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Abstract

This paper studies whether the presence of a perimeter minimizing set in a Riemannian manifold
(M, g) forces an isometric splitting. We show that this is the case when M has non-negative sectional
curvature and quadratic volume growth at infinity. Moreover, we obtain that the boundary of the
perimeter minimizing set is identified with a slice in the product structure of M .

1 Introduction

A classical problem in calculus of variations is to determine the geometry of sets minimizing the perimeter
in Euclidean space. A central result is that the only perimeter minimizing sets in Rn are Euclidean half
spaces if and only if n ≤ 7. Similarly, there exists non-affine solutions of the minimal surface equation on
Rn if and only if n ≥ 8. A natural question is whether these results hold, in a generalized sense, in the
setting of Riemannian manifolds.

The rigidity properties of minimal graphs on Riemannian manifolds have been a recent topic of inves-
tigation. For example, assuming non-negative Ricci curvature, the only positive solutions of the minimal
surface equation are the constant functions by [31, 38] (see also [32]). Without the positivity condition,
solutions of the minimal surface equation on parabolic manifolds with non-negative Ricci curvature have
vanishing Hessian by [30].

On the other hand, when considering general perimeter minimizing sets in Riemannian manifolds, a lot
of properties can be obtained as a byproduct of the several known results on stable minimal hypersurfaces.
For instance, stable two-sided minimal hypersurfaces in Riemannian 3-manifolds with non-negative Ricci
curvature are totally geodesic by [65], while other celebrated results along these lines were proved in [43]
and [64]. More recently, it was shown in [28] that, in a 4-manifold with non-negative sectional curvature,
scalar curvature ≥ 1, and weakly bounded geometry, every two-sided stable minimal hypersurface is totally
geodesic (see also [40] for a related result).

Nevertheless, when working with perimeter minimizing sets rather than stable minimal hypersurfaces,
stronger rigidity results are to be expected. This leads to the following question.

Question 1. Let (M, g) be a Riemannian manifold and let E ⊂ M be perimeter minimizing. Under which
conditions on M , can we infer that M ∼= N × R and E ∼= N × R+, for some manifold (N, g′)?

In [9], it is shown that if M has at most cubic volume growth, non-negative Ricci curvature and sectional
curvature bounded from above (so that one also has a uniform lower sectional curvature bound), then the
presence of a perimeter minimizer forces the universal cover of the manifold to split-off a real line (see also
[10] and [8] for related results).

In [17], it is shown that the only asymptotically flat 3-manifold with non-negative scalar curvature
which contains a perimeter minimizer is R3 (see also [27] for a related result). From [34, Theorem 2],
combining with the results from [26], it follows that the only Ricci-flat 4-manifold with maximal volume
growth containing a perimeter minimizing set is R4.
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In view of the many rigidity results for manifolds with non-negative sectional or Ricci curvature, one
expects to answer Question 1 requiring only a lower curvature bound. In this paper, we present a result in
this direction.

Theorem 1.1. Let (Mn, g, p) be a pointed Riemannian manifold with SecM ≥ 0 and such that

lim inf
r→+∞

Vol(Br(p))

r2
< +∞. (1)

If E ⊂ M is perimeter minimizing, then M ∼= N × R and E ∼= N × [0,+∞).

We remark that, a posteriori, the manifold M from Theorem 1.1 satisfies

lim sup
r→+∞

Vol(Br(p))

r2
< +∞.

By [39, Remark 3.11] (see also [59]), there exists a 4-manifold with strictly positive sectional curvature which
contains a perimeter minimizing set, so that Theorem 1.1 fails if one asks for the volume growth at infinity
to be at most quartic, instead of quadratic as in (1). On the other hand, Theorem 3.1 below suggests that
Theorem 1.1 could hold even if the volume growth at infinity is at most cubic.

We remark that, due to [62], 4-manifolds with non-negative sectional curvature and scalar curvature ≥ 1,
have at most quadratic volume growth at infinity. Under these curvature assumptions (and also assuming
weakly bounded geometry), stable two-sided minimal hypersurfaces are totally geodesic due to [28]. Never-
theless, assuming only the stability of the hypersurface, no isometric splitting of the ambient space can be
expected. A consequence of Theorem 1.1 is that, in 4-manifolds with non-negative sectional curvature and
scalar curvature ≥ 1, replacing the local condition of stability with the global condition of being an area
minimizing boundary, one also obtains the global isometric splitting of the ambient space.

We now explain the main ideas behind Theorem 1.1. To this aim, we first briefly recall the proof that
if E ⊂ Rn is perimeter minimizing and n ≤ 7, then E is a half space. By the monotonicity formula for
minimal sets, the tangent cone at infinity E∞ ⊂ Rn of E is a perimeter minimizing cone. Since n ≤ 7,
the second variation formula for minimal cones forces E∞ to be a half-space. The rigidity case of the
monotonicity formula then implies that the initial E ⊂ Rn is a half-space as well.

To prove Theorem 1.1, we repeat a similar argument in the setting of Riemannian manifolds. Unlike
Euclidean spaces, Riemannian manifolds are not invariant under rescalings of the Riemannian metric. Hence,
to repeat the aforementioned strategy, it becomes necessary to work in a larger class of spaces. The right
setting turns out to be the one of metric measure spaces with non-negative Ricci curvature and finite
dimension in synthetic sense, i.e. RCD(0, N) spaces (see Section 2). We stress that, even though the
statement of Theorem 1.1 only deals with sectional curvature lower bounds, the setting of Alexandrov
spaces with non-negative sectional curvature would not be general enough to implement the aforementioned
strategy.

We take an appropriate sequence of scales ri ↑ +∞, and we consider a pointed measured Gromov-
Hausdorff limit (X, d,m, p) of the spaces (M, g/r2i ) equipped with their renormalized volume measures. The
metric space (X, d) is a metric cone with non-negative sectional curvature, while (X, d,m) is an RCD(0, N)
space. Moreover, there exists a set E∞ ⊂ X minimizing the perimeter (w.r.t. the metric measure structure
on X). As in the Euclidean case, to conclude, it is sufficient to show that one has the isometric splitting
X ∼= Y × R for some metric measure space (Y, dy,my), and that, with this identification, it holds E∞ ∼=
Y × R+.

By condition (1) and the fact that M contains a perimeter minimizer, (X, d) has Hausdorff dimension
at most 2. If the Hausdorff dimension of X is equal to 1, the desired isometric splitting follows by standard
arguments. Hence, we only study the case when (X, d) has Hausdorff dimension exactly 2.

If X is a cone over S1
R for some R ∈ (0, 1], i.e. X = C(S1

R), relying on the Splitting Theorem for
RCD(0, N) spaces, we show that the only measure m so that (C(S1

R), d,m) is RCD(0, N) is (a rescaling of)
the two-dimensional Hausdorff measure. It then follows that R = 1 and that E∞ ⊂ C(S1

R)
∼= R2 is a half

space, as claimed.
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The non-trivial case is when X is a cone over an interval, i.e. X = C([0, l]) for l ∈ (0, π]. We remark
that there exists a measure m′ on C([0, l]) such that (C([0, l]), d,m′) is RCD(0, 4), it contains a perimeter
minimizer, and l < π. In particular, to treat this case, one cannot just rely on the fact that (C([0, l]), d,m)
is an RCD(0, N) space containing a perimeter minimizer. The key observation is that condition (1), paired
with the fact that M contains a perimeter minimizer, implies that the volume of balls in M grows at
a uniform rate at infinity. This, combined with the concavity properties of RCD(0, N) densities on half
lines, allows to deduce additional regularity for the limiting measure m on X. By a comparison argument
(which relies on the recent results from [58, 47]), we then construct another measure m̃ on C([0, l]) so that
(C([0, l], d, m̃) is RCD(0, N+1), the set E∞ ⊂ X is perimeter minimizing with respect to m̃, and m̃ converges
to the 2-dimensional Hausdorff measure at infinity. By taking another blow-down, we then deduce that E∞
minimizes the perimeter in C([0, l]) w.r.t. the 2-dimensional Hausdorff measure, so that l = π, as claimed.

We conclude by remarking that Theorem 3.1 below suggests that the optimal way to answer Question
1 would be to require RicM ≥ 0 and

� +∞

1

t2

Vol(Bt(p))
dt = +∞.

However, assuming only non-negative Ricci curvature, very little is known on the structure of tangent cones
at infinity (see the counterexamples in [22]). In particular, such tangent cones might not be unique and they
might not be metric cones. Moreover, even if a tangent cone at infinity splits a line, the initial ambient space
might fail to do so. Therefore, the blow-down procedure at the core of our argument does not easily adapt to
manifolds with non-negative Ricci curvature. Finally, our strategy also crucially relies on the volume growth
assumption (1). Indeed, we apply the strong available results on manifolds with linear volume growth to
the area minimizing boundary ∂E.
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2 Preliminaries

A metric measure space is a triple (X, d,m), where (X, d) is a separable complete metric space and m is a
locally finite Borel measure on X. Given a measurable set A ⊂ X, we denote by L1(A,m) and L1loc(A,m)
respectively integrable functions and locally integrable functions on A. Given an open set Ω ⊂ X, we
denote by Lip(Ω), Liploc(Ω), and Lipc(Ω) respectively Lipschitz functions, locally Lipschitz functions, and
compactly supported Lipschitz functions on Ω. If f ∈ Liploc(Ω) and x ∈ Ω we set

lip(f)(x) := lim sup
y→x

|f(x)− f(y)|
d(x, y)

.

We briefly recall some facts on Ricci limit spaces and RCD(K,N) spaces. In the foundational papers
[21, 22, 23, 24], Cheeger and Colding studied the structure of Ricci limit spaces, i.e. metric measure spaces
arising as limits of manifolds of fixed dimension with a uniform lower bound on the Ricci curvature. We
refer to the book [20] and the references therein for an introduction to the topic.

RCD(K,N) spaces are metric measure spaces where K plays the role of a lower bound on the Ricci
curvature and N plays the role of an upper bound on the dimension. They were introduced in [7] (in
the case when N = +∞) and [44] (in the case when N < +∞) following the seminal papers [66, 67, 54].
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The class of RCD(K,N) spaces contains Ricci limit spaces and finite dimensional Alexandrov spaces with
curvature bounded from below. For a complete introduction to the topic, we refer to the survey [1]. From
now on, when considering RCD(K,N) spaces, we always assume N < +∞. The following key result follows
from [67].

Theorem 2.1. RCD(K,N) spaces are uniformly locally doubling.

The previous result and Gromov’s precompactness Theorem imply that the class of RCD(K,N) spaces is
precompact w.r.t. the pointed measured Gromov-Hausdorff convergence (abbreviated pmGH). For the rele-
vant background on this notion of convergence, we refer to [46]. We only recall that in the case of a sequence
of uniformly locally doubling metric measure spaces (Xi, di,mi, xi), pmGH convergence to (X, d,m, p) can
be equivalently characterized by asking for the existence of a proper metric space (Z, dZ) such that all the
metric spaces (Xi, di) are isometrically embedded into (Z, dZ), xi → x and mi → m weakly in Z. In this
case we say that the convergence is realized in the space Z.

Theorem 2.2 below follows combining Gromov’s precompactness Theorem with the stability of the RCD
condition under pmGH convergence [46] (after [66, 67, 54, 7]).

Theorem 2.2. The class of pointed RCD(K,N) spaces with normalized measures is sequentially compact
with respect to pointed measured Gromov-Hausdorff convergence.

Another key result in the theory of RCD(0, N) spaces is the Splitting Theorem. We recall that, on
manifolds with non-negative Ricci curvature, this result was proved by Cheeger and Gromoll in [25]. The
generalization to Ricci limit spaces is due to Cheeger and Colding with their Almost-Splitting Theorem [22].
On metric measure spaces, the result is due to Gigli [45]. We highlight that Gigli’s version of the Splitting
Theorem also ensures the splitting of the measures, a key fact that we will use later on.

Theorem 2.3. Let (X, d,m) be an RCD(0, N) space which contains a line. Then, there exists an RCD(0, N−
1) space (Y, dy,my) such that X = Y × R as metric measure spaces.

We conclude this brief overview with the definition of tangent cone at infinity (or blow-down) of an
RCD(0, N) space.

Definition 2.4. Let (X, d,m, x) be a pointed RCD(0, N) space, and consider a sequence ri ↑ +∞. By
Theorem 2.2, up to a subsequence, the spaces (X, d/ri,m(Bri(x))

−1m, x) converge in pmGH sense to a
limiting RCD(0, N) space (X∞, d∞,m∞, x∞). Such X∞ is called a tangent cone at infinity (or blow-down)
of X.

We recall that the tangent cone at infinity may not be unique and may not be a cone (see [61, 22]). On
the other hand, if (X, d) is a finite dimensional Alexandrov space with non-negative sectional curvature,
then its tangent cone at infinity (which, in this case, is just a metric space) is a metric cone and it is unique
(see, for instance, [12, Theorem 2.11] and the references therein).

We now recall some facts on sets of finite perimeter and perimeter minimizing sets in RCD(K,N) spaces.
Sets of finite perimeter in metric measure spaces were studied in [3, 2, 55, 5], among others. This theory
was then further developed in the setting of RCD(K,N) spaces in [4, 14, 13].

Definition 2.5 (Sets of locally finite perimeter). Let (X, d,m) be a metric measure space and let E ⊂ X
be a Borel set. Given an open set A ⊂ X, the perimeter of E in A is defined as

P (E,A) := inf

{
lim inf
k→∞

�
A

lipfk dm : fk ∈ Liploc(A), fk → χE in L1loc(A,m)

}
.

The set E ⊂ X is said to have locally finite perimeter if P (E,Br(x)) < +∞ for all x ∈ X and r > 0.

Definition 2.6. (Convergence in L1loc sense) Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces con-
verging in pmGH sense to (Y, d,m, y). The Borel sets Ei ⊂ Xi of finite measure converge in L1 sense to
a set E ⊂ Y of finite measure if mi(Ei) → m(E) and 1Eimi → 1Em weakly in duality w.r.t. continuous
compactly supported functions in the space (Z, dZ) realizing the pmGH convergence.

The Borel sets Ei ⊂ Xi converge in L1loc sense to a set E ⊂ Y if Ei ∩Br(xi) → E ∩Br(y) in L1 sense for
every r > 0.
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The next two propositions follow from [4, Proposition 3.3 and Proposition 3.6].

Proposition 2.7. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH sense to
(Y, d,m, y). Let Ei ⊂ Xi be sets with uniformly bounded measures such that Ei ⊂ Br(x) ⊂ Z, where (Z, dZ)
is the space realizing the convergence. If

sup
i∈N

P (Ei, Xi) < +∞,

then, there exists a (non relabeled) subsequence and a set of finite perimeter E ⊂ X such that Ei → E in
L1.

Proposition 2.8. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH sense to
(X, d,m, x). If E ⊂ X, and Ei ⊂ Xi is a sequence such that Ei → E in L1, then for every open set A ⊂ Z,
where (Z, dZ) is the metric space realising the convergence, we have

P (E,A) ≤ lim inf
i→+∞

P (Ei, A).

We now consider sets minimizing the perimeter in RCD(K,N) spaces. Structural properties of perimeter
minimizing sets in RCD(K,N) spaces were studied in [58], while other properties were then investigated in
[42, 35, 33].

Definition 2.9 (Perimeter minimizing sets). Let (X, d,m) be an RCD(K,N) space. A set of locally finite
perimeter E ⊂ X is perimeter minimizing if, for every bounded open set U ⊂ X, and for every set C ⊂ X
with C∆E ⊂⊂ U , it holds P (E,U) ≤ P (C,U).

Analogously, the set E is sub-minimizing if the previous condition holds for any C ⊂ X with C∆E ⊂⊂ U
and C ⊂ E. Finally, the set E is super-minimizing if the previous condition holds for any C ⊂ X with
C∆E ⊂⊂ U and C ⊃ E.

The proof of the next lemma can be found in [36, Proposition 1.2] in the Euclidean setting. The same
argument works for metric measure spaces.

Lemma 2.10. Let (X, d,m) be an RCD(K,N) space. Let E ⊂ X be a set which is sub-minimizing and
super-minimizing. Then, E is perimeter minimizing.

The next theorem comes from [53, Theorem 4.2 and Lemma 5.1]. We state the result for RCD(0, N)
spaces, although it holds in the more general setting of PI spaces.

Theorem 2.11. Let (X, d,m) be an RCD(0, N) space. There exist C, γ0 > 0 depending only on N such that
the following hold. If E ⊂ X is a perimeter minimizing set, then, up to modifying E on an m-negligible set,
for any x ∈ ∂E and r > 0, it holds

m(E ∩Br(x))

m(Br(x))
> γ0,

m(Br(x) \ E)

m(Br(x))
> γ0

and
m(Br(x))

Cr
≤ P (E,Br(x)) ≤

Cm(Br(x))

r
.

From the previous result one deduces that locally perimeter minimizing sets admit both a closed and an
open representative, and these have the same boundary which in addition is m-negligible. Whenever we
consider the boundary of a locally perimeter minimizing set, we will implicitly be referring to the boundary
of its closed (or open) representative.

The next proposition is taken from [58, Theorem 2.43].

Proposition 2.12. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH sense to
(Y, d,m, y). Let Ei ⊂ Xi be a sequence of perimeter minimizing sets converging in L1loc sense to E ⊂ Y .
Then, E is perimeter minimizing and, in the metric space realizing the convergence, it holds ∂Ei → ∂F in
Kuratowski sense.
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We conclude this section by stating and proving two technical lemmas which will be used to prove our
main result.

Lemma 2.13. Let U ⊂ Rn be an open convex set. Let f ∈ L1loc(Ū) be a function such that (Ū , d, fdλn) is
an RCD(0, N) space. Then f ∈ Liploc(U).

Proof. Let ν ∈ Sn−1 be fixed. By [19], for Hn−1-a.e. line l parallel to ν, the restricted function fl : l∩U → R+

is a CD(0, n) density on l ∩ U . In particular, for every such line l, it follows that fl has a locally Lipschitz

representative and that f
1/(n−1)
l is concave.

We claim that for every open set K ⊂⊂ U it holds that f ∈ L∞(K). Let x0 ∈ K be a Lebesgue
point of f . Let i ∈ N be such that there is a Lebesgue point xi ∈ K of f such that f(xi) ≥ i. Consider
νi := (xi − x0)/|xi − x0| and consider the restrictions of f to lines parallel to νi. Given ε > 0 small, since
x0 and xi are Lebesgue points, there exists r > 0 such that

λn({x ∈ Br(x0) : f(x) ≤ f(x0) + 1}) ≥ (1− ε)λn(Br(x0))

and
λn({x ∈ Br(xi) : f(x) ≥ i− 1}) ≥ (1− ε)λn(Br(xi)).

Hence, there exists a set A of lines parallel to νi of strictly positive Hn−1 measure such that, for every l ∈ A,
it holds

λ1(l ∩ {x ∈ Bε(x0) : f(x) ≤ f(x0) + 1}) > 0

and
λ1(l ∩ {x ∈ Bε(xi) : f(x) ≥ i− 1}) > 0.

Let l ∈ A, since the Lipschitz representative of f
1/(n−1)
l is positive, concave, and it attains a value ≤ f(x0)+1

and a value ≥ i− 1 on K ∩ l, then i ≤ c(K,U, f). This proves that f restricted to its Lebesgue points in K
is bounded above by a constant, so that f ∈ L∞(K).

We now prove that f is Locally Lipschitz in K. Let ν ∈ Sn−1 be fixed and let l be any line parallel to ν

such that f
1/(n−1)
l is positive and concave in l∩U and bounded in l∩K. Since l∩U ⊂⊂ l∩K, the positivity

and concavity of f
1/(n−1)
l guarantee that there is a constant cK > 0 such that, if |(f1/(n−1)

l )′|(x) ≥ m for

some m > 0 and some x ∈ l ∩ K, then f
1/(n−1)
l (x) ≥ cKm. Therefore, using that f

1/(n−1)
l is bounded

in l ∩ K, we deduce that (f
1/(n−1))
l )′ is itself bounded in l ∩ K. By [41, Theorem 4.21], it follows that

f
1/(n−1)
l ∈ W1,∞

loc (K). Since K ⊂⊂ U was arbitrary, it holds f
1/(n−1)
l ∈ W1,∞

loc (U), concluding the proof.

Lemma 2.14. Consider a cone C([0, l]) for some 0 < l ≤ π, which, equipped with a measure m = fH2,
with f ∈ Liploc

(
int(C([0, l]))

)
, is an RCD(0, N) space. Let Y = C([a, b]) ⊂ Z for some 0 ≤ a < b ≤ l and let

p be the tip of C([0, l]). Denoting by Pm(·, ·) perimeters in C([0, l]) w.r.t. the measure m, for every s > 0 it
holds that

Pm(Y,Bs(p)) =



� s

0

f|C({a})(z) + f|C({b})(z) dz if a ̸= 0, b ̸= l,� s

0

f|C({a})(z) dz if a ̸= 0, b = l,� s

0

f|C({b})(z) dz if a = 0, b ̸= l.

Proof. We prove the case a ̸= 0, b = l, the other cases can be done analogously.
Given a point q ∈ C({a}) \ {p}, f is Lipschitz and thus bounded in a neighborhood B of q in C([0, l]).

Reasoning as in the proof of the previous lemma, for Hn−1-a.e. line l parallel to C({a}), the restricted

function fl is such that f
1/(n−1)
l is concave. By Lemma 2.13, it follows that f

1/(n−1)
l is concave for every

line l parallel to C({a}). Since f is bounded in B, we conclude that f is also bounded in a neighbourhood
of p.
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Now, call da the signed distance from C({a}) and let ϕ : R → [0, 1] be defined as

ϕ(t) =


0 if t ≤ 0,

t if t ∈ [0, 1],

1 if t ≥ 1.

Then, for every n ∈ N, we consider un ∈ Liploc
(
C([0, l])

)
defined as un(x) = ϕ(nda(x)). Considering

π(x) := d(p, π̃(x)) where π̃ is the closest point projection on C({a}) observe that

lim inf
n→∞

�
Bs(p)

|∇un| dm = lim inf
n→∞

� s

0

�
π−1(s)

n · f1Bs(p)∩{0≤da≤1/n} dλ
1 dλ1 =

� s

0

f|C({a})(z) dz,

where the last step uses the dominated convergence theorem, thanks to f being locally bounded around p.
We deduce that Pm(Y,Bs(p)) ≤

� s

0
f|C({a})(z) dz.

Assume by contradiction that Pm(Y,Bs(p)) <
� s

0
f|C({a})(z) dz, then there exist s1, s2 ∈ (0, s) with

s1 < s2 such that

Pm(Y,Bs2(p) \Bs1(p)) <

� s2

s1

f|C({a})(z) dz.

Now, for every δ > 0, we can find a subinterval Iδ = [sδ1, s
δ
2] ⊂ [s1, s2] with |Iδ| < δ such that

� sδ2

sδ1

f|C({a})(z) dz − Pm(Y,Bsδ2
(p) \Bsδ1

(p)) > c|Iδ|, (2)

for a positive constant c > 0. This can be proved by taking finer and finer partitions of [s1, s2] and selecting
suitable subintervals. By uniform continuity of f|C({a}) on [s1, s2], we take δ such that

�
J

f|C({a})(z) dz − |J | · inf
J

f|C({a}) <
c

2
|J |,

on any interval J ⊂ [s1, s2] with |J | < δ. In particular, for the interval Iδ satisfying (2), we obtain

|Iδ| · inf
Iδ

f|C({a}) − Pm(Y,Bsδ2
(p) \Bsδ1

(p)) >
c

2
|Iδ| > 0.

We can then find an open neighborhood A of C({a})∩(Bsδ2
(p)\Bsδ1

(p)) such that Pm(Y,A) < (sδ2−sδ1) infA f .

However, calling f̄ = infA f , we have Pm(Y,A) ≥ Pf̄λ2(Y,A) = f̄Pλ2(Y,A) ≥ f̄(sδ2−sδ1), a contradiction.

3 Main result

The next result shows that perimeter minimizing sets in manifolds with non-negative Ricci curvature, and
sufficiently slow volume growth at infinity, are regular. This is an adaptation of [9, Theorem 2.1].

Theorem 3.1. Let (Mn, g, p) be a pointed Riemannian manifold with RicM ≥ 0 and such that

� ∞

1

t2

Vol(Bt(p))
dt = +∞. (3)

If E ⊂ M is perimeter minimizing, then E is smooth and its boundary is totally geodesic.

Remark 3.2. Theorem 3.1 proves that the area minimizing boundary ∂E is totally geodesic. Similar
statements for stable minimal hypersurfaces are obtained in [65, 43, 64, 28]. The main difference is that the
stronger assumption that the minimal hyperurface is an area minimizing boundary allows to use the esti-
mates from Theorem 2.11. This is the reason why Theorem 3.1 has a simpler proof than the forementioned
results.
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Proof. Let Σ ⊂ ∂E be the singular set of ∂E. By the classical regularity theory for perimeter minimizers, Σ
is a closed set with Hn−7(Σ) = 0. Moreover, by the stability inequality (see [29]), for every ϕ ∈ C∞

c (∂E \Σ),
it holds �

∂E

ϕ2(|Π∂E |2 + Ric(ν, ν)) dHn−1 ≤
�
∂E

|∇∂Eϕ|2 dHn−1, (4)

where ν is the normal to ∂E and Π∂E is the second fundamental form of ∂E (both are only defined in the
smooth points). By approximation, inequality (4) holds for any function ϕ ∈ Lipc(∂E \ Σ). We now divide
the remaining part of the proof in three different steps.

Step 1: Inequality (4) holds for any function ϕ ∈ Lipc(M).

To prove this, fix ϕ ∈ Lipc(M). It is sufficient to find a sequence of functions ηi ∈ Lipc(M) taking values in
[0, 1] such that ηi ≡ 1 on a neighbourhood of supp(ϕ) ∩ Σ and

�
∂E

|ηi|2 + |∇∂Eηi|2dHn−1 → 0 as i → ∞.
Indeed, given such a sequence, it holds

�
∂E

((1− ηi)ϕ)
2(|Π∂E |2 + Ric(ν, ν)) dHn−1 ≤

�
∂E

|∇∂E(1− ηi)ϕ|2 dHn−1

≤
�
∂E

(1− ηi)
2|∇∂Eϕ|2 dHn−1 + c1(ϕ)

�
∂E

|ηi|2 + |∇∂Eηi|2dHn−1.

Passing to the limit as i → ∞ the last inequality, we would conclude the proof of Step 1.
We now construct the functions ηi ∈ Lipc(M) with the desired properties repeating an argument of [9,

Between equations (2.6) and (2.7)] (after [49]). Let M be isometrically embedded in a large Euclidean space
RL. Let ε > 0. Since Hn−7(Σ) = 0, there exists a finite collection {Qk}k of cubes in RL with sides sk ≤ ε
such that

supp(ϕ) ∩ Σ ⊂
⋃
k

Qk, and
∑
k

sn−7
k ≤ ε.

By relabeling, we can suppose that s1 ≥ s2 ≥ · · · . By [49, Lemmas 3.1 and 3.2], there exists a function
ηε ∈ C∞

c (RL) taking values in [0, 1] such that ηε ≡ 1 on ∪kQk, supp(ηε) ⊂ ∪k(3/2)Qk, and

|∇RLηε| ≤ cs−1
k on Tk := (3/2)Qk \ ∪j>k(3/2)Qj ,

for a constant c > 0 depending only on L. Observe that if ε > 0 is small enough, since M is embedded
isometrically in RL, it holds BM

3
√
Lsk

(x) ⊃ ((3/2)Qk) ∩M for any x ∈ Qk ∩M ∩ supp(ϕ). We can suppose

that each cube Qk intersects Σ ∩ supp(ϕ), so that using Theorem 2.11, it holds

Hn−1(∂E ∩ (3/2)Qk) ≤ Hn−1(∂E ∩BM
3
√
Lsk

(x)) ≤ c(n,L)sn−1
k .

Hence, using that |∇∂E | ≤ |∇RL |, for a constant c′ depending on L and n, it holds

�
∂E

|∇∂Eηε|2 dHn−1 ≤ c′
∑
k

Hn−1(Tk ∩ ∂E)s−2
k ≤ c′

∑
k

sn−3
k ≤ c′ε.

Similarly, �
∂E

|ηε|2 dHn−1 ≤
∑
k

Hn−1(Tk ∩ ∂E) ≤ c′
∑
k

sn−1
k ≤ c′ε.

Considering functions ηεi for a sequence εi ↓ 0, we conclude the proof of Step 1.

Step 2: Π∂E ≡ 0 on the set ∂E \ Σ.

Let x ∈ ∂E, R > 0, and consider the function ϕR ∈ Lipc(M) defined by

ϕR(y) :=

� R

1∨d(x,y)∧R
s

P (E,B̄s(x))
ds� R

1
s

P (E,B̄s(x))
ds

.
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To shorten the notation, we set CR :=
� R

1
s

P (E,B̄s(x))
ds. It holds that

�
∂E

|∇∂EϕR|2 dHn−1 ≤
�
∂E

|∇ϕR|2 dHn−1C−2
R

�
(BR(x)\B1(x))∩∂E

d(x, y)2

P (E, B̄d(x,y)(x))2
dHn−1(y).

We define h : [1, R] → R as h(s) := P (E, B̄s(x)). Observe that h has bounded variation, since it is monotone.
We also consider the measure ν on the Borel sets of [1, R] defined as ν([a, b]) := P (E, B̄b(x) \ Ba(x)) for
every 1 ≤ a ≤ b ≤ R. The measure ν is the distributional derivative of h in [1, R]. Moreover, we have that

ν = d(x, ·)#
[
Hn−1

(
∂E ∩ (BR(x) \B1(x))

)]
,

and therefore

�
∂E

|∇∂EϕR|2 dHn−1 ≤ C−2
R

� R

1

s2

h(s)2
dν(s). (5)

For a function of bounded variation f ∈ BV(R), we denote by Djf the jump part of its derivative, by D̃f
the remaining part of the derivative and by Jf the jump set. Using the chain rule (see [6, Theorem 3.96]),
it holds

D
( s2

h(s)

)
= Dj

( s2

h(s)

)
+ D̃

( s2

h(s)

)
= s2

( 1

h+(s)
− 1

h−(s)

)
H0 Jh + 2

s

h(s)
dλ1 − s2

h(s)2
D̃h

= s2
( 1

h+(s)
− 1

h−(s)

)
H0 Jh + 2

s

h(s)
dλ1 − s2

h(s)2
ν +

s2

h(s)2
Djh.

By definition of h, on a jump point of h, it holds h(s) = h+(s), so that

s2
( 1

h+(s)
− 1

h−(s)

)
H0 Jh +

s2

h(s)2
Djh = s2(h+(s) − h−(s))

( 1

h+(s)2
− 1

h+(s)h−(s)

)
H0 Jh ≤ 0.

Combining with the previous chain of inequalities, we obtain

s2

h(s)2
ν ≤ 2

s

h(s)
dλ1 −D

( s2

h(s)

)
.

In particular, we deduce that

C−2
R

� R

1

s2

h(s)2
dν(s) = 2C−1

R − C−2
R

( R2

h(R)
− 1

h(1)

)
≤ 2C−1

R + C−2
R

1

h(1)
.

By the hypothesis (3) combined with the perimeter estimate of Theorem 2.11, we observe that CR → +∞ as
R → +∞. Combining the last inequality with (5) and Step 1, we deduce that Π∂E ≡ 0 in B1(x)∩ (∂E \Σ).
By a scaling argument, it holds Π∂E ≡ 0 in ∂E \ Σ.

Step 3: Σ = ∅.

Assume by contradiction that this is not the case. We use Federer’s dimension reduction argument to find
a contradiction. Let p ∈ Σ. Taking the blow-up of E in p, we obtain a perimeter minimizing set E1 ⊂ Rn.
Since E is singular in p, the origin 0 ∈ Rn belongs to the singular set Σ1 of ∂E1.

We claim that, since ∂E is totally geodesic outside of its singular set, the same holds for ∂E1. To see
this, let M be isometrically embedded into a large Euclidean space RL. As we take the blow-up of M at
p, the second fundamental form of M w.r.t. RL, in the Euclidean unit ball around p, converges uniformly
to zero. Hence, in the same Euclidean ball, also the second fundamental form of ∂E w.r.t. RL converges
uniformly to zero. By [50, Theorem 5.3.2] (see also [56]), it follows that ∂E1 \Σ1 is totally geodesic in RL,
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so that it is also totally geodesic in the copy of Rn inside RL which corresponds to the tangent space to M
in p, proving the claim. Moreover, taking another blow-up in the origin, we can additionally assume that
E1 is a cone.

If Σ1 = {0}, then ∂E1 is totally geodesic outside of the origin. As a consequence, ∂E1 is a hyperplane,
which contradicts the fact that 0 ∈ Σ1. Hence, we can suppose that there exists p ̸= 0 such that p ∈ Σ1.
Taking a blow-up of E1 in p, and using that E1 is a cone, we obtain a perimeter minimizing set Ẽ2 ⊂ Rn

of the form Ẽ2 = E2 × R ⊂ Rn−1 × R. Moreover, ∂Ẽ2 is totally geodesic outside of its singular set, and 0
belongs to the singular set Σ̃2 of ∂Ẽ2. Hence, E2 ⊂ Rn−1 is perimeter minimizing, ∂E2 is totally geodesic
outside of its singular set, and 0 belongs to the singular set Σ2 of ∂E2. Taking another blow-up in the origin
we can additionally assume that E2 is a cone. As before, if Σ2 = {0}, we obtain a contradiction. Otherwise,
we keep repeating this procedure, until we obtain Ek ⊂ Rn−k+1 as before and such that Σk = {0}. This
happens for some k ≥ n− 7 by the standard regularity theory of perimeter minimizers.

Remark 3.3. We say that a closed set A ⊂ Mn is smooth if, for every x ∈ A, there exists a chart (U, ϕ) of
M such that ϕ(A∩U) ⊂ Rn is either the whole Rn or a half space Rn−1×R+. We recall that if E ⊂ M is a
perimeter minimizing set whose (essential) boundary is smooth, then its closed representative is a smooth
set.

We now prove two simple lemmas involving the volume growth condition (3).

Lemma 3.4. Let (Mn, g, p) be a pointed Riemannian manifold with SecM ≥ 0 and such that

� ∞

1

t2

Vol(Bt(p))
dt = +∞.

If E ⊂ M is perimeter minimizing, then ∂E is connected. Moreover, the closed representative of E is a
connected smooth set.

Proof. Assume by contradiction that ∂E is disconnected. Modulo replacing E with its complement, there
exists a connected component A ⊂ E such that ∂A has more than one connected component. By the
previous theorem and Remark 3.3, A is a smooth set. By [16, Theorem 5.2], A ∼= Nn−1 × [0, l] with its
intrinsic metric, for some manifold Nn−1 with non-negative sectional curvature. If N is compact, then E \A
is a competitor of E, contradicting that E is perimeter minimizing. Hence, N is non-compact.

Let p ∈ N . We claim that there exists s > 0 such that

lP (BN
s (p), N) < 2Hn−1(BN

s (p)). (6)

Recall that, by the coarea formula, the function s 7→ Hn−1(BN
s (p)) is absolutely continuous and satis-

fies d
dsH

n−1(BN
s (p)) = P (BN

s (p), N) for a.e. s > 0. Hence, if (6) fails for every s > 0, it follows that
d
dsH

n−1(BN
s (p)) ≥ 2l−1Hn−1(BN

s (p)) and thus Hn−1(BN
s (p)) grows exponenentially in s. This contradicts

the Bishop-Gromov inequality and proves the claimed inequality (6).
So let s0 > 0 be a value satisfying (6). Consider the set

B := E \ (BN
s0(p)× [0, l]).

Let U ⊂ M be an open set containing the subset of A ⊂ E identified with B̄N
s0+1(p) × [0, l]. Observe that

B∆E ⊂⊂ U . Moreover, it holds that

P (B,U) = lP (BN
s0(p), N) + P (E,U \ B̄N

s0(p)× [0, l])

< 2Hn−1(BN
s0(p)) + P (E,U \ B̄N

s0(p)× [0, l]) = P (E,U),

contradicting the fact that E is a perimeter minimizer. Hence, ∂E has only one connected component.
In conclusion, the closed representative of E is a smooth set with connected boundary. Hence, it is

connected.
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Lemma 3.5. Let (Mn, g) be a Riemannian manifold such that lim infr→+∞
Vol(Br(p))

r2 < +∞, then

� ∞

1

t2

Vol(Bt(p))
dt = +∞. (7)

Proof. By assumption, we can find ti ↑ ∞ such that

Vol(Bti(p))

t2i
< C, for every i ∈ N,

where C > 0 is a fixed constant. Then, for every i ∈ N and every s ∈ [0, 1], we have

Vol(Bti−s(p)) ≤ Vol(Bti(p)) < Ct2i = C(t2i − s)
t2i

t2i − s
≤ 2C(t2i − s),

where the last inequality holds for i sufficiently large. Thus, the integrand in (7) is greater than 1
2C on

∪i [ti − 1, ti]. The thesis easily follows.

The next result combines [70, Theorem 2.4] and [69, Remark 2.1] (see also [60, Proposition A.1]). We
refer to Definition 2.4 for the definition of blow-down of a manifold with non-negative Ricci curvature.

Lemma 3.6. Let (Mn, g) be a non-compact manifold with RicM ≥ 0 and such that

lim inf
r→+∞

Vol(Br(p))

r
< +∞.

Then, we have

lim sup
r→+∞

Vol(Br(p))

r
< +∞,

and the blow-down of M is unique and it is either a line or a half line.

In the next proposition we study the blow-down procedure which is at the core of our strategy.

Proposition 3.7. Let (Mn, g) be a Riemannian manifold with SecM ≥ 0 with

lim inf
r→+∞

Vol(Br(p))

r2
< +∞. (8)

Let E ⊂ M be a smooth perimeter minimzing set with non-compact boundary. Consider the metric space
(X, d) obtained by gluing (E, g) and (∂E, g)×R+ along their isometric boundaries. Then, X is an Alexandrov
space with non-negative sectional curvature, E ⊂ X is perimeter minimizing, and the blow-down of X is a
cone of Hausdorff dimension 2.

Proof. By Lemma 3.5 and Theorem 3.1, ∂E ⊂ M is totally geodesic, so that with its intrinsic metric it
has non-negative sectional curvature. Hence, since E and ∂E are connected by Lemma 3.4, (E, g) and
(∂E, g) × R+ are Alexandrov spaces with non-negative sectional curvature and isometric boundaries. By
[63], (X, d) is an Alexandrov space with non-negative sectional curvature.

It is easy to check that E is sub-minimizing and super-minimizing, so that by Lemma 2.10 it follows
that E is perimeter minimizing. We divide the remaining part of the proof in steps.

Step 1: The blow-down of (∂E, g) has Hausdorff dimension 1.

By Theorem 2.11, combined with our assumption (8), we have that

lim inf
r→+∞

P (E,Br(p))

r
< +∞. (9)
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Since the distance induced by g on ∂E is larger than the one induced on M restricted to ∂E, denoting by
B∂E

r (p) balls in (∂E, g), it holds that

Hn−1(B∂E
r (p)) ≤ Hn−1(∂E ∩BM

r (p)) = P (E,Br(p)).

Combining this with (9), it holds

lim inf
r→+∞

Hn−1(B∂E
r (p))

r
< +∞.

Since (∂E, g) is a manifold of non-negative sectional curvature, by Lemma 3.6, the blow-down of (∂E, g) is
one-dimensional.

Step 2: The blow-down of (X, d) has Hausdorff dimension 2.

Let ri ↑ +∞. Let (X∞, d∞, x∞) be the pGH limit of the sequence (X, d/ri, x), i.e. the blow-down of
(X, d). We need to show that such limit space has Hausdorff dimension 2.

To this aim, let p ∈ ∂E and let p̄i := (p, 10ri) ∈ ∂E × R+ ⊂ X. On the balls Bri(p̄i) ⊂ X, we consider
the distance d̃ obtained as the restriction of the distance induced by g + dt2 on ∂E × R. We claim that d
and d̃ coincide on Bri(p̄i). Indeed, let γ ⊂ X be a curve between two points p1, p2 ∈ Bri(p̄i) realizing the
distance d(p1, p2). If γ ⊂ ∂E ×R+, it follows that d̃(p1, p2) ≤ d(p1, p2). At the same time, if γ ̸⊂ ∂E ×R+,
then it connects p1 to a point in ∂E×{0}. Hence, γ has length greater than 9ri, contradicting the fact that
d(p1, p2) ≤ 2ri. This proves that d̃(p1, p2) ≤ d(p1, p2). Let now γ̃ ⊂ ∂E × R be a curve between two points
p1, p2 ∈ Bri(p̄i) realizing the distance d̃(p1, p2). Arguing as before, and using d̃(p1, p̄i) ≤ d(p1, p̄i) ≤ ri, it
follows that γ̃ ⊂ ∂E × R+, so that d(p1, p2) ≤ d̃(p1, p2). This proves our claim that d and d̃ coincide on
Bri(p̄i).

As a consequence, there exists an open ball B in (X∞, d∞) which arises as GH limit of (Bri(p̄i), d̃/ri).
Hence, B is isometric to an open ball in the blow-down of ∂E × R, which has Hausdorff dimension 2 by
Step 1. Hence, an open set of X∞ has Hausdorff dimension 2. Since X∞ an Alexandrov space, it also has
Hausdorff dimension 2.

Lemma 3.8. Let (Mn, g) be a Riemannian manifold with SecM ≥ 0. Let E ⊂ M be a smooth perimeter
minimzing set with totally geodesic boundary. Consider the metric space (X, d) obtained by gluing (E, g)
and (∂E, g)× R+ along their isometric boundaries. Let p ∈ ∂E and r > 0. Then,

Hn(BX
r (p)) ≤ c(n)Vol(BM

r (p)).

Proof. Since E is perimeter minimizing in X, by Theorem 2.11, for every r > 0, it holds

Hn(BX
r (p)) ≤ c(n)Hn(BX

r (p) ∩ E).

By definition of X, it holds BX
r (p) ∩ E = BM

r (p) ∩ E. Hence,

Hn(BX
r (p)) ≤ c(n)Hn(BM

r (p) ∩ E) ≤ c(n)Hn(BM
r (p)),

as claimed.

In the following two results we study the two possible blow-downs of the glued space X considered in
Proposition 3.7. We recall that, given a metric space (Z, dZ), we denote by C(Z) the metric cone with
section Z. In the next theorem, we show that, when R ∈ (0, 1], the cone C(S1

R) is an RCD(0, N) space if
and only if it is equipped with the 2-dimensional Hausdorff measure H2 (up to a constant).

Theorem 3.9. Let (C(S1
R), d,m) with R ≤ 1 be an RCD(0, N) space. Then m = cH2, for some constant

c > 0.

Proof. Consider the map φ : R2 \ ([0,+∞)× {0}) → C(S1
R) defined in polar coordinates as

φ(r, θ) =
(
r, (R cos(θ/R), R sin(θ/R))

)
.
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Intuitively, the map φ wraps R2 \ ([0,+∞) × {0}) around the cone C(S1
R). Observe that, by definition,

φ is a local isometry, thus we can define a measure m̃ on R2 \ ([0,+∞) × {0}) by requiring that locally
m̃ = (φ−1)#m. Then, for every point x ∈ R2 \ ([0,+∞) × {0}), there exists a closed convex neighborhood
C ∋ x such that (C, deu, m̃ C) is an RCD(0, N) space.

Now, for every δ > 0, consider the set Vδ = (−∞,−δ] × R. Using the local-to-global property of
RCD(0, N) (see [18]), we deduce that (Vδ, deu, m̃ Vδ) is an RCD(0, N) space. Gigli’s Splitting Theorem [45]
ensures that m̃ Vδ = nδ ×λ1 for some measure nδ on (−∞,−δ]. As this holds for every δ > 0, we conclude
that m̃ ((−∞, 0)× R) = n× λ1 for some measure n on (−∞, 0). Reasoning in the same way, we get that
m̃ (R × (0,+∞)) = n′ × λ1 for some measure n′ on (0,+∞). Similarly, we obtain an analogous splitting
of the measure in the lower half plane. Combining everything, we deduce that m̃ = cλ2 = cH2, for some
constant c > 0. Finally, as φ is a local isometry and m = φ#m̃ locally, we conclude that m = cH2.

The next proposition is the core technical result of the paper.

Proposition 3.10. Let (Mn, g, p) be a Riemannian manifold with SecM ≥ 0 and such that

lim inf
r→+∞

Vol(Br(p))

r2
∈ (0,+∞). (10)

Let E ⊂ M be a smooth perimeter minimzing set such that ∂E is non-compact. Consider the metric space
(X, d) obtained by gluing (E, g) and (∂E, g)× R+ along their isometric boundaries. If the blow-down of X
is a cone of the type C([0, l]), then l = π. Moreover, when taking the blow-down, the set E ⊂ X converges
in L1loc sense to C([0, π/2]) ⊂ C([0, π]) or to C([π/2, π]) ⊂ C([0, π]).

Proof. Let (C([0, l]), d∞, p∞) be the blow-down of (X, d, p), with p∞ being the tip of C([0, l]). We remark
that this blow-down does not depend on the sequence of rescalings. According to assumption (10) combined
with Lemma 3.8, we consider a sequence ri ↑ +∞ such that

Hn(Bri(p)) ≤ Cr2i , for every i ∈ N. (11)

Step 1: Fix any t > 0 and consider the sequence of pointed metric measure spaces(
X,

d

ri/t
,

Hn

Hn(Bri/t(p))
, p
)
→ (C([0, l]), d∞,mt

∞, p∞), (12)

in pmGH sense (up to a subsequence ), for some blow-down measure mt
∞. Then, there exist 0 ≤ at < bt ≤ l

such that Y t
∞ = C([at, bt]) ⊂ C([0, l]) is a perimeter minimizing set in (C([0, l]), d∞,mt

∞) with

Pmt
∞
(Y t

∞, Bt(p∞)) ≤ C̃t, (13)

for a constant C̃ not depending on t.

Consider the closed manifold (E, g) and observe that its induced metric coincides with the restriction of d
to E. Hence, the blow-down of (E, g) is isometric to a subset of the blow-down of (X, d). In particular,
there is a closed subset Y t

∞ ⊂ C([0, l]) with p∞ ∈ Y t
∞ such that (Y t

∞, d∞) is isometric to the blow-down
of (E, g). Since (E, g) is an Alexandrov space with non-negative sectional curvature, its blow-down is a
cone (see for instance [12, Theorem 2.11]). Moreover, when identifying the blow-down of (E, g) with Y t

∞,
the tip of such cone is identified with the tip p∞ ∈ C([0, l]). Hence, there exist 0 ≤ at ≤ bt ≤ l such that
Y t
∞ = C([at, bt]) ⊂ C([0, l]).
To prove that Y t

∞ is perimeter minimizing, we are going to show that it is the L1loc limit of E, along the
sequence in (12). To this aim, call Et

∞ the perimeter minimizing set in (C([0, l]), d∞,mt
∞) that arises as

L1loc limit of E. This set is non-trivial, i.e. its boundary is non-empty, by Proposition 2.12. We consider the
closed representative of Et

∞ and we claim that Y t
∞ = Et

∞.
In the space (Z, dZ) realizing the pmGH convergence to the blow-down, denotingmt

i = [Hn(Bri/t(p))]
−1Hn,

the measures 1Em
t
i converge weakly to the measure 1Et

∞
mt

∞ and the set E converges in Hausdorff sense on
compact sets of Z to Y t

∞. We first show that Et
∞ ⊂ Y t

∞. Since (the closed representative of) Et
∞ is the
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closure of its open representative, any point x ∈ Et
∞ is in the support of 1Et

∞
mt

∞. Since 1Em
t
i → 1Et

∞
mt

∞
weakly, there exists a sequence of points xi ∈ E such that xi → x in (Z, dZ). Hence, we deduce x ∈ Y t

∞,
proving that Et

∞ ⊂ Y t
∞.

To show the other inclusion, we fix any x ∈ Y t
∞. Then, there exists a sequence xi ∈ Ē converging to x

in (Z, dZ). By Theorem 2.11, x belongs to the support of the limit measure 1Et
∞
mt

∞. Hence, x belongs to
the closed representative of Et

∞, proving that Y t
∞ = Et

∞. Since Et
∞ has an open representative, it follows

that at < bt.
We proceed now to prove (13). We use notations B, Bi, and B∞ for balls w.r.t. the distances d, d/(ri/t)

and d∞ in the respective spaces. By the lower semicontinuity of perimeters under L1loc convergence, we get
that

Pmt
∞
(Y t

∞, B∞
t (p∞)) ≤ lim inf

i→+∞
Pmt

i
(E,Bi

t(p)) = lim inf
i→+∞

(ri/t)P (E,Bri(p))

Hn(Bri/t(p))
. (14)

We now denote by B∂E balls in ∂E w.r.t. the metric induced by (∂E, g). The manifold (∂E, g) has non-
negative sectional curvature according to Lemma 3.5 and Theorem 3.1. Since ∂E is non-compact, using
[68], it holds that

Hn−1(B∂E
r (p))/r ≥ c1

for every r > 0 sufficiently large and some c1 > 0 depending on ∂E. Using that B∂E
r (p) ⊂ Br(p) ∩ ∂E, it

follows that for r > 0 sufficiently large it holds

c1r ≤ Hn−1(B∂E
r (p)) ≤ Hn−1(∂E ∩Br(p)) ≤ c2H

n(Br(p))/r,

for some constant c2 > 0 depending only on n, where the last step follows from Theorem 2.11. Combining
this with (14), (11) and Theorem 2.11, it holds

Pmt
∞
(Y t

∞, B∞
t (p∞)) ≤ C̃t,

for a constant C̃ not depending on t.

Step 2: The estimate (13) can be improved to

Pmt
∞
(Y t

∞, B∞
s (p∞)) ≤ 20C̃s, for every s ∈ (0, t/2).

Since (C([0, l]), d∞,mt
∞) is an RCD(0, n) space, by the stratification results [57, 52, 48, 37, 15], it holds

mt
∞ = f tλ2. By Lemma 2.13, f t is locally Lipschitz in the interior of its domain. Assume at ̸= 0. By [19],

for H1-a.e. line r parallel to C({at}), the restricted function f t
r : r ∩C([0, l]) → R+ is a CD(0, n) density on

r ∩ C([0, l]). Hence, (f t
r)

1/(n−1) is concave on r ∩ C([0, l]). Since (f t
r)

1/(n−1) is positive and r ∩ C([0, l]) is
a half line, (f t

r)
1/(n−1) increases as one moves away from the endpoint. Since f t is continuous, we conclude

that f t
r is increasing for every line r parallel to C({at}). The same holds for every line parallel to C({bt}),

if bt ̸= l.
We now show that, when at ̸= 0, it holds

f t
|C({at})(z) ≤ 10C̃, for every z ∈ (0, t/2). (15)

By Lemma 2.14, it follows that

� t

0

f t
|C({at})(z) dz ≤ Pmt

∞
(Y t

∞, B∞
t (p∞)),

where in the r.h.s. we see f t
|C({at}) as a function defined on R+. Combining this with Step 1, we deduce

� t

0

f t
|C({at})(z) dz ≤ C̃t.

Since f t
|C({a}) is increasing, the previous inequality implies (15).
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By an analogous argument, if bt ̸= l, (15) holds with bt in place of at. Combining Lemma 2.14 with
(15), we conclude the proof of Step 2.

Step 3: There exist a measure m∞ on C([0, l]) and Y∞ = C([a, b]) ⊂ C([0, l]) with 0 ≤ a < b ≤ l such
that Y∞ is a perimeter minimizing set in (C([0, l]), d∞,m∞) and

Pm∞(Y∞, B∞
t (p∞)) ≤ 20C̃t, for every t > 0.

Let tj ↑ +∞. Consider the corresponding m
tj
∞ and Y

tj
∞ , obtained in the previous steps. Since each m

tj
∞ is a

limit of normalized measures, it holds m
tj
∞(B∞

1 (p∞)) = 1. Hence, up to a subsequence, m
tj
∞ → m∞ weakly

for some limit measure m∞. Similarly, up to a subsequence, Y
tj
∞ → Y∞ in L1loc sense for some non-trivial

perimeter minimizing set Y∞ = C([a, b]) with a < b. By lower semicontinuity of perimeters under L1loc
convergence and Step 2, we deduce

Pm∞(Y∞, B∞
s (p∞)) ≤ lim inf

j→+∞
P
m

tj
∞
(Y tj

∞ , B∞
s (p∞)) ≤ 20C̃s for every s > 0.

Step 4: l = π and either Y∞ = C([0, π/2]) or Y∞ = C([π/2, π]).

As before, it holds m∞ = fλ2, for some function f which is locally Lipschitz in the interior of C([0, l])
(Lemma 2.13). Without loss of generality, we assume a ̸= 0. In C([0, l]) \ C({a}), consider the distance
da from from C({a}). By [58] and [47], the function da is superharmonic in C([0, l]) \ C({a}) w.r.t. the
weighted measure m∞ = fλ2, which implies that

∇da · ∇f ≤ 0. (16)

Let π : C([0, l]) → C({a}) be the nearest point projection on C({a}) and let f̃(x) := f(π(x)).
As before, for H1-a.e. line r parallel to C({a}), the restricted function fr : r ∩ C([0, l]) → R+ is a

CD(0, n) density on r ∩C([0, l]). Since f is continuous, f|C({a}) is a CD(0, n) density as well. In particular,

f|C({a}) is increasing. Then, the space (C([0, l]), d∞, f̃λ2) is an RCD(0, n+ 1) space, being a convex subset
of C({a})× R, equipped with the product distance and the product measure (f|C({a})λ

1)× λ1.
Consider the pmGH limit of the sequence (C([0, l]), d∞/i, m̃∞/m̃∞(B∞

i (p∞))) as i ↑ +∞, where we
set m̃∞ := f̃λ2. We claim that such pmGH limit is isomorphic to (C([0, l]), d∞, cλ2) for some constant
c > 0. Indeed, each space (C([0, l]), d∞/i, m̃∞/m̃∞(B∞

i (p∞))) is isomorphic as a metric measure space to
(C([0, l]), d∞, f̃iλ

2), where

f̃i(x) :=
f̃(ix)�

B∞
1 (p∞)

f̃(iz) dλ2(z)
. (17)

Since f|C({a}) is increasing, it follows by Step 3 and Lemma 2.14 that f|C({a}) is bounded. Therefore, using

the definition of f̃ , it holds
lim

x→+∞
f̃(x) = c′ > 0.

Combining this with (17), we deduce that f̃iλ
2 converges weakly in C([0, l]) to cλ2 for some c > 0. This

proves that
(C([0, l]), d∞/i, m̃∞/m̃∞(B∞

i (p∞))) → (C([0, l]), d∞, cλ2)

in pmGH sense as claimed.
We now claim that C([a, l]) is a super-minimizer in (C([0, l]), d∞, cλ2). Since C([a, b]) is perimeter

minimizing in (C([0, l]), d∞, fλ2), it follows that C([a, l]) is a super-minimizer in (C([0, l]), d∞, fλ2). We now
denote by P perimeters in (C([0, l]), d∞, fλ2) and by P̃ perimeters in (C([0, l]), d∞, f̃λ2). Let U ⊂ C([0, l])
be a bounded open set and let C ⊂ C([0, l]) be such that C ⊃ C([a, l]) and C([a, l])∆C ⊂⊂ U . Using that
f ≤ f̃ thanks to (16), and that f̃ = f on C({a}), using Lemma 2.14, it holds that

P̃ (C([a, l]), U) = P (C([a, l]), U) ≤ P (C,U) ≤ P̃ (C,U).
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Hence, C([a, l]) is a super-minimizer in (C([0, l]), d∞/i, m̃∞/m̃∞(B∞
i (p∞))) for every i, which implies that

it is also a super-minimizer in (C([0, l]), d∞, cλ2). This implies a ≥ π/2.
If b < l, the same argument that we used to show a ≥ π/2, shows that l − b ≥ π/2, so that l > π, a

contradiction. If b = l, using again the same argument, it holds b − a ≥ π/2, so that l = π and, up to
passing to the complement, Y∞ = C([π/2, π]).

Theorem 3.11. Let (Mn, g, p) be a pointed Riemannian manifold with SecM ≥ 0 and such that

lim inf
r→+∞

Vol(Br(p))

r2
< +∞.

If E ⊂ M is perimeter minimizing, then M ∼= N × R and, with this identification, E ∼= N × [0,+∞).

Proof. If ∂E is compact, then (Ē, g) is a manifold with boundary which is isometric to ∂E × R+ by [51]
(using that E is non-compact as it is perimeter minimizing). Applying the same result to the complement
of E, the statement follows.

Hence, we assume that ∂E is non-compact. Combining Theorem 3.1 and Lemma 3.4 with Lemma 3.5,
we deduce that E ⊂ M is a smooth connected set with connected boundary. Moreover, ∂E has non-
negative sectional curvature. As done above, consider the metric space (X, d) obtained by gluing (E, g) and
(∂E, g)× R+ along their isometric boundaries. Let (X∞, d∞) be the blow-down of (X, d).

By Proposition 3.7, X∞ is a cone of Hausdorff dimension 2. Hence, either X∞ = C([0, l]) for some
l ∈ (0, π] or X∞ = C(S1

R) for some R ∈ (0, 1]. Moreover, there exists a measure m∞ on X∞ such that
(X∞, d∞,m∞) is an RCD(0, n) space and there exists a non-trivial perimeter minimizing (w.r.t. m∞) set
E∞ ⊂ X∞.

Step 1: X∞ ∼= Y × R for some metric space (Y, dy) and with this identification E∞ ∼= Y × R+.

Case 1: X∞ = C([0, l]) for some l ∈ (0, π].

If it holds that

lim inf
r→+∞

Vol(Br(p))

r2
= 0,

then by Theorem 2.11 it follows

lim inf
r→+∞

Vol∂E(B
∂E
r (p))

r
≤ lim inf

r→+∞

Hn−1(Br(p) ∩ ∂E)

r
= 0,

so that ∂E is compact by [68]. Otherwise, Proposition 3.10 guarantees that X∞ ∼= Y × R for some metric
space (Y, dy) and that E∞ ∼= Y × R+.

Case 2: X∞ = C(S1
R) for some R ∈ (0, 1].

By Theorem 3.9, it holds m∞ = cH2. By [58, Proposition 6.26], it holds R = 1, so that X∞ = R2. Since
the only perimeter minimizing set in R2 is the half space, also this case is concluded.

Step 2 M ∼= N × R and E ∼= N × [0,+∞).

To prove the claim, we will show that (Ē, g) is isometric to ∂E × [0,+∞). If this is the case, by a
mirrored argument, it holds that (M \ E, g) is isometric to ∂E × [0,+∞) as well, so that the claim follows.

Let r ⊂ X be a ray starting from ∂E, contained in ∂E × R+, and such that

d(E, r(t)) = t for every t > 0. (18)

When considering the rescaled spaces (X, d/i) converging to the blow-down X∞, since E converges to
E∞ ⊂ X∞ (both in L1loc sense and in Hausdorff sense in the space realizing the pGH convergence), the ray
r converges to a ray r∞ ⊂ X∞ with the property that

d∞(E∞, r∞(t)) = t for every t > 0.
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By Step 1, it holds X∞ ∼= Y ×R and, with this identification, E∞ ∼= Y ×R+. By reflecting, we obtain a new
identification X∞ ∼= Y ×R such that E∞ ∼= Y ×R−. The ray r∞ is now one half of a line γ∞ = {y∞} ×R
for some y∞ ∈ Y . We parametrize γ∞ so that γ∞(t) = (y∞, t).

We use the line γ∞ ⊂ X∞ to construct a line γ ⊂ X containing the half line r. To this aim, consider
the points p−1,∞ = γ∞(−1), p0,∞ = γ∞(0), and p1,∞ = γ∞(1). It holds p1,∞ = r∞(1), and p0,∞ = r∞(0).
Consider points p−1,i ∈ (X, d/i) such that p−1,i → p−1,∞ in the space realizing the pGH convergence. We
then set p0,i := r(0) and p1,i = r(i). Since r converges to r∞, it holds p0,i → p0,∞ and p1,i → p1,∞ in the
space realizing the pGH convergence.

Consider a length minimizing geodesic γ̃i : [−i, 0] → X parametrized by constant speed joining p−1,i

to p0,i. We remark that the speed might be different from 1. Let γi : [−i, i] → X be the curve obtained
by gluing γ̃i and r|[0,i]. We follow an argument from [11] to prove that the curves γi converge to a line γ.
Given any ε > 0, since pj,i → pj,∞ as i → ∞ for j = −1, 0, 1, we have that, for i sufficiently large,

d(p−1,i, p0,i) ≤ (1 + ε)i, d(p0,i, p1,i) = i, and d(p−1,i, p1,i) ≥ (1− ε)2i.

Now take any s ≥ 0. From the triangle comparison, we deduce that, for i large enough, it holds

d(γi(−s), γi(s)) ≥
s

i
d(p−1,i, p1,i) ≥ 2s(1− ε). (19)

On the other hand, we have that

length(γi|[−s,s]) =
s

i
[d(p−1,i, p0,i) + d(p0,i, p1,i)] ≤ (2 + ε)s. (20)

Let γ ⊂ X be the curve arising as limit of the curves γi (modulo a subsequence). For every s ≥ 0, combining
(19) and (20), it holds

d(γ(−s), γ(s)) ≥ 2s, and length(γ|[−s,s]) ≤ 2s.

Hence, γ is a line and, by construction, γ contains the half line r as claimed. By the Splitting Theorem,
there exists an isometry ϕ : X → N × R such that ϕ(γ) = {n} × R and ϕ(r) = {n} × [0,+∞) for some
n ∈ N .

We now conclude the proof of Step 2. Observe that, since r satisfies (18) and X \ Ē = ∂E × (0,+∞),
we have

X \ Ē =
⋃
R>0

BX
R (r(R)).

Hence, using that ϕ(r) = {n} × [0,+∞) for some n ∈ N , it holds

ϕ(X \ Ē) =
⋃
R>0

ϕ(BX
R (r(R))) =

⋃
R>0

BN×R
R ((n,R)) = N × (0,+∞).

We deduce that ϕ(Ē) = N × (−∞, 0], therefore N ∼= ∂E and Ē ∼= ∂E × [0,+∞) as desired.
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