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Abstract. Henrot and Lucardesi, in Commun. Contemp. Math. (2024),
conjectured that among planar convex sets with prescribed minimal width,
the equilateral triangle uniquely maximizes the Cheeger constant. In this
short note, we confirm this conjecture. Moreover, we establish a stability
result for the inequality in terms of the Hausdorff distance.

1. Introduction

A convex body K is a compact convex subset of Rd with non-empty interior.
The Cheeger constant of K, first introduced for general bounded sets in Rd

in [18, 19]—although it owes its name to Cheeger’s paper [3]—, is defined as

h(K) = inf

{
P (E)

|E|
: E measurable, E ⊆ K, |E| > 0

}
, (1.1)

where P (E) is the distributional perimeter of E, also known as variational,
Caccioppoli, or De Giorgi perimeter, and |E| is the d-dimensional Lebesgue
measure of E. The Cheeger constant is sometimes also referred to as the
isoperimetric constant of K, as it provides the best constant c in the (non-
scale invariant) isoperimetric inequality P (E) ≥ c|E| for all subsets E of K,
accounting for the geometric features of the set. We refer the interested reader
to the surveys [6, 14, 20].

Any set realizing the infimum in (1.1) is called a Cheeger set of K. Under
our standing assumptions on K, there exists a unique Cheeger set [1, Thm. 1].
From the definition, it follows that the Cheeger constant is positively (−1)-
homogeneous, i.e.,

h(tK) = t−1h(K), for all t > 0.

Moreover, it is monotone decreasing with respect to set inclusion, i.e.,

h(K ′) ≥ h(K), if K ′ ⊂ K.

Therefore, to meaningfully maximize h(K) over a family of convex bodies, one
must prevent admissible sets from shrinking or collapsing. One approach is to
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enforce curvature constraints, as in [4, 9]. In this paper, we focus instead on
the approach of Henrot and Lucardesi [10], who considered a constant width
constrain. For a comprehensive treatment of such sets, we refer to [17].

In dimension 2, the directional width of a convex body K can be understood
as follows: given a direction νθ ∈ S1, i.e., the pair (cos θ, sin θ), define

wνθ(K) = H1 (projθ(K)) ,

where projθ(K) is the orthogonal projection of K onto the line spanned by νθ,
and H1 denotes the one-dimensional Hausdorff measure. Roughly speaking,
this measures the length of the projection of K onto the given line. The set K
is said to have constant width if wνθ(K) is constant, i.e., independent of νθ.

Henrot and Lucardesi [10] showed that, among planar convex bodies with
prescribed constant width, the Cheeger constant h( · ) is maximized by the
Reuleaux triangle.

One may relax the constant width constraint by requiring instead a pre-
scribed minimal width constraint (also called thickness), defined by

w(K) = min
νθ∈S1

wνθ(K).

They conjectured that, under this constraint, the maximum of h( · ) is attained
by any equilateral triangle Te saturating the constraint. Since the minimal
width functional is positively 1-homogeneous, this conjecture is equivalent to
stating that the scale invariant functional

K 7→ w(K)h(K)

is maximized among planar convex bodies by any equilateral triangle Te, i.e.,

w(K)h(K) ≤ w(Te)h(Te). (1.2)

We give a positive answer to this conjecture in Theorem 3.1, also proving
the rigidity of the inequality, i.e., the uniqueness of Te as the maximizer.
Furthermore, we prove a quantitative stability result for (1.2), i.e., we show
that if a planar convex body K is ε-close to attaining the maximum, i.e., if

w(Te)h(Te)− w(K)h(K) = ε,

for ε < η < 3
1/4 π

1/2, then K is ε-Hausdorff close to an equilateral triangle Te

with w(Te) = w(K), i.e.,

dH(K,Te) ≤ Cw(K)ε,

where C = C(η) is a positive constant and the linear dependence on ε sharp,
see Theorem 3.4 and Proposition 4.7, and refer to Section 2 for the definition
of Hausdorff distance dH( ·, · ) between two convex bodies. Stability results for
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the maximization of the Cheeger constant under suitable constraints have been
proved in [4, 9], whereas for its minimization (without any further constraint)
in [5, 11].

Before proving the two main theorems, we ensure that a maximizer indeed
exists. We show this in arbitrary dimension, i.e., in the class Kd with a minimal
width constraint, see Lemma 4.2. For completeness, we also show that the
corresponding minimization problem is ill-posed, see Lemma 4.3.

The paper is organized as follows. In Section 2, we fix the notation and give
the relevant definitions. In Section 3, we present our main results, comment
them, and outline the main ideas behind their proofs. In Section 4, we prove
the existence of maximizers and the nonexistence of minimizers in arbitrary
dimension, and we give the proofs of our two main results.

2. Notations and definitions

We lay out here the notation used throughout the paper and provide the rel-
evant definitions. The precise definitions of the Cheeger constant and Cheeger
set have already been given in the introduction, so we shall not repeat them.

A convex body in Rd is a compact convex set with non-empty interior. We
denote by Kd the family of convex bodies in Rd. Throughout, we denote by
B1 the ball centered at the origin with radius 1; by Te a generic equilateral
triangle. Additional requirements on Te, if any, will be explicitly stated.

Given a non-empty convex subset L ⊂ Rd, we let dist( · , L) : Rd → [0,+∞)

be the distance function from L, namely

dist(x, L) = inf
y∈L

∥x− y∥.

If L is compact, the above is a minimum.
Given K ∈ Kd, we denote by r(K) the inradius of K, i.e.,

r(K) = max
x∈K

dist(x, ∂K) > 0.

For t ≥ 0, we denote the inner parallel set of K at distance t by

K−t = {x ∈ K : dist(x, ∂K) ≥ t },

and we stress that K−t ̸= ∅ if and only if t ∈ [0, r(K)].
To properly define the minimal width, we introduce the support function of

a convex body K ∈ Kd, namely hK : Sd−1 → R, defined as

hK(ν) = max
x∈K

{x · ν }.

We remark that hK is sometimes extended to the whole of Rd by positive 1-
homogeneity. Geometrically, hK(ν) represents the distance from the origin to
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the supporting hyperplane of K with outer unit normal ν. Given a unit vector
ν, the distance between the two supporting hyperplanes to K orthogonal to
ν—with outer normals ν and −ν, respectively—is the directional width wν(K),
i.e.,

wν(K) = hK(ν) + hK(−ν). (2.1)

The minimum of these widths is called the minimal width or thickness, i.e.,

w(K) = min
ν∈Sd−1

wν(K).

As mentioned in the Introduction, in dimension 2 we may represent unit
vectors by an angle θ ∈ [0, 2π], namely νθ = (cos θ, sin θ) ∈ S1. The directional
width can then be expressed as

wνθ(K) = H1(projθ(K)),

where projθ denotes the orthogonal projection onto the line spanned by νθ,
and H1 is the one-dimensional Hausdorff measure. Accordingly, the minimal
width of K becomes

w(K) = min
νθ∈S1

wνθ(K).

Given two convex bodies K and L, their Minkowski sum is defined as

K ⊕ L = { a+ b : a ∈ K, b ∈ L }.

The Hausdorff distance between two convex bodies K,L ∈ Kd is defined as

dH(K,L) = max{max
x∈K

dist(x, L), max
y∈L

dist(y,K) }.

An equivalent characterization, which highlights the geometric meaning of
dH( · , · ), is given by

dH(K,L) = min{ r ≥ 0 : K ⊂ L⊕ rB1, L ⊂ K ⊕ rB1 }.

The space Kd, endowed with this distance, is a locally compact metric space.

3. Statement of main results

Our first main theorem confirms the conjecture raised by Henrot and Lu-
cardesi [10], namely that among planar convex bodies of prescribed minimal
width, the equilateral triangle maximizes the Cheeger constant. Moreover, it
is the unique maximizer.

Theorem 3.1 (Reverse inequality & rigidity). Let K ∈ K2 be a planar convex
body. Then,

w(K)h(K) ≤ w(Te)h(Te) = 3 +

√
π
√
3.

Furthermore, equality holds if and only if K is an equilateral triangle Te.
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Remark 3.2. As mentioned, Theorem 3.1 can also be reformulated as

h(K) ≤ h(Te), ∀K ∈ K2 : w(K) = w0,

where Te denotes an equilateral triangle with the same minimal width as K,
namely w0. The result remains valid even if one relaxes the constraint to
w(K) ≥ w0. Indeed, by the monotonicity of the Cheeger constant with respect
to set inclusion and the 1-homogeneity of the minimal width, it follows that

max{h(K) : w(K) = w0 } = max{h(K) : w(K) ≥ w0 }.

This relaxation leads naturally to the consideration of the class

R = {K ∈ Kd : ∀K ′ ⊂ K , K ′ ∈ Kd there holds w(K ′) < w(K) },

whose elements are called reduced bodies. This class is well studied in the
literature (see [13] and references therein) and strictly contains the class of
constant width bodies.

We provide two different proofs of Theorem 3.1. The first is a short ar-
gument based on an inequality proved by Ftouhi in [7, Thm. 1], together
with some classical inequalities for convex sets [24]. The second proof com-
bines [12, Thm. 1], which characterizes the Cheeger set of a convex body, with
Lemma 4.4, which provides a sharp lower bound on the width of the inner
parallel sets K−t in terms of the width of K. As far as we are aware, this
latter result is not present in the literature and is of independent interest.

Before stating the stability result, we define the width–Cheeger deficit. Given
a convex set K ∈ K2, it is defined as

δwh(K) = w(Te)h(Te)− w(K)h(K) ≥ 0.

We also define the Hausdorff–width asymmetry of K by

αE(K) = inf
Te

{
dH(K,Te)

w(K)
: w(Te) = w(K)

}
, (3.1)

first introduced in [16, Eq. (1.3)]. Both δwh(·) and αE(·) are scale-invariant.

Remark 3.3. The infimum in αE is actually a minimum. Up to a translation,
we can assume K ⊂ diam(K)B1. Let (T n

e )n∈N be a minimizing sequence
satisfying w(T n

e ) = w(K) and

dH(K,T n
e ) ≤

(
αE(K) +

1

n

)
w(K).

Since K ⊂ diam(K)B1, we obtain that

T n
e ⊂

(
diam(K) + (αE(K) + 2)w(K)

)
B1.
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Hence, by the Blaschke Selection Theorem, up to a subsequence, the trian-
gles T n

e converge in the Hausdorff sense to a limit set T e, which is again an
equilateral triangle. Moreover, the constraint w(T n

e ) = w(K) is stable under
Hausdorff convergence (see Lemma 4.1), so T e realizes the infimum in (3.1).

Theorem 3.4 (Stability). Let η ∈ (0, 3
1/4 π

1/2). There exists a positive constant
C = C(η) > 0 such that, for all K ∈ K2, if δwh(K) ≤ η, then

αE(K) ≤ Cδwh(K). (3.2)

The proof of the stability result relies once again on the inequality in [7,
Thm. 1], together with the quantitative version of Pál’s inequality proved
in [16, Thm. 1.2].

Remark 3.5. The dependence of the constant C on η in Theorem 3.4 is
essential, and one cannot expect a quantitative stability result for sets with
δwh(K) > 3

1/4 π
1/2. First, C(η) blows up as η → 3

1/4 π
1/2; see (4.16).

Second, consider the rectangles RL = [−L,L] × [0, 1]. For L ≥ 1, we
have w(RL) = 1. On the one hand, the deficit δwh(K) is trivially bounded
above, independently of K, by w(Te)h(Te). For completeness, we mention
that h(RL) ↘ 2 as L → ∞; see, e.g., [22, Thm. 2.1] or our own Lemma 4.3.
Thus, δwh(RL) ↗ 1 + 3

1/4 π
1/2, which exceeds the threshold in Theorem 3.4.

On the other hand, denote by T1 the equilateral triangle whose base lies
symmetrically on the x-axis and whose third vertex is (0, 1). Then

αE(RL) =
dH(RL, T1)

w(RL)
∼ L.

Therefore, an inequality like (3.2) cannot hold for all K ∈ K2 without imposing
an upper bound on their Cheeger deficit.

For completeness, we mention that for any η ≤ η̄ = (3
1/4 π

1/2)/2, an admis-
sible constant is

C =
8 4
√
3

75
√
5π

,

as follows from plugging η̄ into (4.16) and using [16, Rem. 5.3].

Remark 3.6. The linear dependence on δwh( · ) in Theorem 3.4 is sharp, i.e.,
inequality (3.2) cannot hold when replacing αE( · ) with its p-th power, for any
p < 1, see Proposition 4.7.

Remark 3.7. The stability estimate for αE(·) also implies stability with re-
spect to the Fraenkel asymmetry AE(·) (see [16, Eq. (1.5)] for its definition),
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which measures the L1-distance between the characteristic function of K from
those of equilateral triangles. This follows from the inequality

αE(K) ≥ 1

3
√
3 + 2

AE(K),

as proved in [16, Prop. 2.1].

4. Proofs of statements

In Section 4.1, we prove the existence of maximizers and we also remark the
ill-posedness of the minimization problem in all dimensions. In Section 4.2, we
give two different proofs of Theorem 3.1. In Section 4.3, we prove Theorem 3.4.

4.1. Maximization and minimization in arbitrary dimensions. In this
section we work in arbitrary dimension, so that we consider convex bodies
K ∈ Kd. We start by proving that the width constraint is stable with respect
to Hausdorff convergence. We stress that to state the following lemma, we
need to consider the larger class of compact convex subsets of Rd, including
those with empty interior.

Lemma 4.1. The functional w(·) is continuous with respect to Hausdorff con-
vergence, among compact convex subsets of Rd.

Proof. Let (Kn)n∈N ⊂ Rd be a sequence of compact convex sets converging,
with respect to the Hausdorff metric, to some compact convex set K ⊂ Rd.
It is well-known (see, e.g., [23, Lem. 1.8.14]) that Hausdorff convergence is
equivalent to uniform convergence of support functions, i.e.,

∥hKn − hK∥L∞(Sd−1) → 0 , as n → ∞. (4.1)

Moreover (see, e.g., [23, Cor. 1.8.13]), for any fixed convex compact set E ⊂ Rd,
the map ν 7→ wν(E) is Lipschitz continuous with Lipschitz constant diam(E),
i.e.,

|wν1(E)− wν2(E)| ≤ diam(E)∥ν1 − ν2∥ , ∀ ν1, ν2 ∈ Sd−1. (4.2)

Let (νn)n∈N ⊂ Sd−1 be a sequence of directions such that

w(Kn) = wνn(Kn). (4.3)

By compactness of the sphere, there exists a subsequence (not relabeled) and
a unit vector ν∗ such that νn → ν∗ in Rd. Using (4.3), the Lipschitz conti-
nuity (4.2), and the uniform convergence of support functions (4.1) together
with the definition of directional width (2.1), we estimate

|w(Kn)− wν∗(K)| = |wνn(Kn)− wν∗(K)|

≤ |wνn(Kn)− wν∗(Kn)|+ |wν∗(Kn)− wν∗(K)|
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≤ diam(Kn)∥νn − ν∗∥+ 2∥hKn − hK∥L∞(Sd−1).

As Kn Hausdorff converges, (diam(Kn))n∈N is uniformly bounded. Therefore,
w(Kn) → wν∗(K) In particular, it follows

lim
n→+∞

w(Kn) ≥ w(K). (4.4)

On the other hand, by continuity of hK on Sd−1, there exists ν ∈ Sd−1 such
that w(K) = wν(K). Then, by the uniform convergence (4.1),

w(K) = lim
n→+∞

wν(Kn) ≥ lim
n→+∞

w(Kn). (4.5)

Putting together (4.4) and (4.5) gives the desired continuity. □

We can now prove the existence of maximizers of w( · )h( · ) over Kd.

Lemma 4.2. The functional w( · )h( · ) admits a maximizer in the class Kd.

Proof. We start by showing that the shape functional is bounded from above,
so that the supremum is finite.

Let K ∈ Kd and let E be its inner Löwner–John ellipsoid, i.e., the ellipsoid
of maximal volume contained in K. On the one hand, since E ⊂ K we have

h(K) ≤ P (E)

|E|
.

On the other hand, by John’s Theorem [23, Thm. 10.12.2], up to a suitable
translation, one has K ⊂ dE, and thus

w(K) ≤ w(dE) = dw(E).

Combining these two inequalities, we deduce that it is enough to show the
boundedness of w( · )P ( · )/| · | among ellipsoids.

Let (ai)
d
i=1 denote the ordered semi-axes of E, i.e., 0 < a1 ≤ . . . ≤ ad.

Then1,

w(E) = 2a1 , |E| = ωd

d∏
i=1

ai , P (E) ≤ 2d
d∑

i=1

∏
j ̸=i

aj ,

where ωd is the Lebesgue measure of the unit ball in Rd. Using these, we
obtain

w(E)P (E)

|E|
≤

2d+1a1
∑d

i=1

∏
j ̸=i aj

ωd

∏d
i=1 ai

=
2d+1a1
ωd

d∑
i=1

1

ai
≤ 2d+1d

ωd
.

Hence, the shape functional is bounded from above on Kd.
1The estimate on the perimeter comes from comparing that of the ellipsoid with a

parallepiped with sides’ length (2ai)
d
i=1 using that convex bodies are outward perimeter

minimizers.



CHEEGER CONSTANT AND MINIMAL WIDTH 9

Let (Kn)n∈N ⊂ Kd be a maximizing sequence. Since the functional is scale
invariant, we may assume that w(Kn) = 1 for every n. Moreover, by its
invariance under rigid motion, we may also assume that

|Kn ∩ 2B1| > 0, and w(Kn ∩ 2B1) = 1, ∀n ∈ N.

Define K̃n = Kn ∩ 2B1. Then (K̃n)n∈N is a sequence of convex bodies with
constant minimal width, uniformly contained in 2B1. Since h( · ) is monotonic
decreasing under set inclusion, (K̃n)n∈N is still a maximizing sequence, since

sup
Kd∩{w=1}

h ≥ lim
n→+∞

h(K̃n) ≥ lim
n→+∞

h(Kn) = sup
Kd∩{w=1}

h.

By Blaschke Selection Theorem, up to a (not relabeled) subsequence, K̃n → K∗

in the Hausdorff metric, for some compact convex set K∗ ⊂ Rd. By continuity
of the minimal width proved in Lemma 4.1 under this metric, w(K∗) = 1, and
thus K∗ has non-empty interior, i.e., it is a convex body.

To conclude the proof, we note that h( · ) is continuous in the Hausdorff
metric, see, e.g., in [21, Prop. 3.1]. Therefore, K∗ is a maximizer. □

Lemma 4.3. For every K ∈ Kd, the following sharp inequality holds

w(K)h(K) > 2, (4.6)

with equality asymptotically reached by sequences of flattening cylinders.

Proof. Let K ∈ Kd be fixed with w(K) = 2. For every η ≥ 2, consider the
cylinder Cη = ηBd−1

1 × [−1, 1], where Bd−1
1 is the unit ball in Rd−1. For

sufficiently large η, we have, up to a rotation and a translation, that K ⊂ Cη.
Hence, by monotonicity of the Cheeger constant with respect to set inclusion,
we obtain

w(K)h(K) ≥ w(K)h(Cη) = 2h(Cη). (4.7)

A simple computation, using separation of variables and orthogonality of
Laplacian eigenfunctions, gives that the first Dirichlet–Laplacian eigenvalue
of Cη is

λ1(Cη) = λ1(ηB
d−1
1 × [−1, 1])

= λ1(ηB
d−1
1 ) + λ1([−1, 1]) =

λ1(B
d−1
1 )

η2
+

π2

4
,

where we used the scaling properties of λ1( · ), and the well-known explicit
value of λ1([−1, 1]). Applying the reverse Cheeger inequality proved in [21,
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Prop. 4.1]—which is stated for d = 2, but holds in all dimension (see [2,
Rem. 1.1])—we have

h(Cη) >
2

π

√
λ1(Cη) =

2

π

√
π2

4
+

λ1(B
d−1
1 )

η2
=

√
1 +

4λ1(B
d−1
1 )

π2η2
> 1.

Combining this with (4.7), we obtain

w(K)h(K) ≥ 2h(Cη) > 2.

It remains to show the sharpness of this bound. To that end, we estimate
the shape functional w( · )h( · ) on the cylinder Cη. We have

w(Cη)h(Cη) ≤
2P (Cη)

|Cη|

=
2ωd−1η

d−1 + 2(d− 1)ωd−1η
d−2

ωd−1ηd−1
= 2 +

2(d− 1)

η
.

Hence, we have that lim supη→+∞w(Cη)h(Cη) ≤ 2. Combining this with the
lower bound (4.6) completes the proof. □

4.2. Proofs of Theorem 3.1.

First proof of Theorem 3.1. Let K ∈ K2 be fixed. By [7, Thm. 1], it holds

h(K) ≤ 1

r(K)
+

√
π

|K|
, (4.8)

whereas by [24, Tab. 2.1, (A,w) and (r, w)], we have

w(K) ≤ 3r(K), (w(K))2 ≤
√
3|K|, (4.9)

where equality holds in both only for equilateral triangles. Combining (4.8)
and (4.9), the claim follows immediately. □

The second proof relies on two different ingredients: first, a, nowadays,
classical theorem by Kawohl–Lachand-Robert [12, Thm. 1] (see also the more
general statement in [15, Cor. 5.5]); second, the following lemma on the width
of inner parallel sets, which, to the best of our knowledge, is new and of intrinsic
interest.

Lemma 4.4. Let K ∈ K2. For all t ∈ [0, r(K)), it holds

w(K−t) ≥ w(K)− 3t.

Further, equality is attained for equilateral triangles.
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Proof. We begin by fixing notation. Let K be a convex polygon with N ≥ 3

vertexes, ordered as v1, . . . , vN . We let ℓi be the side of K connecting vi and
vi+1, with the usual convention that vN+1 = v1. Let αi be the interior angle
of K at the vertex vi, i.e., the angle between the sides ℓi−1 and ℓi.

For convex polygons K the minimal width can be expressed as

w(K) = min
i

max
j

dist(vj , ℓi) i, j ∈ J1, NK.

For every fixed i ∈ J1, NK, let σ(i) ∈ J1, NK be such that

max
j

dist(vj , ℓi) = dist(vσ(i), ℓi),

so that

w(K) = min
i

dist(vσ(i), ℓi). (4.10)

Note also that

σ(i) ̸= i, and σ(i) ̸= i+ 1, ∀i ∈ J1, NK, (4.11)

where, again, we identify the index N + 1 with 1.
Consider the inner sets (K−t)t, for t > 0. The number of their sides is

decreasing with t. Actually, the function t ∈ [0, r(Ω)] 7−→ n(t) (where n(t) is
the number of sides of Ω−t) is piecewise constant and decreasing. Let 0 = t0 <

t1 < · · · < tNK = r(Ω), such that

∀k ∈ J0, NK − 1K, ∀t ∈ [tk, tk+1), n(t) = nk,

where (nk)k is a strictly decreasing finite sequence of natural numbers.
For every t ∈ [0, t1), the vertexes v1, . . . , vN map to N distinct points

vt1, . . . , v
t
N that are the vertexes of the N -gon K−t. Let ℓti be the side of K−t

connecting vti and vti+1, and let αt
i be the interior angle of K−t at the vertex

vti . Note that the interior angles of the polygons K and K−t are equal, i.e.,

∀t ∈ [0, t1), ∀i ∈ J1, NK, αi = αt
i.

We consider the following partition of indexes i ∈ J1, NK:

(i) Φ = { i : either ℓσ(i)−1 or ℓσ(i) is parallel to ℓi };
(ii) Ψ1 = { i /∈ Φ : ασ(i) ≥ π/3 };
(iii) Ψ2 = { i /∈ Φ : ασ(i) < π/3 }.

We claim that

w(K−t) = min
i∈Φ∪Ψ1

dist(vtσ(i), ℓ
t
i). (4.12)

Fix i ∈ Ψ2. The segments ℓti, ℓtσ(i)−1, and ℓtσ(i) are distinct because of (4.11),
and are not collinear due to convexity of K. Let T t

i be the triangle whose



12 I. FTOUHI, I. LUCARDESI, AND G. SARACCO

vi vi+1

vσ(i)

dist(vσ(i), ℓi)

vti vti+1

dist(vtσ(i), ℓ
t
i)

vtσ(i)

t

t

α

Figure 1. The polygons K (in black) and K−t (in red), and α = ασ(i)/2.

vertexes are the three (pairwise) intersections of the lines extending these seg-
ments. Since ασ(i) < π/3, the side ℓti does not belong to the line containing
the largest side of T t

i , thus

dist(vtσ(i), ℓ
t
i) > w(T t

i ) ≥ w(K−t),

where the last inequality follows from K−t ⊆ T t
i . This proves (4.12).

We now estimate dist(vtσ(i), ℓ
t
i) from below for indexes i ∈ Φ ∪Ψ1. If i ∈ Φ,

we have

dist(vtσ(i), ℓ
t
i) = dist(vσ(i), ℓi)− 2t > dist(vσ(i), ℓi)− 3t. (4.13)

If i ∈ Ψ1, see also Figure 1, denoting by λσ(i) the distance between vσ(i) and
vtσ(i), we have

dist(vtσ(i), ℓ
t
i) ≥ dist(vσ(i), ℓi)− λσ(i) − t = dist(vσ(i), ℓi)−

t

sin(ασ(i)/2)
− t

≥ dist(vσ(i), ℓi)−
t

sin(π/6)
− t = dist(vσ(i), ℓi)− 3t, (4.14)

using that π/2 > ασ(i)/2 ≥ π/6 for i ∈ Ψ1.
Combining first (4.12)–(4.14) and using to (4.10), we get

w(K−t) = min
i∈Φ∪Ψ1

dist(vtσ(i), ℓ
t
i) ≥ min

i∈Φ∪Ψ1

dist(vσ(i), ℓi)− 3t

≥ min
i

dist(vσ(i), ℓi)− 3t = w(K)− 3t, ∀t ∈ [0, t1).
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Repeating the same argument for K−t1 and iterating until t = r(K) yields
the desired inequality when K is a convex polygon. The general case of convex
bodies follows by approximation, since convex polygons are dense in K2 in the
Hausdorff metric and the minimal width is continuous in such a metric, see
Lemma 4.1. □

Corollary 4.5. Let K ∈ K2. For all t ∈ (0, r(K)), it holds

|K−t| ≥ |(Te)−t|,

where Te is an equilateral triangle with w(Te) = w(K). Further, the inequality
is strict unless K is an equilateral triangle.

Proof. Let K ∈ K2 and Te be as in the statement. For brevity, let T = Te.
If K is an equilateral triangle, the claim is trivial. Suppose it is not. Define

τK = sup{ t ∈ [0, r(K)) : K−t is not an equilateral triangle }.

In this case, we have r(K) > r(T ), see, e.g., [24, Tab. 2.1, (r, w)]. We will
now compare the functions

t 7−→ |K−t| and t 7−→ |T−t|

on the intervals (0, τK), [τK , r(T )), and [r(T ), r(K)).
Step 1: comparison on (0, τK). By definition, for t ∈ (0, τK), the set K−t is
not an equilateral triangle. Therefore, using the inequality and the equality
cases of [24, Tab. 2.1, (A,w)], the equality case of Lemma 4.4, the assumption
w(K) = w(T ), and the inequality in Lemma 4.4,

|K−t| >
w(K−t)

2

√
3

= |T−t |
w(K−t)

2

w(T−t)2
= |T−t|

(
w(K−t)

w(T )− 3t

)2

= |T−t|
(

w(K−t)

w(K)− 3t

)2

≥ |T−t|.

Step 2: comparison on [τK , r(T )). In this range, both K−t and T−t are equi-
lateral triangles. Hence, they satisfy r(E−t) = r(E)− t, and thus

r(K−t) = r(K)− t > r(T )− t = r(T−t),

since r(K) > r(T ). This implies |K−t| > |T−t| because both sets are equilateral
triangles.
Step 3: comparison on [r(T ), r(K)). In this range, T−t is empty, whereas K−t

is not, so the inequality is trivially strict. □

We now recall a corollary of [12, Thm. 1], originally stated in a slightly
different form in [8, Lem 2.9].
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Corollary 4.6. Let K,H ∈ K2. If for all t ∈ (0,max{r(K), r(H)}) one has
|K−t| > |H−t|, then h(K) < h(H).

The alternative proof of Theorem 3.1 is now an immediate consequence of
Corollaries 4.5 and 4.6.

Second proof of Theorem 3.1. Let K ∈ K2 and assume it is not an equilateral
triangle. Let Te be an equilateral triangle with w(Te) = w(K). Then, by
Corollaries 4.5 and 4.6, we immediately deduce that h(K) < h(Te). □

4.3. Proof of Theorem 3.4. Let η < 3
1/4 π

1/2, and fix ε ∈ (0, η). Let K ∈ K2

be such that δwh(K) = ε, i.e.,

w(K)h(K) = 3 +

√
π
√
3− ε.

Using (4.8), the first inequality in (4.9), its equality case, and the quantitative
Pál’s inequality from [16, Thm. 1.2], we have

w(K)h(K) ≤ w(K)

r(K)
+
√
π
w(K)√
|K|

≤ 3 +

√
π√

c2αE(K) + 1√
3

,

where c2 > 0 is the constant, independent of K, appearing in the statement
of [16, Thm. 1.2]. Combining this inequality with the previous identity and
rearranging2 yields

c2αE(K) ≤ π

(
√

π
√
3− ε)2

− 1√
3
≤ 2

√
π
√
3

√
3(
√

π
√
3− ε)2

ε. (4.15)

Using that δwh(K) = ε < η, setting

C = C(η) =
2
√

π
√
3

c2
√
3(
√

π
√
3− η)2

, (4.16)

and accordingly rearranging (4.15), the claim follows. □

Proposition 4.7. The linear dependence on αE( · ) in (3.2) is sharp, i.e., for
any p < 1, there does not exist a constant C > 0 such that

[αE(K)]p ≤ Cδwh(K) ∀K ∈ K2 : δwh(K) < η,

where η is in the range given in Theorem 3.4.

Proof. To prove the statement, it suffices to exhibit a family of convex bodies
(Rε)ε such that

δwh(Rε) ∼ ε, and αE(Rε) ∼ ε , as ε → 0. (4.17)

2One can slightly improve (4.15) not discarding the negative term in ε2.
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Let ε < min{
√
3/2, η }. Consider the following sets

Tε = hull

{(
−1 +

ε

2
√
3
, 0

)
,

(
0, 1− ε

2
√
3

)
, (0,

√
3− ε)

}
,

Rε = T0 ∩
{
y ≤

√
3− ε

}
,

where hull( · ) denotes the convex hull. For all ε, the set Tε is an equilateral
triangle, we have the set inclusions Tε ⊂ Rε ⊂ T0, and the equalities

diam(Rε) = diam(T0) and w(Rε) = w(Tε) = w(T0)− ε. (4.18)

For ε ≪ 1, we also have h(Rε) = h(T0), owing to the characterization in [12,
Thm. 1]. Thus,

δwh(Rε) = w(T0)h(T0)− w(Rε)h(Rε) = εh(T0), (4.19)

which shows that (Rε)ε satisfies the first request in (4.17).
For the asymmetry, since w(Rε) = w(Tε), we estimate

αE(Rε) ≤
dH(Rε, Tε)

w(Rε)
=

ε

2w(Rε)
=

ε

2(w(T0)− ε)
, (4.20)

where the first equality is a straightforward computation and the second one
follows from (4.18). We now show this inequality is in fact an equality.

Argue by contradiction, and assume that for all sufficiently small ε, there
exists an equilateral triangle Tδ with w(Tδ) = w(Rε) and such that

αE(Rε) =
dH(Rε, Tδ)

w(Rε)
= δ <

ε

2(w(T0)− ε)
. (4.21)

By definition of Hausdorff distance, Rε ⊂ Tδ ⊕ δB1. Therefore,

diam(Rε) ≤ diam(Tδ ⊕ δB1) = diam(Tδ) + 2δ

=
2√
3
w(Tδ) + 2δ =

2√
3
(w(T0)− ε) + 2δ = diam(T0)−

2√
3
ε+ 2δ.

Rearranging, using the first relation in (4.18) and the definition of δ given
in (4.21), using that w(T0) =

√
3, and that ε > 0, yields to the inequality

2√
3
<

1√
3− ε

,

against our initial assumption ε <
√
3/2. Hence, equality holds in (4.20),

which, together with (4.19), gives (4.17). □



16 I. FTOUHI, I. LUCARDESI, AND G. SARACCO

Acknowledgments

The present research has been carried out during a visit of the first author in
Firenze, sponsored by the “Programma Internazionalizzazione” of the Depart-
ment of Mathematics and Computer Science “Ulisse Dini” of Firenze and by
INdAM–GNAMPA. The first author is supported by the Alexander von Hum-
boldt Foundation through a Postdoctoral fellowship. The second and third
author are members of INdAM–GNAMPA and are partially supported by the
INdAM–GNAMPA Project, codice CUP #E5324001950001#, “Disuguaglianze
funzionali di tipo geometrico e spettrale”. The second author is member the
PRIN2022 project 2022SLTHCE “Geometric-Analytic Methods for PDEs and
Applications (GAMPA)”.

References

[1] F. Alter and V. Caselles. Uniqueness of the Cheeger set of a convex body. Nonlinear
Anal., 70(1):32–44, 2009. doi:10.1016/j.na.2007.11.032.

[2] L. Brasco. On principal frequencies and isoperimetric ratios in convex sets. Ann. Fac.
Sci. Toulouse Math. (6), 29(4):977–1005, 2020. doi:10.5802/afst.1653.

[3] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Prob-
lems in Analysis (Sympos. in Honor of Salomon Bochner, Princeton Univ., Prince-
ton, N.J., 1969), pages 195–199. Princeton Univ. Press, Princeton, NJ, 1970. doi:
10.1515/9781400869312-013.

[4] K. Drach and K. Tatarko. Stability of reverse isoperimetric inequalities in the plane:
area, Cheeger, and inradius. arXiv preprint, 2024. arXiv:2303.02294.

[5] A. Figalli, F. Maggi, and A. Pratelli. A note on Cheeger sets. Proc. Amer. Math. Soc.,
137(6):2057–2062, 2009. doi:10.1090/S0002-9939-09-09795-0.

[6] V. Franceschi, A. Pinamonti, G. Saracco, and G. Stefani. The Cheeger problem in
abstract measure spaces. J. London Math. Soc. (2), 109(1):Paper No. e12840, 55, 2024.
doi:10.1112/jlms.12840.

[7] I. Ftouhi. On the Cheeger inequality for convex sets. J. Math. Anal. Appl., 504(2):Paper
No. 125443, 26, 2021. doi:10.1016/j.jmaa.2021.125443.

[8] I. Ftouhi, A. L. Masiello, and G. Paoli. Sharp inequalities involving the Cheeger constant
of planar convex sets. ESAIM, Control Optim. Calc. Var., 30:40, 2024. Id/No 23. doi:
10.1051/cocv/2024015.

[9] I. Ftouhi and G. Saracco. Stability of reverse isoperimetric inequalities in the plane
under convexity constraints. Forthcoming.

[10] A. Henrot and I. Lucardesi. A Blaschke–Lebesgue theorem for the Cheeger con-
stant. Commun. Contemp. Math., 26(4):Paper No. 2350024, 41, 2024. doi:10.1142/
S0219199723500244.

[11] V. Julin and G. Saracco. Quantitative lower bounds to the Euclidean and the Gaussian
Cheeger constants. Ann. Fenn. Math., 46(2):1071–1087, 2021. doi:10.5186/aasfm.
2021.4666.

https://doi.org/10.1016/j.na.2007.11.032
https://doi.org/10.5802/afst.1653
https://doi.org/10.1515/9781400869312-013
https://doi.org/10.1515/9781400869312-013
https://arxiv.org/abs/2303.02294
https://doi.org/10.1090/S0002-9939-09-09795-0
https://doi.org/10.1112/jlms.12840
https://doi.org/10.1016/j.jmaa.2021.125443
https://doi.org/10.1051/cocv/2024015
https://doi.org/10.1051/cocv/2024015
https://doi.org/10.1142/S0219199723500244
https://doi.org/10.1142/S0219199723500244
https://doi.org/10.5186/aasfm.2021.4666
https://doi.org/10.5186/aasfm.2021.4666


CHEEGER CONSTANT AND MINIMAL WIDTH 17

[12] B. Kawohl and T. Lachand-Robert. Characterization of Cheeger sets for convex subsets
of the plane. Pacific J. Math., 225(1):103–118, 2006. doi:10.2140/pjm.2006.225.103.

[13] M. Lassak and H. Martini. Reduced convex bodies in Euclidean space – a survey. Expo.
Math., 29(2):204–219, 2011. doi:10.1016/j.exmath.2011.01.006.

[14] G. P. Leonardi. An overview on the Cheeger problem. In New Trends in Shape Optimiza-
tion, volume 166 of Internat. Ser. Numer. Math., pages 117–139. Birkhäuser/Springer,
Cham, 2015. doi:10.1007/978-3-319-17563-8\_6.

[15] G. P. Leonardi and G. Saracco. Minimizers of the prescribed curvature functional in a
Jordan domain with no necks. ESAIM Control Optim. Calc. Var., 26:Paper No. 76, 20,
2020. doi:10.1051/cocv/2020030.

[16] I. Lucardesi and D. Zucco. Three quantitative versions of the Pál inequality. J. Geom.
Anal., 35(102), 2025. doi:10.1007/s12220-025-01931-7.

[17] H. Martini, L. Montejano, and D. Oliveros. Bodies of Constant Width.
Birkhäuser/Springer, Cham, 2019. An Introduction to Convex Geometry with Appli-
cations. doi:10.1007/978-3-030-03868-7.

[18] V. G. Maz’ya. The negative spectrum of the higher-dimensional Schrödinger operator.
Dokl. Akad. Nauk SSSR, 144:721–722, 1962.

[19] V. G. Maz’ya. On the solvability of the Neumann problem. Dokl. Akad. Nauk SSSR,
147:294–296, 1962.

[20] E. Parini. An introduction to the Cheeger problem. Surv. Math. Appl., 6:9–21, 2011.
sma:v06/a02.

[21] E. Parini. Reverse Cheeger inequality for planar convex sets. J. Convex Anal.,
24(1):107–122, 2017. jca:24009.

[22] A. Pratelli and G. Saracco. Cylindrical estimates for the Cheeger constant and appli-
cations. J. Math. Pures Appl. (9), 194:Paper No. 103633, 13, 2025. doi:10.1016/j.
matpur.2024.103633.

[23] R. Schneider. Convex Bodies: the Brunn–Minkowski Theory, volume 151 of Encycl.
Math. Appl. Cambridge: Cambridge University Press, 2nd expanded edition, 2014.
doi:10.1017/CBO9781139003858.

[24] P. R. Scott and P. W. Awyong. Inequalities for convex sets. JIPAM. J. Inequal. Pure
Appl. Math., 1(1):Article 6, 6, 2000. jipam:art99.

(I. Ftouhi) Friedrich–Alexander Universität Erlangen–Nürnberg, Depart-
ment of Mathematics, Chair in Applied Analysis - Alexander von Humboldt
Professorship, Cauerstr. 11, 91058 Erlangen, Germany

Email address: ilias.ftouhi@fau.de

(I. Lucardesi) Dipartimento di Matematica, Università di Pisa, Largo Bruno
Pontecorvo 5, 56127 Pisa (PI), Italy

Email address: ilaria.lucardesi@unipi.it

(G. Saracco) Dipartimento di Matematica e Informatica “Ulisse Dini” (DIMAI),
Università di Firenze, Viale Morgagni 67/A, 50134 Firenze (FI), Italy

Email address: giorgio.saracco@unifi.it

https://doi.org/10.2140/pjm.2006.225.103
https://doi.org/10.1016/j.exmath.2011.01.006
https://doi.org/10.1007/978-3-319-17563-8_6
https://doi.org/10.1051/cocv/2020030
https://doi.org/10.1007/s12220-025-01931-7
https://doi.org/10.1007/978-3-030-03868-7
https://www.utgjiu.ro/math/sma/v06/a02.html
https://www.heldermann.de/JCA/JCA24/JCA241/jca24009.htm
https://doi.org/10.1016/j.matpur.2024.103633
https://doi.org/10.1016/j.matpur.2024.103633
https://doi.org/10.1017/CBO9781139003858
https://www.emis.de/journals/JIPAM/article99.html?sid=99

	1. Introduction
	2. Notations and definitions
	3. Statement of main results
	4. Proofs of statements
	4.1. Maximization and minimization in arbitrary dimensions
	4.2. Proofs of Theorem 3.1
	4.3. Proof of Theorem 3.4

	Acknowledgments
	References

