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Abstract These lecture notes present the main results presented by the author in the
course he gave in Chania in July 2024, about the use of the Jordan-Kinderlehrer-Otto
scheme in the approximation of the solutions of various linear or non-linear parabolic
evolution equations with a gradient structure. The convergence of the scheme to a
solution is proven, and estimates on the steps of the scheme are presented. Among
the applications, BV and Sobolev bounds are detailed, a strategy to obtain functional
inequalities is introduced, and a stronger convergence of the scheme to the solution
of the PDE is proven.

1 Introduction

Several evolution equations have a gradient structure,meaning that the evolution goes
in the direction of the steepest descent of a given global quantity, and exploiting their
variational structure provides deep insight into their behavior, allows for general
proofs of existence, gives natural procedures to approximate their solutions, and
suggests efficient points of view in order to analyze them. Speaking of evolutions of
probability densities, the use of optimal transport and the study of those PDEs which
have a variational structure w.r.t. theWasserstein distance𝑊2 has been popularized in
the last decades after the seminal paper by Jordan, Kinderlehrer and Otto, [37], who
introduced a discrete-in-time variational scheme to approximate the Fokker-Planck
equation. These lecture notes aim to describe the scheme they introduced, nowadays
called JKO scheme, to generalize it to the case where other transport costs instead
of the quadratic one are used (thus obtaining different equations at the limit), and to
use more recent techniques to study the discrete sequence produced by the scheme.
Section 2 will be devoted to a general introduction to the topic of gradient flows,

starting from the Euclidean case and then passing to the abstract metric theory. The

Universite Claude Bernard Lyon 1, ICJ UMR5208, CNRS, Ecole Centrale de Lyon, INSA Lyon,
Université Jean Monnet, 69622 Villeurbanne, France. e-mail: santambrogio@math.univ-lyon1.fr

1



2 Filippo Santambrogio

whole theory is extended to the case of nonlinear gradient flows, which correspond
to the equation 𝑥 ′(𝑡) = −∇ℎ∗ (∇𝐹 (𝑥(𝑡))) instead of 𝑥 ′(𝑡) = −∇𝐹 (𝑥(𝑡)).
Starting from Section 3 we want to focus on the part of the gradient flow theory

most related to optimal transport, and we introduce the Monge-Kantorovich optimal
transport probelm, the Wasserstein spaces, and then present in details the JKO
scheme and the resulting PDEs,which include the Fokker-Planck and porousmedium
equations.
Section 4 is devoted to different techniques which can be used in order to prove the

convergence of the JKO Scheme: the first requires to choose suitable interpolations
of the sequence obtained in the JKO and study the relevant compactness properties
in order to pass to the limit of terms, the second exploits an integral characterization
of the PDE and is bases on lower semicontinuity arguments.
In Section 5 we introduce a new inequality involving the gradients of the trans-

ported densities and of their Kantorovich potentials, which is of special use when
appled to the solution of one step of the JKO scheme. This inequality allows in this
case to prove higher-order bounds on these solutions. BV bounds for the porous
medium equation are proven, as well as bounds on generalized Fisher informations
for some particular variants of the Fokker-Planck equations. Some of these estimates
recover well-known bounds from the continuous PDE, some are more original in
their general form.
Section, 6 provides applications to functional inequalities, focusing on the log-

Sobolev inequalities. The idea is to perform a discrete counterpart of the well-
known Bakry-Emery theory, using the JKO scheme instead of a continuous flow to
differentiate the relevant quantities and compare them. For simplicity, only the most
classical log-Sobolev inequality is considered.
Finally, Section 7 uses an improvement of the inequality presented in Section 5 in

order to prove that some second-order integral quantities pass to the limit as the time
step 𝜏 → 0. This allows to prove in some regime the strong 𝐿2𝑡𝐻2𝑥 convergence of
the solution of the JKO scheme for the Fokker-Planck equation, strongly improving
previous results.
The content of these notes has been presented in July 2024 in the summer school

Festum Pi in Chania (Crete) and, partially, in a mini-course in the Vito Volterra
Meeting in June 2024 in Rome.
The whole presentation is not fully detailed, is sometimes sketchy, points to the

relevant papers on which these notes are based (see in particular [49, 50, 26, 27, 20,
21, 52] for more details), and very often regularity issues which could be important
for a fully rigorous analysis are left to the reader.

2 Gradient flows and variants

We present here the main ideas about the general theory of gradient flows, in the
Euclidan space and then in metric spaces, also considering what we call nonlinear
gradient flows.
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2.1 The Euclidean case

We start here from the easiest framework where we can consider gradient flows,
i.e. from what happens in the Euclidean space R𝑛. Most of what we will say stays
true in an arbitrary Hilbert space, but we will stick to the finite-dimensional case for
simplicity.
Here, given a function 𝐹 : R𝑛 → R, smooth enough, and a point 𝑥0 ∈ R𝑛, a

gradient flow is just defined as a curve 𝑥(𝑡), with starting point at 𝑡 = 0 given by
𝑥0, which moves by choosing at each instant of time the direction which makes the
function 𝐹 decrease as much as possible. More precisely, we consider the solution
of the Cauchy Problem {

𝑥 ′(𝑡) = −∇𝐹 (𝑥(𝑡)) for 𝑡 > 0,
𝑥(0) = 𝑥0.

(1)

This is a standard Cauchy problem which has a unique solution if ∇𝐹 is Lipschitz
continuous, i.e. if 𝐹 ∈ 𝐶1,1. In some cases one could be interested in functions 𝐹
which are not differentiable, and an easy example is that of convex functions. If
𝐹 is convex, it could be non-differentiable, but we can replace the gradient with
the subdifferential. More precisely, we can consider instead of (1), the following
differential inclusion: we look for an absolutely continuous curve 𝑥 : [0, 𝑇] → R𝑛
such that {

𝑥 ′(𝑡) ∈ −𝜕𝐹 (𝑥(𝑡)) for a.e. 𝑡 > 0,
𝑥(0) = 𝑥0,

(2)

where 𝜕𝐹 (𝑥) = {𝑝 ∈ R𝑛 : 𝐹 (𝑦) ≥ 𝐹 (𝑥) + 𝑝 · (𝑦 − 𝑥) for all 𝑦 ∈ R𝑛}. We refer
to [47] for all the definitions and notions from convex analysis that one could need
here and in the rest of the chapter.
A very interesting feature of these particular Cauchy problems which are gradient

flows is their discretization in time. Actually, one can fix a small time step parameter
𝜏 > 0 and look for a sequence of points (𝑥𝜏

𝑘
)𝑘 defined through the iterated scheme,

called Minimizing Movement Scheme (see [25, 2]),

𝑥𝜏𝑘+1 ∈ argmin𝑥 𝐹 (𝑥) +
|𝑥 − 𝑥𝜏

𝑘
|2

2𝜏
. (3)

Very mild assumptions on 𝐹 (l.s.c. and some lower bounds, for instance 𝐹 (𝑥) ≥
𝐶1−𝐶2 |𝑥 |2) are sufficient to guarantee that these problems admit a solution for small
𝜏. When 𝐹 is convex the operator which associaties with the previous point 𝑥𝜏

𝑘
the

new point i𝑥𝜏
𝑘+1, which is unique as soon as 𝑥 ↦→ 𝐹 (𝑥) + |𝑥−𝑥𝜏

𝑘
|2

2𝜏 is strictly convex
(which is the case, for instance, if 𝐹 is convex, or if 𝐷2𝐹 is bounded from below and
𝜏 is small), is called in convex optimization proximal operator.
We can interpret this sequence of points as the values of the curve 𝑥(𝑡) at times

𝑡 = 0, 𝜏, 2𝜏, . . . , 𝑘𝜏, . . . . It happens that the optimality conditions of the recursive
minimization exactly give a connection between these minimization problems and
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the equation, since we have

𝑥𝜏𝑘+1 ∈ argmin 𝐹 (𝑥) +
|𝑥 − 𝑥𝜏

𝑘
|2

2𝜏
⇒ ∇𝐹 (𝑥𝜏𝑘+1) +

𝑥𝜏
𝑘+1 − 𝑥

𝜏
𝑘

𝜏
= 0,

i.e.
𝑥𝜏
𝑘+1 − 𝑥

𝜏
𝑘

𝜏
= −∇𝐹 (𝑥𝜏𝑘+1).

This expression is exactly the discrete-time implicit Euler scheme for 𝑥 ′ = −∇𝐹 (𝑥)!
(note that in the convex non-smooth case this becomes 𝑥𝜏

𝑘+1−𝑥
𝜏
𝑘

𝜏
∈ −𝜕𝐹 (𝑥𝜏

𝑘+1)).
Before going on, one can observe that it could be natural to replace the quadratic

penalization with other penalizations, for instance another power of the distance.
More generally, if ℎ : R𝑛 → R is a convex function, one could consider

𝑥𝜏𝑘+1 ∈ argmin𝑥 𝐹 (𝑥) + 𝜏ℎ
(
𝑥 − 𝑥𝜏

𝑘

𝜏

)
,

which reduces to (3) when ℎ(𝑧) = 1
2 |𝑧 |

2. In this case the optimality conditions would
read as

∇𝐹 (𝑥𝜏𝑘+1) + ∇ℎ
(
𝑥𝜏
𝑘+1 − 𝑥

𝜏
𝑘

𝜏

)
= 0, i.e.

𝑥𝜏
𝑘+1 − 𝑥

𝜏
𝑘

𝜏
= ∇ℎ∗

(
−∇𝐹 (𝑥𝜏𝑘+1)

)
(where we used the Legendre transorm ℎ∗ defined via ℎ∗ (𝑦) = sup𝑥 𝑥 · 𝑦 − ℎ(𝑥),
which is such that ∇ℎ∗ = (∇ℎ)−1). In this case, we would obtain a discretization of
the Cauchy problem {

𝑥 ′(𝑡) = ∇ℎ∗ (−∇𝐹 (𝑥(𝑡))) for 𝑡 > 0,
𝑥(0) = 𝑥0.

(4)

For simplicity we will always assume that ℎ and ℎ∗ are even (anc actually, they will
most often be radially symmetric – or powers of the norm – so that we can move the
minus sign outside ∇ℎ∗). This evolution equation can be called nonlinear gradient
flow. In the case where ℎ(𝑧) = 1

𝑝
|𝑧 |𝑝 it reads 𝑥 ′(𝑡) = −∇𝐹 (𝑥(𝑡)))𝑞−1, where 𝑞 is the

conjugate exponent of 𝑝 (i.e. when 1
𝑝
+ 1

𝑞
= 1) and when we write v𝛼 for a vector v

and an exponent 𝛼 > 0 we mean |v|𝛼−1v (if v ≠ 0, otherwise we take the value 0).
In all these cases, under some regularity assumptions on 𝐹, it is possible to prove

that, for 𝜏 → 0, the sequence we found, suitably interpolated, converges to the
solution of the corresponding evolution equation (see [50]).
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2.2 The metric case

The iterated minimization scheme that we introduced above has another interesting
feature: it even suggests how to define solutions for functions 𝐹 which are only l.s.c.,
with no gradient at all!
Even more, a huge advantage of this discretized formulation is also that it can

easily be adapted to metric spaces. Actually, if one has a metric space (𝑋, 𝑑) and
a l.s.c. function 𝐹 : 𝑋 → R ∪ {+∞} (under suitable compactness assumptions to
guarantee existence of the minimum), one can define (see [25, 2])

𝑥𝜏𝑘+1 ∈ argmin𝑥 𝐹 (𝑥) +
𝑑 (𝑥, 𝑥𝜏

𝑘
)2

2𝜏
(5)

and study the limit as 𝜏 → 0. More generally, one can consider, for 𝑝 > 1,

𝑥𝜏𝑘+1 ∈ argmin𝑥 𝐹 (𝑥) +
𝑑 (𝑥, 𝑥𝜏

𝑘
) 𝑝

𝑝𝜏𝑝−1
, (6)

which corresponds to the case ℎ(𝑧) = 1
𝑝
|𝑧 |𝑝 previously described. We will not deal

with the case of general penalizations ℎ, since in the metric case we are only allowed
to consider functions of the distance (which rouhgly corresponds to radial functions
ℎ). For simplicity, we will stick to the case of powers of the distance, but a similar
analysis could be performed using 𝜏ℎ(𝑑 (𝑥, 𝑥𝜏

𝑘
)/𝜏).

Then, we use the piecewise constant interpolation

𝑥𝜏 (𝑡) := 𝑥𝜏𝑘 for every 𝑡 ∈ ((𝑘 − 1)𝜏, 𝑘𝜏] (7)

and study the limit of 𝑥𝜏 as 𝜏 → 0.
A first important point is to prove that a limit actually exists, i.e. the compactness

of the curves (𝑥𝜏)𝜏 . We start from the easy estimate

𝐹 (𝑥𝜏𝑘+1) +
𝑑 (𝑥𝜏

𝑘+1, 𝑥
𝜏
𝑘
) 𝑝

𝑝𝜏𝑝−1
≤ 𝐹 (𝑥𝜏𝑘 ), (8)

and
𝑙∑︁

𝑘=0
𝑑 (𝑥𝜏𝑘+1, 𝑥

𝜏
𝑘 )

𝑝 ≤ 𝑝𝜏𝑝−1
(
𝐹 (𝑥𝜏0 ) − 𝐹 (𝑥

𝜏
𝑙+1)

)
≤ 𝐶𝜏𝑝−1. (9)

The Cauchy-Schwartz inequality gives, for 𝑡 < 𝑠, 𝑡 ∈ [𝑘𝜏, (𝑘 + 1)𝜏[ and 𝑠 ∈
[𝑙𝜏, (𝑙 + 1)𝜏[ (hence |𝑙 − 𝑘 | ≤ |𝑡−𝑠 |

𝜏
+ 1),

𝑑 (𝑥𝜏 (𝑡), 𝑥𝜏 (𝑠)) ≤
𝑙∑︁

𝑗=𝑘

𝑑 (𝑥𝜏𝑗+1, 𝑥
𝜏
𝑗 ) ≤

©«
𝑙∑︁

𝑗=𝑘

𝑑 (𝑥𝜏𝑘+1, 𝑥
𝜏
𝑘 )

𝑝ª®¬
1/𝑝

(𝑙 + 1 − 𝑘)1/𝑞 .
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We then observe taht we have 𝑙 + 1 − 𝑘 ≤ |𝑡−𝑠 |
𝜏

+1 and this allows, together with (9),
obtain

𝑑 (𝑥𝜏 (𝑡), 𝑥𝜏 (𝑠)) ≤ ©«
𝑙∑︁

𝑗=𝑘

𝑑 (𝑥𝜏𝑘+1, 𝑥
𝜏
𝑘 )

𝑝ª®¬
1/𝑝(

|𝑡 − 𝑠 |
𝜏

+1
)1/𝑞

≤ 𝐶
(
|𝑡 − 𝑠 |1/𝑞+𝜏1/𝑞

)
.

This provides a Hölder bound on the curves 𝑥𝜏 (with a negligible error of order 𝜏1/𝑞
which disappears at the limit 𝜏 → 0), and allows to extract a uniformly converging
subsequence.
It is easier to see what happens if we add some structure to the metric space

(𝑋, 𝑑), in particular if we assume that (𝑋, 𝑑) is a geodesic space. This requires a
short discussion about curves and geodesics in metric spaces.

Curves and geodesics in metric spaces

We recall that a curve𝜔 is a continuous function defined on a interval, say [0, 1], and
valued in ametric space (𝑋, 𝑑). As it is amap betweenmetric spaces, it is meaningful
to say whether it is Lipschitz or not, but its speed 𝜔′(𝑡) has no meaning, unless 𝑋 is
a vector space. Surprisingly, it is possible to give a meaning to the modulus of the
velocity, |𝜔′ | (𝑡).

Definition 1 If 𝜔 : [0, 1] → 𝑋 is a curve valued in the metric space (𝑋, 𝑑) we
define the metric derivative of 𝜔 at time 𝑡, denoted by |𝜔′ | (𝑡) through

|𝜔′ | (𝑡) := lim
ℎ→0

𝑑 (𝜔(𝑡 + ℎ), 𝜔(𝑡))
|ℎ| ,

provided this limit exists.

In the spirit of Rademacher Theorem, it is possible to prove (see [3] or [51]) that,
if 𝜔 : [0, 1] → 𝑋 is Lipschitz continuous, then the metric derivative |𝜔′ | (𝑡) exists
for a.e. 𝑡. Moreover we have, for 𝑡0 < 𝑡1,

𝑑 (𝜔(𝑡0), 𝜔(𝑡1)) ≤
∫ 𝑡1

𝑡0

|𝜔′ | (𝑠) d𝑠.

The same is also true for more general curves, not only Lipschitz continuous.

Definition 2 A curve 𝜔 : [0, 1] → 𝑋 is said to be absolutely continuous whenever
there exists 𝑔 ∈ 𝐿1 ( [0, 1]) such that 𝑑 (𝜔(𝑡0), 𝜔(𝑡1)) ≤

∫ 𝑡1
𝑡0
𝑔(𝑠) d𝑠 for every 𝑡0 < 𝑡1.

The set of absolutely continuous curves defined on [0, 1] and valued in 𝑋 is denoted
by AC(𝑋).

It is well-known that every absolutely continuous curve can be reparametrized
in time (through a monotone-increasing reparametrization) and become Lipschitz
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continuous. The existence of the metric derivative for a.e. 𝑡 is also true for 𝜔 ∈
AC(𝑋), via this reparametrization.
Some particular curves deserve special attention.

Definition 3 A curve 𝜔 : [𝑎, 𝑏] → 𝑋 is said to be a constant-speed geodesic
between 𝑥0 and 𝑥1 ∈ 𝑋 if 𝜔(𝑎) = 𝑥0, 𝜔(𝑏) = 𝑥1 and |𝜔′ | (𝑡) = 𝑑 (𝑥0, 𝑥1)/(𝑏 − 𝑎) for
a.e. 𝑡 ∈ [𝑎, 𝑏]. . A space (𝑋, 𝑑) is said to be a geodesic space if for every 𝑥0, 𝑥1 ∈ 𝑋
there exists a constant-speed geodesic between 𝑥0 and 𝑥1.

We can now come back to the interpolation of the points obtained through the
MinimizingMovement scheme (5) and note that, if (𝑋, 𝑑) is a geodesic space, then it
is possible to replace the piecewise constant interpolation with a piecewise geodesic
interpolation. This means defining a curve 𝑥𝜏 : [0, 𝑇] → 𝑋 such that 𝑥𝜏 (𝑘𝜏) = 𝑥𝜏

𝑘

and such that 𝑥𝜏 restricted to any interval [𝑘𝜏, (𝑘 +1)𝜏] is a constant-speed geodesic
with speed equal to 𝑑 (𝑥𝜏

𝑘
, 𝑥𝜏

𝑘+1)/𝜏. Then, the bounds we proved above read as∫ 𝑇

0
|𝑥 ′ | (𝑡) 𝑝d𝑡 ≤ 𝑝(𝐹 (𝑥0) − 𝐹 (𝑥(𝑇)) ≤ 𝐶.

This proves that the curves 𝑥𝜏 are bounded in𝑊1, 𝑝 ( [0, 𝑇]; 𝑋) and implies equicon-
tinuity since, exactly as in the Euclidean case, one has 𝑊1, 𝑝 ⊂ 𝐶0,𝛼 with
𝛼 = 1 − 1/𝑝 = 1/𝑞.
The next question is how to characterize the limit curve obtained when 𝜏 → 0,

and in particular how to express the fact that it is a gradient flow of the function 𝐹.
Of course, one cannot try to prove the equality 𝑥 ′ = −∇𝐹 (𝑥), just because neither
the left-hand side nor the right-hand side have a meaning in a metric space!
If the space 𝑋 , the distance 𝑑, and the functional 𝐹 are explicitly known, in some

cases it is possible to pass to the limit the optimality conditions of each optimization
problem in the discretized scheme, and characterize the limit curves (or the limit
curve) 𝑥(𝑡). It will be possible to do so in the framework of probability measures, as
it will be discussed in Sectios 3 and 4, but not in general. Indeed, without a little bit
of (differential) structure on the space 𝑋 , it is essentially impossible to do so. Hence,
if we want to develop a general theory for gradient flows in metric spaces, finer tools
are needed. In particular, we need to characterize the solutions of 𝑥 ′ = −∇𝐹 (𝑥) (or
𝑥 ′ ∈ −𝜕𝐹 (𝑥)) by only using metric quantities (in particular, avoiding derivatives,
gradients, and more generally vectors). The book by Ambrosio-Gigli-Savaré [4],
and in particular its first part (the second being devoted to the space of probability
measures) exactly aims at doing so.
The idea is to present alternative characterizations of gradient flows in the smooth

Euclidean case, which can be used as a definition of gradient flow in the metric case,
since all the quantities which are involved have their metric counterpart.
The first observation is the following: thanks to the definition of Legendre

transform ℎ∗, the condition 𝑥 ′(𝑡) = ∇ℎ∗ (−∇𝐹 (𝑥(𝑡)) is equivalent to ℎ(𝑥 ′(𝑡)) +
ℎ∗ (−∇𝐹 (𝑥(𝑡)) = −𝑥 ′(𝑡) · ∇𝐹 (𝑥(𝑡)). Since the inequality ℎ(𝑥) + ℎ∗ (𝑦) ≥ 𝑥 · 𝑦 is
always true, we can also say that it is equivalent to the inequality
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ℎ(𝑥 ′(𝑡)) + ℎ∗ (−∇𝐹 (𝑥(𝑡))) ≤ −𝑥 ′(𝑡) · ∇𝐹 (𝑥(𝑡)) = − d
d𝑡
𝐹 (𝑥(𝑡)),

and this inequality for a.e. 𝑡 is also equivalent to its integral version∫ 𝑇

0
ℎ(𝑥 ′(𝑡))d𝑡 +

∫ 𝑇

0
ℎ∗ (−∇𝐹 (𝑥(𝑡)))𝑑𝑡 + 𝐹 (𝑥(𝑇)) ≤ 𝐹 (𝑥0).

In the case where ℎ(𝑧) = 1
𝑝
|𝑧 |𝑝 is a power this can be written as

1
𝑝

∫ 𝑇

0
|𝑥 ′(𝑡) |𝑝𝑑𝑡 + 1

𝑞

∫ 𝑇

0
|∇𝐹 (𝑥(𝑡) |𝑞𝑑𝑡 + 𝐹 (𝑥(𝑇)) ≤ 𝐹 (𝑥0).

This condition, called EDI (Energy Dissipation Inequality) characterizes gradient
flows (or their nonlinear counterpart) in the smooth Euclidean case. When ℎ and ℎ∗
are radial, it can also be taken as a definiiton in the metric case, as all its terms have
a meaning in the metric setting. We already saw how to define |𝑥 ′ |, let us see how to
define the norm of the gradient.

Slope and modulus of the gradient.

Many definitions of the modulus of the gradient of a function 𝐹 defined over a metric
space are possible. The easiest possible choice is the local Lipschitz constant

|∇𝐹 | (𝑥) := lim sup
𝑦→𝑥

|𝐹 (𝑥) − 𝐹 (𝑦) |
𝑑 (𝑥, 𝑦) ; (10)

another is the descending slope (we will often say just slope), which is a notion
more adapted to the minimization of a function than to its maximization, and hence
reasonable for lower semi-continuous functions:

|∇−𝐹 | (𝑥) := lim sup
𝑦→𝑥

[𝐹 (𝑥) − 𝐹 (𝑦)]+
𝑑 (𝑥, 𝑦)

(note that the slope vanishes at every local minimum point).
In the general theory of Gradient Flows in metric spaces ([4]), another charac-

terization, different from the EDI, is proposed in order to cope with uniqueness and
stability results. This is only done in the case 𝑝 = 2 (i.e. for linear gradient flows)
and it is based on the following observation: if 𝐹 : R𝑑 → R is convex, then the
inequality

𝐹 (𝑦) ≥ 𝐹 (𝑥) + 𝑝 · (𝑦 − 𝑥) for all 𝑦 ∈ R𝑑

characterizes (by definition) the vectors 𝑝 ∈ 𝜕𝐹 (𝑥) and, if 𝐹 ∈ 𝐶1, it is only satisfied
for 𝑝 = ∇𝐹 (𝑥). We can pick a curve 𝑥(𝑡) and a point 𝑦 and compute

d
d𝑡
1
2
|𝑥(𝑡) − 𝑦 |2 = (𝑦 − 𝑥(𝑡)) · (−𝑥 ′(𝑡)).
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Consequently, imposing

d
d𝑡
1
2
|𝑥(𝑡) − 𝑦 |2 ≤ 𝐹 (𝑦) − 𝐹 (𝑥(𝑡)

(for all 𝑦) will be equivalent to −𝑥 ′(𝑡) ∈ −𝜕𝐹 (𝑥(𝑡)). This will provide a second
characterization (called EVI, Evolution Variational Inequality) of gradient flows in
a metric environment. Again, all the terms appearing in the above inequality have a
metric counterpart (only squared distances and derivatives w.r.t. time appear).
If in the smooth Euclidean case the two notions (EDI and EVI) finally coincide,

it is now well-known that in genreal they are quite different. In particular, it is quite
easy (and we will give some hints on how to do) to prove existence of a gradient
flow in the EDI sense, but in general uniqueness fails. An example can be found,
for instance, in [48]. On the other hand, the EVI notion allows quite easily to prove
uniqueness, but the existence of an EVI gradient flow is harder to obtain and, by the
way, only holds when 𝐹 satisfies some convexity assumption (more precisely: it can
be proven that whenever 𝐹 is such that an EVI gradient flow exists for any starting
point 𝑥0, then 𝐹 is geodesically convex, a notion on which we wil come back later,
see [24]).

2.3 Existence of a gradient flow

We can easily understand that, even if the estimate (8) is enough to provide compact-
ness, it will never be enough to characterize the limit curve (indeed, it is satisfied by
any discrete evolution where 𝑥𝜏

𝑘+1 gives a better value than 𝑥
𝜏
𝑘
, without any need for

optimality). Hence, we will never obtain either of the two formulations - EDI or EVI
- of metric gradient flows.
In order to improve the result, we should exploit how much 𝑥𝜏

𝑘+1 is better than
𝑥𝜏
𝑘
. An idea due to De Giorgi allows to obtain the desired result, via a “variational

interpolation” between the points 𝑥𝜏
𝑘
and 𝑥𝜏

𝑘+1. In order to do so, once we fix 𝑥
𝜏
𝑘
, for

every 𝜃 ∈]0, 1], we consider the problem

𝑚(𝜃) := min
𝑥

𝐹 (𝑥) +
𝑑 (𝑥, 𝑥𝜏

𝑘
) 𝑝

𝑝(𝜃𝜏) 𝑝−1

and call 𝑥(𝜃) any minimizer for this problem, and 𝑚(𝜃) the minimal value. It is clear
that, for 𝜃 → 0+, we have 𝑥(𝜃) → 𝑥𝜏

𝑘
and 𝑚(𝜃) → 𝐹 (𝑥𝜏

𝑘
), and that, for 𝜃 = 1, we

get back to the original problem with minimizer 𝑥𝜏
𝑘+1. Moreover, the function 𝑚 is

non-increasing and hence a.e. differentiable (actually, we can even prove that it is
locally semiconcave). Its derivative 𝑚′(𝜃) is given by the derivative of the function
𝜃 ↦→ 𝐹 (𝑥) + 𝑑𝑝 (𝑥,𝑥𝜏

𝑘
)

𝑝 (𝜃𝜏) 𝑝−1 , computed at the optimal point 𝑥 = 𝑥(𝜃) (the existence of
𝑚′(𝜃) implies that this derivative is the same at every minimal point 𝑥(𝜃)). Hence,
a quick computation shows that we have
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𝑚′(𝜃) = −
𝑑 𝑝 (𝑥(𝜃), 𝑥𝜏

𝑘
)

𝑞𝜃 𝑝𝜏𝑝−1
.

Moreover, the optimality condition for the minimization problem with 𝜃 > 0 easily
show that we have

|∇−𝐹 | (𝑥(𝜃)) ≤
(
𝑑 (𝑥(𝜃), 𝑥𝜏

𝑘
)

𝜃𝜏

) 𝑝−1
,

which wan also be written as |∇−𝐹 | (𝑥(𝜃))𝑞 ≤
(
𝑑 (𝑥 (𝜃) ,𝑥𝜏

𝑘
)

𝜃𝜏

) 𝑝
.

We now come back to the function 𝑚 and use

𝑚(0) − 𝑚(1) = −
∫ 1

0
𝑚′(𝜃) d𝜃

together with

−𝑚′(𝜃) =
𝑑 (𝑥(𝜃), 𝑥𝜏

𝑘
) 𝑝

𝑞𝜃 𝑝𝜏𝑝−1
≥ 𝜏

𝑞
|∇−𝐹 (𝑥(𝜃)) |𝑞 . (11)

Hence, we get an improved version of (8):

𝐹 (𝑥𝜏𝑘+1) +
𝑑 (𝑥𝜏

𝑘+1, 𝑥
𝜏
𝑘
) 𝑝

𝑝𝜏𝑝−1
≤ 𝐹 (𝑥𝜏𝑘 ) −

𝜏

𝑞

∫ 1

0
|∇−𝐹 (𝑥(𝜃)) |𝑞d𝜃.

If we sum up for 𝑘 = 0, 1, 2, . . . and then take the limit 𝜏 → 0, we can prove, for the
limit curve, the inequality

𝐹 (𝑥(𝑇)) + 1
𝑝

∫ 𝑇

0
|𝑥 ′ | (𝑡) 𝑝d𝑡 + 1

𝑞

∫ 𝑇

0
|∇−𝐹 (𝑥(𝑡)) |𝑞d𝑡 ≤ 𝐹 (𝑥(0)), (12)

under some suitable assumptions that we must select. In particular, we need lower-
semicontinuity of 𝐹 in order to handle the term 𝐹 (𝑥𝜏

𝑘+1) (which will become 𝐹 (𝑥(𝑡))
at the limit), but we also need lower-semicontinuity of the slope |∇−𝐹 | in order to
handle the corresponding term.

3 Introduction to OT, the Wasserstein space, and the PDE of
Wasserstein gradient flows

This section will contain a gentle introduction to the topic of optimal transport and
the distances it induces on the space of probability measures, moving forward the
applications of these notions to those PDEs which can be expressed as a gradient
flow in such a space.
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3.1 Monge and Kantorovich problems

Thewhole theory of optimal transport was bornwith the following problem proposed
by Monge in 1781 ([45]), that we will express in modern mathematical language
(see [54, 55, 49]). Given two probability measures 𝜇, 𝜈 on a space 𝑋 , find a map
𝑇 = 𝑋 → 𝑋 such that 𝑇#𝜇 = 𝜈 which minimizes a certain cost. The condition
𝑇#𝜇 = 𝜈 means that the image measure of 𝜇 through 𝑇 is 𝜈, where 𝑇#𝜇 is the measure
characterized by

(𝑇#𝜇) (𝐴) = 𝜇(𝑇−1 (𝐴)) for every measurable set 𝐴,

or
∫
𝑌

𝜙 d (𝑇#𝜇) =
∫
𝑋

𝜙 ◦ 𝑇 d𝜇 for every measurable function 𝜙.

The cost of a transport map 𝑇 is evaluated in terms of a transport cost 𝑐 : 𝑋 ×𝑋 → R
and we minimize the quantity ∫

𝑋

𝑐(𝑥, 𝑇 (𝑥)) d𝜇(𝑥)

among all the maps satisfying 𝑇#𝜇 = 𝜈. This means that we have a collection of
particles, distributed according to 𝜇, that have to be moved, so that they arrange
according to a new distribution 𝜈. The cost 𝑐(𝑥, 𝑦) reprents the cost to move a unit
mass from 𝑥 to 𝑦. The map 𝑇 describes the movement, and 𝑇 (𝑥) represents the
destination of the particle originally located at 𝑥.
The problemofMonge has stayedwith no solution (does aminimizer exist? how to

characterize it?. . . ) till the progress made in the 1940s with the work by Kantorovich
([38]). For simplicity of the exposition, we will suppose that 𝑐 is continuous and
symmetric: 𝑐(𝑥, 𝑦) = 𝑐(𝑦, 𝑥) and 𝑋 to be a compact metric space.
The formulation proposed by Kantorovich of the problem raised by Monge is the

following: consider the problem

(𝐾𝑃) min
{∫

𝑋×𝑋
𝑐 d𝛾 : 𝛾 ∈ Π(𝜇, 𝜈)

}
, (13)

where Π(𝜇, 𝜈) is the set of the so-called transport plans, i.e.

Π(𝜇, 𝜈) = {𝛾 ∈ P(𝑋 × 𝑋) : (𝜋0)#𝛾 = 𝜇, (𝜋1)#𝛾 = 𝜈, }

where 𝜋0 and 𝜋1 are the two projections of 𝑋 × 𝑋 onto its factors. These probability
measures over 𝑋 × 𝑋 are an alternative way to describe the displacement of the
particles of 𝜇: instead of saying, for each 𝑥, which is the destination 𝑇 (𝑥) of the
particle originally located at 𝑥, we say for each pair (𝑥, 𝑦) how many particles go
from 𝑥 to 𝑦. It is clear that this description allows for more general movements,
since from a single point 𝑥 particles can a priori move to different destinations 𝑦. If
multiple destinations really occur, then this movement cannot be described through
a map 𝑇 . It can be easily checked that if (𝑖𝑑, 𝑇)#𝜇 belongs to Π(𝜇, 𝜈) then 𝑇 pushes
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𝜇 onto 𝜈 (i.e. 𝑇#𝜇 = 𝜈) and the functional takes the form
∫
𝑐(𝑥, 𝑇 (𝑥))d𝜇(𝑥), thus

generalizing Monge’s problem.
The minimizers for this problem are called optimal transport plans between 𝜇

and 𝜈. Should 𝛾 be of the form (𝑖𝑑, 𝑇)#𝜇 for a measurable map 𝑇 : 𝑋 → 𝑋 (i.e.
when no splitting of the mass occurs), the map 𝑇 would be called optimal transport
map from 𝜇 to 𝜈.
This generalized problem by Kantorovich is much easier to handle than the

original one proposed by Monge: for instance in the Monge case we would need
existence of at least a map 𝑇 satisfying the constraints. This is not verified when
𝜇 = 𝛿0, if 𝜈 is not a single Dirac mass. On the contrary, there always exists at least a
transport plan in Π(𝜇, 𝜈) (for instance we always have 𝜇 ⊗ 𝜈 ∈ Π(𝜇, 𝜈)). Moreover,
one can state that (𝐾𝑃) is the relaxation of the original problem by Monge: if one
considers the problem in the same setting, where the competitors are transport plans,
but sets the functional at +∞ on all the plans that are not of the form (𝑖𝑑, 𝑇)#𝜇,
then one has a functional on Π(𝜇, 𝜈) whose relaxation (in the sense of the largest
lower-semicontinuous functional smaller than the given one) is the functional in
(𝐾𝑃) (see for instance Section 1.5 in [49]).
Anyway, it is important to note that an easy use of the direct method of the

Calculus of Variations (i.e. taking a minimizing sequence, saying that it is compact
in some topology - here it is the weak convergence of probability measures - finding
a limit, and proving semicontinuity, or continuity, of the functional we minimize, so
that the limit is a minimizer) proves that a minimum does exist. As a consequence,
if one is interested in the problem of Monge, the question may become “does this
minimizer come from a transport map 𝑇?” (note, on the contrary, that directly
attacking by compactness and semicontinuity Monge’s formulation is out of reach,
because of the non-linearity of the constraint 𝑇#𝜇 = 𝜈, which is not closed under
weak convergence).
Since the problem (𝐾𝑃) is a linear optimization under linear constraints, an

important tool will be duality theory, which is typically used for convex problems.
We will find a dual problem (𝐷𝑃) for (𝐾𝑃) and exploit the relations between dual
and primal. A formal procedure to find the dual problem passes through an inf-sup
exchange.
First express the constraint 𝛾 ∈ Π(𝜇, 𝜈) in the following way : notice that, if 𝛾 is

a non-negative measure on 𝑋 × 𝑋 , then we have

sup
𝜑, 𝜓

∫
𝜑 d𝜇 +

∫
𝜓 d𝜈 −

∫
(𝜑(𝑥) + 𝜓(𝑦)) d𝛾 =

{
0 if 𝛾 ∈ Π(𝜇, 𝜈)
+∞ otherwise

.

Hence, one can remove the constraints on 𝛾 by adding the previous sup, since if
they are satisfied nothing has been added and if they are not one gets +∞ and this will
be avoided by the minimization. We may look at the problem we get and interchange
the inf in 𝛾 and the sup in 𝜑, 𝜓: for simplicity we will write 𝜑 ⊕ 𝜓 for the function
on 𝑋 × 𝑋 defined via (𝑥, 𝑦) ↦→ 𝜑(𝑥) + 𝜓(𝑦) and



Optimal transport methods for parabolic diffusion equations: the JKO scheme 13

min
𝛾≥0

∫
𝑐 d𝛾 + sup

𝜑,𝜓

(∫
𝜑 d𝜇 +

∫
𝜓 d𝜈 −

∫
𝜑 ⊕ 𝜓 d𝛾

)
becomes

sup
𝜑,𝜓

∫
𝜑 d𝜇 +

∫
𝜓 d𝜈 + inf

𝛾≥0

∫
(𝑐 − 𝜑 ⊕ 𝜓) d𝛾.

Obviously it is not always possible to exchange inf and sup, and the main tools to do
this come from convex analysis. We refer to [49], Section 1.6.3 for a simple proof
of this fact, or to [54], where the proof is based on Flenchel-Rockafellar duality
(see, for instance, [30] or [51]). Anyway, we insist that in this case it is true that
inf sup = sup inf.
Afterwards, one can re-write the inf in 𝛾 as a constraint on 𝜑 and 𝜓, since one has

inf
𝛾≥0

∫
(𝑐(𝑥, 𝑦) − (𝜑(𝑥) + 𝜓(𝑦))) d𝛾 =

{
0 if 𝜑 ⊕ 𝜓 ≤ 𝑐 on 𝑋 × 𝑋
−∞ otherwise

.

This leads to the following dual optimization problem: given the two probabilities
𝜇 and 𝜈 and the cost function 𝑐 : 𝑋 × 𝑋 → [0, +∞] we consider the problem

(𝐷𝑃) max
{∫

𝑋

𝜑 d𝜇 +
∫
𝑋

𝜓 d𝜈 : 𝜑, 𝜓 ∈ 𝐶 (𝑋), 𝜑 ⊕ 𝜓 ≤ 𝑐 on 𝑋 × 𝑋
}
. (14)

This problem does not admit a straightforward existence result, since the class of
admissible functions lacks compactness. Yet, it is possible to see that we can restrict
the maximization to functions which are 𝑐−concave. Indeed, we can define a notion
of 𝑐−transform similar to that of Legendre transform and use it as follows

Definition 4 Given a function 𝜒 : 𝑋 → Rwedefine its 𝑐−transform (or 𝑐−conjugate
function) by

𝜒𝑐 (𝑦) = inf
𝑥∈𝑋

𝑐(𝑥, 𝑦) − 𝜒(𝑥).

Moreover, we say that a function 𝜓 is 𝑐−concave if there exists 𝜒 such that 𝜓 = 𝜒𝑐 .

It is quite easy to realize that, given a pair (𝜙, 𝜓) in the maximization problem
(DP), one can always replace it with (𝜙, 𝜙𝑐), and then with (𝜙𝑐𝑐 , 𝜙𝑐), and the
constraints are preserved and the integrals increased. Moreover, any 𝑐−concave
function shares the same modulus of continuity of the cost 𝑐. Hence, if 𝑐 is uniformly
continuous (which is always the case whenever 𝑐 is continuous and 𝑋 is compact),
one can get a uniform modulus of continuity for suitable minimizing sequences and
then prove existence for (𝐷𝑃), by applying Ascoli-Arzelà’s Theorem. The functions
(𝜑, 𝜓) realizing the maximum in (DP) are called Kantorovich potentials (we say that
𝜑 is the Kantorovich potential for the transport from 𝜇 to 𝜈 and that 𝜓 is the one for
the transport from 𝜈 to 𝜇).
We look at two interesting cases. When 𝑐(𝑥, 𝑦) is equal to the distance 𝑑 (𝑥, 𝑦) on

the metric space 𝑋 , then we can easily see that 𝑐−concave functions coincide with
1-Lipschitz functions and
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𝜑 ∈ Lip1 ⇒ 𝜑𝑐 = −𝜑. (15)

Another interesting case is the case where 𝑋 = Ω ⊂ R𝑑 and 𝑐(𝑥, 𝑦) = 1
2 |𝑥 − 𝑦 |

2. In
this case if a function 𝜑 is 𝑐−concave then 𝑥 ↦→ 𝑥2

2 − 𝜑(𝑥) is a convex function (and
this is an equivalence if 𝑋 = R𝑑).
A consequence of (15) is that, in the case where 𝑐 = 𝑑, the duality result may be

re-written as
min (𝐾𝑃) = max (𝐷𝑃) = max

𝜑∈Lip1

∫
𝑋

𝜑 d(𝜇 − 𝜈). (16)

We now concentrate on the case when 𝑋 is a domain Ω ⊂ R𝑑 , and look at the
existence of optimal transport maps 𝑇 . We will use costs 𝑐 of the form 𝑐(𝑥, 𝑦) =

ℎ(𝑥 − 𝑦) for a strictly convex function ℎ.
The main tool is the duality result. If we have equality between the minimum of

(𝐾𝑃) and the maximum of (𝐷𝑃) and both extremal values are realized, one can
consider an optimal transport plan 𝛾 and a Kantorovich potential 𝜑 and write

𝜑(𝑥) + 𝜑𝑐 (𝑦) ≤ 𝑐(𝑥, 𝑦) on 𝑋 × 𝑋 and 𝜑(𝑥) + 𝜑𝑐 (𝑦) = 𝑐(𝑥, 𝑦) on spt 𝛾.

The equality on spt 𝛾 is a consequence of the inequality which is valid everywhere
and of ∫

𝑐 d𝛾 =

∫
𝜑 d𝜇 +

∫
𝜑𝑐 d𝜈 =

∫
(𝜑(𝑥) + 𝜑𝑐 (𝑦)) d𝛾,

which implies equality 𝛾−a.e. These functions being continuous, the equality passes
to the support of the measure. Once we have that, let us fix a point (𝑥0, 𝑦0) ∈ spt 𝛾.
One may deduce from the previous computations that

𝑥 ↦→ 𝜑(𝑥) − ℎ(𝑥 − 𝑦0) is maximal at 𝑥 = 𝑥0

and, if 𝜑 is differentiable at 𝑥0, one gets ∇𝜑(𝑥0) = ∇ℎ(𝑥0 − 𝑦0) i.e. 𝑦0 = 𝑥0 −
∇ℎ∗ (∇𝜑(𝑥0)). This shows that only one unique point 𝑦0 can be such that (𝑥0, 𝑦0) ∈
spt 𝛾, which means that 𝛾 is concentrated on a graph.

Theorem 1 Assume 𝑐(𝑥, 𝑦) = ℎ(𝑥 − 𝑦) for a strictly convex function ℎ. Given 𝜇
and 𝜈 probability measures on a domain Ω ⊂ R𝑑 there exists an optimal transport
plan 𝛾; it is unique and of the form (𝑖𝑑, 𝑇)#𝜇, provided 𝜇 is absolutely continuous.
Moreover there exists also at least a Kantorovich potential 𝜑, and the gradient ∇𝜑
is uniquely determined 𝜇−a.e. The optimal transport map 𝑇 and the potential 𝜑 are
linked by 𝑇 (𝑥) = 𝑥 − ∇ℎ∗ (∇𝜑(𝑥)).

In the case ℎ(𝑧) = 1
2 |𝑧 |

2 we have 𝑇 (𝑥) = 𝑥 − ∇𝜑(𝑥) = ∇𝑢(𝑥), where 𝑢(𝑥) :=
𝑥2

2 − 𝜑(𝑥) is a convex function.

The fact that the optimal map in the quadratic case is the gradient of a convex
function is a well-known theorem, due to Brenier ([9, 10], see also [34, 32, 33, 42]).
The only technical point above is the 𝜇-a.e. differentiability of the potential 𝜑, but 𝜑
has the same regularity of 𝑐, and Lipschitz functions are differentiable Lebesgue-a.e.
(which explains the assumption that 𝜇 should be absolutely continuous).
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In Theorem 1 only the part concerning the optimal map 𝑇 is not symmetric in 𝜇
and 𝜈: hence the uniqueness (up to additive constants) of the Kantorovich potential
is true even if it 𝜈 (and not 𝜇) has positive density a.e. (since one can retrieve 𝜑 from
𝜑𝑐 and viceversa).

3.2 The Wasserstein distances

Starting from the values of the problem (𝐾𝑃) we can define a set of distances over
P(𝑋).
We mainly consider costs of the form 𝑐(𝑥, 𝑦) = |𝑥 − 𝑦 |𝑝 in 𝑋 = Ω ⊂ R𝑑 , but the

analysis can be adapted to a power of the distance in a more general metric space 𝑋 .
The exponent 𝑝 will always be taken in [1, +∞) (we will not discuss the case 𝑝 = ∞)
in order to take advantage of the properties of the 𝐿 𝑝 norms. When Ω is unbounded
we need to restrict our analysis to the following set of probabilities

P𝑝 (Ω) :=
{
𝜇 ∈ P(Ω) :

∫
Ω

|𝑥 |𝑝 d𝜇(𝑥) < +∞
}
.

The distances that we want to consider are defined in the following way: for any
𝑝 ∈ [1, +∞) set

𝑊𝑝 (𝜇, 𝜈) =
(
min (𝐾𝑃) with 𝑐(𝑥, 𝑦) = |𝑥 − 𝑦 |𝑝

)1/𝑝
.

The quantities that we obtain in this way are called Wasserstein distances (this is
the standard name nowadays, even if this choice is highly debated). They are very
important in many fields of applications and they seem a natural way to describe
distances between equal amounts of mass distributed on a same space.
We summarize here some properties of these distances. Most proofs can be found

in [49], chapter 5, or in [54] or [4].

Theorem 2 The quantity𝑊𝑝 defined above is a distance over P𝑝 (Ω).
If 𝑋 is compact, for any 𝑝 ≥ 1 the function 𝑊𝑝 is a distance over P(𝑋) and the

convergence with respect to this distance is equivalent to the weak convergence of
probability measures.

Without assuming compactness of 𝑋 , for any 𝑝 ≥ 1 the function𝑊𝑝 is a distance
over P𝑝 (𝑋) and, given a measure 𝜇 and a sequence (𝜇𝑛)𝑛 inW𝑝 (𝑋), the following
are equivalent:

• 𝜇𝑛 → 𝜇 according to𝑊𝑝;
• 𝜇𝑛 ⇀ 𝜇 and

∫
|𝑥 |𝑝d𝜇𝑛 →

∫
|𝑥 |𝑝d𝜇;

•
∫
𝑋
𝜙 d𝜇𝑛 →

∫
𝑋
𝜙 d𝜇 for any 𝜙 ∈ 𝐶0 (𝑋) whose growth is at most of order 𝑝 (i.e.

there exist constants 𝐴 and 𝐵 depending on 𝜙 such that |𝜙(𝑥) | ≤ 𝐴 + 𝐵𝑑 (𝑥, 𝑥0) 𝑝
for any 𝑥).
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To prove that the convergence according to𝑊𝑝 is equivalent to weak convergence
(in the compact case) one first establish this result for 𝑝 = 1, through the use of the
duality formula in the form (16). Then it is possible to use the inequalities between
the distances 𝑊𝑝 to extend the result to a general 𝑝. Indeed, as a consequence of
Hölder (or Jensen) inequalities, the Wasserstein distances are always ordered, i.e.
𝑊𝑝1 ≤ 𝑊𝑝2 if 𝑝1 ≤ 𝑝2. Reversed inequalities are possible only if Ω is bounded, and
in this case we have, if set 𝐷 = diam(Ω), for 𝑝1 ≤ 𝑝2, we have

𝑊𝑝1 ≤ 𝑊𝑝2 ≤ 𝐷1−𝑝1/𝑝2𝑊 𝑝1/𝑝2
𝑝1 .

After this short introduction to the metric space W𝑝 := (P𝑝 (𝑋),𝑊𝑝) and its
topology, since we focus on the Euclidean case where the metric space 𝑋 is a
domain Ω ⊂ R𝑑 , we want to study the curves valued inW𝑝 (Ω) in connections with
PDEs.
Themain point is to identify the absolutely continuous curves in the spaceW𝑝 (Ω)

with solutions of the continuity equation 𝜕𝑡 𝜚𝑡 + ∇ · (v𝑡 𝜚𝑡 ) = 0 with 𝐿 𝑝 vector fields
v𝑡 . Moreover, we want to connect the 𝐿 𝑝 norm of v𝑡 with the metric derivative
|𝜚′ | (𝑡).
We recall that standard considerations from fluid mechanics tell us that the con-

tinuity equation above may be interpreted as the equation ruling the evolution of the
density 𝜚𝑡 of a family of particles initially distributed according to 𝜇0 and each of
which follows the flow {

𝑦′𝑥 (𝑡) = v𝑡 (𝑦𝑥 (𝑡))
𝑦𝑥 (0) = 𝑥.

The main theorem in this setting (originally proven in [4]) relates absolutely contin-
uous curves inW𝑝 with solutions of the continuity equation:

Theorem 3 Let (𝜚𝑡 )𝑡 ∈[0,1] be an absolutely continuous curve inW𝑝 (Ω) (for 𝑝 > 1
and Ω ⊂ R𝑑 an open domain). Then for a.e. 𝑡 ∈ [0, 1] there exists a vector field
v𝑡 ∈ 𝐿 𝑝 (𝜚𝑡 ;R𝑑) such that

• the continuity equation 𝜕𝑡 𝜚𝑡+∇·(v𝑡 𝜚𝑡 ) = 0 is satisfied in the sense of distributions,
• for a.e. 𝑡 we have | |v𝑡 | |𝐿𝑝 ( 𝜚𝑡 ) ≤ |𝜚′ | (𝑡) (where |𝜚′ | (𝑡) denotes the metric derivative

at time 𝑡 of the curve 𝑡 ↦→ 𝜚𝑡 , w.r.t. the distance𝑊𝑝);

Conversely, if (𝜚𝑡 )𝑡 ∈[0,1] is a family of measures in P𝑝 (Ω) and for each 𝑡 we
have a vector field v𝑡 ∈ 𝐿 𝑝 (𝜚𝑡 ;R𝑑) with

∫ 1
0 | |v𝑡 | |𝐿𝑝 ( 𝜚𝑡 ) d𝑡 < +∞ solving 𝜕𝑡 𝜚𝑡 + ∇ ·

(v𝑡 𝜚𝑡 ) = 0, then (𝜚𝑡 )𝑡 is absolutely continuous in W𝑝 (Ω) and for a.e. 𝑡 we have
|𝜚′ | (𝑡) ≤ ||v𝑡 | |𝐿𝑝 ( 𝜚𝑡 ) .

Note that, as a consequence of the second part of the statement, the vector field
v𝑡 introduced in the first part must a posteriori satisfy | |v𝑡 | |𝐿𝑝 ( 𝜚𝑡 ) = |𝜚′ | (𝑡).
We will not give the proof of this theorem, which is quite involved. The main

reference is [4] (but the reader can also find alternative proofs in Chapter 5 of [49],
in the case whereΩ is compact). Yet, if the reader wants an idea of the reason for this
theorem to be true, it is possible to start from the case of two time steps: there are
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two measures 𝜚𝑡 and 𝜚𝑡+ℎ and there are several ways for moving the particles so as
to reconstruct the latter from the former. It is exactly as when we look for a transport.
One of these transports is optimal in the sense that it minimizes

∫
|𝑇 (𝑥) − 𝑥 |𝑝d𝜚𝑡 (𝑥)

and the value of this integral equals 𝑊 𝑝
𝑝 (𝜚𝑡 , 𝜚𝑡+ℎ). If we call v𝑡 (𝑥) the “discrete

velocity of the particle located at 𝑥 at time 𝑡, i.e. v𝑡 (𝑥) = (𝑇 (𝑥) − 𝑥)/ℎ, one has
| |v𝑡 | |𝐿𝑝 ( 𝜚𝑡 ) =

1
ℎ
𝑊𝑝 (𝜚𝑡 , 𝜚𝑡+ℎ). We can easily guess that, at least formally, the result

of the previous theorem can be obtained as a limit as ℎ → 0.
Because of the role played by the 𝐿 𝑝 norm of the velocity field in the continuity

equation it turns out that the following functional is extremely useful in optimal
transport theory:

(𝜚, v) ↦→
∫ 1

0

∫
Ω

|v𝑡 |𝑝d𝜚𝑡

to be computed on pairs (𝜚, v) such that 𝜕𝑡 𝜚𝑡 +∇ · (v𝑡 𝜚𝑡 ) = 0. In particular, we have,
for 𝑝 > 1

𝑊
𝑝
𝑝 (𝜇, 𝜈) = min

{∫ 1

0

∫
Ω

|v𝑡 |𝑝d𝜚𝑡 d𝑡 : 𝜕𝑡 𝜚𝑡 + ∇ · (v𝑡 𝜚𝑡 ) = 0, 𝜚0 = 𝜇, 𝜚1 = 𝜈
}
.

(17)
This is what is usually called Benamou-Brenier formula ([8]).
On the other hand, this minimization problem in the variables (𝜚𝑡 , v𝑡 ) has non-

linear constraints (due to the product v𝑡 𝜚𝑡 ) and the functional is non-convex (since
(𝑠, 𝑧) ↦→ 𝑠 |𝑧 |𝑝 is not convex). Yet, it is possible to transform it into a convex
problem. For this, it is sufficient to switch variables, from (𝜚𝑡 , v𝑡 ) into (𝜚𝑡 , 𝐸𝑡 )
where 𝐸𝑡 = v𝑡 𝜚𝑡 . We then define the functional

B𝑝 (𝜚, 𝐸) :=
{∫ 1
0

∫
Ω
|v𝑡 |𝑝d𝜚𝑡 d𝑡 if 𝐸 = 𝜚v,

+∞ if not.

We will not provide details here but it is possible to prove that B𝑝 is convex and
lower-semicontinuous for the weak convergence as measures of its variables. Its
convexity is the key point of the numerical methods (as it was first done in [8]).
Once we know about curves in their generality, it is interesting to think about

geodesics. The following result is a characterization of geodesics in𝑊𝑝 (Ω) when Ω
is a convex domain in R𝑑 . This procedure is also known as McCann’s displacement
interpolation (see [43]).
Theorem 4 If Ω ⊂ R𝑑 is convex, then all the spacesW𝑝 (Ω) are length spaces and
if 𝜇 and 𝜈 belong toW𝑝 (Ω), and 𝛾 is an optimal transport plan from 𝜇 to 𝜈 for the
cost 𝑐𝑝 (𝑥, 𝑦) = |𝑥 − 𝑦 |𝑝 , then the curve

𝜇𝛾 (𝑡) = (𝜋𝑡 )#𝛾

where 𝜋𝑡 : Ω × Ω → Ω is given by 𝜋𝑡 (𝑥, 𝑦) = (1 − 𝑡)𝑥 + 𝑡𝑦, is a constant-speed
geodesic from 𝜇 to 𝜈. In the case 𝑝 > 1 all the constant-speed geodesics are of this
form, and, if 𝜇 is absolutely continuous, then there is only one geodesic and it has
the form
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𝜇𝑡 = [𝑇𝑡 ]#𝜇, where 𝑇𝑡 := (1 − 𝑡)𝑖𝑑 + 𝑡𝑇

where 𝑇 is the optimal transport map from 𝜇 to 𝜈. In this case, the velocity field v𝑡
of the geodesic 𝜇𝑡 is given by v𝑡 = (𝑇 − 𝑖𝑑) ◦ (𝑇𝑡 )−1. In particular, for 𝑡 = 0 we
have v0 = −∇ℎ∗ (∇𝜑) and for 𝑡 = 1 we have v1 = ∇ℎ∗ (∇𝜓), where ℎ(𝑧) = 1

𝑝
|𝑧 |𝑝

and (𝜑, 𝜓) are the Kantorovich potentials in the transport from 𝜇 to 𝜈 for the cost
𝑐(𝑥, 𝑦) = ℎ(𝑥 − 𝑦).

3.3 Minimizing movement schemes in the Wasserstein space and
evolution PDEs

Thanks to all the theory which has been described so far, it is natural to study (linear
or non-linear) gradient flows in the spaceW𝑝 (Ω) and to connect them to PDEs of the
form of a continuity equation. The most convenient way to study this is to start from
the time-discretized problem, i.e. to consider a sequence of iterated minimization
problems:

𝜚𝜏𝑘+1 = 𝚷[𝜚𝜏𝑘 ], 𝚷[𝑔] := argmin𝜚 𝐹 (𝜚) +
𝑊

𝑝
𝑝 (𝜚, 𝑔)
𝑝𝜏𝑝−1

. (18)

This iterated minimization scheme is called JKO scheme (after Jordan, Kinderleher
and Otto, [37]). Actually, this name was originally only used for the case 𝑝 = 2 and
we will refer to this scheme as𝑊𝑝−JKO.
Note that we denote now the measures on Ω by the letter 𝜚 instead of 𝜇 or 𝜈

because we expect them to be absolutely continuous measures with nice (smooth)
densities, and we want to study the PDE they solve. Note that a priori one could use
the 𝑝−th power of arbitrary distances, and hence use 𝑊 𝑝

𝑞 instead of 𝑊
𝑝
𝑝 but in the

Wasserstein spaceW𝑝 the distance is defined as the power 1/𝑝 of a transport cost;
only in the case 𝑝 = 𝑞 the exponent goes away and we are lead to a minimization
problem involving 𝐹 (𝜚) and a transport cost of the form

T𝑐 (𝜚, 𝜈) := min
{∫

𝑐(𝑥, 𝑦) d𝛾 : 𝛾 ∈ Π(𝜚, 𝜈)
}
,

for 𝜈 = 𝜚𝜏
𝑘
. By the way, if we want to be more general, we can also replace the

minimization problem in (18) with

𝚷[𝑔] := argmin𝜚 𝐹 (𝜚) + T𝑐 (𝜚, 𝑔),

where 𝑐(𝑥, 𝑦) = 𝜏ℎ( 𝑥−𝑦
𝜏
) for a strictly convex function ℎ (we come back to (18)

when ℎ(𝑧) = 1
𝑝
|𝑧 |𝑝).

In the particular case of the spaceW𝑝 (Ω), which has some additional structure,
if compared to arbitrary metric spaces, we would like to give a PDE description of
the curves that we obtain as gradient flows, and this will pass through the optimality
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conditions of the minimization problem (18). In order to study these optimality
conditions, we introduce the notion of first variation of a functional. This will be
done in a very sketchy and formal way (we refer to Chapter 7 in [49] for more details).
Given a functional 𝐺 : P(Ω) → R we call 𝛿𝐺

𝛿 𝜚
[𝜚], if it exists, the unique (up

to additive constants) function such that 𝑑
𝑑𝜀
𝐺 (𝜚 + 𝜀𝜒) |𝜀=0 =

∫
𝛿𝐺
𝛿 𝜚

[𝜚]𝑑𝜒 for every
perturbation 𝜒 such that, at least for 𝜀 ∈ [0, 𝜀0], the measure 𝜚 + 𝜀𝜒 belongs to
P(Ω). The function 𝛿𝐺

𝛿 𝜚
[𝜚] is called first variation of the functional 𝐺 at 𝜚. In order

to understand this notion, the easiest possibility is to analyze some examples.
The main classes of examples are the following functionals1

𝐹 (𝜚) =
∫

𝑓 (𝑥, 𝜚(𝑥))d𝑥,

where 𝑓 : Ω × R → R is a function which is convex and superlinear in its second
variable (and the functional 𝐹 is set to +∞ if 𝜚 is not absolutely continuous w.r.t. the
Lebesgue measure. In this case it is quite easy to realize that we have

𝛿𝐹

𝛿𝜚
[𝜚] = 𝑓 ′(𝑥, 𝜚),

where the derivative 𝑓 ′ is also taken w.r.t. the second variable. A classical example
is to consider 𝑓 (𝑥, 𝑠) = 𝑠𝑚 + 𝑉 (𝑥)𝑠 or 𝑓 (𝑥, 𝜚) = 𝑠 log 𝑠 + 𝑉 (𝑥)𝑠, where 𝑉 : Ω → R
is regular enough.
It is clear that the first variation of a functional is a crucial tool to write optimality

conditions for variational problems involving such a functional. In order to study the
problem (18), we need to complete the picture by undestanding the first variation of
functionals of the form 𝜚 ↦→ T𝑐 (𝜚, 𝜈). The result is the following:

Proposition 1 Let 𝑐 : Ω×Ω → R be a continuous cost function. Then the functional
𝜚 ↦→ T𝑐 (𝜚, 𝜈) is convex, and its subdifferential at 𝜚0 coincides with the set of
Kantorovich potentials {𝜑 ∈ 𝐶0 (Ω) :

∫
𝜑 d𝜚0 +

∫
𝜑𝑐 d𝜈 = T𝑐 (𝜚, 𝜈)}. Moreover,

if there is a unique 𝑐-concave Kantorovich potential 𝜑 from 𝜚0 to 𝜈 up to additive
constants, then we also have 𝛿T𝑐 ( ·,𝜈)

𝛿 𝜚
[𝜚0] = 𝜑.

Even if a complete proof of the above proposition is not totally trivial (and Chapter
7 in [49] only provides it in the case where Ω is compact), one can guess why this is
true from the following considerations. Using the duality formula we have

T𝑐 (𝜚, 𝜈) = max
𝜑,𝜓 : 𝜑⊕𝜓≤𝑐

∫
Ω

𝜑 d𝜚 +
∫
Ω

𝜓 d𝜈.

This expresses T𝑐 as a supremum of linear functionals in 𝜚 and shows convexity.
Standard considerations from convex analysis allow to identify the subdifferential
as the set of functions 𝜑 attaining the maximum. An alternative point of view is to
consider the functional 𝜚 ↦→

∫
𝜑 d𝜚 +

∫
𝜓 d𝜈 for fixed (𝜑, 𝜓), in which case the first

1 Note that in some cases the functionals that we use are actually valued in R ∪ {+∞}, and we
restrict to a suitable class of perturbations 𝜒 which make the corresponding functional finite.
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variation is of course 𝜑; then it is easy to see that the first variation of the supremum
may be obtained (in case of uniqueness) just by selecting the optimal pair (𝜑, 𝜓).
Once we know how to compute first variations, we come back to the optimality

conditions for theminimization problem (18).Which are these optimality conditions?
roughly speaking, we should have

𝛿𝐹

𝛿𝜚
[𝜚𝜏𝑘+1] + 𝜑 = 𝑐𝑜𝑛𝑠𝑡

(where the reasons for having a constant instead of 0 is the fact that, in the space
of probability measures, only zero-mean densities are considered as admissible
perturbations, and the first variations are always defined up to additive constants).
Note that here 𝜑 is the Kantorovich potential associated with the transport from 𝜚𝜏

𝑘+1
to 𝜚𝜏

𝑘
(and not viceversa), and with the transport cost 𝑐(𝑥, 𝑦) = 𝜏ℎ

( 𝑥−𝑦
𝜏

)
. It is related

to the optimal transport map 𝑇 through

∇ℎ
(
𝑥 − 𝑇 (𝑥)

𝜏

)
= ∇𝜑(𝑥) i.e. 𝑇 (𝑥) = 𝑥 − 𝜏∇ℎ∗ (∇𝜑(𝑥)).

Let us look at the consequences we can get from this optimality condition.
Actually, if we combine the fact that the above sum is constant with the formula
for the optimal 𝑇 , we get

−v(𝑥) := 𝑇 (𝑥) − 𝑥
𝜏

= −∇ℎ∗
(
∇𝜑(𝑥)

)
= ∇ℎ∗

(
∇ 𝛿𝐹
𝛿𝜚

[𝜚]
)
(𝑥), (19)

where used the fact that we assume ℎ∗ to be even to remove the minus signs in the
last expression.
Why did we denote by−v the ratio 𝑇 (𝑥)−𝑥

𝜏
? because, as a ratio between a displace-

ment and a time step, it has the meaning of a velocity, but since it is the displacement
associated to the transport from 𝜚𝜏

𝑘+1 to 𝜚
𝜏
𝑘
, it is better to view it rather as a backward

velocity (which justifies the minus sign).
Since here we have v = −∇ℎ∗

(
∇ 𝛿𝐹

𝛿 𝜚
[𝜚]

)
, this suggests that at the limit 𝜏 → 0 we

will find a solution of

𝜕𝑡 𝜚 − ∇ ·
(
𝜚 ∇ℎ∗

(
∇

(
𝛿𝐹

𝛿𝜚
[𝜚]

)))
= 0. (20)

This is a PDE where the velocity field in the continuity equation depends on the
density 𝜚 itself.
We can see many interesting examples.
Let us start from the case where ℎ is quadratic, i.e. ℎ(𝑧) = |𝑧 |2/2 and ∇ℎ∗ = 𝑖𝑑.

In this case the equation is simpler.
First, suppose 𝐹 (𝜚) =

∫
𝑓 (𝜚(𝑥))d𝑥, with 𝑓 (𝑠) = 𝑠 log 𝑠. In such a case we have

𝑓 ′(𝑠) = log 𝑠 + 1 and ∇( 𝑓 ′(𝜚)) =
∇𝜚

𝜚
: this means that the gradient flow equation

associated with the functional 𝐹 would be the Heat Equation
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𝜕𝑡 𝜚 − Δ𝜚 = 0.

Using 𝐹 (𝜚) =
∫
𝑓 (𝜚(𝑥)) d𝑥 +

∫
𝑉 (𝑥) d𝜚(𝑥), we would have the Fokker-Planck

Equation
𝜕𝑡 𝜚 − Δ𝜚 − ∇ · (𝜚∇𝑉) = 0.

Changing the function 𝑓 we can obtain other forms of diffusion. For instance, if
one uses

𝐹 (𝜚) = 1
𝑚 − 1

∫
𝜚𝑚 (𝑥) d𝑥 +

∫
𝑉 (𝑥)𝜚(𝑥) d𝑥,

the equation we obtain is

𝜕𝑡 𝜚 − Δ(𝜚𝑚) − ∇ · (𝜚∇𝑉) = 0.

When 𝑚 > 1 this equation is called Porous Media Equation (see [53] for a complete
monography and [46] for its treatmentwith the JKO scheme) andmodels the diffusion
of a fluid into a material whose porosity slows down the diffusion. Among the
properties of this equation there is a finite-speed propagation effect, different from
linear diffusion (if 𝜚0 is compactly supported the same stays true for 𝜚𝑡 , 𝑡 > 0,
while this is not the case for the heat equation). It is also interesting to consider the
case 𝑚 < 1: the function 𝜚𝑚 − 𝜚 is concave, but the negative coefficient 1/(𝑚 − 1)
finally gives a convex function (which is, unfortunately, not superlinear at infinity,
hece more difficult to handle). The PDE that we get as a gradient flow is called Fast
diffusion equation, and has opposite properties in terms of diffusion rate than the
porous medium one.
We can then consider other choices of transport cost. When ℎ(𝑧) = 1

𝑝
|𝑧 |𝑝 we have

∇ℎ∗ (𝑧) = 𝑧𝑞−1. When taking 𝐹 (𝜚) =
∫
𝑓 (𝜚(𝑥))d𝑥 we obtain the following equation

𝜕𝑡 𝜚 = ∇ · (𝜚 𝑓 ′′(𝜚)𝑞−1 (∇𝜚)𝑞−1),

which can also be rewritten as

𝜕𝑡 𝜚 = Δ𝑞 (𝜙(𝜚)),

where Δ𝑞 is the 𝑞−Laplace operator Δ𝑞𝑢 := ∇ · ((∇𝑢)𝑞−1) and 𝜙 is defined via
𝜙′(𝑠) = 𝑠𝑝−1 𝑓 ′′(𝑠) (in this way, when 𝑓 is convex 𝜙 is non-decreasing).
The case where we choose 𝑓 (𝑠) = 𝑠 log 𝑠 provides an interesting family of

equations : those which are not linear, but are as linear as possible in this class, as they
are one-homogeneous. In particular, among these equationswe find 𝜕𝑡 𝜚 = Δ𝑞 (𝜚𝑝−1).
The same happens when adding a potential 𝑉 : 𝜕𝑡 𝜚 = ∇ · (𝜚(∇(log 𝜚 +𝑉))𝑞−1).
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3.4 Geodesic convexity inW𝒑

For several reasons in the theory of gradient flows in Wasserstein spaces it would
be useful to know when a functional is geodesically convex. Being geodesically
convex in W𝑝 means that 𝑡 ↦→ 𝐹 (𝜇𝑡 ) is a convex function whenever 𝑡 ↦→ 𝜇𝑡 is a
constant-speed geodesic. Knowing the form of geodesics in𝑊𝑝 , we can say that this
corresponds to the convexity of 𝑡 ↦→ 𝐹 ((𝑇𝑡 )#𝜇) whenever 𝑇𝑡 := (1 − 𝑡)𝑖𝑑 + 𝑡𝑇 and
𝑇 is the optimal transport map from a measure 𝜇 to another measure 𝜈. This can
also be extended to the case where the transport map 𝑇 is optimal for a transport
cost of the form 𝑐(𝑥, 𝑦) = ℎ(𝑥 − 𝑦) when ℎ is not necessarily a power. In this
case the curve 𝜇𝑡 = (𝑇𝑡 )#𝜇) cannot be interpreted as a geodesic, but as an optimal
displacement moving 𝜇 into 𝜈. The notion of geodesical convexity is indeed also
called displacement convexity and was first introduced by McCann in [43]. In the
framework of these notes, geodesic convexity could be used in two - strongly related
- aspects: one is the abstract notion of EVI gradient flows in metric spaces (only
available for linear gradient flows, i.e. 𝑝 = 2), the other is a sharp estimate of the rate
of decrease of a functional 𝐺 along the gradient flow of 𝐹 which can be performed
along the JKO scheme when 𝐺 is displacement convex.
We will consider separately two interesting examples of functionals: 𝒱(𝜚) :=∫
𝑉d𝜚 andℱ(𝜚) :=

∫
𝑓 (𝜚(𝑥))d𝑥.

It is not difficult to check that the convexity of 𝑉 is enough to guarantee geodesic
convexity of𝒱, since

𝒱(𝜇𝑡 ) =
∫
𝑉 d

(
(1 − 𝑡)𝑖𝑑 + 𝑡𝑇

)
#𝜇 =

∫
𝑉

(
(1 − 𝑡)𝑥 + 𝑡𝑇 (𝑥)

)
d𝜇,

The most interesting displacement convexity result is the one for functionals
depending on the density. To consider these functionals, we need some technical
facts.
The starting point is the computation of the density of an image measure, via

standard change-of-variable techniques: if 𝑇 : Ω → Ω is a map smooth enough2
and injective, and det(𝐷𝑇 (𝑥)) ≠ 0 for a.e. 𝑥 ∈ Ω, if we set 𝜚𝑇 := 𝑇#𝜚, then 𝜚𝑇 is
absolutely continuous with density given by

𝜚𝑇 =
𝜚

det(𝐷𝑇) ◦ 𝑇
−1.

Then, using a well-known fact in linear algebra, that the determinant raised to
the power 1/𝑑 is a concave function on the set of positive-definite symmetric 𝑑 × 𝑑
matrices (which can be generalized to the case where the eigenvalues are real and
non-negative), we can obtain the following result due to McCann

2 We need at least 𝑇 to be countably Lipschitz, i.e. Ω may be written as a countable union of
measurable sets (Ω𝑖)𝑖≥0 with Ω0 negligible and 𝑇 Ω𝑖 Lipschitz continuous for every 𝑖 ≥ 1.
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Theorem 5 Suppose that 𝑓 (0) = 0 and that 𝑠 ↦→ 𝑠𝑑 𝑓 (𝑠−𝑑) is convex and decreas-
ing. Suppose that Ω is convex and take 1 < 𝑝 < ∞. Then ℱ is displacement convex
(hence geodesically convex inW𝑝 for every 𝑝 > 1).

Remark 1 Note that the assumption that 𝑠 ↦→ 𝑠𝑑 𝑓 (𝑠−𝑑) is convex and decreasing
implies that 𝑓 itself is convex (the reader can check it as an exercise), a property
which can be useful to establish, for instance, lower semicontinuity ofℱ.

Here are some examples of convex functions satisfying the assumptions of The-
orem 5:

• all the power functions 𝑓 (𝑡) = 𝑡𝑞 for 𝑞 > 1 satisfy these assumptions, since
𝑠𝑑 𝑓 (𝑠−𝑑) = 𝑠−𝑑 (𝑞−1) is convex and decreasing;

• the entropy function 𝑓 (𝑡) = 𝑡 log 𝑡 also satisfies it: 𝑠𝑑 𝑓 (𝑠−𝑑) = −𝑑 log 𝑠 is convex
and decreasing;

• the function 𝑓 (𝑡) = −𝑡𝑚 is convex for 𝑚 < 1, and if we compute 𝑠𝑑 𝑓 (𝑠−𝑑) =

−𝑡𝑚(1−𝑑) we get a convex and decreasing function as soon as 1 − 1
𝑑
≤ 𝑚 < 1.

Note that in this case 𝑓 is not superlinear, which requires some attention for the
semicontinuity ofℱ.

Finally, it is interesting to observe that the geodesic convexity of higher-order
functionals such as 𝜚 ↦→

∫
|∇𝜚 |𝑝 generally fails, or is a very delicate matter, while

these functionals are among the most standard examples of convex functionals in the
usual sense. See [23] for some examples of first-order geodesically convex functionals
(in dimension one).

4 Convergence of the JKO scheme

Many possible proofs can be built for the convergence of the JKO scheme. In
particular, one could follow the general theory developed in [4], i.e. checking all
the assumptions to prove existence and uniqueness of an EVI gradient flow for the
functional 𝐹 in the spaceW2 (Ω), and then characterizing the velocity field associated
by Theorem 3 with the curve obtained as a gradient flow. In [4], it is proven, under
suitable conditions, that such a vector field v𝑡 must belong to what is defined as
the Wasserstein sub-differential of the functional 𝐹, provided in particular that 𝐹 is
𝜆-geodescially convex. Then, the Wasserstein sub-differential is proven to be of the
desired form (i.e. composed only of the gradient of the first variation of 𝐹, when 𝐹
admits a first variation).
This approach has the advantage to use a general theory and to adapt it to the scopes

of this particular setting. On the other hand, the important point when studying these
PDEs is that the curves (𝜚𝑡 )𝑡 obtained as a limit are weak solutions of the continuity
equation; from this point of view, the metric notions of EDI and EVI solutions and
the formalism developed in the first part of the book [4] are too general. Moreover, in
the case of the space of measures, using optimal transport theory to select a suitable
distance in the discrete scheme and choosing a suitable interpolation, the passage to
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the limit can be done by classical compactness techniques in functional analysis. Of
course, there are often some difficulties in handling some non-linear terms, which
are not always seen when using the theory of [4] (which is an advantage of such a
general theory).
In this section we will first present the ideas to obtain convergence using com-

pactness and weak convergence, and then an idea based on a specific adaptation of
the EDI approach.

4.1 Passing to the limit the PDE

Our goal is to find a curve (𝜚𝑡 )𝑡 which is a solution (in the distributional sense on
R𝑑 , which is the same as on Ω, with suitable no-flux boundary conditions on 𝜕Ω) of
the PDE

𝜕𝑡 𝜚𝑡 + ∇ · (𝜚𝑡v𝑡 ) = 0, where we require v𝑡 = −∇
(
𝛿𝐹

𝛿𝜚
[𝜚𝑡 ]

)
.

We will set 𝐸 = 𝜚v (the variable 𝐸 is called momentum, in physics) and require
at least that 𝐸 is a finite vector measure over Ω × [0, 𝑇], acting on test functions 𝜙
via 〈𝐸, 𝜙〉 :=

∫
𝑑𝑡

∫
𝜙(𝑡, 𝑥) · v𝑡 d𝜚𝑡 . Being a finite vector measure is equivalent to∫ 𝑇

0 | |v𝑡 | |𝐿1 ( 𝜚𝑡 )d𝑡 < +∞.
Starting from the discrete scheme (18), which defines a sequence (𝜚𝜏

𝑘
)𝑘 , we also

define a sequence of velocities v𝜏
𝑘
= (𝑖𝑑 − T)/𝜏, taking as T the optimal transport

from 𝜚𝜏
𝑘
to 𝜚𝜏

𝑘−1. The considerations in the previous sections guarantee that we have

v𝜏
𝑘 = ∇ℎ∗

(
−∇

(
𝛿𝐹

𝛿𝜚
[𝜚𝜏𝑘 ]

))
.

This is proven thanks to the optimality conditions in (18) and the only delicate point
is to guarantee the uniqueness of the Kantorovich potential in the transport from 𝜚𝜏

𝑘

to 𝜚𝜏
𝑘−1. In some cases it is possible to prove a priori that the minimizers in (18)

have strictly positive density a.e. whatever is 𝜈 (this is typically true when using the
functional ℱ with 𝑓 ′(0) = −∞, as it is the case for the entropy functional), which
provides uniqueness up to additive constants of the potential. In Section 8.3 of [49]
full details are provided for the Fokker-Planck case, and it is indeed proved that the
minimizers of the JKO scheme are strictly positive a.e., in this case. When positivity
of the minimizer is not available, then one can obtain the same optimality conditions
by first approximating 𝜈 with strictly positive densities, and then passing to the limit,
or by adding an entropy term times a small parameter 𝜀 to the functional and then
considenring 𝜀 → 0.
Then, we build at least two interesting curves in the space of measures:



Optimal transport methods for parabolic diffusion equations: the JKO scheme 25

• first we can define some piecewise constant curves, i.e. 𝜚𝜏𝑡 := 𝜚𝜏
𝑘+1 for 𝑡 ∈

(𝑘𝜏, (𝑘 + 1)𝜏]; associated with this curve we also define the velocities v𝜏
𝑡 = v𝜏

𝑘+1
for 𝑡 ∈ (𝑘𝜏, (𝑘 + 1)𝜏] and the momentum variable 𝐸 𝜏

= 𝜚𝜏v𝜏 ;
• then, we can also consider the densities �̂�𝜏𝑡 that interpolate the discrete values

(𝜚𝜏
𝑘
)𝑘 along geodesics:

�̂�𝜏𝑡 =
(
𝑖𝑑 − (𝑘𝜏 − 𝑡)v𝜏

𝑘

)
♯
𝜚𝜏𝑘 , for 𝑡 ∈ ((𝑘 − 1)𝜏, 𝑘𝜏[; (21)

the velocities v̂𝜏
𝑡 are defined so that ( �̂�𝜏 , v̂𝜏) satisfy the continuity equation, taking

v̂𝜏
𝑡 = v𝜏

𝑡 ◦
(
𝑖𝑑 − (𝑘𝜏 − 𝑡)v𝜏

𝑘

)−1;
moreover, as before, we define: 𝐸 𝜏 = �̂�𝜏 v̂𝜏 .

After these definitions we look for a priori bounds on the curves and the velocities
that we defined. We already know that we have∑︁

𝑘

𝜏

(
𝑊𝑝 (𝜚𝜏𝑘 , 𝜚

𝜏
𝑘−1)

𝜏

) 𝑝
≤ 𝐶, (22)

which is the discrete version of a𝑊1, 𝑝 estimate in time. As for �̂�𝜏𝑡 , it is an absolutely
continuous curve in the Wasserstein space and its velocity on the time interval
[(𝑘 − 1)𝜏, 𝑘𝜏] is given by the ratio 𝑊𝑝 (𝜚𝜏𝑘−1, 𝜚

𝜏
𝑘
)/𝜏. Hence, the 𝐿 𝑝 norm of its

velocity on [0, 𝑇] is given by∫ 𝑇

0
| ( �̂�𝜏) ′ |𝑝 (𝑡)d𝑡 =

∑︁
𝑘

𝜏

(
𝑊𝑝 (𝜚𝜏𝑘 , 𝜚

𝜏
𝑘−1)

𝜏

) 𝑝
, (23)

and, thanks to (22), it admits a uniform bound independent of 𝜏. In our case, thanks to
results on the continuity equation and theWassersteinmetric, this metric derivative is
also equal to | |̂v𝜏

𝑡 | |𝐿𝑝 ( 𝜚𝜏
𝑡 ) . This gives compactness of the curves �̂�

𝜏 , as well as Hölder
estimates (since 𝑊1, 𝑝 ⊂ 𝐶0,1/𝑞). The characterization of the velocities v𝜏 and v̂𝜏

allows to deduce bounds on these vector fields from the bounds on𝑊𝑝 (𝜚𝜏𝑘−1, 𝜚
𝜏
𝑘
)/𝜏.

Considering all these facts, one obtains the following situation (see also [50] or
Chapter 8 in [49]):

• The norm
∫
| |v𝜏

𝑡 | |
𝑝

𝐿𝑝 ( 𝜚𝜏
𝑡 )
d𝑡 is 𝜏-uniformly bounded. This quantity is equal to

B𝑝 (𝜚𝜏 , 𝐸
𝜏).

• In particular, the bound is valid in 𝐿1 as well, which implies that 𝐸 𝜏 is bounded
in the space of measures over [0, 𝑇] ×Ω.

• The very same estimates are true for v̂𝜏 and 𝐸 𝜏 .
• The curves �̂�𝜏 are bounded in 𝑊1, 𝑝 ( [0, 𝑇],W𝑝 (Ω)) and hence compact in
𝐶0 ( [0, 𝑇],W𝑝 (Ω)).

• Up to a subsequence, one has �̂�𝜏 → 𝜚, as 𝜏 → 0, uniformly according to the𝑊𝑝

distance.
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• From the estimate 𝑊𝑝 (𝜚𝜏𝑡 , �̂�𝜏𝑡 ) ≤ 𝐶𝜏1/𝑞 one gets that 𝜚𝜏 converges to the same
limit 𝜚 in the same sense.

• If we denote by 𝐸 a weak limit of 𝐸 𝜏 , since ( �̂�𝜏 , 𝐸 𝜏) solves the continuity
equation, by linearity, passing to the weak limit, also (𝜚, 𝐸) solves the same
equation.

• It is possible to prove that the weak limits of 𝐸 𝜏 and 𝐸 𝜏 are the same.
• From the semicontinuity of B𝑝 and the bound B𝑝 (𝜚𝜏 , 𝐸

𝜏) ≤ 𝐶, one gets
B𝑝 (𝜚, 𝐸) < +∞, which means that 𝐸 is absolutely continuous w.r.t. 𝜚 and
has an 𝐿 𝑝 density, so that we have for a.e. time 𝑡 a measure 𝐸𝑡 of the form 𝜚𝑡v𝑡 .

• We only need to prove that one has v𝑡 = −
(
∇

(
𝛿𝐹
𝛿 𝜚

[𝜚𝑡 ]
))𝑞−1

𝜚𝑡 -a.e. and for a.e.
𝑡. This means proving

𝐸
𝜏
= −𝜚𝜏

(
∇

(
𝛿𝐹

𝛿𝜚
(𝜚𝜏)

))𝑞−1
⇒ 𝐸 = −𝜚

(
∇

(
𝛿𝐹

𝛿𝜚
[𝜚]

))𝑞−1
(24)

as a limit as 𝜏 → 0. It is crucial in this step to consider the limit of (𝜚𝜏 , 𝐸 𝜏)
instead of ( �̂�𝜏 , 𝐸 𝜏).

This last step is the most critical one in many cases. It requires passing to the limit
(in the sense of distributions) the terms involving 𝛿𝐹

𝛿 𝜚
on a sequence 𝜚 𝑗 ⇀ 𝜚 (we do

not care here where this sequence comes from). We can see what happens with the
main class of functionals that we introduced so far.
The easiest case is that when 𝑝 = 1 and the functional is𝒱: we have

𝜚∇
(
𝛿𝒱

𝛿𝜚
[𝜚]

)
= 𝜚∇𝑉.

This term is linear in 𝜚 and 𝜚 𝑗 ⇀ 𝜚 obviously implies 𝜚 𝑗∇𝑉 ⇀ 𝜚∇𝑉 as soon as
𝑉 ∈ 𝐶1 (so that ∇𝑉 is a continuous function, which is exactly the functional space
whose dual is the space of measures). In case ∇𝑉 ∉ 𝐶0 it is possible to handle this
term as soon as suitable bounds on 𝜚 𝑗 provide a better weak convergence.
The case of the functionalℱ (still with 𝑝 = 2) is harder. In the case of the entropy

ℱ(𝜚) =
∫
𝑓 (𝜚) with 𝑓 (𝑠) = 𝑠 log 𝑠 then everything works fine because, again, the

corresponding term is linear:

𝜚∇
(
𝛿ℱ

𝛿𝜚
[𝜚]

)
= 𝜚

∇𝜚
𝜚

= ∇𝜚.

Then, the convergence of this term in the sense of distributions is straightforward
when 𝜚 𝑗 → 𝜚. By the way, the entropy term ℱ is also enough to obtain suitable
bounds to handle 𝑉 or 𝑊 which are only Lipschitz, as in this case we need to
turn the weak convergence 𝜚 𝑗 ⇀ 𝜚 from the sense of measures to the 𝐿1 sense,
which is exactly possible because the superlinear bound

∫
𝜚 𝑗 log(𝜚 𝑗 ) ≤ 𝐶 provides

equi-integrability for 𝜚 𝑗 .
Yet, for other functions 𝑓 , there is no more linearity, and we need stronger bounds.

For instance, for 𝑓 (𝑠) = 𝑠𝑚/(𝑚 − 1), we have
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𝜚∇
(
𝛿ℱ

𝛿𝜚
[𝜚]

)
= 𝜚

𝑚

𝑚 − 1∇(𝜚
𝑚−1) = ∇(𝜚𝑚).

This means that weak convergence of 𝜚 𝑗 is no more enough, but one also needs weak
convergence of 𝜚𝑚

𝑗
, which means strong convergence of 𝜚 𝑗 . This can be proven when

we have stronger bounds (if possible, Sobolev bounds on 𝜚 𝑗 ).
The main ingredient is indeed an 𝐻1 bound in space, which comes from the fact

that we have∫ 𝑇

0

∫
Ω

|∇(𝜚𝑚−1/2) | d𝑥d𝑡 ≈
∫ 𝑇

0

∫
Ω

|∇(𝜚𝑚−1) |2 d𝜚𝑡d𝑡

≈
∫ 𝑇

0

∫
Ω

|∇𝜑 |2
𝜏2

d𝜚𝑡d𝑡 =
∫ 𝑇

0
|𝜚′ | (𝑡)2d𝑡 ≤ 𝐶. (25)

This is only a bound on the 𝐻1 norm in space, and does not involve time derivatives,
so that we need to use the so-called Aubin-Lions lemma (see [5]), which interpolates
between compactness in space and in time (roughly speaking: in our situation we
have an 𝐿2 bound in time with values in a strong space norm, 𝐻1, but also a stronger
bound in time, 𝐻1, valued in the 𝑊2 distance, which is weaker as it metrizes weak
convergence; this information together can provide strong compactness).
However, so far we only considered the case 𝑝 = 2. In this case the term 𝐸 can be

non-linear in 𝜚 but is in general linear in ∇𝜚, which means that we only need to prove
strong convergence of 𝜚 𝑗 (and not of ∇𝜚 𝑗 ) in order to obtain (24). On the other hand,
when 𝑝 ≠ 2 the relation between 𝐸 and ∇𝜚 is not any more linear, which means that
we should obtain strong convergence not only of 𝜚 𝑗 but also of its gradient, which is
much harder (second-order Sobolev bounds would be needed, and they are not easy
to obtain in the JKO scheme).

4.2 The EDI formulation

In this section we present a very different strategy; more adapted to deal with cases
where the strong convergence of the densities or of their gradients is not easy to
prove. It has been used, for instance, in [1, 22, 20] to deal with non-linear gradient
flows in𝑊𝑝 , and in [29] to deal with a system in𝑊2 ×𝑊2.
The starting point of this section is the following observation; finding a solution

of 𝜕𝜚𝑡 = ∇ · (𝜚∇ℎ∗ (∇ 𝛿𝐹
𝛿 𝜚

)) amounts to finding a pair (𝜚, v) such that one has at the
same time the continuity equation 𝜕𝑡 𝜚 + ∇ · (𝜚v) and v = −∇ℎ∗ (∇ 𝛿𝐹

𝛿 𝜚
). Assuming

that (𝜚, v) is regular enough so that we can differentiate in time 𝐹 (𝜚𝑡 ) and obtain
the so-called chain rule d

d𝑡 𝐹 (𝜚𝑡 ) =
∫
∇ 𝛿𝐹

𝛿 𝜚
· v𝑡d𝜚𝑡 for a.e. 𝑡, this is equivalent to the

continuity equation together with the following inequality

𝐹 (𝜚𝑇 ) +
∫ 𝑇

0
d𝑡

∫
Ω

ℎ∗
(
∇ 𝛿𝐹
𝛿𝜚

)
d𝜚𝑡 +

∫ 𝑇

0
d𝑡

∫
Ω

ℎ(v𝑡 )d𝜚𝑡 ≤ 𝐹 (𝜚0). (26)
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Indeed, using the same rule we can replace 𝐹 (𝜚𝑇 ) with 𝐹 (𝜚0) +
∫ 𝑇

0

∫
Ω
∇ 𝛿𝐹

𝛿 𝜚
· v𝑡d𝜚𝑡

and hence see that this is equivalent to∫ 𝑇

0
d𝑡

∫
Ω

d𝜚𝑡
(
ℎ∗

(
∇ 𝛿𝐹
𝛿𝜚

)
+ ℎ(v𝑡 ) − ∇ 𝛿𝐹

𝛿𝜚
· (−v𝑡 )

)
≤ 0,

which is equivalent to the a.e. equality −v𝑡 = ∇ℎ∗ (∇ 𝛿𝐹
𝛿 𝜚

).
The goal becomes now to prove that the JKO scheme converges hence to a curve

(𝜚, v) satisfying (26). We set

𝑆(𝜚) :=
∫
Ω

d𝜚
����∇ 𝛿𝐹𝛿𝜚 ����𝑞 .

This functional is typically an integral functional involving convex functions of the
gradient of 𝜚 and, as such, is lower semicontinuous for the weak convergence of
probability measures (see, for instance, Chapter 3 in [51]). We will assume that it is
indeed l.s.c. in the cases of our interest. The, in order to obtain (26), it is enough to
find a suitable interpolation 𝜚𝜏𝑡 (we dot choose here a specific one) of the solutions
𝜚𝜏
𝑘
such that we have

𝐹 (𝜚𝜏𝑇 ) +
1
𝑞

∫ 𝑇

0
𝑆(𝜚𝜏𝑡 )d𝑡 +

∑︁
𝑘

𝜏
1
𝑝

(
𝑊𝑝 (𝜚𝜏𝑘 , 𝜚

𝜏
𝑘+1)

𝜏

) 𝑝
≤ 𝐹 (𝜚0). (27)

Indeed, by semicontinuity of 𝐹 the first term would provide at the limit the term
𝐹 (𝜚𝑇 ), by semicontinuity of 𝑆 and Fatou’s lemma the second would provide
1
𝑞

∫ 𝑇

0 𝑆(𝜚𝑡 )d𝑡, and the third one canbe written in terms of the 𝐿 𝑝 norm of the
velocity field of the piecewise geodesic interpolation and, by semicontinuity of the
B𝑝 functional, provides 1𝑝

∫ 𝑇

0 d𝑡
∫
Ω
|v𝑡 |𝑝d𝜚𝑡 .

A first natural question is whether the piecewise constant interpolation can be used
to obtain (27). This would be the case if we had the following inequality involving
one JKO step:

𝐹 (𝜚𝜏𝑘+1) + 𝜏
(
𝑊𝑝 (𝜚𝜏𝑘 , 𝜚

𝜏
𝑘+1)

𝜏

) 𝑝
≤ 𝐹 (𝜚𝜏𝑘 ). (28)

Indeed, it is possible to see using the optimality conditions that we have(
𝑥 − 𝑇 (𝑥)

𝜏

) 𝑝−1
= ∇𝜑 = −∇ 𝛿𝐹

𝛿𝜚
,

and we have, using 𝑞 = 𝑝/(𝑝 − 1),(
𝑊𝑝 (𝜚𝜏𝑘 , 𝜚

𝜏
𝑘+1)

𝜏

) 𝑝
=

∫
d𝜚𝜏𝑘+1

����𝑥 − 𝑇 (𝑥)𝜏

����𝑝 =

∫
d𝜚𝜏𝑘+1

����∇ 𝛿𝐹𝛿𝜚 ����𝑞 = 𝑆(𝜚𝜏𝑘+1), (29)

which would allow to conclude writing
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𝜏

(
𝑊𝑝 (𝜚𝜏𝑘 , 𝜚

𝜏
𝑘+1)

𝜏

) 𝑝
=
𝜏

𝑞
𝑆(𝜚𝜏𝑘+1) +

𝜏

𝑝

(
𝑊𝑝 (𝜚𝜏𝑘 , 𝜚

𝜏
𝑘+1)

𝜏

) 𝑝
.

4.2.1 The case of a geodesically convex functional – the flow interchange
technique

The difficult point is that the condition (28) is in general very difficult to obtain,
while it would be easy to obtain

𝐹 (𝜚𝜏𝑘+1) +
𝜏

𝑝

(
𝑊𝑝 (𝜚𝜏𝑘 , 𝜚

𝜏
𝑘+1)

𝜏

) 𝑝
≤ 𝐹 (𝜚𝜏𝑘 ).

Yet, even if this is enough to obtain some bounds on the curve 𝜚𝜏 , it is not enough
to recover the desired EDI inequality.
Nonetheless, it is possible to improve this computation when 𝐹 is geodesically

convex. We start from an inequality.

Proposition 2 Given two probability densities 𝜚, 𝑔 and a functional 𝐺 which is
geodesically convex, then we have

𝐺 (𝑔) ≥ 𝐺 (𝜚) − 𝜏
∫
Ω

∇ 𝛿𝐺
𝛿𝜚

[𝜚] · ∇ℎ∗ (∇𝜑)d𝜚,

where 𝜑 is the Kantorovich potential in the transport from 𝜚 to 𝑔 for the cost
𝑐(𝑥, 𝑦) = 𝜏ℎ( 𝑥−𝑦

𝜏
).

In particular, if 𝑔 = 𝜚𝜏
𝑘
, 𝜚 = 𝚷[𝑔], ℎ(𝑧) = |𝑧 |𝑝/𝑝 and 𝐺 = 𝐹, we obtain (28)

Proof. Let 𝜚𝑠 be a constant speed geodesic from 𝜚0 = 𝜚 to 𝜚1 = 𝑔. It admits a
velocity field v𝑠 such that 𝜕𝑠 𝜚𝑠 + ∇ · (𝜚𝑠v𝑠) = 0. The geodesic convexity of 𝐺
implies

𝐺 (𝑔) ≥ 𝐺 (𝜚) + d
d𝑠
𝐺 (𝜚𝑠) |𝑠=0.

Let us compute

d
d𝑠
𝐺 (𝜚𝑠) =

∫
𝛿𝐺

𝛿𝜚
[𝜚𝑠]𝜕𝑠 𝜚 =

∫
∇ 𝛿𝐺
𝛿𝜚

[𝜚𝑠] · v𝑠 𝜚𝑠 ,

where the last equality comes from the continuity equation and integration by parts.
Computing at time 𝑠 = 0 we have v0 = 𝑇 − 𝑖𝑑 = −𝜏∇ℎ∗ (∇𝜑), which gives the claim.
The last part of the statement comes from the optimality conditions in the JKO

scheme. This gives, using the explicit expression for ∇ℎ∗,

𝐹 (𝜚𝜏𝑘 ) ≥ 𝐹 (𝜚𝜏𝑘+1) + 𝜏
∫
Ω

∇ 𝛿𝐹
𝛿𝜚

[𝜚𝜏𝑘+1] ·
(
∇ 𝛿𝐹
𝛿𝜚

[𝜚𝜏𝑘+1]
)𝑞−1

d𝜚𝜏𝑘+1,

which is the desired inequality. ut
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This kind of computation is known under the name of flow interchange technique
and was introduced in [41]. Even if here we used it to prove a better estimate on the
rate of decrease of 𝐹 along the iterations of the JKO scheme for the same functional
𝐹, it could be used to obtain estimate on the rate of decrease of another functional
𝐺. In the case 𝑝 = 2 the same estimate could also be obtained in a slightly different
way: from the optimizer 𝜚𝜏

𝑘+1 start a curve 𝜚𝑠 such that at 𝑠 = 0 it takes the value
𝜚𝜏
𝑘+1 and for 𝑠 > 0 it follows the gradient flow in𝑊2 of𝐺. This is a curve of possible
competitors for the optimization problem defining 𝜚𝜏

𝑘+1, so we should have

d
d𝑠

(
𝐹 (𝜚𝑠) +

𝑊22 (𝜚𝑠 , 𝜚
𝜏
𝑘
)

2𝜏

)
|𝑠=0

≥ 0,

by optimality. Then, we can use the EVI formulation of the gradient flow of𝐺 (which
is geodesically convex), and obtain the upper bound

d
d𝑠

(
𝑊22 (𝜚𝑠 , 𝜚

𝜏
𝑘
)

2

)
|𝑠=0

≤ 𝐺 (𝜚𝜏𝑘 ) − 𝐺 (𝜚𝜏𝑘+1).

The conclusion follows by computing the derivative of 𝐹 along the gradient flow of
𝐺 (using as above the continuity equation satisfied by 𝜚𝑠).
In practice, the flow interchange technique is a way to obtain in the discrete setting

(the JKO scheme) the same computation that we would obtain in the continuous
setting: if 𝜚𝑡 is a gradient flow of 𝐹, i.e. a solution of 𝜕𝑡 𝜚 = ∇ · (𝜚∇ 𝛿𝐹

𝛿 𝜚
) and we

want to differentiate 𝐺 we obtain

d
d𝑡
𝐺 (𝜚𝑡 ) = −

∫
𝛿𝐺

𝛿𝜚
[𝜚𝑡 ]𝜕𝑡 𝜚 =

∫
∇ 𝛿𝐺
𝛿𝜚

[𝜚𝑡 ] · ∇
𝛿𝐹

𝛿𝜚
[𝜚𝑡 ]d𝜚𝑡 .

A discrete analogue of this computation would be

𝐺 (𝜚𝜏𝑘+1) = 𝐺 (𝜚𝜏𝑘 ) − 𝜏
∫

∇ 𝛿𝐺
𝛿𝜚

[𝜚𝜏𝑘+1] · ∇
𝛿𝐹

𝛿𝜚
[𝜚𝜏𝑘+1]d𝜚

𝜏
𝑘+1.

This is in general false, but the flow interchange technique allow to obtain it as an
inequality as soon as 𝐺 is geodesically convex.
As an other example of application of the flow interchange technique we cite the

following.

Proposition 3 Consider 𝐹 (𝜚) =
∫
𝑓 (𝜚(𝑥))d𝑥 and 𝐺 (𝜚) =

∫
𝑔(𝜚(𝑥))d𝑥 and as-

sume that 𝐺 is geodesically convex in𝑊𝑝 . Consider the sequence 𝜚𝜏
𝑘

defined by the
𝑊𝑝-JKO scheme for the functional 𝐹. Then we have

𝐺 (𝜚𝜏𝑘 ) ≥ 𝐺 (𝜚𝜏𝑘+1),

i.e. 𝐺 decreases along the JKO scheme for 𝐹.

Proof. We apply Proposition 2 and obtain
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𝐺 (𝜚𝜏𝑘 ) ≥ 𝐺 (𝜚𝜏𝑘+1) + 𝜏
∫
Ω

∇𝑔′(𝜚𝜏𝑘+1) ·
(
∇ 𝑓 ′(𝜚𝜏𝑘+1])

)𝑞−1 d𝜚𝜏𝑘+1
and then use ∇𝑔′(𝜚) · (∇ 𝑓 ′(𝜚))𝑞−1 = 𝑔′′(𝜚) 𝑓 ′′(𝜚)𝑞−1 |∇𝜚 |𝑞 ≥ 0. ut

4.2.2 The general case – the De Giorgi variational interpolation

In this section we want to prove that the limit of the JKO scheme solves the EDI
condition also in the case when 𝐹 is not geodesically convex, by choosing a better
interpolation than the piecewise constant one.
The work has essentially been already done in the abstract metric setting in

Section 2.3.
We define the De Giorgi variational interpolation as a curve �̂�𝜏𝑡 : for 𝑡 ∈ (𝑘𝜏, (𝑘 +

1)𝜏], we define 𝜃 = 𝑡−𝑘𝜏
𝜏

∈ (0, 1] and

�̂�𝜏𝑡 = argmin
𝑊

𝑝
𝑝 (𝜚, 𝜚𝜏𝑘 )
𝑝(𝜃𝜏) 𝑝−1

+ 𝐹 (𝜚). (30)

In particular for 𝑡 = (𝑘 + 1)𝜏 we have 𝜃 = 1 and we do retrieve �̂�𝜏
𝑘+1 = 𝜚𝜏

𝑘+1, and if
𝑡 = 𝑘𝜏, 𝜃 = 0 and the minimizer has to be 𝜚 = 𝜚𝜏

𝑘
.

Using the computations of Section 2.3 this interpolation allows us to derive the
following precursor to the EDI interpretation of our gradient flow :

𝐹 (𝜚𝜏𝑘 ) ≥ 𝐹 (𝜚𝜏𝑘+1) +
𝜏

𝑞

∫ (𝑘+1)𝜏

𝑘𝜏

𝑊
𝑝
𝑝 ( �̂�𝜏𝑡 , 𝜚𝜏𝑘 )
𝜃 (𝜃𝜏) 𝑝−1

d𝑡 +
𝑊

𝑝
𝑝 (𝜚𝜏𝑘+1, 𝜚

𝜏
𝑘
)

𝑝𝜏𝑝−1
. (31)

The desired inequality is obtained once we observe that the equality (29) aso holds
when replacing 𝜏 with 𝜃𝜏. This provides, summing over 𝑘 , the desired inequality
which then passes to the limit using lower semicontinuity.
We then finish this section by underlining that the techniques described here allow

to obtain the inequality (26) which formally characterizes the solution of the PDE
𝜕𝜚𝑡 = ∇ · (𝜚∇ℎ∗ (∇ 𝛿𝐹

𝛿 𝜚
)). Yet, the equivalence between the PDE and the inequality

can only be established if we are able to prove the chain rule, i.e. that on the curve
(𝜚𝑡 , v𝑡 ) obtained at the limit 𝜏 → 0 the following relation holds

d
d𝑡
𝐹 (𝜚𝑡 ) =

∫
∇ 𝛿𝐹
𝛿𝜚

[𝜚𝑡 ] ·v𝑡d𝜚𝑡 or 𝐹 (𝜚𝑇 )−𝐹 (𝜚0) =
∫ 𝑇

0
d𝑡

∫
∇ 𝛿𝐹
𝛿𝜚

[𝜚𝑡 ] ·v𝑡d𝜚𝑡

This equality can easily be established at a formal level, but proving it rigorously
when (𝜚𝑡 , v𝑡 ) lack regularity is more delicate. In some cases it is possible to prove
it by regularization (replacing 𝜚 and v by convolution with 𝜚𝜀 and v𝜀 , for which
the formula holds, and passing to the limit). Another strategy discretizes the curve
considering a finite family of time intervals [𝑡𝑘 , 𝑡𝑘+1] and estimates the increments
of 𝐹 in terms of the velocity field v provided 𝐹 is displacement convex. This is done
in [1, 22]. An improvement is presented in [20], where it is proven that a large family
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of functionals of the form 𝜚 ↦→
∫
𝑓 (𝜚(𝑥))d𝑥 is approximated by functonals which

are the difference of two displacement convex functionals, which allow to treat them
separately. Anyway, we do not deal with the chain rule here in these notes and the
results of this section require to be able to prove it by other means.

5 Higher-order estimates

Proposition 3 is an eaxample of result providing iterable estimates on the JKO
scheme: it is proven that some quantities decrease from one step to the next one. In
the statement of Proposition 3 the relevant quantitis are of zero order, in the sense that
they do not involve derivatives of the densities 𝜚𝜏

𝑘
. We will develop here techniques

to deal with BV and Sobolev-like estimates.

5.1 The five-gradients inequality and BV estimates

We start by presenting a general inequality, first studied in [26] which involves the
gradients of two densities, of the corresponding Kantorovich potentials, and of an
extra arbitrary convex function. Originally, the inequality was only stated in the case
of a quadratic transport cost, and has later been extended to more general costs of
the form 𝑐(𝑥, 𝑦) = ℎ(𝑥 − 𝑦) in [18]. Extensions to the case of Riemannian manifolds
are presented in [28].

Lemma 1 Let Ω ⊂ R𝑑 be bounded and convex, let 𝑐 be a transport cost given
by 𝑐(𝑥, 𝑦) = ℎ(𝑥 − 𝑦) for strictly convex ℎ, let 𝜚, 𝑔 ∈ 𝑊1,1 (Ω) be two probability
densities and 𝐻 ∈ 𝐶2 (R𝑑) be a radially symmetric convex function. Then we have
the following inequality∫

Ω

(
∇𝜚 · ∇𝐻 (∇𝜑) + ∇𝑔 · ∇𝐻 (∇𝜓)

)
d𝑥 ≥ 0, (32)

where 𝜑 and 𝜓 are the Kantorovich potentials in the optimal transport from 𝜚 to 𝑔
for the cost 𝑐.

Proof. We will assume that all functions are smooth, an assumption which can be
removed by aproximation.
We perform an integration by parts so that the left hand side of (32) becomes (we

denote by n the exterior unit normal vector of the boundary 𝜕Ω.∫
𝜕Ω

(
𝜚 ∇𝐻 (∇𝜑)·n+𝑔 ∇𝐻 (∇𝜓)·n

)
dH 𝑑−1−

∫
Ω

(
𝜚 ∇·

[
∇𝐻 (∇𝜑)

]
+𝑔 ∇·

[
∇𝐻 (∇𝜓)

] )
d𝑥.

We first look at the boundary term. By the radial symmetry of 𝐻 the vector ∇𝐻 (𝑧)
is always a scalar multiple of 𝑧. Since the gradients of the Kantorovich potentials
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∇𝜑 and ∇𝜓 calculated in boundary points are pointing outward Ω (since 𝑇 (𝑥) =

𝑥 − ∇𝜑(𝑥) ∈ Ω, and 𝑆(𝑥) = 𝑥 − ∇𝜓(𝑥) ∈ Ω) we have

∇𝐻 (∇𝜑(𝑥)) · n(𝑥) ≥ 0 and ∇𝐻 (∇𝜓(𝑥)) · n(𝑥) ≥ 0, ∀𝑥 ∈ 𝜕Ω,

which proves that the boundary term is nonnegative.
We now write 𝑔 = 𝑇#𝜚 for the optimal map 𝑇 and expand the divergence, and

obtain∫
Ω

(
𝜚 ∇ ·

[
∇𝐻 (∇𝜑)

]
+ 𝑔 ∇ ·

[
∇𝐻 (∇𝜓)

] )
d𝑥

=

∫
Ω

(
∇ ·

[
∇𝐻 (∇𝜑)

]
+ (∇ ·

[
∇𝐻 (∇𝜓)

]
) ◦ 𝑇

)
d𝜚

=

∫
Ω

(∑︁
𝑖, 𝑗

𝐻𝑖 𝑗 (∇𝜑)𝜑𝑖 𝑗 + 𝐻𝑖 𝑗 (∇𝜓 ◦ 𝑇)𝜓𝑖 𝑗 ◦ 𝑇
)
d𝜚.

We then use the fact that 𝜑 ⊕ 𝜓 − 𝑐 is maximal on pairs (𝑥, 𝑦) of the form 𝑦 = 𝑇 (𝑥)
in order to obtain, from the first and the second order conditions when considering
perturbations of the form 𝑥 ′ = 𝑥 + 𝑣, 𝑦′ = 𝑦 + 𝑣, the following information (we also
use the equality 𝑐(𝑥 ′, 𝑦′) = 𝑐(𝑥, 𝑦)):

∇𝜙(𝑥) + ∇𝜓(𝑇 (𝑥)) = 0, 𝐷2𝜙(𝑥) + 𝐷2𝜓(𝑇 (𝑥)) ≤ 0,

where he last inequality is to be intended in the sense of symmetric matrices. We
then have∑︁

𝑖, 𝑗

𝐻𝑖 𝑗 (∇𝜑)𝜑𝑖 𝑗 + 𝐻𝑖 𝑗 (∇𝜓 ◦ 𝑇)𝜓𝑖 𝑗 ◦ 𝑇 =
∑︁
𝑖, 𝑗

𝐻𝑖 𝑗 (∇𝜑)
(
𝜑𝑖 𝑗 + 𝜓𝑖 𝑗 ◦ 𝑇

)
.

This is the trace of the product of the matrices 𝐷2𝐻 (𝜑), which is positive definite
because of the convexity of 𝐻, and of 𝐷2𝜙(𝑥) + 𝐷2𝜓(𝑇 (𝑥)), which is negative
definite. The trace is then nonpositive, and this proves the claim. ut

In the quadratic case ℎ(𝑧) = |𝑧 |2/2 it is also possible to improve this inequality
and obtain the following.

Lemma 2 Let Ω ⊂ R𝑑 be bounded and convex, let 𝜚, 𝑔 ∈ 𝑊1,1 (Ω) be two proba-
bility densities and 𝐻 ∈ 𝐶2 (R𝑑) be a radially symmetric convex function. Then we
have the following inequality∫
Ω

(
∇𝜚 · ∇𝐻 (∇𝜑) + ∇𝑔 · ∇𝐻 (∇𝜓)

)
d𝑥 ≥

∫
Ω

tr[𝐷2𝐻 (∇𝜑) (𝐷2𝜑)2 (𝐼 − 𝐷2𝜑)−1]d𝜚,
(33)

where 𝜑 and 𝜓 are the Kantorovich potentials in the optimal transport from 𝜚 to 𝑔
for the quadratic cost.
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Proof. We just need to prove 𝐷2𝜙(𝑥) + 𝐷2𝜓(𝑇 (𝑥)) = −(𝐷2𝜑(𝑥))2 (𝐼 − 𝐷2𝜑(𝑥))−1
and use the previous computations. Consider the inverse map𝑇−1. We have𝑇−1 (𝑦) =
𝑦 − ∇𝜓(𝑦) and, passing to the Jacobian, for 𝑥 = 𝑇−1 (𝑦), we have (𝐷𝑇 (𝑥))−1 =

𝐼 − 𝐷2𝜓(𝑦). This means 𝐷2𝜓(𝑦) = 𝐼 − (𝐼 − 𝐷2𝜑(𝑥))−1. Setting 𝐴 = 𝐷2𝜑(𝑥) we
now compute

𝐷2𝜙(𝑥) + 𝐷2𝜓(𝑇 (𝑥)) = 𝐴 + 𝐼 − (𝐼 − 𝐴)−1 = −𝐴2 (𝐼 − 𝐴)−1. ut

By approximating𝐻 (𝑧) = |𝑧 | with𝐻 (𝑧) =
√︁
𝜀2 + |𝑧 |2, Lemma 2 has the following

important corollary, where we use the convention 𝑧
|𝑧 | = 0 for 𝑧 = 0.

Corollary 1 Let Ω ⊂ R𝑑 be a given bounded convex set and 𝜚, 𝑔 ∈ 𝑊1,1 (Ω) be two
probability densities. Then the following inequality holds∫

Ω

(
∇𝜚 · ∇𝜑

|∇𝜑| + ∇𝑔 · ∇𝜓
|∇𝜓 |

)
d𝑥 ≥ 0, (34)

where 𝜑 and 𝜓 are the corresponding Kantorovich potentials.

This allows to obtain a first estimate on the evolution of the BV norm across the
JKO scheme.

Proposition 4 Consider 𝐹 (𝜚) =
∫
𝑓 (𝜚(𝑥))d𝑥 and the sequence 𝜚𝜏

𝑘
defined by the

𝑊𝑝-JKO scheme for the functional 𝐹. Then we have∫
|∇𝜚𝜏𝑘 |d𝑥 ≥

∫
|∇𝜚𝜏𝑘+1 |d𝑥,

i.e. the BV norm decreases along the JKO scheme for 𝐹.

Proof. We apply Lemma 1 and obtain∫
Ω

(
∇𝜚𝜏𝑘+1 ·

∇𝜑
|∇𝜑| + ∇𝜚𝜏𝑘 · ∇𝜓

|∇𝜓 |

)
d𝑥 ≥ 0.

Yet, from 𝜑 = − 𝑓 ′(𝜚𝜏
𝑘+1) and 𝑓

′′ > 0, we get that ∇𝜑 and ∇𝜚𝜏
𝑘+1 are vectors with

opposite directions. Hence we have∫
Ω

|∇𝜚𝜏𝑘+1 | ≤
∫
Ω

∇𝜚𝜏𝑘 · ∇𝜓
|∇𝜓 | d𝑥 ≤

∫
Ω

|∇𝜚𝜏𝑘 |,

which is the desired estimate. ut

A corollary of this result about the JKO scheme is the following result on the
corresponding PDE.

Corollary 2 Consider the parabolic PDE 𝜕𝑡 𝜚 = Δ𝑞 (𝜙(𝜚)) for an arbitrary exponent
𝑞 ∈ (1,∞) and an arbitrary increasing nonlinearity 𝜙 : R+ → R, with no-flux
boundary condition on a convex domain Ω ⊂ R𝑑 . Then, if 𝜚0 ∈ 𝐵𝑉 (Ω) there
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exists a solution 𝜚𝑡 such that | |𝜚𝑡 | |𝐵𝑉 ≤ ||𝜚0 | |𝐵𝑉 . Moreover, if such an equation
admits uniqueness of the solution for the Cauchy problem, then 𝑡 ↦→ ||𝜚𝑡 | |𝐵𝑉 is
nonincreasing in time.

Proof. It is enough to choose a convex function 𝑓 such that 𝑠 𝑓 ′′(𝑠)𝑞−1 = 𝜙′(𝑠)𝑞−1
and consider this equation as a𝑊𝑝-gradient flow ofℱ. Then, Proposition 4 provides
this uniform bound on the JKO scheme. In the limit 𝜏 → 0 this bound is preserved
by lower semicontinuity. In case of uniqueness, it is possible to prove for any 𝑡 > 𝑡0
the inequality | |𝜚𝑡 | |𝐵𝑉 ≤ ||𝜚𝑡0 | |𝐵𝑉 by starting the JKO scheme from 𝜚𝑡0 . ut

5.2 Fisher information estimates

We focus here on the case of the functional ℰ(𝜚) =
∫
𝑓 (𝜚(𝑥))d𝑥 +

∫
𝑉d𝜚 for

𝑓 (𝑠) + 𝑠 log 𝑠 (which is also a relative entropy w.r.t. the density 𝑒−𝑉 ), and consider
transport costs of the form 𝑐(𝑥, 𝑦) = 𝜏ℎ( 𝑥−𝑦

𝜏
) for a strictly convex and radial function

ℎ. We now look at the operator 𝚷 defined via

𝚷[𝑔] := argminT𝑐 (𝜚, 𝑔) +ℰ(𝜚). (35)

The optimality conditions characterizing the optimal 𝜚 are log 𝜚 + 𝑉 + 𝜑 = 𝑐 and
it is possible to see that 𝜚 depends on 𝑔 in a 1-homogeneous and monotone way.
Moreover, 𝚷 is also an 𝐿1 contraction (see Theorem 1.3 from [36]).
We define the following Fisher information-type functional:

ℐ𝑉 ,𝐻 (𝜚) :=
∫
Ω

𝐻 (∇(log 𝜚 +𝑉)) d𝜚.

Using the five gradients inequality, one can prove the following :

Lemma 3 Let 𝐻 be a radially symmetric convex function, 𝑔 ∈ 𝑊1,1 (Ω) be non
negative and take 𝜚 = 𝚷[𝑔]. Then we have

ℐ𝑉 ,𝐻 (𝑔) ≥ ℐ𝑉 ,𝐻 (𝜚).

Proof. We follow the proof of Proposition 5.1 from [27]. We have, from the fact that
𝐻 is convex,∫
Ω

𝐻 (∇(log 𝑔 +𝑉)) d𝑔 ≥
∫
Ω

𝐻 (∇𝜓) d𝑔 +
∫
Ω

∇𝐻 (∇𝜓) · (∇ log 𝑔 + ∇𝑉 − ∇𝜓)) d𝑔.

Using 𝑔 = 𝑇#𝜚 and ∇𝜓 ◦ 𝑇 = −∇𝜑, together with the optimality condition of the
optimization problem in (35) ∇𝜑 = −∇(log 𝜚 +𝑉), we have∫

Ω

𝐻 (∇𝜓) d𝑔 =

∫
Ω

𝐻 (∇𝜓 ◦ 𝑇) d𝜚 =

∫
Ω

𝐻 (−∇𝜑) d𝜚 = ℐ𝑉 ,𝐻 (𝜚),
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and∫
Ω

∇𝐻 (∇𝜓) · ∇𝜓 d𝑔 = −
∫
Ω

∇𝐻 (−∇𝜑) · ∇𝜑 d𝜚 =

∫
Ω

∇𝐻 (−∇𝜑) · (∇𝜚 + 𝜚∇𝑉) d𝑥.

Using the five-gradients inequality, we have∫
Ω

∇𝐻 (∇𝜓) · (∇ log 𝑔) d𝑔 +
∫
Ω

∇𝐻 (∇𝜑) · ∇𝜚 d𝑥

=

∫
Ω

∇𝐻 (∇𝜓) · ∇𝑔 d𝑥 +
∫
Ω

∇𝐻 (∇𝜑) · ∇𝜚 d𝑥 ≥ 0,

so that we obtain

ℐ𝑉 ,𝐻 (𝑔) ≥ ℐ𝑉 ,𝐻 (𝜚) +
∫

∇𝐻 (∇𝜓) · ∇𝑉d𝑔 −
∫

∇𝐻 (∇𝜑) · ∇𝑉d𝜚.

We can then use
∫
∇𝐻 (∇𝜓) · ∇𝑉d𝑔 =

∫
∇𝐻 (−∇𝜑) · ∇𝑉 ◦ 𝑇d𝜚 to obtain∫

∇𝐻 (∇𝜓) · ∇𝑉d𝑔 −
∫

∇𝐻 (∇𝜑) · ∇𝑉d𝜚 =

∫
∇𝐻 (−∇𝜑) · (∇𝑉 ◦ 𝑇 − ∇𝑉)d𝜚.

Using the fact that𝐻 is radial and that𝑇 (𝑥)−𝑥 is a positive scalar multiple of−∇𝜑we
obtain, thanks to the convexity of 𝑉 (which implies (𝑦 − 𝑥) · (∇𝑉 (𝑦) − ∇𝑉 (𝑥)) ≥ 0),
the positivity of this last integral, which gives the claim. ut

When 𝑉 = 0 and 𝐻 (𝑧) = |𝑧 |2, the quantityℐ𝑉 ,𝐻 is the classical Fisher informa-
tion. We are saying that this generalized Fisher information decreases along steps
of the JKO scheme. Exactly as in Corollary 2 this can be transformed into a state-
ment about the corresponding continous-in-time PDE, but only for 1-homogeneous
equations of the form

𝜕𝑡 𝜚 = ∇ · (𝜚∇ℎ∗ (∇(log 𝜚 +𝑉))). (36)

Such a result would be a consequence of the following statement about the JKO
scheme (adapted from [27] and generalized in [21]):

Theorem 6 Let 𝜚0 ∈ 𝐿1 (Ω). We assume 𝑉 to be convex and Lipschitz continous.
We have ∫

Ω

𝐻 (∇(log 𝜚0 +𝑉)) d𝜚0 ≥
∫
Ω

𝐻 (∇(log 𝜚𝜏𝑘 +𝑉)) d𝜚
𝜏
𝑘

for all 𝜏, 𝑘 , where 𝐻 is a radially symmetric and convex function. In particular, the
following estimates are uniform in 𝜏 and 𝑘:

1. if log(𝜚0) +𝑉 is 𝐿-Lipschitz, then log(𝜚𝜏
𝑘
) +𝑉 is 𝐿-Lipschitz;

2. for 𝑝 > 1, if 𝜚1/𝑝0 ∈ 𝑊1, 𝑝 (Ω), then (𝜚𝜏
𝑘
)1/𝑝 is bounded in𝑊1, 𝑝 (Ω);

3. if 𝜚0 ∈ 𝐵𝑉 (Ω), then 𝜚𝜏
𝑘

is bounded in 𝐵𝑉 (Ω);
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4. if 𝜚0 ∈ 𝑊1,1 (Ω), all 𝜚𝜏
𝑘

belong to a weakly compact subset of𝑊1,1 (Ω).

Proof. We only give the main ideas. The first statement is a direct consequence
of Lemma 3, iterated along the steps of the scheme. For 1., we pick 𝐻 to be the
indicator of the centered ball of radius 𝐿 (by indicator we mean here the function
which is 0 on the ball and +∞ outside it). For 2. we take 𝐻 (𝑧) = |𝑧 |𝑝 with 𝑝 > 1,
and 3. is covered by the case 𝑝 = 1. For 4., one can use the Dunford-Pettis theorem
so find a superlinear convex function 𝐻 such that 𝐻 (∇ log(𝜚0) + ∇𝑉) ∈ 𝐿1 (𝜚0),
which decreases at each step, thus providing the weak compactness. In all cases, the
boundedness of ∇𝑉 allows to remove it from the integral. ut

The above theorem includes the fact that Lipschitz bounds on the logarithm are
preserved along the iterations of this JKO scheme. We want now to extend this to
other moduli of continuity. We will use the following abstract fact. This statement
(from [21], whichwe did not find stated in this very version elsewhere in the literature,
seems interesting in itself.

Theorem 7 Let 𝜋 : 𝐿∞ (Ω) → 𝐿∞ (Ω) be an operator such that

1. For all 𝑢, 𝑣 ∈ 𝐿∞ (Ω), if 𝑢 ≥ 𝑣, then 𝜋(𝑢) ≥ 𝜋(𝑣).
2. For all 𝜆 ∈ R and 𝑢 ∈ 𝐿∞ (Ω), 𝜋(𝜆 + 𝑢) = 𝜆 + 𝜋(𝑢).
3. For all 𝑢 ∈ 𝐿∞ (Ω), if 𝑢 is 𝑘-Lipschitz, then 𝜋(𝑢) is also 𝑘-Lipschitz.

Then, if 𝑢 admits a concave modulus of continuity 𝜔, then 𝜋(𝑢) admits the same
modulus of continuity.

Proof. If 𝑢 admits 𝜔 as a modulus of continuity, we start by approximating it with
𝐿-Lipschitz functions : for 𝑥 ∈ Ω, set

𝑢𝐿 (𝑥) = inf
𝑦∈Ω

𝐿 |𝑥 − 𝑦 | + 𝑢(𝑦),

so that 𝑢𝐿 is 𝐿-Lipschitz. Of course 𝑢𝐿 satisfies 𝑢𝐿 ≤ 𝑢 (by taking 𝑦 = 𝑥). Further-
more, from the inequality

𝑢(𝑥) − 𝑢(𝑦) ≤ 𝜔( |𝑥 − 𝑦 |),

we deduce that we have

𝐿 |𝑥 − 𝑦 | + 𝑢(𝑦) ≥ 𝐿 |𝑥 − 𝑦 | + 𝑢(𝑥) − 𝜔( |𝑥 − 𝑦 |),

so that, passing to the inf in 𝑦, we obtain

𝑢𝐿 (𝑥) ≥ 𝑢(𝑥) + 𝛼(𝐿),

where 𝛼(𝐿) = infdiam(Ω)>𝑟>0 𝐿𝑟 − 𝜔(𝑟) ≤ 0. We can therefore conclude that we
have

𝑢 ≥ 𝑢𝐿 ≥ 𝑢 + 𝛼(𝐿).
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Applying 𝜋 and using its properties 1 and 2 we obtain

𝜋(𝑢) ≥ 𝜋(𝑢𝐿) ≥ 𝜋(𝑢) + 𝛼(𝐿).

For 𝑥, 𝑦 ∈ Ω, since 𝜋(𝑢𝐿) is also 𝐿-Lipschitz, we can write

𝜋(𝑢) (𝑥) − 𝜋(𝑢) (𝑦) ≤ 𝜋(𝑢𝐿) (𝑥) − 𝜋(𝑢𝐿) (𝑦) − 𝛼(𝐿) ≤ 𝐿 |𝑥 − 𝑦 | − 𝛼(𝐿).

Since 𝜔 is concave, we choose 𝐿 = 𝜔′( |𝑥 − 𝑦 |) (note that 𝜔 is also non-decreasing,
so we can take 𝐿 ≥ 0; in case 𝜔 is not differentiable one should use the super-
differential of 𝜔, which is non-empty because 𝜔 is finite on R+). This implies that
𝑟 ↦→ 𝐿𝑟 − 𝜔(𝑟) (which is a convex function) is minimized at 𝑟 = |𝑥 − 𝑦 |. Then we
obtain for this 𝐿 the equality 𝛼(𝐿) = 𝐿 |𝑥 − 𝑦 | − 𝜔( |𝑥 − 𝑦 |), and thus

𝜋(𝑢) (𝑥) − 𝜋(𝑢) (𝑦) ≤ 𝜔( |𝑥 − 𝑦 |),

so that 𝜋(𝑢) admits 𝜔 as a modulus of continuity. ut

Using the above theorem, we can then prove the following:

Theorem 8 Let 𝜚0 ∈ 𝐿1 (Ω) be such that log(𝜚0) + 𝐶 admits 𝜔 as a modulus of
continuity, then for all 𝑘 and 𝜏 > 0, log(𝜚𝜏

𝑘
) + 𝑉 also admits 𝜔 as a modulus of

continuity. As a consequence, this also holds for the solution of (36).

Proof. One only has to apply Theorem 7 where 𝜋 is defined as follows: given 𝑢,
solve one step of the JKO scheme with 𝑔 = exp(𝑢 −𝑉), call 𝜚 the solution, and then
take 𝜋(𝑢) = log 𝜚 +𝑉 . ut

Among particular examples of (36) we wite not only equations of 𝑞−Laplacian
type 𝜕𝑡 𝜚 = Δ𝑞 (𝜚𝑝−1) but also the so-called relativistic heat equations studied for
instance in [44]. in such a paper the authors generalize the construction from [1]
to “relativistic" cost functions, meaning cost functions where ℎ is convex and only
finite on a ball. The main equation of interest entering in this framework is the so
called Relativistic Heat Equation

𝜕𝑡 𝜚 = ∇ ·
(
𝜚

∇𝜚√︁
𝜚2 + |∇𝜚 |2

)
,

where ℎ(𝑧) = 1 −
√︁
1 − |𝑧 |2.

Wefinish this sectionwith some improvements of Lemma3 in the case𝐻 (𝑧) = |𝑧 |2

Lemma 4 Let 𝑔 ∈ 𝑊1,1 (Ω) be non negative and denote by 𝜚 the solution of (35).
Suppose 𝐷2𝑉 ≥ 𝜆𝐼. Then we have

ℐ𝑉 ,𝐻 (𝑔) ≥ ℐ𝑉 ,𝐻 (𝜚) + 2𝜆𝜏
∫
Ω

|∇(log 𝜚 +𝑉) |2 d𝜚

+2𝜏
∫
Ω

tr
[
(𝐷2 (log 𝜚 +𝑉))2 (𝐼 − 𝐴)−1

]
d𝜚,
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where the matrix 𝐴 is 𝐷2𝜑, 𝜑 being the Kantorovich potential for the quadratic cost
from 𝜚 to 𝑔, so that we also have 𝐴 = −𝜏𝐷2 (log 𝜚 +𝑉).

Proof. The improvementsw.r.t. Lemma3 are obtained in two differentways. First, we
estimate the term

∫
∇𝐻 (−∇𝜑) · (∇𝑉◦𝑇−∇𝑉)d𝜚 by using (𝑦−𝑥) · (∇𝑉 (𝑦)−∇𝑉 (𝑥)) ≥

𝜆 |𝑥 − 𝑦 |2 instead of just using that that this scalar product is non-negative. Second,
we use (33) in order to obtain the last line. ut

6 Application to the log-Sobolev inequality

The goal of this section is to provide a proof of the classical Sobolev Inequality
based on the use of the JKO scheme. Such an inequality reads∫

Ω

𝑓 2 log( 𝑓 2) d𝜇 ≤ 1
𝜆

∫
Ω

|∇ 𝑓 |2 d𝜇, (37)

where we take 𝜇 = 𝑒−𝑉 for some convex function𝑉with 𝐷2𝑉 ≥ 𝜆𝐼, and assume that∫
Ω

𝑓 2𝑒−𝑉 d𝑥 = 1.

Setting 𝑔 = 𝑓 2, this is equivalent to∫
Ω

𝑔 log 𝑔 d𝜇 ≤ 1
2𝜆

∫
Ω

|∇ log 𝑔 |2 𝑔 d𝜇.

Now we set 𝑔 = 𝜚𝑒𝑉 , so that 𝜚 is a probability density onΩ, and the inequality turns
into ∫

Ω

𝜚𝑒𝑉 (log 𝜚 +𝑉) 𝑒−𝑉 d𝑥 =ℰ(𝜚) ≤ 1
2𝜆

ℐ𝑉 ,𝐻 (𝜚).

This inequality can indeed be proved by using the so-called Bakry-Emery technique
(see [6]), which consists in comparing the two quantitiesℰ andℐ𝑉 ,𝐻 (that we will
writeℐ for short) along the Fokker-Planck equation 𝜕𝑡 𝜚𝑡 = Δ𝜚𝑡 + ∇ · (𝜚∇𝑉). Since
the steady state, to which 𝜚𝑡 converges as 𝑡 → ∞ is exactly 𝜇 = 𝑒−𝑉 , and is such
that ℰ(𝜇) = ℐ(𝜇) = 0, it is enough to compare the time derivative of ℰ(𝜚𝑡 ) and
ℐ(𝜚𝑡 ). We have

d
d𝑡
ℰ(𝜚𝑡 ) = −

∫
Ω

|∇ (log 𝜚𝑡 +𝑉) |2 d𝜚𝑡 = −ℐ(𝜚𝑡 ).

Then, it is possible to obtain

d
d𝑡
ℐ(𝜚𝑡 ) ≤ −2𝜆ℐ(𝜚𝑡 ).
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A precise computation leading to this inequality will be done in Section 7, but one
can also see it as a consequence of Corollary 4. Note that here the second quantity
that we differentiate happens to be the derivative of the first, so that we finally
differentiate twice ℰ(𝜚𝑡 ), but this is not cruvial. The importnat point is being able
to copare the derivatives of the desired functionals.
Thus, we have proven

d
d𝑡

(2𝜆ℰ −ℐ) (𝜚𝑡 ) ≥ 0,

which implies (2𝜆ℰ −ℐ) (𝜚0) ≤ lim𝑡→∞ (2𝜆ℰ −ℐ) (𝜚𝑡 ) = 0, which is the desired
inequality (of course this computation requires to prove that the convergence as
𝑡 → ∞ implies the convergence ofℰ andℐ).
We now want to see if the same result can be obtained by looking at the evolution

of ℰ and ℐ along the steps of the JKO scheme. This is so far just an interesting
exercise, as it only re-proves a well-known result, but the technique can then be
applied to other inequalities for which a continuous flow proof is not available. In
particular, a work is in progress [19] about the case where 𝑉 is convex but not
uniformly convex (for instance 𝑉 (𝑥) = |𝑥 |4).
Again, we need to prove that 2𝜆ℰ −ℐ increases from one step to the other. This

means thate fix a measure 𝑔 and call 𝜚 the optimizer of one JKO step starting from
𝑔. In order to mimick what is done in the continuous proof we would need to have

ℐ(𝜚) ≤ ℐ(𝑔) − 2𝜆𝜏ℐ(𝜚), and ℰ(𝜚) ≥ ℰ(𝑔) − 𝜏ℐ(𝜚).

The first of these inequalities is exactly contained in Lemma 4. As fir the second,
since it amounts to differentiare a zero-order quantity which is indeed geodesically
convex (since we assume 𝑉 to be convex), the good tool is the flow interchange
technique from Proposition 2. Yet, unfortunately, what could be proven in this way
is the opposite inequality

ℰ(𝜚) ≤ ℰ(𝑔) − 𝜏ℐ(𝜚).

It is then necessary to work differently, and what can be proven is the following.

Lemma 5 If 𝜚 = 𝚷[𝑔] (using the functional ℰ and the quadratic transport cost),
then we have

ℰ(𝜚) ≥ ℰ(𝑔) − 𝜏

2
ℐ(𝜚) − 𝜏

2
ℐ(𝑔).

Proof. We use Proposition 2 with 𝐺 = ℰ, but this time inverting the roles of 𝑔
and 𝜚. We obtain, exploiting the precise choice of the quadratic cost, the following
inequality

ℰ(𝜚) ≥ ℰ(𝑔) − 𝜏
∫
Ω

∇(log 𝑔 +𝑉) · ∇𝜓d𝑔,

where 𝜓 is the Kantorovich potential from 𝑔 to 𝜚 (and 𝜑 is the one from 𝜚 to 𝑔,
which appears in the optimality conditions of the JKO step). We then apply Young’s
inequality and obtain



Optimal transport methods for parabolic diffusion equations: the JKO scheme 41

ℰ(𝜚) ≥ ℰ(𝑔) − 𝜏

2

∫
Ω

|∇(log 𝑔 +𝑉) |2d𝑔 − 𝜏

2

∫
Ω

|∇𝜓 |2d𝑔.

We now use
∫
Ω
|∇(log 𝑔 +𝑉) |2d𝑔 = ℐ(𝑔) and∫

Ω

|∇𝜓 |2d𝑔 =

∫
Ω

|∇𝜓 ◦ 𝑇 |2d𝜚 =

∫
Ω

|∇𝜑 |2d𝜚 =

∫
Ω

|∇(log 𝜚 +𝑉) |2d𝜚 = ℐ(𝜚),

where we used the optimality conditions on 𝜚. This proves the claim. ut

We then obtain the following.

Proposition 5 Given an arbitrary 𝜚0 and starting the JKO scheme from it we have,
for any 𝑁 ≥ 0

2𝜆ℰ(𝜚0) −ℐ(𝜚0) ≤ 2𝜆ℰ(𝜚𝜏𝑁 ) −ℐ(𝜚𝜏𝑁 ) + 𝜆𝜏(ℐ(𝜚0) −ℐ(𝜚𝜏𝑁 )).

This implies
2𝜆ℰ(𝜚0) −ℐ(𝜚0) ≤ 0.

Proof. We apply the previous lemma to 𝑔 = 𝜚𝜏
𝑘
and 𝜚 = 𝜚𝜏

𝑘+1 for 𝑘 = 0, 1, . . . , 𝑁 −1
and sum the inequalities, thus obtaining

ℰ(𝜚0) ≤ ℰ(𝜚𝜏𝑁 ) + 𝜏
𝑁−1∑︁
𝑘=1

ℐ(𝜚𝜏𝑘 ) +
𝜏

2
(ℐ(𝜚0) +ℐ(𝜚𝜏𝑁 )).

Multiplying by 2𝜆 and subtracting the inequality

ℐ(𝜚0) ≥ ℐ(𝜚𝜏𝑁 ) + 2𝜆𝜏
𝑁∑︁
𝑘=1

ℐ(𝜚𝜏𝑘 )

we obtain the desired inequality.
It is then enough to take the limit 𝑁 → ∞ in order to obtain

2𝜆ℰ(𝜚0) −ℐ(𝜚0) ≤ 𝜆𝜏ℐ(𝜚0).

Note that this is even simpler to justify than in the continuous setting, as the conver-
gence 𝜚𝜏

𝑁
⇀ 𝜇 can be obtained by studying the fixed points of the JKO operator, and

when 𝜏 > 0 is fixed the convergence is automatically strong enough to pass to the
limit bothℰ andℐ as one can obtain second-order bounds of the order of 𝜏−1. Then,
we take the limit as 𝜏 → 0, assuming ℐ(𝜚0) < +∞ (otherwise there is nothing to
prove). ut
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7 Strong 𝑳2𝑯2 convergence of the JKO scheme

The metric interpretation of the JKO scheme, according to the theory of [4], provides
convergence as 𝜏 → 0 in the same distance which is used in the JKO scheme. This
means that, in the case of the linear Fokker-Planck equation, one obtains uniform (in
time) convergence in𝑊2, which means weak-* convergence (in space) of 𝜚𝜏 to 𝜚𝑡 .
In the original paper about the JKO scheme for the Fokker-Planck equation, [37], a
slightly different convergence is proven: it is proven that 𝜚𝜏 strongly converges in
𝐿1 ( [0, 𝑇] ×Ω).
In this section we use the notions developed so far in order to prove that, under

some conditions on the initial datum, the convergence in the case of the linear
Fokker-Planck equation is actually much stronger, and holds in 𝐿2 ( [0, 𝑇];𝐻2 (Ω)).
We will consider the case of a convex bounded domainΩ ⊂ R𝑑 whose boundary 𝜕Ω
is smooth enough. We denote by n the exterior unit normal vector of the boundary
𝜕Ω. We consider the Cauchy problem for the Fokker-Planck equation with no-flux
boundary condition, i.e.,

𝜕𝑡 𝜚(𝑡, 𝑥) = Δ𝜚(𝑡, 𝑥) + div(𝜚(𝑡, 𝑥)∇𝑉 (𝑥)), (𝑡, 𝑥) ∈ (0, 𝑇] ×Ω,

∇𝜚(𝑡, 𝑥) · n(𝑥) + 𝜚(𝑡, 𝑥)∇𝑉 (𝑥) · n(𝑥) = 0, (𝑡, 𝑥) ∈ [0, 𝑇] × 𝜕Ω,
𝜚(0, 𝑥) = 𝜚0 (𝑥), 𝑥 ∈ Ω,

(38)

where 𝜚0 ∈ P(Ω) ∩ 𝐿1+ (Ω).

We refer to classical texts on parabolic differential equations (see [39], [40]) for
the existence, the uniqueness, and the regularity of the solution.
We now compute the derivative of the classical Fisher information along the flow.

For shortness, we write 𝑢 𝜚 for 𝑢 𝜚:

Lemma 6 If Ω and𝑉 are smooth enough and 𝜚 is the solution of (38), then for 𝑡 > 0
we have

d
d𝑡
ℐ(𝜚𝑡 ) = −2

∫
Ω

|𝐷2𝑢 𝜚 |2𝜚 𝑑𝑥 − 2
∫
Ω

(∇𝑢 𝜚)𝑇 · 𝐷2𝑉 · ∇𝑢 𝜚 𝜚 𝑑𝑥

+
∫
𝜕Ω

(∇𝑢 𝜚)𝑇 · 𝐷2𝑢 𝜚 · n𝜚 𝑑H 𝑑−1.

The last term in the previous formula can be re-written using the following lemma.

Lemma 7 Suppose Ω = {ℎ < 0} for a smooth function ℎ : R𝑑 → R with ∇ℎ ≠ 0
on {ℎ = 0}, so that the exterior normal vector at 𝑥 ∈ 𝜕Ω is given by n(𝑥) =

∇ℎ(𝑥)/|∇ℎ(𝑥) |. Let v : Ω → R𝑑 be a smooth vector field such that v · n = 0 on 𝜕Ω.
Then we have the following equality for every 𝑥 ∈ 𝜕Ω

v(𝑥)𝑇 · 𝐷𝑣(𝑥) · n(𝑥) = −v(𝑥)𝑇 · 𝐷2ℎ(𝑥) · v(𝑥)
|∇ℎ(𝑥) | .
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Proof. Given 𝑥 ∈ 𝜕Ω, we consider a smooth curve 𝛾 : (−𝑡0, 𝑡0) → 𝜕Ωwith 𝛾(0) = 𝑥
and write the equality v(𝛾(𝑡)) · ∇ℎ(𝛾(𝑡)) = 0 for every 𝑡. Differentiating w.r.t. 𝑡 we
obtain

𝛾′(𝑡)𝑇 · 𝐷v(𝛾(𝑡)) · ∇ℎ(𝛾(𝑡)) + v(𝛾(𝑡))𝑇 · 𝐷2ℎ(𝛾(𝑡)) · 𝛾′(𝑡) = 0.

We can take 𝑡 = 0 and choose a curve with 𝛾′(0) = v(𝑥) since v is tangent to the
surface 𝜕Ω, thus obtaining

v(𝑥)𝑇 · 𝐷v(𝑥) · ∇ℎ(𝑥) = −v(𝑥)𝑇 · 𝐷2ℎ(𝑥) · v(𝑥).

It is then enough to divide by |∇ℎ(𝑥) | in order to get the claim. ut

We then obtain the following formula.

Corollary 3 Let Ω = {ℎ < 0} be a bounded domain defined as the negativity set of
a convex function ℎ ∈ 𝐶2 with ∇ℎ ≠ 0 on {ℎ = 0}, and 𝑉 ∈ 𝐶2 (Ω̄). Given a strictly
positive 𝜚0 ∈ 𝐻1 (Ω) initial datum, let 𝜚 be the solution of (38). We then have

ℐ(𝜚𝑇 ) −ℐ(𝜚0) = −
∫ 𝑇

0
d𝑡

∫
Ω

|𝐷2𝑢 𝜚 |2𝜚 d𝑥

−
∫ 𝑇

0
d𝑡

∫
Ω

(∇𝑢 𝜚)𝑇 · 𝐷2𝑉 · ∇𝑢 𝜚 𝜚 d𝑥

−
∫ 𝑇

0
d𝑡

∫
𝜕Ω

(∇𝑢 𝜚)𝑇 · 𝐷2ℎ · (∇𝑢 𝜚)𝜚 dH 𝑑−1.

We now proceed to some uniform estimates on the minimizers of the JKO scheme
and on the corresponding potentials. Note that here, in order to better see the de-
pendance on 𝜏 of these terms, we write 𝜑 for the Kantorovich potentials w.r.t. the
quadratic cost wihout the coefficient 𝜏.

Proposition 6 Suppose Ω is a bounded, smooth, and uniformly convex domain, and
𝑉 ∈ 𝐶2 (Ω̄). Let (𝜚𝜏

𝑘
) be the sequence obtained in the JKO scheme for the Fokker-

Planck equation, (𝜑𝑘 , 𝜓𝑘 ) denote the pair of Kantorovich potentials in the transport
from 𝜚𝜏

𝑘+1 to 𝜚𝜏
𝑘

and 𝑇𝑘 the corresponding optimal map, i.e. 𝑇𝑘 (𝑥) = 𝑥 − ∇𝜑𝑘 (𝑥).
Suppose that 𝜚0 is bounded from below and above by positive constants and denote
by 𝑎, 𝑏 two constants such that 𝑎 ≤ log 𝜚0 +𝑉 ≤ 𝑏. Suppose moreover that we have
𝜚0 ∈ 𝐶0,𝛼 ∩ 𝐻1. Then we have:

1. For each 𝑘 we have 𝑎 ≤ log(𝜚𝜏
𝑘
) +𝑉 ≤ 𝑏. In particular, all 𝜚𝜏

𝑘
are bounded from

below and above by some uniform positive constants.
2. All the potentials 𝜑𝑘 satisfy | |𝑖𝑑 − 𝑇𝑘 | |𝐿∞ = | |∇𝜑𝑘 | |𝐿∞ ≤ 𝐶𝜏1/(𝑑+2) .
3. If 𝜏 is small enough (depending on𝑉 and 𝑝), then the𝐶0,𝛼 seminorm of log(𝜚𝜏

𝑘
)+𝑉

is bounded in terms f that of log(𝜚0) + 𝑉 and the densities 𝜚𝜏
𝑘

are bounded in
𝐶0,𝛼.

4. All the potentials 𝜑𝑘 belong to𝐶2+𝛼 (Ω̄) and | |𝜑𝑘 | |𝐶2+𝛼 (Ω̄) is bounded by a uniform
constant.



44 Filippo Santambrogio

5. The potentials 𝜑𝑘 also satisfy | |𝐷2𝜑𝑘 | |𝐿∞ ≤ 𝐶𝜏𝛽 for a certain exponent 𝛽 > 0.

Proof. 1. The uniform estimates on 𝜚𝜏 can be proven as in Lemma 2.4 of [35].
2. Whenever 𝜇, 𝜈 are two measures in a convex domain Ω ⊂ R𝑑 and 𝑇 is the
corresponding optimal map sending 𝜇 onto 𝜈, if the density of 𝜇 is bounded from
below by a constant 𝑐0 > 0, then the following remarkable estimate is proven in
[7] :

| |𝑇 − 𝑖𝑑 | |𝐿∞ ≤ 𝐶 (𝑑, 𝑐0)𝑊2 (𝜇, 𝜈)2/(𝑑+2) .

If we combine this with

𝑊22 (𝜚
𝜏
𝑘+1, 𝜚

𝜏
𝑘 ) ≤ 2𝜏 (𝐹 (𝜚

𝜏
𝑘 ) − 𝐹 (𝜚

𝜏
𝑘+1)) ≤ 𝐶𝜏.

and the fact that the density 𝜚𝜏
𝑘+1 is bounded from below by a universal constant,

we then have

| |∇𝜑𝑘 | |2+𝑑𝐿∞ (Ω) = | |𝑖𝑑 − 𝑇𝑘 | |2+𝑑𝐿∞ (Ω) ≤ 𝐶𝑊
2
2 (𝜚

𝜏
𝑘+1, 𝜚

𝜏
𝑘 ) ≤ 𝐶𝜏. (39)

3. If 𝑉 is convex we already saw in theorems 6 and 8 that the modulus of continuity
of log 𝜚 + 𝑉 are preserved along iterations. If 𝐷𝑉 ≥ 𝜆𝐼 but 𝜆 is negative this
requires a slightly differnet argument. A proof the Lipschitz bound is contained
in [31] and then we need to adapt the proof of Theroem 7 to the case where the
Lipschitz constant is not preserved by 𝜋 but increases by a quantified factor of
order 1 + 𝜏.

4. The bound on | |𝜑𝑘 | |𝐶2+𝛼 (Ω̄) is a consequence of Caffarelli’s regularity theory
for the Monge-Ampère equation (see [12]-[17]), once we have proven that the
densities are uniformly bounded from above, from below, and in 𝐶0,𝛼, when the
domain is uniformly convex and 𝐶2.

5. If we apply standard interpolation arguments to 𝑢 = ∇𝜑 we get

| |∇𝜑𝑘 | |𝐶1 (Ω̄) ≤ 𝑐 | |∇𝜑𝑘 | |
1
1+𝛼
𝐶1+𝛼 (Ω̄) | |∇𝜑𝑘 | |

𝛼
1+𝛼
𝐿∞ (Ω̄) .

Using (39) and the uniform bounds on | |𝜑𝑘 | |𝐶2+𝛼 (Ω̄) we obtain the claim with
𝛽 = 𝛼

(1+𝛼) (2+𝑑) .
ut

We now use the previous results to prove the following estimates, where 𝜀(𝜏)
denotes any quantity which depends only on Ω̄, 𝜚0, 𝑉 and 𝜏 such that 𝜀(𝜏) → 0 as
𝜏 → 0.

Lemma 8 Under the same assumptions as Proposition 6, if Ω is of the form {ℎ < 0}
for a convex and smooth function ℎ with min ℎ < 0, then we have
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ℐ(𝜚0) ≥ ℐ(𝜚𝜏𝑇 ) +
∫ 𝑇

0

∫
Ω

|𝐷2𝑢 𝜚𝜏
𝑡
|2𝜚𝜏𝑡 (𝑥) d𝑥d𝑡

+
∫ 𝑇

0

∫
Ω

(∇𝑢 𝜚𝜏
𝑡
)𝑇 · 𝐷2𝑉 (𝑥) · ∇𝑢 𝜚𝜏

𝑡
𝜚𝜏𝑡 (𝑥) d𝑥d𝑡

+
∫ 𝑇

0

∫
𝜕Ω

𝜚𝜏𝑡 (𝑥)
|∇ℎ(𝑥) | (∇𝑢 𝜚𝜏

𝑡
)𝑇 · 𝐷2ℎ(𝑥) · (∇𝑢 𝜚𝜏

𝑡
)dH 𝑑−1d𝑡 + 𝜀(𝜏). (40)

Proof. The estimate can be obtained from Lemma 4 after improving some compu-
tatons. First, we need to keep the Hessian of𝑉 instead of just using 𝐷𝑉 ≥ 𝜆. The 𝐶2
regularity of 𝑉 is needed to use an inequality of the form

(𝑥 − 𝑦) · (∇𝑉 (𝑥) − ∇𝑉 (𝑦)) ≥ (𝑥 − 𝑦)𝑇 𝐷2𝑉 (𝑥) (𝑥 − 𝑦) + 𝑜( |𝑥 − 𝑦 |2).

Then, we apply this to 𝑦 = 𝑇 (𝑥) and use point 2. in Proposition 6 in order to estimate
the error term with 𝜀(𝜏).
We now look at the boundary integrals. This requires to use the boundary terms

that we just bounded from below by 0 in the proof of the five-gradients-inequality.
Details for both arguments are presented in [52]. ut

In order to conclude we need the following lemma.
Lemma 9 Let Ω be a bounded Lipschitz domain of R𝑑 , {𝑢𝑘 }∞𝑘=1 be a sequence
in 𝐿2 ( [0, 𝑇];𝐻2 (Ω)) and bounded in 𝐿∞ ( [0, 𝑇] × Ω). If 𝑢𝑘 → 𝑢 strongly in
𝐿2 ( [0, 𝑇];𝐻2 (Ω)), then, for any 𝑓 ∈ 𝐶2 (R), { 𝑓 (𝑢𝑘 )}∞𝑘=1 converges to 𝑓 (𝑢) in
𝐿2 ( [0, 𝑇];𝐻2 (Ω)).

Proof. Using our assumptions and the Gagliardo-Nirenberg inequality (see [11,
section 9])

| |∇𝑣 | |4
𝐿4 (Ω) ≤ 𝐶 | |𝑣 | |

2
𝐻 2 (Ω) | |𝑣 | |

2
𝐿∞ (Ω) (41)

applied to 𝑣 = 𝑢𝑘 − 𝑢 we obtain 𝑢𝑘 → 𝑢 in 𝐿4 ( [0, 𝑇];𝑊1,4 (Ω)). A simple compu-
tation shows

𝐷2 ( 𝑓 (𝑢𝑘 )) = 𝑓 ′(𝑢𝑘 )𝐷2𝑢𝑘 + 𝑓 ′′(𝑢𝑘 )∇𝑢𝑘 ⊗ ∇𝑢𝑘
and the 𝐿2 convergence of this matrix-valued function to 𝐷2 ( 𝑓 (𝑢)) = 𝑓 ′(𝑢)𝐷2𝑢 +
𝑓 ′′(𝑢)∇𝑢 ⊗ ∇𝑢 is due to the following facts:
• 𝐷2𝑢𝑘 → 𝐷2𝑢 in 𝐿2 ( [0, 𝑇] ×Ω);
• ∇𝑢𝑘 ⊗ ∇𝑢𝑘 → ∇𝑢 ⊗ ∇𝑢 in 𝐿2 ( [0, 𝑇] ×Ω);
• both 𝑓 ′′(𝑢𝑘 ) and 𝑓 ′(𝑢𝑘 ) converge a.e. (to 𝑓 ′′(𝑢) and 𝑓 ′(𝑢), respectively) as a
consequence of the convergence of 𝑢𝑘 to 𝑢; moreover, these terms are bounded
in 𝐿∞ as a consequence of the regularity of 𝑓 and of the 𝐿∞ bound on 𝑢𝑘 . ut

We are now ready to prove the main theorem of this section.
Theorem 9 Suppose 0 < 𝑇 < +∞,Ω is a bounded, smooth, and convex domain. Let
𝑉 ∈ 𝐶2 (Ω̄), 𝜚0 ∈ 𝐻1 (Ω) ∩ 𝐶0,𝛼 (Ω) be an initial datum bounded away from zero
and infinity and 𝜚 be the solution of the Fokker-Planck equation (38). Then, 𝜚𝜏𝑡 → 𝜚

strongly in 𝐿2 ( [0, 𝑇];𝐻2 (Ω)) as 𝜏 → 0.
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Proof. Lemma 8 proves in particular that log 𝜚𝜏𝑡 + 𝑉 is uniformly bounded in
𝐿2 ( [0, 𝑇];𝐻2 (Ω)) with respect to 𝜏. Since the space 𝐿2 ( [0, 𝑇];𝐻2 (Ω)) is reflexive
and 𝜚𝜏𝑡 converges strongly in 𝐿2 ( [0, 𝑇];𝐻1 (Ω)) to 𝜚 (use the 𝐻2 bound together
with the compactness in space and Aubin-Lions lemma), we get that log 𝜚𝜏𝑡 +𝑉 con-
verges weakly to log 𝜚+𝑉 in 𝐿2 ( [0, 𝑇];𝐻2 (Ω)). This also implies that∇ log 𝜚𝜏𝑡 +∇𝑉
converges weakly to ∇ log 𝜚 + ∇𝑉 in 𝐿2 ( [0, 𝑇]; 𝐿2 (𝜕Ω)). If 𝜏 tends to zero then we
use the lower semicontinuity of each term on the right hand side of (40) in order to
obtain∫ 𝑇

0

∫
Ω

|𝐷2𝑢 𝜚𝑡 |2𝜚𝑡 (𝑥) d𝑥d𝑡 ≥ lim sup
𝜏→0

∫ 𝑇

0

∫
Ω

|𝐷2𝑢 𝜚𝜏
𝑡
|2𝜚𝜏𝑡 (𝑥) d𝑥d𝑡. (42)

This condition and the lower bound on 𝜚𝜏 show that 𝐷2 log 𝜚𝜏 is bounded in
𝐿2 ( [0, 𝑇]; 𝐿2 (Ω)). Since 𝐿2 ( [0, 𝑇]; 𝐿2 (Ω)) is reflexive and 𝜚𝜏 converges strongly
in 𝐿2 ( [0, 𝑇];𝐻1 (Ω)) to 𝜚, then 𝐷2 log 𝜚𝜏 converges weakly to 𝐷2 log 𝜚 in
𝐿2 ( [0, 𝑇]; 𝐿2 (Ω)). By adding 𝐷2𝑉 and multiplying times √𝜚𝜏 , which converges
a.e. to √

𝜚 and is bounded by a constant, we also have weak convergence in
𝐿2 ( [0, 𝑇]; 𝐿2 (Ω)) of √𝜚𝜏𝐷2 (log 𝜚𝜏 + 𝑉) to √

𝜚𝐷2 (log 𝜚 + 𝑉). Yet, this conver-
gence becomes strong because of the convergence of the norm in (42). We can
then multiply times (𝜚𝜏)−1/2 and subtract 𝐷2𝑉 and obtain strong convergence in
𝐿2 ( [0, 𝑇];𝐻2 (Ω)) for log 𝜚𝜏 to log 𝜚.
We then apply Lemma 9 to obtain 𝜚𝜏 → 𝜚 in 𝐿2 ( [0, 𝑇];𝐻2 (Ω)). ut
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