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Abstract. We study the dimensional reduction from three to two dimensions in hyperelastic
materials subject to a live load, modeled as a constant pressure force. Our results demonstrate
that this loading has a significant impact in higher-order scaling regimes, namely those associ-
ated with von Kármán-type theories, where a nontrivial interplay arises between the elastic en-
ergy and the pressure term. In contrast, we rigorously show that in lower-order bending regimes,
as described by Kirchhoff-type theories, the pressure load does not influence the minimizers.
Finally, after identifying the corresponding Γ-limit, we conjecture that a similar independence
from the pressure term persists in the most flexible membrane regimes.
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Introduction

Dimension reduction represents an important class of problems in mathematical analysis,
numerics, and engineering. In elasticity, it is often used to approximate the behavior of elastic
bodies by reducing their dimensionality, passing from three dimensions (3D) to lower-dimensional
models, such as two-dimensional (2D) or one-dimensional (1D), based on suitable assumptions
about the geometry and the deformation of the structure. For example, thin plates can be
approximated by 2D models, while slender beams can be reduced to 1D objects. These reduced
models are not only much more computationally efficient but also provide valuable insights into
the underlying physics of the system. The key point is that the lower-dimensional structures are
derived from the full-dimensional models in a rigorous way. For static problems, this is usually
done by means of Γ-convergence [6, 10].
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2 M. KRUŽÍK AND F. RIVA

Regarding bidimensional systems, starting from the celebrated works [17, 12, 13] where a
whole hierarchy of plate models has been derived from nonlinear elasticity, the analysis has been
subsequently extended in many different directions. For instance, the current understanding
encompasses prestrained [21], magnetic [7], brittle [3], or martensitic [25] materials. Moreover,
in an evolutive framework, dimension reduction for dynamic models has been investigated in [1],
while viscoelastic or thermoviscoelastic effects are taken into account in [11] and [4], respectively.
We finally mention [18] and the recent paper [24], where the issue of stability of thin bodies with
respect to volume forces is addressed.

Despite such extensive developments, in most cases, external loads are considered to be in-
dependent of deformations, which significantly simplifies the mathematical discussion, but is
definitely a rare situation in practical applications. Such forces are commonly termed dead
loads, in contrast to the more mechanically relevant ones, the so-called live loads [8, 22], which
actually depend on the deformed configuration of the body. The technical advantage of con-
sidering dead loads over live ones lies in their simpler mathematical structure: dead loads are
typically represented by linear bounded functionals, whereas live loads involve more intricate,
nonlinear formulations. For this reason, up to our best knowledge, variational asymptotic anal-
ysis of models including a live load has been performed just recently in [20] in the framework of
linearization problems. Therein, the authors focus on boundary pressure forces, starting from
the observations raised in [19] where Neumann boundary conditions, which share some similar-
ities with pressure, are considered. However, we are not aware of dimension reduction results
for models influenced by live loads.

In this contribution, we provide rigorous derivations of 2D elasticity theories, in the spirit of
[13], encompassing constant-pressure live loads on the whole Neumann part of the boundary.
Such setting may for instance simulate a small thin elastic body completely immersed in a fluid,
hence experiencing hydrostatic pressure. Considering a more general non-constant pressure
would pose serious additional difficulties in the mathematical analysis, so we prefer to postpone
such a case to future works and to limit ourselves to the constant pressure scenario, which still
provides interesting and unexpected outcomes. Note also that applying a pressure force only on
a part of the Neumann boundary is a non-potential load and therefore cannot be treated in a
variational setting. These problems lead to the so-called flutter phenomenon, see, e.g., [23].

Our starting point is a three-dimensional energy functional

Iα,πh (w) =

∫
Ωh

W (∇w(x)) dx+ hαπ

∫
Ωh

det∇w(x) dx,

where Ωh = S × (−h/2, h/2) is a thin cylinder with the mid-plane S ⊆ R2 and thickness h > 0,
representing the reference configuration of a hyperelastic body, while w : Ωh → R3 denotes its
deformation. The first integral above describes the nonlinear elastic energy of the material,
while the second integral is the potential of a constant applied pressure load [8], with intensity
hαπ ∈ R, acting on the boundary of the deformed configuration w(Ωh). Roughly speaking,
the limiting planar model is described by the Γ-limit of the rescaled energy h−1−2αIα,πh as the
width h of the material tends to zero. The parameter α ≥ 0, which tunes the intensity of
pressure, is responsible for different resulting two-dimensional theories, as it happens in the
known pressureless cases. The case α = 0 corresponds to the so-called membrane regime [17],
while α = 1 and α ∈ (1, 2) lead to the nonlinear [12] and to the linearized bending regime [13],
respectively. The higher scalings α = 2 and α > 2 finally describe the von Kármán and the
linearized von Kármán regime [13], respectively.
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Our results show that the presence of pressure surprisingly affects only the latter more rigid
scalings, while the flexible ones behave exactly as if pressure was not acting, in terms of mini-
mizers. In particular, for α ≥ 2 we prove that, with respect to a suitable topology, the Γ-limit

1

h1+2α
Iα,πh

Γ−−−→
h→0

EαvK + πQα + π2cα,

holds true, where EαvK is the known von Kármán functional (linearized for α > 2) in absence of
pressure, depending on the horizontal and vertical displacements (u, v) : S → R2×R of the plate,
cα is a constant, while Qα is a nontrivial quadratic form directly connected to the elastic energy
density W (see the term multiplied by π in (1.30) and (1.31)). In particular, minimizers of the
limit energy are influenced by the pressure load via the operator Qα, and so they differ from
the ones of the pure von Kármán energy EαvK. For instance, in the specific case of homogeneous
isotropic materials, described in a linearized setting via the Lamé coefficients µ and λ, we can
explicitly compute

Qα(u, v) =


2µ

2µ+ λ

∫
S

(
div ′u(x′) +

1

2
|∇′v(x′)|2

)
dx′, if α = 2,

2µ

2µ+ λ

∫
S

div ′u(x′) dx′, if α > 2.

On the contrary, for α ∈ [1, 2) we show that

1

h1+2α
Iα,πh

Γ−−−→
h→0

Eαben(u, v) + cπ,

where Eαben is the known bending energy (linearized for α ∈ (1, 2)) of Kirchoff theory in absence
of pressure, and cπ is a constant. This implies that, in the limit, equilibrium configurations in
presence of pressure precisely coincide with the ones of the pressureless framework.

Finally, in the membrane regime α = 0, we prove that

1

h
I0,π
h

Γ−−−→
h→0

Eπmem(y) =


∫
S
Q
(
W (·) + π det(·)

)
0
(∇′y(x′)) dx′, if ∂3y = 0

+∞, otherwise,

where Q denotes the quasiconvex envelope, while the subscript 0 indicates the procedure of
minimizing with respect the third column. Inspired by the previous considerations which suggest
that pressure effects should just be visible at high scalings, we conjecture that

Q
(
W (·) + π det(·)

)
0

= Q
(
W )0 + cπ, (0.1)

so that minimizers of Eπmem are actually not affected by π. Although we are not able to prove
the validity of such conjecture, in Section 2.1 we propose an explicit example which indicates
its reliability.

The paper is organized as follows. Section 1 presents in details the three-dimensional hy-
perelastic model and fixes the main assumptions. After a brief recall of the known dimension
reduction results in the pressureless framework π = 0, we state our findings in Theorem 1.3,
where all the different regimes are considered. In Section 2 we analyze the membrane regime
α = 0 and we state our conjecture (0.1). Section 3 is finally devoted to the proof of the Γ-
convergence results both in the bending (α ∈ [1, 2)) and in the von Kármán-type (α ≥ 2)
regimes.

Notations. We adopt standard notations for Lebesgue and Sobolev spaces. Throughout the
paper, the symbols C or c will be used to indicate some positive constants not depending of h,
whose value may change from line to line.
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The maximum (resp. minimum) of two extended real numbers α, β ∈ R ∪ {±∞} is denoted
by α ∨ β (resp. α ∧ β). Without risk of ambiguity, by ξ ∧ ζ ∈ R3 we also mean the cross (or
wedge) product between the vectors ξ ∈ R3 and ζ ∈ R3. The scalar product between ξ and ζ is
instead indicated by ξ · ζ.

We denote by Rn×n and Rn×nsym the set of n×n matrices and its subset of symmetric matrices.

Given a matrix G ∈ Rn×n, its symmetric part (G + GT )/2 is indicated by symG. The set of
rotations is denoted by SO(n), namely

SO(n) = {R ∈ Rn×n : RTR = I, detR = 1}.

Given a matrix F ∈ R3×3, we will often write F = (F1|F2|F3), where Fi denotes the i-th column
of F .

We finally recall that for every F = (fij)i,j ∈ R3×3 and h > 0 the following expansion of the
determinant holds

det(I + hF ) = 1 + htrF + h2ι2(F ) + h3 detF, (0.2)

where

ι2(F ) = f11f22 − f12f21 + f11f33 − f13f31 + f22f33 − f23f32. (0.3)

1. Setting and main results

Let Ωh = S × (−h/2, h/2) be the reference configuration of a thin three-dimensional elastic
body of width h ∈ (0, 1], where S is a bounded Lipschitz domain in R2. For lightness of notations,
we will write Ω in place of Ω1.

By varying the parameter α ≥ 0, which will modulate the intensity of the applied pressure,
let us consider the total energy functionals Iα,πh : W 1,2(Ωh;R3)→ (−∞,+∞] defined as

Iα,πh (w) =


∫

Ωh

W (∇w(x)) dx+ hαπ

∫
Ωh

det∇w(x) dx, if det∇w > 0 a.e. in Ωh,

+∞, otherwise.
(1.1)

The first integral above represents the elastic bulk energy stored in the material. Indeed the
function W : R3×3 → (−∞,+∞] is the stored energy density and the condition det∇w > 0
encompasses the orientation preserving condition. On the other hand, the second integral is the
potential of a constant applied pressure load, with intensity hαπ ∈ R, acting on the boundary of
the deformed configuration. Indeed, it is well known [8, 22] that this term is a null Lagrangian,
namely it does not alter the Euler-Lagrange equations of (1.1) which still read as

−div ∂FW (∇w(x)) = 0, in Ωh,

but it affects their boundary conditions, which can be written in the reference configuration as

∂FW (∇w(x))n∂Ωh(x) = −hαπ cof∇w(x)n∂Ωh(x), for x ∈ ∂Ωh,

where cof F denotes the cofactor of the matrix F and n∂Ωh is the outward unit normal to ∂Ωh.
Notice that in the deformed configuration the right-hand side above reads as

− hαπn∂(w(Ωh))(z), for z ∈ ∂(w(Ωh)), (1.2)

namely it represents exactly a pressure force with intensity hαπ acting on ∂(w(Ωh)) in the normal
direction. Since the behaviour of such loads depends on the deformed configuration, we recall
that pressure forces fall within the class of so-called live loads [22].

As it is customary in dimension reduction problems, it is useful to reformulate the system in
a fixed domain. We thus perform the change of variables

idh : Ω→ Ωh, idh(x) := (x1, x2, hx3),
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and, setting y := w ◦ idh, in order to normalize volume effects we consider the rescaled energy
Eα,πh : W 1,2(Ω;R3)→ (−∞,+∞] defined as

Eα,πh (y) :=
1

h
Iα,πh (w) =


∫

Ω
W (∇hy(x)) dx+ hαπ

∫
Ω

det∇hy(x) dx, if det∇y > 0 a.e. in Ω,

+∞, otherwise.

(1.3)
Above, the rescaled gradient ∇h denotes the differential operator defined as

∇hy :=

(
∂1y
∣∣∂2y

∣∣∂3y

h

)
.

In order to perform the asymptotic analysis of (1.3) as h→ 0, we require that the density W
satisfies the following standard properties for all F ∈ R3×3:

• W (F ) = +∞ ⇐⇒ detF ≤ 0; (orientation preserving condition) (1.4a)

• W (RF ) = W (F ) for all R ∈ SO(3); (frame indifference) (1.4b)

• W (F ) = 0 ⇐⇒ F ∈ SO(3); (stress-free reference configuration) (1.4c)

• W (F ) ≥ cdist(F ;SO(3))2 (coercivity) (1.4d)

• W is of class C2 in a neighborhood of SO(3) with bounded second derivatives. (1.4e)

We also recall that the growth condition (1.4d) implies

W (F ) ≥ c|detF − 1|2, whenever |detF − 1| ≤ 1. (1.5)

If the pressure is negative, i.e. π < 0, we will need to assume in addition a linear control of
W on the determinant, namely

W (F ) ≥ c| detF − 1|, whenever |detF − 1| > 1. (1.6)

As in the classical case with no pressure (π = 0), different assumptions on W are needed in
the so-called membrane regime α = 0 [14, 15, 17]. In this framework, we assume that W is
continuous and that for all F ∈ R3×3 there hold

• W (F ) = +∞ ⇐⇒ detF ≤ 0; (1.7a)

• W (F ) ≥ c1|F |p − c2, for some p > 1 and c1, c2 > 0; (1.7b)

• for all δ > 0 there exists Cδ > 0 such that W (F ) ≤ Cδ(1 + |F |p) if detF ≥ δ. (1.7c)

In the other regimes α > 0 (when (1.4c) is in force), in order to catch the correct rescaling
of minimizing sequences it will also be useful to introduce the functionals Eα,πh (y) := Eα,πh (y)−
Eα,πh (idh), namely

Eα,πh (y) =


∫

Ω
W (∇hy(x)) dx+ hαπ

∫
Ω

(
det∇hy(x)− 1

)
dx, if det∇y > 0 a.e. in Ω,

+∞, otherwise.
(1.8)

This operation clearly does not affect minimizers (nor almost-minimizers) of Eα,πh .

1.1. Known pressureless case. Before presenting our results, we review the known framework
with no pressure (π = 0). For lightness of exposition, we will write Eαh in place of Eα,0h .

It will also be convenient to introduce the following notations, which we will adopt throughout
the whole paper. For x ∈ Ω, we write x = (x′, x3) ∈ S ×

(
−1

2 ,
1
2

)
; similarly, for R3-valued

functions y we denote by y′ = (y1, y2) their first two components. Moreover, the symbols ∇′
and (∇′)2 stand for the gradient and the Hessian with respect to x′, i.e. ∇′y = (∂1y, ∂2y) and
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(∇′)2y = (∇′∂1y,∇′∂2y). The symmetric gradient with respect to x′ of a R2-valued function u
will be instead denoted by e′(u).

We introduce the quadratic forms Q3 and Q2, defined respectively on R3×3 and R2×2 as

Q3(F ) := D2W (I)[F ]2, Q2(G) := min
a∈R3

Q3(G+ a⊗ e3), (1.9)

where, given a matrix G ∈ R2×2, with a slight abuse of notation we still write G for the 3× 3

matrix

(
G 0
0 0

)
. Conversely, given G ∈ R3×3, we denote by G2×2 the 2 × 2 matrix obtained

by removing the third column and row of G.
We first recall the following compactness result, which we will exploit also when a pressure

term is present.

Proposition 1.1 (Compactness [12, 13]). Assume that W satisfies (1.4) and let yh be such that
Eαh (yh) ≤ Ch2α, for some α ≥ 1. Then the following facts hold:

• If α = 1, up to a nonrelabelled subsequence, one has

∇hyh −−−→
h→0

(∇′y|b) ∈W 1,2(S;R3×3), strongly in L2(Ω;R3×3), (1.10)

where the normal vector b is defined as

b(x′) := ∂1y(x′) ∧ ∂2y(x′). (1.11)

In particular, (∇′y(x′)|b(x′)) belongs to SO(3) for almost every x′ ∈ S.
Moreover, there exist a subset Sh ⊆ S and rotations Rh : Sh → SO(3) such that, after

setting

Gh(x) :=

Rh(x′)T∇hyh(x)− I
h

, if x ∈ Sh ×
(
−1

2 ,
1
2

)
,

0, otherwise,
(1.12)

one has (up to subsequences)

Gh −−−⇀
h→0

G, weakly in L2(Ω;R3×3), (1.13)

and

lim
h→0

∣∣∣∣Ω \ (Sh × (−1

2
,
1

2

))∣∣∣∣ = 0. (1.14)

Finally, one can write

G2×2(x) = G0(x′) + x3II(x′), (1.15)

where G0 ∈ L2(S;R2×2) and II(x′) denotes the second fundamental form

II(x′) := ∇′y(x′)T∇′b(x′). (1.16)

.
• If α > 1, there exist rotations Rh : S → SO(3), constant rotations Rh ∈ SO(3) and

constant vectors ch ∈ R3 such that, after defining

ỹh(x) := R
T
h yh(x)− ch, Gh(x) :=

Rh(x′)T∇hỹh(x)− I
hα

, (1.17a)

uh(x′) :=

(
1

h2(α−1)
∧ 1

hα

)∫ 1
2

− 1
2

(ỹ′h(x′, x3)− x′) dx3, (1.17b)

vh(x′) :=
1

hα−1

∫ 1
2

− 1
2

(ỹh)3(x′, x3) dx3, (1.17c)
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up to a nonrelabelled subsequence one has

∇hỹh −−−→
h→0

I, strongly in L2(Ω;R3×3), (1.18a)

uh −−−⇀
h→0

u, weakly in W 1,2(S;R2), (1.18b)

vh −−−→
h→0

v ∈W 2,2(S), strongly in W 1,2(S), (1.18c)

Gh −−−⇀
h→0

G, weakly in L2(Ω;R3×3). (1.18d)

Moreover, one can write

G2×2(x) = G0(x′)− x3(∇′)2v(x′), (1.19)

and the following equalities hold:∣∣∣∣e′(u(x′)) +
1

2
∇′v(x′)⊗∇′v(x′)

∣∣∣∣ = det(∇′)2v(x′) = 0, if α ∈ (1, 2), (1.20a)

symG0(x′) = e′(u(x′)) +
1

2
∇′v(x′)⊗∇′v(x′), if α = 2, (1.20b)

symG0(x′) = e′(u(x′)), if α > 2. (1.20c)

Since under the solely assumptions (1.4) (or (1.7)) the energy Eαh may have no minimizers, it
is useful to consider the following notion of almost-minimizers. We say that yh is an α-minimizer
of Eαh if

lim
h→0

1

h2α

(
Eαh (yh)− inf Eαh

)
= 0.

The asymptotics of Eαh can be then stated as follows.

Proposition 1.2. [Membrane theory (α = 0) [5, 14, 15, 17]] Assume that W is continuous
and satisfies (1.7). Let yh be a 0-minimizer of E0

h. Then there exist constant vectors ch ∈ R3

such that, up to (non relabelled) subsequences, yh − ch converges as h→ 0 in the weak topology
of W 1,p(Ω;R3) to a minimizer of the membrane energy Emem : Lp(Ω;R3)→ (−∞,+∞], defined
as

Emem(y) :=


∫
S
QW0(∇′y(x′)) dx′, if y ∈W 1,p(Ω;R3) and ∂3y = 0,

+∞, otherwise.
(1.21)

Moreover, ∂3yh vanishes as h→ 0 in the strong topology of Lp(Ω;R3).
In (1.21), the function W0 : R3×2 → (−∞,+∞] is defined as

W0(ξ) := inf
a∈R3

W (ξ|a),

while QW0 denotes the quasiconvex envelope [9] of W0.
[Nonlinear bending theory (α = 1) [12]] Assume that W satisfies (1.4) and let yh be a

1-minimizer of E1
h. Then there exist constant vectors ch ∈ R3 such that, up to (non relabelled)

subsequences, yh − ch converges as h→ 0 in the strong topology of W 1,2(Ω;R3) to a minimizer
of the bending energy Eben : W 1,2(Ω;R3)→ [0,+∞], defined as

Eben(y) :=


1

24

∫
S
Q2(II(x′)) dx′, if ∂3y = 0 and y ∈W 2,2

iso (S;R3),

+∞, otherwise,
(1.22)

where the second fundamental form II(x′) has been introduced in (1.16). Moreover, (1.10),
(1.13) and (1.15) hold true.
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In (1.22), the set of Sobolev isometries is defined as

W 2,2
iso (S;R3) := {y ∈W 2,2(S;R3) : ∇′y(x′)T∇′y(x′) = I}.

[Linearized bending theory (α ∈ (1,2)) [13]] Assume that W satisfies (1.4) and let S
be simply connected if α ∈ (1, 3/2). Let yh be an α-minimizer of Eαh . Then there exist rotations

Rh : S → SO(3), constant rotations Rh ∈ SO(3) and constant vectors ch ∈ R3 such that the
quantities defined in (1.17) satisfy, up to (non relabelled) subsequences, the convergences (1.18)
and (1.19), and the limit pair (u, v) minimizes the functional Eben,lin : W 1,2(S;R2)×W 2,2(S)→
[0,+∞], defined as

Eben,lin(u, v) :=


1

24

∫
S
Q2((∇′)2v(x′)) dx′, if (1.20a) holds,

+∞, otherwise.
(1.23)

[Von Kármán theory (α = 2) [13]] Assume that W satisfies (1.4) and let yh be a 2-
minimizer of E2

h. Then there exist rotations Rh : S → SO(3), constant rotations Rh ∈ SO(3)
and constant vectors ch ∈ R3 such that the quantities defined in (1.17) satisfy, up to (non
relabelled) subsequences, the convergences (1.18), (1.19) and (1.20b), and the limit pair (u, v)
minimizes the von Kármán energy EvK : W 1,2(S;R2)×W 2,2(S)→ [0,+∞), defined as

EvK(u, v) :=
1

2

∫
S
Q2

(
e′(u(x′)) +

1

2
∇′v(x′)⊗∇′v(x′)

)
dx′ +

1

24

∫
S
Q2((∇′)2v(x′)) dx′. (1.24)

[Linearized von Kármán theory (α > 2) [13]] Assume that W satisfies (1.4) and let
yh be an α-minimizer of Eαh . Then there exist rotations Rh : S → SO(3), constant rotations

Rh ∈ SO(3) and constant vectors ch ∈ R3 such that the quantities defined in (1.17) satisfy, up
to (non relabelled) subsequences, the convergences (1.18), (1.19) and (1.20c), and the limit pair
(u, v) minimizes the functional EvK,lin : W 1,2(S;R2)×W 2,2(S)→ [0,+∞), defined as

EvK,lin(u, v) :=
1

2

∫
S
Q2

(
e′(u(x′))

)
dx′ +

1

24

∫
S
Q2((∇′)2v(x′)) dx′. (1.25)

1.2. Pressure effects. We can now state our results regarding the asymptotic behaviour as
h → 0 of Eα,πh (of Eα,πh if α = 0), namely when the action of the pressure term is taken into
account. We will see that for high rescalings, namely in the von Kármán-type regimes α ≥ 2,
pressure loads interact with the elastic energy density giving rise to nontrivial effects, while for
middle rescalings, namely in the bending regimes α ∈ [1, 2), the presence of pressure plays no
role in terms of minimizers. In the lowest rescaling α = 0, corresponding to the membrane
regime, the espression (1.28) below suggests that pressure effects may still be persistent in the
limit. Although we strongly believe this is not case (namely, pressure effects survive in the limit
just for high rescaling) motivated by the previous considerations, we are not able to prove that
minimizers of (1.28) do not depend on π. We postpone a discussion on this topic to Section 2
where in particular we propose conjecture (2.1), and we present a supporting example.

It will be useful to introduce the following function, defined on 2× 2 matrices G:

Qπ2 (G) := min
a∈R3
{Q3(G+ a⊗ e3) + 2πa3}. (1.26)

Since Q3 is a quadratic form, one can easily show that

Qπ2 (G) = Q2(G) + πLG+ π2κ, (1.27)

for some linear operator L ∈ Lin(R2×2
sym;R) and some constant κ ∈ R (which both depend on

W ), where Q2 has been defined in (1.9).
The next theorem states our main result.
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Theorem 1.3. [Membrane theory (α = 0)] Assume that W is continuous and it satisfies
(1.7) with p ≥ 3, and assume π > −c1, where c1 is the constant appearing in (1.7b). Then

| inf E0,π
h | ≤ C. Let now yh be a 0-minimizer of E0,π

h . Then there exist constant vectors ch ∈ R3

such that, up to (non relabelled) subsequences, yh − ch converges as h→ 0 in the weak topology
of W 1,p(Ω;R3) to a minimizer of the functional Eπmem : Lp(Ω;R3)→ (−∞,+∞], defined as

Eπmem(y) :=


∫
S
Q(W π)0(∇′y(x′)) dx′, if y ∈W 1,p(Ω;R3) and ∂3y = 0

+∞, otherwise,
(1.28)

where W π(F ) := W (F ) + π detF . Moreover, ∂3yh vanishes as h → 0 in the strong topology of
Lp(Ω;R3).

[Nonlinear bending theory (α = 1)] Assume that W satisfies (1.4) and also (1.6) if
π < 0, and assume that the planar set S satisfies:

there exists a closed subset N ⊆ ∂S with null H1-measure with the property that

the outer unit normal to S exists and it is continuous on ∂S \N .
(1.29)

Then −Ch2 ≤ inf E1,π
h ≤ 0. Let now yh be a 1-minimizer of E1,π

h . Then there exist constant
vectors ch ∈ R3 such that, up to (non relabelled) subsequences, yh − ch converges as h → 0 in
the strong topology of W 1,2(Ω;R3) to a minimizer of the bending energy Eben, defined in (1.22).
Moreover, (1.10), (1.13) and (1.15) hold true.

[Linearized bending theory (α ∈ (1,2))] Assume that W satisfies (1.4) and also (1.6)
if π < 0. Let S be simply connected if α ∈ (1, 3/2). Then −Ch2α ≤ inf Eα,πh ≤ 0. Let now

yh be an α-minimizer of Eα,πh . Then there exist rotations Rh : S → SO(3), constant rotations
Rh ∈ SO(3) and constant vectors ch ∈ R3 such that the quantities defined in (1.17) satisfy, up
to (non relabelled) subsequences, the convergences (1.18) and (1.19), and the limit pair (u, v)
minimizes the functional Eben,lin defined in (1.23).

[Von Kármán theory (α = 2)] Assume that W satisfies (1.4) and also (1.6) if π < 0. Then

−Ch4 ≤ inf E2,π
h ≤ 0. Let now yh be a 2-minimizer of E2,π

h . Then there exist rotations Rh : S →
SO(3), constant rotations Rh ∈ SO(3) and constant vectors ch ∈ R3 such that the quantities
defined in (1.17) satisfy, up to (non relabelled) subsequences, the convergences (1.18), (1.19),
and (1.20b), and the limit pair (u, v) minimizes the functional EπvK : W 1,2(S;R2)×W 2,2(S)→ R,
defined as

EπvK(u, v) := EvK(u, v)+π

∫
S

(
1

2
L
(
e′(u(x′))+

1

2
∇′v(x′)⊗∇′v(x′)

)
+div ′u(x′)+

1

2
|∇′v(x′)|2

)
dx′,

(1.30)
where EvK and L have been introduced in (1.24) and (1.27), respectively.

[Linearized von Kármán theory (α > 2) Assume that W satisfies (1.4) and also

(1.6) if π < 0. Then −Ch2α ≤ inf Eα,πh ≤ 0. Let now yh be an α-minimizer of Eα,πh . Then
there exist rotations Rh : S → SO(3), constant rotations Rh ∈ SO(3) and constant vectors
ch ∈ R3 such that the quantities defined in (1.17) satisfy, up to (non relabelled) subsequences,
the convergences (1.18), (1.19) and (1.20c), and the limit pair (u, v) minimizes the functional
EπvK,lin : W 1,2(S;R2)×W 2,2(S)→ R, defined as

EπvK,lin(u, v) := EvK,lin(u, v) + π

∫
S

(
1

2
L(e′(u(x′)) + div ′u(x′)

)
dx′, (1.31)

where EvK,lin and L have been introduced in (1.25) and (1.27), respectively.
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The regularity request (1.29) in the regime α = 1 will be used in Theorem 3.2 for the construc-
tion of a recovery sequence in the Γ-convergence analysis, exploiting the following approximation
result, whose proof can be found in [16].

Theorem 1.4. Assume that S ⊆ R2 is a bounded Lipschitz domain which satisfies (1.29). Then

W 2,2
iso (S;R3) ∩ C∞(S;R3) is dense in W 2,2

iso (S;R3) with respect to its strong topology.

1.3. Example of interaction in the von Kármán regimes. In the case of isotropic mate-
rials, where

Q3(F ) = 2µ| symF |2 + λ(trF )2,

for some constants µ > 0 and λ > −2
3µ called Lamé coefficients, one can explicitely compute

Qπ2 directly from the definition (1.26). As a result one obtains the expression

Qπ2 (G) = 2µ| symG|2 +
2µλ

2µ+ λ
(trG)2︸ ︷︷ ︸

=Q2(G)

−π 2λ

2µ+ λ
trG︸ ︷︷ ︸

=−LG

−π2 1

2µ+ λ︸ ︷︷ ︸
=−κ

.

With this specific choice, we can thus better characterize (1.30) and (1.31). Indeed, by the
previous computation we deduce

EπvK(u, v) := EvK(u, v) +
2µπ

2µ+ λ

∫
S

(
div ′u(x′) +

1

2
|∇′v(x′)|2

)
dx′, (1.32a)

and

EπvK,lin(u, v) := EvK,lin(u, v) +
2µπ

2µ+ λ

∫
S

div ′u(x′) dx′. (1.32b)

2. The membrane regime

We first focus on the proof of Theorem 1.3 in the case α = 0. Unlike the higher regimes, in
this setting it will be a simple byproduct of Proposition 1.2.

Proof of Theorem 1.3 (α = 0). Observing that we can write E0,π
h (y) =

∫
ΩW

π(∇hy(x)) dx, we
just need to show that W π satisfies the assumptions (1.7) as well, in order to directly apply
Proposition 1.2 (α = 0).

Clearly, W π is continuous and (1.7a) is fulfilled. By exploiting the assumption π > −c1, and
by recalling that |detF | ≤ |F |3 ≤ 1 + |F |p since p ≥ 3, we also infer

W π(F ) ≥ c1|F |p − c2 + π detF ≥ (c1 − π−)|F p| − c2 − π−,
whence (1.7b) holds true. Above we employed the notation π− := −(π ∧ 0).

Finally, whenever detF ≥ δ we simply have

W π(F ) ≤ Cδ(1 + |F |p) + |π|detF ≤ Cδ ∨ |π|(1 + |F |p),
thus also (1.7c) is fulfilled and we conclude. �

It would be interesting to understand how the structure of W π affects (W π)0 and more
importantly Q(W π)0, namely how they can be written in terms of W0 and QW0. Although the
dependence of (W π)0 on π may be quite nasty (see (2.2) and (2.3)), in view of the previous
considerations about the higher rescalings we strongly believe and we conjecture that after the
quasiconvexification procedure one actually has

Q(W π)0(ξ) = QW0(ξ) + cπ, for all ξ ∈ R3×2, (2.1)

where cπ ∈ R is a certain constant. We are not able to show the validity of (2.1), but we now
provide an example which suggests, at least formally, that it may be true.
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2.1. Formal computation of Q(W π)0 in a specific case. We consider the density

W (F ) :=


|F1|3 + |F2|3 + |F3|3

3
+

1

detF
, if detF > 0,

+∞, otherwise,

which clearly satisfies assumptions (1.7) with p = 3.
Observing that

(W π)0(ξ) = inf
a∈R3

(W (ξ|a) + π det(ξ|a)) = inf
a∈R3,

(ξ1∧ξ2)·a>0

(W (ξ|a) + π(ξ1 ∧ ξ2) · a),

in this example we have

(W π)0(ξ) =
|ξ1|3 + |ξ2|3

3
+ inf

a∈R3,
(ξ1∧ξ2)·a>0

(
|a|3

3
+

1

(ξ1 ∧ ξ2) · a
+ π(ξ1 ∧ ξ2) · a

)
.

The minimum point ā can be explicitely computed by solving the system|ā|ā =

(
1

((ξ1 ∧ ξ2) · ā)2
− π

)
ξ1 ∧ ξ2,

(ξ1 ∧ ξ2) · ā > 0,
⇐⇒

ā = |ā| ξ1 ∧ ξ2

|ξ1 ∧ ξ2|
,

|ξ1 ∧ ξ2||ā|4 + π|ξ1 ∧ ξ2|2|ā|2 − 1 = 0,

which has the unique solution

ā =

√√
4|ξ1 ∧ ξ2|+ π2|ξ1 ∧ ξ2|4 − π|ξ1 ∧ ξ2|2

2|ξ1 ∧ ξ2|
ξ1 ∧ ξ2

|ξ1 ∧ ξ2|
.

By some simple computations we thus obtain

(W π)0(ξ) =
|ξ1|3 + |ξ2|3

3
+

√
2

3
gπ(ξ1 ∧ ξ2), (2.2)

where

gπ(v) =


4√

|v|
√

4|v|+ π2|v|4 − π|v|3
+ π

√
|v|
√

4|v|+ π2|v|4 − π|v|3, if |v| > 0,

+∞, otherwise.

(2.3)

We now focus on the case of positive pressure π > 0, and we limit ourselves to some formal

considerations. Since the map ξ 7→ |ξ1|3+|ξ2|3
3 is convex and in view of [9, Theorem 6.26] we

expect that

Q(W π)0(ξ) =
|ξ1|3 + |ξ2|3

3
+

√
2

3
(Cgπ)(ξ1 ∧ ξ2), (2.4)

where C denotes the convex envelope. At this level, the previous passage is just formal for two
reasons: first there is a sum involved in the quasiconvexification procedure, and then gπ takes
the value +∞ (not allowed in [9, Theorem 6.26]).

Since gπ is radial, namely gπ(v) = ρπ(|v|) for some even function ρπ : R → (−∞,+∞], it is
easy to see that

(Cgπ)(v) = (Cρπ)(|v|),
so we just need to compute Cρπ. To this aim, we observe that ρπ(x) = h(j(x)) for x ≥ 0, where

j(x) = x
√

4x+ π2x4 − πx3, and h(y) =

{
4√
y + π

√
y, if y > 0,

+∞, otherwise.
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It is immediate to check that j is strictly increasing, j(0) = 0 and lim
x→+∞

j(x) = 2
π , so that

0 ≤ j(x) < 2
π for all x ≥ 0. Since h′(y) = πy−4

2y
√
y , we thus deduce that h′(j(x)) < 0 for all

x > 0, whence we infer that ρπ is strictly decreasing in (0,+∞). In particular, we can compute
lim

x→+∞
ρπ(x) = h( 2

π ) = 3
√

2π.

This yields Cρπ(x) ≡ 3
√

2π, and so by (2.4) we have

Q(W π)0(ξ) =
|ξ1|3 + |ξ2|3

3
+ 2
√
π = QW0(ξ) + 2

√
π,

namely conjecture (2.1) holds true in this specific case (up to some formal computations).

3. Γ-convergence analysis for higher scalings

The rest of the paper is concerned with the proof of Theorem 1.3 in case α ≥ 1. Here and
henceforth we thus tacitly assume (1.4). The stated results will be a standard consequence of a
Γ-convergence analysis [6, 10]. We will first show that sequences with bounded rescaled energy
are compact with respect to the desired topologies, and then we will compute the Γ-limit as
h→ 0 of 1

h2α
Eα,πh in the different regimes, obtaining the stated expressions.

Proposition 3.1 (Compactness). Let yh be such that Eα,πh (yh) ≤ Ch2α. If π > 0, then there
holds ∫

Ω
W (∇hyh) dx+

∫
{| det∇hyh−1|≤1}

|det∇hyh − 1|2 dx ≤ Ch2α. (3.1)

In particular, all the compactness results listed in Proposition 1.1 hold true.
If π < 0, assuming also (1.6), in addition to (3.1) there holds∫

{| det∇hyh−1|>1}
|det∇hyh − 1| dx ≤ Ch2α. (3.2)

Moreover, in both cases one has

− Ch2α ≤ inf Eα,πh ≤ 0. (3.3)

Proof. We will prove the result assuming π > 0; in the opposite case π < 0 the argument works
in a similar fashion also exploiting (1.6).

For the sake of clarity let us define the set

Ω−h := {x ∈ Ω : |det∇hyh(x)− 1| ≤ 1}. (3.4)

By the expression (1.8), we now deduce∫
Ω
W (∇hyh) dx ≤ Ch2α + hαπ

∫
Ω

(
1− det∇hyh

)
dx ≤ Ch2α + hαπ

∫
Ω−h

| det∇hyh − 1|dx

≤ Ch2α + Chα‖ det∇hyh − 1‖L2(Ω−h ).

Exploiting (1.5) we thus infer

‖ det∇hyh − 1‖2
L2(Ω−h )

≤ Ch2α + Chα‖ det∇hyh − 1‖L2(Ω−h ),

whence

‖ det∇hyh − 1‖2
L2(Ω−h )

≤ Ch2α,

and so we conclude the proof of (3.1).
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We now notice that the upper bound in (3.3) is trivial, since Eα,πh (idh) = 0. To prove also

the lower bound, let yh be such that Eα,πh (yh) ≤ inf Eα,πh + h2α, so that (3.1) holds. We can now
estimate

inf Eα,πh ≥ Eα,πh (yh)− h2α ≥ πhα
∫

Ω−h

(det∇hyh − 1) dx− h2α

≥ −Chα‖ det∇hyh − 1‖L2(Ω−h ) − h
2α ≥ −Ch2α,

and we conclude. �

3.1. Kirchhoff regime. In this section we compute the Γ-limit as h → 0 of the functional
1
h2
E1,π
h in case α = 1, corresponding to nonlinear bending theory (due to Kirchoff), in the spirit

of [12].

Theorem 3.2. [Nonlinear bending theory (α = 1)] Under the assumptions of Theorem 1.3,

the functionals 1
h2
E1,π
h Mosco converge as h→ 0 in the topology of W 1,2(Ω;R3) to the functional

Eben + 1
2mπ|S|, namely

• if yh −−−⇀
h→0

y in the weak topology of W 1,2(Ω;R3), then one has

Eben(y) +
1

2
mπ|S| ≤ lim inf

h→0

1

h2
E1,π
h (yh); (3.5)

• for all y ∈ W 1,2(Ω;R3) there exists yh such that yh −−−→
h→0

y in the strong topology of

W 1,2(Ω;R3) for which

lim sup
h→0

1

h2
E1,π
h (yh) ≤ Eben(y) +

1

2
mπ|S|. (3.6)

The constant mπ is defined as

mπ := min
G∈R2×2

sym

{Qπ2 (G) + 2πtrG}, (3.7)

where Qπ2 has been introduced in (1.26).

Proof. We perform the proof in the case of positive pressure π > 0. The negative case can be
handled similarly by exploiting (3.2).

We start proving the liminf inequality (3.5). Without loss of generality we can assume that

lim inf
h→0

1
h2
E1,π
h (yh) is finite, so that by Proposition 3.1 and then Proposition 1.1 we actually have

that yh −−−→
h→0

y strongly in W 1,2(Ω;R3), and y ∈W 2,2
iso (S;R3).

Moreover, by (1.12), we know that for x ∈ Ω̂h := Sh ×
(
−1

2 ,
1
2

)
we can write ∇hyh(x) =

Rh(x′)(I + hGh(x)). Hence, by recalling the notation (3.4), we infer

1

h2
E1,π
h (yh) =

1

h2

∫
Ω
W (∇hyh) dx+

π

h

∫
Ω

(det∇hyh − 1) dx

≥ 1

h2

∫
Ω̂h

W (I + hGh) dx+
π

h

∫
Ω−h

(det∇hyh − 1) dx (3.8)

=
1

h2

∫
Ω̂h

W (I + hGh) dx+
π

h

∫
Ω−h

(det(I + hGh)−1) dx+
π

h

∫
Ω−h \Ω̂h

(det∇hyh−1) dx.

We point out that in the second integral above we exploited the identity Gh = 0 outside Ω̂h.
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By using the results contained in [12] and exploiting (1.13), one can prove that

lim inf
h→0

1

h2

∫
Ω̂h

W (I + hGh) dx ≥ 1

2

∫
Ω
Q3(G(x)) dx. (3.9)

Moreover, we observe that by (3.1) and (1.14) we have∣∣∣∣∣1h
∫

Ω−h \Ω̂h
(det∇hyh−1) dx

∣∣∣∣∣ ≤ 1

h
‖ det∇hyh−1‖L2(Ω−h )|Ω \ Ω̂h|1/2 ≤ C|Ω \ Ω̂h|1/2 −−−→

h→0
0. (3.10)

In order to deal with the second term in the last line of (3.8) we first introduce the set

Bh := {x ∈ Ω : h1/2|Gh(x)| ≤ 1}, (3.11)

and we notice that lim
h→0
|Ω \Bh| = 0 by Chebyshev’s inequality. We now split the integral under

consideration into

1

h

∫
Ω−h

(det(I + hGh)−1) dx =
1

h

∫
Ω−h ∩Bh

(det(I + hGh)−1) dx+
1

h

∫
Ω−h \Bh

(det(I + hGh)−1) dx

=
1

h

∫
Ω−h ∩Bh

(det(I + hGh)−1) dx+
1

h

∫
(Ω−h \Bh)∩Ω̂h

(det∇hyh−1) dx,

and we observe that the second term above vanishes as h→ 0 since by (3.1) there holds

1

h

∫
(Ω−h \Bh)∩Ω̂h

|det∇hyh−1|dx ≤ 1

h
‖ det∇hyh−1‖L2(Ω−h )|Ω \Bh|

1/2 ≤ C|Ω \Bh|1/2 −−−→
h→0

0.

(3.12)
As regards the first term, we argue as in [20], and we exploit (0.2) to write

1

h

∫
Ω−h ∩Bh

(det(I + hGh)−1) dx

=

∫
Ω−h ∩Bh

trGh dx+ h

∫
Ω−h ∩Bh

ι2(Gh) dx+ h2

∫
Ω−h ∩Bh

detGh dx.

By using (1.13) and exploiting the definition (3.11) of Bh, we now deduce

•h
∫

Ω−h ∩Bh
|ι2(Gh)| dx ≤ Ch‖Gh‖22 ≤ Ch −−−→

h→0
0, (3.13a)

•h2

∫
Ω−h ∩Bh

| detGh|dx ≤ Ch2

∫
Ω−h ∩Bh

|Gh|2 · h−1/2 dx ≤ Ch3/2‖Gh‖22 ≤ Ch3/2 −−−→
h→0

0,

(3.13b)

• lim
h→0

∫
Ω−h ∩Bh

trGh dx =

∫
Ω

trGdx, (3.13c)

where the last limit holds true since |Ω\ (Ω−h ∩Bh)| vanishes as h→ 0. Indeed, we already know
that lim

h→0
|Ω \Bh| = 0; moreover let us show that

Bh ∩ Ω̂h ⊆ Ω−h , (3.14)
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which would imply |Ω \ Ω−h | ≤ |Ω \ (Bh ∩ Ω̂h)| ≤ |Ω \Bh|+ |Ω \ Ω̂h| −−−→
h→0

0. Pick x ∈ Bh ∩ Ω̂h,

so that by (0.2) we have

|det∇hyh(x)− 1| = |det(I + hGh(x))− 1| = h|trGh(x) + hι2(Gh(x)) + h2 detGh(x)|

≤ Ch|Gh(x)|(1 + h|Gh(x)|+ h2|Gh(x)|2) ≤ Ch1/2(1 + h1/2 + h) −−−→
h→0

0,

(3.15)
whence x ∈ Ω−h (for h small enough) and so (3.14) holds true.

By putting together (3.8), (3.9), (3.10), (3.12) and (3.13) we thus have proved that

lim inf
h→0

1

h2
E1,π
h (yh) ≥ 1

2

∫
Ω
Q3(G(x)) dx+ π

∫
Ω

trG(x) dx.

By using definitions (1.26), (3.7), and recalling (1.15) and (1.27) we finally infer

lim inf
h→0

1

h2
E1,π
h (yh) ≥ 1

2

∫
Ω

(
Qπ2 (G2×2(x)) + 2πtrG2×2(x)

)
dx

=
1

24

∫
S
Q2(II(x′)) dx′ +

1

2

∫
S

(
Qπ2 (G0(x′)) + 2πtrG0(x′)

)
dx′ (3.16)

≥ Eben(y) +
1

2
mπ|S|.

Let us now show the limsup inequality (3.6). Since Eben is continuous in W 2,2
iso (S;R3), by

Theorem 1.4 it is enough to show the inequality for y ∈W 2,2
iso (S;R3) ∩ C∞(S;R3).

Let G ∈ R2×2
sym be such that

mπ = Qπ2 (G) + 2πtrG, (3.17)

and for c, d ∈ C∞(S;R3) let us consider

yh(x) := y(x′) + h
(
∇′y(x′)Gx′ + x3b(x

′)
)

+ h2

(
x3c(x

′) +
x2

3

2
d(x′)

)
, (3.18)

where b is the normal vector defined in (1.11). Notice that clearly yh converges to y strongly in
W 1,2(Ω;R3) as h→ 0. By simple computations we obtain

∇hyh(x) = R(x′)+h
[(
∇′(∇′y(x′)Gx′)|c(x′)

)
+x3(∇′b(x′)|d(x′))

]
+h2x3

(
∇′c(x′)+x3

2
∇′d(x′)|0

)
,

where we set R(x′) := (∇′y(x′)|b(x′)) ∈ SO(3). By defining

Gh(x) :=
R(x′)T∇hyh(x)− I

h

=R(x′)T
[(
∇′(∇′y(x′)Gx′)|c(x′)

)
+x3(∇′b(x′)|d(x′))

]
+hx3R(x′)T

(
∇′c(x′)+x3

2
∇′d(x′)|0

)
,

one easily deduces that, as h → 0, the sequence Gh strongly converges in L2(Ω;R3×3) to the
matrix G defined as

G(x) := R(x′)T
(
∇′(∇′y(x′)Gx′)|c(x′)

)︸ ︷︷ ︸
=:G1(x′)

+x3R(x′)T (∇′b(x′)|d(x′))︸ ︷︷ ︸
=:G2(x′)

. (3.19)

We now observe that, since y ∈ W 2,2
iso (S;R3) ∩ C∞(S;R3), there holds (see also [2, proof of

Theorem 2.6])

∇′y(x′)T∇′(∇′y(x′)Gx′) = G,

whence we can write

G2×2(x) = G+ x3II(x′). (3.20)
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By exploiting the smoothness of y, c, d we now infer

W (∇hyh(x)) = W (I + hGh(x)) =
h2

2
Q3(G1(x′) + x3G2(x′)) +O(h3)

=
h2

2

(
Q3(G1(x′)) + x2

3Q3(G2(x′)) + 2x3D
2W (I)[G1(x′)][G2(x′)]

)
+O(h3),

and

det∇hyh(x)− 1 = det(I + hGh(x))− 1 = htrGh(x) + h2ι2(Gh(x)) + h3 detGh(x)

= h(trG1(x′) + x3trG2(x′)) +O(h2),

where the Landau notation O(·) is uniform in x ∈ Ω.
Thus we obtain

1

h2
E1,π
h (yh) =

1

h2

∫
Ω
W (∇hyh(x)) dx+

π

h

∫
Ω

(det∇hyh(x)− 1) dx

=
1

24

∫
S
Q3(G2(x′)) dx′ +

1

2

∫
S

(
Q3(G1(x′)) + 2πtrG1(x′)

)
dx′ +O(h).

By using the definition (3.19) of G1 and G2, and recalling (3.20), we finally deduce

lim
h→0

1

h2
E1,π
h (yh)

=
1

24

∫
S
Q3

(
II(x′) 1

2(∇′y(x′)Td(x′) +∇′b(x′)T b(x′))
0 0 b(x′) · d(x′)

)
dx′ (3.21)

+
1

2

∫
S

[
Q3

(
G 1

2(∇′y(x′)T c(x′) + (b(x′)T∇′(∇′y(x′)Gx′))T )
0 0 b(x′) · c(x′)

)
+ 2πb(x′) · c(x′)

]
dx′

+ πtrG|S|.

We now choose

d(x′) := R(x′)

[
2α(x′)−

(
∇′b(x′)T b(x′)

α3(x′)

)]
, (3.22a)

c(x′) := R(x′)

[
β −

(
∇′(∇′y(x′)Gx′)T b(x′)

β3

)]
, (3.22b)

where α and β satisfy

Q2(II(x′)) = Q3(II(x′) + α(x′)⊗ e3),

Qπ2 (G) = Q3(G+ β ⊗ e3) + 2πβ.

Since under our assumption II ∈ C∞(S;R2×2
sym), we observe that α ∈ C∞(S;R3), whence d and

c belong to C∞(S;R3) as well.
By plugging d, c defined in (3.22) into (3.18), from (3.21) and recalling (3.17) we finally deduce

lim
h→0

1

h2
E1,π
h (yh) =

1

24

∫
S
Q3(II(x′)) dx′ +

1

2
(Qπ2 (G) + 2πtrG)|S| = Eben(y) +

1

2
mπ|S|,

and we conclude. �
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3.2. Linearized bending and von Kármán-type regimes. We finally focus on the cases
α > 1, corresponding to linearized bending (α ∈ (1, 2)) and von Kármán-type (α ≥ 2) regimes.

Theorem 3.3. [Von Kármán-type theory (α > 1)] Under the assumptions of Theorem 1.3,

the functionals 1
h2α
Eα,πh Γ-converge as h → 0 with respect to the convergence (1.17) and (1.18)

to the functional Eα,π : W 1,2(S;R2)×W 2,2(S)→ (−∞,+∞] defined as

Eα,π(u, v) :=


Eben,lin(u, v) +

1

2
mπ|S|, if α ∈ (1, 2),

EπvK(u, v) +
π2

2
κ|S|, if α = 2,

EπvK,lin(u, v) +
π2

2
κ|S|, if α > 2,

where the constants mπ and κ have been introduced in (3.7) and (1.27), respectively.
In other words, the following two conditions hold:

• if yh −−−→
h→0

(u, v) in the sense that there exist rotations Rh : S → SO(3), constant rota-

tions Rh ∈ SO(3) and constant vectors ch ∈ R3 for which (1.17) and (1.18) hold, then
one has

Eα,π(u, v) ≤ lim inf
h→0

1

h2α
Eα,πh (yh); (3.23)

• for all (u, v) ∈ W 1,2(S;R2) ×W 2,2(S) there exists yh such that yh −−−→
h→0

(u, v) in the

above sense, except that (1.18d) holds for symGh in place of Gh if α ≥ 2, for which

lim sup
h→0

1

h2α
Eα,πh (yh) ≤ Eα,π(u, v). (3.24)

Proof. Again, we assume that π > 0. The case π < 0 can be treated in an analogous way by
using also (3.2).

Liminf inequality. Let us first prove the liminf inequality (3.23). Without loss of generality

we can assume that lim inf
h→0

1
h2α
Eα,πh (yh) is finite, so that det∇hyh is positive almost everywhere

in Ω and Propositions 3.1 and 1.1 apply.
Moreover, by (1.17a), we can write ∇hyh(x) = RhRh(x′)(I + hαGh(x)). Hence, by recalling

the notation (3.4), we infer

1

h2α
Eα,πh (yh) =

1

h2α

∫
Ω
W (I + hαGh(x)) dx+

π

hα

∫
Ω

(det(1 + hαGh(x))− 1) dx

≥ 1

h2α

∫
Ω
W (I + hαGh(x)) dx+

π

hα

∫
Ω−h

(det(1 + hαGh(x))− 1) dx.
(3.25)

Similarly to (3.11), we now introduce the set

Bα
h := {x ∈ Ω : hα/2|Gh(x)| ≤ 1},

and we observe again that lim
h→0
|Ω \Bα

h | = 0 by Chebyshev’s inequality.

By using the results contained in [12], exploiting (1.18d) one obtains

lim inf
h→0

1

h2α

∫
Ω
W (I + hαGh(x)) dx ≥ 1

2

∫
Ω
Q3(G(x)) dx. (3.26)



18 M. KRUŽÍK AND F. RIVA

Arguing similarly to the proof of Theorem 3.2, using (0.2) and observing that Bα
h ⊆ Ω−h (for

h small enough) by reasoning as in (3.15), we first write

1

hα

∫
Ω−h

(det(1 + hαGh(x))− 1) dx

=

∫
Bαh

trGh(x) dx+ hα
∫
Bαh

ι2(Gh(x)) dx+ h2α

∫
Bαh

detGh(x) dx

+
1

hα

∫
Ω−h \B

α
h

(det∇hyh(x)− 1) dx,

whence we deduce

lim
h→0

1

hα

∫
Ω−h

(det(1 + hαGh(x))− 1) dx =

∫
Ω

trG(x) dx. (3.27)

By (3.25), (3.26), (3.27) and recalling (1.26) we finally infer

lim inf
h→0

1

h2α
Eα,πh (yh) ≥ 1

2

∫
Ω

(
Q3(G(x)) + 2πtrG(x)

)
dx

≥ 1

2

∫
Ω

(
Qπ2 (G2×2(x)) + 2πtrG2×2(x)

)
dx.

If α ∈ (1, 2), we conclude by arguing as in (3.16) using (1.19) in place of (1.15). If α ≥ 2 instead,
we conclude by also exploiting (1.20b) and (1.20c), and by recalling (1.27).

Limsup inequality. We now show the validity of the limsup inequality (3.24).

(Case α ∈ (1,2)). Assume first that α ∈ (1, 2) and let (u, v) ∈ W 1,2(S;R2) ×W 2,∞(S)
such that (1.20a) holds true; in particular, u belongs to W 1,∞(S;R2) by [13, Theorem 7 and
Proposition 9]. The case v ∈ W 2,2(S) can be treated via approximation arguing as in [13,
Section 6.4].

By [13, Theorem 7] we can build an isometry

yh(x′) =

(
x′ + h2(α−1)uh(x′)

hα−1v(x′)

)
∈W 2,∞

iso (S;R3),

where uh(x′) ∈W 2,∞(S;R2) satisfies

uh
∗−−−⇀

h→0
u, weakly∗ in W 2,∞(S;R2). (3.28)

In particular we can write

yh(x′) =

(
x′

0

)
+O(hα−1), (3.29)

where the Landau notation holds in the sense of W 2,∞(S;R2).
By defining bh(x′) := ∂1yh(x′) ∧ ∂2yh(x′) ∈W 1,∞(S;R3) we also have

bh(x′) = e3 − hα−1

(
∇′v(x′)T

0

)
+O(h2(α−1), in W 1,∞(S;R3), (3.30a)

∇′bh(x′) = −hα−1

(
(∇′)2v(x′)

0

)
+O(h2(α−1), in L∞(S;R3×2). (3.30b)

Similarly to (3.18) we now make the ansatz

yh(x) := yh(x′) + hx3bh(x′) + hα∇′yh(x′)Gx′ + hα+1

(
x3c+

x2
3

2
dh(x′)

)
,
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where the matrix G is as in (3.17), the vector c ∈ R3 fulfils (recall (1.26))

Qπ2 (G) = Q3(G+ c⊗ e3) + 2πc3, (3.31)

and dh ∈W 1,∞(S;R3) satisfies

dh −−−→
h→0

d, in L2(S;R3), and h1/3dh −−−→
h→0

0, in W 1,∞(S;R3), (3.32)

where d realizes (recall (1.9))

Q2((∇′)2v(x′)) = Q3(−(∇′)2v(x′) + d(x′)⊗ e3). (3.33)

Furthermore, we define

Rh(x′) := (∇′yh(x′)|bh(x′)) ∈ SO(3), Rh := I, and ch := 0,

so that, after some simple computations, ỹh ≡ yh and

uh(x′) =
1

h2(α−1)

∫ 1
2

− 1
2

(y′h(x′, x3)− x′) dx3 = uh(x′) + h2−α(∇′yh(x′)Gx′)′ +
h3−α

24
d′h(x′),

vh(x′) =
1

hα−1

∫ 1
2

− 1
2

(yh)3(x′, x3) dx3 = v(x′) + h(∇′yh(x′)Gx′)3 +
h2

24
(dh)3(x′),

∇hyh(x) =Rh(x′) + hx3(∇′bh(x′)|0) + hα
(
∇′(∇′yh(x′)Gx′)|c+ x3dh(x′)

)
+ hα+1x

2
3

2
(∇′dh(x′)|0),

Gh(x) =
Rh(x′)T∇hyh(x′)− I

hα

=Rh(x′)T
[
h1−αx3(∇′bh(x′)|0) +

(
∇′(∇′yh(x′)Gx′)|c+ x3dh(x′)

)
+ h

x2
3

2
(∇′dh(x′)|0)

]
.

Observe that, by exploiting (3.29) and (3.30a), there hold

Rh(x′) = I +O(hα−1), in W 1,∞(S;R3×3),

∇′(∇′yh(x′)Gx′) = ∇′yh(x′)G+O(hα−1) =

(
G
0

)
+O(hα−1), in L∞(S;R3×2).

By means of (3.29), (3.30b) and (3.32), we thus infer

uh(x′) =uh(x′) +O(h2−α), in W 1,∞(S;R2),

vh(x′) =v(x′) +O(h), in W 1,∞(S),

∇hyh(x) =I +O(hα−1), in L∞(Ω;R3×3),

Gh(x) =G1 + x3(G2)h(x′) +O(h(α−1)∧2/3), in L∞(Ω;R3×3), (3.34)

where

G1 = G+ c⊗ e3,

(G2)h(x′) = −(∇′)2v(x′) + dh(x′)⊗ e3.

Since α ∈ (1, 2), by recalling (3.28) and (3.32) we hence deduce that the convergences in
(1.18) hold true with

G(x) = G+ c⊗ e3︸ ︷︷ ︸
=G1

+x3

(
−(∇′)2v(x′) + d(x′)⊗ e3

)︸ ︷︷ ︸
=:G2(x′)

. (3.35)
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By arguing as in [13], we first obtain

lim
h→0

1

h2α

∫
Ω
W (∇hyh(x)) dx = lim

h→0

1

h2α

∫
Ω
W (I + hαGh(x)) dx =

1

2

∫
Ω
Q3(G(x)) dx

=
1

24

∫
S
Q3(G2(x′)) dx′ +

1

2
Q3(G1)|S|.

(3.36)

By recalling (0.2), we can then write

1

hα

∫
Ω

(det∇hyh(x)− 1) dx =

∫
Ω

trGh(x) dx+ hα
∫

Ω
ι2(Gh(x)) dx+ h2α

∫
Ω

detGh(x) dx.

By using (3.34) and (3.32), we now have∫
Ω

trGh(x) dx = trG1|S|+O(h(α−1)∧2/3),

hα
∫

Ω
ι2(Gh(x)) dx = O(hα−2/3),

h2α

∫
Ω

detGh(x) dx = O(h2α−1),

whence

lim
h→0

π

hα

∫
Ω

(det∇hyh(x)− 1) dx = πtrG1|S|. (3.37)

By putting together (3.36) and (3.37), and recalling (3.17), (3.31), (3.33) and (3.35) we finally
obtain

lim
h→0

1

h2α
Eα,πh (yh) =

1

24

∫
S
Q3(G2(x′)) dx′ +

1

2
(Q3(G1) + 2πtrG1)|S|

=
1

24

∫
S
Q2((∇′)2v(x′)) dx′ +

1

2

(
Qπ2 (G) + 2πtrG

)
|S|

= Eben,lin(u, v) +
1

2
mπ|S| = Eα,π(u, v),

and we conclude if α ∈ (1, 2).
(Case α ≥ 2). We now consider the case α ≥ 2. Fix (u, v) ∈ W 1,2(S;R2) × W 2,2(S);

actually, since both EπvK and EπvK,lin are continuous in W 1,2(S;R2) ×W 2,2(S), we may assume

without loss of generality that u and v are smooth in S.
We follow the ansatz of [13], and we define

yh(x) := idh(x) +

(
hαu(x′)
hα−1v(x′)

)
− hαx3

(
∇′v(x′)T

0

)
+ hα+1x3c(x

′) + hα+1x
2
3

2
d(x′),

where c and d are smooth functions from S to R3 which will be chosen later. We also set

Rh ≡ Rh := I, and ch = 0,
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so that, after some simple computation, one has ỹh ≡ yh and

uh(x′) =
1

hα

∫ 1
2

− 1
2

(y′h(x′, x3)− x′) dx3 = u(x′) +
h

24
d′(x′),

vh(x′) =
1

hα−1

∫ 1
2

− 1
2

(yh)3(x′, x3) dx3 = v(x′) +
h2

24
d3(x′),

∇hyh(x) =I + hα
(
∇′u(x′)− x3(∇′)2v(x′) −h−1∇′v(x′)T

h−1∇′v(x′) 0

)
+ hα

(
0 | 0 | c(x′) + x3d(x′)

)
+ hα+1x3

(
∇′c(x′) +

x3

2
∇′d(x′)

∣∣∣ 0) ,
Gh(x) =

(
∇′u(x′)− x3(∇′)2v(x′) −h−1∇′v(x′)T

h−1∇′v(x′) 0

)
+
(
0 | 0 | c(x′) + x3d(x′)

)
+ hx3

(
∇′c(x′) +

x3

2
∇′d(x′)

∣∣∣ 0) . (3.38)

It is then immediate to check that (1.18a)–(1.18c) hold true, while (1.18d) is valid for symGh
since one gets rid of the terms involving h−1.

By arguing as in [13], we know that

lim
h→0

1

h2α

∫
Ω
W (∇hyh) dx =

1

2

∫
Ω
Q3(A(x′) + x3B(x′)) dx

=
1

2

∫
S
Q3(A(x′)) dx′ +

1

24

∫
S
Q3(B(x′)) dx′,

(3.39)

where

A(x′) =

e′(u(x′)) +
1

2
∇′v(x′)⊗∇′v(x′) +

1

2
|∇′v(x′)|2e3 ⊗ e3 + c(x′)⊗ e3, if α = 2,

e′(u(x′)) + c(x′)⊗ e3, if α > 2,

and

B(x′) = −(∇′)2v(x′) + d(x′)⊗ e3.

In order to deal with the pressure term, we first use (0.2) obtaining

1

hα

∫
Ω

(det∇hyh(x)− 1) dx =

∫
Ω

trGh(x) dx+hα
∫

Ω
ι2(Gh(x)) dx+h2α

∫
Ω

detGh(x) dx. (3.40)

By using the explicit expression (3.38) of Gh, and recalling (0.3) and the bound |detF | ≤ |F |3,
we deduce that

trGh(x) = tr(e′(u(x′))− x3(∇′)2v(x′)) + c3(x′) + x3d3(x′) +O(h),

ι2(Gh(x)) = h−2|∇′v(x′)|2 +O(h−1) = h−2tr(∇′v(x′)⊗∇′v(x′)) +O(h−1),

detGh(x) = O(h−3),

where the Landau notation O(·) is uniform in x ∈ Ω.
Since α ≥ 2, passing to the limit in (3.40) we thus obtain

lim
h→0

1

hα

∫
Ω

(det∇hyh − 1) dx =


∫
S

(
tr(e′(u) +∇′v ⊗∇′v) + c3

)
dx′, if α = 2,∫

S
(tre′(u) + c3) dx′, if α > 2.

(3.41)
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Putting together (3.39) and (3.41) we finally infer

lim
h→0

1

h2α
Eα,πh (yh) =

1

24

∫
S
Q3(−(∇′)2v + d⊗ e3) dx′ + Fα(u, v), (3.42)

where

F2(u, v) =
1

2

∫
S

(
Q3

(
e′(u) +

1

2
∇′v ⊗∇′v +

1

2
|∇′v|2e3 ⊗ e3 + c⊗ e3

)
+ 2πc3

)
dx′

+ π

∫
S

(
div ′u+ |∇′v|2

)
dx′,

while for α > 2 one has

Fα(u, v) =
1

2

∫
S

(
Q3

(
e′(u) + c⊗ e3

)
+ 2πc3

)
dx′ + π

∫
S

div ′udx′.

We now choose

c(x′) :=

−
1

2
|∇′v(x′)|2e3 + c(x′), if α = 2,

c̃(x′), if α > 2,

d(x′) := d(x′),

(3.43)

where c, c̃ and d satisfy (recall (1.9) and (1.26))

Qπ2

(
e′(u(x′))+

1

2
∇′v(x′)⊗∇′v(x′)

)
=Q3

(
e′(u(x′))+

1

2
∇′v(x′)⊗∇′v(x′)+c(x′)⊗ e3

)
+2πc3(x′),

Qπ2 (e′(u(x′))) = Q3(e′(u(x′)) + c̃(x′)⊗ e3) + 2πc̃3(x′),

Q2((∇′)2v(x′)) = Q3(−(∇′)2v(x′) + d(x′)⊗ e3).

Since u and v are smooth, we observe that c, c̃ and d, and so c and d in (3.43), are smooth as
well from S to R3.

With this choice of c and d, recalling (1.27), we thus deduce that the right-hand side in (3.42)
coincides with

π2

2
κ|S|+

{
EπvK(u, v), if α = 2,

EπvK,lin(u, v), if α > 2,
= Eα,π(u, v),

and so we conclude the proof. �
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(M. Kruž́ık) Institute of Information Theory and Automation, Czech Academy of Sciences, Pod
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