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Abstract

We study a dynamic optimal transport type problem on a domain that consists of two parts:
a compact set Ω ⊂ Rd (bulk) and a non-intersecting and sufficiently regular curve Γ ⊂ Ω. On
each of them, a Benamou-Brenier type dynamic optimal transport problem is considered, yet with
an additional mechanism that allows the exchange (at a cost) of mass between bulk and curve.
In the respective actions, we also allow for non-linear mobilities. We first ensure the existence of
minimizers by relying on the direct method of calculus of variations and we study the asymptotic
properties of the minimizers under changes in the parameters regulating the dynamics in Ω and
Γ. Then, we study the case when the curve Γ is also allowed to change, being the main interest
in this paper. To this end, the Tangent-Point energy is added to the action functional in order to
preserve the regularity properties of the curve and prevent self-intersections. Also in this case, by
relying on suitable compactness estimates both for the time-dependent measures and the curve Γ,
the existence of optimizers is shown. We extend these analytical findings by numerical simulations
based on a primal-dual approach that illustrate the behaviour of geodesics, for fixed and varying
curves.

1 Introduction

Originally formulated by Monge in the 18th century and later refined by Kantorovich in the 20th
century, Optimal Transport offers a mathematical framework for comparing and transforming proba-
bility distributions by minimizing the cost of moving mass from one distribution to another. Given a
compact set Ω ⊂ Rd and two probability measures µ ∈ P (Ω) and ν ∈ P (Ω) and choosing the Euclidean
distance as the cost function results in the 2-Wasserstein distance defined as

W 2
2 (µ, ν) =

√
inf

π∈Π(µ,ν)

∫
|x− y|2dπ(x, y) (1)

where Π(µ, ν) is the set of transport plans, that are all probability measures in the product space
Ω×Ω having µ and ν as marginals. While the 2-Wasserstein distance focuses on static settings, many
real-world problems require transport models that evolve over time. This need has motivated the study
of dynamic optimal transport introduced in the pioneering work by Benamou and Brenier [BB00]. In
this work it has been shown that the 2-Wasserstein distance admits a reformulation as the following
dynamical fluid-mechanics problem

W2(µ, ν) = inf
(ρt,Jt)

∫ 1

0

∫
Ω

∣∣∣∣dJtdρt

∣∣∣∣2 dρtdt (2)

where the pair (ρt, Jt) satisfies the continuity equation

∂tρt + div(Jt) = 0 (3)
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in the distributional sense, with ρ0 = µ and ρ1 = ν. Such dynamic formulation of the Wasser-
stein distance has proven useful in a great variety of contexts and it is a fundamental ingredient
to develop a gradient flow theory in Wasserstein spaces [Ott01, JKO98, AGS08]. Successful ex-
amples of applications are consequences of the usefulness of an optimal transport prior in under-
standing dynamics and includes among others applications to crowd modelling and traffic congestion
[MRCS10, CJS08, SDG24], dynamic inverse problems [SSW19, BF20, BCFR23, DBJ+10], optimal con-
trol models and algorithms in machine learning [OFLR21]. Moreover, variants of the Benamou-Brenier
approach have been explored to include more general action functionals [DNS08, LM10, CLSS10a], dis-
sipations [CPSV18, LMS18, KMV16] and non-local interactions [SW23].

In this paper, we contribute to the above mentioned theory by studying a dynamic optimal transport
type problem where mass can be transported both in a bulk domain Ω as well as on a curve Γ ⊂ Ω,
which has co-dimension of at least one. In our model the mass between the bulk and the curve can
be exchanged, while the total mass in the system remains a conserved quantity. The cost of transport
is measured by means of an action functional that includes the kinetic energy of the time-dependent
distribution in the bulk and on the curve, respectively, as well as the additional cost due to exchange of
mass between bulk and curve. From an intuitive standpoint our mathematical framework models the
optimal evolution of a population (for instance metropolitan traffic) when there exists a path (such as
a highway) where the transport is faster (or cheaper), but it requires a cost to access the path. This
could model highways where, due to a high traffic concentration at the toll booths, the access to the
highway requires a non-negligible time investment. In our analysis we first consider the preferential
curve Γ to be fixed, where the goal is to find the optimal evolution of the population given initial
and final configurations. This setting is strongly related to previous works that coupled transport in a
domain with transport on its boundary, [Mon21] as well as recent approaches to transport on metric
graphs, [EFMM22, BHP23]. In a second step, we extend the formalism by allowing the curve to vary,
making its shape part of the optimization problem. Such problems can be seen in the context of
optimal planning, where the preferential path is optimized according to initial and final distributions
and under the prior assumption that the population is moving following an optimal transport dynamic.

We now describe the problem using the mathematical formalism we employ in the paper. We
consider Ω a compact, connected subset of Rd, Γ = γ([0, 1]) the image of a regular, non self-intersecting
curve of class C1([0, 1]; Ω). The distribution of mass on the bulk and in Γ is modelled via a pair of time-
dependent measures (ρt, µt), indexed by t ∈ [0, 1]. Here, ρt ∈M(Ω) represents the mass distributions
in the bulk while µt ∈M(Γ) denotes the distribution on the preferential path Γ. Since the total mass
will be conserved in our model, we assume a compatibility condition for initial and final distributions,
meaning that ρ0(Ω) + µ0(Γ) = 1 and ρ1(Ω) + µ1(Γ) = 1. In what follows, this will be denoted by
(ρ0, µ0) ∈ Padm(Γ) and (ρ1, µ1) ∈ Padm(Γ). To model the transportation of mass, we denote by
Jt and Vt the momentums associated to ρt and µt. Together, (ρt, µt, Jt, Vt) are assumed to satisfy
two continuity equations which are coupled in order to allow exchange between bulk and curve while
preserving the total mass:

∂ρt
∂t

+∇ · Jt = 0, on Ω,
∂µt

∂t
+∇Γ · Vt = ft on Γ, (4)

Jt · nΓ = ft in Γ.

We refer to Section 2.1 for a more rigorous definition of (4) given in a weak sense and also for a
generalization of (4) where an exchange mechanism that acts at the end points of Γ is added. We
already note that this formulation allows for mass being present on Γ and in Ω at the same spatial
location. All curves that satisfy the above for given initial and final data (ρ0, µ0) ∈ Padm(Γ) and
(ρ1, µ1) ∈ Padm(Γ) are denoted by CE(Γ).

Next we introduce an action functional which measures the time accumulated cost of transport in
bulk and curve, respectively, but also the cost of mass transfer. Inspired by the works [DNS08, LM10]
we employ mobilities mΩ and mΓ to regulate the dynamics on Ω and Γ. The action functional is then
defined as

AΓ(Jt, Vt, ρt, µt, ft) =

∫
Ω

|Jt|2

mΩ(ρt)
dλΩ + α1

∫
Γ

|Vt|2

mΓ(µt)
dλΓ + α2

∫
Γ

|ft|2

mΓ(µt)
dλΓ. (BB)

Here, λΩ, λΓ are reference measures, necessary as the mobility yields integrands that are no more
1-homogeneous. Note also that with a slight abuse of notation we have identified the measures
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γ(t) = t3 − t

(0, 0)
(1, 0)

Figure 1: Circle tangent to the image of γ(t) = t3 − t at t = 0 and passing through (t, γ(t)) for t = 1

Jt, Vt, ρt, µt, ft with their densities respect to the reference measures. We refer to Section 2.2 for
a rigorous definition. In addition α1, α2 > 0 are parameters that either control the cost of transport
on Ω and Γ, respectively (α1), or that of being transported onto or off from Γ (α2). For a fixed curve
Γ we thus consider the dynamic variational problem

inf
(Jt,Vt,ρt,µt,ft)∈CE(Γ)

∫ 1

0

AΓ(Jt, Vt, ρt, µt, ft)dt. (5)

In our analysis we prove that (5) admits a minimizer and study its asymptotic behaviour when α2 → 0
and α2 → +∞. In this first part of our work, our analysis follows closely the one carried out in
[Mon21], where the exchange of mass and different dynamics occur on the boundary of Ω. However,
due to the introduction of mobilities and since the preferential path can be located arbitrarily in Ω,
many arguments differ from [Mon21]. In particular, contrarily to [Mon21] where a duality approach
is used, we rely on the direct method of Calculus of Variations that allows to handle the usage of
mobilities.

In the second part of this work, we extend the problem by making the shape of Γ part of the
optimization problem. One of the main challenges of this approach is that, in order to define a
continuity equation on Γ, the curve γ needs to be regular and non self-intersecting. As a consequence,
our variational problem should have specific compactness properties that enforce the minimizing curve
γmin to be regular and non self-intersecting. To this end, we augment the action functional by adding
a regularization term R : C1([0, 1]; Ω)→ [0,∞] that includes the following terms. The first term is the
so called Tangent-Point energy [SvDM12] of the curve γ defined as

Ep
tp(γ) =

∫ 1

0

∫ 1

0

|γ′(s)||γ′(t)|
rγtp(γ(s), γ(t))p

dsdt (6)

where rγtp(x, y) denotes the radius of the smallest sphere tangent to x ∈ Γ and passing through
x, y ∈ Γ, see Figure 1. The Tangent-Point energy was originally defined for closed curves or knots
with the goal of characterizing their self-avoidance properties [SvDM12]. Following the same principle,
we apply the Tangent-Point energy to open curves, ensuring that limits of minimizing sequences of
the augmented variational problem are one dimensional embedded submanifolds in Ω with boundary
and thus parametrized by a non self-intersecting curve. We also show that such an energy has good
compactness properties. Indeed, by adapting the results from [Bla13] and [BR12] that hold for closed
curves, we show that, under arc-length parametrization, the uniform bound on Ep

tp implies a uniform

bound in W 2−1/p,p([0, 1]; Ω), compactly embedding in C1([0, 1]; Ω). Relying on such results we augment
the action functional by the additional regularization

R(γ) := 2−pEp
tp(γ)− log |γ(0)− γ(1)|+

∫ 1

0

|γ′(t)| dt. (7)

The functional R is a combination of the Tangent-Point energy and two additional terms. The second
one is added for technical reasons, since our model is defined for open curves allowing for normal
flows at the end points. Other modelling options, such as extending the problem to closed curves
would be possible. The third term is instead natural and necessary to avoid minimizing sequences of
curves with unbounded length. By augmenting the action functional (5) with the regularization R we
are able to prove, for p > 2, existence of an optimal curve γ and optimal time-dependent measures
(Jt, Vt, ρt, µt, ft) ∈ CE(Γ) that jointly minimize (5).

In the third part of the work, we develop a numerical scheme to compute both the time-dependent
measures (Jt, Vt, ρt, µt, ft) ∈ CE(Γ) as solution of (5) for a fixed curve γ as well as for an optimal curve
γ that is then part of the optimization problem. In particular, we rely on an augmented Lagrangian
formulation of the problem.
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Contributions

The main contributions of our work are the following:

• Provide a rigorous formulation of a set of coupled continuity equations for bulk-curve transport
on arbitrary, regular curves of co-dimension at least one.

• Establish existence of minimizers for the dynamic transport cost problems introduced above,
both for a fixed as well as for a varying curve.

• Study certain limits when cost parameters in the action tend to zero or infinity.

• Provide a numerical scheme based on the combination of a finite element discretization and a
primal-dual optimization algorithm and demonstrate its abilities via several examples.

1.1 Further related work

Dynamic optimal transport with mass exchange The basis for our formulation of the transport
problem is the dynamic formulation introduced by Benamou and Brenier in [BB00]. The extension
of this formalism in order to implement mass exchange became popular in the context of unbalanced
transport, [CPSV18, LMS18, KMV16]. There, an additional reaction term added to the continuity
equation allowed for a change of mass over time. Closer to our work is the approach of [Mon21],
which already included the coupling of a bulk domain with a lower-dimensional one, in this case the
boundary of the domain. In this work, the author includes an exchange mechanism of mass between
the two that is based on a non-homogeneous flux boundary condition in the bulk and a related reaction
term on the boundary. This idea was later applied to metric graphs with reservoirs that may carry
mass, [BHP23, FBP24]. Contrary to our approach, both [Mon21] and [BHP23] establish existence of
minimizers via convex duality instead of the direct method. The structure of gradient flows on metric
graphs with mass exchange at the vertices was recently explored in [HPS24].

Non-linear mobilities The first study of dynamic transport distances with non-linear mobilities
is due to [DNS08], where power-like concave mobilities were introduced. This was later extended
to mobilities with unbounded domains, [CLSS10a], as well as volume filling mobilities in [LM10].
Convexity properties along geodesics in the presence of mobilities have been analyzed in [CLSS10b].

Tangent point energies The problem of self-avoidance of closed curves is well known in knot theory
and several functionals preventing self-intersections have already been studied. Some standard choices
include Möbius energies introduced by O’Hara in [O’H92] or Ropelength defined as the ratio of length
over thickness of a curve [GM99]. However, these functionals are numerically difficult to handle and
only few schemes have been investigated, e.g. [Wal16] in the context of shape optimization. They either
contain the evaluation of several suprema (in the case of Ropelength) or they need geodesic distances
and allow for almost intersecting curves (in the case of the Möbius energies). Therefore, finding
energies ”in between” is of interest. In [GM99], the authors proposed a new family of functionals
called Tangent-Point energies. They can be represented using an integral formulation without the
evaluation of geodesic distances. Moreover, no supremum is needed in the definition making it a good
candidate for numerical applications.

In recent years there has been interest in the analytical properties of Tangent-Point energies, see
[SvDM12] and [Bla13], [BR12]. It turns out that curves with finite Tangent-Point energy gain C1,α-
regularity for α ∈ (0, 1) and their images define embedded one dimensional submanifolds.

Numerical algorithms There exists a plephora of algorithms that is based on the dynamic for-
mulation of optimal transport, notably even the main focus of the original work by Benamou and
Brenier [BB00] was the design of an augmented Lagrangian (ALG) approach that allows to enforce
the continuity equation constraint. More recently, the ALG approach has been adopted to finite vol-
umes in [CGT20]. More relevant for this work are proximal splitting algorithms which were used in
[PPO14], combined with staggered grid discretizations to enforce the continuity equation constraints.
For our work, we extend the algorithm introduced in [BB00] to the bulk-curve setting using a finite
element discretization of space-time domains introduced in [FLOL23]. Finally, we mention a related
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approach due to [CCWW22] which employs piecewise constant approximations and proximal splitting
algorithms to discretize the JKO scheme. However, in [CCWW22], the continuity equation constraints
are enforced only in a relaxed sense. The resulting formulation then involves the minimization of a
sum of three convex functionals, which is done by the algorithm developed in [Yan18].

As for the numerical treatment of the tangent point energy, [BRR18] and [BR18] introduced a
scheme treating it as a penalty term when minimizing the elastic bending energy of a curve. In
[YSC21] a gradient descent method using Sobolev-Slobodeckij inner products has been proposed and
applied to different problems like curve packing or graph drawing to avoid self-collision. Due to
the presence of additional curve-dependent terms in the minimization, we employ a gradient descent
method, numerically approximating the gradient by finite differences.

1.2 Notation

Given Ω a compact subset of Rd and Γ = γ([0, 1]) the image of a non self-intersecting curve of class
C1([0, 1]; Ω) contained in Ω we define

XΩ = [0, 1]× Ω, XΓ = [0, 1]× Γ.

We will consider time-dependent families of measures on Ω and Γ together with their momentums. In
particular, we summarize here the different objects relevant in our analysis:

i) ρt ∈M(Ω) measures the flow of observables moving in Ω and Jt ∈M(Ω,Rd) its momentum.

ii) µt ∈ M(Γ) measures the flow of observables moving in Γ (with a different dynamic) and Vt ∈
M(Ω, TpΓ) its momentum.

iii) ft ∈M(Γ) measures the normal exchange rate of mass between Ω and Γ.

iv) G0
t ∈ M({γ(0)}, Tγ(0)Γ) and G1

t ∈ M({γ(1)}, Tγ(1)Γ) measure the tangential exchange of mass
between Ω and Γ at the boundary of Γ.

We remark that in the previous definitions TpΓ denotes the tangent space of Γ at the point p ∈ Γ. We
represent any measure V ∈M(Γ, TpΓ) as

V = τΓ(p)V

where τΓ(p) is the tangent vector to Γ in p ∈ Γ and V ∈ M(Γ,R). Additionally, we represent any
measure Gi ∈M({γ(i)}, Tγ(i)Γ) as

Gi = τΓ(γ(i))Gi

where Gi ∈M({γ(i)},R) for i = 0, 1.

Remark 1.1. Even if it holds that Gi = ciδγ(i) and therefore we could identify it with the scalar ci ∈ R,
we will prefer to keep the notation Gi ∈ M({γ(i)},R), since we believe that it helps better identifying
the physical meaning of the quantities.

We also need extensions of measures defined in the following way.

Definition 1.2 (Extension of measures). For N ∈ N and given µ ∈ M(Γ,RN ) we define its zero
extension to Ω, denoted by µ̄ ∈M(Ω,RN ) as

µ̄(φ) =

∫
Γ

φ
∣∣
Γ
dµ

for every φ ∈ C(Ω). Moreover, given V ∈ M(Γ, TpΓ) we define its zero extension (in Ω and in the
normal direction) V̄ ∈M(Ω,Rd) as V̄ = τΓ(p)V̄.

Given an Euclidean space A, we denote by M[0,1](A) a Borel family of measures in M(A) indexed

by t ∈ [0, 1] (and M[0,1](A,Rd) for the vector-valued case). This allows us to define the space of
admissible tuples (Jt, Vt, ρt, µt, ft, G

0
t , G

1
t ) as

Dadm(Γ) = M[0,1](Ω,Rd)×M[0,1](Γ, TpΓ)×M[0,1](Ω)×M[0,1](Γ)×M[0,1](Γ)

×M[0,1]({γ(0)}, Tγ(0)Γ)×M[0,1]({γ(1)}, Tγ(1)Γ).

Moreover, we define the set of admissible initial measures as

Padm(Γ) = {(ρ, µ) ∈M+(Ω)×M+(Γ) : ρ+ µ̄ ∈ P (Ω)}. (8)
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1.3 Sobolev-Slobodeckij spaces

In order to minimize over the preferential path in Section 4, we need compactness in a suitable normed
space. This space will turn out to be C1,α([0, 1];Rd) for α ∈ (0, 1). The compactness however will
follow by a compact embedding from Sobolev-Slobodeckij spaces, also called fractional Sobolev spaces,
into these Hölder spaces. Following [DPV12], we give a short introduction to Sobolev-Slobodeckij
spaces and state the necessary embedding theorem.

Definition 1.3 (Sobolev-Slobodeckij spaces). Let U ⊂ Rd be open and let s ∈ (0, 1) and p ∈ [1,+∞)
be given. For f : U → R we define the Gagliardo seminorm

[f ]pW s,p(U) :=

∫
U

∫
U

|f(x)− f(y)|p

|x− y|d+sp
dxdy

and the corresponding norm by

∥f∥pW s,p(U) := ∥f∥pLp(U) + [f ]pW s,p(U).

The Sobolev-Slobodeckij space W s,p(U) is given as

W s,p(U) := {f ∈ Lp(U) : ∥f∥W s,p(U) < +∞}

which is a Banach space for the norm defined above.

These spaces act as an intermediate space between Lp(U) and W 1,p(U) and can be extended to
arbitrary s > 0.

Definition 1.4. Let U ⊂ Rd be open and let s ∈ (0, 1), k ∈ N0 and p ∈ [1,+∞) be given. The space

W k+s,p(U) := {f ∈W k,p(U) : Dαf ∈W s,p(U) for all α ∈ Nd s.t. |α| = k}

equipped with the norm

∥f∥Wk+s,p(U) :=

∥f∥p
Wk,p(U)

+
∑
|α|=k

[Dαf ]
p
W s,p(U)

 1
p

is a Banach space.

If the mapping is vector-valued instead, the space is defined component-wise. The following em-
bedding theorem holds true by [DPV12, Theorem 8.2] combined with the classical Morrey embedding.

Theorem 1.5. Let U ⊂ Rd be a given domain with Lipschitz boundary. For p ∈ [1,+∞), k ∈ N0 and
s ∈ (0, 1) such that kp, sp > d there exists a constant C = C(k, s, p,Ω) > 0 with

∥f∥Ck,α(U) := ∥f∥L∞(U) + sup
x ̸=y

|f(x)− f(y)|
|x− y|α

≤ C(s, p, U)∥f∥Wk+s,p(U)

for α = s− d
p and f ∈W k+s,p(U). By the Arzelà-Ascoli theorem the embedding W k+s,p(U) ↪→ Ck(U)

is compact.

For maps f : U → RN we obtain similar embeddings by considering each component separately.
The compactness of the embedding will be crucial for showing existence of minimizers for varying
paths.

2 Fixed preferential path

In this Section we consider a (fixed) preferential path γ : [0, 1]→ Ω, regular, non self-intersecting and
of class C1([0, 1]; Ω) (in short C1-curve) with image denoted by Γ ⊂ Rd. We aim to model the dynamic
of a population under the assumption that travelling on the preferential path Γ is cheaper; however,
accessing (or leaving) the preferential path is associated with an additional cost. Such modelling choice
can be justified by economic reasons (the highway is expensive to take) or time reasons (there is often
much more traffic to access or leave the highway, for example in Italian highways).
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2.1 Continuity equations and mass exchange

In this Section we define rigorously the coupled continuity equations anticipated in the introduction.
Since we will prefer to define the continuity equation on Γ using its parametrization, we will need the
notion of push-forward of measures by γ−1 defined as follows.

Definition 2.1. Given a non self-intersecting curve γ : [0, 1] → Ω with image Γ and a measure
ν ∈M(Γ,RN ) for N ∈ N, we define νγ ∈M([0, 1],RN ) as

νγ = γ−1
# ν.

We are now ready to state the continuity equations that regulate the exchange of mass between Ω
and Γ.

Definition 2.2 (Coupled continuity equations). Given a regular, non self-intersecting C1-curve γ :
[0, 1]→ Ω with image Γ we say that (Jt, Vt, ρt, µt, ft, G

0
t , G

1
t ) ∈ Dadm(Γ) satisfies the coupled continuity

equations with initial and final data (ρ0, µ0) ∈ Padm(Γ) and (ρ1, µ1) ∈ Padm(Γ) if∫ 1

0

∫
Ω

∂tφ(t, x) dρtdt+

∫ 1

0

∫
Ω

∇φ(t, x) · dJtdt−
∫ 1

0

∫
Γ

φ(t, x) dftdt

−
∫ 1

0

∫
{γ(0)}

φ(t, x) dG0t dt+

∫ 1

0

∫
{γ(1)}

φ(t, x) dG1t dt =

∫
Ω

φ(1, x)dρ1 −
∫
Ω

φ(0, x)dρ0 (9)

for every φ ∈ C1(XΩ) and∫ 1

0

∫ 1

0

∂tψ(t, s) dµγ
t dt+

∫ 1

0

∫ 1

0

∂sψ(t, s)|γ′(s)|−1 dVγ
t dt+

∫ 1

0

∫ 1

0

ψ(t, s) dfγt dt

+

∫ 1

0

∫
{0}

ψ(t, 0) d(G0t )γdt−
∫ 1

0

∫
{1}

ψ(t, 1) d(G1t )γdt =

∫ 1

0

ψ(1, s)dµγ
1 −

∫ 1

0

ψ(0, s)dµγ
0 (10)

for every ψ ∈ C1([0, 1]2). We refer to such conditions as CE(Γ) and if (Jt, Vt, ρt, µt, ft, G
0
t , G

1
t ) satisfies

CE(Γ) we write (Jt, Vt, ρt, µt, ft, G
0
t , G

1
t ) ∈ CE(Γ), where we keep implicit the dependence on initial

and final data.

Remark 2.3. We point out that we are allowing mass to be exchanged tangentially at the boundary of
Γ at rate G0 (entering Γ) and G1 (exiting Γ). Moreover, we also note that Definition 2.2 is independent
of the choice of the parametrization for Γ. This justifies the notation CE(Γ). Moreover it holds that∫ 1

0

∫ 1

0

∂sψ(t, s)|γ′(s)|−1 dVγ
t dt =

∫ 1

0

∫
Γ

∇Γψ(t, p) · dVtdt (11)

where ∇Γ is the gradient of the function x 7→ ψ(t, x) on the embedded manifold Γ. This motivates that
Definition 2.2 is nothing but the parametrized version of (4). The identity (11) can be easily justified
noticing that a local base of the tangent plane of Γ in p ∈ Γ is given by ∂

∂x |p = γ′(γ−1(p)). Therefore
from the definition of the Riemannian gradient we obtain

∇Γψ(t, p) = g

(
∂

∂x
|p,

∂

∂x
|p
)−1

∂sψ(t, s)|γ−1(p)
∂

∂x
|p (12)

implying that ∇Γψ(t, p) · τΓ(p) = ∂sψ(t, s)|γ−1(p)|γ′(γ−1(p))|−1 and thus (11).

Under the previous coupled continuity equations, it is possible to prove that the total mass is
conserved and more specifically the total density satisfies a global continuity equation.

Proposition 2.4. Given a regular, non self-intersecting C1-curve γ : [0, 1]→ Ω with image Γ, suppose
that (Jt, Vt, ρt, µt, ft, G

0
t , G

1
t ) ∈ CE(Γ). Denoting by ηt = ρt + µ̄t and Wt = Jt + V̄t it holds that

∂tηt +∇ ·Wt = 0 in XΩ (13)

distributionally with initial value ρ0 + µ̄0 and final value ρ1 + µ̄1.
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Proof. Given an arbitrary test function φ ∈ C1(XΩ) and defining ψ ∈ C1([0, 1]2) as

ψ(t, s) = φ(t, γ(s)) (14)

it holds that ∂sψ(t, s) = ∇φ(t, γ(s)) · γ′(s). Therefore, using the definition of push-forward, we obtain∫ 1

0

∫
Ω

∂tφ(t, x) dηtdt+

∫ 1

0

∫
Ω

∇φ(t, x) · dWtdt

=

∫ 1

0

∫
Ω

∂tφ(t, x) dρtdt+

∫ 1

0

∫
Ω

∂tφ(t, x) dµ̄tdt+

∫ 1

0

∫
Ω

∇φ(t, x) · dJtdt+

∫ 1

0

∫
Ω

∇φ(t, x) · dV̄tdt

=

∫ 1

0

∫
Γ

∂tφ(t, x) dµtdt+

∫ 1

0

∫
Γ

∇φ(t, x) · γ
′(γ−1(x))

|γ′(γ−1(x))|
dVtdt+

∫ 1

0

∫
Γ

φ(t, x) dftdt

+

∫
Ω

φ(1, x)dρ1 −
∫
Ω

φ(0, x)dρ0 +

∫ 1

0

∫
{γ(0)}

φ(t, x) dG0t dt−
∫ 1

0

∫
{γ(1)}

φ(t, x) dG1t dt

=

∫ 1

0

∫ 1

0

∂tψ(t, s) dµγ
t dt+

∫ 1

0

∫ 1

0

∇φ(t, γ(s)) · γ
′(s)

|γ′(s)|
dVγ

t dt+

∫ 1

0

∫ 1

0

ψ(t, s) dfγt dt

+

∫
Ω

φ(1, x)dρ1 −
∫
Ω

φ(0, x)dρ0 +

∫ 1

0

∫
{0}

φ(t, s) d(G0t )γdt−
∫ 1

0

∫
{1}

φ(t, s) d(G1t )γdt

=

∫
Γ

φ(1, x)dµ1 −
∫
Γ

φ(0, x)dµ0 +

∫
Ω

φ(1, x)dρ1 −
∫
Ω

φ(0, x)dρ0

as we wanted to prove.

2.2 Dynamic formulation

In this Section we define the variational problem that is regulating the evolution of the measures
(Jt, Vt, ρt, µt, ft, G

0
t , G

1
t ) ∈ Dadm(Γ) in time. Such measures should obey the coupled continuity equa-

tions CE(Γ) while minimizing an action functional. In our case, it is constructed as a generalization
of the kinetic energy due to the introduction of a mobility function, separately for the kinetic energy
of ρ on Ω, the kinetic energy of µ on Γ and the exchange of mass between Ω and Γ. We start with a
definition of admissible mobility functions.

Definition 2.5. A function m is called admissible mobility function if m : [0,+∞)→ [0,+∞)∪{−∞}
is an upper semicontinuous, concave function with int(dom(m)) = (a, b) for a, b ≥ 0, a < b and
m(z) > 0 for every z ∈ (a, b).

Remark 2.6. Note in particular that for any admissible mobility m it holds that

sup
z∈dom(m)

m(z) <∞. (15)

We are now ready to introduce rigorously the dynamic variational problem, which is defined as a
minimization of an action functional on tuples satisfying the coupled continuity equation.

Definition 2.7. Given a regular, non self-intersecting C1-curve γ : [0, 1]→ Ω with image Γ, we define
the variational dynamic problem as

inf
(Jt,Vt,ρt,µ,f,G0

t ,G
1
t )∈CE(Γ)

∫ 1

0

AΓ(Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt (BB2)

where

AΓ =

∫
Ω

ΨΩ

(
dρt
dλΩ

,
dJt
dλΩ

)
dλΩ +

∫
Γ

[
α1ΨΓ

(
dµt

dλΓ
,
dVt
dλΓ

)
+ α2ΨΓ

(
dµt

dλΓ
,
dft
dλΓ

)]
dλΓ (16)

+ α3

∫
{γ(0)}∪{γ(1)}

[
ΨΓ

(
d(µt γ(0))

dλE
,
dG0
dλE

)
+ ΨΓ

(
d(µt γ(1))

dλE
,
dG1
dλE

)]
dλE .
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In the previous definition λΩ ∈M+(Ω) is any measure such that ρ≪ λΩ and |J | ≪ λΩ, λΓ ∈M+(Γ)
is any measure such that µ ≪ λΓ, |V | ≪ λΓ and f ≪ λΓ, and λE ∈ M+({γ(0)} ∪ {γ(1)}) is any
measure such that µ γ(i)≪ λE for i = 0, 1. Moreover, ΨΩ and ΨΓ are action functionals defined as

ΨΩ(z, w) =


|w|2

mΩ(z) mΩ(z) ̸= 0, z ∈ dom(mΩ)

0 w = 0 and mΩ(z) = 0
+∞ mΩ(z) = 0, w ̸= 0 or z /∈ dom(mΩ)

(17)

and

ΨΓ(z, w) =


|w|2

mΓ(z)
mΓ(z) ̸= 0, z ∈ dom(mΓ)

0 w = 0 and mΓ(z) = 0
+∞ mΓ(z) = 0, w ̸= 0 or z /∈ dom(mΓ).

(18)

Remark 2.8. Owing to the results in [DNS08, LM10] the functional A defined in (BB2) is convex and
lower semicontinuous with respect to the narrow convergence of measures. In particular, for proving
the narrow lower semicontinuity, we refer the reader to [DNS08, Theorem 2.1] that can be applied to
each term in (16).

The boundedness of AΓ allows to prove further regularity results for (Jt, Vt, ρt, µt, ft, G
0
t , G

1
t ) ∈

CE(Γ).

Proposition 2.9. Suppose that
∫ 1

0
AΓ(Jt, Vt, ρt, µt, ft, G

0
t , G

1
t )dt < ∞. Then ρt and µt admit a nar-

rowly continuous representative. Moreover, it holds tht

aΩ ≤ dρt
dλΩ

≤ bΩ, λΩ − a.e., and aΓ ≤ dµt

dλΓ
≤ bΓ, λΓ − a.e. (19)

for every t ∈ [0, 1], where (aΩ, bΩ) and (aΓ, bΓ) are the respective constants for mΩ and mΓ in Definition
2.7.

Proof. The proof follows from the application of [LM10, Proposition 2.3].

Note that for general mobilities it is not true that the infimum in (BB2) is always finite [DNS08].
This depends on the interplay between the reference measures and the initial and final values. However,
we point out that in case of standard dynamic optimal transport (i.e. with linear mobility) such result
following a similar argument to the one of [Mon21] that is based on the existence of Wasserstein
geodesics and Fischer-Rao geodesics.

2.3 Well-posedness of the dynamic formulation

In this Section we will employ the Direct method of Calculus of Variations to prove that (BB2) admits
at least one minimizer. The basic result needed for that is a compactness result (in time) for the time-
dependent family of measures ρt and µt. In particular, the fundamental ingredient of such compactness
result is the following Hölder estimate for ρt and µt.

Proposition 2.10 (Hölder estimates). Given a regular, non self-intersecting C1-curve γ : [0, 1]→ Ω,

suppose that for (Jt, Vt, ρt, µt, ft, G
0
t , G

1
t ) ∈ CE(Γ) there holds that

∫ 1

0
A(Jt,Vt, ρt, µt, ft,G0t ,G1t )dt < M

for a constant M > 0. Then there exists a constant C = C(bΩ, bΓ,M) > 0 only depending on M , bΩ

and bΓ, such that for all s, t ∈ [0, 1] it holds that

∥ρt − ρs∥C1(Ω)∗ ≤ C|t− s|1/2, (20)

∥µγ
t − µγ

s∥C1([0,1])∗ ≤ C|t− s|1/2. (21)

Proof. The proof follows from classical arguments (see for example [Mon21, Proposition 3.5] or [BF20,
Lemma 4.5]). However, we will sketch it for estimate (21) since in our notation it involves the push-
forward of the measures on the interval [0, 1]. Given φ ∈ C1([0, 1]) note that the measurable map
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t 7→
∫ 1

0
φ(s)dµγ

t is weakly differentiable in (0, 1). Indeed for ξ ∈ Cc(0, 1) it holds that∫ 1

0

∫ 1

0

ξ′(t)φ(s)dµγ
t (s) dt = −

∫ 1

0

∫ 1

0

ξ(t)φ′(s)|γ′(s)|−1dVγ
t dt−

∫ 1

0

∫ 1

0

ξ(t)φ(s)dfγt

=

∫ 1

0

∫ 1

0

ξ(t)
(
φ′(s)|γ′(s)|−1dVγ

t − φ(s)dfγt
)
dt,

implying that the weak derivative is equal to t 7→
∫ 1

0
φ′(s)|γ′(s)|−1dVγ

t − φ(s)dfγt . Therefore, by the
fundamental theorem of calculus, it holds that

|µγ
t (φ)− µγ

s (φ)| ≤
∫ s

t

∫ 1

0

|φ′(s)||γ′(s)|−1dVγ
t + |φ(s)|dfγt dτ

≤ C∥φ∥C1([0,1])

∫ s

t

∫
Γ

∣∣∣∣dVτdλΓ

∣∣∣∣+

∣∣∣∣ dfτdλΓ

∣∣∣∣ dλΓ dτ
≤ C∥φ∥C1([0,1])|t− s|1/2

(∫ 1

0

∫
Γ

∣∣∣∣dVτdλΓ

∣∣∣∣2 +

∣∣∣∣ dfτdλΓ

∣∣∣∣2 dλΓ dτ
)1/2

≤ C∥φ∥C1([0,1])|t− s|1/2
(∫ 1

0

∫
Γ

mΓ

(
dµτ

dλΓ

)
ΨΓ

(
dµτ

dλΓ
,
dVτ
dλΓ

)
+mΓ

(
dµτ

dλΓ

)
ΨΓ

(
dµτ

dλΓ
,
dfτ
dλΓ

)
dλΓ dτ

)1/2

≤ C(bΩ, bΓ,M)∥φ∥C1([0,1])|t− s|1/2

where we used Hölder’s inequality and Proposition 2.9 together with the properties of mΓ. This
concludes the proof.

The previous proposition is the main ingredient for the following compactness result.

Theorem 2.11 (Compactness). Given a regular, non self-intersecting C1-curve γ : [0, 1] → Ω and a
sequence (Jn

t , V
n
t , ρ

n
t , µ

n
t , f

n
t , (G

0
t )n, (G1

t )n) ∈ CE(Γ) such that

sup
n∈N

∫ 1

0

AΓ(Jn
t ,Vn

t , ρ
n
t , µ

n
t , f

n
t , (G0t )n, (G1t )n)dt <∞,

there exists (Jt, Vt, ρt, µt, ft, G
0
t , G

1
t ) ∈ CE(Γ) such that, up to subsequences,

i) ρnt ⇀ ρt narrowly in Ω for all t ∈ [0, 1]

ii) µn
t ⇀ µt narrowly in Γ for all t ∈ [0, 1]

and

iii) Jn ⇀ J narrowly in [0, 1]× Ω

iv) Vn ⇀ V narrowly in [0, 1]× Γ

v) fn ⇀ f narrowly in [0, 1]× Γ

vi) (Gi)n ⇀ Gi narrowly in [0, 1]× {γ(i)} for i = 1, 2.

Proof. We start by proving i) and ii). First note that due the definition of AΓ and the narrow
continuity of ρnt and µn

t it holds that ρnt ≪ λΩ and µn
t ≪ λΓ for every t ∈ [0, 1]. Moreover, thanks to

Proposition 2.9 it is also true that aΩ ≤ dρn
t

dλΩ
≤ bΩ and aΓ ≤ dµn

t

dλΓ
≤ bΓ for every t ∈ [0, 1] and every n.

In particular

sup
n

sup
t
∥ρnt ∥M(Ω) <∞, sup

n
sup
t
∥µn

t ∥M(Γ) <∞ (22)

and thus, by the properties of the push-forward we also have

sup
n

sup
t
∥(µγ

t )n∥M([0,1]) <∞. (23)
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Therefore, thanks to Proposition 2.9 and by applying a generalized Arzelà-Ascoli theorem ([BF20,
Proposition A.4]) we conclude that there exists a narrowly continuous family of Borel measures ρt ∈
M(Ω) and µγ

t ∈M([0, 1]) such that

ρnt ⇀ ρt, (µγ
t )n ⇀ µ∗

t , for every t ∈ [0, 1]. (24)

Define now µt = γ#µ
∗
t ∈M(Γ). Moreover, µn

t ⇀ µt for every t ∈ [0, 1]. Indeed,

lim
n→∞

∫
Γ

φ((γ ◦ γ−1)(x))d(µn
t − µt) =

∫ 1

0

φ(γ(s))d((µγ
t )n − µγ

t ) = 0.

We now prove iii), iv), v) and vi). Starting with iii), note that |Vn
t | ≪ λΓ for almost every

t ∈ [0, 1]. Then

∫
XΓ

∣∣∣∣dVn
t

dλΓ

∣∣∣∣ dλΓ dt ≤ ∫
XΓ

√
mΓ

(
dµn

τ

dλΓ

)√
ΨΓ

(
dµn

τ

dλΓ
,
dVn

τ

dλΓ

)
dλΓ dt

≤
(∫

XΓ

mΓ

(
dµn

τ

dλΓ

)
dλΓdt

)1/2(∫
XΓ

ΨΓ

(
dµn

τ

dλΓ
,
dVn

τ

dλΓ

)
dλΓdt

)1/2

.

Therefore from the fact that aΓ ≤ dµn
τ

dλΓ
≤ bΓ and Remark 2.6, it follows that supn |Vn|(XΩ) <∞. Thus,

by Prokhorov’s theorem, there exists V ∈M(XΓ) such that, up to subsequence, Vn ⇀ V. Since the uni-
form bounds for the total variation of Jn, fn and Gni are obtained similarly, the remaining convergences
iv), v) and vi) follow using similar arguments. It remains to show that (Jt, Vt, ρt, µt, ft, G

0
t , G

1
t ) ∈

CE(Γ). First note that due to the equiboundedness of Vn we have that for every Borel I ⊂ [0, 1] it
holds that |V|(I×Ω) =

∫
I
p(t) for a suitable p ∈ L1([0, 1]) (see [DNS08, Lemma 4.5] or [Gam13, Theo-

rem 8.1]). This implies by the disintegration theorem [AFP00, Theorem 2.28] that V ∈M[0,1](Γ). With
similar reasoning it holds that f ∈M[0,1](Γ) and Gi ∈M[0,1]({γ(i)}), so that (Jt, Vt, ρt, µt, ft, G

0
t , G

1
t ) ∈

Dadm(Γ). It remains to prove that (Jt, Vt, ρt, µt, ft, G
0
t , G

1
t ) solves the coupled system (9) and (10).

Note that the narrow convergence Vn ⇀ V and fn ⇀ f implies the weak convergence of the push-
forwards (Vγ)n ⇀ Vγ and (fγ)n ⇀ fγ (respectively) due to the continuity of γ. Therefore, by
additionally using (24) and passing to the limit in both continuity equations in Definition 2.2 we
conclude that (Jt, Vt, ρt, µt, ft, G

0
t , G

1
t ) ∈ CE(Γ).

We are now ready to prove existence of minimizers for (BB2).

Theorem 2.12. Given a regular, non self-intersecting C1-curve γ : [0, 1]→ Ω, suppose that (BB2) is
finite. Then there exists a minimizer (Jt, Vt, ρt, µt, ft, G

0
t , G

1
t ) ∈ CE(Γ) of the dynamic problem (BB2).

Proof. The proof follows directly from Theorem 2.11 and Remark 2.8 by the application of the Direct
Method of Calculus of Variations. Given a minimizing sequence (Jn

t , V
n
t , ρ

n
t , µ

n
t , f

n
t , (G

0
t )n, (G1

t )n) ∈
CE(Γ), up to extracting a subsequence, it holds that

sup
n∈N

∫ 1

0

AΓ(Jn
t ,Vn

t , ρ
n
t , µ

n
t , f

n
t , (G0t )n, (G1t )n)dt <∞. (25)

We can then apply Theorem 2.11 to extract a subsequence (not relabelled) such that the convergence
i)− vi) holds. Then, note that since AΓ ≥ 0, by Fatou’s lemma it holds that

lim inf
n

∫ 1

0

AΓ(Jn
t ,Vn

t , ρ
n
t , µ

n
t , f

n
t , (G

0
t )n, (G1

t )n)dt ≥
∫ 1

0

lim inf
n
AΓ(Jn

t ,Vn
t , ρ

n
t , µ

n
t , f

n
t , (G0t )n, (G1t )n)dt

≥
∫ 1

0

AΓ(Jt,Vt, ρt, µt, ft,G0t ,G1t )dt

where the last inequality follows from Remark 2.8. This concludes the proof applying the Direct
Methods of Calculus of Variations.
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3 Parameter scaling limits

In this Section, following [Mon21, Section 6], we aim to investigate the asymptotic behaviour of (BB2)
with respect to the parameters α2 and α3.

We start by considering α2, α3 → +∞. The proof of the limit follows the arguments in [Mon21].
However, we will state the proof again since we are dealing with additional coupling mechanisms and
mobilities here. First we define the natural limiting objects:

W 2
Ω(ρ0, ρ1) = inf

(Jt,ρt)∈CEΩ

∫ 1

0

∫
Ω

ΨΩ

(
dρt
dλΩ

,
dJt
dλΩ

)
dλΩ, (26)

W 2
Γ(µ0, µ1) = inf

(Vt,µt)∈CEΓ

∫ 1

0

∫
Γ

ΨΓ

(
dµt

dλΓ
,
dVt
dλΓ

)
dλΓ (27)

where the constraints (Jt, ρt) ∈ CEΩ and (Vt, µt) ∈ CEΓ means that the pairs (Jt, ρt) and (Vt, µt) satisfy
the continuity equation distributionally on Ω and in Γ respectively. Note that without redefining it,
we will make the dependence on the parameters αi in AΓ explicit as Aα1,α2,α3

Γ . In what follows we will
say that we have compatible mass for the initial and final data if ∥µ0∥TV = ∥µ1∥TV (by definition of
Padm(Γ) this is equivalent to ∥ρ0∥TV = ∥ρ1∥TV). We also remark that we often assume the limiting
infima W 2

Γ(µ0, µ1) and W 2
Ω(ρ0, ρ1) to be finite. This implies, a fortiori, that we have compatible mass.

However, for sake of clarity we mention both assumptions.

Theorem 3.1. Let γ : [0, 1] → Ω be a regular, non self-intersecting C1-curve and α1 > 0. Suppose
that we have compatible masses for the initial and final data, W 2

Ω(ρ0, ρ1) < ∞ and W 2
Γ(µ0, µ1) < ∞.

Then for every sequence of weights (αn
2 , α

n
3 ) it holds that

inf
(Jt,Vt,ρt,µt,ft,G0

t ,G
1
t )∈CE(Γ)

∫ 1

0

Aα1,α
n
2 ,α

n
3

Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt
αn

2 ,α
n
3 →+∞−→ W 2

Ω(ρ0, ρ1) + α1W
2
Γ(µ0, µ1).

(28)

Moreover, the minimizing pairs (ρnt , J
n
t ) and (µn

t , V
n
t ) converge as in i), ii), iii), iv) (see Theorem

2.11), up to subsequences, to minimizers of (26) and (27).
If the masses are not compatible, it holds that for every sequence of weights (αn

2 , α
n
3 )

inf
(Jt,Vt,ρt,µt,ft,G0

t ,G
1
t )∈CE(Γ)

∫ 1

0

Aα1,α
n
2 ,α

n
3

Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt
αn

2 ,α
n
3 →+∞−→ +∞.

Proof. We start by showing a lower bound on the action. First, let

msup := sup
z∈(aΓ,bΓ)

mΓ(z)

which is finite by Remark 2.6. Suppose now that for given α1, α2, α3 the infimum (BB2) is finite. Then,
thanks to Theorem 2.12, there exists a minimizer of (BB2) that we name (Jt, Vt, ρt, µt, ft, G

0
t , G

1
t ). In

this case, using the non-negativity of all occurring terms, Proposition 2.9 and Jensen’s inequality we
obtain the estimate

inf
(Jt,Vt,ρt,µt,ft,G0

t ,G
1
t )∈CE(Γ)

∫ 1

0

Aα1,α2,α3

Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt

≥α2

∫ 1

0

∫
Γ

ΨΓ

(
dµt

dλΓ
,
dft
dλΓ

)
dλEdt

+ α3

∫ 1

0

∫
{γ(0)}∪{γ(1)}

ΨΓ

(
d(µt γ(0))

dλE
,
dG0t
dλE

)
+ ΨΓ

(
d(µt γ(1))

dλE
,
dG1t
dλE

)
dλEdt

≥ α2

msup

∫ 1

0

∫
Γ

∣∣∣∣ dftdλΓ

∣∣∣∣2 dλΓdt+
α3

msup

∫ 1

0

∫
{γ(0)}∪{γ(1)}

∣∣∣∣ dG0tdλE

∣∣∣∣2 +

∣∣∣∣ dG1tdλE

∣∣∣∣2 dλEdt
≥ min(α2, α3)

msup max(∥λΓ∥TV, ∥λE∥TV)

(∫ 1

0

∥ft∥2TV + ∥G0t ∥2TV + ∥G1t ∥2TV dt

)
.
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Moreover, testing (10) with ψ ≡ 1 implies∫ 1

0

∥ft∥2TV + ∥G0t ∥2TV + ∥G1t ∥2TV dt ≥
1

3

(∫ 1

0

∥ft∥TV + ∥G0t ∥TV + ∥G1t ∥TV dt

)2

≥ 1

3
|∥µ1∥TV − ∥µ0∥TV|2 .

Combining these estimates and noticing that we can consider, without loss of generality, α1, α
n
2 , α

n
3

such that (BB2) is finite, yields the divergence for incompatible masses as αn
2 , α

n
3 → +∞.

Now, we assume the compatibility condition to hold true. Let (ρt, Jt) and (µt, Vt) be minimizers of
(26), (27) that exist thanks to the boundedness of the infima and following similar arguments to the
ones from Theorem 2.12. Note that (Jt, Vt, ρt, µt, 0, 0, 0) ∈ CE(Γ). Therefore

inf
(Jt,Vt,ρt,µt,ft,G0

t ,G
1
t )∈CE(Γ)

∫ 1

0

Aα1,α2,α3

Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt ≤W 2
Ω(ρ0, ρ1) + α1W

2
Γ(µ0, µ1), (29)

implying that for (αn
2 , α

n
3 ) the infimum (BB2) is finite as well. Combining this estimate with the one

established above yields∫ 1

0

∥f (α2,α3)
t ∥2TV + ∥G0t

(α2,α3)∥2TV + ∥G1t
(α2,α3)∥2TV dt

≤msup max(∥λΓ∥TV, ∥λE∥TV)

min(α2, α3)
inf

(Jt,Vt,ρt,µt,ft,G0
t ,G

1
t )∈CE(Γ)

∫ 1

0

Aα1,α2,α3

Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt (30)

≤msup max(∥λΓ∥TV, ∥λE∥TV)

min(α2, α3)

(
W 2

Ω(ρ0, ρ1) + α1W
2
Γ(µ0, µ1)

)
(31)

where f
(α2,α3)
t ,G0t

(α2,α3),G1t
(α2,α3) correspond to the action minimizer for the parameter choices α2, α3 >

0, that exist due to Theorem 2.12. From (30), since αn
2 , α

n
3 → +∞, we can conclude boundedness of

the sequence of measures, allowing us to extract a converging subsequence (not relabelled) such that

f (α
nk
2 ,α

nk
3 ) ⇀ 0 and G0(α

nk
2 ,α

nk
3 )

, G1(α
nk
2 ,α

nk
3 )

⇀ 0 narrowly. From (29) and using Theorem 2.11, we are
able to conclude the existence of a subsequence (Jn

t , V
n
t , ρ

n
t , µ

n
t , f

n
t , (G

0
t )n, (G1

t )n) ∈ CE(Γ) converging
as in Theorem 2.11. Finally, from the lower-semicontinuity of the action from Remark 2.8 and estimate
(29) we deduce (28), up to subsequences. Note that since our argument can be applied to any starting
subsequence obtaining the same limit, we conclude that (28) holds for the full sequence.

Next, we consider α2, α3 → 0. We expect a similar behaviour to [Mon21]. Due to different costs for
transport in Ω and along Γ, we will not be able to simplify the limit to be the geodesic on the whole
domain. Both terms will remain in the limit.

Theorem 3.2. Let γ : [0, 1] → Ω be regular, non self-intersecting C1-curve, α1 > 0 and (αn
2 , α

n
3 ) →

(0, 0) for n→ +∞. Then, it holds that

inf
(Jt,Vt,ρt,µt,ft,G0

t ,G
1
t )∈CE(Γ)

∫ 1

0

Aα1,α
n
2 ,α

n
3

Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt
αn

2 ,α
n
3 →0−→

inf
(Jt,Vt,ρt,µt,ft,G0

t ,G
1
t )∈CE(Γ)

∫ 1

0

Aα1,0,0
Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt

Moreover, the minimizers converge, up to subsequences, as in Theorem 2.11.

Proof. If we are able to verify the assumptions of the fundamental theorem of Γ-convergence, the claim
would follow. To do so, we restrict the problem to the case α2, α3 ∈ (0, 1) and we verify the following
statements:

1. The sequence of functionals
∫ 1

0
Aα1,α2,α3

Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt Γ-converges to the functional∫ 1

0
Aα1,0,0

Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt as α2, α3 → 0.

2. For all Λ > 0 there exists a compact set KΛ such that {
∫ 1

0
Aα1,α2,α3

Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt ≤
Λ} ⊂ KΛ for all 0 < α2, α3 < 1.
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In order to prove Γ-convergence, we use the inequality∫ 1

0

Aα1,0,0
Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt ≤

∫ 1

0

Aα1,α2,α3

Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt (32)

which holds true by non-negativity of each summand. Thus, for any (Jn
n ,Vn

t , ρ
n
t , µ

n
t , f

n
t , (G

0
t )n, (G1

t )n)
converging according to i)−vi) (see Theorem 2.11) to (Jt,Vt, ρt, µt, ft, G

0
t , G

1
t ), the lower semicontinuity

of the action (Remark 2.8), (32) and Fatou’s Lemma imply that∫ 1

0

Aα1,0,0
Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt ≤ lim inf

n

∫ 1

0

Aα1,0,0
Γ (Jn

t ,Vn
t , ρ

n
t , µ

n
t , f

n
t , (G0t )n, (G1t )n) dt

≤ lim inf
n

∫ 1

0

Aα1,α
n
2 ,α

n
3

Γ (Jn
t ,Vn

t , ρ
n
t , µ

n, fn, (G0t )n, (G1t )n) dt.

Moreover, for any solution of the coupled continuity equations we are able to choose the constant se-
quence as a recovery sequence, proving Γ-convergence. The equi-compactness follows from the inclusion
of the sublevel sets{∫ 1

0

Aα1,α2,α3

Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt ≤ Λ

}
⊂
{∫ 1

0

Aα1,1,1
Γ (Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt ≤ Λ

}
for α2, α3 ≤ 1 and arbitrary Λ > 0. From Theorem 2.11 we conclude compactness of these sets with
respect to the convergences i)−vi). This allows us to apply the fundamental theorem of Γ-convergence
[DM12] and concludes the proof.

4 Optimization over the preferential path

Here, we consider the dynamic problem where we allow for an optimal placement of the preferential
path γ according to initial and final distributions. We assume initial and final data to be given by
the probability measures η0, η1 ∈ P(Ω), making them independent of the choice of Γ. By defining
µ0 := η0|Γ, ρ0 := η0 − µ̄0 and the pair (µ1, ρ1) in the same way, we obtain an admissible pair of initial
and final data as in the case of a fixed preferential path. Note that the variation of γ is modifying the
space of admissible distributions and vector fields in CE(Γ).

Under the same assumptions of the previous Section we consider the following variational problem.

Definition 4.1 (Dynamic problem for varying preferential path). We consider the minimization prob-
lem

inf
γ∈C1([0,1];Ω)

inf
(Jt,Vt,ρt,µt,ft,G0

t ,G
1
t )∈CE(Γ)

∫ 1

0

AΓ(Jt,Vt, ρt, µt, ft,G0t ,G1t ) dt+ cR(γ) (BBγ)

for a parameter c > 0, where we use initial and final data constructed as in the beginning of this
section.

Our goal is to choose R to satisfy the following properties:

i) It is repulsive, meaning that it penalizes self-intersections of the curve.

ii) It preserves regularity in the sense that curves of finite energy are continuously differentiable,
regular and embedded and therefore parametrize a C1-manifold.

iii) It prevents closing of the curve at the endpoints in order for the boundary conditions to be
well-defined. We could get rid of this condition if we impose the additional constraint G0t = G1t .
In this case, the coupling terms in the weak formulation cancel for closed paths and continuous
test functions.

While different choices are possible, in the remaining part of this Section we will consider the penalty

R(γ) := 2−pEp
tp(γ)− log |γ(0)− γ(1)|+

∫ 1

0

|γ′(t)| dt. (33)
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The first summand Ep
tp is called Tangent-Point energy of γ, see for example [SvDM12], and it is

responsible for preventing the self-intersection of the curve. We will define it rigorously in the next
subsection. This choice is particularly suited for numerical implementations as discussed in subsection
1.1. Moreover, we add the additional term − log |γ(0)− γ(1)| prohibiting the closedness of the curve.
This is added for technical as well as for physical reasons, since we expect the optimal path not to
be closed. Finally we penalize the length of γ. The constant parameter c > 0 balances the penalty
against the action functional, allowing for more interesting geometries.

We make the following assumptions regarding the behaviour of the action on varying curves.

Assumption 4.2. Assume that

1. The mobility mΓ (and consequently ΨΓ) is independent of the path Γ.

2. supγ∈C([0,1];Ω) ∥λΓ∥M(Γ) <∞ and supγ∈C([0,1];Ω) ∥λE∥M({γ(0)}∪{γ(1)}) <∞.

3. For every γn → γ uniformly, it holds that λΓn ⇀ λΓ, λEn ⇀ λE.

Note that the first condition assumes that the mobilities on preferential paths are always the same.
This is a natural assumption since we expect that preferential paths are build in the same way. We
believe that more general assumptions are possible, however we do not explore them in this paper. The
second and third condition are instead of purely technical nature and necessary to ensure compactness
and lower semicontinuity of the action functional for varying preferential paths.

4.1 The Tangent-Point energy for non-closed curves

In this Section we recall the definition of the Tangent-Point energy [SvDM12] stating and adapting the
preliminary results needed in our analysis. Given L > 0 and a curve γ ∈ C1([0, L]; Ω) with image Γ,
we denote by rγtp(x, y) the radius of the unique circle tangent to x ∈ Γ and passing through x, y ∈ Γ,
see Figure 1 for an illustration. We use the convention that this radius is set to be zero if x = y, and
is infinite if the vector x − y is parallel to the tangent of Γ in x. Moreover, note that rγtp is defined
only almost everywhere due to the possible presence of self-intersections. For p > 2 the tangent point
energy is defined as follows.

Definition 4.3 (Tangent-Point energy of a curve). Given γ ∈ C1([0, L]; Ω) we define its Tangent-Point
energy as

Ep
tp(γ) :=

∫ L

0

∫ L

0

|γ′(s)||γ′(t)|
rγtp(γ(s), γ(t))p

dsdt. (34)

Note that this energy is independent of the parametrization and could be defined for Γ instead.
However in our setting it is useful to work with an explicit parametrization. Additionally, the Tangent-
Point energy is non-negative and attains its minimum for straight lines.

In [SvDM12, Theorem 1.4] it was shown that the Tangent-Point energy is repulsive, meaning that
for arclength parametrized curves finite energy implies that the image of the curve is a one dimen-
sional embedded submanifold, possibly with boundary, that is without self-intersections. Regarding
regularity, [Bla13] has shown that for closed curves finiteness of Ep

tp is equivalent to the finiteness of

the W 2− 1
p ,p-seminorm. In the next proposition we will closely follow the proof of [BR12, Proposition

2.5] to prove such bound for non-closed curves.

Proposition 4.4 (Energy spaces of the Tangent-Point energy). Let γ : [0, L]→ Rd be a given arc length
parametrized C1([0, L];Rd) curve with length L > 0 and Ep

tp(γ) ≤ M for a constant M > 0. Then

γ ∈ W 2− 1
p ,p([0, L];Rd), its image is an embedded one dimensional submanifold of Rd with boundary

and the following estimate holds

[γ′]p

W
1− 1

p
,p
([0,L];Rd)

≤ C(p,M) (35)

for a constant C(p,M) > 0 only depending on p and M and in particular independent of γ.
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γ′(s)−γ′(s)

γ′(t)

−γ′(t)

β

π − β

|γ′(s)− γ′(t)|

|γ′(s) + γ′(t)|

Figure 2: Comparison between distances for the projected vectors

Proof. By [SvDM12, Theorem 1.4] the image Γ of the curve is a one dimensional embedded submanifold
with boundary. For such a manifold there exists an injective arclength-parametrization given by a curve
γ ∈ C1([0, L];Rd) with γ([0, L]) = Γ. Without loss of generality, we continue the proof for this specific
choice.

The additional regularity of the parametrization is shown as in [Bla13] using open curves instead
of closed ones. We will state the proof again for completeness. Given γ ∈ C1([0, L];Rd) let 0 < δ ≤ L
be the biggest constant such that for all s, t ∈ [0, L] with |s− t| ≤ δ

|γ′(s)− γ′(t)| ≤
√

2.

Note that, by continuity of γ′, either δ = L or there exists a pair s∗, t∗ ∈ [0, L] with |s∗ − t∗| = δ and
|γ′(s∗)− γ′(t∗)| =

√
2. We claim that for |s− t| ≤ δ it holds that

|γ′(s)− γ′(t)| ≤ |Πγ(s) −Πγ(t)| (36)

where

Πγ(τ)v = v − ⟨v, γ′(τ)⟩γ′(τ) (37)

is the projection onto the normal space to Γ at γ(τ) for τ ∈ [0, L]. For the estimate to hold true, we
need to show that for all v ∈ Rd with |v| = 1 we have |γ′(s)− γ′(t)| ≤ |⟨v, γ′(s)⟩γ′(s)− ⟨v, γ′(t)⟩γ′(t)|.
Since the mapping v 7→ ⟨v, γ′(τ)⟩γ′(τ) is the orthogonal projection onto the one dimensional space
spanned by γ′(τ) for τ ∈ [0, L], we conclude ⟨v, γ′(s)⟩γ′(s) = ±γ′(s) as well as ⟨v, γ′(t)⟩γ′(t) = ±γ′(t).
Therefore, we are able to restrict ourselves to the plane spanned by γ′(s) and γ′(t) containing the
origin, see Figure 2 for an illustration. The estimate follows if the angle between γ′(s) and γ′(t), called
β, is smaller than the angle between γ′(s) and −γ′(t) which is given by π − β. This condition is
equivalent to the inequality β ≤ π

2 . Therefore applying the sine-theorem gives

β = arccos

(
2− |γ′(s)− γ′(t)|2

2

)
≤ π

2
.

Solving the previous inequality for the distance yields |γ′(s)− γ′(t)| ≤
√

2, proving the claim.
Following e.g. [BR12] we are able to give an explicit representation of the tangent point radius as

rγtp(γ(s), γ(y)) =
|γ(s)− γ(t)|2

2dist(γ(s)− γ(t), Tγ(s)Γ)
=

|γ(s)− γ(t)|2

2|Πγ(s) (γ(s)− γ(t)) |
. (38)
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Therefore we can estimate the energy Ep
tp(γ) by

Ep
tp(γ) ≥

∫ L

0

∫ L

0

2p|Πγ(s) (γ(s)− γ(t)) |p

|γ(s)− γ(t)|2p
dsdt

=
2p

2

(∫ L

0

∫ L

0

|Πγ(s) (γ(s)− γ(t)) |p

|γ(s)− γ(t)|2p
dsdt+

∫ L

0

∫ L

0

|Πγ(t) (γ(t)− γ(s)) |p

|γ(s)− γ(t)|2p
dsdt

)

≥ 2p−1

∫ L

0

∫
{|s−t|≤δ}

|Πγ(s) (γ(s)− γ(t)) |p

|γ(s)− γ(t)|2p
dsdt+

∫ 1

0

∫
{|s−t|≤δ}

|Πγ(t) (γ(t)− γ(s)) |p

|γ(s)− γ(t)|2p
dsdt


≥
∫ L

0

∫
{|s−t|≤δ}

∥(Πγ(s) −Πγ(t))(γ(s)− γ(t))∥p

∥γ(s)− γ(t)∥2p
dsdt

=

∫ L

0

∫
{|s−t|≤δ}

∣∣∣(Πγ(s) −Πγ(t)

) ( γ(s)−γ(t)
|γ(s)−γ(t)|

)∣∣∣p |γ(s)− γ(t)|p

|γ(s)− γ(t)|2p
dsdt

=

∫ L

0

∫
{|s−t|≤δ}

|Πγ(s) −Πγ(t)|p

|γ(s)− γ(t)|p
dsdt

≥
∫ L

0

∫
{|s−t|≤δ}

|γ′(s)− γ′(t)|p

|s− t|p
dsdt. (39)

In conclusion we obtain∫ L

0

∫ L

0

|γ′(s)− γ′(t)|p

|s− t|p
dsdt =

∫ L

0

∫
{|s−t|≤δ}

|γ′(s)− γ′(t)|p

|s− t|p
dsdt+

∫ L

0

∫
{|s−t|>δ}

|γ′(s)− γ′(t)|p

|s− t|p
dsdt

≤ CEp
tp(γ) +

∫ L

0

∫
{|s−t|>δ}

1

|s− t|p
dsdt

< Ep
tp(γ) +

L2

δp
(40)

implying γ ∈W 2− 1
p ,p([0, L];Rd).

It remains to show (35) for a constant C = C(p,M) > 0 independent of γ. The proof is analogous
to [BR12, Proposition 2.5], however, we will sketch it again to highlight the differences for non-closed
curves. In order to conclude, we need to find a uniform lower bound for δ > 0. In the following, we will
assume that δ < L (otherwise the result is immediate) and we will show that for a suitable constant
C(α) the estimate

|γ′(s)− γ′(t)| ≤ C(α)Ep
tp(γ)

1
p |s− t|α (41)

holds for every s, t ∈ [0, L] such that |s− t| ≤ δ where α = 1− 2
p . This estimate would imply

√
2 = |γ′(s∗)− γ′(t∗)| ≤ C(α)Ep

tp(γ)
1
p δα ≤ C(α)M

1
p δα

and therefore the lower bound

δ ≥

( √
2

C(α)

) 1
α

Mq

with q = 1
pα = 1

p−2 . Together with (40) this gives the desired estimate (35).

For s ∈ [0, L] and r > 0 we denote the integral mean by

γ′Br(s)
:=

1

|Br(s) ∩ (0, L)|

∫
Br(s)∩(0,L)

γ′(y) dy
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for Br(s) denoting the open ball of radius r centered at s. Note that 2r ≥ |Br(s) ∩ (0, L)| ≥ r for r ∈
[0, L]. The proof of (41) is divided into three steps. The first step is an estimate of

∫
Br(s)∩(0,L)

|γ′(t)−
γ′Br(s)

| dy from above. Then, we will use this bound to estimate |γ′(·+ τ)− γ′(·)| for τ < δ and in the
last step, we extend this estimate for arbitrary τ ≥ δ.

Step 1: For any s ∈ (0, L), r ∈ (0, δ) and a generic constant C > 0 only depending on p it holds
that

1

|Br(s) ∩ (0, L)|

∫
Br(s)∩(0,L)

|γ′(y)− γ′Br(s)
| dy

=
1

|Br(s) ∩ (0, L)|

∫
Br(s)∩(0,L)

∣∣∣∣∣∣∣γ′(y)− 1

|Br(s) ∩ (0, L)|

∫
Br(s)∩(0,L)

γ′(z) dz

∣∣∣∣∣∣∣ dy
≤ 1

(|Br(s) ∩ (0, L)|)2

∫
Br(s)∩(0,L)

∫
Br(s)∩(0,L)

|γ′(y)− γ′(z)| dydz

≤

 1

(|Br(s) ∩ (0, L)|)2

∫
Br(s)∩(0,L)

∫
Br(s)∩(0,L)

|γ′(y)− γ′(z)|p dydz


1
p

≤C(|Br(s) ∩ (0, L)|)1−
2
p

 ∫
Br(s)∩(0,L)

∫
Br(s)∩(0,L)

|γ′(y)− γ′(z)|p

|y − z|p
dydz


1
p

≤C(|Br(s) ∩ (0, L)|)α
(
Ep

tp(γ)
) 1

p ,

where we used the Hölder inequality together with the estimate (39) valid for r ∈ (0, δ). We thus
obtain that for every s ∈ (0, L) and every r ∈ (0, δ)∫

Br(s)∩(0,L)

|γ′(y)− γ′Br(s)
| dy ≤ C(|Br(s) ∩ (0, L)|)α+1

(
Ep

tp(γ)
) 1

p . (42)

It remains to relate the left-hand side of (42) to the supremum norm using standard Campanato
estimates.

Step 2: As γ ∈ C1([0, L];Rd), every s ∈ [0, L] is a Lebesgue point of γ′. Therefore, for any
s, t ∈ [0, L] with r := |s− t| < δ

2 we obtain

|γ′(s)− γ′(t)| ≤

∣∣∣∣∣
+∞∑
k=0

(
γ′B

r2−k (s)
− γ′B

r21−k (s)
+ γ′B

r21−k (t)
− γ′B

r2−k (t)

)
+ γ′B2r(s)

− γ′B2r(t)

∣∣∣∣∣
≤

+∞∑
k=0

∣∣∣γ′B
r2−k (s)

− γ′B
r21−k(s)

∣∣∣+

+∞∑
k=0

∣∣∣γ′B
r2−k (t)

− γ′B
r21−k(t)

∣∣∣+
∣∣∣γ′B2r(s)

− γ′B2r(t)

∣∣∣ .
Moreover, by (42) it holds that∣∣∣γ′B2r(s)

− γ′B2r(t)

∣∣∣
≤ 1

|B2r(s) ∩B2r(t) ∩ (0, L)|

∣∣∣∣∣∣∣
∫

B2r(s)∩B2r(t)∩(0,L)

γ′B2r(s)
− γ′(z) + γ′(z)− γ′B2r(t)

dz

∣∣∣∣∣∣∣
≤ 1

|B2r(s) ∩B2r(t) ∩ (0, L)|

 ∫
B2r(s)∩(0,L)

∣∣∣γ′B2r(s)
− γ′(z)

∣∣∣ dz +

∫
B2r(t)∩(0,L)

∣∣∣γ′(z)− γ′B2r(t)

∣∣∣ dz


≤ C

|B2r(s) ∩B2r(t) ∩ (0, L)|
(
|B2r(s) ∩ (0, L)|α+1 + |B2r(t) ∩ (0, L)|α+1

) (
Ep

tp(γ)
) 1

p .
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As |B2r(s) ∩ (0, L)| ≤ 4r = 4|s− t| and |B2r(s) ∩B2r(t) ∩ (0, L)| ≥ 2r = 2|s− t| we get∣∣∣γ′B2r(s)
− γ′B2r(t)

∣∣∣ ≤ 22α+2|s− t|α
(
Ep

tp(γ)
) 1

p .

Similarly we obtain∣∣∣γ′B2R(s) − γ
′
BR(s)

∣∣∣ ≤ 1

|BR(s) ∩ (0, L)|
(
|BR(s) ∩ (0, L)|α+1 + |B2R(s) ∩ (0, L)|α+1

) (
Ep

tp(γ)
) 1

p

≤ 2α(1 + 2α)Rα
(
Ep

tp(γ)
) 1

p

for R < δ
2 since |B2R(s) ∩ (0, L)| ≤ |BR(s) ∩ (0, L)| + 2R and |BR(s) ∩ (0, L)| > R in this case. All

these estimates lead to

|γ′(s)− γ′(t)| ≤

(
2α+1(1 + 2α)

+∞∑
k=0

2−αk + 1

)
|s− t|α

(
Ep

tp(γ)
) 1

p = C|s− t|α
(
Ep

tp(γ)
) 1

p (43)

for a constant C > 0 only depending on α.
Step 3: Suppose now that s, t ∈ [0, L] are such that δ ≥ |s− t| ≥ δ

2 . Then we can find a partition

s =: s0 < s1 < . . . < sN := t with |sk − sk−1| < δ
2 . Applying (43) and using the triangle inequality

and Jensen’s inequality we get

|γ′(s)− γ′(t)| ≤ C
N∑

k=1

|sk − sk−1|α
(
Ep

tp(γ)
) 1

p ≤ CN1−α|s− t|α
(
Ep

tp(γ)
) 1

p .

Note that since |s − t| ≤ δ, N is bounded from above independently on γ, thus implying a uniform
bound and concluding the proof.

4.2 Existence of minimizers for varying preferential path

We first generalize the compactness presented in Theorem 2.11 and the lower semicontinuity result to
sequences of measures defined on varying paths. This is the content of the next proposition.

Proposition 4.5 (Compactness for varying paths). Given γn, γ : [0, 1] → Ω regular, non self-
intersecting C1-curves and a sequence (Jn

t , V
n
t , ρ

n
t , µ

n
t , f

n
t , (G

0
t )n, (G1

t )n) ∈ CE(Γn) such that γn → γ
uniformly and

sup
n∈N

∫ 1

0

AΓn(Jn
t ,Vn

t , ρ
n
t , µ

n
t , f

n
t , (G0t )n, (G1t )n)dt <∞,

there exists (Jt, Vt, ρt, µt, ft, G
0
t , G

1
t ) ∈ Dadm(Γ) such that, up to subsequences,

i) ρnt ⇀ ρt in Ω, for every t ∈ [0, 1]

ii) µ̄n
t ⇀ µ̄t for every t ∈ [0, 1].

and

iii) Jn ⇀ J narrowly in [0, 1]× Ω

iv) V̄n ⇀ V̄ narrowly in [0, 1]× Ω

v) f̄n ⇀ f̄ narrowly in [0, 1]× Ω

vi) (Ḡi)n ⇀ Ḡi narrowly in [0, 1]× Ω for i = 1, 2.

Proof. Since it does not depend on Γ, the proof of i) and iii) is similar to the case of fixed preferential
paths. We now prove ii). From the equiboundedness of the energy we can assume (up to extracting
a subsequence) that µn

t ≪ λΓn and thanks to Proposition 2.9 and Assumption 4.2 it holds that

0 ≤ dµn
t

dλΓn
≤ bΓ for every n ∈ N and every t ∈ [0, 1]. In particular, from Assumption 4.2 we get

sup
t
∥µ̄n

t ∥M(Ω) <∞ (44)
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independent of n. Moreover, applying Proposition 2.10 implies

∥µγn

t − µγn

s ∥C1([0,1])∗ ≤ C|t− s|1/2 (45)

where the constant C is independent of n (recall again Assumption 4.2). Therefore, thanks to Propo-
sition 2.9 and by applying a generalized Arzelà-Ascoli theorem ([BF20, Proposition A.4]) we conclude
that there exists a narrowly continuous family of Borel measures µ∗

t ∈M([0, 1]) such that

(µn
t )γ

n

⇀ µ∗
t , for every t ∈ [0, 1]. (46)

Define now µt = γ#µ
∗
t ∈M(Γ) and note that µγ

t = µ∗
t . Moreover, µn

t Γn ⇀ µt Γ for every t ∈ [0, 1].
Indeed, for every φ ∈ C(Ω) it holds that

lim
n

∣∣∣∣∫
Γn

φ(x)dµn
t −

∫
Γ

φ(x)dµt

∣∣∣∣ = lim
n

∣∣∣∣∫
Γ

φ((γ ◦ γ−1)(x))dµt −
∫
Γn

φ((γn ◦ (γn)−1)(x))dµn
t

∣∣∣∣
= lim

n

∣∣∣∣∫ 1

0

φ(γ(s))d(µγ
t )−

∫ 1

0

φ(γn(s))d(µn
t )γ

n

∣∣∣∣
≤ lim

n

∣∣∣∣∫ 1

0

φ(γ(s))d(µγ
t )−

∫ 1

0

φ(γ(s))d(µn
t )γ

n

∣∣∣∣+

∣∣∣∣∫ 1

0

|φ(γ(s))− φ(γn(s))|d(µn
t )γ

n

∣∣∣∣
≤ lim

n

∣∣∣∣∫ 1

0

φ(γ(s))d(µγ
t )−

∫ 1

0

φ(γ(s))d(µn
t )γ

n

∣∣∣∣+ sup
s∈[0,1]

|φ(γ(s))− φ(γn(s))|∥(µn
t )γ

n

∥M([0,1]) = 0

due to (46), the uniform convergence of γn to γ and the uniform continuity of φ. We now prove iv).
Note that |Vn

t | ≪ λΓn for almost every t ∈ [0, 1]. Then

∫
XΓn

∣∣∣∣ dVn
t

dλΓn

∣∣∣∣ dλΓn dt ≤
∫
XΓn

√
mΓ

(
dµn

t

dλΓ

)√
ΨΓ

(
dµn

t

dλΓ
,
dVn

t

dλΓn

)
dλnΓ dt (47)

≤
(∫

XΓn

mΓ

(
dµn

t

dλnΓ

)
dλΓndt

)1/2(∫
XΓ

ΨΓ

(
dµn

t

dλnΓ
,
dVn

t

dλΓn

)
dλΓndt

)1/2

. (48)

Due to Assumption 4.2 it holds that 0 ≤ dµn
t

dλn
Γ
≤ bΓ. From Remark 2.6, the equiboundedness of the

energy and item 2 in Assumption 4.2, it follows that supn ∥V̄n∥M([0,1]×Ω) = supn |Vn|(XΓ) < ∞. In

particular, there exists Ṽ ∈M(XΩ) such that V̄n ⇀ Ṽ. Note that, thanks to the uniform convergence
of γn to γ, the measure Ṽ is supported in XΓ. Therefore, by defining V := Ṽ XΓ ∈ M(XΓ) it is
immediate to see that V̄n ⇀ V̄ as we wanted to prove. The proof of v) and vi) follows by similar
arguments.

Finally, using the uniform bounds on the total variation of Vn
t , fnt and (Git)n, following the same

arguments as in Theorem 2.11 (see also [DNS08, Lemma 4.5]), we obtain that V ,f and Gi disintegrate
in time and thus (Jt, Vt, ρt, µt, ft, G

0
t , G

1
t ) ∈ Dadm(Γ) concluding the proof.

Proposition 4.6 (Lower semicontinuity of the action functional for varying paths). Let γn, γ ∈
C1([0, 1],Ω) be non self-intersecting, regular C1- curves such that γn → γ uniformly. Assume addi-
tionally that (Jn

t ,Vn
t , ρ

n
t , µ

n
t , f

n
t , (G0t )n, (G1t )n) ∈ CE(Γn) converges to (Jt, Vt, ρt, µt, ft, G

0
t , G

1
t ) ∈ CE(Γ)

according to the convergences stated in Theorem 4.5. Then it holds that

lim inf
n

∫ 1

0

AΓn(Jn
t ,Vn

t , ρ
n
t , µ

n
t , f

n
t , (G0t )n, (G1t )n)dt ≥

∫ 1

0

AΓ(Jt,Vt, ρt, µt, ft,G0t ,G1t )dt. (49)

Proof. Fix t ∈ [0, 1]. It holds that

lim inf
n
AΓn(Jn

t ,Vn
t , ρ

n
t , µ

n
t , f

n
t , (G0t )n, (G1t )n)dt ≥ AΓ(Jt,Vt, ρt, µt, ft,G0t ,G1t )

thanks to Assumption 4.2 and [LM10, Theorem 2.2]. The statement then follows from the application
of Fatou’s lemma since AΓn and AΓ are non-negative.

We now prove the lower semicontinuity of the regularizer R.
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Proposition 4.7 (Lower semicontinuity of the regularizer). Let γn ∈ C1([0, 1]; Ω) be a given family
of curves with supn∈NR(γn) ≤ M for a constant M > 0 and let γ ∈ C1([0, 1]; Ω) be given such that
γn → γ in C1([0, 1]; Ω) as n→ +∞. Then it holds that

R(γ) ≤ lim inf
n→+∞

R(γn).

Proof. By C1([0, 1]; Ω)-convergence it holds that γn → γ and γn′ → γ′ uniformly. Therefore, we can
apply the dominated convergence theorem to conclude the convergence of the length functionals. More-
over, by continuity and the uniform bound on R it holds that log |γn(0)− γn(1)| → log |γ(0)− γ(1)|.
It remains to show lower semicontinuity of the Tangent-Point energy. It suffices to show pointwise
convergence of the integrand almost everywhere, in particular outside of the diagonal of [0, 1]× [0, 1],
in order to apply Fatou’s lemma. Since supn∈NE

p
tp(γn) ≤ M we know that for each n ∈ N the set

{s, t ∈ [0, 1] | rγ
n

tp (s, t) = 0} is of Lebesgue measure zero and thus the countable union

N :=
⋃
n∈N
{s, t ∈ [0, 1] | rγ

n

tp (s, t) = 0}

is as well. The continuity on [0, 1]2 \ N follows by observing that

Πγn(s)(γ
n(s)− γn(t)) = γn(s)− γn(t)− ⟨γn(s)− γn(t), γn′(s)⟩γn′(s),

together with formula (38) and the convergence results established above.

With all of the considerations above, we are able to show the existence of minimizers.

Theorem 4.8. Let p > 2 and suppose that the infimum defined in (BBγ) is finite. Then there exists

a minimizer γ ∈ C1,1− 2
p ([0, 1]; Ω) and (Jt, Vt, ρt, µt, ft, G

0
t , G

1
t ) ∈ CE(Γ) of the problem (BBγ).

Proof. Let γn ∈ C1([0, 1]; Ω) and (Jn
t , V

n
t , ρ

n
t , µ

n, fnt , (G
0
t )n, (G1

t )n)n∈N ∈ CE(Γn) be a minimizing
sequence of (BBγ) and denote by L(n) the length of γn. Note that by Proposition 4.4 the curve
γn is regular and non self-intersecting, thus allowing to define CE(Γn). Since R is invariant under
reparametrization, we consider the arc-length parametrizations γn : [0, L(n)] → Ω with uniformly
bounded Tangent-Point energy, that is there exists a constant M > 0 such that supnE

p
tp(γn) ≤ M .

Applying Proposition 4.4 we obtain that

[(γn)′]p

W
1− 1

p
,p
([0,L(n)];Ω)

≤ C(p,M). (50)

Defining γ̃n : [0, 1]→ Rd as γ̃n(t) := γn(L(n) · t) for all n ∈ N gives

[(γ̃n)′]p

W
1− 1

p
,p
([0,1];Ω)

≤ L(n)2p−2C(p,M). (51)

Since p > 2 by assumption, the previous estimate implies uniform boundedness of the Gagliardo
seminorms. Moreover, by compactness of Ω, the Lp([0, 1]; Ω)-norms are bounded and by∫ 1

0

|(γ̃n)′(t)|p dt = L(n)p
∫ 1

0

|(γn)′(L(n)t)|p dt = L(n)p (52)

the sequence of L(n) is as well, implying a uniform bound on the W 2− 1
p ,p([0, 1]; Ω)-norms. From

the compact embedding W 2− 1
p ,p([0, 1]; Ω) into C1,1− 2

p ([0, 1]; Ω), see Theorem 1.5, we deduce that

(γ̃n)n∈N admits a C1,1− 2
p ([0, 1]; Ω)-convergent subsequence, still denoted by (γ̃n)n∈N, with limit γ ∈

C1,1− 2
p ([0, 1]; Ω).

From Proposition 4.5 we conclude the existence of another subsequence of measures, again de-
noted by (Jn

t , V
n
t , ρ

n
t , µ

n
t , f

n
t , (G

0
t )n, (G1

t )n)n∈N ∈ CE(Γn), converging to (Jt, Vt, ρt, µt, ft, (G
0
t ), (G1

t )) ∈
Dadm(Γ) according to the convergences stated in Proposition 4.5. From the lower semicontinuity es-
tablished in Proposition 4.7 it follows that R(γ) is finite for the limit curve and therefore, thanks to
Proposition 4.4, γ is non self-intersecting and regular.
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It remains to prove that (Jt, Vt, ρt, µt, ft, (G
0
t ), (G1

t )) satisfies the coupled continuity equations. To
this end note that, since γ is non self-intersecting and regular, the pushforward measures Vγ , fγ and
(Gi)γ are well-defined and, by γn → γ uniformly, it holds that

(Vn)γ
n

⇀ (V)γ , (fn)γ
n

⇀ (f)γ , (Gin)γ
n

⇀ (Gi)γ (53)

narrowly. Moreover, inspecting the proof of Proposition 4.5 we also have that (µn)γ ⇀ µγ . Finally
note that for every test function ψ it holds that∣∣∣∣∫ 1

0

∫ 1

0

∂sψ(t, s)|(γn)′(s)|−1 dVγn

t dt−
∫ 1

0

∫ 1

0

∂sψ(t, s)|γ′(s)|−1 dVγ
t dt

∣∣∣∣
≤
∣∣∣∣∫ 1

0

∫ 1

0

∂sψ(t, s)|γ′(s)|−1 dVγn

t dt−
∫ 1

0

∫ 1

0

∂sψ(t, s)|γ′(s)|−1 dVγ
t dt

∣∣∣∣
+

∣∣∣∣∫ 1

0

∫ 1

0

∂sψ(t, s)|(γn)′(s)|−1 dVγn

t dt−
∫ 1

0

∫ 1

0

∂sψ(t, s)|γ′(s)|−1 dVγn

t dt

∣∣∣∣
≤
∣∣∣∣∫ 1

0

∫ 1

0

∂sψ(t, s)|γ′(s)|−1 dVγn

t dt−
∫ 1

0

∫ 1

0

∂sψ(t, s)|γ′(s)|−1 dVγ
t dt

∣∣∣∣
+ ∥ψ∥C1([0,1]2)∥Vγn

t ∥M([0,1]2) sup
s
||(γn)′(s)|−1 − |γ′(s)|−1| → 0

due to the narrow convergence (Vn)γ
n

⇀ (V)γ and since ||(γn)′(s)|−1−|γ′(s)|−1| ≤ C|(γn)′(s)−γ′(s)|
for a positive constant C independent on n, together with the C1 convergence of the curves.

This, together with the convergences in (53) and the ones obtained in Proposition 4.5, allows to
conclude that (Jt, Vt, ρt, µt, ft, (G

0
t ), (G1

t )) ∈ CE(Γ) as we wanted to prove.

4.3 The case of linear mobilities and beyond

Despite the focus on general concave mobility functions with bounded domain, it is possible to extend
the results of this paper to linear mobilities, giving action functionals

Ψlinear(z, w) =


|w|2
z z ̸= 0
0 w = 0 and z = 0

+∞ otherwise

(54)

and thus recovering traditional Optimal Transport dynamics both on Ω and Γ. Since the adaptation
is straightforward and many arguments follow from the estimates provided in [Mon21], we decide to
discuss it only briefly in this section. First, we remark that an analogue of Proposition 2.10 follows by
similar estimates and adapting [Mon21, Proposition 3.5]. Such estimates lead to suitable compactness
(adapting Theorem 2.11) and thus the existence of minimizers for a fixed preferential path. Similar
considerations hold for the existence of minimizers in the case of varying paths. Interestingly, the
case of linear mobilities allows to prove finiteness of the infimum using Wasserstein and Fischer-Rao
geodesics as in [Mon21, Lemma 3.7]. Instead, as it is customary for general mobilities [LM10], this is
an additional assumption in our results, both for fixed and varying preferential paths.

We are also confident that similar approaches following [DNS08, CLSS10b] would allow to extend
the results of this paper to the case of non-decreasing mobility with unbounded domain recovering, for
instance, action functionals for the following form:

Ψconcave(z, w) =


|w|2
zα z ̸= 0
0 w = 0 and z = 0

+∞ otherwise

(55)

for α ∈ (0, 1). Here one can rely on the compactness estimates and lower semicontinuity results of
[DNS08] with the only verification needed being at the level of the compactness for varying preferential
paths.
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5 Numerics

In this Section we present a primal-dual optimization algorithm solving the coupled Optimal Transport
problem introduced and analyzed in the previous sections, restricted to linear mobilities as discussed
in subsection 4.3 assuming Git = 0. We will first apply the method to the case of a fixed curve. Then,
optimization over the curve is included as well.

5.1 Augmented Lagrangian formulation

Following [FLOL23], we can rewrite the minimization problem (BB2) as an unconstrained one by
employing a suitable Lagrangian. Let

G(ϕt, ϕ
1d
t ) := −

∫
Ω

[ϕ1 dµ1 − ϕ0 dµ0]−
∫
Γ

[
ϕ1d1 dρ1 − ϕ1d0 dρ0

]
,

⟨ϕt, ρt⟩Ω :=

∫ 1

0

∫
Ω

ϕt dρt dt and ⟨ϕ1dt , µt⟩Γ :=

∫ 1

0

∫
Γ

ϕ1dt dµt dt

where ϕt : [0, 1] × Ω → R and ϕ1dt : [0, 1] × Γ → R are smooth functions. Defining ϕt and ϕ1dt as test
functions in Definition 2.2 allows to rewrite (BB2) as the saddle-point problem

inf
(ρt,Jt,µt,Vt,ft)∈Dadm(Γ)

sup
(ϕt,ϕ1d

t )

∫ 1

0

Aα1,α2

Γ (ρt, Jt, µt,Vt, ft) dt− G(ϕt, ϕ
1d
t )

− ⟨(∂tϕt,∇ϕt), (ρt, Jt)⟩Ω − ⟨(∂tϕ1dt ,∇ϕ1dt , ϕ1dt − ϕt ◦ γ), (µt,Vt, ft)⟩Γ.

To shorten notation, let

Fα1,α2(uΩ, vΩ, uΓ, vΓ, wΓ) := Ψ(uΩ, vΩ) + α1Ψ(uΓ, vΓ) + α2Ψ(uΓ, wΓ)

for

Ψ(u, v) :=


|v|2
2u if u > 0

0 if u = 0 and v = 0

+∞ else

which corresponds to the integrand of (16) for linear mobilities and α3 = 0. By convexity and lower
semicontinuity of Fα1,α2 , the identity

Fα1,α2(uΩ, vΩ, uΓ, vΓ, wΓ) = sup
uΩ,vΩ

uΓ,vΓ,wΓ

⟨(u∗Ω, v∗Ω), (uΩ, vΩ)⟩+ ⟨(u∗Γ, v∗Γ, w∗
Γ), (uΓ, vΓ, wΓ)⟩

− (Fα1,α2)
∗

(uΩ, vΩ, uΓ, vΓ, wΓ)

holds, where (Fα1,α2)
∗

is the convex conjugate of Fα1,α2 . Substituting this expression into our objective
functional leads to the formulation

sup
(ρt,Jt,µt,Vt,ft)

inf
(ϕt,ϕ1d

t ),(ρ∗
t ,J

∗
t ,µ

∗
t ,V∗

t ,f
∗
t )

∫ 1

0

∫
(Fα1,α2)

∗
(ρ∗t , J

∗
t , µ

∗
t ,V∗

t , f
∗
t ) dxdt+ G(ϕt, ϕ

1d
t )

+ ⟨(∂tϕt − ρ∗t ,∇ϕt − J∗
t ), (ρt, Jt)⟩Ω

+ ⟨(∂tϕ1dt − µ∗
t ,∇ϕ1dt − V∗

t , ϕ
1d
t − ϕt ◦ γ − f∗t ), (µt,Vt, ft)⟩Γ

fitting the necessary structure for applying the classical method ALG2 from [FG83]. Moreover, calcu-
lating the convex conjugate of Fα1,α2 gives

(Fα1,α2)
∗

(u∗Ω, v
∗
Ω, u

∗
Γ, v

∗
Γ, w

∗
Γ)

= sup
uΩ,vΩ,uΓ,vΓ,wΓ

⟨u∗Ω, uΩ⟩+ ⟨v∗Ω, vΩ⟩+ ⟨u∗Γ, uΓ⟩+ ⟨v∗Γ, vΓ⟩+ ⟨w∗
Γ, wΓ⟩ − Fα1,α2(uΩ, vΩ, uΓ, vΓ, wΓ)

= sup
uΩ,vΩ

⟨u∗Ω, uΩ⟩+ ⟨v∗Ω, vΩ⟩ −Ψ(uΩ, vΩ) + sup
uΓ,vΓ,wΓ

⟨u∗Γ, uΓ⟩+ ⟨v∗Γ, vΓ⟩+ ⟨w∗
Γ, wΓ⟩ − α1Ψ(uΓ, vΓ)− α2Ψ(uΓ, wΓ)

= ι
{u∗

Ω+
|v∗

Ω
|2

2 ≤0}
+ ι

{u∗
Γ+

1
2

(
|v∗

Γ
|2

α1
+

|w∗
Γ
|2

α2

)
≤0}
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for the convex indicator function

ιC(x) :=

{
0 if x ∈ C
+∞ else

implying

(Aα1,α2)
∗

(ρ∗t , J
∗
t , µ

∗
t ,V∗

t , f
∗
t ) :=

∫
Ω

ι
{ρ∗

t+
|J∗

t |2
2 ≤0}

dx+

∫
Γ

ι
{µ∗

t+
1
2

(
|V∗

t |2
α1

+
|f∗

t |2
α2

)
≤0}

dx.

In this formulation, the variables ρt, Jt, µt,Vt and ft can be understood as Lagrange multipliers of
the constraints ∂tϕt − ρ∗t = 0, ∇ϕt − J∗

t = 0, ∂tϕ
1d
t − µ∗

t = 0, ∇ϕ1dt − V∗
t = 0 and ϕ1dt − ϕt − f∗t = 0.

We define the Augmented Lagrangian functional

Lα1,α2(ρt, Jt, µt,Vt, ft, ϕt, ϕ1dt , ρ∗t , J∗
t , µ

∗
t ,V∗

t , f
∗
t )

:=

∫ 1

0

(Aα1,α2)
∗

(ρ∗t , J
∗
t , µ

∗
t ,V∗

t , f
∗
t ) dt+ G(ϕt, ϕ

1d
t )

+ ⟨(∂tϕt − ρ∗t ,∇ϕt − J∗
t ), (ρt, Jt)⟩Ω

+ ⟨(∂tϕ1dt − µ∗
t ,∇ϕ1dt − V∗

t , ϕ
1d
t − ϕt ◦ γ − f∗t ), (µt,Vt, ft)⟩Γ

+
r1
2
⟨(∂tϕt − ρ∗t ,∇ϕt − J∗

t ), (∂tϕt − ρ∗t ,∇ϕt − J∗
t )⟩Ω

+
r2
2
⟨(∂tϕ1dt − µ∗

t ,∇ϕ1dt − V∗
t , ϕ

1d
t − ϕt ◦ γ − f∗t ), (∂tϕ

1d
t − µ∗

t ,∇ϕ1dt − V∗
t , ϕ

1d
t − ϕt ◦ γ − f∗t )⟩Γ

for r1, r2 > 0. The resulting problem reads

sup
(ρt,Jt,µt,Vt,ft)

inf
(ϕt,ϕ1d

t ),(ρ∗
t ,J

∗
t ,µ

∗
t ,V∗

t ,f
∗
t )
Lα1,α2(ρt, Jt, µt,Vt, ft, ϕt, ϕ1dt , ρ∗t , J∗

t , µ
∗
t ,V∗

t , f
∗
t ). (56)

5.2 Algorithm

In this Section we present an algorithm solving the augmented lagrangian problem defined in (56).
We will follow the structure of the method introduced in [BB00], modified to account for the coupling
along the preferential path.

The idea of the algorithm is to decouple the optimization of (ϕt, ϕ
1d
t ), (ρ∗t , J

∗
t , µ

∗
t ,V∗

t , f
∗
t ) and

(ρt, Jt, µt, Vt, ft). In what follows, (ϕm, ϕ
1d
m ), (ρ∗m, J

∗
m, µ

∗
m,V∗

m, f
∗
m) and (ρm, Jm, µm,Vm, fm) denote

the approximate solutions after m iterations and, to improve readability, we omit the explicit time-
dependence of the iterates. Each iteration consists of the following steps:

Step 1: Update (ϕt, ϕ
1d
t ).

For this update, we aim at solving

inf
(ϕm+1,ϕ1d

m+1)
Lα1,α2(ρm, Jm, µm,Vm, fm, ϕm+1, ϕ

1d
m+1, ρ

∗
m, J

∗
m, µ

∗
m,V∗

m, f
∗
m).

In particular, the first variation with respect to ϕm+1 and ϕ1dm+1 needs to be zero as necessary condition,
leading to the following system of equations

r1
r2
⟨∂tϕm+1, ∂tψt⟩Ω +

r1
r2
⟨∇ϕm+1,∇ψt⟩Ω + ⟨ϕm+1 ◦ γ, ψt ◦ γ⟩Γ − ⟨ϕ1dm+1, ψt ◦ γ⟩Γ

=
1

r2
⟨ψ1, ρ1⟩ −

1

r2
⟨ψ0, ρ0⟩+ ⟨ψt ◦ γ,

1

r2
fm − f∗m⟩Γ + ⟨∂tψt,

r1
r2
ρ∗m −

1

r2
ρm⟩Ω + ⟨∇ψt,

r1
r2
J∗
m −

1

r2
Jm⟩Ω

⟨ϕ1dm+1, ψ
1d
t ⟩Γ + ⟨∂tϕ1dm+1, ∂tψ

1d
t ⟩Γ + ⟨∇ϕ1dm+1,∇ψ1d

t ⟩Γ − ⟨ϕm+1 ◦ γ, ψ1d
t ⟩Γ

+
1

r2
⟨ψ1d

1 , µ1⟩Γ −
1

r2
⟨ψ1d

0 , µ0⟩Γ + ⟨ψ1d
t , f

∗
m −

1

r2
fm⟩Γ + ⟨∂tψ1d

t , µ
∗
m −

1

r2
µm⟩Γ + ⟨∇ψ1d

t ,V∗
m −

1

r2
Vm⟩Γ

for test functions ψt and ψ1d
t . Introducing the bilinear-form

A(ϕm+1, ψt, ϕ
1d
m+1, ψ

1d
t )

:=
r1
r2
⟨∂tϕm+1, ∂tψt⟩Ω +

r1
r2
⟨∇ϕm+1,∇ψt⟩Ω + ⟨ϕm+1 ◦ γ, ψt ◦ γ⟩Γ − ⟨ϕ1dm+1, ψt ◦ γ⟩Γ

+⟨ϕ1dm+1, ψ
1d
t ⟩Γ + ⟨∂tϕ1dm+1, ∂tψ

1d
t ⟩Γ + ⟨∇ϕ1dm+1,∇ψ1d

t ⟩Γ − ⟨ϕm+1 ◦ γ, ψ1d
t ⟩Γ
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and the linear form

Fm(ψt, ψ
1d
t )

:=
1

r2
⟨ψ1, ρ1⟩ −

1

r2
⟨ψ0, ρ0⟩+ ⟨ψt ◦ γ,

1

r2
fm − f∗m⟩Γ + ⟨∂tψt,

r1
r2
ρ∗m −

1

r2
ρm⟩+ ⟨∇ψt,

r1
r2
J∗
m −

1

r2
Jm⟩

+
1

r2
⟨ψ1d

1 , µ1⟩Γ −
1

r2
⟨ψ1d

0 , µ0⟩Γ + ⟨ψ1d
t , f

∗
m −

1

r2
fm⟩Γ + ⟨∂tψ1d

t , µ
∗
m −

1

r2
µ⟩Γ + ⟨∇ψ1d

t ,V∗
m −

1

r2
Vm⟩Γ

the optimality system reads

A(ϕm+1, ψt, ϕ
1d
m+1, ψ

1d
t ) = Fm(ψt, ψ

1d
t ).

Step 2: Update (ρ∗t , J
∗
t , µ

∗
t ,V∗

t , f
∗
t ).

The new iterates (ρ∗m+1, J
∗
m+1, µ

∗
m+1,V∗

m+1, f
∗
m+1) are defined as the solution of

inf
(ρ∗

m+1,J
∗
m+1,µ

∗
m+1,V∗

m+1,f
∗
m+1)

∫ 1

0

(Aα1,α2)
∗

(ρ∗m+1, J
∗
m+1, µ

∗
m+1,V∗

m+1, f
∗
m+1)

− ⟨ρ∗m+1, ρm + r1∂tϕm+1⟩Ω +
r1
2
|ρ∗m+1|2Ω

− ⟨J∗
m+1, Jm + r1∇ϕm+1⟩Ω +

r1
2
|J∗

m+1|2Ω

− ⟨µ∗
m+1, µm + r2∂tϕ

1d
m ⟩Γ +

r2
2
|µ∗

m+1|2Γ

− ⟨V∗
m+1,Vm + r2∇ϕ1dm ⟩Γ +

r2
2
|V∗

m+1|2Γ

− ⟨f∗m+1, fm + r2
(
ϕ1dm+1 − ϕm+1 ◦ γ

)
⟩Γ +

r2
2
|f∗m+1|2Γ

composed of two independent problems, one in Ω behaving as in [FLOL23] and the other one on Γ. To
simplify notation, we introduce the following variables containing the information from the previous
iteration

ηρ∗ := ∂tϕm+1 +
1

r1
ρm,

ηJ∗ := ∇ϕm+1 +
1

r1
Jm,

ηµ∗ := ∂tϕ
1d
m+1 +

1

r2
µm,

ηV∗ := ∇ϕ1dm+1 +
1

r2
Vm,

ηf∗ := ϕ1dm+1 − ϕm+1 ◦ γ +
1

r2
fm

and ηΩ := (ηρ∗ , ηJ∗), ηΓ := (ηµ∗ , ηV∗ , ηf∗). The minimization problems read

inf
(ρ∗

m+1,J
∗
m+1)

ι{ρ∗
m+1+

1
2 |J

∗
m+1|≤0} − r1⟨ηΩ, (ρ∗m+1, J

∗
m+1)⟩+

r1
2

(
|ρ∗m+1|2 + |J∗

m+1|2
)

inf
(µ∗

m+1,V∗
m+1,f

∗
m+1)

ι
{µ∗

m+1+
1
2

(
|V∗

m+1
|2

α1
+

|f∗
m+1

|2

α2

)
≤0}
− r2⟨ηΓ, (µ∗

m+1, V
∗
m+1, f

∗
m+1)⟩

+
r2
2

(
|µ∗

m+1|2 + |V∗
m+1|2 + |f∗m+1|2

)
.

If the pair (ηΩ, ηΓ) is admissible, then (ρ∗m+1, J
∗
m+1, µ

∗
m+1,V∗

m+1, f
∗
m+1) = (ηΩ, ηΓ) is optimal. Other-

wise let

xΩ := |J∗
m+1|

yΩ := J∗
m+1,1

xΓ := |V∗
m+1|

yΓ := f∗m+1
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where J∗
m+1,1 is the first component of J∗

m+1. Substituting these into the minimization and formulating
the KKT system leads to

0 = x3Ω + 2(1 + ηρ∗)xΩ − 2|ηJ∗ |

0 = x3Γ +
α1

α2
xΓy

2
Γ + 2

(
α2
1 + α1ηµ∗

)
xΓ − 2α2

1|ηV∗ |

0 = y3Γ +
α2

α1
x2ΓyΓ + 2

(
α2
2 + α2ηµ∗

)
yΓ − 2α2

2ηf∗

instead. This system can be solved using Newton’s method.

Step 3: Update (ρt, Jt, µt,Vt, ft).
The new iterate will be defined as the solution of

sup
(ρm+1,Jm+1,µm+1,Vm+1,fm+1)

⟨(∂tϕm+1 − ρ∗m+1,∇ϕm+1 − J∗
m+1), (ρ, J)⟩Ω

+ ⟨(∂tϕ1dm+1 − µ∗
m+1,∇ψm+1 − V∗

m+1, ϕ
1d
m+1 − ϕm+1 ◦ γ − f∗m+1), (µm+1,Vm+1, fm+1)⟩Γ.

and approximated using one gradient descent step given as

ρm+1 := ρm + r1
(
∂tϕm+1 − ρ∗m+1

)
Jm+1 := Jm + r1

(
∇ϕm+1 − J∗

m+1

)
µm+1 := µm + r2

(
∂tϕ

1d
m+1 − µ∗

m+1

)
Vm+1 := Vm + r2

(
∇ϕ1dm+1 − V∗

m+1

)
fm+1 := fm + r2

(
ϕ1dm+1 − ϕm+1 − f∗m+1

)
.

One iteration of these three steps is called one step of the Augmented Lagrangian method, ALG
for short, and is summarized in Algorithm 1. It can be extended to include minimization over the
preferential path by embedding the ALG method into a projected gradient descent loop for the objective
functional from (BBγ), using central differences to approximate the gradient. Let Γk be the image of
the preferential path in iteration k ∈ N0 and let pk be a normalized descent direction. Then, Γk is
updated as

Γ̃k+1 = Γk + εkpk

Γk+1 = ΠΩΓ̃k+1

where ΠΩ : Rd → Ω is the orthogonal projection onto Ω and the stepsize εk > 0 is allowed to vary.

5.3 Discretization

Throughout all examples, we fix Ω = [0, 1]2 and initial and final data to be compactly supported inside
Ω. Note that the first assumption is not restrictive. For initial or final data supported outside of Ω,
extending the domain Ω and rescaling the system recovers the assumption.

The image of the curve Γ ⊂ Ω is approximated using a piecewise linear curve. Let γi ∈ Γ ⊂ Ω
for i = 0, . . . , nγ be a family of points inscribed in Γ and let Li := [γi−1, γi] for i = 1, . . . , nγ be the
straight line between γi−1 and γi, see Figure 3 for an illustration. We describe such an approximation
by a vector γh ∈ R2nγ+2 where each entry corresponds to the coordinate of one of the points γi and
the corresponding image by Γh.

As discretization of the optimal transport problem, we employ the finite element method introduced
in [FLOL23], adapted to coupled equations. Let T = {Ti}Ni=1 denote a triangulation of Ω such that the
polygonal curve is formed by a set of edges and extend this triangulation by prism elements of the form
I × T for Ti ∈ T and I ∈ I to the unit cube [0, 1]3 ⊂ R3. Here, I := {[ti−1, ti] ti = i

nt
, i = 0, . . . , nt}

is the partition of the unit interval [0, 1] ⊂ R into nt intervals of the same length 1
nt

.

For k ≥ 0 and I ∈ I let Pk(I) be the set of polynomials of order k on I and define Pk(T ) for
T ∈ T in the same way.
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Algorithm 1 Augmented Lagrangian Method

while m ≤ itALG
max and errALG > tol do

Solve Ah(ϕm+1, ϕ
1d
m+1) = Fm

h for ϕm+1 and ϕ1dm+1

ηρ∗ ← ∂tϕm+1 + 1
r1
ρm and ηJ∗ ← ∇ϕm+1 + 1

r1
Jm

ηµ∗ ← ∂tϕ
1d
m+1 + 1

r2
µm and ηV∗ ← ∇ϕ1dm+1 + 1

r2
Vm and ηf∗ ← ϕ1dm+1 − ϕm+1 ◦ γ + 1

r2
fm

if ηρ∗ +
η2
J∗
2 ≤ 0 then

ρ∗m+1 ← ηρ∗ and J∗
m+1 ← ηJ∗

else
Solve 0 = x3Ω + 2(1 + ηρ∗)xΩ − 2|ηJ∗ |
ρ∗m+1 ← − 1

2x
2
Ω and J∗

m+1 ← xΩ
ηJ∗
|ηJ∗ |

end if

if ηµ∗ + 1
2

(
η2
V∗
α1

+
η2
f∗

α2

)
≤ 0 then

µ∗
m+1 ← ηµ∗ and V ∗

m+1 ← ηV∗ and f∗m+1 ← ηf∗

else

Solve

{
0 = x3Γ + α1

α2
xΓy

2
Γ + 2

(
α2
1 + α1ηµ∗

)
xΓ − 2α2

1|ηV ∗ |
0 = y3Γ + α2

α1
x2ΓyΓ + 2

(
α2
2 + α2ηµ∗

)
yΓ − 2α2

2ηf∗

µ∗
m+1 ← − 1

2

(
x2
Γ

α1
+

y2
γ

α2

)
and V∗

m+1 ← xΓ
ηV∗
|ηV∗ | and f∗m+1 ← yΓ

end if
ρm+1 ← ρm + r1

(
∂tϕm+1 − ρ∗m+1

)
Jm+1 ← Jm + r1

(
∇ϕm+1 − J∗

m+1

)
µm+1 ← µm + r2

(
∂tϕ

1d
m+1 − µ∗

m+1

)
Vm+1 ← Vm + r2

(
∇ϕ1dm+1 − V∗

m+1

)
fm+1 ← fm + r2

(
ϕ1dm+1 − ϕm+1 ◦ γ − f∗m+1

)
errΩ ← max

(
∥∂tϕm+1 − ρ∗m+1∥∞, ∥∇ϕm+1 − J∗

m+1∥∞
)

errΓ ← max
(
∥∂tϕ1dm+1 − µ∗

m+1∥∞, ∥∇ϕ1dm+1 − V∗
m+1∥∞, ∥phi1dm+1 − ϕm+1 ◦ γ − f∗m+1∥∞

)
errALG ← errΩ + errΓ
m← m+ 1

end while

We will need the following finite element spaces:

Vh := {v ∈ H1(XΩ) | v|I×T ∈ P0(I)⊗ P1(T ) ∀I ∈ I, T ∈ T }
Wh := {w ∈ L2(XΩ) | v|I×T ∈ P0(I)⊗ P0(T ) ∀I ∈ I, T ∈ T }
V 1d
h := {v ∈ H1(XΓ) | v|I×T ∈ P0(I)⊗ P1(T ) ∀I ∈ I, T ∈ T }

W 1d
h := {w ∈ L2(XΓ) | v|I×T ∈ P0(I)⊗ P0(T ) ∀I ∈ I, T ∈ T }

with Vh and V 1d
h H1-conforming on I ⊗ T .

We are looking for ρh, ρ
∗
h ∈ Wh, Jh, J

∗
h ∈ Wh × Wh, ϕh ∈ Vh, µh, µ

∗
h, fh, f

∗
h ∈ W 1d

h , Vh,V∗
h ∈

W 1d
h × W 1d

h and ϕ1dh ∈ V 1d
h solving (56) where the choice of spaces allows for pointwise updates.

Denote by Ah, F
m
h the discrete matrix and vector representation of the bilinear- and linearform from

the update of ϕm+1 and ϕ1dm+1. Initial and final data are defined as in the beginning of Section 4 and
approximated by gridfunctions from the spaces Vh and V 1d

h .
Now, consider the discretization of the penalty functional for varying curves. In order to ap-

ply cross-product formulas for the tangent point radius as in [BRR18] or [YSC21], we extend the
parametrization of the curve into three dimensions by introducing a zero-component. The integral
functionals are approximated using the two-dimensional trapezoidal rule. The remaining penalty
terms can be calculated explicitly for piecewise linear curves. We will use the discretization of the
Tangent-Point energy from [YSC21]. The length of each interval is given by li := |γi − γi−1| and the
discrete tangent by τi := γi−γi−1

li
. With this notation, the penalty functional reads

Rh(γh) =

nγ∑
i=1

∑
Lj∩Li=∅

kp(i, j, τi)lilj − log |γ0 − γnγ |+
nγ∑
i=1

li
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γ0

γ1

γ2

γ3

γ4

γ5

Figure 3: Polygonal curve inscribed in Γ

where

kp(i, j, τi) :=
1

4

(
|τi × (γi−1 − γj−1)|p

|γi−1 − γj−1|2p
+
|τi × (γi−1 − γj)|p

|γi−1 − γj |2p
+
|τi × (γi − γj−1)|p

|γi − γj−1|2p
+
|τi × (γi − γj)|p

|γi − γj |2p

)
is the average of the integrand evaluated in the boundary points of Li×Lj . Using this approximation,
we get rid of the singularity at intervals Li ∩ Lj ̸= ∅.

Similarly, we approximate the action from (BBγ) using the two dimensional trapezoidal rule,
resulting in the discrete functional AΓh

(Jh,Vh, ρh, µh, fh) where time-integration is discretized as well.
It remains to approximate the gradient of the objective functional AΓh

(Jh,Vh, ρh, µh, fh) + cR(γh)
and calculate a descent direction close to this gradient. We define the central difference operators

DiAΓh
(Jh,Vh, ρh, µh, fh) :=

AΓh+εei(J
+
h ,V

+
h , ρ

+
h , µ

+
h , f

+
h )−AΓh−εei(J

−
h ,V

−
h , ρ

−
h , µ

−
h , f

−
h )

2ε

and

DiR(γh) :=
R(γh + εei)−R(γh − εei)

2ε

for ei ∈ R2nγ+2 the i-th unit vector and a small pertubation ε > 0. In order to calculate the resulting
function values, the change in measures needs to be accounted for by calculating the values using one
iteration of the augmented Lagrangian method for fixed curves introduced above. As a search direction
choose

pik :=

{
DiAΓh

(Jh,Vh,ρh,µh,fh)+cDiRh(γh)

|DiAΓh
(Jh,Vh,ρh,µh,fh)+cDiRh(γh)| if |DiAΓh

(Jh,Vh, ρh, µh, fh)| > c|DiRh(γh)|
0 else

for i ∈ {1, . . . , 2nγ + 2}, allowing to update if and only if the change in action dominates the change in
the penalty term. Note that this choice allows for pk = 0 and if pk = 0 for niter consecutive iterations,
the scaling parameter c > 0 is updated to c

2 if it remains above the threshold clow > 0.
After each curve update, the domain Ω is remeshed. To allow this process to be consistent, we

impose the additional assumption that there exists some fixed δ > 0 such that dist(Γ, ∂Ω) ≥ δ. This
distance will specify the bounds used in the projection step onto the closed interval [δ, 1 − δ] leading
to

Π[δ,1−δ]x = min(1− δ,max(x, δ)).

Applying this projection to each component of the vector γh defines the projection of the piecewise
linear curve onto [δ, 1−δ]2 ⊂ Ω and we denote this component wise projection by Π[δ,1−δ]. The update
steps described above are summarized in Algorithm 2.

5.4 Examples

We will apply the algorithms introduced in the previous subsections to several examples on Ω = [0, 1]2

and initial and final data modelled using the two dimensional gaussian

fmx,my,σ(x, y) := exp

(
− (x−mx)2 + (y −my)2

2σ2

)
(57)

with mean mx,my ∈ R and variance σ2 > 0.
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Algorithm 2 Minimization over the preferential path

Initialize mesh and initial, final data
while k ≤ itγmax and err > tol do

if pj = 0 for all j ∈ {k − niter, . . . , k} and c > clow then
c← c

2
end if
for i = 1, . . . , 2nγ + 2 do

Algorithm 1 with γ = γk + εei
Algorithm 1 with γ = γk − εei
gik ← DiAΓk

+ cDiR(γk)
if |DiAΓk

| > c|DiR(γk)| then
pik ← gik

else
pik ← 0

end if
end for
pk ← pk

|pk|
γk+1 ← Π[δ,1−δ](γk + εkpk)
Remesh with γ = γk+1

Algorithm 1 with γ = γk+1

err ← ∥γk+1 − γk∥∞ + errAL

k ← k + 1
end while

5.4.1 Fixed curve

We test Algorithm 1, thus assuming the preferential path to be given by a fixed curve. All meshes are
constructed using the meshsize h = 0.02 in temporal and spatial direction.

Example 5.1. Consider

ρ0(x, y) := f0.5,0.2,0.1(x, y) and ρ1(x, y) =
1

2
(f0.2,0.8,0.1(x, y) + f0.8,0.8,0.1(x, y)) .

The (fixed) preferential path is given by the piecewise linear interpolation between the points

(0.3, 0.7), (0.4, 0.3), (0.6, 0.3), (0.7, 0.7) ∈ [0, 1]2.

Both initial and final data are restricted and scaled as described in the beginning of section 4, see
Figure 4 for an illustration of the resulting measures.

We will compare two sets of parameters α1 and α2. As a first choice, let α1 = 0.01 = α2, implying
that transport along the curve is cheaper than transport in the bulk region. We compare the results
to the choices α1 = 100 = α2, meaning that transport along the curve is more costly. The resulting
evolutions are represented in Figure 5 for α1 = 0.01 = α2 and Figure 6 for α1 = 100 = α2. As
expected, small parameter choices lead to increased transport along the curve. For the particular value
0.01, mass is transported almost exclusively along Γ. Moreover, transport along the curve is faster
compared to Figure 6. For the second pair of parameters, most of the mass is transported in the bulk
domain. Since initial and final data are supported on the curve, mass needs to be transported along Γ
as well.

Example 5.2. Let

ρ0(x, y) := f0.2,0.2,0.1(x, y)

and

ρ1(x, y) := f0.8,0.5,0.1(x, y) + f0.2,0.8,0.05(x, y) + f0.4,0.8,0.05(x, y) + f0.6,0.8,0.05(x, y)
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(a) Initial data ρ0 (b) Final data ρ1

Figure 4: Initial and final data for a u-shaped curve

(a) ρ at t = 0.2 (b) ρ at t = 0.5 (c) ρ at t = 0.8

(d) µ at t = 0.2 (e) µ at t = 0.5 (f) µ at t = 0.8

Figure 5: Time-evolution for α1 = 0.01 = α2 and a u-shaped curve
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(a) ρ at t = 0.2 (b) ρ at t = 0.5 (c) ρ at t = 0.8

(d) µ at t = 0.2 (e) µ at t = 0.5 (f) µ at t = 0.8

Figure 6: Time-evolution for α1 = 100 = α2 and a u-shaped curve

be given. The (fixed) preferential path is chosen as the piecewise linear interpolation of the mapping
γ(t) = t2 + 0.2 between the points t ∈ { k

10 | k = 1, . . . , 8}. Again, we restrict and rescale the initial
and final data illustrated in Figure 7 and compare the choices α1 = 0.01 = α2 and α1 = 100 = α2.
Figure 8 and Figure 9 show the numerical results. As expected, for the small parameter values we are
able to observe mass transportation along the curve that is faster. In contrast to Example 5.1, mass is
transported through the bulk as well, especially between the initial data and the part of the final data
supported above the curve, thus illustrating the influence of the particular geometry of the problem. For
the second set of parameters transport along the curve is slower. This behaviour is similar to the one
observed for large parameter choices in the previous example.

5.4.2 Varying preferential path

In what follows, we test Algorithm 2 for several examples of varying preferential paths. All meshes
have meshsize h = 0.1 in spatial and h = 0.02 in temporal direction. Compared to the fixed curve
examples, we chose a coarser discretization in spatial direction because of increased memory usage.

Example 5.3. Let

ρ0(x, y) := f0.25,0.25,0.05(x, y) and ρ1(x, y) := f0.75,0.75,0.05(x, y)

be given. As an initial guess for the optimal curve γ we start with γ0(t) ≡ 1
2 approximated using

three points. When applying Algorithm 2, we expect the curve to rotate in the direction of γ(t) = t
connecting ρ0 and ρ1. For the stepsize 0.01 and scaling parameter c = 0.001, Figure 10a displays every
20th iteration of the curve as well as the transport costs. The irregularities of the transport cost is
explained by manual changes in the stepsize and scaling. This prevents the curve from jumping between
two configurations of similar costs without improving costs. As expected, we recover a straight line.
The length penalty compresses the curve in the sense that it does not connect the centre of initial and
final data. In Figure 11 the measures resulting after 20000 iterations of Algorithm 1 with the last
curve configuration fixed are displayed. At first mass belonging to the final data supported in the bulk
is transported along the curve and through the bulk domain, in a second phase, the mass remaining on
the curve is transported. Overall, transport along the curve is faster.
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(a) Initial data ρ0 (b) Final data ρ1

Figure 7: Initial and final data for the branch of a quadratic curve

(a) ρ at t = 0.2 (b) ρ at t = 0.5 (c) ρ at t = 0.8

(d) µ at t = 0.2 (e) µ at t = 0.5 (f) µ at t = 0.8

Figure 8: Time-evolution for α1 = 0.01 = α2 and the branch of a quadratic curve
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(a) ρ at t = 0.2 (b) ρ at t = 0.5 (c) ρ at t = 0.8

(d) µ at t = 0.2 (e) µ at t = 0.5 (f) µ at t = 0.8

Figure 9: Time-evolution for α1 = 100 = α2 and the branch of a quadratic curve

(a) Evolution of the curve (b) Evolution of the transport costs

Figure 10: Example 5.3

Example 5.4. As a second example, we consider initial and final data as in Example 5.1. We expect
to recover a curve similar to the one used for the fixed-curve example. Since such a curve differs from a
straight line, we need to use small scaling parameters to allow for such geometries in the minimization.
Again, let γ0(t) ≡ 1

2 be the initial curve discretized by three points. In Figure 12 every 20th step of
the evolution using an initial stepsize of 0.01 and a scaling parameter c = 0.001 is shown. Indeed, the
curve evolves towards a v-shaped structure. However, the length and boundary constraints prevent it
from being symmetric. Again, we adapt stepsize and scaling parameter manually. Figure 13 shows the
measures arising as numerical solutions of the coupled system for the curve after the last minimization
step and 20000 iterations. Similar to Example 5.1, most of the mass is transported along the curve.
However, there still is transport in the bulk region becacuse of the non-symmetric structure of the
resulting curve.
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(a) ρ at t = 0.2 (b) ρ at t = 0.5 (c) ρ at t = 0.8

(d) µ at t = 0.2 (e) µ at t = 0.5 (f) µ at t = 0.8

Figure 11: Time-evolution of measures for α1 = 0.01 = α2 and the final curve from Example 5.3
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The authors like to thank Elias Döhrer (TU Chemnitz) for fruitful discussions and advice on Tangent-
Point energies and Guosheng Fu (University of Notre Dame) for providing their code as a starting
point for our implementation.

(a) Evolution of the curve (b) Evolution of the transport costs

Figure 12: Example 5.4
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(a) ρ at t = 0.2 (b) ρ at t = 0.5 (c) ρ at t = 0.8

(d) µ at t = 0.2 (e) µ at t = 0.5 (f) µ at t = 0.8

Figure 13: Time-evolution of measures for α1 = 0.01 = α2 and the final curve from Example 5.4
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and generalized displacement convexity. Journal of Functional Analysis, 258(4):1273–
1309, 2010.
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optical flow method for cardiac motion correction in 3d pet data. In Medical Imaging and
Augmented Reality: 5th International Workshop, MIAR 2010, Beijing, China, September
19-20, 2010. Proceedings 5, pages 88–97. Springer, 2010.

[DM12] Gianni Dal Maso. An introduction to Γ-convergence, volume 8. Springer Science &
Business Media, 2012.

[DNS08] Jean Dolbeault, Bruno Nazaret, and Giuseppe Savaré. A new class of transport dis-
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