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Abstract. It follows from the work of Kapovitch and Wilking that a closed
manifold with nonnegative Ricci curvature has an almost nilpotent fundamen-

tal group. Leftover questions and conjectures, see [27] and [33], have asked if

in this context the fundamental group is actually uniformly almost abelian.
The main goal of this work is to construct examples (M10

k , gk) with uni-

formly positive Ricci curvature Ricgk ≥ 9 whose fundamental groups cannot

be uniformly virtually abelian.

1. Introduction

A consequence of the work of Kapovitch and Wilking in [27] for a closed manifold
(Mn, g) with Ric ≥ 0 is that the fundamental group π1(M

n) has a nilpotent sub-
group N ≤ π1(M) of uniformly bounded index [N, π1(M)] ≤ C(n). An important
open question from their work, see [27, page 48], is whether this nilpotent subgroup
N can be taken to be abelian. More generally, it is asked whether for a space with
Ric ≥ −(n − 1) the torsion of the local fundamental group1 can be taken to be
uniformly almost abelian.

The question of Kapovitch and Wilking, and conjectures of Fukaya and Ya-
maguchi, have been quantitatively refined into conjecture by Pan and Rong, see
[33, Conjecture 2.22] and [35, Conjecture 12]; namely, it is conjectured that com-
pact spaces with nonnegative Ricci curvature have fundamental groups which are
uniformly almost abelian. The results of [29] and [35] are able to answer these
conjectures in the affirmative under the additional hypothesis that the manifolds
are noncollapsing; more precisely, the index of the abelian subgroup is bounded in
terms of a constant depending on the volume of unit balls in the universal cover.

The main goal of this paper is to answer these questions in the general case with
the following construction:

Theorem 1.1. There exists a sequence of smooth 10-dimensional Riemannian
manifolds (M10

k , gk) such that:

(1) Ricgk ≥ 9, and consequently diam(Mk) ≤ diam(M̃k) ≤ π with M̃k the
universal cover of Mk;

(2) The fundamental group π1(Mk) is a degree-two extension of the finite Heisen-
berg group H3(Z/kZ) for each k ∈ N.

The interest of Theorem 1.1 stems from the fact that the groups H3(Z/kZ), see
Section 2.2, are not uniformly virtually abelian with respect to k. That is, the index
of every abelian subgroup Ak ≤ H3(Z/kZ) diverges as k → ∞. In particular, this
answers the question of Kapovitch and Wilking and conjectures of [33, Conjecture
2.22] and [35, Conjecture 12] in the negative.

1Im
(
π1(Bϵ(n)(p)) → π1(B1(p))

)
1
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As such, Theorem 1.1 also refutes the natural counterpart for Ricci curvature of
some long-standing conjectures of Fukaya and Yamaguchi for fundamental groups
of manifolds with sec ≥ 0. In the context of noncompact manifolds with torsion
free fundamental group, see also the excellent example of Wei [37]. One is still left
with the original conjecture of Fukaya and Yamaguchi in the context of nonnegative
sectional curvature, which is very much open. Additionally, if we compare to [26],
we see that the torsion in the center conjecture for spaces with nonnegative sectional
curvature must fail under the weaker nonnegative Ricci assumption.

Theorem 1.1 is also connected to another series of questions which remain open.
In [5] and [6] examples of manifolds with nonnegative Ricci curvature and infinitely
generated fundamental group were constructed. The infinite generation was how-
ever abelian in nature. For instance, it is unknown if there always exists a normal
abelian subgroup A ≤ π1(M) such that the quotient π1(M)/A is finitely generated.

The main step in the construction of the spaces M10
k in Theorem 1.1 is based

on the construction of simply connected four manifolds M4
k with effective isometric

actions by H3(Z/kZ). These four manifolds even have uniformly bounded Ricci
curvature. However, the actions of H3(Z/kZ) on the M4

k are not free. We will

construct the universal covers M̃10
k from M4

k by looking at the spin bundles of M4
k

and lifting the actions of H3(Z/kZ) to free actions. In particular, this also explains
the Z/2Z extension of Theorem 1.1.

Our precise construction is the following:

Theorem 1.2. For every k ∈ N there exists a closed, simply connected 4-manifold
(M4

k , gk) with diam(Mk) ≤ π and 0 < Ricgk ≤ 3, admitting an effective isometric
action of the finite Heisenberg group H3(Z/kZ).

Each M4
k above is diffeomorphic to the connected sum of (k−1) copies of S2×S2.

We address the reader to Section 3 for more details on this and on the geometry of
the examples.

Remark 1.3. Theorem 1.2 is optimal in at least two senses:

i) The family of finite groups Γ that act smoothly and effectively on a sphere
Sn for n = 2, 3 is uniformly virtually abelian. See for instance [14]. In
particular, there are no three dimensional examples as above.

ii) In dimension four the Fukaya-Yamaguchi conjecture has been proved in [7].
More generally, by [30, Theorem 1.2] and [19], there is no family of four
dimensional examples as above with positive sectional curvature. See [7] for
the argument.

Broader Mathematical Context. We recall that the fundamental group of every
closed manifold with Ric > 0 is finite, as a consequence of Myers’ theorem. It is
not the case that one has uniform finiteness, the easiest examples being the Lens
spaces in dimension three. Similarly, one also knows that the fundamental group
of every closed manifold with Ric ≥ 0 is virtually abelian, as a corollary of the
Cheeger-Gromoll splitting theorem, see [8, Theorem 3].

On the other hand, in the noncompact case Wei constructed a family of complete
(Mn, g) with Ric ≥ 0 and for which π1 is a nilpotent lattice [37]. Wilking refined
Wei’s construction more recently in [38] and proved that any finitely generated
virtually nilpotent group is the fundamental group of some complete (noncompact)
(Mn, g) with Ric ≥ 0, for some n ∈ N.
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For manifolds (Mn, g) with nonnegative sectional curvature, fundamental groups
are virtually abelian without any compactness assumption, by the Cheeger-Gromoll
soul theorem [9] (combined again with the splitting theorem). Fukaya and Yam-
aguchi conjectured in [16] that the fundamental group of any (Mn, g) with sec ≥ 0
should have an abelian subgroup with index bounded by a dimensional constant
C(n). Their conjecture remains open.

Kapovitch, Petrunin, and Tuschmann proved that fundamental groups of al-
most nonnegatively curved manifolds in any fixed dimension are uniformly virtu-
ally nilpotent in [25] after some earlier progress due to Fukaya and Yamaguchi in
[16]. They conjectured that one should be able to arrange the finite-index nilpo-
tent subgroup to have torsion contained in the center, see [25, Main Conjecture
6.1.2]. If the “Torsion in the center” conjecture holds, then the Fukaya-Yamaguchi
conjecture would be true as well, as observed by Wilking, see [25, Section 6]. We
address the reader to [34, 29, 26] for some partial results in the direction of the
Fukaya-Yamaguchi conjecture, without the aim of being complete.

Acknowledgments. Part of this work was conducted while D.S. was a Hermann
Weyl Instructor. He is grateful to the FIM-Institute for Mathematical Research of
ETH Zürich for the support and the excellent working conditions.

2. Preliminaries

2.1. Heisenberg Groups. The 3-dimensional Heisenberg group over a commuta-
tive ring (A,+, ·) is defined as

H3(A) :=


1 a c
0 1 b
0 0 1

 : a, b, c ∈ A

 < GL3(A) . (1)

In the case that (A,+) is generated by the identity 1 ∈ A, we have that H3(A) is
generated as a group by the two elements

X :=

1 1 0
0 1 0
0 0 1

 , Y :=

1 0 0
0 1 1
0 0 1

 . (2)

If we set

Z :=

1 0 1
0 1 0
0 0 1

 , (3)

then we have the relations

XYX−1Y −1 = Z , XZ = ZX , Y Z = ZY . (4)

We will mainly be interested in the cases A = R, A = Z, and A = Z/kZ with
k ∈ N.

2.2. Heisenberg Nilmanifolds and Group Actions. Fix k ∈ Z. We consider
the free action of Z2 on R2 × S1 defined by

(a, b) · (x, y, z) := (x+ a, y + b, e−2πikayz) , (5)

for every (a, b) ∈ Z2 and (x, y, z) ∈ R2 × S1 ⊆ R2 × C. The quotient Nil3k is the
so-called Heisenberg nilmanifold of degree k ∈ Z. It admits a free, smooth S1-action
defined by

θ · [x, y, z] = [x, y, eiθz] , θ ∈ S1 , (6)



4 ELIA BRUÈ, AARON NABER, AND DANIELE SEMOLA

where [x, y, z] denotes the equivalence class of (x, y, z) ∈ R2 × S1. This S1-action
endows every Heisenberg nilmanifold Nil3k with the structure of a principal S1-
bundle over T 2, with projection map πk : Nil3k → T 2 induced by the natural map
R2 × S1 ∋ (x, y, z) 7→ (x, y) ∈ R2.

Assume that k > 0 for notational simplicity. A similar construction applies for
k < 0. The nilmanifold Nil3k admits a free effective action of the finite Heisenberg
group H3(Z/kZ), whose generators act as

X · [x, y, z] := [x+ 1/k, y, e−2πiyz] ,

Y · [x, y, z] := [x, y + 1/k, z] .
(7)

The commutator of the X and Y action gives the action by Z, which generates a
cyclic group Z/kZ acting by rotation on the S1-fibers of Nil3k:

Z · [x, y, z] := [x, y, e−2πi/kz] . (8)

Note that the actions of X and Y are lifted from the torus action

X · [x, y] := [x+ 1/k, y] ,

Y · [x, y] := [x, y + 1/k] ,
(9)

where [x, y] ∈ T 2 = R2/Z2 denotes the equivalence class of (x, y) ∈ R2.

There are several equivalent ways to build the action of H3(Z/kZ) on a nilman-
ifold Nil3k. The construction we have followed here has been exploited in the past,
for instance in [39] (resp. [12]) to construct an example of an irreducible complex
surface (resp. smooth, closed 4-manifold) such that the finite subgroups of the
group of birational transformations (resp. diffeomorphisms) are not uniformly vir-
tually abelian. See also the more recent [13, Section 2].

3. Structure of M4
k

In this section, we outline the diffeomorphic and metric structure of the manifolds
(M4

k , gk) built in Theorem 1.2. We will go about the construction carefully and
rigorously in the next sections.

3.1. Sketch of Construction. Our construction of M4
k is based on a variant of

the Gibbons-Hawking ansatz (see for instance [17, 1, 28, 21]) with base space the
three-sphere S3. We consider two distinct circle fibers F0 and F1 of the Hopf
fibration S3 → S2, viewed as the fibers corresponding to the north and south poles
of S2. We remove k points from each fiber, in a way so that discrete Hopf rotation
by angle 2π/k leaves the set invariant. There is a Z/kZ×Z/kZ ⊆ T 2 action on S3,
which is a subaction of the Clifford action, which maps this removed set to itself.
See Section 4 for more on this.

The next step is to construct the unique (up to orientation) S1-bundle whose
Chern class is invariant under this Z/kZ×Z/kZ action on S3, and for which when
restricted to each small 2-sphere enclosing one of the removed points is the Hopf
bundle. The resulting open four manifold can be smoothly compactified by adding
2k points. The Riemannian metric gk is defined as (a small conformal perturbation
of) the Gibbons-Hawking type metric (22), constructed using a Green’s function
with positive poles corresponding to the points removed from F0 and negative poles
corresponding to the points removed from F1, see (17). A key distinction from the
classical Gibbons-Hawking construction is the behavior of the Green’s function,
which changes sign: it is positive near the fiber F0 and negative near F1. This
causes a great deal of delicacy and care in the region between the fibers. We will
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show this Z/kZ×Z/kZ action on S3 lifts to an (isometric) action by the Heisenberg
group H3(Z/kZ) on M4

k , whose isotropy points are the 2k removed points.

Let us now discuss several viewpoints from which to understand the geometry
of our M4

k :

3.2. M4
k as a Singular S1 Bundle over S3. The simply connected manifold

(M4
k , gk) admits an isometric S1-action with 2k fixed points corresponding to the

points that we removed from the Hopf fibers F0 and F1. The quotient space of
the action is naturally homeomorphic to S3, essentially by construction, and we
shall denote π : M4

k → S3 to be the natural projection. Smooth S1 actions with
finitely many fixed points on closed simply connected 4-manifolds are completely
classified up to equivariant diffeomorphism. In particular, by [11], we deduce that
M4

k is diffeomorphic to the connected sum of k − 1 copies of S2 × S2. Hence, M4
k

is spin and we can compute the homology as H1(M
4
k ,Z) = H3(M

4
k ,Z) = 0, and

H2(M
4
k ,Z) ∼= Z2k−2.

3.3. M4
k as a Singular T 2 Bundle Over S2. The map πT 2 : M4

k → S2, obtained
by composing π : M4

k → S3 and the Hopf map πHopf : S
3 → S2, is a smooth torus

fibration away from the preimages of the north and south poles in S2. For every
x ∈ S2 different from the north and south pole, the fiber π−1

T 2 (x) is diffeomorphic
to a two-torus. On the other hand, the preimages of the south and north poles are
homeomorphic to singular Kodaira fibers of type Ik. Topologically, the latter can
be viewed as a chain of k spheres S2

1 , S
2
2 , . . . , S

2
k with the property that S2

i intersects
S2
i+1 at exactly one point, forming a loop (where S2

k+1 is identified with S2
1).

The reader is addressed to [21] and [10] for more on the appearance of singular
Kodaira fibers through constructions based on the Gibbons-Hawking ansatz.

3.4. M4
k as a Singular Nil3k Bundle Over I. The map πNil3k

: M4
k → [0, 1],

obtained by composing π : M4
k → S3 and S3 ∋ (z1, z2) 7→ |z1| ∈ [0, 1], is a smooth

fibration away from the preimages of 0 and 1. The (generic) fiber is diffeomorphic to
the Heisenberg nilmanifold Nil3k of degree k. The preimages of the boundary points
are Ik fibers. We refer the reader to [23] for further details on the emergence of
fibrations with nilmanifold fibers via constructions based on the Gibbons-Hawking
ansatz. Additionally, we point to the earlier works [36] and [22] for the construction
of Calabi-Yau metrics on manifolds that locally fiber as nilmanifolds over intervals.

The global action by the finite Heisenberg group H3(Z/kZ) preserves the fibers
of πNil3k

. On the regular fibers this action matches the one described in Section 2.2.

On the two singular Ik fibers, the two generators of H3(Z/kZ) act in the following
ways:

(1) Cycling of the spheres: The spheres S2
1 , . . . , S

2
k are permuted cyclically, with

the action S2
ℓ → S2

ℓ+1 for ℓ = 1, . . . , k − 1, and S2
k → S2

1 .

(2) Asynchronous rotation: The sphere S2
ℓ is rotated by an angle 2πℓ/k (with

respect to the axis connecting the touching points with the two neigh-
bourhing 2-spheres) for each ℓ = 1, . . . , k.

3.5. Doubling of a Neighborhood of the Ik Fiber. Let Σ ⊂ S3 be the Clifford
torus. As we observe in the proof of Lemma 4.4 below, the preimage π−1(Σ) ⊂ M4

k

is diffeomorphic to Nil3k. It is not hard to see that the latter disconnects M4
k into

two open regions, each diffeomorphic to a neighborhood of an Ik fiber.
Thus, M4

k can be obtained by gluing together these two neighbourhoods of the

Ik fiber along their boundaries, which are diffeomorphic to Nil3k. Importantly, the
gluing map is an equivariant diffeomorphism of Nil3k with respect to its S1 and
H3(Z/kZ) symmetries. Moreover the gluing map switches the sign of the Chern
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class on the base two-torus. This is consistent with the fact that M4
k is simply

connected, although the two neighbourhoods of the Ik fibers deformation retract
onto the singular fibers and, as such, have fundamental groups isomorphic to Z.

4. Proof of Theorem 1.2

The careful construction of M4
k begins with the three sphere S3. Let us view

S3 as the unit sphere in R4 = C2. We consider the fibers F0, F1 ⊂ S3 of the Hopf
fibration defined by

F0 := {(z1, 0) : |z1| = 1} , F1 := {(0, z2) : |z2| = 1} . (10)

Let k ∈ N be fixed and Bk be the incomplete manifold obtained by removing the
k-th roots of unity from the Hopf fibers F0 and F1. Namely, we set

Bk := S3 \ {(e2πiℓ/k, 0), (0, e2πiℓ
′/k) : 0 ≤ ℓ, ℓ′ ≤ k − 1} . (11)

Note that there is a natural action of Z/kZ× Z/kZ on Bk given by

(ℓ, ℓ′) · (z1, z2) := (e2πiℓ/kz1, e
2πiℓ′/kz2) . (12)

The action is effective and isometric with respect to the restriction of the stan-
dard metric of S3 to Bk.

We note that H2(Bk,Z) ≃ Z2k−1 is generated by the homology classes of small 2-

spheres enclosing the points p0ℓ := (e2πiℓ/k, 0) and p1ℓ′ := (0, e2πiℓ
′/k). We enumerate

them

Sα
ℓ = ∂Br(p

α
ℓ ) , (13)

with α ∈ {0, 1}, ℓ ∈ {0, . . . , k − 1} and r > 0 sufficiently small chosen sufficiently
small so that the collection of balls Br(p

α
ℓ ) is disjoint and each ball is diffeomorphic

to a three ball.

Let us now define the integral cohomology class [ω] ∈ H2(Bk,Z) ≃ Z2k−1 by the
condition ∫

Sα
ℓ

ω = (−1)α 2π . (14)

Observe that this class in invariant under the Z/kZ× Z/kZ action on Bk .

Let us now consider the unique principal S1 bundle π̃ : Nk
S1

−→ Bk whose Chern
class is [ω]. Using (14), we have that π̃−1(Br(p

α
ℓ ) \ {pαℓ }) is diffeomorphic to a

punctured 4-ball for each pαℓ . Hence Nk can be “completed”

M4
k ≡ Nk ∪ {p̃αℓ } , (15)

to a closed 4-manifold M4
k by adding 2k points. Moreover, this completion gives

rise to a smooth extension

π : M4
k → S3 , (16)

of π̃ : Nk → Bk. The S1 action on Nk extends smoothly to Mk with the added
points as fixed points. See Section 4.1 for coordinate computations and also [1, 28],
[20, Section 2] for analogous arguments.

Note that [ω] is a primitive class. Since Bk is simply connected we have that Nk

is simply connected, and hence Mk is simply connected as well.

We are going to define a metric onM4
k through a variant of the so-called Gibbons-

Hawking ansatz, originally introduced in [17].
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Let u : S3 → [−∞,+∞] be a solution of

−∆S3u = 2π

k−1∑
ℓ=

(
δ(e2πiℓ/k,0) − δ(0,e2πiℓ/k)

)
= 2π

k−1∑
ℓ=0

(
δp0

ℓ
− δp1

ℓ

)
, (17)

where S3 is endowed with the round metric of radius one. As the right hand side
integrates to zero we have that such a function u exists, is smooth away from {pαℓ },
and is unique up to a constant. We normalize it in such a way that it is odd under
the involution ι : S3 → S3, ι(z1, z2) := (z2, z1). That is we want the condition
u(z2, z1) = −u(z1, z2). Notice that u : Bk → R is smooth and harmonic. We can
define the two-form

ω = ∗du , (18)

where ∗ denotes the Hodge ∗ operator on S3. Note that dω = 0 on Bk follows
because u is harmonic on Bk, and hence ω defines a 2-cohomology class on Bk.

Lemma 4.1. The cohomology class [ω] satisfies (14), and thus represents the Chern
class of the principal S1 bundle π̃ : Nk → Bk in de Rham cohomology.

Proof. Clearly, u is invariant under the Z/kZ × Z/kZ-action introduced in (12).
Hence, ω = ∗du is also invariant with respect to this action.

Let Br(p
α
ℓ ) be a small three-ball centered at one of the removed points pαℓ with

Sα
ℓ = ∂B3

r (p
α
ℓ ). Observe that

dω = d ∗ du = ∗(∗d ∗ du) = ∗∆u . (19)

Hence, by (a distributional formulation of) Stokes’ theorem, we get∫
Sα
ℓ

ω =

∫
Br(pα

ℓ )

dω =

∫
Br(pα

ℓ )

∆u = (−1)α 2π , (20)

as claimed.
□

Thanks to Lemma 4.1, there exists a connection on the principal S1-bundle
π̃ : Nk → Bk with curvature form ω. Let θ ∈ Ω1(Nk) be a principal connection
1-form corresponding to this connection. In particular, dθ = π̃∗ω. While such a
connection 1-form is not unique, its uniqueness is ensured up to gauge equivalence
as the base space is simply connected.

Let us now consider the function

V (x) :=
1

4π
log

(
e4πx + e−4πx + 2

)
. (21)

We introduce the Riemannian metric hk on Nk by defining

hk := VΛ(uk) π̃
∗gS3 +

1

k2Λ2 VΛ (uk)
θ ⊗ θ , (22)

where

uk := u/k ,

VΛ(x) := Λ−1V (x) + 1 , (23)

with Λ > 1 to be chosen later to be sufficiently large. The introduction of the
parameter Λ is somewhat motivated by the expression for the Taub-NUT metrics
via the Gibbons-Hawking ansatz.

Equivalently, hk is the unique principal S1 bundle metric on the total space of
π̃ : Nk → Bk such that:

(1) The connection 1-form is θ with dθ = π̃∗ω; This connection is smooth away
from {pαℓ } but degenerates in the natural S3 coordinates near {pαℓ }.
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(2) The induced metric on the base space Bk is VΛ(uk) gS3 ; For large Λ the
geometry of Bk is close to S3 away from {pαℓ }, with singularities near {pαℓ }.

(3) The S1 fibers have length (kΛ
√
VΛ(uk))

−1; For large Λ the fibers are ≈ 1
kΛ

small away from {pαℓ }, with fiber length tending to zero at {pαℓ }.

Remark 4.2 (Choice of V ). The specific choice of V in (21) does not play a central
role in the sequel; it is merely convenient for calculations. In principle, any smooth
convex function V : R → (0,+∞), independent of k, with the correct asymptotic
behavior V (x) ∼ |x| as x → ±∞, would work.

Despite the obvious singularities of the metric components in the S3 coordinates,
we claim that hk extends to a smooth Riemannian metric on M4

k . This Riemannian
metric is invariant under an effective isometric action of the finite Heisenberg group
H3(Z/kZ). Moreover, the manifolds (M4

k , hk) have uniformly bounded diameters,
and 0 ≤ Richk

≤ 3 for every k ∈ N. We will prove these claims, corresponding
to Lemma 4.3, Lemma 4.4, and Lemma 4.5 below respectively, in the forthcoming
subsections.

Lemma 4.3. The metric hk on Nk extends smoothly to a Riemannian metric, still
denoted hk, on M4

k .

Lemma 4.4. The finite Heisenberg group H3(Z/kZ) acts effectively and isometri-
cally on (M4

k , hk).

Lemma 4.5. The manifold (M4
k , hk) satisfies

(1) diam(Mk) ≤ π +O(k−1) ,
(2) 0 ≤ Richk

≤ 2 +O(k−1) .

Moreover, we have that Richk
> 0 in Nk ⊂ Mk. That is, the Ricci tensor is zero

only at the 2k points {p̃αℓ } added to Nk to form M4
k .

Once the proofs of Lemma 4.3, Lemma 4.4, and Lemma 4.5 are completed, to
conclude the proof of Theorem 1.2 we will perturb the geometry of (M4

k , hk) with
a smooth conformal factor gk := e−2φkhk. This will allow us to achieve Ricgk > 0
while maintaining the Ricci and diameter upper bounds, as well as the isometric
action of the Heisenberg group H3(Z/kZ).

Lemma 4.6. There exists φk ∈ C∞(M4
k ) such that |φk| ≤ O(k−1) and φk is

invariant under the action of H3(Z/kZ). Moreover, the metric gk := e−2φkhk

satisfies 0 < Ricgk ≤ 2 +O(k−1).

Similar conformal perturbation arguments have been used in several other in-
stances, for instance in [2] and [15].

Remark 4.7. The L2-norm of the Riemann tensor of (M4
k , gk) is not uniformly

bounded with respect to k. Indeed, by Chern-Gauss-Bonnet∫
M4

k

|Riemgk |2 = 32π2χ(M4
k ) +

∫
M4

k

4|Ricgk |2 −R2
gk

. (24)

Although the Ricci and scalar curvature terms are bounded, χ(M4
k ) = 2k + 1 → ∞

as k → ∞. One can also verify that the sectional curvatures are not uniformly
bounded, either from below or above.

4.1. Proof of Lemma 4.3. Some variants of the proof below have already ap-
peared in the literature in slightly different contexts, see for instance [1, 28]. It
is also clearly enough to check that hk admits a smooth extension within each
π̃−1(Br(p

α
ℓ )) for some sufficiently small 0 < r = r(k) < 1.
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Let us first write each Br(p
α
ℓ ) ⊂ S3 in polar coordinates as

Br(p
α
ℓ ) \ {pαℓ } ≈ Br(0

3) \ {03} ≈ (0, r)× S2 ,

gS3 = ds2 + sin2(s)gS2 . (25)

Recall that π̃−1(Br(p
α
ℓ )\{pαℓ })∪{p̃αℓ } ≈ R4 is identified with a ball in Euclidean

space. We can make this identification a bit more explicitly as follows. Observe
that [ω], the defining cohomology class of the circle bundle, restricts to that of a
Hopf bundle over each S2 by (14). We can write π̃−1(Br(p

α
ℓ )) ≈ R4 \ {04} in polar

coordinates, as in [28], as the projection mapping

π : (0, r)× S3 ∋ (s, x) 7→
(
s2

2
, πHopf(x)

)
∈ (0, r)× S2 . (26)

We see that in these coordinates π extends smoothly to R4. Recall that the
metric (22) is written

hk :=
1

kΛ
(kV (u/k) + kΛ)

(
π∗gS3 +

1

(kV (u/k) + kΛ)2
θ ⊗ θ

)
,

gS3 := ds2 + sin2(s)gS2 .

(27)

We have that u is a solution of −∆gS3u = 2π(−1)αδ03 , which we can write in these
coordinates as

u = (−1)α
1

2

cos(s)

sin(s)
+ u′ , (28)

where u′ is a smooth solution of ∆S3u′ = 0 on Br(p
α
ℓ ). The connection 1-form θ

is determined by the equation dθ = ∗S3du . If θHopf is the Hopf connection 1-form
on S3, then (−1)αdθHopf = dθ − d ∗S3 du′. Hence, up to gauge transformation, we
have that

θ = (−1)αθHopf + θ′ , (29)

where θ′ is smooth on π̃−1(Br(p
α
ℓ )) ≈ R4.

Using the explicit polar coordinate expression of the projection π : R4 → R3, we
can express

π∗gS3 = s2 ds2 + sin2
(
s2

2

)
π∗
HopfgS2 . (30)

On the other hand, from (28) and the explicit expression of V , we can deduce that

kV (u/k) + kΛ =
1

2

cos(s)

sin(s)
+ u′′ , u′′ ∈ C∞(Br0(0

3)) . (31)

By combining (29), (30), and (31), we obtain the expansion

hk =
1

kΛ

(
ds2 + s2π∗

Hopf

1

4
gS2 + s2θHopf ⊗ θHopf

)
+ h′

=
1

kΛ
gR4 + h′ ,

(32)

where h′ = O(r2) is smooth. In particular, hk admits a smooth extension, as
claimed. □
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4.2. Proof of Lemma 4.4. It suffices to show that H3(Z/kZ) acts effectively and
isometrically on (Nk, hk), as (Mk, hk) is the metric completion of (Nk, hk).

Let K ∼= Z/kZ×Z/kZ be the group of diffeomorphisms of Bk introduced in (12).
Let H be the group of diffeomorphisms φ : Nk → Nk such that:

(i) φ is equivariant with respect to the S1 action on Nk, i.e., Rθ ◦ φ = φ ◦Rθ

for every θ ∈ S1. Here we denoted by Rθ : Nk → Nk the S1 action on the
principal S1 bundle π̃ : Nk → Bk;

(ii) φ is a lift of some element φ̃ ∈ K, i.e., π̃ ◦ φ = φ̃ ◦ π̃;
(iii) φ∗θ = θ, where θ is the connection 1-form on π̃ : Nk → Bk.

Claim 1: H acts isometrically on (Nk, hk).

For any φ ∈ H we can compute

φ∗hk =φ∗
(
VΛ(uk) π̃

∗gS3 +
1

k2Λ2 VΛ (uk)
θ ⊗ θ

)
(33)

=VΛ(uk ◦ φ̃) π̃∗φ̃∗gS3 +
1

k2Λ2 VΛ (uk ◦ φ̃)
φ∗θ ⊗ φ∗θ (34)

=VΛ(uk) π̃
∗gS3 +

1

k2Λ2 VΛ (uk)
θ ⊗ θ = hk , (35)

where we used (ii), (iii), and the fact that K acts isometrically with respect to the
standard metric on S3.

Claim 2: Any φ̃ ∈ K admits a lift φ ∈ H. Such a lift is unique modulo composition
with the action Rθ.

The Claim follows from a fairly standard lifting argument, see for instance [24,
Proposition 2.7]. Indeed, as φ̃∗ω = ω and H2(Bk,Z) is torsion-free we have that
φ̃ preserves the Chern class of our S1 bundle and hence lifts to an equivariant
diffeomorphism φ̂ : Nk → Nk . This lift is well defined up to a gauge transformation,
so let us observe that d(φ̂∗θ − θ) = ω − ω = 0. As H1(Bk,Z) = 0 we can write
d(φ̂∗θ − θ) = −df with f : Nk → R. We use f to define our gauge tranformation
we obtain φ = φ̂ · eif , where φ∗θ − θ = φ̂∗θ + df − θ = 0, as claimed.

Claim 3: H contains a subgroup isomorphic to H3(Z/kZ).
The restriction of ω to the Clifford torus Σ := {|z1| = |z2|} ⊂ Bk is cohomologous

to the 2πk-multiple of the volume form. Indeed, up to a choice of orientation, from
(19) we deduce that ∫

Σ

ω =

∫
{|z1|<|z2|}

∆S3u = 2πk . (36)

Hence π̃ : Nk → Bk restricts to a principal S1 bundle over the Clifford torus iso-
morphic to the degree k Heisenberg nilmanifold Nil3k.
Note that K leaves the Clifford torus Σ invariant. Hence by (ii) we can restrict
the action of H on Nk to an isometric action on a Riemannian Heisenberg nilman-
ifold Nil3k respecting the principal S1 bundle structure. As the nilmanifold Nil3k is
codimension one and the isometries of H are orientation preserving, we see that
the restriction homomorphism r : H → Iso(Nil3k) is injective. Moreover, we see it
is an isomorphism onto the subgroup of isometries of Nil3k which are lifts of the
the Z/kZ × Z/kZ action on Σ ≈ T 2, viewed as the base of S1 → Nil3k → T 2. It
then follows from the construction of Section 2.2 that r(H) (and hence H) has a
subgroup isomorphic to H3(Z/kZ) acting as in (7). □
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4.3. Proof of Lemma 4.5. We will prove first that for each ε > 0 if Λ = Λ(ε) ≥ 1
is sufficiently large, actually independent of k, then diam(Mk) ≤ π+ε. In particular,
if Λ(k) → ∞ then we have the claimed diameter bound on M4

k .
First observe that if Λ ≥ Λ(δ) then k2Λ2VΛ ≥ δ−2, which ensures that the fiber

lengths of the principal bundle π̃ : Nk → Bk are less than δ for every k ≥ 1. Thus
it is sufficient to establish a uniform diameter bound for the metrics VΛ(uk) gS3

on the base space. We may also focus our attention on Bk, as M4
k is the (metric)

completion of (Nk, hk).

To prove the diameter bound on VΛ(uk)gS3 we need to estimate uk. Let us begin
with the following:

Claim: ∃ C > 0, independent of k, so that |uk(z)| ≤ C + |z1|−1 + |z2|−1 .

Recall that u1 : S3 → [−∞,+∞] is the unique solution of

−∆S3u1 = 2π
(
δ(1,0) − δ(0,1)

)
, (37)

such that u1 ◦ ι = −u1. Note that we can also identify u1 as the difference between
the Green’s functions on S3 at (1, 0) and (0, 1). Using the standard estimates on
Green’s functions in dimension three we have for (z1, z2) ∈ S3 ⊆ C×C the estimate∣∣∣u1(z1, z2)−

1√
|z1 − 1|2 + |z2|2

+
1√

|z1|2 + |z2 − 1|2
∣∣∣ ≤ C . (38)

As a consequence we have the (very poor) estimate

|u1(z)| ≤ C + |z2|−1 + |z1|−1 , (39)

which bounds u1 uniformly away from the singular fibers F0 and F1. For each k ≥ 2
we can write

uk(z1, z2) =
1

k

k−1∑
ℓ=0

u1(e
2πiℓ
k z1, e

2πiℓ
k z2) . (40)

In particular we arrive at the (less poor, as k gets large) estimate

|uk(z)| ≤ C + |z1|−1 + |z2|−1 , (41)

which finishes the proof of the claim.

With the claim in hand we can now estimate VΛ(uk) := Λ−1V (uk)+1. To begin,
we can directly plug in the estimate of the claim to get

VΛ(uk(z1, z2)) ≤ Λ−1(C + |z1|−1 + |z2|−1) + 1 , (42)

for every (z1, z2) ∈ S3. Consider for r > 0 the set S3 \BS3

r (F0 ∪F1). Note we have
subtracted the r-tube with respect to the S3 metric around each fiber off. Then
using (42) we can choose Λ ≥ Λ(C, r, δ) > 0 sufficiently large that

|VΛ(uk)− 1| ≤

{
δ3

(
1 + 1

|z1| +
1

|z2|

)
in BS3

r (F0 ∪ F1)

δ3 in S3 \BS3

r (F0 ∪ F1) .
(43)

In particular, the metric VΛ(uk)gS3 is uniformly close to the S3 metric on the

set S3 \BS3

r (F0∪F1), and it is then clear that the diameter of this set is ≤ (1+δ)π.

To estimate the diameter of Bk we are left showing that each point of BS3

r (F0) (and

BS3

r (F1)) can be connected to the boundary by a curve of small length. To this
end we have the following, which focuses on F0:
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Claim: Let z1 ∈ C be such that |z1| = 1. Consider the curve γz1 : (0, 2
√
r) → S3

defined as
γz1(t) := (

√
1− t2 z1, t

2) . (44)

If ℓk(γz1) denotes the length of γz1 with respect to the metric VΛ(uk) gS3 , then

ℓk(γz1) ≤ 6r + 24δ3/2
√
r . (45)

To prove the claim, let us use (43) and the estimate |γ′
z1(t)| ≤ 3t to obtain

ℓk(γz1) =

∫ 2
√
r

0

√
VΛ(uk(γz1(t)))|γ′

z1(t)|dt (46)

≤
∫ 2

√
r

0

(
1 + 4

δ3/2

t

)
· 3t dt (47)

≤ 6r + 24δ3/2
√
r , (48)

as claimed.

If we now choose r = r(ε) > 0, δ(ε) > 0 sufficiently small with Λ > Λ(C, r, ε, δ) >
0 sufficiently big, we can combine the estimates of this subsection to arrive at the
diameter bound diam(M4

k ) ≤ π + ε, as claimed. □

4.4. Proof of Lemma 4.5, Ricci Curvature Bound. Let U and X be a unit
vertical vector and a unit horizontal vector for the S1 bundle metric hk on π̃ : Nk →
Bk respectively. We claim that

Richk
(U,U) =

|duk|2

2

Λ

V (uk) + Λ

[
V ′′(uk)

V (uk) + Λ
+

1− (V ′(uk))
2

(V (uk) + Λ)2

]
, (49)

Richk
(U,X) = 0 , (50)

Richk
(X,X) =

Λ

V (uk) + Λ

(
2 +

(1− (V ′(uk))
2)

2(V (uk) + Λ)
[duk(X)]2 (51)

− |duk|2

2

[
V ′′(uk)

V (uk) + Λ
+

1− (V ′(uk))
2

(V (uk) + Λ)2

])
, (52)

where, with a slight abuse of notation, we denoted du(X) := du(dπ̃(X)).
We postpone the verification of the expressions of the Ricci curvature to the end

of the subsection and first exploit them to complete the proof of Lemma 4.5.

Consider the identities

1− (V ′(x))2 =
4

e4πx + e−4πx + 2
, V ′′(x) =

8π

e4πx + e−4πx + 2
. (53)

We can use the asymptotic expansion of uk near the poles to estimate

|duk|2

e4πuk + e−4πuk + 2
≤ C(k) . (54)

If we combine with the previous estimate we get

0 < |duk|2V ′′(uk) ≤ C(k)

0 < |duk|2(1− (V ′(uk))
2) ≤ C(k) . (55)

If we choose Λ ≥ Λ(k, δ) we then get the estimates

0 < |duk|2
V ′′(uk)

V (uk) + Λ
≤ δ

0 < |duk|2
(1− (V ′(uk))

2)

V (uk) + Λ
≤ δ , (56)
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as well as

0 ≤ Λ

V (uk) + Λ
≤ 1 , (57)

with strict positivity near the poles. If we plug these into our formulas for the Ricci
curvature we arrive at the estimates (away from the poles of uk)

0 <Richk
(U,U) ≤ δ ,

Richk
(X,U) = 0 ,

0 <Richk
(X,X) < 2 + 10δ , (58)

which proves our desired Ricci curvature bounds.

We are left with the verification of the expressions (49), (50), and (51), for the
Ricci curvatures of the metric gk. To this aim, it is convenient to view

hk =
1

kΛ

[
Wk(u) π̃

∗gS3 +
1

Wk(u)
θ ⊗ θ

]
, (59)

for Wk(x) := k(V (x/k) +Λ) for each k ≥ 1, and compute the Ricci curvatures of a
general Riemannian circle bundle metric of the form

W π̃∗gS3 +
1

W
θ ⊗ θ , (60)

with W : S3 → (0,+∞]. If ω denotes the curvature 2-form of such circle bundle,
U is a unit vertical vector and X any horizontal vector, then there hold

Ric(U,U) =
1

2
W−2∆gS3W +

1

2
W−3

(
|ω|2gS3

− |∇W |2gS3

)
, (61)

Ric(U,X) = − 1

2
W−3/2

(
δgS3ω(X)−W−1ω(∇gS3W,X)

)
, (62)

Ric(X,X) = 2|X|2gS3
− 1

2

∆gS3W

V
|X|2gS3

−W−2 1

2

(
|ιXω|2gS3

− |dW ∧X♭|2gS3

)
. (63)

To prove (61), (62), and (63) we can start from the well-known formulas for the
Ricci curvatures of Riemannian circle bundles π : M → B with fibres length f ,
curvature 2-form ω, and induced Riemannian metric on the base gB . Namely

Ric(U,U) = − ∆Bf

f
+

f2

2
|ω|2B , (64)

Ric(U,X) =
1

2

(
−fδBω(X) + 3ω(X,∇Bf)

)
, (65)

Ric(X,X) =RicB(X,X)− f2

2
|ω(X)|2B − ∇2

Bf(X,X)

f
, (66)

where as above U denotes a unit vertical vector and X denotes any horizontal
vector. See for instance [4, Proposition 9.36], or [18].

To get from (64) to (61) it suffices to exploit the formula for the transformation
of the Laplacian under a conformal change in dimension 3, i.e.,

∆WgS3 f = W−1

(
∆S3f +

1

2
W−1gS3(∇gS3W,∇gS3 f)

)
, (67)

and the norm of 2-forms

|ω|2WgS3
= W−2|ω|2gS3

. (68)



14 ELIA BRUÈ, AARON NABER, AND DANIELE SEMOLA

To get from (65) to (62) we rely on the formula for the transformation of the
divergence for 2-forms under conformal changes, i.e.,

δWgS3ω = W−1

(
δgS3ω +

1

2
W−1ι∇g

S3Wω

)
. (69)

To obtain (63) from (66) we combine the formulas for the transformation of Ricci
curvature and Hessians under conformal changes to establish the identity

RicWgS3 −
HessWgS3W

−1/2

W−1/2
=RicgS3 − 1

2

(
∆gS3W

W
− |dW |2

W 2

)
gS3

− 2
dW

W
⊗ dW

W
. (70)

Under the assumption that ω = ∗du, where u : Bk → R is harmonic with respect
to the round metric gS3 , (61), (62), and (63) simplify into

Ric(U,U) =
1

2

∆W

W 2
+

1

2

|du|2 − |dW |2

W 3
, (71)

Ric(U,X) =
1

2

∗(du ∧ dW )(X)

W 5/2
, (72)

Ric(X,X) = 2|X|2 − 1

2

∆W

W
|X|2 − 1

2

|du ∧X♭|2 − |dW ∧X♭|2

W 2
. (73)

Above, it is understood that norms and Laplacians are computed with respect to
the round metric gS3 . If we also assume that, with a slight abuse of notation,
W = W ◦ u, then we can rewrite (71), (72), and (73) as

Ric(U,U) =
1

2

|du|2

W

(
W ′′

W
+

1− (W ′)2

W 2

)
, (74)

Ric(U,X) = 0 , (75)

Ric(X,X) = 2|X|2 + 1− (W ′)2

2W 2
(du(X))2 (76)

− 1

2

(
W ′′

W
+

1− (W ′)2

W 2

)
|du|2|X|2 .

The expressions (49), (50), and (51) can be easily obtained from (74), (75), and
(76), recalling that Wk(x) := k(V (x/k) + Λ) and scaling to account for the 1

kΛ
factor in (59). □

4.5. Proof of Lemma 4.6. Recall that Mk \ Nk is a set of 2k points forming
an orbit of the isometric action of the Heisenberg group H3(Z/kZ). We define
ρk(x) := 1

2dhk
(x,Mk \ Nk)

2, the square of the distance function to this set with
respect to the metric hk. Note that ρk is globally H3(Z/kZ)-invariant and smooth
in a sufficiently small neighborhood of Mk \ Nk. Let ηk ∈ C∞(R) be a smooth
function such that ηk(t) = t for t ≤ rk and ηk(t) = 0 for t ≥ 2rk, where rk > 0 is
sufficiently small to ensure that ηk(ρk) ∈ C∞(Mk) and

Hesshk
ρk ≥ 1

2
hk , |dρk|hk

≤ 10−2 , when ρk ≤ r2k . (77)

The existence of such rk follows from the fact that

Hesshk
ρk = hk , dρk = 0 , (78)

for every p̃αℓ ∈ Mk \ Nk.
Finally, we define φk := εkηk(ρk), where εk > 0 is a small parameter to be

chosen later. The Ricci curvature of gk := e−2φkhk is given by

Ricgk = Richk
+ 2Hesshk

φk + 2dφk ⊗ dφk + (∆hk
φk − 2|dφk|hk

)hk . (79)
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It is clear that Ricgk > 0 in the set {ρk ≤ rk/2} as a consequence of (77). On the
other hand, Richk

≥ c > 0 in the set {ρk ≥ rk/2} ⊂ Nk, hence Ricgk is positive in
this region provided εk > 0 is small enough. Similarly, we have the upper bound
Ricgk ≤ Richk

+ Cεk. □

5. Proof of Theorem 1.1

The Heisenberg actions in Theorem 1.2 are not free, and thus do not yield the
desired fundamental group. One can verify that the quotient of M4

k by the Heisen-
berg action H3(Z/kZ) is homeomorphic to the four-sphere S4.

To address this issue, consider the oriented frame bundle πFM : FMk
SO(4)−→ M4

k .
Given constants dk > 0 there is a unique principle bundle metric gFM

k on FMk

defined by the conditions:

(1) The right SO(4) actions on FMk are isometric. More specifically, let {va}
be an orthonormal basis of so(4), the Lie algebra of SO(4), with respect
to the standard Frobenius inner product. If V a denotes the correspond-
ing pushforward vertical vector fields on FMk, then the metric satisfies
gFM
k (V a, V b) = d2k δ

ab.
(2) Consider the natural connection form θ ∈ Ω1(FMk; so(4)) associated with

the Levi-Civita connection ∇k on (Mk, gk). If Hj are vector fields on Mk

we may lift them to horizontal vector fields on FMk, sloppily also denoted
by Hk. Then gFM

k (Hj , V a) = 0.
(3) If Hj are horizontal lifts of vector fields on Mk, then gFM

k (Hj , Hk) =
gk(H

j , Hk).

We begin with the usual observation about isometries on Mk and their lifts to
FMk. Namely, note that an isometry on Mk maps an orthonormal frame to an
orthonormal frame, and thus lifts to a mapping on FMk. It is easy to check this
lifted mapping is an isometry with respect to a metric as above. Additionally, since
an isometry fixes a point and a frame (e.g. its derivative is the identity) if and only
if it is globally the identity, we have that the lifted isometric action on FMk is free.
In particular, we can lift our H3(Z/kZ) action to a free action on FMk.

To understand the Ricci curvature of FMk, let us begin with the observation
that if dk is very small then our SO(4) fibers are very small. In particular, they
are very positively curved. We want to see that the positive Ricci curvature of Mk

together with the potentially very positive Ricci curvature of the fibers leads to
positive Ricci curvature of FMk.

More precisely, let V be a gFM unit vertical vector with H unit a horizontal
vector. Note that the V can be identified as a 2-form in Mk (in local coordinates∑

ij θij(V )dxi ∧ dxj), and so we can identify Rmk[V ] as a 2-form. Now recall the

formulas (see [32] and also [3, 31, 4]):

RicFM (V, V ) = d−2
k +

1

4
|Rmk[V ]|2k ≥ d−2

k ,

RicFM (V,H) = ⟨divRmk[H], V ⟩FM , =⇒ |RicFM (V,H)| ≤ Cdk ,

RicFM (H,H) = Rick(H,H)− 3

4
d2k

3∑
i=1

|Rmk(H,Hi)|2k ≥ ϵk − Cd2k , (80)

where H,H1, H2, H4 form an orthonormal frame of (Mk, g), C = C(n,Rmk,∇Rmk)
and ϵk is the positive Ricci lower bound on M4

k . In particular, if dk is sufficiently
small (depending on the size of Rmk and ∇Rmk and the lower Ricci bound on M4

k ),
then positive Ricci on M4

k implies positive Ricci on FMk .
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We have thus built a ten dimensional compact manifold with positive Ricci
curvature and a free action of H3(Z/kZ). However, we are not quite done yet. As
Mk is homeomorphic to the connected sum of (k − 1) copies of S2 × S2 we have
that Mk is a spin manifold. In particular, even though Mk is simply connected we
have that FMk is not simply connected. More precisely, π1(FMk) = Z/2Z.

In order to produce the examples of Theorem 1.1 we need to define M̃10
k to be

the double cover of FMk, which is to say the spin bundle of Mk. As M̃10
k is simply

connected the action of H3(Z/kZ) on FMk lifts to an action by a Z/2Z extension
of H3(Z/kZ). This now finishes the proof of Theorem 1.1. □
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