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In this article we prove that the set of flat singular points of locally highest density of
area-minimizing integral currents of dimension m and general codimension in a smooth
Riemannian manifold Σ has locally finite (m − 2)-dimensional Hausdorff measure.
In fact, the set of such flat singular points can be split into a union of two sets, one
of which we show is locally Hm−2 -negligible, while for the other we obtain local
(m − 2)-dimensional Minkowski content bounds.
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1 Introduction

The problem of determining the size and structure of the singular set of area-minimizing
integral currents of dimension m and general codimension in a smooth Riemannian manifold
Σ is one of the most relevant questions in the regularity theory of generalized surfaces which
are solutions to the Plateau problem. Thanks to the fundamental works of Almgren and De
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Lellis & Spadaro, cfr. [3, 4, 13, 15, 16], followed by, more recently, the ones of Krummel &
Wickramasekera and the second author with De Lellis & Minter, see [23, 24, 25, 10, 11, 9],
it is now known that the interior singular set of such area-minimizing integral currents is
(m − 2)-rectifiable (we refer to Section 1.1 for a more detailed discussion of the existing
literature of this problem). However, this leaves open the question of whether one can obtain
local quantitative bounds on the size of the singular set or, more modestly, of some parts of it;
in this article we make progress in this direction, showing that a specific meaningful subset
of the whole singular set, that is the set of flat singular points of locally highest density, has
locally finite (m − 2)-dimensional Hausdorff measure.

Since our statements are local and invariant under dilations and translations, our underlying
assumption throughout this paper is the following. We refer the reader to [21, 29] for the
theory of integral currents. Most of our notation is adopted from the articles [13, 15, 16]; we
refer the reader therein for any notation or terminology that is not defined here.

Assumption 1.0 Let κ0 ∈ (0, 1], m, l ∈ N≥1 and n ≥ n ≥ 2 be integers. Let Σ be an
(m + n)-dimensional embedded complete submanifold of Rm+n = Rm+n+l of class1 C3,κ0 ,
and let T be an m-dimensional integral current in Σ ∩ B7

√
m with ∂T B7

√
m = 0. We

assume T is area-minimizing in Σ∩ B7
√

m .2 Moreover, for every p ∈ Σ∩ B7
√

m we assume
that Σ ∩ B7

√
m is the graph of a C3,κ0 function Ψp : TpΣ ∩ B7

√
m → TpΣ

⊥ . We denote

c(Σ) := sup
p∈Σ∩B7

√
m

∥DΨp∥C2,κ0

and we assume c(Σ) ≤ ε ≤ 1, where ε is a small positive constant whose choice will be
specified in each statement.

For T and Σ as in Assumption 1.0, we recall that a point p ∈ spt(T) is called a regular
point if there is a positive radius r > 0, a C3,κ0 -regular embedded m-dimensional oriented
submanifold M ⊂ Σ and a positive integer Q such that T Br(p) = QJMK. The set
of regular points of T , which is relatively open in supp(T), is denoted by Reg(T). Its
complement, i.e. spt(T) \ Reg(T), is denoted by Sing(T) and is called the singular set of
T . For Q ∈ N, we denote by DQ(T) the points of density Q of the current T , and set
SingQ(T) := Sing(T) ∩ DQ(T).

For any r > 0 and p ∈ Rm+n, ιp,r : Rm+n → Rm+n is the map y 7→ y−p
r and we denote

Tp,r :=
(
ιp,r

)
♯

T , i.e. the pushforward of T by the map ιp,r . We also denote by Σp,r the

1In light of the recent work [28], it is possible that the requirement of C3,κ0 regularity of Σ might
be weakened to merely C2,κ0 , but we do not pursue this here.

2That is: spt(T) ⊂ Σ ∩ B7
√

m and M(T + ∂S) ≥ M(T) for every (m + 1)-dimensional integral
current S with spt(S) ⊂ Σ ∩ B7

√
m .
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rescaled ambient manifold ιp,r(Σ). The classical monotonicity formula of mass ratios (see
[29, Theorem 17.6] and [13, Lemma A.1]) implies that, for every rk ↓ 0 and p ∈ spt(T),
there is a subsequence (not relabelled) for which Tp,rk converges to an integral cycle S which
is a cone (i.e., S0,r = S for all r > 0 and ∂S = 0) and which is area-minimizing in Rm+n .
Such a cone is referred to as a a tangent cone to T at p.

Recall that a tangent cone supported in an m-dimensional plane is called flat, and a point
p ∈ Sing(T) with at least one flat tangent cone is called a flat singular point. We denote by
F(T) the set of flat singular points. We remark that from the constancy theorem, see [29,
Theorem 26.27], a flat tangent cone at a singular point q must be an oriented m-dimensional
plane with positive integer density Θ(T, p); we remark that by Allard’s Regularity Theorem,
see [1], Θ(T, q) > 1. Hence, we can write the following subdivision

F(T) =
∞⋃

Q=2

FQ(T),

where FQ(T) := {p ∈ F(T) : Θ(T, p) = Q} is the set of flat singular points of density Q.
The typical examples of flat singular points are branching singularities of area-minimizers
induced by complex subvarieties of Cn ; note moreover that the uniqueness of tangent cones
is still unknown at flat singular points, even under the stronger assumption that all tangent
cones at the considered point are flat. Following the notation adopted in [10, 11, 9], we
introduce a further parameter which is a real number belonging to [1,∞), which is called
the singularity degree of T at p and that we denote I(T, p); see Section 2.2. For a fixed
z ∈ [1,∞), we will denote by FQ,⩾z(T) the set of flat singular points of T with density Q
and singularity degree ≥ z, that is

FQ,⩾z(T) := FQ(T) ∩ {I(T, p) ≥ z}.

We define the set FQ,⩽z(T) analogously. By translating and rescaling, we may work with the
following assumption throughout.

Assumption 1.1 Suppose that T , Σ are as in Assumption 1.0. Moreover, suppose that 0 is
a flat singular point of T and Q ∈ N \ {0, 1} is the density of T at 0. Moreover, assume that
there exists an m-dimensional plane π0 ∈ T0Σ such that (pπ0)♯T B6

√
m = QJB6

√
m(0, π0)K,

where pπ0 is the orthogonal projection onto the plane π0 .

The aim of this article is to investigate the fine structural properties of FQ(T) and, more
formally, to prove the following theorem, which provides a Hausdorff measure bound on the
flat singular points that have the highest density locally.
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Theorem 1.2 Suppose that T and Σ satisfy Assumption 1.1. Then FQ(T) has finite
(m − 2)-dimensional Hausdorff measure, namely

(1) Hm−2(FQ(T)) < ∞.

Note that Theorem 1.2 yields merely a local Hausdorff measure bound, since we have already
localized T in Assumption 1.1.

Remark 1.3 An analogous argument as the one developed in this article can be easily
adapted to the case of integral currents which are semicalibrated by a smooth differential
form, strengthening the rectifiability result obtained in [26] to local Hausdorff measure
bounds for density-Q flat singularities as well.

In fact, we demonstrate the following two stronger results for the two respective pieces that
we subdivide our flat singularities of density Q into, from which Theorem 1.2 is a simple
consequence (see Section 5). The first is the following, which states that we in fact have
(m− 2)-dimensional Minkowski content bounds for all flat singularities of singularity degree
strictly larger than 1:

Theorem 1.4 Suppose that T and Σ satisfy Assumption 1.1 and δ ∈ (0, 1/Q). Then
FQ,⩾1+δ(T) has finite (m − 2)-dimensional (upper) Minkowski content, namely there exists
r1 = r1(m, n,Q, δ) such that and C(Q,m, n, δ) > 0 such that

(2) |Br(FQ,⩾1+δ(T))| ≤ C rn+2 ∀ r ∈ (0, r1] .

The second result states that the flat singularities of degree sufficiently close to 1 are
Hm−2 -negligible:

Theorem 1.5 Suppose that T and Σ satisfy Assumption 1.1 and δ ∈ (0, 1/Q). Then

Hm−2 (FQ,⩽1+δ

)
= 0.

It may be also possible to prove that the entirety of FQ(T) has locally finite (m − 2)-
dimensional Minkowski content, namely that (2) holds for FQ(T) in place of FQ,⩾1+δ(T).
This would require one to show that for some δ = δ(Q,m, n) < 1/Q the set FQ,⩽1+δ(T)
itself has locally finite Minkowski content, and not just Hm−2 -null measure. However, we
believe that the covering argument of [31], which is used to demonstrate that this set is
Hm−2 -negligible, is not well-adapted to strengthen this conclusion to such a content bound.
The main obstruction seems to be the regions where there are "holes" in the set (in the sense
of (16) failing), which do not appear to be compatible with a Minkowski-type estimate. On
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the other hand, the covering argument used in [27] allows one to establish such a content
bound due to the fact that the analogue of regions with holes therein is instead formulated in
the sense of closeness to a subspace of dimension strictly less than m − 2, therefore being
better suited for (m − 2)-dimensional content bounds, despite not providing uniqueness of
tangents to the surface almost-everywhere. Indeed, we are able to establish content bounds
in Theorem 1.4 precisely because this subset of FQ(T) is the one for which we are able to
exploit the methods of [27]. We do not know if the latter methods can be used for the set
FQ,⩽1+δ(T), since there is no single appropriate monotone quantity at all scales around these
points.

Remark 1.6 Note that we are only able to obtain local Hausdorff measure bounds on
the flat singular points that are locally of top density. The main obstructions to obtaining
such bounds on the whole singular set arise from possible accumulations of lower density
singularities to higher density ones, and accumulations of singularities of lower strata to
higher strata (see e.g. [35] for Almgren’s stratification). To the knowledge of the authors,
there are no explicit examples of such phenomena, but ruling out this possibility is a very
delicate and difficult problem, which remains widely open.

1.1 Previous literature

The regularity theory for area-minimizing integral current in codimension 1 was achieved by
the joint effort of several deep contributions from the late sixties, see [7, 8, 22, 2, 32, 5, 20],
until the work of Simon in which he proved the (m− 7)-rectifiability of the (interior) singular
set, see [30]. It took then more than twenty years to settle the question about whether or not
the singular set had locally finite (m − 7)-dimensional Hausdorff measure: introducing a
set of new deep ideas, in [27] Naber & Valtorta proved, as a corollary of their theory, that
the singular set area-minimizing integral current in codimension 1 has in fact locally finite
Minkowski content.

The study of area-minimizing integral currents in codimension at least 2 differs drastically,
mainly due to the present of flat singularities. In his monumental work about the regularity of
area-minimizing integer rectifiable currents in general codimension, Almgren proved that they
are in fact supported on smooth submanifolds apart from a relatively closed (interior) singular
set of Hausdorff codimension at least 2, see [3, 4]. The profound ideas and the techniques
developed by Almgren have been fully understood only recently, thanks to the work of De
Lellis and Spadaro who simplified, clarified and improved Almgren’s regularity theory, see
[12, 13, 14, 15, 16]. A strengthening of the (m−2)-dimensional Hausdorff dimension bound
has been then proved by the second author, showing that the upper Minkowski dimension of
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the singular set is at most m − 2, see [33]. Only recently, De Lellis, Minter & the second
author and, independently, Krummel & Wickramasekera have been able to prove that the
singular set of a general codimension area-minimizing current is (m − 2)-rectifiable, and
that the tangent cone is a unique superposition of planes in Hm−2 -a.e. points in the support
of the current, see [10, 11, 9, 23, 24, 25]. It is still unknown whether the singular set of
an area-minimizing integral current always has locally finite Hm−2 measure (cfr. Remark
1.6); this is the case for two dimensional currents, as shown by [6, 17, 18, 19]. The best
available result without any dimensional restriction comes as a corollary of the construction
by Krummel and Wickramasekera in [23, 24, 25]. In addition to the aforementioned results,
the authors achieve the further conclusion that (their analogous set for) the set of flat singular
points FQ,⩾1+δ(T) can be decomposed, in a sufficiently small neighborhood U of a point of
density Q, into the union of finitely many sets F1 ∪ . . .∪FN , each of which has locally finite
Hm−2 measure; we remark that this decomposition does not yield the local finiteness of the
measure of the whole set of flat singular points in U , since the sets Fi are not closed a priori.

1.2 Overview of the proof

Our proof is divided into two main parts: in the first one we obtain a quantitative version
of the arguments in [9, 10], concluding that the set FQ,⩽1+δ(T) is Hm−2 -null (in place of
simply FQ,1(T)). To this aim, we first obtain a uniform version of [10, Proposition 7.2] where
the radius threshold r0 for the decay is independent of T and the center x , cfr. Proposition
3.1. Then, to conclude the Hm−2 -negligibility of FQ,⩽1+δ(T) for δ > 0 arbitrarily close to
1/Q, we develop suitable modifications of the arguments in the final part of [9], exploiting
the idea that, at points in FQ,⩽1+δ(T), all the coarse blow-ups are homogeneous with degree
d ∈ [1, 1 + δ] and thus, for a sufficiently small δ , close to 1-homogeneous Dir-minimizers;
in particular, we improve [9, Lemma 14.1] by proving a quantitative version of it, cfr. Lemma
4.2. This will allow us to apply the conical excess decay theorem, see Theorem 4.1 and
[9, Theorem 2.5], to rescaled and translated currents Tq,r with q ∈ FQ,⩽1+δ(T) and r > 0
sufficiently small, hence achieving that FQ,⩽1+δ(T) is an Hm−2 -null set. We further remark
that as a consequence of Lemma 4.2 we are in fact able to prove that at Hm−2 -a.e. flat
singular point of density Q, the singularity degree is at least 1 + 1/Q.

In the second part we show that FQ,⩾1+δ(T) has locally finite Minkowski content bounds,
relying on a new construction with respect to the arguments in [16] and [11] to be able
to tackle low frequency and high frequency points together. This is achieved by means
of a suitable (1 + δ)-stopping and restarting procedure: we improve the construction of
the intervals of flattening, with the key difference with respect to [16, 11] that we do not
decompose FQ,⩾1+1/Q(T) into countably many subsets; instead, we work with the entirety
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of this set as a single piece: this allows us to avoid concentrations between each piece. This
argument, whose motivation naturally arises with the goal of obtaining Minkowski content
bounds for the set FQ,⩾1+1/Q(T), has been already used, only for convenience, in [26]; we
remark that in order to show m − 2-rectifiability and Hm−2 -uniqueness of tangent cones
for semicalibrated integral currents there is no need of using this construction since the one
already present in [11] would have been sufficient, cfr. [11, page 4, lines 22-27] and [26,
page 4, line 23].

The first and the second parts together allow to conclude that the flat singular points with
highest density have locally finite Hm−2 measure, proving Theorem 1.2.

The paper is organized as follows. In Section 2 we recall the main tools of [16, 10] and set up
the notation. In Section 3 we prove the sharpened version of the tilt-excess decay; in Section
4 we prove that FQ,⩽1+δ(T) is an Hm−2 -null set, a byproduct of which is the fact that we
are able to treat only flat Q-points of singularity degree at least 1 + δ in the succeeding
section. Finally, in Section 5 we obtain Minkowski content bounds for flat singular points
with density Q and singularity degree bigger than 1 + δ , allowing us to conclude the proof
of Theorem 1.2.
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2 Setup and preliminary results

Our article builds on techniques developed in [16, 10]: this section aims at recalling the main
tools and setting up some of the key notation.

For suitable rescalings of the current around a given flat singular point, we exploit the center
manifold construction, see [15], which provides a good "regularized" approximation of the
average of the sheets of the current at some given scale, and in turn provides a suitable
graphical approximation of the current parameterized over the center manifold. However, a
center manifold and corresponding graphical approximation constructed at a certain scale
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relative to the given center may no longer be suitable at smaller scales. Thus, around
x ∈ FQ(T) we need to introduce a stopping condition for the center manifolds and a countable
collection of disjoint intervals of radii (sj(x), tj(x)] ⊂ (0, t0], for j ∈ N and t0 sufficiently
small, referred to as intervals of flattening, such that for ε3 > 0 fixed as in [16, Assumption
2] we have

E(T,B6
√

mr(x)) ≤ ε2
3, E(T,B6

√
mr(x)) ≤ Cm(j)

0 r2−2δ2 ∀r ∈
(

sj
tj
, 3
]
,

where

(3) m(j)
0 := max{E(T,B6

√
mtj(x)), ε2t2−2δ2

j }

with δ2 is fixed as in [15, Assumption 1.8] so that all theorems and preposition therein can
be applied. We recall that E(T,Bρ(x)) is the tilt excess of T in the ball Bρ(x), defined by

E(T,Bρ(x)) = E(Tx,ρ,B1) :=
1

2ωmρm inf
m -planes π

∫
Bρ(x)

|T⃗ − π⃗|2 d∥T∥ ,

where ωm is the m-dimensional Hausdorff measure of the unit ball B1 in any m-dimensional
plane. The tilt excess in a cylinder Cρ(x, ϖ) of radius ρ oriented by a plane ϖ and centered
around x is defined analogously, see for example [15, Definition 1.1]. Therefore, from now
on we will work under the following assumption, allowing us to iteratively produce the above
sequence of intervals.

Assumption 2.1 T and Σ are as in Assumption 1.0. The parameter ε is chosen small
enough to ensure that m0,0 ≤ ε2

3 .

We refer to a sequence of positive numbers rk with rk ↓ 0 as a blow-up sequence of radii
around a flat singular point x ∈ FQ(T) if Tx,rk converges to a flat tangent cone QJπK for
some m-dimensional plane π ⊂ TxΣ. If x = 0, we omit any reference to the center. Note
that, having fixed a blow-up sequence (rk), for every k sufficiently large there is a unique
index j(k) for an interval of flattening around x such that rk ∈]sj(k), tj(k)]. By composition
with a small rotation of coordinates, we may assume that the m-dimensional planes πk over
which we parameterize the center manifolds Mj(k) are identically equal to the same fixed
plane π0 ≡ Rm × {0} ⊂ T0Σ. We use the shorthand notation

mx, k := m(j(k))
x = max{E(Tx,tj(k) ,B6

√
m), ε2t2−2δ2

j(k) }.

2.1 Compactness procedure

Let T satisfy Assumption 2.1, let x ∈ FQ(T), let rk ∈ (sj(k)(x), tj(k)(x)] be a blow-up sequence
around x and let sk

tj(k)
∈
] 3rk

2tj(k)
, 3rk

tj(k)

]
be the scale at which the reverse Sobolev inequality [16,
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Corollary 5.3] holds for r = rk
tj(k)

around x. Then let rk := 2sk
3tj(k)

∈
] rk

tj(k)
, 2rk

tj(k)

]
. We in turn

define the corresponding rescalings of T , as well as those of the ambient manifold Σ and the
center manifolds:

Tk := (ιx,rktj(k))♯T B 6
√

m
rk

, Σk := ιx,rk (Σ0,tj(k)), Mk := ι0,rk (Mx,tj(k)) ,

where Mx,tj(k) denotes the center manifold associated to Tx,tj(k) B6
√

m (see [16]). We
additionally denote by Nx,j(k) the associated Mx,tj(k) -normal approximation. We let ΦΦΦk(x) :=
(x,φφφk(rkx)) denote the maps parameterizing the graphs of the rescaled center manifolds Mk ,
where φφφk is the map parameterizing the center manifold Mx,tj(k) over B3(π0). Define

Nk : Mk → Rm+n, Nk(p) :=
1
rk

N0,tj(k)(rkp),

and let

uk :=
Nk ◦ ek

hk
, uk : πk ⊃ B3 → AQ(Rm+n),

where ek is the exponential map at pk := ΦΦΦk(0)
rk

∈ Mk defined on B3 ⊂ πk ≃ TpkMk and
hk := ∥Nk∥L2(B3/2) . The reverse Sobolev inequality of [16, Corollary 5.3] gives a uniform
control on the W1,2 norm of uk on B3/2(0, πk).

Then, following the proof of [16, Theorem 6.2], there exists a subsequence (not relabelled),
a limiting m-plane π0 and a Dir-minimizing map u ∈ W1,2(B3/2(0, π0),AQ(π⊥

0 )) with
ηηη ◦ u = 0 and ∥u∥L2(B3/2) = 1, such that (after we apply a suitable rotation to map πk onto π )

(4) uk −→ u strongly in W1,2
loc ∩ L2 .

2.2 Almgren’s frequency function and singularity degree

Given a Lipschitz cut-off function ϕ : [0,∞) → [0, 1] which vanishes identically for t
sufficiently large, equals 1 for t sufficiently small and is monotone, recall the following
smoothed variant of Almgren’s frequency function Iu(x, r) for multi-valued Dir-minimizers,
which is more convenient for our purposes than its classical counterpart.

Du(x, r) :=
∫

|Du(y)|2ϕ
(
|y − x|

r

)
dy ,

Hu(x, r) := −
∫

|u(y)|2

|y − x|
ϕ′

(
|y − x|

r

)
dy ,

Iu(x, r) :=
r Du(x, r)
Hu(x, r)

.
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The same computations showing the monotonicity of Almgren’s frequency function for
Dir-minimizers apply to the latter smoothed variant3, cfr. for instance [15, Section 3].
Moreover, it can be readily checked that Iu(x, ·) is constant in r when the map is radially
homogeneous about x , and this constant is the degree of homogeneity of the map. It follows
then from the arguments in [12, Section 3.5] that the limit

Iu(x, 0) = lim
r↓0

Iu(x, r)

is independent of the choice of ϕ. We will henceforth fix the following convenient specific
choice of ϕ:

(5) ϕ(t) =


1 for 0 ≤ t ≤ 1

2
2 − 2t for 1

2 ≤ t ≤ 1
0 otherwise .

When x = 0, we will omit the dependency on x for I and related quantities, and we will
merely write Iu(r).

Any map u as defined by the above compactness procedure, recentered at x ∈ F(T), is called
a fine blow-up limit along the sequence rk at x . The set

F(T, x) := { Iu(0) : u is a fine blow-up at x along some rk ↓ 0 } ,

is the set of (singular) frequency values of T at x. The singularity degree of T at a flat
singular point x is defined as

I(T, x) := inf F(T, x) .

3 Uniform tilt excess decay

In this section we obtain a quantitative version of the compactness arguments in [10]. In
particular, we prove the following tilt excess decay result, which is a sharpened version of
[10, Proposition 7.2].

Proposition 3.1 (Uniform tilt excess decay) Let T,Σ be as in Assumption 2.1 and x ∈
FQ(T) a flat singular Q-point of T . For every I0 > 1, there exist constants C(m, n,Q) > 0,
α(I0,m, n,Q) ∈ (0, 2 − 2δ2) and r0(I0,m, n,Q) > 0 such that if I(T, x) ≥ I0 then

(6) E(T,Br(x)) ≤ C
(

r
r0

)α

max{E(T,Br0(x)), ε2r2−2δ2
0 } ∀r ∈ (0, r0).

3Note that Almgren’s frequency function corresponds to the choice ϕ = 1[0,1] .
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Remark 3.2 We note that the radius r0 in Proposition 3.1 is crucially only dependent on
the lower singularity degree bound I0 and on geometric quantities, rather than the current T
and the center x .

Proposition 3.1 and Section 4 represent together the first part of the proof of Theorem 1.2,
showing that Hm−2

(
FQ,⩽1+δ(T)

)
= 0, cfr. Proposition 1.5.

3.1 Diagonal coarse blowups

Let Tk , Σk be respective sequences of currents and ambient manifolds satisfying Assumption
2.1 and let Ak := AΣk . Let xk ∈ FQ(Tk) and suppose that rk ∈ (sj(k)(xk), tj(k)(xk)]. Denote
further

Tk := (Tk)xk,rk , Σk := (Σk)xk,rk ,

and assume that Tk B6
√

m
∗
⇀ QJπ0K with π0 = Rm × {0} ⊂ Rm+n . Let πk ⊂ T0Σk be

such that
E(Tk,B8M, πk) = E(Tk,B8M) ,

where M > 0 is large enough such that BL ⊂ C4Mr̄k for any L ∈ W j(k) with L∩Br̄k (0, π0) ̸= ∅
(cf. [15] for the definitions). In light of the height bound [34, Theorem 1.5], for k sufficiently
large we have

E(Tk,C4M, πk) ≤ E(Tk,B8M) =: Ek → 0.

By applying a small rotation, we may assume that πk ≡ π0 . Assuming ε2
3 ≤ ε1 , where ε1

is the threshold of [13, Theorem 2.4], we may apply the latter result to produce a strong
Lipschitz approximation fk : B1(π0) → AQ(π⊥

0 ) for Tk in C4M . We in turn define the
normalizations

(7) f k :=
fk

E1/2
k

,

and we work under the assumption

(8) A2
k = o(Ek).

Following the compactness procedure in [33], where the arguments of [16] are adapted for
a varying sequence of currents with varying blowup centers, we deduce that there exists a
Dir-minimizer f : B1(π0) → AQ(π⊥

0 ) such that

f k → f strongly in L2 ∩ W1,2
loc (B1(π0)).

We refer to such a f as a diagonal coarse blow-up along rk .
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A key intermediate result for the proof of Theorem 3.1, which will also be useful in the
Section 4, is the following compactness result, which is a generalization of [10, Proposition
4.1].

Proposition 3.3 Let Tk , Σk satisfy Assumption 2.1. Let xk ∈ FQ(Tk) and suppose that
rk ∈ (sj(k)(xk), tj(k)(xk)] are radii satisfying

(9) lim inf
k→∞

sj(k)(xk)
rk

> 0.

Then (8) holds and, up to extracting a subsequence, we can consider a diagonal coarse
blow-up f and, up to another subsequence, a fine blow-up u. Denoting by v the average-free
part of f , then there is a real number λ > 0 such that v = λu.

Proof The proof of Proposition 3.3 follows verbatim that of [10, Proposition 4.1], when
combined with the observation that the conclusions of [10, Lemma 4.5] remain unchanged
in the current setting with varying blowup centers (cfr. also [33]).

Proof of Proposition 3.1 Fix I0 > 1 and assume that I(T, x) ≥ I0 . The main step of the
proof is to demonstrate the following decay property (cfr. [10, (Dec)]):

(Dec) There are ε = ε(I0,m, n,Q) ∈ (0, ε3], α = α (I0,m, n,Q) > 0, κ = κ(I0,m, n,Q) ∈
N and τ = τ (I0,m, n,Q) > 0 such that, if

(10) E
(
T,B6

√
m tk (x)

)
< ε2

and tk ≤ τ , then:

(a) The intervals of flattening (sk, tk], (sk+1, tk+1], . . . , (sk+κ, tk+κ] satisfy sk+j−1 =

tk+j for j = 1, . . . , κ;

(b) mmmx,k+κ ⩽
(

sk+κ

tk

)α
mmmx,k .

Note that ε and κ do not depend on the point x , nor on the current T , but only on the lower
bound I0 for the singularity degree. This is the key difference between the argument herein
and that in [10, Proposition 7.1].

We first prove property (Dec), and then we will prove that this implies the tilt excess decay
conclusion (6), that is Proposition 3.1. Property (Dec) follows by a contradiction argument
taking a sequence of currents Tk and varying centers xk , getting the contradiction with
diagonal coarse blow-up.
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First we choose α < min 2{I0 − 1, 1 − δ2}. The choice of τ and ε are subordinate to κ,
which will be chosen later: hence we fix κ without specifying its choice and treat it as a
constant in order to choose τ and ε.

Proof of (Dec) (a). We remark that, to show point (a), κ is fixed and given by point (b);
hence the proof of part (a) is analogous to that of [10, Proposition 7.1 & 7.2], but we recall it
here for completeness.

We start imposing that τ is small enough so that

ε2τ 2−2δ2 ≤ ε2.

Then we recall that

E(T,B6
√

m sk
(x)) ≤ C

(
sk

tk

)2−2δ2

mx,k ≤ Cmx,k = C max
{
ε2t2−2δ2

k , ε2
}
≤ Cε2

for every k ∈ N such that tk ≤ τ , where C is a geometric constant independent of ε. In partic-
ular, if we choose ε sufficiently small, we conclude that E(T,B6

√
m sk

(x)) ≤ ε2
3 , which in turn

forces tk+1 = sk . Observe also that mx,k+1 ≤ Cmx,k , where the latter is the same constant
of the previous estimate. In particular, as long as tk+i+1 = sk+i for i ∈ {0, . . . , j}, we get
E(T,B6

√
msj

(x)) ≤ C jmx,k . Since this must be repeated κ times, under the assumption that
Cκ0ε2 ≤ ε2

3 , we get by induction that tk+j+1 = sk+j and mx,k+j+1 ≤ Cmx,k+j ≤ C j+1mx,k .

Proof of (Dec) (b). Here we need to be careful and check the dependency of the exponent κ,
that we want to be uniform with respect to the points x .

We observe that to prove (b) it suffices to show

(11) E(T,B6
√

m sk+κ−1
(x)) ≤

(
sk+κ−1

tk

)α

mx,k.

Indeed, if mx,k = ε2t2−2δ2
k , since we have that 2 − 2δ2 > α , we get

mx,k+κ = max
{

E(T,B6
√

m sk+κ−1
(x)), ε2s2−2δ2

k+κ−1

}
⩽

(
sk+κ−1

tk

)α

ε2t2−2δ2
k

=

(
sk+κ−1

tk

)α

mx,k.

But if mx,k = E(T,B6
√

m tk (x)), then E(T,B6
√

m tk (x)) ≥ ε2t2−2δ2
k and hence again

ε2s2−2δ2
k+κ−1 ≤

(
sk+κ−1

tk

)α

E(T,B6
√

m tk (x)) ≤
(

sk+κ−1

tk

)α

mx,k+κ.
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Towards proving (11), we first notice that we may assume without loss of generality that

E(T,B6
√

msk+κ−1
(x)) ≤ Cκ

(
sk+κ−1

tk

)2−2δ2

mx,k ,

for an appropriate choice of a constant ρℓ(κ, α) > 0 such that sk+κ−1
tk

≤ ρℓ . Indeed, taking
any fixed choice of

ρℓ ≤ C− κ
2−2δ2−α ,

we may absorb Cκ on the right-hand side, retaining the desired exponent for the decay
estimate (b).

Furthermore, from [16, Proposition 2.2], we have sk+κ−1
tk

≤ 2−5κ , so we may restrict
ourselves to the case when

(12) ρℓ ≤
sk+κ−1

tk
≤ ρu = 2−5κ .

We are now in a position to prove (11) - under the assumption (12) - by contradiction, since in
this case the hypothesis (9) of Proposition 3.3 will be satisfied for any choice of sequence of
blow-up scales between sk+κ−1 and tk , and thus we will be able to extract a diagonal coarse
blow-up along our contradiction sequence. More precisely, up to extracting a subsequence
for the index of the starting scales, we suppose there exists sequences xk ∈ FQ(Tk) with
I(Tk, xk) ≥ I0 and tk(xk) ↓ 0 such that

(13) mx,k ↓ 0 but E(T,B6
√

msk+κ−1
(xk)) >

(
sk+κ−1

tk

)α

mx,k ,

while (12) holds true along the sequence. We note that the scales sk+i, tk+i for i ∈
{0, . . . , κ − 1} depend implicitly on k . We now proceed exactly as in [10, Proof of
Proposition 7.1 & 7.2], applying Proposition 3.3 in place of [10, Proposition 4.1] along
the scales rk = 3

2
√

mtk . This allows us to extract a diagonal coarse blow-up f along the
sequence rk with average-free part v satisfying Iv(0) ≥ I0 and that induces the estimate

E(Tk,B6
√

mσtk (xk)) ≤ 8mσ2αE(Tk,B6
√

mtk (xk)) + C(E(Tk,B6
√

mtk (xk)) + t2
kA2

k)1+γ

≤ Cm1+γ
xk,k ≤

1
2
ραℓ mxk,k

for any σ ∈ [ρℓ, ρu], provided that 8mρ2α
u ≤ 1

2ρ
α
ℓ and mγ

xk,k ≤ ραℓ . Importantly, observe that
these choices of ρℓ, ρu (and hence κ) and k large enough yields dependency only on I0,m, n
and Q (implicitly via α).

Proof of (6). Observe that it suffices to check that, up to decreasing ε further if necessary
(with the same dependencies), there exists σ = σ(I0,m, n,Q) > 0 such that (10) holds



Hausdorff measure bounds for density-Q flat singularities of minimizing integral currents 15

for every tk ≤ σ . Indeed, since σ is independent of x, this will allow us to iterate (Dec)
combined with [16, Proposition 2.2 (iv)] as in the proof of [10, Proposition 7.2] in order to
conclude the decay estimate (6) with r0 = min{σ, τ}.

Towards proving the validity of (10) for tk below a uniform-in-x threshold σ(I0,m, n,Q) and
ε(I0,m, n,Q) > 0 sufficiently small (possibly smaller than the previous threshold), we argue
by contradiction, again aiming to take a diagonal coarse blow-up. Unlike in the proof of
(Dec) (b), the contradiction will arise from the fact that we will obtain a coarse blow-up of
degree 1, which cannot happen in light of the fact that I0 > 1. Our argument follows the line
of reasoning of the proof of [10, Proposition 8.1], but since we are in a simpler setting and
our notation differs greatly, we repeat it here.

If, regardless of the choice of ε > 0, (10) fails to occur at a uniformly small scale σ

independent of x , then we have a sequence εj ↓ 0 and xj,k ∈ FQ(Tj,k) with I(Tj,k, xj,k) ≥ I0

and tj,k(xj,k) ↓ 0 (again up to extracting a subsequence for the index k , with j fixed, for tj,k )
such that

E(Tj,k,B6
√

mtj,k (xj,k)) = ε2
j .

This implies that, for each fixed j ∈ N, up to extracting a subsequence in k , Tj,k converges
to a tangent cone Cj which is non-flat. Since Cj is a cone, this in turn implies

lim
k→∞

E(Tj,k,B6
√

mtj,k (xj,k))

E(Tj,k,B6
√

msj,k
(xj,k))

= 1 ,

where sj,k = sj,k(xj,k) are the stopping scales associated to the starting scales tj,k . Thus, we
may extract a subsequence of indices k(j) such that

lim
j→∞

sj,k(j)

tj,k(j)
≥ c > 0 .

Since (9) is satisfied at the scales tj,k(j) , we are now in a position to apply Proposition 3.3 to
obtain a coarse blow-up f along these scales, whose average-free part v is comparable to the
corresponding fine blow-up. In particular, Iv(0) ≥ I0 .

We will now proceed to show that f is 1-homogeneous (and thus so is v), therefore reaching
a contradiction to the fact that I0 > 1. Let Ej,k(j) := E(Tj,k(j),B8Mtj,k(j)(xj,k(j))) and recall the
normalizations in (7) such that

f̄j,k(j) =
fj,k(j)

E1/2
j,k(j)

= (εj + o(1))−1fj,k(j) ,

for the Lipschitz approximations fj,k(j) of T j,k(j) := (Tj,k(j))xj,k(j),tj,k(j) as constructed in Section
3.1, where o(1) is a quantity which converges to zero as j → ∞. Let Kj ⊂ B1(π0) be the
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domain of graphicality, as given by [13, Theorem 2.4], where

(14) Gfj,k(j) (Kj × π⊥
0 ) ≡ T j,k(j) (Kj × π⊥

0 ) ,

and |B1 \ Kj| ≤ Cε2(1+γ1)
j , where γ1 > 0 is as in [13, Theorem 2.4]. Consider now the

anisotropic rescalings λa
j (x, y) := (x, ε−1

j y) for (x, y) ∈ π0 × π⊥
0 . Since Tj,k(j) converges

to Cj with E(Cj,B6
√

mtj,k(j)
(xj,k(j))) = ε2

j as k → ∞ for each j fixed, then we conclude that
(λa

j )♯T j,k(j) (Kj × π⊥
0 ) converge in Hausdorff distance to a non-flat cone. In light of (14)

and the fact that ε−2
j |B1 \ Kj| → 0 as j → ∞, we deduce that f is indeed 1-homogeneous.

We once again refer the reader to the proof of [10, Proposition 8.1] for further details.

4 Flat singularities of degree < 1 + 1/Q

In this section we conclude, together with Section 3, the first part in the proof of Theorem
1.2, showing that for every δ < 1/Q we have that Hm−2

(
FQ,⩽1+δ(T)

)
= 0.

In particular, we suitably modify the arguments in the final part of [9], exploiting the idea that
at points in FQ,⩽1+δ(T) all the coarse blow-ups are homogeneous with degree d ∈ [1, 1 + δ]
and thus, for any δ < 1/Q, close to 1-homogeneous Dir-minimizers. Towards this aim, in
Lemma 4.2 we improve the dichotomy of [9, Lemma 14.1] by proving a quantitative version
of it: this will allow us to apply the conical excess decay theorem of [9], which we recall
in Theorem 4.1, to rescaled and translated currents Tq,r with q ∈ FQ,⩽1+δ(T) and r > 0
sufficiently small, hence achieving that FQ,⩽1+δ(T) is an Hm−2 -null set for any δ < 1/Q,
and thus Hm−2

(
FQ,<1+1/Q(T)

)
= 0 also.

Following the notation of [9], for Q ∈ N, we introduce the notation C (Q) for subsets of
Rm+n consisting of unions of N m-dimensional planes π1, . . . , πN with N ≤ Q and such
that

• πi ∩ πj being the same fixed (m − 2)-dimensional plane V for each i < j;

• πi ⊂ ϖ for some (m + n)-dimensional plane ϖ .

If p ∈ Σ, then C (Q, p) will in turn denote the subset of C (Q) for which ϖ = TpΣ.

We further let P and P(p) denote those elements of C (Q) and C (Q, p) respectively
which consist of a single plane; namely, with N = 1. For S ∈ C (Q) \ P , the associated
(m − 2)-dimensional plane V described above is referred to as the spine of S and will often
be denoted by V(S).
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Given a ball Br(q) ⊂ Rm+n and a cone S ∈ C (Q), we define the one-sided conical L2 height
excess of T relative to S in Br(q), denoted Ê(T,S,Br(q)), by

Ê(T,S,Br(q)) :=
1

rm+2

∫
Br(q)

dist2(p,S) d∥T∥(p).

At the risk of abusing notation, we further define the corresponding reverse one-sided excess
as

Ê(S,T,Br(q)) :=
1

rm+2

∫
Br(q)∩S\Bar(V(S))

dist2(x, spt (T)) dHm(x) ,

where a = a(m) is a dimensional constant, to be specified later. We subsequently define the
two-sided conical L2 height excess as

E(T,S,Br(q)) := Ê(T,S,Br(q)) + Ê(S,T,Br(q)) .

We finally introduce the planar L2 height excess which is given by

Ep(T,Br(q)) := min
π∈P(q)

Ê(T, π,Br(q)) .

We can state now the key conical excess decay theorem from [9, Theorem 2.5].

Theorem 4.1 (Conical excess decay) For every Q,m, n, n, and ς > 0, there are positive
constants ε0 = ε0(Q,m, n, n, ς) ≤ 1

2 , r0 = r0(Q,m, n, n, ς) ≤ 1
2 and C = C(Q,m, n, n) with

the following property. Assume that

(i) T and Σ are as in Assumption 1.0;

(ii) ∥T∥(B1) ≤ (Q + 1
2 )ωm ;

(iii) There is S ∈ C (Q, 0) \ P(0) such that

(15) E(T,S,B1) ≤ ε2
0 Ep(T,B1)

and

(16) Bε0(ξ) ∩ {p : Θ(T, p) ≥ Q} ≠ ∅, for every ξ ∈ V(S) ∩ B1/2 ;

(iv) A2 ≤ ε2
0 E(T,S′,B1), for every S′ ∈ C (Q, 0).

Then there is a S′ ∈ C (Q, 0) \ P(0) such that

(a) E(T,S′,Br0) ≤ ς E(T,S,B1) ;

(b)
E(T,S′,Br0)
Ep(T,Br0)

≤ 2ς
E(T,S,B1)
Ep(T,B1)

;
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(c) dist2(S′ ∩ B1,S ∩ B1) ≤ C E(T,S,B1);

(d) dist2(V(S) ∩ B1,V(S′) ∩ B1) ≤ C
E(T,S,B1)
Ep(T,B1)

.

Recall that in [9, Theorem 2.5], Theorem 4.1 is applied to rescaled and translated currents
Tq,r with q ∈ FQ,1(T) and r > 0 sufficiently small. In order to do this, we need to verify
that for most such points q such rescalings satisfy (15) for some S ∈ C (Q, 0) \ P(0). This
is indeed true, as demonstrated in [9, Lemma 14.1]: this is a consequence of [10, Corollary
4.3] and the classification of 1-homogeneous Q-valued Dir-minimizers on R2 as being
superpositions of linear functions (see [12, Proposition 5.1]). Here we demonstrate that this
in fact remains true for q ∈ FQ,<1+1/Q(T).

Lemma 4.2 For each ε ∈ (0, 1], the following holds. Suppose that T and Σ are as in
Assumption 1.0. Then for each p ∈ FQ,<1+1/Q(T) ∩ B1 there exists ρ = ρ(p, ε) > 0 such
that the following dichotomy holds for each ρ ∈ (0, ρ]:

(a) There exists S ∈ C (Q, p) \ P(p) with

(ρA)2 + E(T,S,Bρ(p)) ≤ ε2Ep(T,Bρ(p));

(b) There exists an (m− 3)-dimensional affine subspace V ⊂ TpΣ (depending on ρ) such
that

SingQ(T) ∩ Bρ(p) ⊂ {q : dist(q,V) < ερ}.

Remark 4.3 Note that in the alternative (b), we may ask for the whole set of Q-points
SingQ(T) to be contained in a small neighborhood of V , rather than just FQ,<1+1/Q(T), since
it is simply a consequence of the fact that all the density Q points of T are accumulating
around either the spine of a cone that is (m − 3)-invariant, or the spine of an AQ -valued
Dir-minimizer that is (m − 3)-invariant.

Proof We proceed by contradiction via a compactness argument following a very similar
line of reasoning to that in the proof of [9, Lemma 14.1], only with the singularity degree
lying in [1, 1 + 1/Q) instead of being equal to 1. The key observation will be that in the
case when T is close to planar and there is a coarse blow-up that is (m − 2)-invariant, the
classification of homogeneities for the blow-up in two dimensions (see [12, Proposition
5.1]) guarantees that the singularity degree must in fact be exactly equal to 1. Note that, in
contrast to the compactness contradiction arguments in [9, Lemma 14.1], we do not need
to take a varying sequence of currents and centers. Indeed, since the scale ρ̄ is allowed
to (and in fact necessarily must be) dependent on the center p, we may simply fix T , Σ
and p ∈ FQ,<1+1/Q(T) ∩ B1 when extracting the contradiction sequence; namely, for some
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ε ∈ (0, 1], we assume that there exists a sequence of scales ρ̄k ↓ 0 such that the rescaled
currents Tp,ρ̄k B6

√
m and their corresponding rescaled ambient manifolds Σk := Σp,ρ̄k

(recall the notation Ak := AΣk ) satisfy both

(17) A2
k + E(Tp,ρ̄k ,S,B1) > ε2Ep(Tp,ρ̄k ,B1) ∀ S ∈ C (Q) \ P ,

and the property that for every (m − 3)-dimensional subspace V ⊂ T0Σk there exists a point
qk,V such that

(18) qk,V ∈ SingQ(Tp,ρ̄k ) ∩ B1 \ {dist(·,V) < ε} .

Up to extracting a further subsequence, we have two possible alternatives: either we
have that Ep(T,B6

√
mρ̄k

(p)) → 0, or not. In the latter case, the sequence Tp,ρ̄k B6
√

m
converges weakly-∗ (and in L2 -excess) to a non-flat tangent cone C . Let V denote the
subspace representing the spine of C . Since C is not supported in an m-dimensional plane,
dim V ≤ m − 2. Since A2

k = ρ̄2
kA2 → 0 but lim infk→∞ Ep(Tp,ρ̄k ,B1) ≥ c0 > 0 (and

noticing that this is comparable to the excess at the slightly larger scale 6
√

m), the condition
(17) guarantees that we in fact must have dim V ≤ m − 3. Taking this choice of V in (18)
yields a corresponding sequence of points qk,V with the stated property. Extracting yet
another non-relabelled subsequence, we have that qk,V → q̄ ∈ B1 \ {dist(·,V) < ε}. On the
other hand, the upper semicontinuity of the density Θ(Tp,ρ̄k , ·) along our sequence implies
that Θ(C, q̄) ≥ Q, and thus q̄ must lie in the spine of C , yielding a contradiction.

It remains to consider the alternative where Ep(T,B6
√

mρ̄k
(p)) → 0. In this case, due to the

comparability of tilt and planar excesses, we may use [10, Corollary 4.3] (together with [10,
Theorem 2.10(vi)] which a posteriori ensures that the hypothesis (21) therein holds) to extract
a coarse blowup f ∈ W1,2(B1(π0);AQ(π⊥

0 ⊂ Rm+n)) of T at p that is a non-trivial, radially
homogeneous Dir-minimizer of degree I(T, p) < 1 + 1

Q with η ◦ f = 0. In the process of
taking this coarse blowup, we may assume by a rotation of coordinates that the Lipschitz
approximations of Tp,ρ̄k are always parameterized over the fixed plane π0 . Moreover, note
that the validity of [10, (3.4)] guarantees that

(19)
ρ̄2

kA2
k

Ep(T,B6
√

mρ̄k
(p))

→ 0 .

Let V ⊂ π0 denote the subspace of maximal dimension in which f is translation-invariant.
In light of [12, Theorem 0.11], we again deduce that dim V ≤ m − 2. If dim V = m − 2,
letting (x, y) ∈ V ×V⊥π0 ∼= Rm−2×R2 denote the corresponding splitting of the coordinates,
f (x, y) canonically identifies with g(y) for an I(T, p)-homogeneous Dir-minimizer g ∈
W1,2(B1 ⊂ R2;AQ(Rn)) (after additionally performing a rotation of the coordinates). Since
1 ≤ I(T, p) < 1 + 1

Q , the classification [12, Proposition 5.1] guarantees that I(T, p) = 1 and
g (and therefore f ) is a superposition of (at least two distinct) linear functions, inducing
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a cone S ∈ C (Q) \ P . Combining this with (17), (19), the estimates in [13, Theorem
2.4] and the strong L2 -convergence of the Lipschitz approximations for Tp,ρ̄k to f after
normalizing by E(T,B6

√
mρ̄k

(p)), yields the desired contradiction in this case. On the other
hand, if dim V ≤ m − 3, we take this choice of V in (18) to obtain the corresponding
sequence of points qk,V , which, by [13, Theorem 2.7] satisfy pπ0(qk,V) → z̄ ∈ B1(π0)
with f (z̄) = QJη ◦ f (z̄)K = QJ0K. This implies that z̄ ∈ V , contradicting the fact that
dist(qk,V ,V) ≥ ε for each k .

Remark 4.4 We further remark that as a consequence of Lemma 4.2 we are in fact able
to prove that at Hm−2 -a.e. flat singular Q-point the singularity degree is at least 1 + 1/Q.
However, such a classification at all such points remains open.

As a corollary of Proposition 3.1 and Lemma 4.2 we immediately obtain Theorem 1.5.

5 Flat singularities of degree ≥ 1 + 1/Q

Throughout this section, we fix δ ∈ (0, 1/Q) arbitrarily. We follow the methods of [11] to
deduce the Minkowski content bounds for FQ,⩾1+δ(T) claimed in Theorem 1.4.

Recall that in [11], the first step is a decomposition of FQ,>1(T) into countably many pieces
based on the value of I(T, ·). The key difference herein is that we do not need to decompose
FQ,⩾1+δ(T) into countably many subsets, but we may rather just work with the entirety of
this set as a single piece S = SK0 of the countable decomposition

FQ(T) ∩ B1 =
⋃

K∈N
SK , SK := {x ∈ FQ(T) : I(T, x) ≥ 1 + 2−K} ∩ B1 .

Indeed, we may simply choose K0(Q) ≥ log Q
log 2 . In order to work with SK0 in its entirety,

without having to take a countable union of sets

S̃K := {x ∈ FQ(T) : 2 − δ2 − 2−K ≥ I(T, x) ≥ 1 + 2−K} ∩ B1, K ∈ N ,

we rely on an adaptation of such a countable decomposition that was recently introduced
by the second author with Minter, Parise & Spolaor in [26] as a way of simplifying the
decomposition procedure. Therein such a refined decomposition procedure is not necessary
and is merely used for convenience, whereas here it is crucial in order to obtain the content
bound (2). Indeed, the methods of [11] yield such an estimate for each piece S̃K,J of
S̃K , where the index J characterizes the first scale at which the tilt excess decay of [10,
Proposition 7.2] kicks in (see [11, Theorem 9.7]), but do not rule out the possibility of
Minkowski content concentration between these sets since they are not closed. Since the
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main improvement of our Proposition 3.1 relative to [10, Proposition 7.2] is precisely that
the starting scale r0 is dependent only on a lower bound I0 on the singularity degree, we are
able to avoid such a countable decomposition.

For the purpose of clarity, we provide the setup and describe the key ideas here and we refer
the reader to [11], [26, Part 2] for the full proof.

First of all, note that Proposition 3.1 guarantees that for each x ∈ S, there exists r0(δ,m, n) >
0 such that for µ = 2−K0−1 and 0 < r < s < r0 we have

(20) E(T,Br(x)) ≤
(r

s

)2µ
max{E(T,Bs(x)), ε̄2s2−2δ2} .

Now, consider a point x ∈ S. Observe that [10, Theorem 2.10] tells us that x has
corresponding intervals of flattening {(tk+1, tk]}k≥0 with infk

tk+1
tk

> 0. Following the setup
in Section 2 with the fixed center x , consider the corresponding center manifolds Mx,k and
normal approximations Nx,k , together with a geometric blow-up sequence of scales {γj}j≥0 .

For j = 0, let M̃x,0 = Mx,0 and Ñx,0 = Nx,0 . For j = 1, if γ lies in the same interval of
flattening to t0 = 1, let

M̃x,1 := ι0,γ(Mx,0), Ñx,1(x) :=
Nx,0(γx)

γ
.

Otherwise, let M̃x,1 be the center manifold associated to Tx,γ B6
√

m , with corresponding
normal approximation Nx,1 .

For each j ≥ 2, define M̃x,j inductively as follows. If γj lies in the same flattening as γj−1 ,
let

M̃x,j := ι0,γ(Mx,j−1), Ñx,j(x) :=
Nx,j−1(γx)

γ
.

Otherwise, let M̃x,j be the center manifold associated to Tx,γj B6
√

m , with corresponding
normal approximation Nj .

It follows from the excess decay (20) that around any x ∈ S, we may replace the procedure
in Section 2.1 with the intervals (γk+1, γk] in place of (sk, tk], and with mmm0,k therein instead
defined by

(21) mmmx,k = E(Tx,γk ,B6
√

m) = E(T,B6
√

mγk (x)) .

Observe that in particular, if x ∈ S originally has finitely many intervals of flattening with
(0, tj0] being the final interval, it will nevertheless have infinitely many adapted intervals of
flattening, but for all k sufficiently large, M̃x,k and Ñx,k are arising as rescalings of Mx,j0
and Nx,j0 respectively.
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Abusing notation, let us henceforth simply write Mx,k for the center manifold M̃x,k , with
its corresponding normal approximation Nx,k .

The key ideas of [11] can be roughly summarized in the following steps:

(1) Exploit radial and spatial variations of the frequency function for Nx,k ([11, Lemma
10.7, Lemma 11.4]) in order to obtain a quantitative control on the deviation of Nx,k

from being radially homogeneous in a given geodesic annulus on Mx,k , in terms of
the pinching of the frequency between the two radial scales of the annulus; see [11,
Proposition 11.2]. Note that these estimates do not require that Nx,k .

(2) Obtain quantitative spine splitting and frequency pinching along (m − 2)-dimensional
subspaces via compactness procedures that rely on the unique continuation properties
of the limiting Dir-minimizers; see [11, Lemma 12.1, Lemma 12.2].

(3) Obtain quantitative control on the β2 coefficients associated to a suitable discrete
approximation of the measure Hm−2 S (see [11, Proposition 13.2], which in turn
leads to an estimate on its square function.

(4) Combine the above steps (1)-(3) with an iterative covering procedure (see [11,
Appendix A], that involves effectively covering all the points in S where the universal
frequency remains pinched close to its local maximal value, so that the frequency
drops by a discrete amount outside of this cover, allowing one to iterate a finite number
of times.

We hence conclude the proof of our main result.

Proof of Theorem 1.2 The proof is now an immediate corollary of Proposition 1.5 and
Theorem 1.4, after choosing δ in Theorem 1.4 strictly smaller than δ in Proposition 1.5 to
ensure an overlap between the two sets.
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