the random measure defined in Lemma 2.7. Then

lim
k→∞

1

Ld(Ck)

∑
(y,ρ)∈M(ω)

y∈Ck

g(ρ) =

∫ ∞

0

g(ρ) dξ(ω, ρ) P-a.s.

for all convex averaging sequences (Ck) and all λ-integrable functions g : R+ → [0,∞), where λ is the
measure on R+ given by Λ = λ⊗ Ld.

In the sequel, we shall work with the following variation of the ergodic theorem, which does not require
the averaging sets to be convex.

Theorem 2.10. Let M : (Ω,F ,P) → (Md,Md) be a stationary marked point process with finite intensity.
Let ξ be the random measure defined in Lemma 2.7. Assume B ∈ B(Rd) is bounded with nonempty interior
such that Ld(∂B) = 0. Then

lim
ε→0

1

Ld
(
1
εB
) ∑

(y,ρ)∈M(ω)
y∈ 1

εB

g(ρ) =

∫ ∞

0

g(ρ) dξ(ω, ρ) P-a.s. (2.7)

for all λ-integrable functions g : R+ → [0,∞), where λ is the measure on R+ given by Λ = λ⊗ Ld.

As the proof of this theorem is not essential for the rest of our work, we postpone it to Section 7.1 of the
appendix.

3 Statement of the main result

In this section, we describe the setting of the problem and state our main result. First, we introduce the
notation that we will frequently use in the rest of the article.
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3.1 Notation

Let N ∈ N. Given x ∈ RN−1, we define x̄ := (x1, . . . , xN−1, 0) ∈ RN . For A ⊂ RN and τ ∈ RN , we define
the sets

A− := {x ∈ A : xN < 0},
A0 := {x ∈ A : xN = 0},
A+ := {x ∈ A : xN > 0},

τ +A := {τ + x : x ∈ A}.

Similarly, for a function f : A → R, we define f+ := f |A+ , f− := f |A− . The characteristic function of A
is denoted by χA, i.e.; χA(x) = 1 if x ∈ A, and χA(x) = 0 if x ∈ RN \ A. If A′ ⊂ RN , then we define the
distance between A and A′ by dist(A,A′) := inf{|x−x′| : x ∈ A, x′ ∈ A′}. We use B(x, r) to denote the the
open ball centered at x ∈ RN with radius r.

Given A ⊂ (RN )0 and an open set B ⊂ RN containing Ā, the harmonic capacity, or simply capacity, of
A with respect to B is defined as

Cap(A,B) := inf

{∫
B

|∇v|2 dx : v ∈ H1
0 (B), v = 1 in A in the trace sense

}
.

As before, the Lebesgue measure on RN is denoted by LN . If s ≥ 0, the s-dimensional Hausdorff measure
on RN is denoted by Hs. If Z is any set, then we denote the cardinality of Z by card(Z).

Finally, we remark that in our estimates C stands for any strictly positive constant that can be explicitly
computed in terms of known quantities. The value of C may therefore change from line to line in a given
computation. If a, b > 0, then we also use a ≲ b as a shorthand for the inequality a ≤ Cb for some constant
C depending only on known quantities.

3.2 Main result

We start this section by introducing the setting of the problem. Let N ∈ N with N ≥ 3. We fix a
bounded and open set U ⊂ RN with Lipschitz boundary. We assume that 0 ∈ U and that the hyperplane
Σ := {x ∈ RN : xN = 0} intersects U transversely. By the latter assumption, we mean that the sets U+ and
U− have Lipschitz boundary, and that dist(K, ∂U) > 0 for any compact set K ⊂ U0.

We fix a stationary m.p.p. on RN−1, that is, we consider M : (Ω,F ,P) → (MN−1,MN−1) and we assume
it has finite intensity. Let λ and ξ be as in Proposition 2.5 and Lemma 2.7, respectively. We assume that∫ ∞

0

ρN−2 dλ(ρ) < ∞. (3.1)

We now define the randomly perforated sieve. For ε > 0 and ω ∈ Ω, we consider the set of holes

Tε(ω) :=
⋃

(y,ρ)∈M(ω)

ȳ∈ 1
εU

0

B
(
εȳ, ε

N−1
N−2 ρ

)
∩ U0. (3.2)

We imagine the domain U separated into U+ and U− by the hyperplane Σ. The sets U+ and U− are then
connected through the perforations Tε(ω) along the common boundary U0. We set Uε(ω) := U+∪U−∪Tε(ω)
(see Figure 1). The sieve is represented by U0 \ Tε(ω), which is a subset of the boundary of Uε(ω). We note
that the fact that the hyperplane Σ intersects U transversely implies that Uε(ω) is an open set.

Let f ∈ L2(U) be fixed. For ε > 0 and ω ∈ Ω, we consider Poisson’s equation in Uε(ω) with Dirichlet
boundary conditions on the outer boundary and Neumann boundary conditions on the sieve:

−∆uε(ω, ·) = f in Uε(ω),

uε(ω, ·) = 0 on ∂U,

∇uε(ω, ·) · ν = 0 on U0 \ Tε(ω).

(3.3)
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We remark that the Neumann boundary condition holds separately on both sides of the sieve. Hence, the
unit vector ν takes either the value eN or −eN depending the side of the sieve, where eN = (0, . . . , 0, 1).

We work with the weak formulation of (3.3). We define the function space Vε(ω) by

Vε(ω) := {u ∈ H1(Uε(ω)) : u = 0 on ∂U in the trace sense}.

Clearly, we have Vε(ω) ̸= H1
0 (Uε(ω)), as functions belonging to the latter space vanish on the sieve U0\Tε(ω)

as well. With this notation, problem (3.3) is formally equivalent to
uε(ω, ·) ∈ Vε(ω),∫

Uε(ω)

∇uε(ω, x)∇φ(x) dx =

∫
U

f(x)φ(x) dx, for all φ ∈ Vε(ω).
(3.4)

Let ε > 0 and ω ∈ Ω be fixed. Then the Lax-Milgram Theorem ensures the existence of a unique solution
uε(ω, ·) to (3.4).

The main goal of this paper is to show the existence of a set Ω′ ⊂ Ω with P(Ω′) = 1 such that for every
ω ∈ Ω′ the sequence (uε(ω, ·)) converges weakly, as ε → 0, to functions u+(ω, ·) and u−(ω, ·) belonging to
H1(U+) and H1(U−), respectively. Moreover, u+ and u− solve two limit boundary value problems which
are coupled through a so-called transmission condition on U0. Indeed, we can test equation (3.4) with
an element of H1

0 (U
+) or H1

0 (U
−) and easily pass to the limit to prove that u+ and u− must satisfy the

Poisson equation with the same source term as in (3.3). Then the challenge is to identify the limit boundary
condition on U0. It will be observed that the normal derivatives of u+ and u− on U0 are coupled through
the appearance of a capacitary term.

We are now ready to state the main theorem of our paper.

Theorem 3.1. Let M : (Ω,F ,P) → (MN−1,MN−1) be a stationary marked point process with finite intensity
such that ∫ ∞

0

ρN−2 dλ(ρ) < ∞.

Let uε(ω, ·) be the unique solution of (3.4). For P-a.e. ω ∈ Ω, there exist functions u+(ω, ·) ∈ H1(U+),
u−(ω, ·) ∈ H1(U−) such that

uε(ω, ·) ⇀ u+(ω, ·) in H1(U+), uε(ω, ·) ⇀ u−(ω, ·) in H1(U−)

as ε → 0. Furthermore, the functions u±(ω, ·) satisfy∫
U±

∇u±(ω, x)∇φ(x) dx =

∫
U

f(x)φ(x) dx∓ γ(ω)

∫
U0

(u+(ω, x)− u−(ω, x))φ(x) dHN−1(x). (3.5)

for all φ ∈ H1(U±) that vanish on (∂U)± in the trace sense, where γ : Ω → R is a random variable defined
as

γ(ω) :=
1

4
Cap

(
B(0, 1)0,RN

) ∫ ∞

0

ρN−2 dξ(ω, ρ),

Remark 3.1.1. We note that (3.5) is the weak formulation of the following Poisson equation:
−∆u±(ω, ·) = f in U±,

u±(ω, ·) = 0 on (∂U)±,

Dνu
±(ω, ·) = ∓γ(ω)(u+(ω, ·)− u−(ω, ·)) on U0.

Remark 3.1.2. The homogeneous Dirichlet boundary condition in (3.3) does not have an influence on the
transmission condition across U0. We have chosen it for simplicity. An analogous homogenization result
holds true when considering other Dirichlet or Neumann boundary conditions on ∂U .

We prove Theorem 3.1 using the method of oscillating test functions. The method involves the construc-
tion of suitable test functions that help extract information about the limit functions u+ and u−. The almost
sure existence of a sequence of random oscillating test functions (wε) possessing the desired properties is
guaranteed by the following theorem.
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Theorem 3.2. Let M : (Ω,F ,P) → (MN−1,MN−1) be a stationary marked point process with finite intensity
such that ∫ ∞

0

ρN−2 dλ(ρ) < ∞.

For P-a.e. ω ∈ Ω, there exist functions wε(ω, ·) ∈ H1(Uε(ω)) such that wε(ω, ·) ⇀ ±1 in H1(U±) as ε → 0.
Moreover, the sequence (wε(ω, ·)) satisfies the following property: Given (vε) with vε ∈ H1(Uε(ω)), if there
exist functions v+, v− and a subsequence (vεk) such that vεk ⇀ v± in H1(U±) as k → ∞, then

lim
k→∞

∫
Uεk

(ω)

∇wεk(ω, x)∇vεk(x) dx = 2γ(ω)

∫
U0

v+(x)− v−(x) dHN−1. (3.6)

The proof of Theorem 3.2 will be postponed to Section 6. With this theorem at our disposal, the proof
of the homogenization result is straightforward.

Proof of Theorem 3.1. We fix a realization ω ∈ Ω for which the existence of the sequence (wε(ω, ·)) in
Theorem 3.2 is guaranteed. For simplicity, in what follows we omit the dependence on ω. Choosing φ equal
to uε in (3.4) and using Poincaré’s Inequality, we obtain the a priori estimate

∥uε∥H1(Uε) ≤ C∥f∥L2(U),

where C is independent of ε and ω. Hence, the sequence (uε) is uniformly bounded in H1(U+) and H1(U−).
It follows from Rellich-Kondrachov’s Compactness Theorem that there exist functions u+, u−, and a subse-
quence (εk), all depending on ω, such that uεk → u± in L2(U±) and ∇uεk ⇀ ∇u± in H1(U±) as k → ∞.

Next, we prove that u± solves (3.5); we do it only for u+, the proof for u− being analogous. Let
φ ∈ C∞

c (U). We have∫
U+

∇u+∇φdx =
1

2

(∫
U+

∇u+∇φdx+

∫
U−

∇u−∇φdx

)
+

1

2

(∫
U+

∇u+∇φdx−
∫
U−

∇u−∇φdx

)
. (3.7)

By (3.4), we get ∫
U+

∇u+∇φdx+

∫
U−

∇u−∇φdx = lim
k→∞

∫
Uεk

∇uεk∇φdx =

∫
U

fφ dx. (3.8)

Moreover, by the strong L2(U±)-convergence of (wε) to ±1 we deduce that

lim
k→∞

∫
Uεk

(∇uεk∇φ)wεk dx =

∫
U+

∇u+∇φdx−
∫
U−

∇u−∇φdx,

while a simple manipulation of the terms also gives∫
Uεk

(∇uεk∇φ)wεk dx =

∫
Uεk

∇uεk∇(wεkφ) dx+

∫
Uεk

(∇wεk∇φ)uεk dx−
∫
Uεk

∇wεk∇(φuεk) dx. (3.9)

Using (3.4) again, along with the fact that wεkφ is an admissible test function, we can pass to the limit in
the first term on the right-hand side of (3.9) and get

lim
k→∞

∫
Uεk

∇uεk∇(wεkφ) dx = lim
k→∞

∫
U

f(wεkφ) dx =

∫
U+

fφ dx−
∫
U−

fφ dx, (3.10)

Furthermore, using the fact that ∇wε ⇀ 0 in L2(U ;RN ) and that (uεk) converges strongly in L2(U±) as
ε → 0, we also obtain

lim
k→∞

∫
Uεk

(∇wεk∇φ)uεk dx = 0.

To evaluate the limit of the last term on the right-hand side of (3.9), we invoke (3.6). To this end, set
vε := uεφ. Then vεk ⇀ v± in H1(U±) as k → ∞ with v± := u±φ. Therefore, by virtue of Theorem 3.2, we
get

lim
k→∞

∫
Uεk

∇wεk∇(uεkφ) dx = 2γ

∫
U0

(u+ − u−)φdHN−1. (3.11)
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Finally, by combining (3.7), (3.8), (3.10) and (3.11), we obtain∫
U+

∇u+∇φdx =

∫
U+

fφ dx− γ

∫
U0

(u+ − u−)φdHN−1. (3.12)

By the density of C∞
c (U) in H1

0 (U), we deduce that (3.12) holds for all φ ∈ H1
0 (U). In order to prove that

(3.12) holds also for test functions in H1(U+) that vanish on (∂U)+, it suffices to show that these can be
extended to test functions in H1

0 (U). But this easily follows from the fact that Σ intersects U transversely.
This concludes the proof of (3.5).

Lastly, since u+ and u− are uniquely determined by (3.5), we can actually deduce that the whole sequence
(uε) converges weakly to u± in H1(U±) as ε → 0, hence the claim.

4 Analysis close to the perforations

To prove Theorem 3.2, we will adapt the construction of the so-called oscillating test functions introduced in
the periodic setting (see [18, Lemma 3.1], [30, Lemma 2.2]) to the stochastic setting, in the spirit of Giunti,
Höfer and Velazquez. We observe that in the periodic setting the holes are well-separated on an ε-scale. This
fact plays a crucial role in the construction, since it allows the test functions to be defined locally around each
hole. However, in the stochastic setting, the centers of the holes are randomly distributed and their radii
are unbounded random variables. As a result, the holes overlap with probability one. Nevertheless, in this
section we will show that, thanks to the stochastic integrability assumption (3.1), the clusters of holes have
asymptotically vanishing capacities almost surely. In turn, this ensures that we can construct test functions
for which the L2-norm of the gradients vanish asymptotically in a suitable neighborhood of the clusters. In
other words, the formation of clusters does not prevent homogenization from occuring.

We now introduce some new notation. For Y ∈ MN−1 and (y, ρ) ∈ Y , we define

dY (y) = min{|y − y′| : (y′, ρ′) ∈ Y \ (y, ρ)}

if Y \ (y, ρ) is nonempty. Otherwise, we set dY (y) = ∞. In other words, dY (y) is the distance between y and
its closest neighbor in Y . We note that

B(ȳ1, dY (y1)/2) ∩B(ȳ2, dY (y2)/2) = ∅ (4.1)

for all (y1, ρ1), (y2, ρ2) ∈ Y with y1 ̸= y2.
Let M : (Ω,F ,P) → (MN−1,MN−1) be an m.p.p. and define Tε(ω) as in (3.2). For ω ∈ Ω and

(y, ρ) ∈ M(ω), we define the truncated radius

r(ω, y) := min

{
1

2
dM(ω)(y), 1

}
.

If εȳ1 and εȳ2 are the centers of two distinct holes in Tε(ω), then (4.1) implies

B(εȳ1, εr(ω, y1)) ∩B(εȳ2, εr(ω, y2)) = ∅. (4.2)

Given ε > 0, ω ∈ Ω, our first objective is to carefully distinguish isolated holes in Tε(ω) from clusters.

Definition 4.1. Let (y, ρ) ∈ M(ω) with εȳ ∈ U0. Then (y, ρ) is called ε-isolated if it satisfies the following
two conditions:

(i) 2ε
N−1
N−2 ρ < εr(ω, y),

(ii) If (y′, ρ′) ∈ M(ω) with εȳ′ ∈ U0 and y ̸= y′, then B
(
εȳ′, 2ε

N−1
N−2 ρ′

)
∩B(εȳ, εr(ω, y)) = ∅.

Otherwise (y, ρ) is called an ε-cluster point.
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εȳ

Figure 2: Illustrations of the balls B(εȳ, ε
N−1
N−2 ρ) (colored) and B(εȳ, εr(ω, y)) (dashed) for some points

(y, ρ) ∈ M(ω). All points in the first frame are ε-isolated, whereas all points in the second frame are ε-
cluster points. Note that the uppermost point and the rightmost point in the second frame satisfy (i) in
Definition 4.1, but fail to satisfy (ii).

Thus, a point (y, ρ) ∈ M(ω) with εȳ ∈ U0 is ε-isolated, if the ball B(εȳ, εr(ω, y)) separates the hole
centered at εȳ from the other holes in Tε(ω). We denote by Iε(ω) and Cε(ω) the set of ε-isolated and
ε-cluster points, respectively. We also define

TC
ε (ω) :=

⋃
(y,ρ)∈Cε(ω)

B
(
εȳ, ε

N−1
N−2 ρ

)
∩ U0,

Sε(ω) :=
⋃

(y,ρ)∈Cε(ω)

B
(
εȳ, 2ε

N−1
N−2 ρ

)
.

Hence, TC
ε (ω) is the subset of Tε(ω) that comprises the family of clusters. The set Sε(ω) functions as a layer

to separate Tε(ω) \ TC
ε (ω) and TC

ε (ω). Indeed, given ε > 0 and ω ∈ Ω, it is easily verified that

B(εȳ, εr(ω, y)) ∩ Sε(ω) = ∅ for all (y, ρ) ∈ Iε(ω). (4.3)

Now, we state the main result of this section.

Theorem 4.2. Let M : (Ω,F ,P) → (MN−1,MN−1) be a stationary marked point process with finite intensity
such that ∫ ∞

0

ρN−2 dλ(ρ) < ∞.

Then
lim
ε→0

Cap(TC
ε (ω), Sε(ω)) = lim

ε→0
LN (Sε(ω)) = 0 P-a.s.

The proof of Theorem 4.2 relies on the following proposition, whose proof we postpone to the end of this
section.

Proposition 4.3. Let M : (Ω,F ,P) → (MN−1,MN−1) be a stationary marked point process with finite
intensity such that ∫ ∞

0

ρN−2 dλ(ρ) < ∞.

Then
lim
ε→0

∑
(y,ρ)∈Cε(ω)

εN−1ρN−2 = 0 P-a.s.

12



Proof of Theorem 4.2. By the subadditivity and the scaling property of the capacity,

Cap(TC
ε (ω), Sε(ω)) ≤

∑
(y,ρ)∈Cε(ω)

Cap

(
B
(
εȳ, ε

N−1
N−2 ρ

)0
, Sε(ω)

)

≤
∑

(y,ρ)∈Cε(ω)

Cap

(
B
(
εȳ, ε

N−1
N−2 ρ

)0
, B
(
εȳ, 2ε

N−1
N−2 ρ

))

≤ C
∑

(y,ρ)∈Cε(ω)

(
ε

N−1
N−2 ρ

)N−2

= C
∑

(y,ρ)∈Cε(ω)

εN−1ρN−2.

Also

LN (Sε(ω)) ≤ C
∑

(y,ρ)∈Cε(ω)

(
ε

N−1
N−2 ρ

)N

= C
∑

(y,ρ)∈Cε(ω)

(
εN−1ρN−2

) N
N−2 ≤ C

 ∑
(y,ρ)∈Cε(ω)

εN−1ρN−2

 N
N−2

.

Hence the claim follows from Proposition 4.3.

Intuitively, clusters are formed by those holes that either have centers that are too close to each other or
radii that are too large. Therefore, to prove Proposition 4.3, we focus on such holes. For this, we introduce
a concept that will be used extensively in the sequel. Let δ > 0. We define a new marked point process
Mδ : (Ω,F ,P) → (MN−1,MN−1) as follows: given ω ∈ Ω, the point (y, ρ) belongs to Mδ(ω) if and only if
(y, ρ) ∈ M(ω) and

min

{
dM(ω)(y),

1

ρ

}
< δ.

We call Mδ the thinned process. The relevance of thinned processes in our analysis is mainly motivated by
the following result which is a corollary of Theorem 7.2 in the appendix. A further study of thinned processes
in a broader context can be found in Sections 7.2 and 7.3.

Lemma 4.4. Let M : (Ω,F ,P) → (MN−1,MN−1) be a stationary marked point process with finite intensity
such that ∫ ∞

0

ρN−2 dλ(ρ) < ∞.

Then
lim
δ→0

lim
ε→0

∑
(y,ρ)∈Mδ(ω)

ȳ∈ 1
εU

0

εN−1ρN−2 = 0 P-a.s.

Proof. Define g : R+ → [0,∞) by g(ρ) := ρN−2. The function g is locally bounded and λ-integrable. Hence,
Theorem 7.2 yields

lim
δ→0

lim
ε→0

1

HN−1
(
1
εU

0
) ∑

(y,ρ)∈Mδ(ω)

ȳ∈ 1
εU

0

ρN−2 = 0 P-a.s.

It is easy to see that ∑
(y,ρ)∈Mδ(ω)

ȳ∈ 1
εU

0

εN−1ρN−2 =
HN−1(U0)

HN−1
(
1
εU

0
) ∑

(y,ρ)∈Mδ(ω)

ȳ∈ 1
εU

0

ρN−2.

Thus, the lemma is proved.
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The proof of Proposition 4.3 follows from a number of intermediate results. Namely, we will establish
Proposition 4.3 in two steps by proving separately that

lim
ε→0

∑
(y,ρ)∈Ci

ε(ω)

εN−1ρN−2 = 0 P-a.s. (4.4)

for i = 1, 2, where we define

C1
ε (ω) :=

{
(y, ρ) ∈ Cε(ω) : 2ε

N−1
N−2 ρ ≥ εr(ω, y)

}
,

C2
ε (ω) := Cε(ω) \ C1

ε (ω)

for all ε > 0 and ω ∈ Ω. We note that C1
ε (ω) consists of those points in Cε(ω) that violate condition (i) in

Definition 4.1, whereas C2
ε (ω) consists of those points that only violate condition (ii).

The following result deals with the points in C1
ε (ω).

Lemma 4.5. Let M : (Ω,F ,P) → (MN−1,MN−1) be a stationary marked point process with finite intensity
such that ∫ ∞

0

ρN−2 dλ(ρ) < ∞.

Then
lim
ε→0

∑
(y,ρ)∈C1

ε (ω)

εN−1ρN−2 = 0 P-a.s.

Proof. Let ε > 0 and ω ∈ Ω. If (y, ρ) ∈ C1
ε (ω), then r(ω, y)/ρ ≤ 2ε1/(N−2) by definition. Consequently, we

must either have

r(ω, y) ≤
(
2ε

1
N−2

) 1
2

or
1

ρ
≤
(
2ε

1
N−2

) 1
2

.

If ε is small enough and δ > 0, then this implies

min

{
dM(ω)(y),

1

ρ

}
< δ,

that is, we have (y, ρ) ∈ Mδ(ω). Therefore,

lim sup
ε→0

∑
(y,ρ)∈C1

ε (ω)

εN−1ρN−2 ≤ lim sup
ε→0

∑
(y,ρ)∈Mδ(ω)

ȳ∈ 1
εU

0

εN−1ρN−2

Since ε vanishes, we can choose δ arbitrarily small, so that

lim
ε→0

∑
(y,ρ)∈C1

ε (ω)

εN−1ρN−2 = lim
δ→0

lim
ε→0

∑
(y,ρ)∈Mδ(ω)

ȳ∈ 1
εU

0

εN−1ρN−2 = 0 P-a.s.,

where the last equality follows from Lemma 4.4.

We will show that the analogous result for C2
ε (ω) is a consequence of Lemma 4.5. The key observation

is that the points of C2
ε (ω) are clustered around the points of C1

ε (ω).

Lemma 4.6. Let ε > 0 and ω ∈ Ω. For all (y, ρ) ∈ C2
ε (ω), there exists (y′, ρ′) ∈ C1

ε (ω) such that

B(εȳ, εr(ω, y)) ⊂ B
(
εȳ′, 6ε

N−1
N−2 ρ′

)
. (4.5)

Proof. Assume (y, ρ) ∈ C2
ε (ω). As (y, ρ) violates condition (ii) in Definition 4.1, there exists a point (y′, ρ′) ∈

M(ω) with εȳ′ ∈ U0 such that

B
(
εȳ′, 2ε

N−1
N−2 ρ′

)
∩B(εȳ, εr(ω, y)) ̸= ∅ ⇐⇒ ε|ȳ − ȳ′| < εr(ω, y) + 2ε

N−1
N−2 ρ′. (4.6)
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In fact, the point (y′, ρ′) belongs to C1
ε (ω). Otherwise, we would have the inclusion

B
(
εȳ′, 2ε

N−1
N−2 ρ′

)
⊂ B(εȳ′, εr(ω, y′)),

which contradicts (4.6) by (4.2). Since r(ω, y) ≤ |y − y′|/2, equation (4.6) implies ε|ȳ − ȳ′| < 4ε
N−1
N−2 ρ′.

Therefore,

B(εȳ, εr(ω, y)) ⊂ B
(
εȳ′, 6ε

N−1
N−2 ρ′

)
.

The following lemma deals with the points in C2
ε (ω).

Lemma 4.7. Let M : (Ω,F ,P) → (MN−1,MN−1) be a stationary marked point process with finite intensity
such that ∫ ∞

0

ρN−2 dλ(ρ) < ∞.

Then
lim
ε→0

∑
(y,ρ)∈C2

ε (ω)

εN−1ρN−2 = 0 P-a.s.

Proof. Thanks to Lemma 4.4, it is enough to prove

lim
ε→0

∑
(y,ρ)∈C2

ε (ω)\Mδ(ω)

εN−1ρN−2 = 0 P-a.s.

for all δ > 0. Let ε > 0 and ω ∈ Ω. As ρ ≤ 1/δ for all (y, ρ) ∈ M(ω) \Mδ(ω), we observe that∑
(y,ρ)∈C2

ε (ω)\Mδ(ω)

εN−1ρN−2 ≤ εN−1

δN−2
card

(
C2

ε (ω) \Mδ(ω)
)
. (4.7)

We estimate this cardinality. Fixing ω for the moment, let us define

A(y′, ρ′) :=
{
(y, ρ) ∈ C2

ε (ω) \Mδ(ω) : B(εȳ, εr(ω, y)) ⊂ B
(
εȳ′, 6ε

N−1
N−2 ρ′

)}
.

It follows from Lemma 4.6 that

card
(
C2

ε (ω) \Mδ(ω)
)
≤

∑
(y′,ρ′)∈C1

ε (ω)

card(A(y′, ρ′)). (4.8)

To estimate card(A(y′, ρ′)), we compute the sum of the cross sectional areas of the balls B(εȳ, εr(ω, y)) for
(y, ρ) ∈ A(y′, ρ′). Since the balls are disjoint, we get∑

(y,ρ)∈A(y′,ρ′)

εN−1r(ω, y)N−1 ≤ 6N−1ε
(N−1)2

N−2 (ρ′)N−1.

As r(ω, y) ≥ δ for (y, ρ) ∈ A(y′, ρ′), we conclude that

card(A(y′, ρ′)) ≤
(
6

δ

)N−1

ε
N−1
N−2 (ρ′)N−1.

Combining (4.7) and (4.8) finally yields

∑
(y,ρ)∈C2

ε (ω)\Mδ(ω)

εN−1ρN−2 ≤ C(δ)
∑

(y′,ρ′)∈C1
ε (ω)

(εN−1(ρ′)N−2)
N−1
N−2 ≤ C(δ)

 ∑
(y′,ρ′)∈C1

ε (ω)

εN−1(ρ′)N−2


N−1
N−2

Thus, we are done by Lemma 4.5.

Proof of Proposition 4.3. The proof follows as an immediate corollary of Lemma 4.5 and Lemma 4.7.

15



5 The oscillating test functions

In this section, we give an explicit construction of the oscillating test functions (wε(ω, ·)) introduced in
Theorem 3.2.

5.1 The cell problem

The idea behind the construction of the oscillating test functions is to solve a PDE, the so-called cell problem,
around each isolated hole. For R > 1, we define

DR := B(0, R)+ ∪B(0, R)− ∪B(0, 1)0.

Let ηR be the unique solution of the boundary value problem
−∆ηR = 0 in DR,

ηR = ±1 on (∂B(0, R))±,

∇ηR · ν = 0 on B(0, R)0 \B(0, 1)0.

(5.1)

We would like to remark that, in this problem, the domain where the cell problem is solved depends on a
positive parameter R. The reason for this dependence is that, while the radius of the perforations is of the

order ε
N−1
N−2 , the typical distance between the centers of two isolated holes is of the order ε.

The weak formulation of (5.1) is given by
ηR ∈ H1(DR), ηR = ±1 on (∂B(0, R))±,∫

DR

∇ηR∇φdx = 0 for all φ ∈ H1(DR), φ = 0 on ∂B(0, R).
(5.2)

We prove some simple properties of ηR.

Proposition 5.1. Let R > 1. Then

ηR(x
′, xN ) = −ηR(x

′,−xN ) for all x = (x′, xN ) ∈ DR, (5.3)

−1 ≤ ηR ≤ 0 LN -a.e. in B(0, R)−, 0 ≤ ηR ≤ 1 LN -a.e. in B(0, R)+. (5.4)

Proof. It can be easily checked that the function (x′, xN ) 7→ −η(x′,−xN ) defines a solution of (5.1), where
x = (x′, xN ) ∈ DR. Equation (5.3) then follows from the uniqueness of the solution for (5.1). We note that
(5.3) implies that ηR = 0 in B(0, 1)0. Now, we define a new function η̃R in DR by

η̃R(x) :=

{
max{ηR(x), 0}, if xN ≥ 0

min{ηR(x), 0}, if xN < 0

As ηR = 0 in B(0, 1)0, it is not difficult to see that η̃R ∈ H1(DR) and that ηR − η̃R is an admissible test
function in (5.2). Hence, we obtain

0 =

∫
DR

∇ηR∇(ηR − η̃R) dx =

∫
{η+

R<0}∪{η−
R>0}

|∇ηR|2 dx.

As a result, we get that necessarily ηR ≤ 0 LN -a.e. in B(0, R)− and 0 ≤ ηR LN -a.e. in B(0, R)+. The other
two bounds in (5.4) can be proved analogously, this time testing (5.2) with max{ηR−1, 0} and min{ηR+1, 0},
respectively.

Proposition 5.2. Let R > 1. Then 1−|ηR| ∈ H1
0 (B(0, R)) and it is a weak solution of the capacity problem

−∆v = 0 in B(0, R),

v = 0 on ∂B(0, R),

v = 1 on B(0, 1)
0
.

(5.5)
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Proof. It follows from (5.3) that |ηR| belongs to H1(B(0, R)) and that ηR = 0 in B(0, 1)0. We show that

|ηR| is a harmonic function in B(0, R) \ B(0, 1)
0
. Let φ ∈ H1

0 (B(0, R) \ B(0, 1)
0
). We define φ1 and φ2 by

an “odd extension” of φ+ and φ−. In other words,

φ1(x
′, xN ) :=

{
φ+(x′, xN ), if xN ≥ 0,

−φ+(x′,−xN ), if xN ≤ 0.
φ2(x

′, xN ) :=

{
−φ−(x′,−xN ), if xN ≥ 0,

φ−(x′, xN ), if xN ≤ 0.

for all x ∈ DR. Then φ1 and φ2 are both admissible test functions in (5.2). Hence,∫
DR

∇ηR∇φ1 dx =

∫
DR

∇ηR∇φ2 dx = 0.

On the other hand, equation (5.3) yields∫
B(0,R)+

∇ηR∇φdx =
1

2

∫
DR

∇ηR∇φ1 dx = 0,∫
B(0,R)−

∇ηR∇φdx =
1

2

∫
DR

∇ηR∇φ2 dx = 0.

Thus, (5.4) implies∫
B(0,R)

∇|ηR|∇φdx =

∫
B(0,R)+

∇ηR∇φdx−
∫
B(0,R)+

∇ηR∇φ2 dx = 0.

With this, we conclude that |ηR| is harmonic. Since 1 − |ηR| clearly satisfies the boundary conditions in
(5.5), we are done.

Proposition 5.3. Let R > 2. Then∫
B(0,R)±

|∇ηR|2 dx =
1

2
Cap(B(0, 1)0, B(0, R)), (5.6)∫

B(0,R)±
| ± 1− ηR|2 dx ≤ CR2, (5.7)

where C is independent of R.

Proof. Set vR := 1 − |ηR|. As vR is the solution of (5.5), it is the minimizer of the Dirichlet energy among

all functions in H1(B(0, R) \B(0, 1)
0
) sharing the same boundary values. Hence, we get∫

DR

|∇ηR|2 dx =

∫
B(0,R)

|∇vR|2 dx = Cap(B(0, 1)0, B(0, R))

from the definition of capacity. Moreover, it is an easy consequence of (5.3) that∫
B(0,R)+

|∇ηR|2 dx =

∫
B(0,R)−

|∇ηR|2 dx =
1

2
Cap(B(0, 1)0, B(0, R)).

Finally, applying Poincaré’s inequality to vR and using (5.4) gives∫
B(0,R)+

|1− ηR|2 dx+

∫
B(0,R)−

|1 + ηR|2 dx

=

∫
B(0,R)

|vR|2 dx ≤ CR2

∫
B(0,R)

|∇vR|2 dx ≤ CR2 Cap(B(0, 1)0, B(0, 2))

for all R > 2.

Corollary 5.4. Let R > 1. Then

inf

{∫
DR

|∇v|2 dx : v ∈ H1(DR), v = ±1 on (∂B(0, R))±
}

= Cap
(
B(0, 1)0, B(0, R)

)
.

Proof. The result is a direct consequence of Proposition 5.3 and the fact that ηR is the unique solution of
the corresponding Euler-Lagrange equation.
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5.2 Construction of the random oscillating test functions

We are now in position to define the oscillating test functions. For the remainder of this section, we fix a
stationary m.p.p. M : (Ω,F ,P) → (MN−1,MN−1) with finite intensity such that∫ ∞

0

ρN−2 dλ(ρ) < ∞.

Let ε > 0 and ω ∈ Ω be fixed. Recall that Iε(ω) and Cε(ω), defined in Section 4, are the set of ε-isolated
and the set of ε-cluster points, respectively. Recall also that

TC
ε (ω) =

⋃
(y,ρ)∈Cε(ω)

B
(
εȳ, ε

N−1
N−2 ρ

)
∩ U0,

Sε(ω) =
⋃

(y,ρ)∈Cε(ω)

B
(
εȳ, 2ε

N−1
N−2 ρ

)
.

Given an ε-isolated point (y, ρ) ∈ Iε(ω), we define wε(ω, ·) in B(εȳ, εr(ω, y)) by

wε(ω, x) := ηR

(
x− εȳ

ε
N−1
N−2 ρ

)
, R :=

r(ω, y)

ε
1

N−2 ρ
. (5.8)

This defines wε(ω, ·) uniquely in ⋃
(y,ρ)∈Iε(ω)

B(εȳ, εr(ω, y)),

as the balls are pairwise disjoint. Next, we define wε(ω, ·) in Sε(ω). Choose a function ζε ∈ C∞
c (Sε(ω); [0, 1])

such that ζε = 1 in TC
ε (ω) and such that∫

Sε(ω)

|∇ζε|2 dx ≤ 2Cap
(
TC
ε (ω), Sε(ω)

)
.

Set wε(ω, ·) := 1− ζε in Sε(ω)
+ and wε(ω, ·) := ζε − 1 in Sε(ω)

−. Then wε(ω, ·) = ±1 on (∂Sε(ω))
± and∫

Sε(ω)

|∇wε(ω, x)|2 dx ≤ 2Cap
(
TC
ε (ω), Sε(ω)

)
. (5.9)

Note that the definition of wε(ω, ·) in Sε(ω) does not interfere with the definition in (5.8) due to (4.3). We
complete the definition of wε(ω, ·) by setting

wε(ω, x) :=

{
1, if xN > 0,

−1, if xN < 0

for

x ∈ RN \

Σ ∪ Sε(ω) ∪
⋃

(y,ρ)∈Iε(ω)

B(εȳ, εr(ω, y))

 .

With this definition, we can easily verify that wε(ω, ·) ∈ H1((RN )+ ∪ (RN )− ∪Tε(ω)) and that −1 ≤ wε ≤ 1
LN -a.e. in RN .

Having defined the oscillating test functions, our next goal is to prove that wε(ω, ·) ⇀ ±1 in H1(U±)
P-a.s. as ε → 0. We start with the computation of the L2-norm of the gradients, for which we rely heavily
on the Ergodic Theorem for marked point processes given by Theorem 2.10. We introduce the shorthand
notation

σ(R) := Cap
(
B(0, 1)0, B(0, R)

)
, σ(∞) := Cap(B(0, 1)0,RN ). (5.10)

Note that σ is monotonically decreasing in R and that limR→∞ σ(R) = infR>0 σ(R) = σ(∞). Recall also
the definition of γ given by

γ(ω) =
1

4
σ(∞)

∫ ∞

0

ρN−2 dξ(ω, ρ)

for all ω ∈ Ω.
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Lemma 5.5. Let O ⊂ Σ be a Borel measurable set in RN whose boundary in the relative topology of Σ is
HN−1-negligible. Then

lim
ε→0

∑
(y,ρ)∈Iε(ω)

ȳ∈ 1
εO

∫
B(εȳ,εr(ω,y))±

|∇wε(ω, x)|2 dx = 2γ(ω)HN−1(U0 ∩O) P-a.s.

Proof. Without loss of generality, we prove the claim only in the upper half-space. Let ε > 0 and ω ∈ Ω. If
(y, ρ) ∈ Iε(ω), then after a change of variables, it follows from (5.8) and Proposition 5.3 that∫

B(εȳ,εr(ω,y))+
|∇wε(ω, x)|2 dx =

1

2
εN−1ρN−2σ

(
r(ω, y)

ε
1

N−2 ρ

)
. (5.11)

Using the monotonicity of σ, we obtain the simple lower bound

∑
(y,ρ)∈Iε(ω)

ȳ∈ 1
εO

∫
B(εȳ,εr(ω,y))+

|∇wε(ω, x)|2 dx >
1

2
σ(∞)

∑
(y,ρ)∈Iε(ω)

ȳ∈ 1
εO

εN−1ρN−2

≥ 1

2
σ(∞)

∑
(y,ρ)∈M(ω)

ȳ∈ 1
ε (U

0∩O)

εN−1ρN−2 − 1

2
σ(∞)

∑
(y,ρ)∈Cε(ω)

ȳ∈ 1
εU

0

εN−1ρN−2. (5.12)

An application of Proposition 4.3 gives

lim
ε→0

∑
(y,ρ)∈Cε(ω)

ȳ∈ 1
εU

0

εN−1ρN−2 = 0 P-a.s.

On the other hand, applying Theorem 2.10 with g(ρ) = ρN−2, where we use assumption (3.1), yields

lim
ε→0

∑
(y,ρ)∈M(ω)

ȳ∈ 1
ε (U

0∩O)

εN−1ρN−2 = HN−1(U0 ∩O)

∫ ∞

0

ρN−2 dξ(ω, ρ) P-a.s.

Consequently, equation (5.12) delivers the asymptotic lower bound

lim inf
ε→0

∑
(y,ρ)∈Iε(ω)

ȳ∈ 1
εO

∫
B(εȳ,εr(ω,y))+

|∇wε(ω, x)|2 dx ≥ 2γ(ω)HN−1(U0 ∩O) P-a.s.

Let δ > 0. To obtain an upper bound, we initially focus on points in Iε(ω) \Mδ(ω), where Mδ is the thinned
process. Let R > 0. If (y, ρ) ∈ Iε(ω) \Mδ(ω), then

r(ω, y)

ε
1

N−2 ρ
>

δ2

ε
1

N−2

> R if ε <

(
δ2

R

)N−2

.

Thus, we have

∑
(y,ρ)∈Iε(ω)\Mδ(ω)

ȳ∈ 1
εO

∫
B(εȳ,εr(ω,y))+

|∇wε(ω, x)|2 dx

<
∑

(y,ρ)∈Iε(ω)\Mδ(ω)
ȳ∈ 1

εO

1

2
σ(R)εN−1ρN−2 ≤

∑
(y,ρ)∈M(ω)

ȳ∈ 1
ε (U

0∩O)

1

2
σ(R)εN−1ρN−2
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for small enough ε. Another application of Theorem 2.10 yields

lim sup
ε→0

∑
(y,ρ)∈Iε(ω)\Mδ(ω)

ȳ∈ 1
εO

∫
B(εȳ,εr(ω,y))+

|∇wε(ω, x)|2 dx ≤ σ(R)

σ(∞)
2γ(ω)HN−1(U0 ∩O) P-a.s.

As the choice of R is arbitrary and σ(R) → σ(∞) as R → ∞, we deduce that

lim sup
ε→0

∑
(y,ρ)∈Iε(ω)\Mδ(ω)

ȳ∈ 1
εO

∫
B(εȳ,εr(ω,y))+

|∇wε(ω, x)|2 dx ≤ 2γ(ω)HN−1(U0 ∩O) P-a.s. (5.13)

for all δ > 0. To conclude the proof, we need to bound (5.11) for points in Iε(ω) ∩ Mδ(ω). By the first
property of ε-isolated points in Definition 4.1, we know that

r(ω, y)

ε
1

N−2 ρ
> 2 for all (y, ρ) ∈ Iε(ω). (5.14)

Therefore, ∑
(y,ρ)∈Iε(ω)∩Mδ(ω)

ȳ∈ 1
εO

∫
B(εȳ,εr(ω,y))+

|∇wε(ω, x)|2 dx <
∑

(y,ρ)∈Iε(ω)∩Mδ(ω)
ȳ∈ 1

εO

1

2
σ(2)εN−1ρN−2. (5.15)

It follows from Lemma 4.4 that

lim
δ→0

lim
ε→0

∑
(y,ρ)∈Iε(ω)∩Mδ(ω)

ȳ∈ 1
εO

εN−1ρN−2 ≤ lim
δ→0

lim
ε→0

∑
(y,ρ)∈Mδ(ω)

ȳ∈ 1
εU

0

εN−1ρN−2 = 0 P-a.s. (5.16)

Finally, by combining (5.13), (5.15) and (5.16) we are able to get

lim sup
ε→0

∑
(y,ρ)∈Iε(ω)

ȳ∈ 1
εO

∫
B(εȳ,εr(ω,y))+

|∇wε(ω, x)|2 dx ≤ 2γ(ω)HN−1(U0 ∩O) P-a.s.

This concludes the proof.

Using the previous lemma, we can localize the limit of the L2-norm of the gradients.

Proposition 5.6. For P-a.e. ω ∈ Ω and all φ± ∈ C0(U±), we have

lim
ε→0

∫
U±

|∇wε(ω, x)|2φ±(x) dx = 2γ(ω)

∫
U0

φ±(x) dHN−1(x) P-a.s. (5.17)

In particular,

lim
ε→0

∫
U±

|∇wε(ω, x)|2 dx = 2γ(ω)HN−1(U0) P-a.s.

Proof. As in the proof of the previous lemma, we prove the claim only in the upper half-space. We start by
showing that

lim
ε→0

∫
Q+

|∇wε(ω, x)|2 dx = 2γ(ω)HN−1(U0 ∩Q) P-a.s. (5.18)

for any closed cube Q ⊂ RN that either has its center on the hyperplane Σ or is disjoint from Σ. Let ε > 0
and ω ∈ Ω. As ∇wε(ω, ·) is nonzero only around the holes, we can write∫

Q+

|∇wε(ω, x)|2 dx =

∫
Q+∩Sε(ω)

|∇wε(ω, x)|2 dx+
∑

(y,ρ)∈Iε(ω)

∫
Q+∩B(εȳ,εr(ω,y))

|∇wε(ω, x)|2 dx. (5.19)
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We estimate the first integral on the right-hand side by using (5.9)∫
Q+∩Sε(ω)

|∇wε(ω, x)|2 dx ≤ 2Cap
(
TC
ε (ω), Sε(ω)

)
.

As a result of Theorem 4.2, we see that

lim
ε→0

∫
Q+∩Sε(ω)

|∇wε(ω, x)|2 dx = 0 P-a.s.

If Q is disjoint from Σ, then the sum on the right-hand side of (5.19) is zero for small enough ε, as r(ω, y) ≤ 1
for all (y, ρ) ∈ M(ω). In this case, the limit in (5.18) is proved since both sides equal zero.

Let us now assume that Q has its center on Σ. To deal with the second term on the right-hand side
of (5.19), we choose closed cubes Qa, Qb having the same center as Q such that Qa ⊊ Q ⊊ Qb. If
Q+ ∩ B(εȳ, εr(ω, y)) ̸= ∅ for some (y, ρ) ∈ Iε(ω), then εȳ ∈ Q0

b for small enough ε. Similarly, if εȳ ∈ Q0
a,

then B(εȳ, εr(ω, y))+ ⊂ Q+ for small enough ε. This allows us to write the inequalities∑
(y,ρ)∈Iε(ω)

ȳ∈ 1
εQ

0
a

∫
B(εȳ,εr(ω,y))+

|∇wε(ω, x)|2 dx ≤
∑

(y,ρ)∈Iε(ω)

∫
Q+∩B(εȳ,εr(ω,y))

|∇wε(ω, x)|2 dx

≤
∑

(y,ρ)∈Iε(ω)

ȳ∈ 1
εQ

0
b

∫
B(εȳ,εr(ω,y))+

|∇wε(ω, x)|2 dx.
(5.20)

for small enough ε. Applying Lemma 5.5 immediately gives

2γ(ω)HN−1(U0 ∩Qa) ≤ lim inf
ε→0

∑
(y,ρ)∈Iε(ω)

∫
Q+∩B(εȳ,εr(ω,y))

|∇wε(ω, x)|2 dx

≤ lim sup
ε→0

∑
(y,ρ)∈Iε(ω)

∫
Q+∩B(εȳ,εr(ω,y))

|∇wε(ω, x)|2 dx ≤ 2γ(ω)HN−1(U0 ∩Qb) P-a.s.

Since HN−1(U0 ∩Qa) and HN−1(U0 ∩Qb) can be made arbitrarily close to HN−1(U0 ∩Q), we conclude the
proof of (5.18).

Having established (5.18), the proof of (5.17) follows easily by approximating U± with cubes and using
the continuity of φ.

To conclude the section, we prove the convergence of (wε(ω, ·)) for P-almost every ω ∈ Ω.

Proposition 5.7. The sequence (wε(ω, ·)) converges weakly in H1(U±) to ±1 P-a.s. as ε → 0.

Proof. We consider only the upper half-space as usual. Let ε > 0 and ω ∈ Ω be fixed. Since wε(ω, ·) differs
from 1 only around the holes, we can write∫

U+

|1− wε(ω, x)|2 dx ≤
∫
Sε(ω)+

|1− wε(ω, x)|2 dx+
∑

(y,ρ)∈Iε(ω)

∫
B(εȳ,εr(ω,y))+

|1− wε(ω, x)|2 dx.

Since 0 ≤ wε(ω, ·) ≤ 1 LN -a.e. in U+, Theorem 4.2 implies

lim sup
ε→0

∫
Sε(ω)+

|1− wε(ω, x)|2 dx ≤ lim sup
ε→0

LN (Sε(ω)) = 0 P-a.s.

Let (y, ρ) ∈ Iε(ω). Applying Proposition 5.3 to (5.8) with a change of variables gives the estimate∫
B(εȳ,εr(ω,y))+

|1− wε(ω, x)|2 dx ≤ C(εr(ω, y))2
∫
B(εȳ,εr(ω,y))

|∇wε(ω, x)|2 dx.
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We sum over all points in Iε(ω) and use Lemma 5.5 to obtain

lim sup
ε→0

∑
(y,ρ)∈Iε(ω)

∫
B(εȳ,εr(ω,y))+

|1− wε(ω, x)|2 dx

≤ lim sup
ε→0

Cε2
∑

(y,ρ)∈Iε(ω)

∫
B(εȳ,εr(ω,y))+

|∇wε(ω, x)|2 dx = 0 P-a.s..

Hence, we have shown that wε(ω, ·) → 1 in L2(U+) P-a.s. as ε → 0. The weak convergence in H1(U+)
follows from Proposition 5.6, which implies that (∇wε(ω, ·)) is P-a.s. bounded in L2(U+;RN ).

5.3 A special case of Theorem 3.2

In the last section, we constructed the oscillating test functions (wε(ω, ·)) for all ω ∈ Ω and proved their
convergence for P-a.e ω ∈ Ω in Proposition 5.7. In this section, we shall prove that the sequence satisfies
a special case of the property stated in (3.6) P-almost surely. This will be an important ingredient in the
proof of the general case. Our main result is the following proposition.

Proposition 5.8. For P-a.e. ω ∈ Ω, the sequence (wε(ω, ·)) satisfies the following property: Given (vε) with
vε ∈ H1(Uε(ω)), if there exists a subsequence (vεk) such that vεk ⇀ 0 in H1(U±) as k → ∞, then

lim
k→∞

∫
Uεk

(ω)

∇wεk(ω, x)∇vεk(x) dx = 0.

For ω ∈ Ω, let us define O(ω) to be the set of all sequences (w̃ε) with w̃ε ∈ H1(Uε(ω)) such that w̃ε ⇀ ±1
in H1(U±) as ε → 0. By Proposition 5.7, we know that (wε(ω, ·)) ∈ O(ω) P-a.s. We shall deduce Proposition
5.8 from a minimization property of the oscillating test functions, which we state in the following proposition.
The proof of Proposition 5.9 is postponed to the end of this section.

Proposition 5.9. For P-a.e. ω ∈ Ω, we have

lim inf
ε→0

∫
Uε(ω)

|∇wε(ω, x)|2 dx ≤ lim inf
ε→0

∫
Uε(ω)

|∇w̃ε(x)|2 dx (5.21)

for all (w̃ε) ∈ O(ω).

Proof of Proposition 5.8. Fix an ω ∈ Ω for which (wε(ω, ·)) ∈ O(ω) and for which (5.21) holds. As ω is fixed,
we omit it from the notation. Assume (vε) is a sequence with vε ∈ H1(Uε) such that vε ⇀ 0 in H1(U±) as
ε → 0. Clearly, the sequence (wε + tvε) lies in O(ω) for all t > 0. Hence, Proposition 5.9 implies

lim inf
ε→0

∫
Uε

(|∇(wε + tvε)|2 − |∇wε|2) dx ≥ 0. (5.22)

Since

∇wε∇vε =
1

2t

(
|∇(wε + tvε)|2 − |∇wε|2 − t2|∇vε|2

)
,

invoking (5.22), we get

lim inf
ε→0

∫
Uε

∇wε∇vε dx ≥ lim inf
ε→0

1

2t

∫
Uε

(|∇(wε + tvε)|2 − |∇wε|2) dx− Ct

2
≥ −Ct

2
,

where C > 0 is chosen such that supε ∥∇vε∥L2(U ;RN ) ≤ C. Letting t → 0 yields

lim inf
ε→0

∫
Uε

∇wε∇vε dx ≥ 0.

Replacing vε by −vε provides also the reverse inequality.

22



Given a sequence (vε) for which only a subsequence (vεk) converges weakly to 0 in H1(U±) as k → ∞,
we define

ṽε :=

{
vεk , if ε = εk for some k ∈ N,
1− |wε(ω, ·)|, otherwise.

Then ṽε ⇀ 0 in H1(U±) as ε → 0. Hence, we can apply the argument given above to conclude that

lim
k→∞

∫
Uεk

∇wεk∇vεk dx = 0.

Our goal for the remainder of this section is to prove Proposition 5.9. As we have seen in Proposition
5.6,

lim
ε→0

∫
Uε(ω)

|∇wε(ω, x)|2 dx = 4γ(ω)HN−1(U0) P-a.s.

Therefore, Proposition 5.9 is equivalent to: for P-a.e. ω ∈ Ω,

4γ(ω)HN−1(U0) ≤ lim inf
ε→0

∫
Uε(ω)

|∇w̃ε(x)|2 dx

for all (w̃ε) ∈ O(ω). To understand the validity of this statement intuitively, we consider an isolated point
(y, ρ) ∈ Iε(ω) for some ε > 0 and ω ∈ Ω. As a consequence of Corollary 5.4, we observe that

inf
v

∫
εȳ+ε

N−1
N−2 ρDR

|∇v|2 dx = εN−1ρN−2 Cap(B(0, 1)0, B(0, R)) = εN−1ρN−2σ(R), (5.23)

where

R :=
r(ω, y)

ε
1

N−2 ρ
,

and v ranges over functions inH1(εȳ+ε
N−1
N−2 ρDR) that assume the values±1 on the boundary (∂B(εȳ, εr(ω, y)))±.

Let (w̃ε) ∈ O(ω). Assuming w̃ε is close to ±1 on the boundary (∂B(εȳ, εr(ω, y)))±, we expect its Dirichlet
energy in B(εȳ, εr(ω, y)) to be bounded from below by

εN−1ρN−2σ(R) > εN−1ρN−2σ(∞)

up to some small error. If we sum up the approximate lower bounds for each (y, ρ) ∈ Iε(ω), we obtain∑
(y,ρ)∈Iε(ω)

∫
B(εȳ,εr(ω,y))

|∇w̃ε|2 dx ≳ σ(∞)
∑

(y,ρ)∈Iε(ω)

εN−1ρN−2 ≈ 4γ(ω)HN−1(U0),

where the last approximation can be justified by the ergodic theorem.
In order to make the intuitive argument above rigorous, we shall show that if the Dirichlet energy of w̃ε

around an ε-isolated point is smaller than the expected lower bound (5.23), then w̃ε is not sufficiently close
to ±1 around that point. We state the result in rescaled form.

Lemma 5.10. Let 0 < θ < 1. There exist R0 > 1 and c > 0, depending only on θ and N , such that if∫
DR

|∇v|2 dx < θσ(R),

then ∫
B(0,R)+

|1− v|2
∗
dx+

∫
B(0,R)−

|1 + v|2
∗
dx ≥ cLN (B(0, R)) (5.24)

for all R ≥ R0, v ∈ H1(DR), where 2∗ = 2N/(N − 2).
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Proof. Suppose (5.24) is false. Then, there exist an increasing sequence (Rk) of positive numbers and a
sequence of functions (vk) with vk ∈ H1(DRk

) such that∫
DRk

|∇vk|2 dx < θσ(Rk), (5.25)∫
B(0,Rk)+

|1− vk|2
∗
dx+

∫
B(0,Rk)−

|1 + vk|2
∗
dx <

1

k
LN (B(0, Rk)). (5.26)

For each k, set

v̄k(x
′, xN ) :=

vk(x
′, xN )− vk(x

′,−xN )

2
.

for x = (x′, xN ) ∈ DRk
. By definition, v̄k is odd in the last variable, and |v̄k| belongs to H1(B(0, Rk)). For

each k, we now consider the function ṽk := 1− |v̄k|. It is easy to see that ṽk = 1 in B(0, 1)0. By convexity,
the estimate in (5.25) carries over to ṽk:∫

B(0,Rk)

|∇ṽk|2 dx =

∫
B(0,Rk)

|∇v̄k|2 dx ≤
∫
DRk

|∇vk|2 dx < θσ(Rk). (5.27)

Similarly, equation (5.26) implies∫
B(0,Rk)

|ṽk|2
∗
dx ≤

∫
B(0,Rk)+

|1− v̄k|2
∗
dx+

∫
B(0,Rk)−

|1 + v̄k|2
∗
dx

≤
∫
B(0,Rk)+

|1− vk|2
∗
dx+

∫
B(0,Rk)−

|1 + vk|2
∗
dx <

1

k
LN (B(0, Rk)). (5.28)

Truncating the functions at 1 and −1 if necessary, we can assume without loss of generality that −1 ≤ ṽk ≤ 1
in B(0, Rk). Consequently, (ṽk) is uniformly bounded in the H1-norm in any compact domain, thanks
to (5.27). Hence, we can apply Rellich-Kondrachov’s Compactness Theorem in an increasing sequence
of sufficiently regular subsets of RN to obtain a function ṽ ∈ W 1,1

loc (RN ) with ∇ṽ ∈ L2(RN ;RN ), and a
subsequence, still denoted by (ṽk) such that

ṽk → ṽ pointwise LN -a.e. in RN , ∇ṽk ⇀ ∇ṽ in L2(RN ;RN ),

where we extend ṽk and ∇ṽk by 0 for both convergences. Our goal is to show that ṽ is actually L2∗ -
integrable. By Poincaré’s Inequality for the pair of exponents (2∗, 2) [25, Theorem 8.12], there exists a
constant C, depending only on N , such that∫

B(0,Rk)

|ṽk − (ṽk)B(0,Rk)|
2∗ dx ≤ C

∫
B(0,Rk)

|∇ṽk|2 dx, (5.29)

where (ṽk)B(0,Rk) denotes the average of ṽk over B(0, Rk). On the other hand, Hölder’s inequality and (5.28)
yield

|(ṽk)B(0,Rk)| =

∣∣∣∣∣ 1

LN (B(0, Rk))

∫
B(0,Rk)

ṽk dx

∣∣∣∣∣ ≤
(

1

LN (B(0, Rk))

∫
B(0,Rk)

|ṽk|2
∗
dx

) 1
2∗

≤ 1

k
1
2∗

.

It follows that limk→∞(ṽk)B(0,Rk) = 0. We can now apply Fatou’s lemma in (5.29) and use (5.27) to obtain∫
RN

|ṽ|2
∗
dx ≤ lim inf

k→∞
C

∫
B(0,Rk)

|∇ṽk|2 dx < ∞.

Thus, we conclude that ṽ ∈ L2∗(RN ). Since ṽ = 1 in B(0, 1)0, it may be used as a competitor in the
definition of the capacity of B(0, 1)0 in RN . This implies

σ(∞) ≤
∫
RN

|∇ṽ|2 dx ≤ lim inf
k→∞

∫
RN

|∇ṽk|2 dx ≤ θσ(∞).

Since θ < 1, we obtain a contradiction.
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Fix ω ∈ Ω and a sequence (w̃ε) ∈ O(ω). Let δ > 0 and 0 < θ < 1. We denote by P b
ε (δ, θ) the set of points

(y, ρ) ∈ Iε(ω) \Mδ(ω) for which we have

B(εȳ, εr(ω, y)) ⊂ U,

∫
B(εȳ,εr(ω,y))

|∇w̃ε|2 dx < θεN−1ρN−2σ

(
r(ω, y)

ε
1

N−2 ρ

)
.

We also define P g
ε (δ, θ) as the complement of P b

ε (δ, θ) in Iε(ω) \ Mδ(ω). The letters “b” and “g” in the
superscript stand for “bad” and “good”, respectively.

By Lemma 5.10, we know that there exist R0 > 0 and c > 0 such that if∫
DR

|∇v|2 dx < θσ(R),

then ∫
B(0,R)+

|1− v|2
∗
dx+

∫
B(0,R)−

|1 + v|2
∗
dx ≥ cLN (B(0, R))

for all R ≥ R0, v ∈ H1(DR). Note that

r(ω, y)

ε
1

N−2 ρ
>

δ2

ε
1

N−2 ρ
> R0

for all (y, ρ) ∈ P b
ε (δ, θ) and ε small enough. Hence, after a change of variables, we conclude that∫

B(εȳ,εr(ω,y))+
|1− w̃ε|2

∗
dx+

∫
B(εȳ,εr(ω,y))−

|1 + w̃ε|2
∗
dx

≥ cLN (B(εȳ, εr(ω, y))) ≥ cεNδNLN (B(0, 1)) (5.30)

for all (y, ρ) ∈ P b
ε (δ, θ) and ε small enough.

Lemma 5.11. Fix ω ∈ Ω and a sequence (w̃ε) ∈ O(ω). Then

lim
ε→0

εN−1 card(P b
ε (δ, θ)) = 0

for all δ > 0 and 0 < θ < 1.

Proof. Let δ > 0 and 0 < θ < 1. Without loss of generality, we can assume that −1 ≤ w̃ε ≤ 1 in Uε(ω) since
truncating w̃ε would only increase the cardinality of P b

ε (δ, θ). Since with this assumption (w̃ε) is uniformly
bounded in L∞(Uε(ω)), we can estimate the L2∗-norm from above by the L2-norm in (5.30) to obtain∫

B(εȳ,εr(ω,y))+
|1− w̃ε|2 dx+

∫
B(εȳ,εr(ω,y))−

|1 + w̃ε|2 dx ≥ CεNδN

for all (y, ρ) ∈ P b
ε (δ, θ). Consequently, we see that∫

U+∩{xN≤ε}
|1− w̃ε|2 dx+

∫
U−∩{xN≥−ε}

|1 + w̃ε|2 dx

≥
∑

(y,ρ)∈P b
ε (δ,θ)

(∫
B(εȳ,εr(ω,y))+

|1− w̃ε|2 dx+

∫
B(εȳ,εr(ω,y))−

|1 + w̃ε|2 dx

)
≥ CεNδN card(P b

ε (δ, θ)).

Hence, to conclude we need to show that

lim
ε→0

1

ε

(∫
U+∩{xN≤ε}

|1− w̃ε|2 dx+

∫
U−∩{xN≥−ε}

|1− w̃ε|2 dx

)
= 0. (5.31)

25



We do this by applying the Trace Theorem on the upper and lower half-spaces separately. We have the
inequalities∫

U+∩{xN≤ε}
|1− w̃ε|2 dx ≤ C

(
ε

∫
U0

|1− w̃+
ε |2 dHN−1 + ε2

∫
U+∩{xN≤ε}

|∇w̃ε|2 dx

)
,

∫
U−∩{xN≥−ε}

|1 + w̃ε|2 dx ≤ C

(
ε

∫
U0

|1 + w̃−
ε |2 dHN−1 + ε2

∫
U−∩{xN≥−ε}

|∇w̃ε|2 dx

) (5.32)

for all ε > 0, where C depends only on the domain U . Here, w̃+
ε and w̃−

ε stand for the traces of w̃ε with
respect to U+ and U− respectively. Since w̃ε ⇀ ±1 in H1(U±) as ε → 0 and since the the trace operator is
compact, we know that w̃±

ε → ±1 in L2(U0;HN−1) as ε → 0. Hence, dividing the inequalities in (5.32) by ε
and passing to the limit proves (5.31).

We end this section with the proof of Proposition 5.9.

Proof of Proposition 5.9. Assume O ⊂ Σ is a Borel measurable set in RN with O ⊂ U0 such that its
boundary in the relative topology of Σ is HN−1-negligible. Since Σ intersects U transversely, we know that
dist(O, ∂U) > 0.

Let ω ∈ Ω and fix a sequence (w̃ε) ∈ O(ω). Let δ > 0 and 0 < θ < 1. If (y, ρ) ∈ P g
ε (δ, θ) and εȳ ∈ O,

then B(εȳ, εr(ω, y)) ⊂ U for small enough ε and∫
B(εȳ,εr(ω,y))

|∇w̃ε|2 dx ≥ θεN−1ρN−2σ

(
r(ω, y)

ε
1

N−2 ρ

)
> θεN−1ρN−2σ(∞).

Therefore, for small enough ε,∫
Uε(ω)

|∇w̃ε|2 dx ≥
∑

(y,ρ)∈P g
ε (δ,θ)

ȳ∈ 1
εO

∫
B(εȳ,εr(ω,y))

|∇w̃ε|2 dx ≥ θσ(∞)
∑

(y,ρ)∈P g
ε (δ,θ)

ȳ∈ 1
εO

εN−1ρN−2

≥ θσ(∞)
∑

(y,ρ)∈Iε(ω)\Mδ(ω)
ȳ∈ 1

εO

εN−1ρN−2 − θσ(∞)
∑

(y,ρ)∈P b
ε (δ,θ)

εN−1ρN−2. (5.33)

An application of Lemma 5.11 yields

lim
ε→0

∑
(y,ρ)∈P b

ε (δ,θ)

εN−1ρN−2 ≤ lim
ε→0

εN−1

δN−2
card(P b

ε (δ, θ)) = 0.

On the other hand, it follows from Proposition 4.3 and Lemma 4.4 that

lim
δ→0

lim
ε→0

∣∣∣∣∣ ∑
(y,ρ)∈Iε(ω)\Mδ(ω)

ȳ∈ 1
εO

εN−1ρN−2 −
∑

(y,ρ)∈M(ω)
ȳ∈ 1

εO

εN−1ρN−2

∣∣∣∣∣ = 0 P-a.s.

Thus, we can use Theorem 2.10 to obtain that

lim
δ→0

lim
ε→0

∑
(y,ρ)∈Iε(ω)\Mδ(ω)

ȳ∈ 1
εO

εN−1ρN−2 = lim
ε→0

∑
(y,ρ)∈M(ω)

ȳ∈ 1
εO

εN−1ρN−2 = HN−1(O)

∫ ∞

0

ρN−2 dξ(ω, ρ) P-a.s.

Finally, we conclude with the help of (5.33) that

lim inf
ε→0

∫
Uε(ω)

|∇w̃ε|2 dx ≥ lim
δ→0

lim
ε→0

θσ(∞)
∑

(y,ρ)∈Iε(ω)\Mδ(ω)
ȳ∈ 1

εO

εN−1ρN−2 = 4θγ(ω)HN−1(O) P-a.s.

Letting θ → 1 and approximating U0 by a suitable sequence of increasing sets (Ok) proves the result.
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6 Proof of Theorem 3.2

In this section, we prove that the oscillating test functions (wε(ω, ·)) constructed in Section 5.2 satisfy all
properties stated in Theorem 3.2 P-a.s. Our proof is be based on an idea introduced by Casado-Dı́az in [5,
Theorem 2.1].

We begin with an extension of Proposition 5.6.

Lemma 6.1. For P-a.e. ω ∈ Ω and all v± ∈ H1(U±) ∩ L∞(U±), we have

lim
ε→0

∫
U±

|∇wε(ω, x)|2v±(x) dx = 2γ(ω)

∫
U0

v±(x) dHN−1(x).

Proof. We restrict ourselves to the upper half-space as usual. Fix some ω ∈ Ω that satisfies Propositions 5.6,
5.7 and 5.8. For simplicity, we omit ω from the notation. If v+ ∈ C0(U+), then the result follows directly
from Proposition 5.6. For the proof of the general case, we approximate v+ in H1(U+) by a sequence
(φ+

k ) ⊂ C∞(U+). Then Proposition 5.6 and the trace theorem imply

lim
k→∞

lim
ε→0

∫
U+

|∇wε|2φ+
k dx = lim

k→∞
2γ

∫
U0

φ+
k dHN−1 = 2γ

∫
U0

v+ dHN−1.

Hence, to conclude, we need to show that

lim
k→∞

lim
ε→0

∫
U+

|∇wε|2|v+ − φ+
k | dx = 0.

This is equivalent to the assertion that

lim
k→∞

∫
U+

|∇wεk |2|v+ − φ+
k | dx = 0 (6.1)

for all subsequences (εk). Given a subsequence (εk), we define v+k := wεk |v+ − φ+
k |χU+ for each k ∈ N and

consider vk as an element of H1(Uεk). Since vk ⇀ 0 in H1(U±) as k → ∞, Proposition 5.8 implies

lim
k→∞

∫
Uεk

∇wεk∇v+k dx = 0.

Computing the gradient of v+k gives

0 = lim
k→∞

∫
U+

|∇wεk |2|v+ − φk|+ (∇wεk∇|v+ − φk|)wεk dx. (6.2)

Since, φk → v+ in H1(U+) as k → ∞ by assumption, the sequence (∇wε) is uniformly bounded in
L2(U+;RN ) and |wε| ≤ 1 LN -a.e. in U+, we can see that

lim
k→∞

∫
U+

(∇wεk∇|v+ − φk|)wεk dx = 0.

Therefore, equation (6.2) yields (6.1).

We conclude with the proof of Theorem 3.2.

Proof of Theorem 3.2. We fix some ω ∈ Ω for which Propositions 5.7, 5.8 and Lemma 6.1 hold. Having fixed
ω, we omit it from the notation. Let (vε) be a sequence with vε ∈ H1(Uε) and suppose there exist functions
v+, v− and a subsequence (vεk) such that vεk ⇀ v± in H1(U±) as k → ∞. In the first part of the proof, we
assume additionally that v± ∈ L∞(U±).

Set ṽε := vε−wε(v
+χU+ −v−χU−). We can check easily that ṽε ∈ H1(Uε) for all ε > 0 and that ṽεk ⇀ 0

in H1(U±) as k → ∞. Therefore, Proposition 5.7 implies

lim
k→∞

∫
Uεk

∇wεk∇ṽεk dx = 0.
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Computing the gradient of ṽεk explicitly, we obtain∫
Uεk

∇wεk∇vεk dx−
∫
U+

|∇wεk |2v+dx+

∫
U−

|∇wεk |2v− dx

−
∫
U+

(∇wεk∇v+)wεk dx+

∫
U−

(∇wεk∇v−)wεk dx → 0 (6.3)

as k → ∞. As v± ∈ L∞(U±), it follows from Proposition 5.7 that

lim
k→∞

∫
U+

(∇wεk∇v+)wεk dx = lim
k→∞

∫
U−

(∇wεk∇v−)wεk dx = 0.

Hence, with the help of Lemma 6.1, we deduce from (6.3) that

lim
k→∞

∫
Uεk

∇wεk∇vεk dx = 2γ

∫
U0

(v+ − v−) dHN−1.

Let us now consider the general case. We define vnε := min{max{vε,−n}, n} and (v±)n := min{max{v±,−n}, n}.
Clearly, we have

lim
n→∞

lim
k→∞

∫
Uεk

∇wεk∇vnεk dx = lim
n→∞

2γ

∫
U0

((v+)n − (v−)n) dHN−1 dx = 2γ

∫
U0

(v+ − v−) dHN−1.

Thus, all that remains be to proved is

lim
n→∞

lim
k→∞

∫
Uεk

∇wεk(∇vεk −∇vnεk) dx = 0.

To this end, we let (εkn
) be a subsequence. Then, it is easy to verify that vεkn

− vnεkn
⇀ 0 in H1(U±) as

n → ∞. Hence, as a result of Proposition 5.8, we obtain

lim
n→∞

∫
Uεkn

∇wεkn
∇(vεkn

− vnεkn
) dx = 0.

The claim now follows from the arbitrariness of the sequence (εkn).

7 Appendix

This appendix includes proofs of some results on marked point processes that we have left out from the main
body of the article.

7.1 Proof of Theorem 2.10

Let B ∈ B(Rd) be bounded with nonempty interior such that Ld(∂B) = 0. For the proof, we rely on Theorem
2.9. However, since B is not necessarily convex, Theorem 2.9 cannot be directly applied. To address this,
we first prove the result for half-open rectangles using Theorem 2.9, and then we use these to approximate
B. Recall that a half-open rectangle is a set of the form Πd

i=1Ii, where Ii ⊂ R is a half-open interval for all
i. Assume for the moment that the result has been proved for all half-open rectangles. Set

Sε(ω) =
1

Ld
(
1
εB
) ∑

(y,ρ)∈M(ω)
y∈ 1

εB

g(ρ), ω ∈ Ω.

For l ∈ N, let Q1, . . . , Qml
denote the half-open dyadic cubes with side length 2−l contained in the interior

of B, and let Q′
1, . . . , Q

′
nl

denote those that intersect B̄. Then

Sε(ω) ≤
nl∑
i=1

Ld(Q′
i)

Ld(B)

1

Ld
(
1
εQ

′
i

) ∑
(y,ρ)∈M(ω)

y∈ 1
εQ

′
i

g(ρ).
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Similarly,

Sε(ω) ≥
ml∑
i=1

Ld(Qi)

Ld(B)

1

Ld
(
1
εQi

) ∑
(y,ρ)∈M(ω)

y∈ 1
εQi

g(ρ).

Consequently, from our assumption that the result holds for all half-open rectangles, we obtain

Ld (
⋃ml

i=1 Qi)

Ld(B)

∫ ∞

0

g(ρ) dξ(ω, ρ) ≤ lim inf
ε→0

Sε(ω)

≤ lim sup
ε→0

Sε(ω) ≤
Ld (

⋃nl

i=1 Q
′
i)

Ld(B)

∫ ∞

0

g(ρ) dξ(ω, ρ) P-a.s.

Taking l → ∞ and recalling that Ld(∂B) = 0, we conclude the proof of the general case.
It remains to prove the result for half-open rectangles. Assume Q = Πd

i=1Ii, where Ii ⊂ R is a half-open
interval for all i. Notice first that we have(

k − 1

k

)d
1

Ld((k − 1)Q)

∑
(y,ρ)∈M(ω)
y∈(k−1)Q

g(ρ) ≤ 1

Ld
(
1
εQ
) ∑

(y,ρ)∈M(ω)
y∈ 1

εQ

g(ρ)

≤
(

k

k − 1

)d
1

Ld(kQ)

∑
(y,ρ)∈M(ω)

y∈kQ

g(ρ)

if 1/k ≤ ε ≤ 1/(k − 1). Hence, it is enough to prove convergence along the subsequence (1/k). Let JQ be
the largest index set such that 0 ∈ Īi for all i ∈ JQ. If card(JQ) = d, then 0 ∈ Q̄, so that (kQ) is a convex
averaging sequence. In this case, the result follows from Theorem 2.9. Now, we proceed inductively. Suppose
that the result holds when card(JQ) = j with 1 ≤ j ≤ d. If card(JQ) = j − 1, then there exists an index i0
such that Ii0 = [a, b) with either a > 0 or b < 0. Without loss of generality, we assume a > 0. We consider
the sets Qa = Πd

i=1I
a
i and Qb = Πd

i=1I
b
i , where

Ii = Iai = Ibi for i ̸= i0, Iai0 = [0, a), Ibi0 = [0, b).

Clearly, we have Qb = Q ∪Qa and Q ∩Qa = ∅. Hence,

1

Ld(kQ)

∑
(y,ρ)∈M(ω)

y∈kQ

g(ρ) =
b

b− a

1

Ld(kQb)

∑
(y,ρ)∈M(ω)

y∈kQb

g(ρ)− a

b− a

1

Ld(kQa)

∑
(y,ρ)∈M(ω)

y∈kQa

g(ρ). (7.1)

Also, by definition, we know that card(JQa) = card(JQb) = j. Therefore, by the induction hypothesis, the
right-hand side of (7.1) converges to

∫∞
0

g(ρ) dξ(ω, ρ) P-a.s. as k → ∞. This concludes the proof of Theorem
2.10.

7.2 Thinning of marked point processes

In this section we study the thinning of a marked point process introduced in Section 4. Let d ∈ N. For
Y ∈ Md and (y, ρ) ∈ Y , we recall that dY (y) is defined to be min{|y − ỹ| : (ỹ, ρ̃) ∈ Y \ (y, ρ)} if Y \ (y, ρ)
is nonempty. Otherwise we set dY (y) = ∞. Given δ > 0, we define the thinning map Tδ : Md → Md as
follows: the pair (y, ρ) belongs to Tδ(Y ) if and only if (y, ρ) ∈ Y and

min

{
dY (y),

1

ρ

}
< δ.

Let M : (Ω,F ,P) → (Md,Md) be a marked point process. As in Section 4, we denote the thinned process
Tδ ◦ M simply by Mδ. To be sure that Mδ is again a marked point process, we have to show that Tδ is a
measurable mapping. The proof of this fact will be given in Section 7.3.

The following proposition shows that stationarity is preserved under thinning. This is not surprising, as
the thinning condition does not depend on the absolute position of a point in space.
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Proposition 7.1. Let M : (Ω,F ,P) → (Md,Md) be a stationary marked point process. Then Mδ is
stationary for all δ > 0. Furthermore, if M has finite intensity, then Mδ has finite intensity as well.

Proof. First, we show that the thinning operation commutes with translation, that is, Tδ(Yτ ) = Tδ(Y )τ for
all δ > 0, τ ∈ Rd. We know that (y, ρ) ∈ Tδ(Y )τ if and only if (y − τ, ρ) ∈ Tδ(Y ). Since dY (y − τ) = dYτ

(y),
we see that (y − τ, ρ) ∈ Tδ(Y ) if and only if (y, ρ) ∈ Tδ(Yτ ).

Now assume A ∈ Md. It follows from the commutativity relation that T −1
δ (Aτ ) = T −1

δ (A)τ . Finally, we
conclude

P(M−1
δ (Aτ )) = P(M−1(T −1

δ (Aτ ))) = P(M−1(T −1
δ (A)τ )) = P(M−1(T −1

δ (A))) = P(M−1
δ (A)),

where we used the stationarity of M in the next to last equality. The second claim in the statement of the
theorem follows from the inequality Mδ(E) ≤ M(E) for all E ∈ B(Rd × R+).

Let M : (Ω,F ,P) → (Md,Md) be a stationary marked point process with finite intensity. Let λ denote
the finite measure obtained by applying Proposition 2.5 to M . By the previous result, the marked point
processMδ is similarly stationary with finite intensity. Assume g : R+ → [0,∞) is a λ-integrable function and
B ∈ B(Rd) is bounded with nonempty interior such that Ld(∂B) = 0. The ergodic theorem for stationary
marked point processes implies that the limit

lim
ε→0

1

Ld
(
1
εB
) ∑

(y,ρ)∈Mδ(ω)
y∈ 1

εB

g(ρ) (7.2)

exists almost surely for all δ > 0. Since the marked point processes Mδ get thinner as δ → 0, we expect this
limit to vanish almost surely. Under the assumption that g is locally bounded, this is indeed true, as we
state in the next theorem.

Theorem 7.2. Let M : (Ω,F ,P) → (Md,Md) be a stationary marked point process with finite intensity.
Assume B ∈ B(Rd) is bounded with nonempty interior such that Ld(∂B) = 0. Then

lim
δ→0

lim
ε→0

1

Ld
(
1
εB
) ∑

(y,ρ)∈Mδ(ω)
y∈ 1

εB

g(ρ) = 0 P-a.s. (7.3)

for any locally bounded and λ-integrable function g : R+ → [0,∞), where λ is the measure on R+ given by
Λ = λ× Ld.

Let λδ denote the finite measure obtained by applying Proposition 2.5 to Mδ, and ξδ the random measure
obtained by applying Lemma 2.7 to Mδ. It follows from Theorem 2.10 that we can express the limit in (7.2)
as the integral ∫ ∞

0

g(ρ) dξδ(ω, ρ)

almost surely for all δ > 0. To prove Theorem 7.2, we shall show that the integrals converge to 0 almost
surely as δ → 0. In order to avoid measure-theoretic complications, we replace δ with the countable sequence
(1/k). We begin with a lemma.

Lemma 7.3. For P-a.e. ω ∈ Ω, we have

lim
k→∞

ξ1/k(ω,R+) = 0.

Proof. Let B ∈ B(Rd) be bounded with Ld(B) = 1. By (2.6) and the definition of conditional expectation,∫
Ω

ξ1/k(ω,R+) dP(ω) =
∫
Ω

M1/k(ω)(B × R+) dP(ω). (7.4)

Since M(ω)(B × R+) is finite for all ω ∈ Ω, we observe that

lim
k→∞

M1/k(ω)(B × R+) = 0
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for all ω ∈ Ω. Moreover, the integrable random variable M(B×R+) dominates the sequence (M1/k(B×R+)).
Applying the dominated convergence theorem to (7.4) results in

lim
k→∞

∫
Ω

ξ1/k(ω,R+) dP(ω) = 0.

Therefore, there exists a subsequence (1/kn) such that (ξ1/kn
(ω,R+)) converges to 0 P-a.s. At the same

time, the inequality
M1/k(B × R+) ≤ M1/l(B × R+), k ≥ l

implies
ξ1/k(ω,R+) ≤ ξ1/l(ω,R+) P-a.s., k ≥ l.

Thus, limk→∞ ξ1/k(ω,R+) = 0 P-a.s.

Proposition 7.4. Let g : R+ → [0,∞) be locally bounded and λ-integrable. Then

lim
k→∞

∫ ∞

0

g(ρ) dξ1/k(ω, ρ) = 0 P-a.s.

Proof. For m ∈ N, define

Xm(ω) := lim
k→∞

∫ ∞

m

g(ρ) dξ1/k(ω, ρ),

which is well-defined almost surely due to the monotonicity of the random measures. We claim that (Xm)
converges pointwise to 0 almost surely. Let B ∈ Bd(Rd) such that Ld(B) = 1. If we define

Gm(Y ) :=

∫
B×(m,∞)

g(ρ) dY (y, ρ), Y ∈ Md,

then, using (2.5) and Campbell’s Theorem, we obtain∫
Ω

∫ ∞

m

g(ρ) dξ1/k(ω, ρ) dP(ω) =
∫
Ω

(Gm ◦M)(ω) dP(ω) =
∫ ∞

m

g(ρ) dλ1/k(ρ).

Consequently, Fatou’s lemma implies∫
Ω

Xm(ω) dP(ω) ≤ lim inf
k→∞

∫
Ω

∫ ∞

m

g(ρ) dξ1/k(ω, ρ) dP(ω) = lim inf
k→∞

∫ ∞

m

g(ρ) dλ1/k(ρ) ≤
∫ ∞

m

g(ρ) dλ(ρ).

Since g is λ-integrable,

lim
m→∞

∫
Ω

Xm(ω) dP(ω) = 0.

Therefore, there exists a subsequence (mn) such that (Xmn) converges pointwise to 0 almost surely. At the
same time, Lemma 7.3 implies

lim sup
k→∞

∫ m

0

g(ρ) dξ1/k(ω, ρ) ≤ lim sup
k→∞

∥g∥L∞(0,m)ξ1/k(ω,R+) = 0 P-a.s.

for all m ∈ N. Thus,

lim sup
k→∞

∫ ∞

0

g(ρ) dξ1/k(ω, ρ) ≤ lim sup
n→∞

Xmn
(ω) = 0 P-a.s.

This concludes the proof.

We can now deduce Theorem 7.2 easily from Proposition 7.4.
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Proof of Theorem 7.2. By Theorem 2.10, we know that

lim
ε→0

1

Ld
(
1
εB
) ∑

(y,ρ)∈M1/k(ω)

y∈ 1
εB

g(ρ) =

∫ ∞

0

g(ρ) dξ1/k(ω, ρ) P-a.s.

Hence, Proposition 7.4 implies

lim
k→∞

lim
ε→0

1

Ld
(
1
εB
) ∑

(y,ρ)∈M1/k(ω)

y∈ 1
εB

g(ρ) = 0 P-a.s.

The claim now follows from the fact that∑
(y,ρ)∈Mδ′ (ω)

y∈ 1
εB

g(ρ) ≤
∑

(y,ρ)∈Mδ(ω)
y∈ 1

εB

g(ρ)

for all δ′ < δ and ω ∈ Ω.

7.3 Proof of the measurability of the thinning map

Let d ∈ N and δ > 0. We require some simple facts before we begin the proof of the measurability of the
thinning map Tδ. Let X : Md → Md be an arbitrary mapping. We note that X is measurable with respect
to the σ-algebra Md if and only if the function Y 7→ X(Y )(E) is measurable for all E ∈ B(Rd × R+).
In fact, it is enough to consider only sets of the form Q × I, where Q ∈ Rd and I ⊂ R+ are half-open
rectangles. We merely sketch the proof here, leaving rigorous details to the reader. Consider the family of
all sets E ∈ B(Rd ×R+) for which Y 7→ X(Y )(E) is measurable. This family forms a λ-system. Meanwhile,
the collection of sets of the form Q × I, where Q ∈ Rd, I ⊂ R+ are half-open rectangles, forms a π-system
that generates the σ-algebra B(Rd × R+). By the π-λ theorem, the claim follows.

We shall require the following lemma.

Lemma 7.5. Let δ > 0. Assume Q ∈ Rd, I ⊂ R+ are half-open rectangles. Define

A := {Y ∈ Md : (Tδ ◦ Y )(Q× I) > 0}.

Then A ∈ Md.

Proof. Define Iδ := (0, 1/ρ). If Y ∈ A, then there exists (y, ρ) ∈ Y ∩ (Q × I) such that either ρ /∈ Iδ, or
ρ ∈ Iδ and dY (y) < δ. Thus, we can write A = A1 ∪ A2, where

A1 := {Y ∈ Md : Y (Q× (I ∩ Icδ )) > 0},
A2 := {Y ∈ Md : there exists (y, ρ) ∈ Y ∩ (Q× (I ∩ Iδ)) such that dY (y) < δ}.

Clearly, the set A1 belongs to Md. Let Y ∈ Md. If there exists (y, ρ) ∈ Y ∩ (Q × (I ∩ Iδ)) such that
dY (y) < δ, then we can find q ∈ Qd and a rational number s < δ/2 such that (y, ρ) is the only element of
Y in (Q ∩B(q, s))× (I ∩ Iδ), and there is another element of Y in B(q, δ − s)× R+ distinct from (y, ρ). In
other words, if Y ∈ A2, then there exist q ∈ Qd and s ∈ Q with s < δ/2 such that

Y ((Q ∩B(q, s))× (I ∩ Iδ)) = 1 and Y (B(q, δ − s)× R+) > 1.

It is easy to verify that the reverse implication holds as well, so we can write

A2 =
⋃

q∈Qd

⋃
s∈Q

s<δ/2

{Y : Y ((Q ∩B(q, s))× (I ∩ Iδ)) = 1} ∩ {Y : Y (B(q, δ − s)× R+) > 1}.

As all sets in the union belong to Md, so does A2. This concludes the proof that A ∈ Md.
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Now, we come to the proof of the measurability of the thinning map.

Proposition 7.6. The thinning map Tδ is measurable for all δ > 0.

Proof. Fix δ > 0. LetQ ⊂ Rd, I ⊂ R+ be half-open rectangles. We prove that the function Y 7→ Tδ(Y )(Q×I)
is measurable. For each k ∈ N, we partition Q into disjoint half-open rectangles Q1,k, . . . , Qnk,k such that
diam(Qi,k) < 1/k for all i. Define

Ai,k := {Y ∈ Md : (Tδ ◦ Y )(Qi,k × I) > 0}

for i = 1, . . . , nk. By Lemma 7.5, the sets Ai,k are measurable. We claim that

Tδ(Y )(Q× I) = lim
k→∞

nk∑
i=1

χAi,k
(Y ). (7.5)

for all Y ∈ Md. As the characteristic functions χAi,k
are measurable, this will conclude the proof. Fix

Y ∈ Md. Since Y (Q× I) is finite, there exists k0 ∈ N such that Y (Qi,k × I) ≤ 1 for all k ≥ k0 and for all i.
Hence, Tδ(Y )(Qi,k × I) = χAi,k

(Y ) for all k ≥ k0 and for all i. As a result,

Tδ(Y )(Q× I) =

nk∑
i=1

Tδ(Y )(Qi,k × I) =

nk∑
i=1

χAi,k
(Y )

for all k ≥ k0. Thus, our claim is proved.
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1980/1981), volume 70 of Res. Notes in Math., pages 309–325. Pitman, Boston, Mass.-London, 1982.

[33] L. Scardia, K. Zemas, and C. I. Zeppieri. Homogenisation of nonlinear dirichlet problems in randomly
perforated domains under minimal assumptions on the size of perforations. Probab. Theory Relat. Fields,
2024.

35


	Introduction
	Preliminaries
	Fundamentals of marked point processes
	Ergodic theorem for stationary marked point processes

	Statement of the main result
	Notation
	Main result

	Analysis close to the perforations
	The oscillating test functions
	The cell problem
	Construction of the random oscillating test functions
	A special case of Theorem 3.2

	Proof of Theorem 3.2
	Appendix
	Proof of Theorem 2.10
	Thinning of marked point processes
	Proof of the measurability of the thinning map


