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Abstract. We prove stochastic homogenization for integral functionals with integrands having p-
growth, defined on Sobolev-functions taking values in a given closed C1-submanifold of Rm without
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trivial due to the lack of a fundamental estimate in the manifold-valued setting.
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1. Introduction

Stochastic homogenization of integral functionals is by now a classical subject in the calculus of varia-
tions. First results in the nonlinear setting were obtained by Dal Maso and Modica in [10], where the
authors derive an effective, averaged model for integral functionals of the form

(1.1)

ˆ
U

f(x/ε, ω,∇u) dx

defined on Sobolev functions u ∈ W 1,p(U) and where the stationary integrand f is convex in the last
variable and satisfies the two-sided p-growth condition with p ∈ (1,+∞) of the form

(1.2) c1|ξ|p ≤ f(ω, x, ξ) ≤ c2(1 + |ξ|p)
uniformly with respect to x and the realization ω. More precisely, the random functionals in (1.1)
Γ-converge almost surely when ε→ 0 towards an autonomous integral functional

(1.3)

ˆ
U

fhom(ω,∇u(x)) dx,

and the function fhom is deterministic provided one assumes also ergodicity of the integrand f (the
probabilistic notions are recalled in Definition 2.6). The result was extended to the vectorial (qua-
siconvex) case in [19]. By now there are many contributions on homogenization where the growth
condition (1.2) is weakened in various ways: for instance nonstandard (e.g. p(x), (p, q) or unbounded)
growth conditions [7, 14, 18, 22, 24] or degenerate p-growth (that is c1, c2 depend on x and inf c1 = 0
and sup c2 = ∞) [13, 20, 21] (see also [23] for the case p = 1).
In this contribution we follow another direction, keeping the p-growth condition (1.2), but restrict-
ing the domain of the heterogeneous functional to the space of manifold-valued Sobolev functions
W 1,p(U ;M). Manifold-valued functions play an important role in physics and materials science, e.g.,
for models of micromagnetism, where typically the magnetization is assumed to take values in the unit
sphere (cf. [11] and references therein) or models for liquid crystals (cf. [6]), where either also sphere-
valued functions (Oseen-Frank theory) or symmetric, traceless matrices (Landau-de Gennes theory) are
used as order parameters.1 Let us briefly discuss earlier works on related problems involving manifold-
valued functions. In [8] the authors study the relaxation problem for integral functionals defined on
manifold-valued Sobolev maps with spatially homogeneous integrands satisfying the analogue of (1.2).
The analysis was then extended to the case of periodic homogenization in [5] for p > 1, while the case

1These models however are based on integral functionals with integrands also depending on u(x). The generalization

of our results to such a setting will be a task for the future.
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p = 1 is treated in [4]. One of the major issues for manifold-valued Sobolev spaces is the lack (or
rather the missing proof) of the so-called fundamental estimate, which allows interpolating between
two functions, say u1 and u2, with an increase of energy that becomes small when the two functions
are close in Lp. In many cases such a property yields that up to subsequences the Γ-limit exists and
can be seen as a measure with respect to the set U and this in turn opens the door to a fine analysis
via blow-up methods based on differentiation of measures. In the manifold-valued case, interpolating
between two maps is more difficult since the standard ansatz of the form φu1 + (1 − φ)u2 for some
smooth cut-off function φ in general does not preserve the constraint to lie on the manifold. In [8]
the authors bypass this problem by constructing a suitable replacement of the convex combination
that allows for an interpolation of the form Φ(u1, u2, φ), where again φ is a smooth cut-off function
and Φ is a map depending on the manifold. However, the composition is globally well-defined only if
u1 and u2 are close in L∞, which is incompatible with the topology used for relaxation. Hence the
authors consider a modified relaxation with respect to a notion of convergence implying the uniform
convergence. This modified functional then is shown to satisfy a fundamental estimate and finally
the authors prove that the modification is actually redundant. This approach was then extended to
Γ-convergence in the setting of periodic homogenization in [5]. While most of the previously explained
techniques could be used in a random setting as well, the subsequent local blow-up analysis uses ex-
plicitly the periodic structure and we are not able to find a corresponding argument in the stationary,
ergodic setting. Therefore another approach is necessary for proving stochastic homogenization and
this is the main contribution of this work.
At this point let us mention that there are already stochastic homogenization results for variational
models where manifold-valued Sobolev spaces are the correct setting, the most general (to the best
of our knowledge) contained in [11]. However, besides the assumptions on the manifold being more
restrictive (bounded, orientable C2-manifold with tubular neighborhood of uniform thickness),the cru-
cial point in this work is that the energies are quadratic in the gradient variable, so that first of all
correctors exist and the problem is accessible with the concept of two-scale convergence ([2] contains
a similar approach for the Landau-Lifschitz equation with stationary, ergodic coefficients). In our
non-quadratic and even non-convex setting this strategy is not feasible. Instead, we have to rely on
the so-called tangentially homogenized multi-cell formula given for s ∈ M and ξ ∈ [TsM]d (the d-fold
product of the tangent space at s) by

(1.4) Tf∞(s, ξ) = lim
r→+∞

1

rd
inf

{ˆ
Qr

f(ω, y, ξ +∇ϕ) dy : ϕ ∈W 1,∞
0

(
Qr;TsM

)}
(here Qr = (−r/2, r/2)d and the limit is independent of ω due to ergodicity). The analysis of this
formula actually takes a large portion of this work. In contrast to models without manifold constraints
the formula depends on s, which then transfers to Γ-limits of the formˆ

U

Tf∞(u(x),∇u(x)) dx.

While for fixed s and ξ the almost sure existence of the limit in (1.4) is a consequence of the subadditive
ergodic theorem, a substantial point is to show that the limit exists except for ω belonging to a null
set that is independent of s and ξ. Note that the constraint φ(x) ∈ TsM is global and therefore
comparing the formulas for (s, ξ) and (s′, ξ′) and arguing by approximation with countably many
parameters requires global modifications of (almost) minimizers and a careful estimate of the change
in energy.
After establishing the existence of the formula (1.4) it turns out that it is of little use for constructing
recovery sequences as there is no control of the W 1,∞-norm of small energy configurations when
r → +∞. A crucial observation in this paper is the following: restricting the minimization problem
in (1.4) to functions φ ∈ W 1,∞

0 (Qr;TsM) satisfying ∥φ∥W 1,∞ ≤ k for some fixed k ∈ N, gives an
auxiliary stochastic process which is shown to convergence almost surely for all s ∈ M and ξ ∈ [TsM]d

to a deterministic limit, say Tfk(s, ξ). When k → +∞ we can show that this quantity converges
to Tf∞(s, ξ). Note that this asymptotic behavior involves a change of order of limits which can be
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justified due to a double monotonicity once we take expectations in the formulas. As a consequence,
for constructing a recovery sequence we can work with Lipschitz functions with a uniform Lipschitz
constant. In this way we bypass the explicit use of periodicity exploited in [5]. We also avoid the
modified Γ-limit with respect to a stronger topology. Instead, we take another approach, providing
first a local construction of recovery sequences in small cubes (Lemma 4.11) and then using a covering
argument to obtain the recovery sequence on general open sets (Proposition 4.12). The advantage
of this ansatz is that we can (and have to) fix the boundary conditions in the local construction,
which is transferred to the global construction and hence allows us to treat the Γ-convergence also
under Dirichlet boundary conditions. Note that this is unclear using the other approach since it would
require the boundary data to be uniformly close to a recovery sequence maybe not respecting the
boundary condition and such a closeness does not follow from energy bounds. The proof of the lower
bound for Γ-convergence is achieved via a blow-up argument.
Our findings also generalize the periodic homogenization result of [5] in the sense that we do not
assume the manifold M to be connected and we only require C1-regularity instead of smoothness.
The paper is structured as follows: in Section 2 we fix some notation, recall the probabilistic setting
for stochastic homogenization and introduce the class of integrands we consider along with some
preliminary results on such integrands and their modulus of continuity that will be fundamental for our
analysis. We state our main result on Γ-convergence with and without Dirichlet boundary conditions
in Section 3, while Section 4 contains the proof of the main results.

2. Setting of the problem and preliminary results

In this section we fix some notation employed throughout this work and introduce the relevant function
spaces together with the energy functionals and their randomness under consideration.

2.1. Basic Notation. Throughout this paper d,m ∈ N are fixed positive integers and M ⊂ Rm is a
closed mM-dimensional C1-submanifold of Rm without boundary. For any Lebesgue measurable set
A ⊂ Rd we write |A| for its d-dimensional Lebesgue measure. We denote by U0 the class of bounded,
open subsets of Rd. The scalar product between two points x, y ∈ Rd is denoted by x · y, while
|x| =

√
x · x is the Euclidean norm of x. We use the notation Y = [−1/2, 1/2)d for the half-open unit

cube centered at the origin. TsM stands for the tangent space toM at a point s ∈ M, πs : Rm → TsM
is the orthogonal projection onto TsM and for every ξ = (ξ1, . . . , ξd) ∈ Rm×d we define Πs(ξ) ∈ [TsM]d

columnwise by setting Πs(ξ) := (πs(ξ1), . . . , πs(ξd)).

We recall the following theorem on ’almost’ nearest point projections for C1-manifolds proven on [25,
p. 121].

Theorem 2.1 (Almost nearest point projection). Let M ⊂ Rm be a N -dimensional C1-submanifold,
let πs : Rm → TsM be the orthogonal projections as above, and λ > 0. Then there exist a family
(Ps)s∈M of (m − N)-dimensional subspaces and a continuous function r : M → (0,+∞) with the
following properties:

(i) |πs(v)| ≤ λ|v| for all v ∈ Ps

(ii) Setting Qs = (s + Ps) ∩ Br(s)(s), these sets fill out a neighborhood U of M in a one-to-one

way. Moreover, defining π∗ : U → M as π∗(u) = s if u ∈ Qs, then π
∗ ∈ C1(U ;M) and

|π∗(u)− u| ≤ 2 dist(u,M) for all u ∈ U.

It is also convenient to observe that the mapping s 7→ Πs with Πs as above is continuous.

Remark 2.2 (Orthogonal projection onto the tangent space). Let s ∈ M and πs : Rm → TsM,
Πs : Rm×d → [TsM]d be as above. Since M is a C1-manifold, the mapping s 7→ Πs is continuous.
This can be seen by writing the orthogonal projection onto TsM in local coordinates and using that
the gradient of the local chart is continuous. Specifically, for every s0 ∈ M we have that

lim
s→s0

∥Πs −Πs0∥op = 0 .
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Moreover, for any R > 0 the modulus of continuity

(2.1) γR(t) := sup
{
∥Πs −Πs′∥op : s, s′ ∈ BR , |s− s′| ≤ t

}
converges to zero as t→ 0.

Given an open set U ⊂ Rd we use the standard notation W 1,p(U ;Rm) for the Sobolev space with
integrability exponent p > 1. Moreover, we set

W 1,p(U ;M) := {u ∈W 1,p(U ;Rm) : u(x) ∈ M for a.e. x ∈ U}.
We recall that any u ∈W 1,p(U ;M) has the property that

(2.2)
∂u

∂xi
(x) ∈ Tu(x)M for a.e. x ∈ U and every i ∈ {1, . . . , d},

where ∂u
∂xi

is the weak partial derivative of u with respect to xi.
Finally, by C we denote a generic constant whose value might change every time it appears.

2.2. Ergodic theory. In this section, we recall some basic notions from probabilistic ergodic theory.
Throughout this paper (Ω,F ,P) denotes a complete probability space. We start by defining measure-
preserving group actions.

Definition 2.3 (Measure-preserving group action). A discrete, measure-preserving, additive group
action on (Ω,F ,P) is a family (τz)z∈Zd of mappings τz : Ω → Ω satisfying the following properties:

(1) (measurability) τz is F-measurable for every z ∈ Zd;
(2) (invariance) P(τzA) = P(A), for every A ∈ F and every z ∈ Zd;
(3) (group property) τ0 = idΩ and τz1+z2 = τz2 ◦ τz1 for every z1, z2 ∈ Zd.

If, in addition, (τz)z∈Zd satisfies the implication

P((τzA)∆A) = 0 ∀ z ∈ Zd =⇒ P(A) ∈ {0, 1},
then it is called ergodic.

We further recall the basics of subadditive stochastic processes indexed by bounded, open sets:

Definition 2.4 (Subadditive process). A subadditive process with respect to a discrete, measure-
preserving, additive group action (τz)z∈Zd is a function µ : U0 × Ω → R satisfying the following prop-
erties:

(1) (measurability) for every B ∈ U0 the function ω 7→ µ(B,ω) is F-measurable;
(2) (stationarity) for every B ∈ U0 and z ∈ Zd we have µ(B + z, ω) = µ(B, τz(ω)) for a.e. ω ∈ Ω;
(3) (subadditivity) for a.e. ω ∈ Ω, every B ∈ U0 and every finite family (Bi)i∈I ⊂ U0 of pairwise

disjoint sets with Bi ⊂ B and |B \ ∪i∈IBi| = 0 we have

µ(B,ω) ≤
∑
i∈I

µ(Bi, ω);

Our analysis heavily relies on the following version of the subadditive ergodic theorem by Dal Maso
and Modica [10, Proposition 1], building on the subadditive ergodic theorem by Akcoglu and Krengel
[1].

Theorem 2.5 (The subadditive ergodic theorem). Let µ : U0 × Ω → R be a subadditive process with
respect to a discrete, measure-preserving group action (τz)z∈Zd and assume that there exists C > 0
such that for all B ∈ U0 and a.e. ω ∈ Ω

(2.3) 0 ≤ µ(B,ω) ≤ C|B|.
Then there exists an F-measurable function ϕ : Ω → R such that P-almost surely, for any cube Q ⊂ Rd,
it holds that

lim
r→+∞

1

|rQ|
µ(rQ, ω) = ϕ(ω).

If the group action (τz)z∈Zd is ergodic, then ϕ is constant.
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2.3. Analytic framework. We now define the random functionals considered in this paper.

Definition 2.6 (Stationary random integrands). We say that f : Ω × Rd × Rm×d → [0,+∞) is an
admissible random integrand, if f is F ⊗ L(Rd) ⊗ B(Rm×d) measurable and there exist constants
c1, c2 > 0 and p > 1 such that for P-a.e. ω ∈ Ω f(ω, · , · ) is a Carathéodory-function satisfying

(2.4) c1|ξ|p ≤ f(ω, x, ξ) ≤ c2(1 + |ξ|p)

for a.e. x ∈ Rd and all ξ ∈ Rm×d. Moreover, we say that f is stationary, if there exists a measure
preserving group action (τz)z∈Zd such that for almost all ω ∈ Ω we have

(2.5) f(ω, x+ z, ξ) = f(τzω, x, ξ)

for almost all x ∈ Rd, all z ∈ Zd and all ξ ∈ Rm×d. If in addition (τz)z∈Zd is ergodic, then f is called
ergodic.
We write Ωf ⊂ Ω for the set of full probability where f(ω, · , · ) satisfies all the above properties.

A crucial quantity in our analysis will be the modulus of continuity associated to a stationary random
integrand:

Definition 2.7 (Integrated modulus of continuity). Let f : Ω × Rd × Rm×d → [0,+∞) be as in
Definition 2.6. For any R > 0 and ω ∈ Ωf we define an integrated modulus of continuity αR(ω, ·) :
[0,+∞) → [0,+∞), t 7→ αR(ω, t) by setting

αR(ω, t) :=

ˆ
Y

sup
{∣∣f(ω, y, ξ)− f(ω, y, ξ′)

∣∣ : ξ, ξ′ ∈ BR, |ξ − ξ′| ≤ t
}
dy .

Moreover, we extend αR(· , t) to Ω by setting αR(ω, t) := 0 for all ω ∈ Ω \ Ωf and R, t > 0.

Remark 2.8. We observe that thanks to (2.4) the modulus of continuity αR(ω, t) satisfies

(2.6) αR(ω, t) ≤ 2c2(1 +Rp)

for all ω ∈ Ωf and R, t > 0, while for ω ∈ Ω \ Ωf the above estimate trivially holds.

The following lemma justifies the notion of modulus of continuity.

Lemma 2.9. Let f : Ω × Rd × Rm×d → [0,+∞) be as in Definition 2.6 and for every R > 0 and
ω ∈ Ω let αR(ω, · ) be as in Definition 2.7. Then the mapping ω 7→ αR(ω, t) is F-measurable for every
R > 0 and every t > 0 and

(2.7) lim
t→0

αR(· , t) = 0

pointwise and in L1(Ω).

Proof. To establish the measurability, we start observing that it suffices to show that ω 7→ αR(ω, t) is
F-measurable on Ωf . For every ξ, ξ

′ ∈ BR the mapping

(ω, y) 7→
∣∣f(ω, y, ξ)− f(ω, y, ξ′)

∣∣
is F ⊗ L(Rd)-measurable. Moreover, for ω ∈ Ωf it suffices to consider the supremum over countably
many ξ, ξ′, so that the expression inside the integral defining αR(ω, t) is F⊗L(Rd)-measurable. Thanks
to Fubini’s theorem this implies the F-measurability of ω 7→ αR(ω, t) on Ωf and we conclude.

Next we show the pointwise convergence in (2.7). For ω ∈ Ω \ Ωf this follows directly from the
definition. Let now ω ∈ Ωf ; then for almost every y ∈ Y the function ξ 7→ f(ω, y, ξ) is continuous

and hence uniformly continuous on the compact set BR. In particular, the integrand defining αR(ω, t)
converges to zero as t → 0 for almost every y ∈ Y . Finally, (2.6) allows us to apply the dominated
convergence theorem to obtain the pointwise convergence in (2.7). The L1-convergence is again a
consequence of (2.6) and the dominated convergence theorem for the expectation. □

In the proof of the main result we will encounter weighted sums of the modulus of continuity that we
can control with the help of the next result.
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Lemma 2.10. Let f : Ω × Rd × Rm×d → [0,+∞) be as in Definition 2.6. Then P-almost surely for
every cube Q ⊂ Rd, every t > 0 and every R > 0,

(2.8) 0 ≤ lim sup
r→+∞

1

|rQ|
∑
z∈Zd

(Y+z)∩rQ̸=∅

αR(τzω, t) ≤ inf
R′>R,t′>t

E[αR′(·, t′)].

In particular,

(2.9) lim
t→0

lim sup
r→+∞

1

|rQ|
∑
z∈Zd

(Y+z)∩rQ̸=∅

αR(τzω, t) = 0.

Proof. For the moment we consider arbitrary R, t ∈ Q+. Let us define a stochastic process indexed by
bounded, open sets B ∈ U0 via

µt,R(B,ω) =
∑
z∈Zd

|B ∩ (Y + z)|αR(τzω, t).

From Lemma 2.9 we infer that µt,R(B, ·) is F-measurable. Moreover, via a change of indices one
verifies that for any z ∈ Zd we have

µt,R(B + z, ω) =
∑
z′∈Zd

|(B + z) ∩ (Y + z′)|α(τz′ω, t)

=
∑

z′−z∈Zd

|B ∩ (Y + z′ − z)|α(τz′−zτzω, t) = µt,R(B, τzω),

so that µt,R is stationary. Next, if B ∈ U0 and (Bi)i∈I ⊂ U0 is a finite family of pairwise disjoint sets
that cover B up to a null set, then by the additivity of the Lebesgue-measure

µt,R(B,ω) =
∑
z∈Zd

∑
i∈I

|Bi ∩ (Y + z)|αR(τzω, t) =
∑
i∈I

µt,R(Bi, ω),

which yields (sub)additivity. Finally, using the bound (2.6) and the non-negativity of αR(·, t), we
obtain the bound

0 ≤ µt,R(B,ω) ≤ 2c2(1 +Rp)|B|.
Hence we are in a position to use Theorem 2.5 and, since in the additive case the limit is known to
agree with the expectation, conclude that there exists a set Ω+ ⊂ Ω of full probability such that for
all ω ∈ Ω+ and every cube Q ⊂ Rd it holds that

(2.10) lim
r→+∞

1

|rQ|
∑
z∈Zd

|rQ ∩ (Y + z)|αR(τzω, t) = E[αR(·, t)]

for all t, R ∈ Q+.
As a next step, we extend the convergence to the sum in (2.8), which one the hand does not take
into account the measure of |rQ ∩ (Y + z)| and on the other hand might count terms such that
|rQ ∩ (Y + z)| = 0. Consider first z ∈ Zd such that (Y + z) ∩ rQ ̸= ∅, but |(Y + z) ∩ rQ| ≠ 1. Since
|Y + z| = 1, this implies that (Y + z) ∩ ∂rQ ̸= ∅ and therefore Y + z ∈ ∂rQ + [−1, 1]d. Second, if
0 < |rQ ∩ (Y + z)| < 1, the same conclusion holds. Recalling again the bound (2.6), it follows that∣∣∣∣∣ 1

|rQ|
∑
z∈Zd

(Y+z)∩rQ(x)̸=∅

αR(τzω, t)− E[αR(·, t)]

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

|rQ|
µt,R(rQ, ω)− E[αR(·, t)]

∣∣∣∣∣
+ C(1 +Rp)|rQ|−1|(∂rQ(x) + [−1, 1]d)|

The term in the last line vanishes as r ↑ +∞. Hence, taking into account (2.10), we infer that

lim
r→+∞

1

|rQ|
∑
z∈Zd

(Y+z)∩rQ(x)̸=∅

αR(τzω, t) = E[αR(·, t)]
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for all ω ∈ Ω+ and t, R ∈ Q+. Since αR(·, t) ≥ 0, the estimate (2.8) is a consequence of the monotonicity
of αR(ω, t) with respect to R and t and the density of rational numbers. Formula (2.9) further follows
from the L1-convergence αR(·, t) → 0 as t→ 0 (cf. Lemma 2.9). □

3. Statement of the main results

We are now in a position to state the main results of this paper Given a random integrand f as in
Definition 2.6, an open and bounded set U ⊂ Rd and a parameter ε > 0 we consider the random
integral functionals Fε(ω)(· , U) : Lp(U ;Rm) → [0,+∞] given by

(3.1) Fε(ω)(u, U) :=


ˆ
U

f(ω, xε ,∇u) dx if u ∈W 1,p(U ;M),

+∞ otherwise in Lp(U ;Rm).

In all that follows ε > 0 varies in a strictly decreasing family of positive parameters converging to 0.

Theorem 3.1. Let f be an admissible ergodic random integrand in the sense of Definition 2.6 and let
Fε be as in (3.1). Assume that f is stationary with respect to a discrete, measure-preserving, ergodic
group action (τz)z∈Zd . There exists a set Ω′ ⊂ Ω with P(Ω′) = 1 such that for all ω ∈ Ω′ and for every
U ⊂ Rd open and bounded the functionals Fε(ω)(· , U) Γ-converge with respect to the strong convergence
in Lp(U ;Rm) to the functional Fhom(· , U) : Lp(U ;Rm) → [0,+∞] given by

(3.2) Fhom(u, U) :=


ˆ
U

Tf∞(u,∇u) dx if u ∈W 1,p(U ;M),

+∞ otherwise in Lp(U ;Rm),

where for every s ∈ M and every ξ ∈ [TsM]d the integrand Tf∞(s, ξ) is given by

(3.3) Tf∞(s, ξ) := lim
r→+∞

1

rd
inf

{ˆ
Qr

f(ω, y, ξ +∇ϕ) dy : ϕ ∈W 1,∞
0

(
Qr;TsM

)}
.

In particular, the limit in (3.3) exists and is independent of ω ∈ Ω′.

We can also consider the functionals Fε(ω)(·, D) restricted to functions u ∈ W 1,p(D;M) such that
u = g on ∂D in the sense of traces whenever D is sufficiently regular to admit a trace operator on ∂D
(say, e.g., D having Lipschitz boundary). We do not bother with the precise structure of the trace
space but just consider boundary data g ∈W 1,p(D;M), i.e., boundary data that are attained by some
Sobolev-map. Let us set Fε,g(ω)(· , D) : Lp(U ;Rm) → [0,+∞] as

(3.4) Fε,g(ω)(u,D) :=


ˆ
D

f(ω, xε ,∇u) dx if u ∈W 1,p(U ;M) and u = g on ∂D,

+∞ otherwise in Lp(U ;Rm).

Theorem 3.2. Let f , Fε and ω ∈ Ω′ be as in Theorem 3.1. Assume that g ∈W 1,p(D;M) with D ⊂ Rd

a bounded, open set with Lipschitz boundary. Then the functionals Fε,g(ω)(·, D) Γ-converge with respect
to the strong convergence in Lp(D;Rm) to the functional Fhom,g(·, D) : Lp(D;Rm) → [0,+∞] given by

(3.5) Fhom,g(u, U) :=


ˆ
U

Tf∞(u,∇u) dx if u ∈W 1,p(U ;M) and u = g on ∂D,

+∞ otherwise in Lp(U ;Rm),

where Tf∞ is as in Theorem 3.1. Moreover, if (uε)ε>0 is such that supε∈(0,1) Fε,g(ω)(uε, D) < +∞,

then up to a subsequence uε ⇀ u in W 1,p(D;Rm) for some u ∈W 1,p(D;M) with u = g on ∂D.

4. Proof of the main results

4.1. Existence of the homogenized integrand. As a preliminary step towards the proof of The-
orem 3.1 we prove that the limit defining Tf∞ in (3.3) exists almost surely. Moreover, we provide an
alternative characterization of Tf∞ in terms of a more restricted class of minimization problems. In
doing so we will make use of the following version of the Decomposition Lemma [17, Lemma 1.2].
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Lemma 4.1 (Decomposition Lemma preserving boundary conditions). Let D ⊂ Rd be open, bounded,
and with Lipschitz boundary. Let V ⊂ Rm be a linear subspace and u0 ∈ W 1,p(D,V ). Let finally

(un) ⊂ u0 +W 1,p
0 (D,V ) with supn∈N ∥∇un∥Lp < +∞. Then there exist a subsequence (nk) and a

sequence (ũk) ⊂ u0 +W 1,∞
0 (D,V ) such that |∇ũk|p is equi-integrable and∣∣{x ∈ D : unk

(x) ̸= ũk(x) or ∇unk
(x) ̸= ∇ũk(x)

}∣∣ → 0

as k → ∞.

Proof. Up to a rotation we can assume that V = Rℓ with ℓ = dimV . Thus, without preserving
the boundary condition the statement follows from [17, Lemma 1.2], noting that due to Poincaré’s
inequality the sequence un is bounded in W 1,p(D;V ). The proof of this lemma relies on a Lipschitz
truncation argument (see [17, Lemma 4.1]). It is in general not clear whether this Lipschitz truncation
preserves boundary conditions. However, if instead one uses the Lipschitz truncation provided in [12,
Theorem 13], then Step 1 in the proof of [17, Lemma 1.2] yields the claim for u0 = 0. Finally, the
case of a general boundary datum u0 ∈ W 1,p(D;V ) follows by considering the sequence (un − u0) ⊂
W 1,p

0 (D;V ). □

In order to analyze the limit in (3.3) we use the subadditive ergodic Theorem 2.5. To this end, we
need to define suitable stochastic processes indexed by bounded, open sets. For every B ∈ U0, every
k ∈ N, and every s ∈ M we set

(4.1) Adms
k(B) :=

{
ϕ ∈ Lip(Rd;TsM) : ∥ϕ∥W 1,∞(Rd) ≤ k, ϕ ≡ 0 on Rd \B

}
.

We also set Adms
∞(U) := {ϕ ∈ Lip(Rd;TsM) : ϕ ≡ 0 on Rd \ B}. For k ∈ N ∪ {+∞} and (s, ξ) ∈

M× [TsM]d we then define µs,ξ
k : U0 × Ω → R by

(4.2) µs,ξ
k (B,ω) := inf

{ˆ
B

f(ω, x, ξ +∇ϕ) dx : ϕ ∈ Adms
k(B)

}
.

Remark 4.2 (Alternative Minimization Problems). Consider the auxiliary function f̂ : Ω×Rd ×M×
Rm×d → [0,+∞) given by

(4.3) f̂(ω, x, s, ξ) := f
(
ω, x,Πsξ

)
+ |ξ −Πsξ|p.

Observe that f̂(ω, x, s, ξ) = f(ω, x, ξ) for every ξ ∈ [TsM]d, every ω ∈ Ω, and all x ∈ Rd. Moreover,
for every (s, ξ) ∈ M× [TsM]d, every B ∈ U0, and every ω ∈ Ω it holds that

(4.4) µs,ξ
∞ (B,ω) = inf

{ ˆ
B

f̂(ω, x, s, ξ +∇ϕ) : ϕ ∈ Lip(Rd;Rm), ϕ ≡ 0 on Rd \B
}

and

(4.5) µs,ξ
k (B,ω) = inf

{ ˆ
B

f̂(ω, x, s, ξ+∇ϕ) : ϕ ∈ Lip(Rd;Rm) , ∥ϕ∥W 1,∞(Rd) ≤ k, ϕ ≡ 0 on Rd \B
}

for every k ∈ N. To show this, we first observe that since Adms
k(B) ⊂ Lip(Rd;Rm) for all k ∈ N∪{∞}

and f̂(ω, x, s, ξ) = f(ω, x, s, ξ) for all ξ ∈ [TsM]d, all ω ∈ Ω and all x ∈ Rd, we have that µs,ξ
∞ (B,ω)

and µs,ξ
k (B,ω) are greater or equal than the right-hand sides in (4.4) and (4.5), respectively. To show

that also the opposite inequality holds true, for an arbitrary competitor ϕ ∈ Lip(Rd;Rm) with ϕ ≡ 0
on Rd \B we define ψ := πs ◦ ϕ as the composition of ϕ with the orthogonal projection πs onto TsM.
Then ψ ∈ Lip(Rd;TsM) and ψ ≡ 0 on Rd \ B. Moreover, since πs is an orthogonal projection, we
have that ∥πs∥op = 1. Together with the chain rule this implies that ∥ψ∥W 1,∞(Rd) ≤ ∥ϕ∥W 1,∞(Rd).

Hence, ψ ∈ Adms
k(B) for k = ∞ or k ∈ N if ϕ is a competitor for the right-hand side of (4.4) or (4.5),

respectively. Finally, we have that

f(ω, x,∇ψ) = f(ω, x,Πs∇ϕ) ≤ f̂(ω, x, s,∇ϕ) .
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This yields the opposite inequalities by integration and passing to the infimum over all admissible ϕ.

Note that the term |ξ − Πsξ|p is only added to ensure that the integrands f̂ satisfy the two-sided
p-growth condition

(4.6) 21−p min
{
c1, 1

}
|ξ|p ≤ f̂(ω, x, s, ξ) ≤ (c2 + 1)|ξ|p .

This in turn is crucial to obtain a fundamental estimate for the corresponding functionals that we will
use in the proof of the liminf-inequality.

Remark 4.3. Let (s, ξ) ∈ M× [TsM]d be arbitrary. By definition, we have that

µs,ξ
∞ (B,ω) ≤ µs,ξ

k+1(B,ω) ≤ µs,ξ
k (B,ω)

for all ω ∈ Ω, k ∈ N, B ∈ U0. This in turn implies that

(4.7) µs,ξ
∞ (B,ω) ≤ inf

k∈N
µs,ξ
k (B,ω) = lim

k→∞
µs,ξ
k (B,ω) .

On the contrary, for any η > 0 we can find ϕη ∈ Adms
∞(B) with

´
B
f(ω, x, ξ+∇ϕη) dx < µs,ξ

∞ (B,ω)+η.
Since ϕη ∈ Adms

k(B) for any k ∈ N with k ≥ ∥ϕη∥W 1,∞(Rd) (the latter being finite since B is bounded),

we deduce that

inf
k∈N

µs,ξ
k (B,ω) ≤

ˆ
B

f(ω, x, ξ +∇ϕη) dx < µs,ξ
∞ (B,ω) + η .

Together with (4.7) and the arbitrariness of η > 0 this implies that

(4.8) µs,ξ
∞ (B,ω) = inf

k∈N
µs,ξ
k (B,ω) = lim

k→∞
µs,ξ
k (B,ω) .

As a next step we verify that the quantities µs,ξ
k with k ∈ N ∪ {∞} satisfy the assumptions of Theo-

rem 2.5.

Lemma 4.4. Let f : Ω × Rd × Rm×d be an admissible, ergodic random integrand in the sense of

Definition 2.6. For any k ∈ N∪ {∞} and (s, ξ) ∈ M× [TsM]d the function µs,ξ
k : U0 ×Ω → R defined

as above is a subadditive process that is stationary with respect to the group action (τz)z∈Zd . Moreover,
for ω ∈ Ωf it holds that

(4.9) |µs,ξ
k (B,ω)| ≤ c2(1 + |ξ|p)|B|

for any k ∈ N ∪ {∞}, B ∈ U0, and (s, ξ) ∈ M× [TsM]d.

Proof. Let k ∈ N ∪ {∞} and (s, ξ) ∈ M × [TsM]d be fixed. We verify the defining properties of a
subadditive process in several steps.

Step 1. Measurability. Due to (4.8) it suffices to prove the measurability for all k ∈ N as the pointwise
limit of a sequence of measurable functions remains measurable. Therefore, let us consider k ∈ N.
We equip Adms

k(B) with the W 1,p(Rd)-norm, which makes sense since B is a bounded set. In this
way Adms

k(B) becomes a separable, complete metric space. Indeed, separability can be seen from
identifying Adms

k(B) as a subset of the separable space W 1,p(Rd;Rm), while completeness comes from
the fact that the constraint ϕ ≡ 0 on Rd \B is closed under strong convergence in W 1,p(Rd) and from
the weak∗-lower semicontinuity of the L∞-norm, which together with the pointwise convergence (via
the Arzela-Ascoli theorem) ensures that any limit is also Lipschitz. Due to the continuity of f in the
last variable and the growth condition (2.4), the functional

Ω×Adms
k(B) ∋ (ω, ϕ) 7→

ˆ
B

f(ω, x, ξ +∇ϕ) dx

is continuous with respect to strong W 1,p-convergence of ϕ, while the joint measurability of f and
Fubini’s theorem yield the F-measurability with respect to ω. It is well-known that these properties
imply the joint measurability when we equip Adms

k(B) with its Borel σ-algebra. In order to show the
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measurability of the infimum, we rely on the measurable projection theorem: for every t ∈ R we know
that

(4.10)

{
(ω, ϕ) ∈ Ω×Adms

k(B) :

ˆ
B

f(ω, x, ξ +∇ϕ) dx < t

}
∈ F ⊗ B(Adms

k(B)).

By assumption (Ω,F ,P) is a complete probability space. Since Adms
k(B) is a complete, separable,

metric space, the projection theorem [16, Theorem 1.136] yields the F-measurability of the projection
of the set in (4.10) onto Ω. Therefore{

ω ∈ Ω : inf
ϕ∈Adms

k(B)

ˆ
B

f(ω, x, ξ +∇ϕ) dx = µs,ξ
k (B,ω) < t

}
∈ F ,

which proves the F-measurability of µs,ξ
k (B, ·).

Step 2. Stationarity. Let B ∈ U0 and z ∈ Zd be arbitrary and let ω ∈ Ωf . For any ϕ ∈ Adms
k(B)

define ϕz ∈ Adms
k(B + z) via ϕz(x) := ϕ(x− z). The stationarity of f ensures thatˆ

B

f(τzω, x, ξ +∇ϕ) dx =

ˆ
B+z

f(ω, x, ξ +∇ϕz) dx .

Passing to the infimum over all such ϕ and using a symmetric argument we obtain that µs,ξ
k (B+z, ω) =

µs,ξ
k (B, τzω), which is the stationarity of µs,ξ

k .

Step 3. Subadditivity. Let B ∈ U0 and (Bi)i∈I ⊂ U0 be a finite family of pairwise disjoint subsets of
B that cover the latter up to a null set. Fix further ω ∈ Ω and let η > 0 be arbitrary. Consider
ϕi ∈ Adms

k(Bi) such that

(4.11)

ˆ
Bi

f(ω, x, ξ +∇ϕi) dx < µs,ξ
k (Bi, ω) +

η

#I
.

Let us define ϕ ∈ Lip(Rd;TsM) as ϕ :=
∑

i∈I ϕi. Since ϕi ≡ 0 on Rd \ Bi, we have that ϕ ≡ 0 on

Rd \ (∪i∈IBi) and by continuity also on Rd \B. Since the B′
is are pairwise disjoint, it further follows

that ∥ϕ∥W 1,∞(Rd) = maxi∈I{∥ϕi∥W 1,∞(Rd)}, from which we deduce that ϕ ∈ Adms
k(B). Hence

µs,ξ
k (B,ω) ≤

ˆ
B

f(ω, x, ξ +∇ϕ) dx =
∑
i∈I

ˆ
Bi

f(ω, x, ξ +∇ϕi)
(4.11)

≤
∑
i∈I

µs,ξ
k (Bi, ω) + η.

The arbitrariness of η then implies the subadditivity of the processes.

Step 4. Boundedness. For U ∈ U0 and ω ∈ Ωf the claimed bound (4.9) is a consequence of the

non-negativity of f and testing the zero function in the minimization problem defining µs,ξ
k and then

inserting the upper bound (2.4). □

The previous lemma allows us to apply Theorem 2.5 to the processes µs,ξ
k , but since we need a common

set of full probability such that the convergence holds, we first prove a stability result with respect to
the parameters s and ξ which we can use to extend to convergence from countably many subsets to
the whole range of parameters. Note that this auxiliary result is only used for the case of finite k ∈ N.
For k = ∞ we will argue in a different way.

Lemma 4.5. Let f : Ω × Rd × Rm×d be an admissible, ergodic random integrand in the sense of

Definition 2.6. For any k ∈ N and (s, ξ) ∈ M× [TsM]d let µs,ξ
k be as in (4.2). Let ω ∈ Ωf ; then we

have that

(4.12)
∣∣µs,ξ

k (B,ω)− µs′,ξ′

k (B,ω)
∣∣ ≤ ∑

z∈Zd

(Y+z)∩B ̸=∅

αk+|ξ|+|ξ′|
(
τzω, k ∥Πs −Πs′∥op + |ξ − ξ′|

)

for all (s, ξ) ∈ M× [TsM]d and (s′, ξ′) ∈ M× [Ts′M]d, and all B ∈ U0.
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Proof. Fix ω ∈ Ωf and k ∈ N. Let η > 0 be arbitrary and for (s, ξ) ∈ M× [TsM]d, B ∈ U0 fixed, let
ϕ ∈ Adms

k(B) be such that ˆ
B

f(ω, x, ξ +∇ϕ) dx ≤ µs,ξ
k (B,ω) + η .(4.13)

Let now (s′, ξ′) ∈ M× [Ts′M]d and define ψ ∈ Adms′

k (B) as ψ := πs′ ◦ϕ (cf. Remark 4.2). Using that
∇ψ = Πs′(∇ϕ) and (4.13) we deduce that

µs′,ξ′

k (B,ω) ≤
ˆ
B

f
(
ω, x, ξ′ +Πs′(∇ϕ)

)
dx

≤ µs,ξ
k (B,ω) + η +

∣∣∣∣ˆ
B

f
(
ω, x, ξ′ +Πs′(∇ϕ)

)
− f

(
ω, x, ξ +Πs(∇ϕ)

)
dx

∣∣∣∣ .(4.14)

Observe that |ξ′ +Πs′∇ϕ| ≤ |ξ′|+ k and |ξ +Πs∇ϕ| ≤ |ξ|+ k. Moreover,∣∣ξ′ +Πs′(∇ϕ)− ξ −Πs(∇ϕ)
∣∣ ≤ |ξ − ξ′|+ k ∥Πs′ −Πs∥op .

Together with the stationarity of f this implies that∣∣∣∣ˆ
B

f
(
ω, x, ξ′ +Πs′(∇ϕ)

)
− f

(
ω, x, ξ +Πs(∇ϕ)

)
dx

∣∣∣∣
≤

∑
z∈Zd

ˆ
Y ∩(B−z)

∣∣f(τzω, y, ξ′ +Πs′(∇ϕ(y + z))
)
− f

(
τzω, y, ξ +Πs(∇ϕ(y + z))

)∣∣ dy
≤

∑
z∈Zd

(Y+z)∩B ̸=∅

αk+|ξ|+|ξ′|(τzω, |ξ − ξ′|+ k ∥Πs′ −Πs∥op) .

Thus, (4.12) follows from (4.14) by the arbitrariness of η > 0 and exchanging the roles of (s, ξ) and
(s′, ξ′). □

Now we are in a position to prove the existence of the homogenized integrand as well as its approxi-
mation using only k-Lipschitz maps in the minimization problem. We start with the case k = ∞. For
later reference we first make the following observation.

Remark 4.6. The manifold M is separable as a subset of a separable metric space. Let us fix a
countable dense subset M′ ⊂ M. Moreover, for any s ∈ M′ we let Ds be a countable dense subset of
[TsM]d ∩ Rm×d. Several times we will use the countable set

(4.15) N = {(s, ξ) : s ∈ M′, ξ ∈ Ds} .
In this way, for every s ∈ M and ξ ∈ [TsM]d there exists a sequence (sn, ξn)n∈N ⊂ N such that
(sn, ξn) → (s, ξ). This can be seen as follows. By the density of M′ in M, we find a sequence (sn)n∈N
such that sn → s when n→ +∞. Defining ξ̃n = Πsn(ξ) ∈ [TsnM]d, we have that ξ̃n → ξ as n→ +∞.
Due to the density of Dsn in [TsnM]d, via a diagonal argument one finds ξn ∈ Dsn such that ξn → ξ.

Proposition 4.7. Let f be an admissible, ergodic random integrand in the sense of Definition 2.6.
Then P-a.s. the following holds: for every cube Q ⊂ Rd and every (s, ξ) ∈ M× [TsM]d there exists
the limit

(4.16) Tf∞(s, ξ) := lim
r→+∞

µs,ξ
∞ (rQ, ω)

|rQ|
and is independent of Q and ω. Moreover, the mapping (s, ξ) 7→ Tf∞(s, ξ) is continuous.

Proof. Let N be as in 4.15. Lemma 4.4 allows us to apply Theorem 2.5 to the subadditive processes
(µs,ξ

∞ )(s,ξ)∈N to find deterministic constants Tf∞(s, ξ) such that for every cube Q ⊂ Rd, for every
(s, ξ) ∈ N and P-a.e. ω ∈ Ω it holds that

(4.17) lim
r→+∞

1

|rQ|
µs,ξ
∞ (rQ, ω) = Tf∞(s, ξ) ,
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and the limit is independent of Q and ω. It remains to extend the existence of the limit to the remaining
couples (s, ξ) ∈ M× [TsM]d for the same set of ω’s. This will be done by approximation. Hence fix
ω ∈ Ωf such that (4.17) and the statement of Lemma 2.10 hold and let s ∈ M and ξ ∈ [TsM]d. Due
to Remark 4.6 we find (sn, ξn)n∈N ⊂ N converging to (s, ξ). In what follows we will always assume
that |(sn, ξn)− (s, ξ)| ≤ 1. We use this sequence to compare the limsup and liminf of 1

|rQ|µ
s,ξ
∞ (rQ, ω)

as r → +∞. In what follows, Q, s, ξ and ω will be fixed, so we do not indicate when quantities depend
on those parameters. Let us choose a sequence rj → +∞ such that

(4.18) lim inf
r→+∞

1

|rQ|
µs,ξ
∞ (rQ, ω) = lim

j→+∞

1

|rjQ|
µs,ξ
∞ (rjQ,ω).

Given rj ≫ 1, we let ϕj ∈ Adms
∞(rjQ) be such that 

rjQ

f(ω, x, ξ +∇ϕj) dx ≤ 1

|rjQ|
µs,ξ
∞ (rjQ,ω) +

1

j
.

We further define ψj ∈ Adms
∞(Q) via ψj =

1
rj
ϕj(rj ·). Then due to the lower bound in (2.4)

 
Q

|∇ψj |p dx =

 
rjQ

|∇ϕj |p dx ≤ C

|rjQ|
µs,ξ
∞ (rjQ,ω) + 1 ≤ C(|ξ|p + 1).

Since ψj ≡ 0 on Rd \ Q, the above estimate allows us to apply Lemma 4.1 to find a subsequence

(not relabeled) and another sequence ψ̃j ∈ Adms
∞(Q)2 such that |∇ψ̃j |p is equi-integrable and the set

Aj := {ψj ̸= ψ̃j or ∇ψj ̸= ∇ψ̃j} → 0 satisfies |Aj | → 0 as j → +∞. Then by the choice of ϕj , a
change of variables and (2.4) we have that

1

|rjQ|
µs,ξ
∞ (rjQ,ω) +

1

j
≥
 
rjQ

f(ω, x, ξ +∇ϕj) dx =

 
Q

f(ω, rjx,∇ψj) dx

≥ 1

|Q|

ˆ
Q\Aj

f(ω, rjx, ξ +∇ψ̃j) dx

≥
 
Q

f(ω, rjx, ξ +∇ψ̃j) dx− C

|Q|

ˆ
Aj

(1 + |∇ψ̃j |p) dx.(4.19)

Note that the very last integral is negligible when j → +∞ due to the convergence |Aj | → 0 and the

equi-integrability of |∇ψ̃j |p. Thus let us continue to bound the remaining integral on the right-hand
side from below. We have that 

Q

f(ω, rjx, ξ +∇ψ̃j) dx ≥
 
Q

f(ω, rjx, ξn +Πsn∇ψ̃j) dx

−
∣∣∣∣ 

Q

f(ω, rjx, ξ +∇ψ̃j)− f(ω, rjx, ξn +Πsn∇ψ̃j) dx

∣∣∣∣ .
In the first right-hand side integral, we can perform a change of variables and noting that x 7→
πsn ◦ rjψ̃j(x/rj) ∈ Admsn

∞ (rjQ), we can bound it from below by 1
|rjQ|µ

sn,ξn
∞ (rjQ,ω), so that

 
Q+x

f(ω, rjx, ξ +∇ψ̃j) dx ≥ 1

|rjQ|
µsn,ξn
∞ (rjQ,ω)

−
∣∣∣∣ 

Q

f(ω, rjx, ξ +∇ψ̃j)− f(ω, rjx, ξn +Πsn∇ψ̃j) dx

∣∣∣∣︸ ︷︷ ︸
=:ej,n

.(4.20)

We argue that the error term ej,n is negligible when we let first j → +∞ and then n→ +∞. To this
end, let η > 0 and define the set

Lj,η := {|ξ +∇ψ̃j |+ |∇ψ̃j | ≥ Nη},

2Recall that on convex sets W 1,∞ can be identified with the space of Lipschitz functions.
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where we chose Nη ∈ N such that

(4.21) sup
j∈N

ˆ
Q∩Lj,η

(1 + |ξ +∇ψ̃j |p) dy ≤ η.

The existence of such an Nη is ensured by the equi-integrability of |∇ψ̃j |p since |Lj,η| → 0 uniformly
in j when Nη → +∞. Next, on the complement of Lj,η we have that

|ξ +∇ψ̃j − ξn −Πsn∇ψ̃j | ≤ |ξ − ξn|+ |Πs∇ψ̃j −Πsn∇ψ̃j | ≤ |ξ − ξn|+ ∥Πs −Πsn∥opNη.

Recalling the definition of the integrated modulus of continuity αR(ω, t) (cf. Definition 2.7), the
stationarity of f and the upper bound in (2.4), we can thus estimate

ej,n ≤ C

|Q|

ˆ
Q∩Lj,η

(1 + |ξ +∇ψ̃j |p) dx

+
1

|rjQ|

ˆ
rj(Q\Lj,η)

|f(ω, x, ξ +∇ψ̃j(x/rj))− f(ω, x, ξn +Πsn∇ψ̃j(x/rj))|dx

≤ C

|Q|
η +

1

|rjQ|
∑
z∈Zd

(Y+z)∩rjQ̸=∅

αNη+1(τzω, |ξ − ξn|+ ∥Πs −Πsn∥opNη).

Due to Lemma 2.10 the last sum vanishes when we let first j → +∞ and then n → +∞. The
arbitrariness of η > 0 then implies that lim supn→+∞ lim supj→+∞ ej,n = 0. In combination with
(4.18), (4.19) and (4.20) we thus showed that

(4.22) lim inf
r→+∞

1

|rQ|
µs,ξ
∞ (rQ, ω) ≥ lim sup

n→+∞
lim

r→+∞
µsn,ξn
∞ (rQ, ω)

(4.17)
= lim sup

n→+∞
Tf∞(sn, ξn).

To conclude, we need to derive a suitable upper bound for the lim sup. First, we choose a sequence
rj → +∞ such that

(4.23) lim sup
r→+∞

1

|rQ|
µs,ξ
∞ (rQ, ω) = lim

j→+∞

1

|rjQ|
µs,ξ
∞ (rjQ,ω).

By a diagonal argument, we find a sequence (nj)j∈N that diverges to +∞ and such that

(4.24) lim inf
n→+∞

lim
j→+∞

1

|rjQ|
µsn,ξn
∞ (rjQ,ω) = lim

j→+∞

1

|rjQ|
µ
snj

,ξnj
∞ (rjQ,ω).

For every j ∈ N we let ϕj ∈ Adm
snj
∞ (rjQ) be such that

(4.25)

 
rjQ

f(ω, x, ξnj
+∇ϕj) dx ≤ 1

|rjQ|
µ
snj

,ξnj
∞ (rjQ,ω) + 1/j.

As above we define ψj ∈ Adm
snj
∞ (Q) via ψj = 1

rj
ϕj(rj ·), which by the same argument gives rise to a

subsequence (not relabeled) and a sequence ψ̃j ∈ Adm
snj
∞ (Q) such that |∇ψ̃j |p is equi-integrable and

Aj := {ψj ̸= ψ̃j or ∇ψj ̸= ∇ψ̃j} → 0 in measure. By a change of variables we then have

 
rjQ

f(ω, x, ξnj
+∇ϕj) dx =

 
Q

f(ω, rjx, ξnj
+∇ψj) dx ≥ 1

|Q|

ˆ
Q\Aj

f(ω, rjx, ξnj
+∇ψ̃j) dx

≥
 
Q

f(ω, rjx, ξnj +∇ψ̃j) dy −
C

|Q|

ˆ
Aj

(1 + |∇ψ̃j |p) dx
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and the last integral vanishes when j → +∞ due to the equi-integrability of |∇ψ̃j |p. Hence we continue
to estimate the other right-hand side term: with the same argument as for (4.20) one shows that 

Q

f(ω, rjx, ξnj
+∇ψ̃j) dx ≥ 1

|rjQ|
µs,ξ
∞ (rjQ,ω)

−
∣∣∣∣ 

Q

f(ω, rjx, ξnj
+∇ψ̃j)− f(ω, rjx, ξ +Πs∇ψ̃j) dx

∣∣∣∣︸ ︷︷ ︸
=:ej

(4.26)

and we argue that the error term ej is negligible when j → +∞. Given η > 0, we choose Nη ∈ N such
that the sets

Gj,η := {|ξnj
+∇ψ̃j |+ |∇ψ̃j | ≥ Nη}

satisfy ˆ
Q∩Gj,η

(1 + |ξnj
+∇ψ̃j |p) dx ≤ η.

Again this is possible since the sequence |∇ψ̃j |p is equi-integrable, the sequence ξnj
is converging and

the sets Gj,η converge to zero in measure when Nη → +∞ uniformly with respect to j. Similarly to
the previous step we then have

ej ≤
C

|Q|
η +

1

|rjQ|

ˆ
rj(Q\Gj,η)

|f(ω, x, ξnj
+∇ψ̃j(x/rj))− f(ω, x, ξ +Πs∇ψ̃j(x/rj))|dx

≤ C

|Q|
η +

1

|rjQ|
∑
z∈Zd

(Y+z)∩rjQ̸=∅

αNη+1(τzω, |ξnj
− ξ|+ ∥Πsnj

−Πs∥opNη)(4.27)

Using the monotonicity of t 7→ αR(ω, t), it follows from Lemma 2.10 that the second right-hand side
term vanishes when j → +∞. The arbitrariness of η > 0 then yields that limj→+∞ ej = 0. Taking
into account (4.23), (4.24), (4.25) and (4.26) we thus showed that

(4.28) lim inf
n→+∞

Tf∞(sn, ξn) = lim inf
n→+∞

lim
r→+∞

1

|rQ|
µsn,ξn
∞ (rQ, ω) ≥ lim sup

r→+∞

1

|rQ|
µs,ξ
∞ (rQ, ω).

Combined with (4.22) and the obvious inequality lim inf ≤ lim sup, this estimate shows that

lim inf
n→+∞

Tf∞(sn, ξn) = lim sup
n→+∞

Tf∞(sn, ξn) =: Tf∞(s, ξ),

lim inf
r→+∞

1

|rQ|
µs,ξ
∞ (rQ, ω) = lim sup

r→+∞

1

|rQ|
µs,ξ
∞ (rQ, ω) = Tf∞(s, ξ).

In particular, the limit of 1
|rQ|µ

s,ξ
∞ (rQ, ω) exists, is deterministic and independent of Q as claimed.

Finally, the continuity of the map Tf∞ can be proven with the same argument used to show the last
two estimates. □

In the next proposition we prove the same result for the processes µs,ξ
k with finite k ∈ N.

Proposition 4.8. Let f be an admissible, ergodic random integrand in the sense of Definition 2.6.
Then for P-a.s. the following holds: for every cube Q ⊂ Rd, every (s, ξ) ∈ M × [TsM]d, and every
k ∈ N there exists the limit

(4.29) Tfk(s, ξ) := lim
r→+∞

µs,ξ
k (rQ, ω)

|rQ|

and is independent of Q and ω.
Moreover, the mapping (s, ξ) 7→ Tfk(s, ξ) is continuous for all k ∈ N.
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Proof. For fixed k ∈ N and (s, ξ) ∈ M× [TsM]d we have shown in Lemma 4.4 that µs,ξ
k is a bounded

subadditive process. Thus, applying Theorem 2.5 to the countable family of subadditive processes µs,ξ
k

with k ∈ N and (s, ξ) ∈ N (the set defined in (4.15)) ensures the existence of deterministic constants
Tfk(s, ξ) such for P-a.e. ω ∈ Ω the convergence (4.29) holds for every cube Q ⊂ Rd, all k ∈ N and
(s, ξ) ∈ N . Moreover, upon intersecting two sets of full probability it is not restrictive to assume that
Lemma 2.10 holds for the same set of ω’s.

Let now ω ∈ Ω be such a realization and fix k ∈ N; we claim that then (4.29) holds for any (s, ξ) ∈
M× [TsM]d. The proof of this claim will be established in several steps.

Step 1. Locally uniform continuity. Let R > 0 and let us show that the mapping (s, ξ) 7→ Tfk(s, ξ) is
uniformly continuous on the set

NR :=
{
(s, ξ) : s ∈ N , |s| ≤ R , |ξ| ≤ R

}
.

This will allow us to extend Tfk in a uniformly continuous way to the closure NR.
Let η > 0 be arbitrary; thanks to Lemma 2.10 there exists t0 > 0 such that for all t ∈ (0, t0] we have
that

(4.30) lim sup
r→+∞

1

|rQ|
∑
z∈Zd

(Y+z)∩rQ

αk+2R+1(τzω, t) <
η

2
.

Moreover, since M is a C1-manifold, the mapping s 7→ Πs is uniformly continuous on the compact
set M ∩ BR(0). In particular, there exists δ ∈ (0, 1) such that for all (s, ξ), (s′, ξ′) ∈ NR with
|(s, ξ)− (s′, ξ′)| < δ we have k ∥Πs −Πs′∥op + |ξ − ξ′| < t0. Thanks to Lemma 4.5 this in turn implies

that for all such (s, ξ), (s′, ξ′) the estimate

1

|rQ|
∣∣µs,ξ

k (rQ, ω)− µs′,ξ′

k (rQ, ω)
∣∣ ≤ 1

|rQ|
∑
z∈Zd

(Y+z)∩rQ̸=∅

αk+2R+1(τzω, t0)

holds for all all r > 0 and all cubes Q ⊂ Rd. Letting r → +∞ we thus deduce from (4.30) that

(4.31) lim sup
r→+∞

1

|rQ|
∣∣µs,ξ

k (rQ, ω)− µs′,ξ′

k (rQ, ω)
∣∣ < η

2

for all (s, ξ), (s′, ξ′) ∈ NR with |(s, ξ)− (s′, ξ′)| < δ.

Let now (s, ξ), (s′, ξ′) ∈ NR with |(s, ξ) − (s′, ξ′)| < δ. Applying (4.31) together with (4.29) (which
holds on NR) finally gives

|Tfk(s, ξ)− Tfk(s
′, ξ′)| ≤ η

2
.

This yields the uniform continuity of the mapping (s, ξ) 7→ Tfk(s, ξ) on the set NR which in turn
implies that Tfk can be extended to a uniformly continuous mapping on the closure NR.

Step 2. Proof of (4.29) for (s0, ξ0) ̸∈ N . Let (s0, ξ0) ∈ (M × [TsM]d) \ N be fixed. As shown at
the beginning of the proof of Proposition 4.7 we can approximate (s0, ξ0) with elements in N , so that
(s0, ξ0) ∈ NR with R ≥ max{|s0|, |ξ0|}+ 1. Let now η > 0 be arbitrary and δ ∈ (0, 1) such that (4.31)
is satisfied and such that

(4.32) |Tfk(s, ξ)− Tfk(s
′, ξ′)| < η

2
for all (s, ξ), (s′ξ′) ∈ NR with |(s, ξ)− (s′, ξ′)| < δ.

Let now (s, ξ) ∈ NR with |(s0, ξ0)− (s, ξ)| < δ. For any r > 0 and any cube Q ⊂ Rd we have that∣∣∣µs0,ξ0
k (rQ, ω)

|rQ|
− Tfk(s0, ξ0)

∣∣∣ ≤ ∣∣∣µs,ξ
k (rQ, ω)

|rQ|
− Tfk(s, ξ)

∣∣∣
+

1

|rQ|
∣∣µs0,ξ0

k (rQ, ω)− µs,ξ
k (rQ, ω)

∣∣+ η

2
,
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where we have used (4.32). Since (4.29) holds for (s, ξ) ∈ NR, letting r → +∞ and using (4.31) yields

lim sup
r→+∞

∣∣∣µs0,ξ0
k (rQ, ω)

|rQ|
− Tfk(s0, ξ0)

∣∣∣ ≤ η .

We conclude by the arbitrariness of η > 0. The continuity of Tfk is a consequence of the first step
and the arbitrariness of R > 0. □

Finally, we prove the crucial fact that Tfk provides an approximation for Tf∞ for large k.

Proposition 4.9. Let f be an admissible, ergodic random integrand in the sense of Definition 2.6.
Let moreover Tfk and Tf∞ be as in Propositions 4.7 and 4.8, respectively. Then

(4.33) Tf∞(s, ξ) = lim
k→∞

Tfk(s, ξ) = inf
k∈N

Tfk(s, ξ)

for every (s, ξ) ∈ M× [TsM]d.

Proof. Let (s, ξ) ∈ M× [TsM]d be fixed. Since µs,ξ
k (ω,B) ≥ µs,ξ

k+1(ω,B) for every B ∈ U0 and every
k ∈ N, we deduce that

(4.34) Tf∞(s, ξ) ≤ lim
k→∞

Tfk(s, ξ) = inf
k∈N

Tfk(s, ξ) .

Moreover, applying Propositions 4.7 and 4.8 with Q = (0, 1)d and rℓ = 2ℓ with ℓ ∈ N and using the
dominated convergence theorem yield

(4.35) Tfk(s, ξ) = lim
ℓ→+∞

1

2ℓd
E[µs,ξ

k ((0, 2ℓ)d, ·)]

for any k ∈ N ∪ {+∞}. We now show that for any k ∈ N ∪ {+∞} the terms 1
2ℓd

E[µs,ξ
k ((0, 2ℓ)d, ·)] are

monotone decreasing in ℓ. To this end, let k ∈ N and ℓ ∈ N be fixed. Then the cube (0, 2ℓ+1)d can
be partitioned into nd = 2d sub-cubes of the form (0, 2ℓ)d + zn with z1, . . . , znd

∈ Zd. Thus, using the

subadditivity and stationarity of µs,ξ
k we deduce that

µs,ξ
k ((0, 2(ℓ+1))d, ω) ≤

nd∑
n=1

µs,ξ
k ((0, 2ℓ)d + zn, ω) =

nd∑
n=1

µs,ξ
k ((0, 2ℓ)d, τznω) .

By taking the expectation this simplifies to the claimed monotonicity

(4.36)
1

2(ℓ+1)d
E[µs,ξ

k ((0, 2(ℓ+1))d, ·)] ≤ nd
2(ℓ+1)d

E[µs,ξ
k ((0, 2ℓ)d, ·)] = 1

2ℓd
E[µs,ξ

k ((0, 2ℓ)d, ·)] .

Using (4.36) for k ∈ N and gathering (4.34)-(4.35) leads to

(4.37) Tf∞(s, ξ) ≤ inf
k∈N

Tfk(s, ξ) = inf
k∈N

inf
ℓ∈N

1

2ℓd
E[µs,ξ

k ((0, 2ℓ)d, ·)] = inf
ℓ∈N

inf
k∈N

1

2ℓd
E[µs,ξ

k ((0, 2ℓ)d, ·)] .

Moreover, we have infk∈N E[µs,ξ
k ((0, 2ℓ)d, ·)] = E[µs,ξ

∞ ((0, 2ℓ)d, ·)] thanks to (4.8) and the monotone
convergence theorem. Thus, using finally (4.36) for k = ∞ and again (4.35) we can continue the
estimate in (4.37) to

Tf∞(s, ξ) ≤ inf
k∈N

Tfk(s, ξ) = inf
ℓ∈N

1

2ℓd
E[µs,ξ

∞ ((0, 2ℓ)d, ·)] = Tf∞(s, ξ) ,

which yields (4.33). □

4.2. Proof of the liminf-inequality. In this section we prove the liminf-inequality for the Gamma-
convergence statement in Theorem 3.1. This will be done by applying a blow-up procedure, using the

auxiliary integrands f̂ defined in (4.3) and carrying out a careful local analysis based on the funda-
mental estimate [9, Theorem 19.1], Lemma 4.1 and Lemma 2.10. Finally, we will use Proposition 4.7.
To be able to do so, throughout this section we fix an element ω ∈ Ωf such that both Lemma 2.10 and
Proposition 4.8 hold. In particular, the following statement holds P-almost surely.
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Proposition 4.10. Let f be an admissible, ergodic random integrand in the sense of Definition 2.6
and for every ω ∈ Ω let Fε(ω)(·, U) : Lp(U ;Rm) → [0,+∞] be as in (3.1). Then the following holds
for almost every ω ∈ Ω and every bounded, open set U ⊂ Rd: if (uε) ⊂ Lp(U ;Rm) and u ∈ Lp(U ;Rm)
are such that uε → u strongly in Lp(U ;Rm), then

(4.38) lim inf
ε→0

Fε(ω)(uε, U) ≥ Fhom(ω)(u, U) .

Proof. Let (uε) ⊂ Lp(U ;Rm) and u ∈ Lp(U ;Rm) be such that uε → u strongly in Lp(U ;Rm) as ε→ 0.
To prove (4.38) it suffices to consider the case lim infε→0 Fε(ω)(uε, U) < +∞. Let then (εn) be a
sequence satisfying

(4.39) lim inf
ε→0

Fε(ω)(uε, U) = lim
n→∞

Fεn(ω)(uεn , U) < +∞

and such that un := uεn converges to u pointwise. Since M is closed, we deduce that u(x) ∈ M for a.e.
x ∈ U . Moreover, (4.39) together with (2.4) ensures that (un) is uniformly bounded in W 1,p(U ;M).
We thus deduce that u ∈W 1,p(U ;M) and it remains to show that

(4.40) lim
n→∞

ˆ
U

f
(
ω, x

εn
,∇un

)
dx ≥

ˆ
U

Tf∞(u,∇u) dx .

We establish (4.40) by means of the blow-up method. To this end, we consider the sequence of non-
negative finite Radon measures µn := f

(
ω, ·

εn
,∇un( · )

)
Ld U . Then (4.39) implies that

sup
n∈N

|µn|(U) < +∞ .

From the compactness result [3, Teorem 1.59] we deduce that there exist a further subsequence (not

relabeled) and a non-negative finite Radon measure µ such that µn
∗
⇀ µ as n → +∞. Since U ⊂ Rd

is open, the weak∗-convergence together with [3, Proposition 1.62] implies that

(4.41) µ(U) ≤ lim inf
n→∞

µn(U) = lim
n→0

ˆ
U

f
(
ω, x

εn
,∇un

)
dx .

Thanks to the Besicovitch Derivation Theorem [16, Theorem 1.153] the measure µ can be decomposed
as µ = µa + µs into a pair of non-negative finite Radon measures µa, µs with µa ≪ Ld and µs ⊥ Ld.
Denoting by dµa

dLd the Radon-Nikodym derivative of µa with respect to Ld it thus suffices to show that

(4.42)
dµa

dLd
(x) ≥ Tf∞

(
u(x),∇u(x)

)
for a.e. x ∈ U .

In fact, if (4.42) holds true, then (4.41) together with the fact that µa(U) ≤ µ(U) yields (4.40). We
now establish (4.42) in several steps.

Step 1. Choice of x0
To obtain (4.42) we fix a point x0 ∈ U with s0 := u(x0) ∈ M, ξ0 := ∇u(x0) ∈ [Ts0M]d, and such that

lim
ρ→0+

 
Qρ(x0)

|u(x)− s0|p dx = 0 = lim
ρ→0+

 
Qρ(x0)

|∇u(x)− ξ0|p dx ,(4.43)

lim
ρ→0+

1

ρp

 
Qρ(x0)

|u(x)− s0 − ξ0 · (x− x0)|p dx = 0 ,(4.44)

dµa

dLd
(x0) = lim

ρ→0+

µ(Qρ(x0))

ρd
.(4.45)

The fact that u ∈ W 1,p(D;M) and the Besicovitch derivation theorem ensure that these properties
hold for Ld-a.e. x0 ∈ U . Thus, to obtain (4.42) it suffices to show that

(4.46)
dµa

dLd
(x0) ≥ Tf∞

(
u(x0),∇u(x0)

)
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with x0 satisfying (4.43)–(4.45). Since µ is a finite Radon measure, we have that µ(∂Qρ(x0)) = 0 except
for countably many ρ > 0. In particular, we can find a sequence ρk → 0+ such that µ(∂Qρk

(x0)) = 0

for all k ∈ N. Thus, combining (4.45) with [3, Proposition 1.62] and the fact that µn
∗
⇀ µ we find that

dµa

dLd
(x0) = lim

k→+∞

µ(Qρk
(x0))

ρdk
= lim

k→+∞
lim

n→+∞

 
Qρk

(x0)

f
(
ω, x

εn
,∇un

)
dx =: Λ(x0)(4.47)

and it remains to estimate Λ(x0). This will be done via a diagonal argument. For later use it is

convenient to define the constant Cξ0 :=
( |ξ0|

2 d
1
2 + 1

)
.

Step 2. Choice of a diagonal sequence

For fixed k, n ∈ N the change of variables y = x−x0

ρk
leads to

 
Qρk

(x0)

f
(
ω, x

εn
,∇un

)
dx =

 
Q1

f
(
ω, x0+ρky

εn
,∇vn,k(y)

)
dy ,(4.48)

where vn,k(y) :=
1
ρk

(
u(x0 + ρky)− s0

)
for every y ∈ Q1. Moreover, denoting by u0 the affine function

u0(y) := ξ0 · y, we have that
 
Q1

|vn,k − u0|p dy = ρ−p
k

 
Qρk

(x0)

|un(x)− s0 − ξ0 · (x− x0)|p dx

≤ 2p−1ρ−p
k

( 
Qρk

(x0)

|un(x)− u(x)|p dx+

 
Qρk

(x0

|u(x)− s0 − ξ0 · (x− x0)|p dx
)
,

so that (4.44) ensures that

(4.49) lim
k→∞

lim sup
n→∞

ˆ
Q1

|vn,k − u0|p dy = 0 .

In addition, we deduce from Lemma 2.9 and Remark 2.2 that

(4.50) lim
k→∞

E
[
αN ( · ,MγR(Cξ0ρk))

]
= 0 for all M,N,R > 0 ,

where γR is the modulus of continuity defined in (2.1). Moreover, Lemma 2.10 together with the
monotonicity of R 7→ γR implies that

(4.51) lim sup
n→∞

(
εn
ρk

)d ∑
z∈Zd

(Y+z)∩ ρk
εn

Q1

(
x0
ρk

)
̸=∅

αN (τzω, γR(Cξ0ρk)) ≤ inf
R′>R
M ′>M
N ′>N

E
[
αN ′( · ,M ′γR′(Cξ0ρk)

)]

for every k ∈ N and R,N,M > 0. We finally observe that for any fixed k ∈ N Proposition 4.7 together
with the choice of ω ensures that

lim
n→∞

(
εn
ρk

)d

µs0,ξ0
∞

(
ρk
εn
Q1

(
x0/ρk

)
, ω

)
= Tf∞(s0, ξ0) .(4.52)

Using (4.49)–(4.52) we now construct a diagonal sequence as follows. For j ∈ N we first choose kj ∈ N
sufficiently large such that

(4.53)

∣∣∣∣Λ(x0)− lim
n→∞

ˆ
Q1

f
(
ω,

x0+ρkj
y

εn
,∇vn,kj

(y)
)
dy

∣∣∣∣ < 1

2j

and

(4.54) lim sup
n→∞

ˆ
Q1

|vn,kj
− u0|p dy <

1

2j
and E

[
α2j

(
· , 2jγ2j(Cξ0ρkj )

)]
<

1

2j
,
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which is possible thanks to (4.49) and (4.50). Subsequently, we choose nj ∈ N such that εnj
≤ ρ2kj

and

such that for all n ≥ nj we have thatˆ
Q1

f
(
ω,

x0+ρk,jy
εn

,∇vn,kj
(y)

)
dy ≤ lim

n→∞

ˆ
Q1

f
(
ω,

x0+ρkj
y

εn
,∇vn,kj

(y)
)
dy +

1

2j
≤ Λ(x0) +

1

j
(4.55)

ˆ
Q1

|vn,kj
− u0|p dy ≤ lim sup

n→∞

ˆ
Q1

|vn,kj
− u0|p dy +

1

2j
<

1

j
,(4.56) ∣∣∣∣∣

(
εn
ρkj

)d

µs0,ξ0
∞

(
ρkj

εn
Q1

(
x0/ρkj

)
, ω

)
− Tf∞(s0, ξ0)

∣∣∣∣∣ < 1

j
,(4.57)

(
εn
ρkj

)d ∑
x∈Zd

(Y+z)∩
ρkj
εn

Q1

(
x0
ρkj

)
̸=∅

αj(τzω, jγj(Cξ0ρkj
)) ≤ E

[
α2j( · , 2jγ2j(Cξ0ρkj ))

]
+

1

2j
<

1

j
,(4.58)

which is possible thanks to (4.49) and (4.51)–(4.54). Note that to obtain (4.58) we have applied (4.51)
with R = N = j and R′ = N ′ = 2j. Let us now define the diagonal sequence (ε̄j , ρ̄j) := (εnj

, ρnj
);

then
ε̄j
ρ̄j

→ 0 as j → ∞ and thanks to (4.55) and (4.56) the functions vj := vnj ,kj
satisfy

(4.59)
dµa

dLd
(x0) = Λ(x0) ≥ lim sup

j→∞

ˆ
Q1

f
(
ω,

x0+ρ̄jy
ε̄j

,∇vj
)
dy

and

(4.60) lim
j→∞

∥vj − u0∥Lp(Q1) = 0 .

Moreover, (4.57) ensures that

(4.61) lim
j→∞

(
ε̄j
ρ̄j

)d

µs0,ξ0
∞

(
ρ̄j
ε̄j
Q1

(
x0/ρ̄j

)
, ω

)
= Tf∞(s0, ξ0) .

Finally, for all M,N,R > 0 the monotonicity of αR and γR with respect to R and t implies that(
ε̄j
ρ̄j

)d ∑
x∈Zd

(Y+z)∩
ρ̄j
ε̄j

Q1

(
x0
ρ̄j

)
̸=∅

αN (τzω,MγR(Cξ0ρkj
)) ≤

(
ε̄j
ρ̄j

)d ∑
x∈Zd

(Y+z)∩
ρ̄j
ε̄j

Q1

(
x0
ρ̄j

)
̸=∅

αj(τzω, jγj(Cξ0 ρ̄j)) for all j ≥M,N,R.

Thus, from (4.58) we finally deduce that

lim
j→∞

(
ε̄j
ρ̄j

)d ∑
x∈Zd

(Y+z)∩
ρ̄j
ε̄j

Q1

(
x0
ρ̄j

)
̸=∅

αN (τzω,MγR(Cξ0ρkj
)) = 0 for all M,N,R > 0.(4.62)

Step 3. Modification of boundary values and equi-integrable gradients.
In this step we will modify the sequence (vj) obtained in Step 2 in a suitable way to obtain a com-
petitor for the minimization problem defining µs0,ξ0

∞ . This is done by rewriting the right-hand side

of (4.48) using the auxiliary function f̂ defined in (4.3). This in turn will allow us to first apply the
fundamental estimate [9, Theorem 19.1] to change the value of vj to u0 on ∂Q1 and subsequently apply
the Decomposition Lemma 4.1 to pass to a sequence with p-equi-integrable gradients.

By the definition of f̂ and the fact that ∇vj(y) = ∇unj (x0 + ρ̄jy) ∈ [Tunj
(x0+ρ̄jy)M]d for a.e. y ∈ Q1

we have that

(4.63)

ˆ
Q1

f
(
ω,

x0+ρ̄jy
ε̄j

,∇vj(y)
)
dy =

ˆ
Q1

f̂
(
ω,

x0+ρ̄jy
ε̄j

, s0 + ρ̄jvj(y)︸ ︷︷ ︸
=unj

(x0+ρ̄jy)

,∇vj(y)
)
dy .
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Thanks to (4.6) the functions f̂(ω, ·, s, ·) satisfy for all s ∈ M the hypotheses of [9, Theorem 19.1] and
thus the fundamental estimate [9, Definition 18.2] holds. This implies in particular that for arbitrary
η > 0 and δ ∈ (0, 1/2) there exists a cut-off function φ = φη,δ between Q1−2δ and Q1−δ such that for
all j ∈ N the functions v̂j := φvj + (1− φ)u0 ∈W 1,p(Q1,Rm) satisfyˆ

Q1

f̂
(
ω,

x0+ρ̄jy
ε̄j

, s0 + ρ̄jvj(y),∇v̂j(y)
)
dy ≤ (1 + η)

ˆ
Q1

f̂
(
ω,

x0+ρ̄jy
ε̄j

, s0 + ρ̄jvj(y),∇vj(y)
)
dy

+ (1 + η)ĉ2|Q1 \Q1−2δ|(1 + |ξ0|p) +
C

(δη)p
∥vj − u0∥pLp(Q1)

(4.64)

for some constant ĉ2 depending only p and the constants c1 and c2 in (2.4). We observe that the
functions v̂j do not take values in M anymore, but by construction they coincide with u0 on Q1\Q1−δ,

so that (v̂j) ⊂ u0 +W 1,p
0 (Q1;Rm). Moreover, the boundedness of (vj) in W

1,p(Q1;Rm) ensures that
supj∈N ∥∇v̂j∥Lp < +∞. Thus Lemma 4.1 yields the existence of a subsequence (jℓ) and a sequence

(ṽℓ) ⊂ u0 +W 1,∞
0 (Q1;Rm) such that |∇ṽℓ|p is equi-integrable and the measure of the sets

Aℓ :=
{
y ∈ Q1 : v̂jℓ(y) ̸= ṽℓ(y) or ∇v̂jℓ(y) ̸= ∇ṽℓ(y)

}
converges to zero as ℓ→ ∞. Moreover, by Chebyshev’s inequality also the measure of the set

Bℓ :=
{
y ∈ Q1 : |vjℓ(y)− u0(y)| > 1

}
converges to zero as ℓ → ∞. Thanks to the non-negativity of the integrand f the fundamental
estimate (4.64) now yieldsˆ

Q1

f̂
(
ω,

x0+ρ̄jℓ
y

ε̄jℓ
, s0 + ρ̄jℓvjℓ(y),∇vjℓ(y)

)
dy ≥ 1

1 + η

ˆ
Q1\Aℓ\Bℓ

f̂
(
ω,

x0+ρ̄jℓ
y

ε̄jℓ
, s0 + ρ̄jℓvjℓ(y),∇ṽjℓ(y)

)
dy

− ĉ2|Q1 \Q1−2δ|(1 + |ξ0|p)−
C

(δη)p
∥vjℓ − u0∥pLp(Q1)

.(4.65)

It remains to estimate the first term on the right-hand side of (4.65). This is done in the last step.

Step 4. Conclusion.
Since |∇ṽℓ|p is equi-integrable, there exists Nη ∈ N sufficiently large such that for

Gℓ,η :=
{
x ∈ Q1 : |∇ṽℓ(x)|p ≥ Nη

}
we have that

sup
ℓ∈N

ĉ2

ˆ
Gℓ,η

(1 + |∇ṽℓ|p) dy ≤ η .

Moreover, since |Aℓ ∪Bℓ| → 0 as ℓ→ ∞, there exists ℓ0 ∈ N such that

(4.66) ĉ2

ˆ
Aℓ∪Bℓ

(1 + |∇ṽℓ|p) dy < η for all ℓ ≥ ℓ0 .

Recalling that f̂(ω, x, s, ξ) = f(ω, x,Πs(ξ)) + |ξ−Πs(ξ)|p for all s ∈ M and all (x, ξ) ∈ Rd ×Rm×d we
thus obtain

ˆ
Q1\Aℓ\Bℓ\Gℓ,η

f̂
(
ω,

x0+ρ̄jℓ
y

ε̄jℓ
, s0 + ρ̄jℓvjℓ(y),∇ṽjℓ(y)

)
dy ≥

ˆ
Q1

f̂
(
ω,

x0+ρ̄jℓ
y

ε̄jℓ
, s0,∇ṽjℓ(y)

)
dy − 2η

−

∣∣∣∣∣
ˆ
Q1\Aℓ\Bℓ\Gℓ,η

(
f
(
ω,

x0+ρ̄jℓ
y

ε̄jℓ
,Πs0+ρ̄jℓ

vjℓ (y)

(
∇ṽjℓ(y))

)
− f

(
ω,

x0+ρ̄jℓ
y

ε̄jℓ
,Πs0

(
∇ṽjℓ(y)

)))
dy

∣∣∣∣∣︸ ︷︷ ︸
=:e1ℓ,η

−
ˆ
Q1\Aℓ\Bℓ\Gℓ,η

∣∣∣∣∣∣∣Πs0+ρ̄jℓ
vjℓ (y)

(
∇ṽℓ(y)

)
−∇ṽℓ(y)

∣∣∣p − ∣∣∣Πs0

(
∇ṽℓ(y)

)
−∇ṽℓ(y)

∣∣∣p∣∣∣∣ dy︸ ︷︷ ︸
=:e2ℓ,η

(4.67)
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for all ℓ ≥ ℓ0. We finally set φℓ(x) :=
ρ̄jℓ

ε̄jℓ
ṽℓ
( ε̄jℓx−x0

ρ̄jℓ

)
+ u0

(
x0

ε̄jℓ

)
for every x ∈ ρ̄jℓ

ε̄jℓ
Q1(x0/ρ̄jℓ), so that

∇φℓ(x) = ∇ṽℓ
( ε̄jℓx− x0

ρ̄jℓ

)
and

(
φℓ − u0

)
∈W 1,∞

0

( ρ̄jℓ

ε̄jℓ
Q1(x0/ρ̄jℓ);Rm

)
for every ℓ ∈ N. Recalling that ∇u0 ≡ ξ0 ∈ [Ts0M]d, the alternative characterization of µs0,ξ0

∞ in (4.4)
together with a change of variables yieldsˆ

Q1

f̂
(
ω,

x0+ρ̄jℓ
y

ε̄jℓ
, s0,∇ṽjℓ(y)

)
dy =

 
ρ̄jℓ
ε̄jℓ

Q1

(
x0
ρ̄jℓ

) f̂(ω, x, s0, ξ0 +∇(φℓ − u0)(x)
)
dx

≥
(
ρ̄jℓ
ε̄jℓ

)d

µs0,ξ0
∞

(
ρ̄jℓ
ε̄jℓ

Q1

(
x0/ρ̄jℓ

))
.

Thus, (4.61) implies that

(4.68) lim inf
ℓ→∞

ˆ
Q1

f̂
(
ω,

x0+ρ̄jℓ
y

ε̄jℓ
, s0 + ρ̄jℓvjℓ(y),∇ṽjℓ(y)

)
dy ≥ Tfhom(s0, ξ0)

and it remains to estimate the two error terms e1ℓ,η, e
2
ℓ,η in (4.67). To estimate e2ℓ,η it suffices to observe

that the local lipschitzianity of the mapping ξ 7→ |ξ|p and the projection estimate |ξ − Πsξ| ≤ |ξ| for
all s ∈ M and ξ ∈ Rm×d yield∣∣∣∣∣ξ1 −Πs1(ξ1)

∣∣p − ∣∣ξ2 −Πs2(ξ2)
∣∣p∣∣∣ ≤ p

(
|ξ1|p−1 + |ξ2|p−1

)(∣∣Πs1(x1)−Πs2(ξ2)
∣∣+ ∣∣ξ1 − ξ2

∣∣)
for all s1, s2 ∈ M and ξ1, ξ2 ∈ Rm×d. In particular, for all ℓ ∈ N and y ∈ Q1 \Gℓ,η we have that∣∣∣∣∣∣∣Πs0+ρ̄jℓ

vjℓ
(y)

(
∇ṽℓ(y)

)
−∇ṽℓ(y)

∣∣∣p − ∣∣∣Πs0

(
∇ṽℓ(y)

)
−∇ṽℓ(y)

∣∣∣p∣∣∣∣
≤ 2p|∇ṽℓ(y)|p−1

∣∣∣Πs0+ρ̄jℓ
vjℓ (y)

(
∇ṽℓ(y)

)
−Πs0

(
∇ṽℓ(y)

)∣∣∣ ≤ 2pNp
η

∥∥∥Πs0+ρ̄jℓ
vjℓ (y)

−Πs0

∥∥∥
op
.

(4.69)

We also observe that for all ℓ ∈ N and y ∈ Q1 \Bℓ we have that

(4.70) ρ̄jℓ |vjℓ(y)| ≤ ρ̄jℓ(|u0(y)|+ 1) ≤ Cξ0 ρ̄jℓ ,

for which we recall that Cξ0 =
( |ξ0|

2 d
1
2 +1

)
. Setting R := |s0|+Cξ0 a combination of (4.69) and (4.70)

thus yields∣∣∣∣∣∣∣Πs0+ρ̄jℓ
vjℓ (y)

(
∇ṽℓ(y)

)
−∇ṽℓ(y)

∣∣∣p − ∣∣∣Πs0

(
∇ṽℓ(y)

)
−∇ṽℓ(y)

∣∣∣p∣∣∣∣ ≤ 2pNp
η γR

(
Cξ0 ρ̄jℓ

)
for all y ∈ Q1 \Gℓ,η \Bℓ, where γR is the modulus of continuity defined in (2.1). We thus deduce that

(4.71) 0 ≤ e2ℓ,η ≤ 2pNp
η γR

(
Cξ0 ρ̄jℓ

)
→ 0 as ℓ→ ∞ .

To estimate e1ℓ,η we apply a similar argument as in (4.27) using the modulus of continuity αNη . Setting

Aℓ,η(x0) :=
ρ̄jℓ
ε̄jℓ

(
Q1 \Aℓ \Bℓ \Gℓ,η

)
+
x0
ε̄jℓ

⊂ ρ̄jℓ
ε̄jℓ

Q1(x0/ρ̄jℓ),

the change of variables x =
x0+ρ̄jℓ

y

ε̄jℓ
, (4.69) and (4.70) yields

e1ℓ,η ≤
(
ε̄jℓ
ρ̄jℓ

)d ∑
z∈Zd

∣∣∣∣ˆ
Aℓ,η(x0)∩(Y+z)

f
(
ω, x,Πs0+ρ̄jℓ

vjℓ (y(x))

(
∇φℓ(x)

))
− f

(
ω, x,Πs0

(
∇φℓ(x)

))
dx

∣∣∣∣
≤

(
ε̄jℓ
ρ̄jℓ

)d ∑
z∈Zd

(Y+z)∩
ρ̄jℓ
ε̄jℓ

Q1(x0/ρ̄jℓ
) ̸=∅

αNη

(
τzω, 2pN

p
η γR

(
Cξ0 ρ̄jℓ

))
.
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Applying (4.62) with N = Nη and M = Np
η and R as above thus implies that

(4.72) lim
ℓ→∞

e1ℓ,η = 0 .

Combining (4.71) and (4.72) with (4.59), (4.63), (4.65), (4.67), and (4.68) we thus infer that

dµa

dLd
(x0) ≥ lim sup

ℓ→∞

ˆ
Q1

f
(
ω,

x0+ρ̄jℓ
y

ε̄jℓ
∇vℓ(y)

)
dy ≥ 1

1 + η
Tf∞(s0, ξ0)− 2η − ĉ2|Q1 \Q1−2δ||ξ0|p

from which we finally deduce (4.46) by letting first η → 0 and then δ → 0. □

4.3. Construction of recovery sequences. In this section we provide recovery sequences for all
functions u ∈ W 1,p(U ;M) on general bounded, open sets U ⊂ Rd. We first start with a local
construction, giving an almost upper bound with the functional

´
Tfk(u,∇u) dx with the integrand

Tfk given by Proposition 4.8. Then we use this one and a covering argument to obtain the global
recovery sequence with the auxiliary integrand. Finally, we conclude via approximation letting k →
+∞ and a diagonal argument. In this section we fix an element ω ∈ Ω such that Lemma 2.10 and
Propositions 4.8 and 4.9 hold, so that all statements hold P-almost surely.

Lemma 4.11. For all s ∈ M, ξ ∈ [TsM]d, k ∈ N and η ∈ (0, 1] there exists δ > 0 satisfying the
following property: for every cube Q = Qr(x0) ⊂ Rd with 0 < r < δ and for every u ∈ W 1,p(Q;M)
satisfying

(4.73)

 
Q

|u− s|p + |∇u− ξ|p dx ≤ δ,

there exists a sequence (zε)ε ⊂W 1,p(Q;M) with zε = u on ∂Q and

(4.74) lim sup
ε→0

 
Q

f(ω, xε ,∇zε) dx ≤
 
Q

Tfk(u,∇u) dx+ η.

Additionally, there exists c < +∞ depending on the dimensions d,m, the exponent p and the constants
c1, c2 in (2.4) such that

(4.75) lim sup
ε→0

 
Q

|u− zε|p dx ≤ c rp
 
Q

1 + |∇u|p dx.

Proof. We first show (4.75) using (4.74). From Poincaré’s inequality with its scaling (recall that
u− zε = 0 on ∂Q) and the lower bound in (2.4) we infer that 

Q

|u− zε|p dx ≤Crp
 
Q

|∇(u− zε)|p ≤ Crp
 
Q

|∇u|p + |∇zε|p dx

≤Crp
 
Q

|∇u|p + f(ω, xε ,∇zε) dx

and thus (4.75) follows with help of (4.74) and the upper bound Tfk(s, ξ) ≤ c2(1 + |ξ|p) that one
obtains from Lemma 4.4. Thus we are left to show (4.74). Throughout this proof we assume that
δ ≤ 1 and refine its smallness depending on s, ξ, k and η. Since the latter parameters are fixed, we do
not indicate when quantities depend on them.
Due to Proposition 4.8 with t = 1/ε, we find ε0 > 0 such that for all 0 < ε < ε0 there exists
φε ∈ Lip(Rd;TsM) satisfying φε ≡ 0 on Rd \ (ε−1Q) with ∥φε∥W 1,∞(Rd) ≤ k and

(4.76)

 
ε−1Q

f(ω, x, ξ +∇φε) dx ≤ εd

|Q|
µs,ξ
k (ε−1Q,ω) + ε ≤ Tfk(s, ξ) +

1

4
η.

Next, let κ > 0 be such that B4κ(s) ⊂ U , where U is the neighborhood of M given by Theorem 2.1
(with, e.g., λ = 1). Consider a cut-off function θκ ∈ C∞

c (Rm; [0, 1]) such that

(4.77) θκ ≡ 1 on Bκ(0), θκ ≡ 0 on Rm \B3κ(0), ∥∇θκ∥L∞(Rm) ≤
1

κ
.
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We define us ∈W 1,p(Q;Rm) by setting us(x) := u(x)− s for every x ∈ Q and we then define

(4.78) ϕε,κ := u+ (θκ ◦ us)εφε(·/ε) ∈ u+W 1,p
0 (Q;TsM).

Our aim is to map ϕε,κ onto M, so let us estimate its distance to points in M. In what follows we
shall always assume that ε < κ/k. Since θκ ◦ us vanishes whenever |us(x)| ≥ 3κ, we can distinguish
two cases:

ϕε,κ(x) = u(x) ∈ M a.e. if |us(x)| ≥ 3κ,(4.79)

|ϕε,κ(x)− s| ≤ |ϕε,κ(x)− u(x)|+ |us(x)| < kε+ 3κ ≤ 4κ if |us(x)| < 3κ.(4.80)

Hence, up to considering a representative of u that is M-valued everywhere, we can define the map
zκε = π∗ ◦ ϕε,κ, where π∗ is as in Theorem 2.1. Below we show that zκε ∈ W 1,p(Q;M). We first
observe that by construction zkε takes values in M and is weakly differentiable by the chain rule, since
π∗ ∈ C1(U ;M) with U being the neighborhood ofM given by Theorem 2.1. Moreover, since π∗

|M = Id,

we have that zκε = u on the set {|us| ≥ 3κ}, while on the set {|us| < 3κ} we deduce from (4.80) that

|zκε | ≤ |s|+ |π∗(ϕε,κ,k)− π∗(s)| ≤ |s|+ ∥∇π∗∥L∞(B4κ(s))|ϕε,κ − s|
≤ |s|+ 4∥∇π∗∥L∞(B4κ(s))κ.(4.81)

In particular, we deduce that zκε ∈ Lp(Q;M). For the gradient, the locality of the weak derivative
yields ∇zκε = ∇u a.e. on {|us| ≥ 3κ}, while on {|us| < 3κ} the chain rule and the properties of θκ
summarized in (4.77) yield

|∇zκε | ≤ |∇π∗(ϕε,κ)||∇ϕε,κ| ≤ ∥∇π∗∥L∞(B4κ(s))(|∇u|+ ∥∇θκ∥L∞(Rm)|∇u|εk + k)

≤ ∥∇π∗∥L∞(B4κ(s))(2|∇u|+ k)(4.82)

Hence also |∇zκε | ∈ Lp(Q), so that zκε ∈W 1,p(Q;M). Moreover, since ϕε,κ = u on ∂Q, it follows that
also zκε = u on ∂Q. At the end we will choose κ small enough, but fixed. Hence we are left to show
the energy estimate (4.74) for zκε .
Using again the chain rule and splitting the domain of integration, by the upper bound on f in (2.4)
we have that

 
Q

f(ω, xε ,∇z
κ
ε ) dx ≤ c2

|Q|

ˆ
Q∩{|u−s|≥κ}

(1 + |∇zκε |p) dx+
c2
|Q|

ˆ
Q∩{|∇u−ξ|≥κ}

(1 + |∇zκε |p) dx

+
1

|Q|

ˆ
Q∩{|u−s|<κ,|∇u−ξ|<κ}

f(ω, xε ,∇z
κ
ε ) dx .(4.83)

We separately estimate the three right-hand side terms, arguing that the first two are small. In order
to reduce notation, let us set cs,κ = ∥∇π∗∥L∞(B4κ(s)). Using the bound (4.82) or its alternative

|∇zkε | = |∇u|, we find that

c2
|Q|

ˆ
Q∩{|u−s|≥κ}

(1 + |∇zκε |p) dx ≤ 2pc2
|Q|

(cps,κ + 1)

ˆ
Q∩{|u−s|≥κ}

|∇u|p + kp dx

≤ 4pc2
|Q|

(cps,κ + 1)

ˆ
Q∩{|u−s|≥κ}

|∇u− ξ|p + |ξ|p + kp dx

≤ 4pc2(c
p
s,κ + 1)

( 
Q

|∇u− ξ|p dx+
|ξ|p + kp

κp

 
Q

|u− s|p dx
)

(4.73)

≤ 4pc2(c
p
s,k + 1)

(
1 +

|ξ|p + kp

κp

)
δ.(4.84)
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Similarly, with the same bound for ∇zκε we can estimate the second term via

c2
|Q|

ˆ
Q∩{|∇u−ξ|≥κ}

(1 + |∇zκε |p) dx ≤ 2pc2
|Q|

(cps,κ + 1)

ˆ
Q∩{|∇u−ξ|≥κ}

|∇u|p + kp dx

≤ 4pc2
|Q|

(cps,κ + 1)

ˆ
Q∩{|∇u−ξ|≥κ}

|∇u− ξ|p + |ξ|p + kp dx

≤ 4pc2(c
p
s,κ + 1)

(
1 +

|ξ|p + kp

κp

) 
Q

|∇u− ξ|p dx

≤ 4pc2(c
p
s,κ + 1)

(
1 +

|ξ|p + kp

κp

)
δ.(4.85)

Finally, we estimate the third term. Here we have to be more careful. When |u − s| < κ and
|∇u− ξ| < κ, the definition of ϕε,κ reduces to θκ ≡ 1 and therefore, by the chain rule and locality of
the weak derivative we have that

∇zκε = ∇π∗(ϕε,κ) (∇u+∇φε(·/ε)) .
Moreover, Theorem 2.1 yields that π∗

|M = Id, which implies that ∇π∗(s′)ξ′ = ξ′ for all s′ ∈ M and

ξ′ ∈ Ts′M. This in turn can be used to estimate

|∇zκε − ξ −∇φε(·/ε)| = |∇π∗(ϕε,κ) (∇u+∇φε,κ(·/ε))−∇π∗(s) (ξ +∇φε,κ(·/ε))|
≤ |∇π∗(ϕε,κ,k)−∇π∗(s)| |∇u+∇φε,k(·/ε)|+ |∇π∗(s)||∇u− ξ|
(4.80)

≤ sup
s′∈B4κ(s)

|∇π∗(s′)−∇π∗(s)|(|∇u− ξ|+ |ξ|+ k) + |∇π∗(s)||∇u− ξ|

≤ sup
s′∈B4κ(s)

|∇π∗(s′)−∇π∗(s)|(κ+ |ξ|+ k) + |∇π∗(s)|κ =: eκ.(4.86)

Note that eκ vanishes when κ → 0, since π∗ ∈ C1(U ;M). We also have the bound |ξ +∇φε(·/ε)| ≤
|ξ| + k. Upon choosing κ sufficiently small such that eκ ≤ 1, by the definition of the modulus of
continuity in Definition 2.7 and (4.86), via a change of variables and stationarity we can estimate

1

|Q|

ˆ
B∩{|u−s|<κ,|∇u−ξ|<κ}

f(ω, xε ,∇z
κ
ε ) dx =

1

|Q|
∑
z∈Zd

ˆ
ε(Y+z)∩Q∩{|u−s|<κ,|∇u−ξ|<κ}

f(ω, xε ,∇z
κ
ε ) dx

≤ 1

|ε−1Q|
∑
z∈Zd

(Y+z)∩ε−1Q̸=∅

α|ξ|+k+1(τzω, eκ)

+

 
Q

f
(
ω, xε , ξ +∇φε(

x
ε )
)
dx.

The term in the last line can be bounded via (4.76), while for the second one we use (2.8) in Lemma
2.10. Gathering these bounds along with (4.84) and (4.85) and the starting estimate (4.83), we find
that

lim sup
ε→0

 
Q

f(ω, xε ,∇z
κ
ε ) dx ≤ 2 · 4pc2(cps,k + 1)

(
1 +

|ξ|p + kp

κp

)
δ + E[α|ξ|+2k+1(·, 2eκ)]

+

 
Q

Tfk(s, ξ) +
η

4
dx.(4.87)

Using Lemma 2.9 and the convergence eκ → 0 as κ → 0, we can select κ small enough such that the
term involving the expectation is bounded by η/4 and having fixed such κ = κ(s, ξ, η) we can then
select δ small enough such that the first right-hand side term is also bounded by η/4 (recall that s, ξ
and k are fixed). Finally, we have to estimate the integrated difference of Tfk(s, ξ) and Tfk(u,∇u).
We know from Proposition 4.8 that Tfk is continuous at (s, ξ), so there exists ρη > 0 such that

|Tfk(s, ξ)− Tfk(s
′, ξ′)| ≤ η

8
for all s′ ∈ M, ξ′ ∈ [Ts′M]d with |s− s′|+ |ξ − ξ′| ≤ ρη.
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By the non-negativity of Tfk and (4.73) we therefore obtain 
Q

Tfk(s, ξ)− Tfk(u,∇u) dx ≤ 1

|Q|

ˆ
Q∩{|u−s|+|∇u−ξ|>ρη}

Tfk(s, ξ)− Tfk(u,∇u) dx+
η

8

≤ 2p−1Tfk(s, ξ)

ρpη

 
Q

|u− s|p + |∇u− ξ|p dx+
η

8

≤ 2p−1Tfk(s, ξ)

ρpη
δ +

η

8

Hence, further refining δ if necessary, the above term is bounded by η/4, which together with (4.87)
concludes the proof. □

Next we use the above local construction to construct recovery sequences on general bounded, open
sets.

Proposition 4.12. Let U ⊂ Rd be open and bounded and let u ∈ W 1,p(U ;M). Then there exists a
sequence (uε)ε ⊂W 1,p(U ;M) such that uε → u in Lp(U ;Rm) and

lim sup
ε→0

Fε(ω)(uε, U) ≤
ˆ
U

Tf∞(u,∇u) dx.

Moreover, uε = u in a neighborhood of ∂U .

Proof. It suffices to construct for every k ∈ N and sequence (ukε)ε ⊂ W 1,p(U ;M) such that ukε = u in
a neighborhood of ∂U , ukε → u in Lp(U ;Rm) as ε→ 0 and

(4.88) lim sup
ε→0

Fε(ω)(u
k
ε , U) ≤

ˆ
U

Tfk(u,∇u) dx,

where Tfk is the integrand given by Proposition 4.8. Indeed, the claim then follows from Proposition 4.9
and the dominated convergence theorem (recall the bound 0 ≤ Tfk(s, ξ) ≤ c2(1+ |ξ|p)) combined with
a diagonal argument. Note that from now on k will be fixed, so we do not indicate when quantities
depend on k.

Step 1. Fix η ∈ (0, 1]. For all j ∈ N we will construct a sequence (ujε)ε ⊂W 1,p(U ;M) with ujε = u in
a neighborhood of ∂U and an open set Uj ⊂ U satisfying

|Uj | ≤2−j |U | and ujε ≡ u on Uj ,(4.89)

lim sup
ε→0

ˆ
U\Uj

f(ω, xε ,∇u
j
ε) dx ≤

ˆ
U\Uj

Tfk(u,∇u) + η dx,(4.90)

lim sup
ε→0

ˆ
U\Uj

|ujε − u|p dx ≤Cηp
ˆ
U\Uj

1 + |∇u|p dx,(4.91)

where C ∈ [1,+∞) is the constant in (4.75) (in particular it does not depend on η).
We construct ujε recursively. For j = 0, we set U0 = U and u0ε = u and the verification of (4.89)–(4.91)
is straightforward as U \ U0 = ∅.
Fix j ∈ N and assume that (ujε)ε ⊂ W 1,p(U ;M) with ujε = u in a neighborhood of ∂U and the open
set Uj ⊂ U satisfy (4.89)–(4.91). Let L ⊂ U be the set of Lebesgue points of u and ∇u3 and such
that u(x) ∈ M and ∇u(x) ∈ [Tu(x)M]d. For x ∈ L let δ(x) > 0 be given by Lemma 4.11 for the

choice s = u(x), ξ = ∇u(x) and η > 0. For defining uj+1
ε and the open set Uj+1 ⊂ U , we fix for any

x ∈ L ∩ Uj a length rj(x) ∈ (0, η) such that Qrj(x)(x) ⊂ Uj and for all 0 < r < rj(x) 
Qr(x)

|ujε − u(x)|p + |∇ujε −∇u(x)|p dy =

 
Qr(x)

|u− u(x)|p + |∇u−∇u(x)|p dy ≤ δ(x).

3Actually we need that limr→0

ffl
Qr(x)

|u−u(x)|p+ |∇u−∇u(x)|p dy = 0 for all x ∈ L, which is slightly stronger than

just x being a Lebesgue point of u and ∇u. Still this set of points has full measure as a consequence of [15, Corollary 1,

Ch. 1.7.1].
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Applying [16, Theorem 1.149 and Remark 1.151] to the family of closed cubes
{
Qrj (x) : x ∈ L ∩ Uj

}
and the Lebesgue measure we obtain a countable family of disjoint cubes {Qrℓ(xℓ)}ℓ∈N that covers Uj

up to a null set. Then we can pick finitely many cubes {Qrℓ(xℓ)}
Nj

ℓ=1 such that∣∣∣ Nj⋃
ℓ=1

Qrℓ(xℓ)
∣∣∣ ≥ 1

2
|Uj | .(4.92)

In each of these cubes we apply Lemma 4.11 to s = u(x), ξ = ∇u(x), the given η > 0 and the function
u ∈ W 1,p(Qrℓ(xℓ);M) to obtain the corresponding family zℓε ∈ W 1,p(Qrℓ(xℓ);M) with zℓε = u on
∂Qrℓ(xℓ) and such that

lim sup
ε→0

ˆ
Qrℓ

(xℓ)

f(ω, xε ,∇z
ℓ
ε) dx ≤

ˆ
Qrℓ

(xℓ)

Tfk(u,∇u) + η dx,(4.93)

lim sup
ε→0

ˆ
Qrℓ

(xℓ)

|u− zℓε|p ≤ Crpℓ

ˆ
Qrℓ

(xℓ)

1 + |∇u|p dx.(4.94)

We set

uj+1
ε :=

{
ujε on U \

⋃Nj

ℓ=1Qrℓ(xℓ),

zℓε on Qrℓ(xℓ), 1 ≤ ℓ ≤ Nj ,
and Uj+1 := Uj \

Nj⋃
ℓ=1

Qrℓ(xℓ).

In this way Uj+1 is open and uj+1
ε = ujε = u on Uj+1. Moreover, since Qrℓ(xℓ) ⊂ Uj , the property

ujε = u on Uj and zℓε = u on ∂Qrℓ(xℓ) imply that uj+1
ε ∈ W 1,p(U ;M). Finally, in order to pass from

ujε to u
j+1
ε we only modified the map on cubes that are compactly contained in U , so that by induction

also uj+1
ε in a neighborhood of ∂U . It thus only remains to show that the estimates in (4.89)–(4.91)

are satisfied. Thanks to (4.92) we have that

|Uj+1| ≤ |Uj | −
∣∣∣ Nj⋃
k=ℓ

Qrℓ(xℓ)
∣∣∣ ≤ 1

2
|Uj | ≤ 2−(j+1)|U |,

which is (4.89) for j + 1. Next, we establish the estimates (4.90) and (4.91) for j + 1. By definition

U \ Uj+1 = (U \ Uj) ∪
Nj⋃
ℓ=1

Qrℓ(xℓ)

and thus (4.90) applied for j and (4.93) yield

lim sup
ε→0

ˆ
U\Uj+1

f(ω, xε ,∇u
j+1
ε ) dx ≤ lim sup

ε→0

ˆ
U\Uj

f(ω, xε ,∇u
j
ε) dx+

Nj∑
ℓ=1

lim sup
ε→0

ˆ
Qrℓ

(xℓ)

f(ω, xε ,∇z
ℓ
ε) dx

≤
ˆ
U\Uj

Tfk(u,∇u) + η dx+

Nj∑
ℓ=1

ˆ
Qrℓ

(xℓ)

Tfk(u,∇u) + η dx

=

ˆ
U\Uj+1

Tfk(u,∇u) + η dx.

This yields (4.90) for j + 1. Similarly, using (4.91) for j and (4.94) we infer that

lim sup
ε→0

ˆ
U\Uj+1

|uj+1
ε − u|p dx ≤ lim sup

ε→0

ˆ
U\Uj

|ujε − u|p dx+

Nj∑
ℓ=1

lim sup
ε→0

ˆ
Qrℓ

(xℓ)

|zℓε − u|p dx

≤Cηp
ˆ
U\Uj

1 + |∇u|p dx+

Nj∑
ℓ=1

Crpℓ

ˆ
Qrℓ

(xℓ)

1 + |∇u|p dx

≤Cηp
ˆ
U\Uj+1

1 + |∇u|p dx,

where we used that rℓ(x) ∈ (0, η) in the last inequality. This concludes Step 1.
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Step 2. Conclusion. Appealing to Step 1, for η ∈ (0, 1] and every j ∈ N we find a sequence (ujε)ε ⊂
W 1,p(U ;M) such that ujε = u in a neighborhood of ∂U and an open set Uj ⊂ U satisfying (4.89),

lim sup
ε→0

ˆ
U

f(ω, xε ,∇u
j
ε) dx ≤ lim sup

ε→0

ˆ
U\Uj

f(ω, xε ,∇u
j
ε) dx+ lim sup

ε→0

ˆ
Uj

f(ω, xε ,∇u) dx

≤
ˆ
U\Uj

Tfk(u,∇u) + η dx+ c2

ˆ
Uj

1 + |∇u|p dx

and

lim sup
ε→0

ˆ
U

|ujε − u|p dx ≤Cηp
ˆ
U

1 + |∇u|p dx.

The above two limits in combination with |∇u|p ∈ L1(U) and (4.89) yield

lim sup
j→+∞

lim sup
ε→0

ˆ
U

f(ω, xε ,∇u
j
ε) dx ≤

ˆ
U

Tfk(u,∇u) + η dx,

lim sup
j→+∞

lim sup
ε→0

ˆ
U

|ujε − u|p dx ≤Cηp
ˆ
U

1 + |∇u|p dx,

and the claim (4.88) follows from the arbitrariness of η ∈ (0, 1] and a diagonal sequence argument.
Note that the latter still gives a sequence agreeing with u in a neighborhood of ∂U . □

4.4. Convergence of boundary-value problems. We directly start with the proof of the conver-
gence result including Dirichlet boundary conditions.

Proof of Theorem 3.2. We start with the coercivity property. Whenever a family of maps uε satisfies
supε∈(0,1) Fε(ω)(uε, D) < +∞, then the lower bound on f in (2.4) implies that ∇uε is bounded in

Lp(D;Rm×d). Together with Poincaré’s inequality (applied to uε − g) this implies that uε is bounded
in W 1,p(D;Rm), so that up to subsequences we have that uε ⇀ u in W 1,p(D;Rm). We may also
assume that uε → u pointwise a.e. in D. Since M is closed, this yields that u(x) ∈ M a.e. in D, so
that u ∈ W 1,p(D;M). The condition u = g on ∂D is satisfied by the weak continuity of the trace
operator.
The Γ-lim inf inequality follows from the corresponding one without boundary conditions in Proposition
4.10 since by the first part of the proof the boundary conditions are stable for sequences with equi-
bounded energy and these are the only ones to consider for the lower bound.
Finally, the existence of recovery sequences for u ∈ W 1,p(D;M) such that u = g on ∂D is a direct
consequence of Proposition 4.12 that provides recovery sequences uε such that uε = u in a neighborhood
of ∂D, so that in particular uε = g on ∂D. □
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