ON THE REGULARITY OF THE SOLUTION AND THE FREE BOUNDARY IN
A WEIGHTED p—LAPLACIAN PROBLEM

SAMER DWEIK

ABSTRACT. In this paper, we study the regularity of the minimizer in the Alt-Caffarelli type minimum
problem for the “weighted” p—Laplace operator (1 < p < co) with free boundary:

min{/(w|Vu|p+z[)X{u>0}) cueWHP(Q), u>0, u=g on BQ},
Q

where w and v are two given nonnegative functions on €2 and g is a nonnegative boundary datum.
More precisely, under the assumptions that w is a C2 function with w > wmin > 0 and % belongs to

L?OC(Q) for some q > %, we will show that a minimizer u is locally a—Hélderian with o =1 — %.
If ¢ belongs to LS () and is bounded away from zero then, thanks to the Lipschitz regularity of u,

we will be able also to prove that the free boundary 0{u > 0} is locally of finite perimeter.

1. INTRODUCTION

Given a bounded Lipschitz domain Q € RY and two functions w, v : Q — RT, we study the problem
of minimizing the energy functional

e / W|Vul? + 4 X puso)
Q

among all functions u € W1P(Q) with boundary condition u = g on 9, where xa denotes the
characteristic function of set A. It is not difficult to see that any minimizer u solves the following
p—Laplace equation:

Apu=0 in {u>0}
where Apu ==V - [[Vu[P~2Vu]. This problem is referred to as Bernoulli-type free boundary problem
and is well studied in the literature. The case p = 2 has been studied first by H. W. Alt and L. A.
Caffarelli in [1] and later, for any 1 < p < oo in [3].

In this paper, we are interested in studying the Holder regularity of a minimizer u as well as the
regularity of the free boundary I' = 9{u > 0} N 2. The main difference in [3] from what was done in
[1, 2] (where the authors consider the Laplacian case p = 2) is that the p—Laplacian (for p # 2) is not
uniformly elliptic (degenerate for p > 2 and singular for 1 < p < 2). On the other side, the authors
of [3] consider Problem (2.1) but in the case when w = 1 and ¢ is also constant. The presence of
non-uniform functions w and 1 in (2.1) makes the problem somehow more complicated. In [3, 1], the
Lipschitz regularity of a minimizer u has been proven. Now, suppose that v is not constant or even
unbounded, what kind of regularity can we prove on the minimizer u? Can we still prove Lipschitz
(or perhaps Holder) regularity? Do we also need some regularity assumption on the weight w? The
answers to these questions do not seem trivial and this is what motivated us to study the problem
(2.1) in a much more general setting and to write this article. To be more precise, we will show that
the regularity of a minimizer u is related to the L?—summability of 1) as well as the regularity of the
weight w. More precisely, we will show as soon as w is of class C? and bounded away from zero that
the following statements hold:

N
e Ll () =ueCh9), a=1- - >0,
1
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¥ € LS. (Q) = u € Lip;,.(Q).

loc

In addition, for any compact set K C ' CC €, there is a constant C' depending on p, N, ming w,
||1/)||Lq(9/), \|w||Loo(Q/), ||V”UJ||L<X>(Q/), ||D2w||Loc(Q/), ||u||L(x>(Q/) and dlSt(K, GQ’) SUCh that

||U||CD'17%(K) < C.

We note that in [3, Section 3] the proof of Lipschitz regularity of u (in the case where 1 is constant)
is much complicated. First, the authors show a—Hdlder regularity on u for some 0 < o < 1 sufficiently
small (depensing on p and N). Then, they prove in [3, Lemma 3.2] a uniform bound on the minimizers
near to their free boundaries. In this way, they obtain uniform (in u) Lipschitz estimates on the
minimizers u. However, it seems that there is a gap in their proof since all what they can show is that
if zg is a “common” point on the free boundaries of a family of minimizers u, then in a neighborhood of
xo these minimizers u are uniformly bounded. Anyway, we are not interested here in proving uniform
(in u) Lipschitz estimates on the minimizers.

In the case when ¢ € L2 () and ¥ > ¢min > 0, we will show that the free boundary has zero
Lebesgue measure. Moreover, the characteristic function x 1,0y belongs to BVi,.(€2). This means that
the free boundary d{w > 0} has locally a finite perimeter. The proofs of these results are based on a
nondegeneracy property (see [2, Section 2]). Roughly speaking, there is a uniform constant ¢ > 0 such
that the following statement holds:

If |lullpe(p,) <cr then u=0 on Br.

In [3, Theorem 4.4], the authors extend the proof of [1, Lemma 3.7] to the case p # 2. However, there
also the proof seems to be not complete. In fact, the authors in [3] show that there exists a constant
¢ > 0 such that for any point z on the free boundary we have

. LN (B(z,r) N {u > 0})
- LN(B(x, 7))

<l-ec

Yet, according to their proof, it is not clear why this constant ¢ can be taken uniform in z. We note
that the approach used in [1] is different and based on some estimates on u — v where v is the harmonic
replacement of u. In Section 2 below, we will also use this argument (the comparison with the weighted
p—Laplacian replacement of u) to prove our Holder regularity result on the minimizers.

To our knowledge, the dependence of the Holder regularity of the minimizer v on the L? summability
of the density ¥ as well as the regularity of the free boundary in our “weighted” p—Laplace version
of the Alt-Caffarelli minimum problem seems to be new in the literature and it has not been written
anywhere.

The paper is organized as follows. In Section 2, we show existence of a minimizer v to Problem

(2.1). Moreover, we study the a—Holder regularity of u. Section 3 is devoted to prove that the free
boundary has zero Lebesgue measure and that it has locally a finite perimeter.

2. EXISTENCE AND HOLDER REGULARITY OF MINIMIZERS

Let w and 1 be two nonnegative functions over an open bounded Lipschitz domain Q ¢ RY and ¢
be a nonnegative function on 9f2. Then, we consider the following minimization problem:

(2.1) min{/(w|Vu|p + ¥ X{us0y) : wE WHP(Q), u=g on GQ}.
)
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It is clear that we can restrict (2.1) to the set of nonnegative functions w since if u™ := max{u,0} then
we have u™ = g on 90 and

[ulvat s [ 6xeso < [0V + [ oxgo.
Q Q Q Q

Throughout this paper, we assume that w € L>(Q), 1 € L*(Q) and there is a function g € W1?(Q)
such that § = g on 99 (so, we have inf (2.1) < 00). First of all, we start by the following result that
guarantees the existence of a minimizer for Problem (2.1).

Proposition 2.1. Assume w > wyin > 0. Then, there exists a minimizer u for Problem (2.1). In
addition, every minimizer u is weighted p—subharmonic in the sense that

/ w |VulP~2Vu - Vi <0, for all p € C§°(Q) with ¢ > 0.
Q

If u is continuous, then w is also weighted p—harmonic inside the positivety set {u > 0}, i.e. for any
function ¢ € C§°(?) such that spt(p) C {u > 0}, we have

/ w |VuP~2Vu - Vi = 0.
Q

Proof. Let {u,}, be a minimizing sequence in Problem (2.1). Then, there is a uniform constant C' < co
such that for all n € N, we have

/Q (V[P + 9 xgu,20) < C.

Since w > wpyin, and ¥ > 0, then one has

C
/ [Vu, [P < .
Q Wmin

But, u, = g on 9). So, this implies that u,, — g € Wol’p(Q); we recall that g is a WP —extension of g
to 2. By the Poincaré inequality, this yields that

[unllLr@) < lun = Gllze@) + 13llLr@) < ClIVun = VillLe@) + 13l r @) < C-
Hence, the sequence {uy,}, is bounded in W?(2) and so, up to a subsequence, u, — u weakly

in WLP(Q), for some function u € WHP(Q) with u = g on 9Q and v > 0. Thanks to the lower
semicontinuity of the LP—norm, one has

(2.2) /w|Vu|p < lim inf {/ qun|p}
Q " Q

On the other hand, u,, — w in LP(2) and so, u,(r) — u(x) at almost everywhere point x € 2. Hence,
if z € {u > 0} then for n large enough, u,(x) > 0 and so,

X{u>0}(2) = 1 = lim inf x ¢y, >0y ().
If z € {u = 0}, then we always have
X{u>0}(2) = 0 < lim inf x gy, >0y (7).

By Fatou’s Lemma, we get
(2.3) / Y X{us0} < / lim inf[) xfu, >03] < liminf [/ ¢X{un>0}:|-
Q Q n n Q

Combining (2.2) & (2.3), we get

Q Q n Q Q
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This implies that v minimizes Problem (2.1).

Fix ¢ € C§°(Q) with ¢ > 0. Hence, u — ep € WHP(Q) with u — ep = g on 9Q and u — ep < u, for
all £ > 0. In particular, u — ey is admissible in Problem (2.1). From the minimality of «, we have

/w|VU\p+/¢X{u>o} S/w|VU—EV¢|p+/¢X{u7w>o} S/w|VU—EV<P|p+/¢X{u>o}-
Q Q Q Q Q Q
Therefore, we get

/w|Vu|p < / w|Vu —eVp|P, for all € > 0.

Q Q
Hence,

/ w|Vu|P~2Vu - Vo < 0.
Q

Finally, assume that u is continuous (we will show later that this assumption is always satisfied; see
Proposition 2.3). Let ¢ € C§°(2) be such that spt(¢) C {u > 0}. Since w is continuous, spt(yp) is
compact and v > 0 on spt(y), then we have {u+e¢ > 0} = {u > 0}, for any € > 0 small enough. Yet,
u+ep = g on Q. So again, by the minimality of u in Problem (2.1), we get that

/w|vu|p+/w>({u>0} S/wlvu'i_gv@‘p"_/wX{u+s<p>O}-
Q Q Q Q
Thus,
/w|Vu|p < / w|Vu +eVp|P, for all € > 0.
Q Q
This yields that
/w|Vu|p_2Vu-V<p >0. O
Q

For any ball B C 2, we will denote by v = vp the unique solution of the following weighted
p—Laplacian problem:

V: [w|Vu[P~2Ve] =0 in B
v=1u on 0B.

Notice that, by the comparison principle (see [4, Lemma 3.18]), u < v on B. In the sequel, we will
call this function v the weighted p—harmonic replacement of v in B. We recall that for any function
¢ € WLP(B) such that v = u on B, we have

(2.4) /Bw|w|pg/3w\v¢|p.

Our aim is to show that a minimizer v in Problem (2.1) is locally ae—Holderian, for some o > 0
that depends on NN, p and ¢. In order to prove this local Holder regularity on u, we need the following
crucial lemma that we use often in the rest of the paper.

Lemma 2.2. Assume ¢ € L} (), for some q > %. Let u be a minimizer of Problem (2.1) and v be

the weighted p—harmonic replacement of w in B C Q. Then, there is a universal constant C = C(p)
such that

S w[Vu = VolP < Cll4|| o | B {u =0} if p>2,

D

2

1
wa|Vu—Vv|p<C(wa+fB|Vu|p)> [||¢||Lq(3)|Bﬂ{u:0}|1_5]§ if 1<p<2.
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Proof. First of all, let us extend v to a function v on Q by setting
- v in B,
vV =
u on Q\B.

Clearly, v € WP(Q) with © = u on 9Q (so, ¥ is admissible in (2.1)). From the minimality of u in

Problem (2.1), we have
/U}WUV’JF/#)X{WO} S/w|V5|p+/¢X{ﬁ>o}-
Q Q Q Q

/w|Vu|p+/ w|VU\p+/ ¢X{u>o}+/ Y X {u>0}

B O\B B O\B

< / w|VU|p+/ w|VU\p+/ ¢X{v>o}+/ Y X {u>0}-
B O\B B O\B

/wIVUI”+/wX{u>0}S/ wIWI”+/wX{U>0}.
B B B B
Hence,

(2.5) /Bw[IVUIp— [Vol’] < /Bl/JX{v>o} —/Bl/JX{u>0} < /Bﬂ)X{u:O} < llza(m) | BN {u =0} 5.

Thus,

We infer that

Now, set
up = (1 — t)v + tu, for every 0 <t <1.
We have
1y 1
/w[|Vu|pf|Vv|p]:/ w[|Vu1|pf|Vuo|p]:/ w{/ d|Vut|p] :p/ /w\Vut|p*2Vut~[Vu7Vv].
B B B o dt o JB
Yet,

/ w|V|P~2Vu - [Vu — Vo] = 0 and Vug — Vo = t[Vu — V).
B
Then, we get that

1
(2.6) / w[|Vul|? — [V|?] :p/ t71/ w|Vug P2V, — |VolP~2Vo] - [Vuy — Vo).
B 0 B

From [6], we have the following inequalities:

la = B2(1+Jaf? + [o}2)"F* < SLrflaPP 20— P2 -fa—b] i 1<p<2,
la —bJP < 2P=2[|aP~2a — |[b|P~2b] - [a — b] if p>2.

Recalling (2.6), we get that

S wl|VulP — Vo] > p(p — 1) fol 1 [ w|Vug — Vo> (1 + [Vug|? + IVol2)’2, if 1<p<2,
[ wl|Vulp — |Vo[P] > p22-7 fol t! [z w|Vu, — Vo, if p>2.

Assume p > 2. Then,
1
/ w[|Vul? — |Vu|?] 2p227”/ tpfl/ w|Vu — V|l = 227”/ w|Vu — Vo|P.
B 0 B B
By (2.5), we infer that

/ W[V — FofP < 272l oy | B 1 {u = 0317
B
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Finally, assume 1 < p < 2. Then, we have

[l zas)|B N {u = 0}*"7 > /Bw[lvulp — |Vol?] > C(p)/Bw\vu — Vo2 (1 + [Vul? + |Vo]2) 5=

By Holder inequality, one has

2 1-
(/ w(1+|Vu|2+|Vv|2)g) )
B

2 1-
(/ w(l + |Vu|? + |W|2)‘z°>
B

< C) ¥l am|B 0 {u = 0} )% (/Bwu - Vul + wp))

(NS

/ w|Vu — VP < (/ w|Vu — Vo2 (1 + [Vul® + |Vv2)p22>
B B

Then, we get

WIS

[ wlvu-vup < [c@) [l B O {u = 0}|1—é]

(NS}

1

gc*(p)(/Bw/BquW))l 1l e | B 1 fu = 03415,

where the last inequality follows from (2.4). O

Since u > 0 is weighted p—subharmonic, then thanks to [4, Theorem 3.41], u is locally bounded. In
the next proposition, we show that u is locally a—Hdlderian.

Proposition 2.3. Assume w € C?(Q2) and ¢ € L} _(Q) with g > %. Let u be a minimizer in Problem
(2.1). For any open subset ' CC Q and a compact set K C ', there exists a constant C depending
on p, N, Wain, |[¥||Lay, [[w||Lee @y, [[Vw||pe (), ||D2w||Loo(Ql), l[u]|poe @y and, dist(K,0Q") such
that

||U||CO’17%(K) < C.

Proof. Fix x € K and 0 < 2r < R < dist(K,0) (so, we have B(z,r) C B(z, %) C B(z,R) C ).
Let v be the weighted p—harmonic replacement of v on B = B(x,r). Then, we clearly have

(2.7) (/ w|Vu|p)p < (/ wwwp)p + (/ wwv))p.
B(z,r) B(z,r) B(z,r)

But, thanks to Lemma 2.2, one has

(2.8)
P ’ » N-1y .
fB(z,r)w‘V’u’_vv| < C(p?N)HwHLq(B) re 7, if p > 2,
1 1 1
P P2 1
<f3<m,r>wvu_w|p> <C(p.N) <f3w+vaup) 11y O, if 1<p<2.

On the other hand, we have
(2.9) wVol? < [Jwlloe [B(@, ) VO] w (5.0
Blar) (B(z,r))

By [9, Theorem 1.1],

1+ /KR
IVl < €M) (Z Y ol 2
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where 0 < r < oo (depends on N, Win, ||[VW||pe(p(a,2)); ||D2w||L(X,(B(x7§))) is such that the Ricci
tensor Ric(w) of the Riemannian conformal metric (RY,w) satisfies Ric(w) > —(N — 1)x; it is well
known that the Ricci tensor in this case is given by (see, for instance, [8])

N-2 {DQw B 3Vw®Vw} 1 [Aw (N —4) |[Vw|?

2 2 ) 2

Ric(w) = 5

w 2 w w 2 w

Recalling (2.9), we get that

1+ ER\"
p N[ LV P
(2.10) /B oy U <O M) eor ( R ) 1l (50,2

Since uw = v on 9B, then thanks to the comparison principle [4, Lemma 3.18], we have the following
estimate:

VIl Lo (B2, 2)) < lullLoe(B(z,R))-

For 0 < § < 1, set Rs = r'=9. Now, choose 7 > 0 small enough so that 2r < Rs < dist(K,d). This

yields that
1-6\ P
w|Vol|P < O M ||| n < OpN—Ptop,
B(z,r) r1=9 Lo (B(z,+))

Assume p > 2. Then, by (2.7) & (2.8), we get

1 1
(/ V“|p> e </ w|V“|p> TV p oy < o0
B(z,r) riin B(z,r)

w

assoonas d > 1— p—l\g > 0. Thanks to Morrey’s Lemma, we conclude that u € 00’17%(1(). Moreover,
we have

||u||Co,17pﬂ < C(py N, Wanin, [[¥]| o) [[wllc2 0y [|ul| oo (), dist (K, 0)).

7(K)

Finally, assume that 1 < p < 2. So, by (2.8), we recall that

1-£ ) 2
[uivu-vor<c(isi+ [ wur) (o)
Q2 B

1—
< orNi=2) +C7"N2p(1_2)(/ Vu|p> .
B

(NS}

Hence,

1_1
(/ WIVUI”>p < Crv(-4) +Cr§<1é)(/ |Vu|1’)p Cpopyis
B(a,r) .

1_1
<otz C 1T¥<l—;>< / wwp)‘“ g
B B

w.

1
2
min
Using Young’s inequality, we get

1
(/ wIVuV”)p < Crv9),
B(z,r)
Consequently, u is locally a—Holder in Q2 with o = 1 — ]]g\g . In addition, we also have the following

estimate:
ul|co.o k) < C(p, Ny wWinin, |9 Loy, w200y, [|ul] Lo vy, dist (K, 09')).
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3. REGULARITY OF THE FREE BOUNDARY

In this section, we prove under the assumptions ¢ = co and ¥ > ¥nin > 0 that the free boundary
O{u > 0} of any minimizer v in Problem (2.1) has locally a finite perimeter. First, we start by the
following nondegeneracy result:

Lemma 3.1. Assume ¥ > tyn > 0. For any k € (0, %), there exists a constant ¢ > 0 depending only

on p, N, Wmin, Ymin, [|[¥]r< @) and [|w||c2qr) such that the following statement holds
[ull oo (B,) < cr implies that u=0 in By,

for any ball B, C ' ccC Q.

Proof. Fix &' € (k,1). Let ¢ be the weighted p—harmonic function in B,/ With ¢ = 1 on 0B/,
and ¢ = 0 on dB,,. From [5, 7], this function ¢ is of class C*# on B\ - Let us extend ¢ by zero in
By-. Moreover, one has 0 < ¢ < 1.

Set m = ||ul|r~(B,,, ). Then, we define ® = min{u, m¢}. Since m¢ =m > u on OBy, then & = u
on OBy,-. Moreover, ® = 0 in By,.. Thanks to the minimality of u in Problem (2.1), we have

[ @lVap s oxgeo) < [ @lVOr s ux@o) = [ @lVEP+ vxieso)
Byry K'r By \Brr
Hence,

/ (W Vul? + dxqusoy) + / (W Vul? + $xusoy) < / WV + bxios0p).
Bir Byry\Bier Byry\Bier

But, {® > 0} C {u > 0}. Then, we get that

[, @) < [ @Iver- o o) < [ wlver-vur)
kr k' r KT

k'r KT

Since the map £ — [¢|P is convex, one has
|VulP — VB[P > p|VOP2VE - [Vu — V).
Hence,

/ (w|Vul? + ¥xqusoy) < p/ w|VO[P2VP - [VO — V]
Bkr

K/ r \Brr

= pmP~? / w|Vo|P~2Ve - [V — V]
By, \Bur

—— / V- [w|Ve[P-2Vel[® — u] + pmP-! / w|VOP-2V6 - n[d — ]
By \Bir 8B,

:pmpfl/ [® — u]w|Vo[P~2Ve - n
OBy

<pm Vol fulle [

OBy
By [9, Theorem 1.1], we have
C

r

V| <
Therefore, we get

min{wminawmin}<‘/B |vu‘p + |{U > O}|> S wmin/

Byr

IV ul? + minl (> 0} < /B (W Vul X o)
kr
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Thanks to the W! trace inequality, we have

/ u§C</ u+/ |Vu|>
8er By Byr
p—1
/ Vul? + [{u> 0} < C (/ u+/ |Vu|>.
Bjr r By Br

p—1 b1 %
/B Val” + [{u> 0} < O <|{u>0}|+|{u>0}|p</B |Vu|p) )

mP~1
<™ (/ Val? + | {u > 0}|).
B

KT

{1 _c Zfﬂ (/B IVl + [{u> 0}|) <0

which implies that v = 0 on B, as soon as

Hence,

This implies

Hence,

O

Proposition 3.2. For K C ' CC €, there is a constant ¢ € (0,1) (depending on p, N, Wmin, Ymin,
]|z ), lwllezny, l|ullLe (@ and, dist(K,08)")) such that for every xo € KNO{u >0} andr >0
with B(zg,7) C K, we have

£V (Blro,) 0 {u > 0))

ST VB o

Proof. Again thanks to Lemma 3.1, we see that there exist a constant ¢ > 0 and a point x € B(xo, §)
such that u(z) > c§. Yet, we claim that there is a uniform constant § € (0,1) such that B(xz,dr) C
B(zo,7) N {u > 0}. Indeed, if y € B(x, dr) then one has

1
|y—$0‘ < |y—1‘|+‘x—xo| < (2+5>T<T.
Thanks to the Lipschitz regularity of u, we also have
u(y) = u(z) = Cly — x| > (; - Cé)r >0

C
as soon as § < 55. Hence, we get

LN (B(zo,7) N {u > 0}) S LN(B(z, or
LYN(B(zo, 7)) ~ LY(B(zo, 7))

For the upper bound: assume that there is a sequence of points x¢,, in K Nd{u > 0} and r, > 0 with
B(zon,rn) C K such that
‘CN(B(QUO,m rn) N {u=0})

LN (B(zom ) -0

1
<=
n

Up to a subsequence, zg, — 9 € K Nd{u > 0} and r, — ro. Assume ro > 0. Let v, be the
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weighted p—harmonic replacement of « in B,, := B(%g,,7,). For all n large enough, it is clear that
B := B(xg, ) C B(xo,n, 3*). Thanks to Lemma 2.2, we have

S w|Vu = Vu, [P < Ol Lo () [ Bn N {u = 0}] if p>2,
1-%
waVu—Vv,Lp§C<|Bn|+an wvu|p> [H¢||Loo(g)\Bnﬂ{u:0}|]§ if 1<p<2

Hence,

/ w|Vu — Vo, [P — 0.
B

Yet, v, — v uniformly in B. In particular, we must have u = v 4+ C. But, v is weighted p—harmonic
in B and so, u is also weighted p—harmonic there. However, we have u(zg) = 0. By the maximum
principle, we infer that w = 0 in B. Yet, by Lemma 3.1, there is a constant ¢ > 0 such that

l|ul|L=(B) > ¢,
which is a contradiction.

_ u(Zo,ntTn)
Tn

Finally, assume that ro = 0. For every n, we define u, (x) for all x € B;. It is not

difficult to check that w,, minimizes
i { [ @lTuP s s w € WB), w0, u=u, on ‘931},
B

where
wp(z) = w(zon + rnx) and Yn(x) = Y(Tom + rn).

Now, let v,, be the weighted p—harmonic replacement of u,, in B;. Again, by Lemma 2.2, one has the
following:
[, walVun — Vo |P < O[] @) [Br N {un = 0} ’ if p>2,

P

1
S5, wn|Vuy = Vo, [P < C’<|31 + /5, wn|Vunp> Y]] oo ()| B1 N {un = 0}]2 if 1<p<2

But, w, > w(fo) > 0 on B; for n large enough. Moreover, we have

ﬁN(B(a:om7 rn) N{u = 0})
‘CN(B(CEO,TL» Tn))

LY(By N {u, =0}) = LN(By) — 0.

Thus,
/ |[Vu, — Vo, — 0.
B

We note that since w is Lipschitz, then u,, are clearly uniformly Lipschitz. In addition, one has
0 <u, <C for all n since

w(Ton + rnx) = u(Ton + rnx) —u(ron) < Cry.

So, up to a subsequence, u,, — u* and v, — v uniformly in B;. And, we have u* = v + C. However,
v is weighted p—harmonic in B;. Hence, u* is weighted p—harmonic. But, we have u*(0) = 0 (since
u,(0) = 0 for every n). Thanks again to the maximum principle, we get that u* = 0 in B;. From
Lemma 3.1, we know that there is a uniform constant ¢ > 0 such that

[l oo (B(20.n,rn)) = CTn-
Then,

HunHLO"(Bl) > c.

But, this yields again to a contradiction. O
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In particular, we obtain the following:

Theorem 3.3. The free boundary has zero Lebesgue meausre.
Proof. This follows from Proposition 3.2 as well as the Lebesgue density theorem. O

Now, let us define the measure A as follows:

/ pdA = —/ w|VuP~2Vu - Ve, for all p € C5°(Q).
Q Q

Since u is p—subharmonic, then A is a nonnegative Borel measure. Moreover, u is p—harmonic in the
positivety set {u > 0} and so, for every smooth function ¢ such that spt(¢) C {u > 0} we have

/<pdA:O.
Q

Therefore, spt(A) C 0{u > 0}.

Proposition 3.4. For any compact set K C ' CC Q, there exist two constants 0 < ¢ < C < o0
(depending on p, N, Wmin, Ymin, [|[¥||L@r), llwllc2ry, |ullpey and, dist(K,0Q')) such that for
every xg € K Nd{u > 0}, we have

erN L < A(B(zg,7)) < CrN 1, for all 0 <r <d(xg,0K).

Proof. Fix 6 > 0. Let 0 < @5 € C§°(B(zo,7 + 9)) be a cutoff function such that @5 = 1 on B(xg,r)
and |Vp| < %. Then, we have

_ 4 C
A(B(zo,7)) < / s dA = _/ w|VulP2Vu - Vs < ||w]|oo||Vul 55" < |B(wo, 7 + §)\B(wo, )],
Q Q
for any > 0. Letting 6 — 07, we get

A(B(xg,7)) < CrN 7L,

Let us prove the lower estimate. Assume that there is a sequence of points zg , in K N d{u > 0} and
0 <71y < d(zon, 0K) such that

Up to a subsequence, xo, — 2o and 7, — 9. Assume ro > 0. For every ¢ € C§°(B(xo, %)), we have
—/ w|VulP?*Vu - Vo = / wdA < ||o|lecA(B(zomn,rn)) — 0.
Q B(ﬂfo,nﬂ“n)
Substituting ¢ with —¢, we get
—/ w|VuP~2Vu - Vo = 0.
Q

Hence, u is weighted p—harmonic inside B(xo, %). But, we have u(x¢) = lim, u(zo,,) = 0. By the
maximum principle, this implies that u = 0 on B(xg, ). However, by Lemma 3.1, there is a constant
¢ > 0 such that

[[l| oo (B(2o, 70 )) = €
Yet, this is a contradiction.

Finally, assume that ro = 0. For every n, set u, () = w for all x € By. Then, we define

/ pdA, = 7/ wn|Vun|p72Vun -V, for all p € C5°(By),
Bl Bl
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where
wp(x) = w(zo,n + THT).

Fix p € C§°(B1). We have

By
1

N
Tn

/ pdA, = — w(xo,n + rax)|Vu(zon + rnm)|p_2Vu(xo7n +rpx) - Vo(x) de
By

/ w(2)|Vu(z) P2 Vu(z) - V@(W) dz
B(Qfﬂ,nﬂ"n)

Tn

1
Tt /3( ) w(2)[Vu(2)[P~*Vu(z) - Vi (2) dz
T0,nsTn

Tn
1
= [ pndA
ot /Q@

on(z) = @(Z_T:O’")

Yet, we see that u,, is uniformly bounded and Lipschitz continuous on B;. Hence, up to a subsequence,
U, — u* uniformly in By. On the other hand, one has w,|Vu,|P~2Vu, —* h in L>(B;). We claim
that h = w(xo)|Vu*[P~2Vu*. If this is the case, so we get that for every ¢ € C§°(By),

f/ w(wo)|Vu*[P2Vu* - Vi
B1

where

A(B
= lim —/ Wy |Vt P2V, - Vo = lim / pdA, < ||@llocAn(B1) < CW — 0.
n—r oo Q n—oo Bl /r‘n
Hence, u* is weighted p—harmonic inside B;y. But, we have v*(0) = lim,, u,,(0) = 0. By the maximum
principle, this implies that v* = 0 in B;. However, by Lemma 3.1, there is a constant ¢ > 0 (uniform
in n) such that
lunllLoe(my) 2 c.
Passing to the limit when n — oo, we get

||U*‘|L°°(Bl) Z c > 0,

which is a contradiction.

It remains to prove the claim. Fix & € By. First, assume that v*(x) > 0. Let ' > 0 be sufficiently
small so that B(x,r’) C {u* > 0}. Since u,, — u* uniformly in By, then for n large enough we must have
B(xz,r") C {u, > 0} and so, u,, is weighted p—harmonic in B(x,r"). Hence, thanks to [7, Theorem 13.1],
uy, is bounded in CY*(B(z,r’)). Then, up to a subsequence, wy,|Vu,[P~2Vu, — w(xg)|Vu*[P~2Vu*
uniformly and so, h = w|Vu*[P~2Vu* on B(x,r’). Now, assume that there is a small ' > 0 such that
B(z,r") C {u* = 0}. Thanks to Lemma 3.1, for n large enough, u, = 0 on B(z, %) In particular, we
get that h = w(xo)|Vu*|P~2Vu* =0 in B(z, %)

To conclude the proof, we just need to check that LY (0{u* > 0}) = 0. Fix x € d{u* > 0}. Hence,
it is not difficult to see that there is a constant ¢ > 0 such that for every r > 0 small one has for n
large enough

|tnllLoe (B(,ry) = CT

Passing to the limit when n — oo, we infer that

[[w*[| Lo (B(z,r)) = T

In particular, there exists a point * € B(z,r) such that u*(z*) > cr. Moreover, thanks to the Lipschitz
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regularity of u*, it is easy to check that B(x*,dr) C B(z,2r) N {u* > 0}, for 6 € (0,1) small. Hence,
we get
LN(B(z,2r) N {u* > 0}) < LN(B(x*,6r))
LN(B(z,2r)) — LN(B(z,2r))

O

Finally, we arrive to the following regularity result on the free boundary; 9{u > 0} is locally of finite
perimeter:
“X{u>0} c BVioc(Q)”'

Theorem 3.5. Let u be a minimizer for Problem (2.1). For any compact set K C §, we have
HN1(0{u >0} NK) < cc.

Proof. Thanks to Proposition 3.4, we infer that
cHN L {o{u > 0} N K}) < AK) < CHN({o{u > 0} N K}).

Yet, A(K) < co. Hence,
HN L {0{u>0}NK}) <oo. O

e Open Questions: What kind of regularity can be proved on the free boundary in the
case when the density v is not bounded? Can we show that the free boundary has a
finite “fractional” perimeter? Assume ¢ is more regular (say Hélder), can we improve
the regularity of the free boundary?
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