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1. Introduction

Motivated by applications in physics, biology and economics, in this paper we study a
mean-field model of particles (or agents) interacting through a repulsive, anisotropic Riesz
potential in a quadratic confinement. More precisely, we consider nonlocal energies of the
form

I(µ) :=

∫
Rd

(W ∗ µ)(x) dµ(x) +

∫
Rd

|x|2 dµ(x), (1.1)

defined on probability measures µ ∈ P(Rd), for d ≥ 2. In (1.1) the potential W is of the
form

W (x) :=
1

|x|s
Ψ

(
x

|x|

)
, s ∈ (0, d), (1.2)

for x 6= 0 and W (0) = +∞, and the profile Ψ is even, strictly positive on Sd−1, and such

that both W and Ŵ are continuous on Sd−1. Here Ŵ denotes the Fourier transform of W ,
see Section 2.3.

Alternatively, one could consider the fully nonlocal analogue of (1.1),

Ĩ(µ) :=

∫
Rd

(W̃ ∗ µ)(x) dµ(x),

where the attractive/repulsive interaction potential W̃ is given by W̃ (x) := W (x) + 1
2 |x|

2.

In fact, by translation invariance one can reduce the minimisation of Ĩ to probability
measures µ with compact support and with

∫
Rd x dµ(x) = 0, and for such measures the

two functionals coincide. In what follows, we find it more convenient to work with I rather

than Ĩ and will focus on the formulation (1.1).
We observe that for a constant profile Ψ, which without loss of generality can be assumed

to be Ψ ≡ 1, the potential W reduces to the classical (radially symmetric) Riesz potential.
In this case it was proved in [4] that for s ∈ (max{d− 4, 0}, d) the unique minimiser of I
over P(Rd) is given by the Barenblatt measure

µiso,d(x) = cd (1− |x/rd|2)
s+2−d

2 χrdB(x), (1.3)

where cd > 0 and rd > 0 are explicit constants depending on d, s, and where B = B1(0) is
the unit ball (see also [2]). For 0 < s ≤ d−4, instead, it was proved in [11] that the unique
minimiser is given by the uniform probability measure on a sphere whose radius depends
on d. Note that in some of these previous works the equivalent minimisation problem for
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Ĩ was considered. The values of the constants cd and rd can be extracted from [11]. For a
related result in dimension d = 1, see [10].

In the present paper we are interested in the anisotropic case where Ψ is not necessarily

constant. We show that for dimension d = 3 and for the full range s ∈ (0, 3), if Ŵ > 0,
the unique minimiser µmin of the energy I over P(Rd) is supported on a fully-dimensional
ellipsoid E ⊂ R3, and its density is given by a Barenblatt-type profile. Roughly speaking,

as long as Ŵ > 0, the effect of any anisotropic potential of the form (1.2) on the minimiser
is simply that of ‘deforming’ the support of (1.3) from a ball into a suitable ellipsoid. Our
proof extends to higher dimensions for a partial range of Riesz homogeneities. To be
precise, our main result reads as follows.

Theorem 1.1. Let s ∈ [d − 3, d) ∩ (0, 5], and let W be as in (1.2) with Ψ even. Assume

that W and Ŵ are strictly positive and continuous on Sd−1. Then there exists a unique
minimiser µ0 of I over P(Rd). It is given by the push-forward of the measure (1.3) through
the function x 7→ RD(a/rd)x, for some rotation R ∈ SO(d) and some a ∈ Rd with
ai = a · ei > 0. More precisely,

µ0(x) =
cd∏d

j=1(aj/rd)

(
1−

∣∣D( 1
a

)
RTx

∣∣2) s+2−d
2

χE(x), (1.4)

where E is the ellipsoid RD(a)B, and cd and rd are the constants from (1.3).

In the statement above D(a) denotes the diagonal matrix such that (D(a))ii = ai, and
D
(

1
a

)
denotes the diagonal matrix such that (D( 1

a))ii = 1/ai.
In the two-dimensional case the result of Theorem 1.1 has been proved by Carrillo

and Shu in [5]. They also considered the three-dimensional case in [6], but only under
additional symmetry assumptions on the potential, which essentially made the problem
two-dimensional. In [17] a new strategy of proof was developed, which allowed to success-
fully remove the additional assumptions in [6] in the special case of Coulomb singularity
s = d−2 in three dimensions (corresponding to s = 1). In [18] this method was adapted to
the case of logarithmic interactions in two dimensions, which correspond loosely speaking
to ‘s = 0’.

In the paper [6] Carrillo and Shu raised the question of whether the methods of [17, 18]
could be extended, in the three-dimensional case, to the full range s ∈ (0, 3) of homogeneity,
beyond the Coulomb singularity s = 1. In this paper we give a positive answer to that
question, and characterise the minimisers in the full range s ∈ (0, 3), without the additional
symmetry assumptions on Ψ required in [6]. Moreover, since the range [d − 3, d) ∩ (0, 5]
considered here includes the Coulomb exponent s = d−2 for 3 ≤ d ≤ 7, our result extends
those of [17, 18] to dimension d ≤ 7.

The strategy of proof of our main result consists in showing that there exist a rotation
R ∈ SO(d) and a diagonal matrix D(a) with positive entries such that the candidate
µmin, that is, the push-forward of µiso,d through the function x 7→ RD(a/rd)x, satisfies the
Euler-Lagrange conditions

(W ∗ µmin) (x) +
1

2
|x|2 = C for x ∈ E, (1.5)

(W ∗ µmin) (x) +
1

2
|x|2 ≥ C for x ∈ Rd, (1.6)

where E is the ellipsoid RD(a)B. To this aim we follow the methodology developed in
our paper [17] which requires, as a first step, to write the potential W ∗ µmin in Fourier
space. This computation is considerably more involved than in the Coulomb case, since the
Fourier transform of µmin involves Bessel and hypergeometric functions, and only works
for s ∈ (d − 4, d) ∩ (0, 5]. In the isotropic case, similar computations can be found in [1],
for the derivation of self-similar profiles of the nonlocal porous medium equation, and in
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[11], for the characterisation of minimisers of attractive-repulsive energies, again in the
isotropic framework. In the anisotropic case, an additional difficulty arises in the sub-
range s ∈ [3, 5], where one has to resort to a regularisation argument, and hence obtain a
Fourier representation only for a regularised potential. This weaker representation result
is however sufficient for our analysis. Once (1.5)–(1.6) are written in Fourier terms, we
proceed as follows.

For the proof of (1.5) we introduce a family Wt of potentials interpolating between the
isotropic case (corresponding to t = 0) and W in (1.2) (corresponding to t = 1), with

Ŵt > 0 for every t ∈ [0, 1]. We then resort to a continuity argument on the parameter t to
show that the set T ⊂ [0, 1] where equation (1.5), with W replaced by Wt, is satisfied is
nonempty, open and closed in [0, 1]. This implies that T = [0, 1] and concludes the proof
of (1.5). It is at this step of the proof that the restriction s ≥ d − 3 becomes necessary.
It is not clear whether this is a technical condition due to the argument of proof or in
fact the existence of an ellipsoid satisfying (1.5) may fail for s ∈ (d − 4, d − 3). Finally
we show that whenever a measure of the form (1.3) is a solution of (1.5), it also satisfies
(1.6). While in [17] this step is immediate, care is needed in the present case, due to the
extra parameter s and to the more complicated nature of the candidate minimiser.

In Section 4 we briefly discuss the degenerate case Ŵ ≥ 0, and show that the energy
minimiser may be supported on a lower-dimensional set. In particular, in dimension d = 3,
we have the following cases, depending on the strength of the singularity of the potential
at the origin. For s ∈ (0, 1) the minimiser must be supported on a set of dimension at
least one, and the support may be a segment, an ellipse, or an ellipsoid. For s ∈ [1, 2) the
dimension of the support must be at least 2, so the segment is excluded. For s ∈ [2, 3) the
minimiser is fully dimensional. Explicit examples, see, e.g., [17, Example 3.4] for the case
of Coulomb interactions s = 1, show that the loss of dimensionality of the minimiser can
in fact occur.

2. Preliminaries

In this section we collect some definitions and preliminary results that will be needed
in the paper. We also establish some notation.

2.1. Existence and uniqueness of a minimiser. In Proposition 2.1 we prove exis-
tence and uniqueness of a minimiser of the energy I, and show that it is characterised by
the Euler-Lagrange conditions for I. This is the first step of the proof of Theorem 1.1,
and is quite straightforward. Section 3 will be devoted to the proof of the main part of
Theorem 1.1, where we show that there exists an ellipsoid E such that the corresponding
measure (1.4) is the unique minimiser of the energy.

Proposition 2.1. Let s ∈ (0, d), and let W be as in (1.2) with Ψ even, strictly positive on

Sd−1, and such that W and Ŵ are continuous on Sd−1. Assume that Ŵ ≥ 0 on Sd−1. Then
there exists a unique minimiser µ0 of I over P(Rd). It is characterised by the following
Euler-Lagrange conditions:

(W ∗ µ0) (x) +
1

2
|x|2 = C for µ0-a.e. x ∈ suppµ0, (2.1)

(W ∗ µ0) (x) +
1

2
|x|2 ≥ C for x ∈ Rd \N with Capd−s(N) = 0, (2.2)

where suppµ0 stands for the support of µ0, C is a constant, and Capd−s is the (d−s)-Riesz
capacity defined as in [14].

Proof. The proof is by now standard. Indeed, the positivity of Ψ implies that the energy I
is bounded from below by the quadratic confinement, and this guarantees that minimising
sequences are tight. Existence of the minimisers then follows by the lower-semicontinuity
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of the energy. By the lower bound of the energy in terms of the confinement it also follows
that any minimiser has a compact support.

Uniqueness of the minimiser is a consequence of the strict convexity of the energy on
the class of measures with compact support and finite interaction energy. This, in its turn,
follows by the assumption that the Fourier transform of the potential is non-negative on the
sphere. For further details see, e.g., [3, Proposition 2.1]. Note that the first inequality in [3,
eq. (2.11)] follows by superharmonicity in the case s ∈ (0, d− 2], whereas for s ∈ (d− 2, d)
it can be obtained as in the proof of [14, Theorem 1.11].

The characterisation of the minimiser in terms of the Euler-Lagrange conditions is due
to the strict convexity of the energy. �

2.2. Properties of the Gamma function. The Gamma function Γ(z) :=
∫∞

0 e−ttz−1 dt
is defined and analytic in the region <(z) > 0. We collect below a number of useful
properties:

(1) Γ(n) = (n− 1)! for n ∈ N;

(2) Γ(1 + z) = z Γ(z) for every z ∈ C, z 6= 0,−1,−2, . . .;

(3) Γ(1− z)Γ(z) = π
sin(πz) for every z ∈ C \ Z (Euler reflection formula);

(4) Γ(z)Γ(z + 1
2) = 21−2z√π Γ(2z) for every z ∈ C, z 6= 0,−1

2 ,−1,−3
2 , . . . (Legendre

duplication formula).

For more details we refer to [15, Sections 1.1 and 1.2].

2.3. The Fourier transform. The definition of the Fourier transform we adopt in this
paper is

f̂(ξ) =
1

(2π)d/2

∫
Rd

f(x)e−iξ·x dx, ξ ∈ Rd,

for functions f in the Schwartz space S. Correspondingly, the inverse Fourier transform is
defined as

f(x) =
1

(2π)d/2

∫
Rd

f̂(ξ)eiξ·x dξ, x ∈ Rd.

2.4. The Bessel function of first kind. The Bessel function of the first kind and
arbitrary order ν ≥ 0 is defined, for 0 ≤ x < +∞, in terms of the following series

Jν(x) =
∞∑
n=0

(−1)n(x/2)ν+2n

Γ(n+ 1)Γ(n+ ν + 1)
,

and is a real and bounded function. Since for fixed x ≥ 0 the terms of the series are
analytic functions of the variable ν (by the analyticity of the Gamma function), the uniform
convergence of the series guarantees that Jν is also an analytic function of ν (see, e.g. [15,
Section 5.3]).

The behaviour of Jν for small and large values of x is described by the asymptotic
formulas

Jν(x) ∼ xν

2νΓ(1 + ν)
, as x→ 0+,

Jν(x) ∼
√

2

πx
cos

(
x− 1

2
νπ − 1

4
π

)
, as x→ +∞.

For more details we refer to [15, Section 5.16].
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2.5. The hypergeometric function. By the hypergeometric series is meant the power
series

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where z ∈ C, a, b, c ∈ C, with c /∈ {0,−1,−2, . . . }, and the symbol (γ)n denotes the
quantity

(γ)0 = 1, (γ)n = γ(γ + 1) · · · · · (γ + n− 1), n = 1, 2, . . . .

We note that for γ 6= 0,−1,−2, . . . , we have (γ)n = Γ(γ + n)/Γ(γ). In the special case
where either a or b is a non-positive integer, the series has a finite number of terms, and
its sum reduces to a polynomial in z. In particular, if b = −m, with m a non-negative
integer, then

∞∑
n=0

(a)n(−m)n
(c)n

zn

n!
=

m∑
n=0

(−1)n
(
m

n

)
(a)n
(c)n

zn. (2.3)

In the general case the series converges for |z| < 1, the sum of the series is denoted by

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, |z| < 1, (2.4)

and is called the hypergeometric function. For fixed z ∈ C with |z| < 1, 2F1 is an entire
function of a and b and a meromorphic function of c, with simple poles at the non-positive
integers.

One can see easily that 2F1 is invariant under the permutation of its first two arguments,
and that

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z). (2.5)

It is easy to deduce from (2.5) that

d

dz

(
z−a2F1(a, b; c; z−1)

)
= −az−a−1

2F1(a+ 1, b; c; z−1). (2.6)

If the parameters satisfy the condition −1 < <(c−a−b) ≤ 0, then the series converges for
|z| ≤ 1, except at the point z = 1. If <(c− a− b) > 0, the series extends continuously also
at z = 1. If, for simplicity, we assume <(a) > 0, <(b) > 0, <(c− a) > 0 and <(c− b) > 0,
then we have the following three regimes for the behaviour of the series at z = 1. When
<(c− a− b) > 0,

lim
z→1−

2F1(a, b; c; z) = 2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (2.7)

If c = a+ b and c 6∈ Z,

lim
z→1−

2F1(a, b; a+ b; z)

− log(1− z)
=

Γ(a+ b)

Γ(a)Γ(b)
. (2.8)

Finally, if <(c− a− b) < 0,

lim
z→1−

2F1(a, b; c; z)

(1− z)c−a−b
=

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

. (2.9)

For more details we refer to [15, Chapter 9] and [8, Chapter 2].

We recall the following result from [11].

Lemma 2.2. Let a ≥ 0, b ∈ R, and c > 0. If c ≥ max{a, b}, then the function

[1,∞) 3 z 7→ z−a2F1(a, b; c; z−1)

is non-negative. If c ≥ max{a+ 1, b}, it is non-increasing and, if c ≥ max{a+ 2, b}, it is
convex.
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Proof. The first assertion follows from [11, Lemma 5]. The second assertion is a con-
sequence of the same lemma together with (2.6), and the third one follows from [11,
Corollary 6]. �

2.6. A formula relating Bessel and hypergeometric functions. In this section we
prove the following identity. For α ∈ R, α 6= ±1 and for 0 < s < 5 we have∫ ∞

0

J s
2

+1(t)

t2−
s
2

cos(tα) dt = 2
s
2
−2 Γ( s2)

(
(1− sα2)χ(−1,1)(α)

+ 2−s+1 Γ(s)

Γ( s2 + 2)Γ( s2)
cos
(πs

2

)
|α|−s2F1

(
s

2
,
s+ 1

2
;
s

2
+ 2;α−2

)
χ[−1,1]c(α)

)
.

(2.10)

Identity (2.10) means that, if the function

Is(t) :=
J s

2
+1(t)

t2−
s
2

, t ∈ (0,∞), (2.11)

is extended evenly on R, then its distributional Fourier transform, up to a multiplicative
constant, is the right-hand side of (2.10) for 0 < s < 5.

Before proving (2.10) we introduce the following shorthand notation that will be used
throughout the paper:

f̃s(α) := 1− sα2, (2.12)

κs := 2−s+1 Γ(s)

Γ
(
s
2 + 2

)
Γ
(
s
2

) cos
(πs

2

)
, (2.13)

fs(α) := |α|−s2F1

(
s

2
,
s+ 1

2
;
s

2
+ 2;α−2

)
, |α| > 1, (2.14)

h(α, s) := 2
s
2
−2 Γ( s2)

(
f̃s(α)χ(−1,1)(α) + κsfs(α)χ[−1,1]c(α)

)
. (2.15)

In terms of the notation above, our claim can be rephrased as

Îs(α) =

√
2

π
h(α, s). (2.16)

Note that h(·, s) ∈ L1
loc(R) for 0 < s < 1, whereas h(·, s) ∈ L1(R) for 1 ≤ s < 5. Indeed,

integrability close to α = ±1 follows by (2.7) for 0 < s < 3, by (2.8) for s = 3, and by
(2.9) for 3 < s < 5. Integrability at infinity holds for any s ≥ 1 (note that h(α, 1) = 0 for
|α| > 1, since κ1 = 0).

For the derivation of (2.16), we first recall that by [9, formula (13) on page 45]∫ ∞
0

t2µ−1J2ν(t) cos(tα) dt =
22µ−1 Γ(µ+ ν)

Γ(1 + ν − µ)
2F1

(
ν + µ, µ− ν; 1

2 ;α2
)
χ(−1,1)(α)

+
Γ(2ν + 2µ)

22νΓ(2ν + 1)
cos ((ν + µ)π) |α|−2ν−2µ

2F1

(
ν + µ, ν + µ+ 1

2 ; 2ν + 1;α−2
)
χ[−1,1]c(α),

(2.17)

with parameters µ, ν ∈ R satisfying the requirement −ν < µ < 3
4 . Applying (2.17) with

µ = s
4 −

1
2 and ν = s

4 + 1
2 , and by (2.11), we obtain the identity∫ ∞

0
Is(t) cos(tα) dt = 2

s
2
−2 Γ( s2) 2F1

(
s

2
,−1;

1

2
;α2

)
χ(−1,1)(α)

+ 2−
s
2
−1 Γ(s)

Γ( s2 + 2)
cos
(πs

2

)
|α|−s2F1

(
s

2
,
s+ 1

2
;
s

2
+ 2;α−2

)
χ[−1,1]c(α), (2.18)

where the condition −ν < µ < 3
4 results into 0 < s < 5.
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Note that the first term in the right-hand side of (2.18) can be written more explicitly,
since by applying (2.3)–(2.4) with b = −1 we have that

2F1

(
s

2
,−1;

1

2
;α2

)
= 1− (s/2)1

(1/2)1
α2 = 1− sα2.

This proves (2.16) for 0 < s < 3. Indeed, in this range Is ∈ L1(0,∞) and hence the right-
hand side of (2.18) is the Fourier transform of Is, up to a multiplicative constant. For
3 ≤ s < 5 the function Is is not in L1(0,∞) and (2.18) has to be (in principle) interpreted
as a pointwise identity, where the integral in the left-hand side is an improper integral.

To prove (2.16) for 3 ≤ s < 5, we need to show that for any even function ϕ in the
Schwarz space S we have∫

R
Is(t) ϕ̂(t) dt =

√
2

π

∫
R
h(α, s)ϕ(α) dα,

which, more explicitly, is∫
R
Is(t)

∫
R
ϕ(α) e−itα dα dt = 2

∫
R
h(α, s)ϕ(α) dα.

By the evenness of h in α, and of Is and ϕ, this is equivalent to∫ ∞
0

J s
2

+1(t)

t2−
s
2

∫ ∞
0

ϕ(α) cos(tα) dα dt =

∫ ∞
0

h(α, s)ϕ(α) dα. (2.19)

Now the above identity holds for 0 < s < 3 by Fubini’s Theorem. Moreover, both sides of
the identity are analytic functions of s, due to the analyticity of the Gamma function, the
Bessel function, and the hypergeometric function. Hence the two sides of the identity are
equal for the whole interval 0 < s < 5, which gives (2.19). For s ≥ 5 analyticity breaks
down because, as already pointed out, h(α, s) is not integrable in α close to α = ±1.

For s = 5, we can still compute the Fourier transform of I5, evenly extended on R. We
have that

Î5(α) =
3

2
(1− 5α2)χ(−1,1)(α) + δ−1(α) + δ1(α). (2.20)

To prove (2.20), we first use [9, formula (13) on page 45] with µ = −1/4 and ν = 7/4 and
obtain ∫ ∞

0
J 7

2
(t) t−

3
2 cos(tα) dt =

2−3/2 Γ(3/2)

Γ(3)
2F1

(
3
2 ,−2; 1

2 ;α2
)
χ(−1,1)(α)

=

√
π

2

1

23
(1− 6α2 + 5α4)χ(−1,1)(α).

Set Ĩ5(t) = J 7
2
(t) t−

3
2 . Since Ĩ5, evenly extended on R, is integrable on R, the above formula

yields ̂̃I5(α) =
1

23
(1− 3α2 + 5α4)χ(−1,1)(α).

The equality I5(t) = t2Ĩ5(t) implies that, in the distributional sense,

Î5(α) = − d2

dα2
̂̃I5(α),

from which (2.20) follows.
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2.7. Ellipses and ellipsoids. For any a ∈ Rd we write ai = a · ei, and D(a) stands for
the d× d diagonal matrix such that (D(a))ii = ai. Given a ∈ Rd with ai > 0, we let

E0(a) :=

{
x ∈ Rd :

d∑
i=1

x2
i

a2
i

≤ 1

}
(2.21)

denote the compact set enclosed by the ellipsoid with semi-axes of length ai on the coor-
dinate axes. Note that

E0(a) = D(a)B,

where B denotes the open unit ball B1(0) ⊂ Rd. A general ellipsoid E ⊂ Rd centred at
the origin can be obtained by rotating E0(a) in (2.21) with respect to the coordinate axes,
namely as

E = RE0(a) = RD(a)B, (2.22)

for some rotation R ∈ SO(d).

2.8. The Fourier transform of the candidate minimiser. In the isotropic case where
Ψ = 1 in (1.2), for d ≥ 2 and s ∈ (max{d − 4, 0}, d), the minimiser of the energy I over
P(Rd) is the probability measure µiso,d defined as

µiso,d(x) := cd(1− |x/rd|2)
s+2−d

2 χrdB(x), (2.23)

where cd > 0 and rd > 0 are explicit constants depending on d and s, and where we
identified the measure with its density µiso,d ∈ L1(Rd); see [11]. Note that the super-

Coulombic range s ≥ d − 2 leads to a non-negative power s+2−d
2 ≥ 0 in (2.23), and

hence to a bounded density. The density of the measure is instead unbounded in the sub-
Coulombic range s < d − 2. In particular, for d = 2 the power of the density in (2.23) is
always positive (and hence the density is bounded).

The Fourier transform of µiso,d is well known (see, for example, [13, Appendix B.5]).
The restriction on the power of the quadratic function imposed in [13] translates into
the condition s > d − 4 for (2.23). Adjusting the constants, due to the slightly different
definition of the Fourier transform adopted in [13], we obtain for s > d− 4

µ̂iso,d(ξ) = cs,d
J s

2
+1(rd|ξ|)

r
s
2

+1

d |ξ|
s
2

+1
,

where we set

cs,d := cdr
d
d2

s+2−d
2 Γ( s−d2 + 2).

Let E ⊂ Rd be an ellipsoid of the form (2.22). We now define the (absolutely continuous)
probability measure µE ∈ P(Rd) as

µE(x) =
cd∏d

j=1(aj/rd)

(
1−

∣∣D( 1
a

)
RTx

∣∣2) s+2−d
2

χE(x), (2.24)

which is the push-forward of the measure (2.23) through the function x 7→ RD(a/rd)x.
Here D

(
1
a

)
is the diagonal matrix such that (D( 1

a))ii = 1/ai.
Then it is easy to see that for s > d− 4

µ̂E(ξ) = µ̂iso,d(D(a/rd)R
T ξ) = cs,d

J s
2

+1(|D(a)RT ξ|)
|D(a)RT ξ|

s
2

+1
. (2.25)
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2.9. The Fourier representation of W ∗ µE for s ∈ (d − 4, d) ∩ (0, 5]. Let E be an
ellipsoid of the form (2.22), and let W be as in (1.2). Note that in this section we do not
require any sign condition on Ψ.

First of all, since the kernel W is homogeneous of degree −s, its Fourier transform Ŵ
is homogeneous of degree −(d − s). Moreover, the assumption 0 < s < d provides local
integrability of the kernel W . To compute the Fourier transform of W , it is convenient to
write the profile Ψ ∈ L2(Sd−1) in terms of spherical harmonics, namely

Ψ =

∞∑
n=0

ψn,

where each ψn is a spherical harmonic of order n on Sd−1 (in particular, ψ0 is just a
constant). Then

W =
∞∑
n=0

Wn, where Wn(x) =
1

|x|s
ψn

(
x

|x|

)
.

By using [20, Chapter V, Lemma 2] for n = 0 and [20, Chapter III, Theorem 5] for n ≥ 1,
we infer that, for suitable constants bn,s,d,

Ŵ (ξ) =
1

|ξ|d−s
∞∑
n=0

bn,s,d ψn(ξ) =
1

|ξ|d−s
Ŵ

(
ξ

|ξ|

)
, s ∈ (0, d), (2.26)

provided the series at the right-hand side converges, for instance in L2(Sd−1), to a function

which, with a little abuse of notation, we denote Ψ̂(ξ/|ξ|) := Ŵ (ξ/|ξ|). We recall that in

our main theorem, Theorem 1.1, such a function Ψ̂ is assumed to be continuous on Sd−1.

Since Ψ is even, we infer that also Ψ̂ is even. Finally, we set bs,d := b0,s,d and we note that
it is a positive constant.

Our goal is to derive a Fourier representation formula for W ∗ µE . To do so, we now
proceed differently for the three cases s ∈ (d − 4, d) ∩ (0, 3), s ∈ (d − 4, d) ∩ [3, 5) and
s ∈ (d− 4, d) ∩ {5}.

2.9.1. The case of s ∈ (d− 4, d)∩ (0, 3). First of all, by (2.25) and (2.26) we have that for
s ∈ (d− 4, d) ∩ (0, 3)

Ŵ ∗ µE(ξ) = (2π)d/2Ŵ (ξ)µ̂E(ξ)

= (2π)d/2cs,d
J s

2
+1(|D(a)RT ξ|)
|D(a)RT ξ|

s
2

+1

1

|ξ|d−s
Ψ̂(ξ/|ξ|) ∈ L1(Rd).

Integrability in Rd of the function at the right-hand side, for 0 < s < 3, follows immediately
from the asymptotic formulas for Bessel functions in Section 2.4.

Hence, for s ∈ (d− 4, d) ∩ (0, 3) the inversion formula holds, that is,

(W ∗ µE)(x) =

∫
Rd

Ŵ (ξ)µ̂E(ξ)eix·ξ dξ =

∫
Rd

Ŵ (ξ)µ̂E(ξ) cos(x · ξ) dξ (2.27)

for every x ∈ Rd. Writing this integral in spherical coordinates, we obtain

(W ∗ µE)(x)

= cs,d

∫
Sd−1

∫ ∞
0

J s
2

+1(ρ|D(a)RTω|)
ρ2− s

2

Ψ̂(ω)

|D(a)RTω|
s
2

+1
cos(x · ρω) dρ dHd−1(ω).

Setting

t := ρ|D(a)RTω| and α(x, ω) :=
x · ω

|D(a)RTω|
, (2.28)
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we have for every x ∈ Rd

(W ∗ µE)(x) = cs,d

∫
Sd−1

(∫ ∞
0

J s
2

+1(t)

t2−
s
2

cos(tα(x, ω)) dt

)
Ψ̂(ω)

|D(a)RTω|s
dHd−1(ω).

By using formula (2.10) for the radial integral, and by setting c̃s,d := cs,d 2
s
2
−2 Γ( s2) > 0

and

gs(ω) := c̃s,d
Ψ̂(ω)

|D(a)RTω|s
, (2.29)

we have that for every x ∈ Rd, using (2.12)–(2.14),

(W ∗ µE)(x) =

∫
Sd−1

gs(ω)

(
f̃s
(
α(x, ω)

)
χ(−1,1)

(
α(x, ω)

)
+ κsfs

(
α(x, ω)

)
χ[−1,1]c

(
α(x, ω)

))
dHd−1(ω). (2.30)

This is the representation we were looking for.
Thanks to (2.29)–(2.30) we can show that W ∗ µE is a quadratic polynomial in E.

Indeed, for x in the interior of E one has that |α(x, ω)| < 1 for any ω ∈ Sd−1. Hence, if x
is in the interior of E, we have that

(W ∗ µE)(x) = c̃s,d

∫
Sd−1

Ψ̂(ω)

|D(a)RTω|s
(1− sα(x, ω)2) dHd−1(ω), (2.31)

which is quadratic in x, up to an additive constant.

2.9.2. The case of s ∈ (d − 4, d) ∩ [3, 5). Here we cannot apply the inversion formula

(2.27) directly, since Ŵ ∗ µE /∈ L1(Rd), and to deal with the non-integrable blow-up of
the potential at infinity we proceed by regularisation. To this aim, let ϕ ∈ C∞c (−1, 1) be
even, non-negative, with

∫
R ϕ = 1. Let ϕ̂ be its Fourier transform in R and let us consider

the function ϕ̃(ξ) = ϕ̂(|ξ|) for any ξ ∈ Rd. An application of the Paley-Wiener Theorem
(see, e.g., [19, Theorem 7.22]) provides a radially symmetric function Φ ∈ C∞c (B1(0))

in Rd such that its Fourier transform in Rd coincides with (2π)(1−d)/2ϕ̃, that is, Φ̂(ξ) =

(2π)(1−d)/2ϕ̂(|ξ|) for any ξ ∈ Rd. Since we have that∫
Rd

Φ(x) dx = (2π)d/2Φ̂(0) =
√

2πϕ̂(0) =

∫
R
ϕ(t) dt,

we conclude that
∫
Rd Φ = 1 and Φ̂(0) = (2π)−

d
2 .

Let λ > 0, and set Φλ(x) := λd Φ(λx); note that Φ̂λ(ξ) = Φ̂
( ξ
λ

)
. The regularised version

of (2.27) is then

(W ∗ µE ∗ Φλ)(x) = (2π)
d
2

∫
Rd

Ŵ (ξ)µ̂E(ξ) Φ̂
( ξ
λ

)
cos(x · ξ) dξ,

which is valid for every x ∈ Rd. Writing this integral in spherical coordinates, using (2.28)
and (2.29), and setting τ := λ|D(a)RTω|, we obtain

(W ∗ µE ∗ Φλ)(x)

=
(2π)

d
2

2
s
2
−2Γ

(
s
2

) ∫
Sd−1

(∫ ∞
0

J s
2

+1(t)

t2−
s
2

Φ̂
( tω
τ

)
cos(tα(x, ω)) dt

)
gs(ω) dHd−1(ω). (2.32)
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By construction Φ̂
(
tω
τ

)
= (2π)(1−d)/2ϕ̂

(
t
τ

)
, thus the previous equation becomes

(W ∗ µE ∗ Φλ)(x)

=

√
2π

2
s
2
−2Γ

(
s
2

) ∫
Sd−1

(∫ ∞
0

J s
2

+1(t)

t2−
s
2

ϕ̂
( t
τ

)
cos(tα(x, ω)) dt

)
gs(ω) dHd−1(ω). (2.33)

We call ϕτ (t) := τϕ(τt) and we note that ϕ̂τ (t) = ϕ̂( tτ ). By (2.16) we have that

Is =
√

2
π ĥ(·, s),

where we recall that Is is as in (2.11) and h as in (2.15). Since h(·, s) ∈ L1(R) for any

1 ≤ s < 5, the convolution h(·, s) ∗ ϕτ is well defined; moreover, ĥ(·, s)ϕ̂τ is even and

coincides with 1√
2π

( ̂h(·, s) ∗ ϕτ ). Therefore, we conclude that∫ ∞
0

J s
2

+1(t)

t2−
s
2

ϕ̂
( t
τ

)
cos(tα(x, ω)) dt =

1√
2π

(
h(·, s) ∗ ϕτ

)
(α(x, ω)). (2.34)

We now use identity (2.34) to rewrite (2.33) as

(W ∗ µE ∗ Φλ)(x)

=
1

2
s
2
−2Γ

(
s
2

) ∫
Sd−1

(
h(·, s) ∗ ϕτ

)
(α(x, ω)) gs(ω) dHd−1(ω)

=

∫
Sd−1

(
ϕτ ∗

(
f̃sχ(−1,1) + κsfsχ[−1,1]c

))
(α(x, ω)) gs(ω) dHd−1(ω), (2.35)

where f̃s, κs, and fs are as in (2.12)–(2.14).
The representation formula (2.35) for the regularised potential, for s ∈ (d−4, d)∩ [3, 5),

is the analogue of (2.30) for the range s ∈ (d−4, d)∩(0, 3). Similarly, for s ∈ (d−4, d)∩[3, 5)
one can prove a weaker version of (2.31), which we show below.

Let 0 < δ < 1; we claim that there exists λ(δ) > 0 such that if x ∈ δE and λ > λ(δ),
then

(W ∗ µE ∗ Φλ)(x) =

∫
Sd−1

gs(ω)

(
1− s

(
α(x, ω)2 +

1

τ2

∫
R
ϕ(t)t2dt

))
dHd−1(ω), (2.36)

where we recall that τ := λ|D(a)RTω|. Clearly (2.36) implies that, if the regularisation
parameter λ is sufficiently large, then the regularised potential W ∗µE∗Φλ is still quadratic,
but in a smaller ellipsoid than E.

We set λ(δ) := ((1− δ) minj aj))
−1, and let λ > λ(δ). By the definition of τ this implies

that τ > 1
1−δ , since |D(a)RTω| ≥ minj aj .

Let now x ∈ δE. Then by (2.28), and since E = RD(a)B, we have

|α(x, ω)| = |x · ω|
|D(a)RTω|

=
|D( 1

a)RTx ·D(a)RTω|
|D(a)RTω|

≤ |D( 1
a)RTx| ≤ δ < 1. (2.37)

Moreover, if |α| ≤ δ, then (α− 1
τ , α+ 1

τ ) ⊂ (−1, 1), hence since ϕτ ∈ C∞c (− 1
τ ,

1
τ ) we have

(ϕτ ∗ fsχ[−1,1]c)(α) =

∫
[−1,1]c

ϕτ (α− y)fs(y)dy = 0. (2.38)

From (2.35) and (2.38) it follows that, if x ∈ δE and λ > λ(δ), then

(W ∗ µE ∗ Φλ)(x) =

∫
Sd−1

(
ϕτ ∗ f̃s

)
(α(x, ω)) gs(ω) dHd−1(ω). (2.39)
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We make the expression above more explicit by observing that, since ϕ is even and∫
R ϕ(t)dt = 1, we have that ϕτ ∗ 1 = 1 and∫

R
ϕτ (y)(α(x, ω)− y)2dy = α2(x, ω) +

1

τ2

∫
R
ϕ(t)t2 dt.

Then for every x ∈ Rd(
ϕr ∗ f̃s

)
(α(x, ω)) = 1− s

(
α2(x, ω) +

1

τ2

∫
R
ϕ(t)t2 dt

)
, (2.40)

which by (2.39) implies that, if x ∈ δE and λ > λ(δ), (2.36) is satisfied.

2.9.3. The case s ∈ (d− 4, d) ∩ {5}. Here one can proceed as in Section 2.9.2, and derive
the expression of the regularised potential

(W ∗ µE ∗ Φλ)(x)

=

√
2π√

2Γ
(

5
2

) ∫
Sd−1

(∫ ∞
0

J 7
2
(t) t

1
2 ϕ̂
( t
τ

)
cos(tα(x, ω)) dt

)
g5(ω) dHd−1(ω) (2.41)

for x ∈ Rd, where λ > 0, τ = λ|D(a)RTω|, and g5 is defined as in (2.29), with s = 5.

Following closely the strategy there, since Î5 is a tempered distribution, one can obtain,
in analogy with (2.34), the formula∫ ∞

0
J 7

2
(t) t

1
2 ϕ̂
( t
τ

)
cos(tα(x, ω)) dt =

1

2

(
Î5 ∗ ϕτ

)
(α(x, ω)), (2.42)

with Î5 given by (2.20). From (2.41) and (2.42) one can then derive the expression

(W ∗ µE ∗ Φλ)(x)

=

∫
Sd−1

(
ϕτ ∗

(
f̃5χ(−1,1) +

2

3
δ−1 +

2

3
δ1

))
(α(x, ω))g5(ω) dHd−1(ω) (2.43)

for x ∈ Rd, which is the analogue of (2.35). As in Section 2.9.2 we obtain that, for

0 < δ < 1, if x ∈ δE and λ > λ(δ) := ((1− δ) minj aj))
−1, then

(W ∗ µE ∗ Φλ)(x) =

∫
Sd−1

g5(ω)

(
1− 5

(
α(x, ω)2 +

1

τ2

∫
R
ϕ(t)t2dt

))
dHd−1(ω). (2.44)

Note that (2.44) is exactly the same as (2.36) for s = 5, and implies that for λ large enough
the regularised potential W ∗ µE ∗ Φλ is quadratic in δE.

3. Proof of the main result

In this section we prove the core of Theorem 1.1, namely the characterisation of the
minimiser of the energy I, whose existence and uniqueness has been established in Propo-
sition 2.1, in terms of the Barenblatt profile on an ellipsoid.

Let E be an ellipsoid of the form (2.22) and let µE be as in (2.24). For any x ∈ Rd we
define the potential

P (x) := (W ∗ µE)(x) +
|x|2

2
. (3.1)

We need to show that there exists an ellipsoid E such that the corresponding function P
defined as in (3.1) satisfies (2.1) and (2.2). We present the proof in subsections 3.1 and
3.2, devoted to the first and the second Euler-Lagrange condition, respectively.
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3.1. The first Euler-Lagrange condition (2.1). We emphasise that in this subsection

we will make use of the strict positivity condition Ŵ > 0 on Sd−1.
We proceed differently for s ∈ [d − 3, d) ∩ (0, 3) and s ∈ [d − 3, d) ∩ [3, 5], since in the

latter case we only have a representation of the regularised potential, and hence more care
will be needed.

3.1.1. The first Euler-Lagrange condition for s ∈ [d− 3, d) ∩ (0, 3). By the regularity and
evenness of the potential P in (3.1), proving condition (2.1) is equivalent to showing that
the Hessian of P vanishes on E. By (2.28) and (2.31) this is equivalent to showing that
for i, j = 1, . . . , d

γs,d

∫
Sd−1

ωiωjΨ̂(ω)

|D(a)RTω|s+2
dHd−1(ω) = δij , (3.2)

δij being the Kronecker delta and γs,d := 2s c̃s,d.

We need to show that there exist a = (a1, . . . , ad) ∈ Rd, with ai > 0, and R ∈ SO(d)
such that (3.2) is satisfied.

We note that

|D(a)RTω| =
(
RD(a2)RTω · ω

)1/2
=: (Mω · ω)1/2,

where M ∈M+, and M+ denotes the space of symmetric and positive definite matrices in

Rd×d. By symmetry, we can consider M+ as an open subset of R
d(d+1)

2 . Then solving (3.2)
is equivalent to finding M ∈M+ such that

γs,d

∫
Sd−1

ωiωjΨ̂(ω)

(Mω · ω)
s
2

+1
dHd−1(ω) = δij . (3.3)

We prove (3.3) via a continuity argument. Let t ∈ [0, 1]; we define the potential

Wt(x) :=
1

|x|s

(
tΨ

(
x

|x|

)
+

1− t
bs,d

)
, x ∈ Rd, x 6= 0,

with bs,d := b0,s,d > 0 defined in (2.26), namely the Fourier transform of 1
|x|s is bs,d

1
|ξ|d−s .

By (2.26) we have

Ŵt(ξ) =
1

|ξ|d−s
Ψ̂t(ξ/|ξ|) :=

1

|ξ|d−s
(
tΨ̂(ξ/|ξ|) + 1− t

)
, (3.4)

hence the assumption Ŵ > 0 on Sd−1 implies that Ŵt > 0 on Sd−1 for all t ∈ [0, 1]. Now,

we define the function L : [0, 1]×M+ → R
d(d+1)

2 as

Lij(t,M) :=γs,d

∫
Sd−1

2ωiωjΨ̂t(ω)

(Mω · ω)
s
2

+1
dHd−1(ω) for i < j,

Lii(t,M) :=γs,d

∫
Sd−1

ω2
i Ψ̂t(ω)

(Mω · ω)
s
2

+1
dHd−1(ω)− 1,

where we have used that, by symmetry, we can restrict to i ≤ j. For fixed t consider the
equation

L(t,M) = 0, (3.5)

in the unknown M ∈M+. Clearly, (3.3) is equivalent to (3.5) for t = 1.
We define a subset T ⊆ [0, 1] as

T := {t ∈ [0, 1] : there exists M ∈M+ such that L(t,M) = 0} .
We observe that T 6= ∅, since 0 ∈ T . Indeed, the case t = 0 corresponds to isotropic Riesz
interactions, for which M is a multiple of the identity.
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Our claim follows if we show that 1 ∈ T . To that aim, we will prove that T is both open
and closed in [0, 1], from which it follows that T = [0, 1].

To show that T is open in [0, 1], let t0 ∈ T ; hence there exists M0 ∈ M+ such that
L(t0,M0) = 0. It is not difficult to prove that, for every M ∈M+ and every t ∈ [0, 1], the
differential of L(t, ·) at M , namely the linear operator

∂L

∂M
(t,M) : R

d(d+1)
2 → R

d(d+1)
2

is invertible. To show this we set B := ∂L
∂M (t,M) and we calculate its matrix entries. For

any i ≤ j and k ≤ l we define

A(i,j),(k,l) := γs,d

(s
2

+ 1
)∫

Sd−1

ωiωjωkωlΨ̂t(ω)

(Mω · ω)
s
2

+2
dHd−1(ω).

We obtain

B(i,j),(k,l) =
∂Lij
∂Mkl

(t,M) =


−A(i,i),(k,k) for i = j and k = l,

−2A(i,i),(k,l) for i = j and k < l,

−2A(i,j),(k,k) for i < j and k = l,

−4A(i,j),(k,l) for i < j and k < l.

The invertibility of B follows from the fact that it is a negative-definite matrix. Indeed, if

N ∈ R
d(d+1)

2 and we identify N as a symmetric matrix in Rd×d, then

BN ·N = −γs,d
(s

2
+ 1
)∫

Sd−1

(Nω · ω)2Ψ̂t(ω)

(Mω · ω)
s
2

+2
dHd−1(ω).

The quantity above is always non-positive and it is equal to 0 if and only if Nω · ω = 0
Hd−1-a.e. on Sd−1, that is, for N = 0.

Since ∂L
∂M (t0,M0) is invertible, by the Implicit Function Theorem there exists an open

set U ⊂ R with t0 ∈ U , and a function

M : U ∩ [0, 1]→M+

such that M(t0) = M0, and L(t,M(t)) = 0 for every t ∈ U ∩ [0, 1]. Hence we have found
an open set U such that t0 ∈ U ∩ [0, 1] ⊂ T . This proves that T is open in [0, 1].

Finally, we prove that T is closed. To this aim, let (tn) ⊂ T be a sequence converging
to t0 ∈ [0, 1]. We claim that t0 ∈ T .

First of all, since (tn) ⊂ T , for every n ∈ N there exists Mn ∈M+ satisfying L(tn,Mn) =
0, namely

aij := γs,d

∫
Sd−1

ωiωjΨ̂tn(ω)

(Mnω · ω)
s
2

+1
dHd−1(ω) = δij . (3.6)

By adding the diagonal terms, we obtain the equality

d∑
i=1

aii = γs,d

∫
Sd−1

Ψ̂tn(ω)

(Mnω · ω)
s
2

+1
dHd−1(ω) = d, (3.7)

whereas we have

d∑
i,j=1

(Mn)ijaij = γs,d

∫
Sd−1

Ψ̂tn(ω)

(Mnω · ω)
s
2

dHd−1(ω) = trMn, (3.8)
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where trM denotes the trace of the matrix M. By Hölder’s inequality and by (3.7) we
deduce that

trMn ≤ γs,d

(∫
Sd−1

Ψ̂tn(ω)

(Mnω · ω)
s
2

+1
dHd−1(ω)

) s
s+2
(∫

Sd−1

Ψ̂tn(ω) dHd−1(ω)
) 2

s+2

≤ γ
2

s+2

s,d d
s

s+2

(∫
Sd−1

Ψ̂tn(ω) dHd−1(ω)
) 2

s+2
. (3.9)

Since Ŵ is by assumption continuous and strictly positive on Sd−1, there exist C0, C1 > 0

such that C0 ≤ Ŵ = Ψ̂ ≤ C1 on Sd−1, hence (3.4) gives the bound

C̃0 := min{C0, 1} ≤ Ψ̂tn = tn Ψ̂ + (1− tn) ≤ max{C1, 1}, (3.10)

for every n ∈ N. Therefore, the right-hand side of (3.9) is uniformly bounded with respect
to n. Recall that if M = (mij) ∈ M+, then |mij | ≤ tr(M), for all i, j. Hence by compact-
ness, up to subsequences Mn →M0, where M0 is a positive semi-definite matrix. We now
show that in fact M0 is positive definite.

By letting n→ +∞ in (3.7), and by Fatou’s Lemma we have

γs,d

∫
Sd−1

Ψ̂t0(ω)

(M0ω · ω)
s
2

+1
dHd−1(ω) ≤ d. (3.11)

Thus,M0 cannot be identically zero. Assume now, for contradiction, thatM0 is not positive
definite. With no loss of generality we can assume that the d-th coordinate vector is an
eigenvector for M0 with eigenvalue 0. Then, for every ω ∈ Sd−1

M0ω · ω ≤ ‖M0‖∞
d−1∑
i=1

ω2
i , ‖M0‖∞ := max

i,j
(M0)ij > 0.

From (3.10) and (3.11) we then obtain the following bound∫
Sd−1

1

(
∑d−1

i=1 ω
2
i )

s
2

+1
dHd−1(ω) ≤ d ‖M0‖

s
2

+1
∞ (C̃0γs,d)

−1,

which leads to a contradiction, since the integral on the left-hand side diverges for s ≥ d−3.
Hence M0 is positive definite. Passing to the limit in (3.6), by the Dominated Convergence
Theorem, we have

γs,d

∫
Sd−1

ωiωjΨ̂t0(ω)

(M0ω · ω)
s
2

+1
dHd−1(ω) = δij .

This proves that t0 ∈ T , and that T is closed, and concludes the proof of the claim.

3.1.2. The first Euler-Lagrange condition for s ∈ [d − 3, d) ∩ [3, 5]. Let 0 < δ < 1. We
claim that there exist a = (a1, . . . , ad) ∈ Rd, with ai > 0, and R ∈ SO(d) such that for

x ∈ δE and λ > λ(δ) := ((1− δ) minj aj))
−1,

Pλ(x) := (W ∗ µE ∗ Φλ)(x) +
|x|2

2
= Cλ (3.12)

for some constant Cλ. Note that if (3.12) is satisfied, then

Cλ = (W ∗ µE ∗ Φλ)(0).

Again, to prove (3.12) we equivalently show that the Hessian of Pλ vanishes on δE, namely
that

γs,d

∫
Sd−1

ωiωjΨ̂(ω)

|D(a)RTω|s+2
dHd−1(ω) = δij , (3.13)

where we have used (2.29), (2.36) and (2.44). Note that (3.13) is independent of the regular-
isation parameter λ and is identical to (3.2). Hence the existence of a and R (independent
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of λ) satisfying (3.12) can be proved as in the previous case s ∈ [d − 3, d) ∩ (0, 3). This
proves (3.12).

By letting δ → 1− in (3.12) (which also implies λ → +∞, by the definition of λ(δ)),
since

(W ∗ µE ∗ Φλ)(x)→ (W ∗ µE)(x), x ∈ E,
and in particular

Cλ = (W ∗ µE ∗ Φλ)(0)→ (W ∗ µE)(0) = C,

it follows that there exist a = (a1, . . . , ad) ∈ Rd, with ai > 0, and R ∈ SO(d) such that
for x ∈ E

(W ∗ µE)(x) +
|x|2

2
= C,

which is exactly (2.1).

3.2. The second Euler-Lagrange condition (2.2). In this subsection we show that the
first Euler-Lagrange condition (2.1) implies the second one (2.2). This part of the proof

only requires Ŵ ≥ 0 on Sd−1, and s > d− 4 rather than s ≥ d− 3, see Remark 3.1.
We proceed differently in the three cases s ∈ [d− 3, d)∩ (0, 3), s ∈ [d− 3, d)∩ [3, 5), and

s ∈ [d− 3, d) ∩ {5}.

3.2.1. The second Euler-Lagrange condition for s ∈ [d − 3, d) ∩ (0, 3). Let E be an ellip-
soid such that the corresponding measure µE satisfies the first Euler-Lagrange condition,
namely let C ∈ R be such that for every x ∈ E

C = P (x) = (W ∗ µE)(x) +
|x|2

2
=

∫
Sd−1

gs(ω)(1− sα2(x, ω)) dHd−1(ω) +
|x|2

2
,

where the function gs is defined in (2.29). Since 0 ∈ E, we obtain the conditions
C = P (0) =

∫
Sd−1

gs(ω) dHd−1(ω),

|x|2

2
= s

∫
Sd−1

gs(ω)α2(x, ω) dHd−1(ω) for every x ∈ E.
(3.14)

Note that the second identity in (3.14) holds for each x ∈ Rd, since the two members are
quadratic polynomials in x that coincide on E. By (2.30) and (3.14), using (2.12)–(2.14),
we have, for each x ∈ Ec,

P (x) =

∫
Sd−1

gs(ω)(1− s α2(x, ω)) dHd−1(ω) +
|x|2

2

+

∫
Sd−1

gs(ω)χ[−1,1]c(α(x, ω))

(
sα2(x, ω)− 1 + κsfs(α(x, ω))

)
dHd−1(ω)

= P (0) +

∫
Sd−1

gs(ω)χ[−1,1]c(α(x, ω))

(
sα2(x, ω)− 1 + κsfs(α(x, ω))

)
dHd−1(ω).

It is convenient to write κs = K(s) cos
(
πs
2

)
, where K(s) := 2−s+1Γ(s)

Γ
(
s
2 +2
)

Γ
(
s
2

) .

We claim that for |α| > 1

F (α, s) := sα2 − 1 +K(s) cos
(πs

2

)
fs(α) ≥ 0. (3.15)

Since gs ≥ 0, this inequality implies the second Euler-Lagrange condition for s ∈ [d −
3, d) ∩ (0, 3). Inequality (3.15) is clearly true for s = 1 (which belongs to the range of s
considered here if d < 5), since F (α, 1) = α2−1. So, in what follows we implicitely assume
s 6= 1. Note that, since F is even in the variable α, it is sufficient to prove (3.15) for α > 1.
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To prove (3.15), we introduce the function

φ(z) := z−
s
2 2F1

(
s

2
,
s+ 1

2
;
s

2
+ 2; z−1

)
for z ∈ (1,∞)

(for simplicity, the dependence on s is not reflected in the notation), and rewrite (3.15) in
terms of φ. According to (2.7), φ extends continuously to z = 1 and

φ(1) =
Γ( s2 + 2)Γ(3−s

2 )

Γ(2)Γ(3
2)

=
2√
π

Γ( s2 + 2)Γ(3−s
2 ),

since Γ(2) = 1 and Γ(3
2) =

√
π

2 . By properties (2) and (4) of the Gamma function recalled
in Section 2.2 we can write

Γ(3−s
2 ) = (1−s

2 )Γ(1−s
2 ),

Γ(s)

Γ( s2)
=

2s−1

√
π

Γ( s+1
2 ), (3.16)

so that

K(s)φ(1) =
1

π
(1− s)Γ( s+1

2 )Γ(1−s
2 ).

Since by property (3) in Section 2.2 we have

Γ( s+1
2 )Γ(1−s

2 ) =
π

sin(π2 (s+ 1))
=

π

cos(πs2 )
, (3.17)

we deduce that

K(s) cos
(πs

2

)
=

1− s
φ(1)

. (3.18)

Consequently, writing z instead of α2, the claimed inequality (3.15) can be written as

sz − 1 +
1− s
φ(1)

φ(z) ≥ 0 for all z > 1. (3.19)

To prove it, we distinguish the cases s < 1 and s > 1.

Case s ∈ [d − 3, d) ∩ (1, 3). By Lemma 2.2 the function φ is non-increasing. Therefore,
φ(z) ≤ φ(1) for all z ≥ 1. Since cos(πs/2) < 0 and K(s) > 0, by (3.18) we have (1 −
s)/φ(1) < 0, hence

sz − 1 +
1− s
φ(1)

φ(z) ≥ sz − 1 +
1− s
φ(1)

φ(1) = s(z − 1) ≥ 0 for all z ≥ 1,

which proves (3.19).

Case s ∈ [d − 3, d) ∩ (0, 1). By Lemma 2.2 the function φ is convex. By (2.6), (2.7), and
the properties of the Gamma function recalled in Section 2.2, φ′ extends continuously to
z = 1 and

φ′(1) = − s

1− s
φ(1).

By convexity φ(z) ≥ φ(1) + φ′(1)(z − 1) for all z ≥ 1. Since cos(πs/2) > 0 and K(s) > 0,
by (3.18) we have (1− s)/φ(1) > 0, hence

sz− 1 +
1− s
φ(1)

φ(z) ≥ sz− 1 +
1− s
φ(1)

(
φ(1) + φ′(1)(z − 1)

)
=

(
s+

1− s
φ(1)

φ′(1)

)
(z− 1) = 0

for all z ≥ 1, which proves (3.19).

This concludes the proof of (3.15) and therefore of the second Euler-Lagrange equation
for s ∈ [d− 3, d) ∩ (0, 3).
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3.2.2. The second Euler-Lagrange condition for s ∈ [d−3, d)∩ [3, 5). Let E be an ellipsoid
such that the corresponding measure µE satisfies the first Euler-Lagrange condition (3.12),
namely for 0 < δ < 1 and λ > λ(δ) we have that for every x ∈ δE

Pλ(0) = (W ∗ µE ∗ Φλ)(0) = (W ∗ µE ∗ Φλ)(x) +
|x|2

2
. (3.20)

Using (2.36), if λ > λ(δ), for every x ∈ δE we have that

(W ∗ µE ∗ Φλ)(x)− (W ∗ µE ∗ Φλ)(0)

=

∫
Sd−1

gs(ω)

(
1− s

(
α(x, ω)2 +

1

τ2

∫
R
ϕ(t)t2dt

))
dHd−1(ω),

−
∫
Sd−1

gs(ω)

(
1− s

(
1

τ2

∫
R
ϕ(t)t2dt

))
dHd−1(ω)

= −s
∫
Sd−1

gs(ω)α(x, ω)2dHd−1(ω). (3.21)

Hence it follows immediately from (3.20) that for λ > λ(δ) and x ∈ δE

−s
∫
Sd−1

gs(ω)α(x, ω)2dHd−1(ω) +
|x|2

2
= 0. (3.22)

Note that the function in the left-hand side of (3.22) is quadratic and vanishes on δE,
hence it vanishes everywhere in Rd.

Now, let x ∈ Ec. By (2.35), we have

(W ∗ µE ∗ Φλ)(x) =

∫
Sd−1

(
ϕτ ∗ f̃s

)
(α(x, ω))gs(ω) dHd−1(ω)

+

∫
Sd−1

(
ϕτ ∗ (−f̃sχ[−1,1]c)

)
(α(x, ω))gs(ω) dHd−1(ω)

+ κs

∫
Sd−1

(
ϕτ ∗ fsχ[−1,1]c

)
(α(x, ω))gs(ω) dHd−1(ω).

Then, by (2.40), we have that

Pλ(x) = (W ∗ µE ∗ Φλ)(x) +
|x|2

2

= Pλ(0)− s
∫
Sd−1

gs(ω)α(x, ω)2dHd−1(ω) +
|x|2

2

+

∫
Sd−1

(
ϕτ ∗ (−f̃sχ[−1,1]c)

)
(α(x, ω))gs(ω) dHd−1(ω)

+ κs

∫
Sd−1

(
ϕτ ∗ fsχ[−1,1]c

)
(α(x, ω))gs(ω) dHd−1(ω).

By (3.22) the equality above simplifies to

Pλ(x) = Pλ(0) +

∫
Sd−1

(
ϕτ ∗ (−f̃sχ[−1,1]c)

)
(α(x, ω))gs(ω) dHd−1(ω)

+ κs

∫
Sd−1

(
ϕτ ∗ fsχ[−1,1]c

)
(α(x, ω))gs(ω) dHd−1(ω).

It follows that Pλ(x) ≥ Pλ(0) for every x ∈ Ec, because the two integrals above are non-
negative. To see this, first of all, we recall that ϕ is non-negative. For the first integral, we
have −f̃s(α) = sα2 − 1 ≥ 2 for |α| ≥ 1, as s ∈ [3, 5). For the second integral, we observe
that the function fs(α) ≥ 0 for |α| > 1 by the definition (2.14) and Lemma 2.2, and that
the constant κs ≥ 0, with κs in (2.13), since cos(πs2 ) ≥ 0 for s ∈ [3, 5).
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By letting λ → +∞ and recalling that Pλ(x) = (W ∗ µE ∗ Φλ)(x) → P (x) for each
x ∈ Rd, we conclude that

P (x) ≥ P (0) for x ∈ Ec,
which is the second Euler-Lagrange condition.

We note that the proof of the second Euler-Lagrange condition for s ∈ [d− 3, d)∩ [3, 5)
is more direct than that for s ∈ [d − 3, d) ∩ (0, 3). This is because for s ∈ [3, 5) we have
that both sα2 − 1 ≥ 0 (which is not always true for s < 1), and cos(πs2 ) ≥ 0 (which is not
true for 1 < s < 3).

3.2.3. The second Euler-Lagrange condition for s ∈ [d− 3, d)∩ {5}. Let E be an ellipsoid
such that the corresponding measure µE satisfies the first Euler-Lagrange condition (3.12).
Proceeding as in Section 3.2.2, by (2.44), we have that (3.21) and (3.22) hold true also for
s = 5. Now, let x ∈ Ec. Then by (2.43), we have

(W ∗ µE ∗ Φλ)(x) =

∫
Sd−1

(
ϕτ ∗ f̃5

)
(α(x, ω))g5(ω) dHd−1(ω)

+

∫
Sd−1

(
ϕτ ∗ (−f̃5χ[−1,1]c)

)
(α(x, ω))g5(ω) dHd−1(ω)

+
2

3

∫
Sd−1

(
ϕτ ∗

(
δ−1 + δ1

))
(α(x, ω))g5(ω) dHd−1(ω).

Proceeding again as in the case [d− 3, d)∩ [3, 5), by (2.40), (3.21) and (3.22) we conclude
that for x ∈ Ec

Pλ(x) = Pλ(0) +

∫
Sd−1

(
ϕτ ∗ (−f̃5χ[−1,1]c)

)
(α(x, ω))g5(ω) dHd−1(ω)

+
2

3

∫
Sd−1

(
ϕτ ∗

(
δ−1 + δ1

))
(α(x, ω))g5(ω) dHd−1(ω) ≥ Pλ(0),

where we have used that ϕτ ≥ 0 and that −f̃5(α) = 5α2 − 1 ≥ 4 for |α| ≥ 1. By letting
λ→ +∞ we get P (x) ≥ P (0) for x ∈ Ec, which is the second Euler-Lagrange condition.

Remark 3.1. In subsection 3.2 we have shown that the first Euler-Lagrange condition
implies the second one. This argument uses the assumption s > d − 4 (in order for the
measure µE to be well-defined), but it does not rely on the assumption s ≥ d− 3 (which
was used to find an ellipsoid for which the first Euler-Lagrange condition is satisfied). We

also note that this step of the proof only requires Ŵ ≥ 0 on Sd−1.

4. The loss of dimension in the degenerate case

In this section we consider the degenerate case where the Fourier transform of the
anisotropic potential is non-negative on Sd−1, but not strictly positive.

More precisely, let W0 be a potential satisfying the assumptions of Theorem 1.1, with

Ŵ0 ≥ 0 on Sd−1, but not strictly positive. Let Ψ0 denote its profile, as in (1.2), and I0

the corresponding energy, as in (1.1). For ε > 0, we ‘lift’ the potential W0 by setting, for
x 6= 0,

Wε(x) :=
1

|x|s

(
Ψ0

(
x

|x|

)
+

ε

bs,d

)
,

where bs,d := b0,s,d is defined in (2.26) so that the Fourier transform of 1
|x|s is

bs,d
|ξ|d−s . Then,

since bs,d > 0 we still have that Wε > 0 on Sd−1, and moreover

Ŵε = Ŵ0 + ε > 0 on Sd−1.

Let Iε denote the energy as in (1.1), with potential Wε. By Theorem 1.1, the minimiser
µε of Iε is as in (1.4), with aεi > 0. As in the proof of Proposition 2.1, one can show that
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the sequence (µε)ε is tight, hence, up to subsequences, µε converges in the narrow sense to
some measure µ0 ∈ P(Rd), as ε→ 0+. Moreover, it is easy to show that µ0 is the unique
minimiser of I0. We can characterise µ0 in terms of the limit ā ∈ [0,+∞)d of (aε)ε as
follows.

We note that ā cannot be identically 0, since µ0 would coincide with δ0 and I0(δ0) =
W0(0) = +∞, hence δ0 cannot be the minimiser of I0. If āi > 0 for any i = 1, . . . , d, then
the minimiser µ0 is of the form (1.4) and its support is fully dimensional. Otherwise, let
us assume that ā has only k ∈ {1, . . . , d− 1} strictly positive components, and denote by
ā(k) ∈ Rd a vector with the same components as ā, but rearranged so that ā(k)i > 0 for
i = 1, . . . , k, and ā(k)i = 0 for i = k+ 1, . . . , d. Then µ0(x) = µE(ā(k))(R

Tx) for a suitable
R ∈ SO(d), where we set

E(ā(k)) :=

{
(x1, . . . xk) ∈ Rk :

k∑
i=1

x2
i

ā(k)2
i

≤ 1

}
,

and

µE(ā(k))(x) =
c̃s,d,k

Πk
i=1(ā(k)i/rd)

(
1−

k∑
i=1

x2
i

ā(k)2
i

)s+2−k
2

χE(ā(k))(x1, . . . , xk)⊗ δ0(xk+1, . . . , xd).

(4.1)
In (4.1) the constant c̃s,d,k is an explicit normalisation constant and rd > 0 is the same as
in (1.4).

We now discuss the possible minimisers of I0 in terms of the dimension of their supports,
depending on the homogeneity s of the potential.

Note that I0 is bounded from below by a positive multiple of the isotropic Riesz energy
Iiso, corresponding to Wiso(x) = 1/|x|s. For the isotropic Riesz energy we have

Iiso(µE(ā(k)))

≥
c̃s,d,k

Πk
i=1(ā(k)i/rd)

∫
E(ā(k))

(∫
Rd

1

|x(k)− y|s
dµE(ā(k))(y)

)(
1−

k∑
i=1

x2
i

ā(k)2
i

) s+2−k
2

dx(k).

Moreover, for any (x1, . . . , xk) ∈ E(ā(k))∫
Rd

1

|x(k)− y|s
dµE(ā(k))(y)

=
c̃s,d,k

Πk
i=1(ā(k)i/rd)

∫
E(ā(k))

1

|x(k)− y(k)|s

(
1−

k∑
i=1

y2
i

ā(k)2
i

) s+2−k
2

dy(k),

which is equal to +∞ for s ≥ k. In other words,

I0(µE(ā(k))) = +∞ for s ≥ k.
This means that for s ≥ k the minimiser µ0 of I0 cannot be supported on a k-dimensional
set, and its support must be at least (k + 1)-dimensional. In particular, the minimiser is
fully dimensional, and given by (1.4), if s ∈ [d− 1, d). If, however, e.g., s ∈ [d− 2, d− 1),
then the minimiser must be supported on a set of dimension at least d− 1, so there may
or may not be a loss of dimension.

We recall that for Coulomb interactions s = d− 2 in three dimensions, in [17, Example
3.4] a potential W0 is constructed such that the corresponding minimiser is supported on
a two-dimensional ellipse, so the loss of dimensionality of the minimiser can in fact occur.

We also remark that the loss of dimensionality seems to be related to properties of Ŵ0,
rather than of W0. It was in fact shown in [18], for s = d − 2, that if the minimiser has
a (d− 1)-dimensional support, then the normal to the hyperplane containing the support

has to be a direction of degeneracy for Ŵ0.
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E-mail address: Joan.Verdera@uab.cat


	1. Introduction
	2. Preliminaries
	2.1. Existence and uniqueness of a minimiser
	2.2. Properties of the Gamma function
	2.3. The Fourier transform.
	2.4. The Bessel function of first kind
	2.5. The hypergeometric function
	2.6. A formula relating Bessel and hypergeometric functions
	2.7. Ellipses and ellipsoids
	2.8. The Fourier transform of the candidate minimiser
	2.9. The Fourier representation of WE for s(d-4,d)(0,5].

	3. Proof of the main result
	3.1. The first Euler-Lagrange condition (2.1)
	3.2. The second Euler-Lagrange condition (2.2)

	4. The loss of dimension in the degenerate case
	References

