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Abstract. Goal of this paper is to study classes of Cauchy-Dirichlet problems which include
parabolic equations of the type

ut − ∆u = a(x, t)f(u) in Ω × (0, T )
with Ω ⊂ RN bounded, convex domain and T ∈ (0, +∞]. Under suitable assumptions on a and f ,
we show logarithmic or power concavity (in space, or in space-time) of the solution u; under some
relaxed assumptions on a, we show moreover that u enjoys concavity properties up to a controlled
error. The results include relevant examples like the torsion f(u) = 1, the Lane-Emden equation
f(u) = uq, q ∈ (0, 1), the eigenfunction f(u) = u, the logarithmic equation f(u) = u log(u2), and
the saturable nonlinearity f(u) = u2

1+u
. The logistic equation f(x, u) = a(x)u − u2 can be treated

as well.
Some exact results give a different approach, as well as generalizations, to [38, 39]. Moreover,

some quantitative results are valid also in the elliptic framework −∆u = a(x)f(u) and refine [13, 29].
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1. Introduction
In the 1970s and 1980s, significant progress was made in understanding the convexity and

concavity properties of solutions to certain elliptic differential equations on convex domains and
Dirichlet boundary conditions. In the pivotal papers by Brascamp and Lieb [12] and Makar-Limanov
[54], the authors showed that solutions of the eigenfunction problem and of the torsion problem are
concave up to a composition, respectively, with the logarithm function or the square root function.
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The seminal papers by Korevaar [47] and Kennington [45] gave a new boost to this research, by
introducing general concavity maximum principles to deal with general class of equations. We refer
to [3, 29] and references therein for a general overview on the topic. Let us mention, among various
mathematical applications, that in [60] the authors exploit the log-concavity of the eigenfunction to
show notable results about the eigenvalue gap, i.e. the difference between the first and the second
Dirichlet eigenvalue.

In the framework of parabolic equations and Cauchy-Dirichlet problems
ut − ∆u = b(x, u, t) in Ω × (0, T ),
u = 0 on ∂Ω × [0, T ),
u = u0 on Ω × {0},

T ∈ (0,+∞], several questions arise. A first problem is to study very particular examples of
b and discuss if, under suitable assumptions on u0, the solution u(x, t) becomes logarithmic or
power concave (i.e. log(u) or uα for some α > 0 is concave) after some amount of time (t > 0
or possibly t ≫ 0): these kinds of results are strongly related to the particular shape of b which
allows, for instance, explicit representation of the solution, and have been investigated for example
in [35, 50, 51]. We highlight that these results allow, under suitable assumptions, to get interesting
properties also in the elliptic case, by considering the limit of u(x, t) as t → +∞ which eventually
coincide with the solution of the corresponding stationary problem.

A second question is the following: what is the optimal (in some sense) concavity on u0 which is
preserved by the heat flow? In this problem, the logarithmic concavity plays a very special role.
This and similar questions have been addressed in a series of papers [37, 40, 41, 42]. See also [17, 24]
for similar questions regarding power concavity and porous medium flow.

In this paper we are interested in a different question: under which assumptions on b and u0 can
we obtain that u(x, t) enjoys some concavity properties for each t > 0? To the authors knowledge,
only few papers deal with this problem. A first result can be found in Korevaar [47], where the
authors adapts the elliptic concavity maximum principles to study classes of parabolic equations
and show that, for example, the parabolic eigenfunctions u(·, t) are spatially logarithmic concave
for each t ∈ [0, T ] if u0 is so. Let us mention that in [6] a stronger notion of log-concavity is proved
and it is exploited to prove a sharp result on the eigenvalue gap; it is notable to observe that the
technique adopted in [6] relies on the introduction and analysis of some suitable multivariable
function in a spirit relatable to the one introduced in [45, 47] and used in the present paper.

Some partial generalizations of the results in [47] can be found in [58] (see also [32]), by allowing
the inclusion of other interesting models. Other results are contained in [40] (see e.g. Proposition
4.2 in there) by means of spatial log-concave envelopes as viscosity subsolutions of the problem and
corresponding comparison principles; similar techniques go back to [4] (see also [22]).

In this paper we recover these results, obtaining among others the following statement. To fix
notations, we say that u is α-concave if α > 0 and uα is concave, or α = 0 and log(u) is concave
(see (2.4)).

Theorem 1.1 (Weighted eigenfunctions and logarithmic equations). Let Ω ⊂ Rn, n ≥ 2, be a
bounded, smooth, strongly convex domain. Let T > 0, a : Ω × (0, T ] → R, u0 ∈ C1(Ω) with u0 = 0
on ∂Ω and u ∈ C2(Ω) ∩ C1(Ω × [0, T ]) be a positive solution of

ut − ∆u = a(x, t)f(u) in Ω × (0, T ],
u = 0 on ∂Ω × [0, T ],
Dxu · ν > 0 on ∂Ω × [0, T ],
u = u0 on Ω × {0},
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where ν is the interior normal to ∂Ω. Assume moreover that u0 is log-concave and one of the
following:

i) f(s) = s, and a is concave;
ii) f(s) = s logq(1 + s) or f(s) = sq+1

1+sq , q ∈ (0, 1), and a is 1
1−q -concave;

iii) f(s) = s log(1 + s), f(s) = s log(s) or f(s) = s2

1+s , and a is a positive constant.
Then log(u(·, t)) is strictly concave for each t ∈ (0, T ). As a consequence, for each t ∈ (0, T ) the
function u(·, t) has a unique, nondegenerate, critical point.

Remark 1.2. We observe the following facts.
• Theorem 1.1 is a particular case of the more general Corollary 4.3; we highlight the

dependence of a in x and t. We also mention that in this paper we actually deduce
generalizations of Theorem 1.1 also in the sense of perturbed concavity, see Theorem 1.7
below and Corollary 4.5.

• We highlight that we do not require a to be nonnegative in point (i); this allows us to cover
a broader range of problems, including applicative ones (see also Theorem 1.3 below).

• Once concavity is obtained, the strict concavity of solutions is usually gained, in elliptic
PDEs, through the use of a constant rank theorem. Parabolic versions of the constant rank
theorem have been obtained in a space version in [8, 14], and in a spacetime version in
[18, 19] (see Proposition 2.10). We mention that, in our case, the conclusion for the weighted
eigenfunction (case (i)) can be obtained in a more straightforward way by assuming a
strictly concave in x, see Remark 4.4; similar properties appear in [10] in the setting of
periodic solutions.

• The condition Dxu·ν > 0 already appears in the papers [32, 47]; we point out the requirement
also in t = 0 (that is, u0 ∈ C1(Ω) and Dxu0 · ν > 0) which, as highlighted in [32, Section 6],
is essential but erroneously neglected in previous papers; in the same section, the authors
provide an approximation process in order to avoid this restriction in zero (in particular,
allowing u0 ∈ C(Ω)). Moreover, in [32, Remark 2, page 7] the authors comment the
validity of such condition for general class of nonlinearities. For example, assume a ≥ 0 and
Dxu0 · ν > 0. Then f(s) ≥ 0 is sufficient to ensure this condition thanks to the parabolic
Hopf Lemma A.4; this covers almost every case of Theorem 1.1. To treat f(s) = s log(s),
assuming moreover a ≥ m > 0, we see that it sufficient to choose u0 such that u0 ≥ w where
w is a positive solution to the stationary problem −∆w = f(w) which, by [61, Theorem 2]
verifies Dxw · ν > 0; then the comparison principle (Proposition A.1) and u = w = 0 on ∂Ω
imply Dxu · ν ≥ Dxw · ν > 0.

• The requirement on the smoothness of Ω (not required in Theorem 1.4 below) is here
related to the control of the concavity function of log(u) near the boundary, by means
of the positivity of the curvatures. Anyway this condition can be relaxed through some
standard approximation on the domain Ω, see e.g. [11, 29].

• We highlight that the logarithmic equation f(s) = s log(s), being superlinear and sign-
changing, is a problem not easy to tackle in the elliptic framework, see [28]; in the parabolic
framework, on the other hand, it can be addressed through a suitable trick in time. Notice
moreover that the result is obtained on [0, T ] and, generally, the solutions of this problem
do not converge to the one of the stationary problem (see Remark 4.6), thus it is not
straightforward to obtain the elliptic result from the parabolic one.

As an additional example, we may consider logistic models of population dynamics in hetero-
geneous environments with lethal boundary. That is, the equation is governed by a logistic law
b(x, s) = a(x)s − s2 where {a > 0} is the favorable habitat while {a < 0} is the hostile one, see
[7, 15, 56] (see also Remark 4.9 for bang-bang weights).
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Theorem 1.3. Let Ω ⊂ Rn, n ≥ 2, be a bounded, smooth, strongly convex domain. Let T > 0,
a : Ω × (0, T ] → R, u0 ∈ C1(Ω) with u0 = 0 on ∂Ω and u ∈ C2(Ω) ∩ C1(Ω × [0, T ]) be a positive
solution of 

ut − ∆u = a(x)u− u2 in Ω × (0, T ],
u = 0 on ∂Ω × [0, T ],
Dxu · ν > 0 on ∂Ω × [0, T ],
u = u0 on Ω × {0},

where ν is the interior normal to ∂Ω. Assume moreover that u0 is log-concave and a is concave.
Then log(u(·, t)) is strictly concave for each t ∈ (0, T ).

Parabolic generalizations for equations in the spirit of the torsion and Lane-Emden problems,
which allow to obtain power concavity (stronger than logarithmic one), appear first in [44]: here
the author studies the case a = 1 and f(u) = (1 − u)q, q ∈ (0, 1), obtaining that a suitable
transformation of u is concave and thus u is quasi-concave (i.e., the superlevel sets of u are convex).
To gain the claim the author exploits again some concavity maximum principle and he strongly
uses that f(0) ̸= 0 coupled with some comparison principle; moreover, he relies on the information
at infinity given by the stationary problem.

Other results have been more recently obtained in [38, 39] (see also [36]): here the authors rely on
the use of parabolic concave envelopes as viscosity subsolutions. In such a way the authors are able
the study the concavity of nondecreasing solutions with controlled behaviour on the boundary, in
the case of nonnegative nonlinearities satisfying a priori some comparison principle, set in smooth
domains: for example, they cover the cases f = 1, or a = 1 and f(u) = uq, q ∈ (0, 1). Moreover,
the authors study a rescaled concavity in space and time, namely they show that (x, t) 7→ u(x, tβ)
is power concave for suitable values of β.

In this paper, we get inspiration from the concavity principle approach in [44] to show some
general results, which include also some examples presented in [38, 39]. As a particular case of our
results, we obtain the following.

Theorem 1.4 (Weighted Lane-Emden). Let Ω ⊂ Rn, n ≥ 2, be a bounded, convex domain which
satisfies the interior sphere property. Let q ∈ [0, 1) and γ ∈ [0, 1]. Let u ∈ C2(Ω) ∩ C1(Ω) ∩
C1((0,+∞)) ∩ C(Ω × [0,+∞)) be a positive solution of

ut − ∆u = a(x)tγuq in Ω × (0,+∞),
u = 0 on ∂Ω × [0,+∞),
u = 0 on Ω × {0}.

Suppose a : Ω → R to be measurable and that there exists m > 0 such that a(x) ≥ m for all
x ∈ Ω. If β ∈ [1, 1

γ ) ∩ [1, 2] and a is θ-concave with θ ≥ 1
1−βγ , then u(·, ⋆β) is (1−q)θ

2θ+βγθ+1 -concave. If
β ∈ [1,min{ 1

γ , 2}] and a is constant, then u(·, ⋆β) is 1−q
2+βγ -concave.

Remark 1.5. We observe the following facts.
• The theorem is a particular case of the more general Theorem 4.17, where we focus on

giving explicit sufficient assumptions on f (rather than on u) to ensure the result; moreover,
our method allows to keep track of the error in concavity and deduce some quantitative
results, see Theorem 1.8 below and Corollary 4.16.

• We see that the exponent α = (1−q)θ
2θ+βγθ+1 is coherent with the results in [29, 45], where

α = (1−q)θ
2θ+1 if the problem is elliptic (and thus γ = 0), and in [38, 39], where α = θ

2θ+βγθ+1
if the nonlinearity does not depend on u (i.e. q = 0).

• If q = 0, the condition a(x) ≥ m > 0 can be relaxed into a(x) ≥ 0, see Proposition 5.5.
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• The initial condition u(·, 0) = 0 appears also in [38, 39, 44], and we mention that, for such
a sublinear problem, nontrivial solutions generally may exist (see Remark 2.1). See also
Remark 4.25 for some comments on the case u(·, 0) ̸= 0.

• If u is nondecreasing in time (and this is the case of our setting, see Theorem 4.15), then if
u(·, ⋆β1) is α-concave then u(·, ⋆β2) is α-concave for all β2 ≤ β1, see [39, Section 2, Property
(e)] (see also (2.7)).

Our approach allows to recover also the quasiconcavity obtained by [44], see Proposition 4.18
and the subsequent remark. To mention another consequence of our general setting, we propose
here the concavity of solutions for nonhomogeneous nonlinearities.

Theorem 1.6 (Sum of powers). Let Ω ⊂ Rn, n ≥ 2, be a bounded, convex domain which satisfies the
interior sphere property. Let q ∈ (1

3 , 1) and p ∈ (3q−1
2 , q). Let u ∈ C2(Ω) ∩ C1(Ω) ∩ C1((0,+∞)) ∩

C(Ω × [0,+∞)) be a positive solution of
ut − ∆u = a(x)up + uq in Ω × (0,+∞),
u = 0 on ∂Ω × [0,+∞),
u = 0 on Ω × {0}.

Suppose a : Ω → R to be measurable and that there exists m > 0 such that a(x) ≥ m for all
x ∈ Ω; assume moreover a to be θ-concave with θ ∈ [ 1−q

2(q−p) ,+∞]. Then we have that u(·, ⋆2) is
1−q

2 -concave.

A second goal of this paper is to deal with quantitative versions of the concavity maximum
principles. Recently, quantitative versions of symmetry results have been considered for example
in [5, 21, 26, 30]. In the realm of concavity properties, instead, similar results have been recently
investigated in the elliptic case in [13] (see also [2, 29]); such estimations are made in terms of some
parameter of the weight a(x): more precisely, in these papers the authors show that, if a is close to
a constant function, then some power of u is close to a concave function, up to some explicit error.
In this paper, we deal with estimations of the (space) concavity function of a solution v (see (2.5))

C∗
v (x1, x3, λ, t) := v(x2, t) − λv(x3, t) − (1 − λ)v(x1, t),

or the (spacetime) concavity function
Cv(x1, x3, t1, t3, λ) := v(x2, t2) − λv(x3, t3) − (1 − λ)v(x1, t1),

where x1, x3 ∈ Ω, t1, t3 ∈ [0,+∞), λ ∈ [0, 1] and x2 = λx3 + (1 − λ)x1 and t2 = λt3 + (1 − λ)t1;
notice that Cv ≥ 0 if and only if v is concave. Our goal is to generalize the abovementioned results
also to the parabolic setting, which seems to be new in the literature. As a consequence of our
general results, we get in particular the following statement. Here f− := min{0, f} stands for the
negative part of a function f , while osc(a) := sup(a) − inf(a) stands for the oscillation of a.

Theorem 1.7 (Quantitative concavity, I). Let Ω ⊂ Rn, n ≥ 2, be a bounded, smooth, strongly convex
domain. Let T > 0, a : Ω×(0, T ] → R, u0 ∈ C1(Ω) with u0 = 0 on ∂Ω and u ∈ C2(Ω)∩C1(Ω×[0, T ])
be a positive solution of 

ut − ∆u = a(x, t)u in Ω × (0, T ],
u = 0 on ∂Ω × [0, T ],
Dxu · ν > 0 on ∂Ω × [0, T ],
u = u0 on Ω × {0},

where ν is the interior normal to ∂Ω. Assume moreover that u0 is log-concave. Then

inf
Ω×Ω×[0,1]×[0,T ]

C∗
log(u) ≥ −eT sup

Ω×Ω×[0,1]×(0,T ]

(
C∗

a(·,⋆)

)−
.
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Theorem 1.8 (Quantitative concavity, II). Let Ω ⊂ Rn, n ≥ 2, be a bounded, convex domain
which satisfies the interior sphere property. Let q ∈ [0, 1). Let u ∈ C2(Ω) ∩ C1(Ω) ∩ C1((0,+∞)) ∩
C(Ω × [0,+∞)) be a positive solution of

ut − ∆u = a(x)uq in Ω × (0,+∞),
u = 0 on ∂Ω × [0,+∞),
u = 0 on Ω × {0}.

Suppose a : Ω → R to be measurable and 0 < m ≤ a ≤ M . Then u is increasing in time and

min
Ω×Ω×[0,+∞]×[0,+∞]×[0,1]

C
u

1−q
2

≥ −∥u(·,∞)∥
1−q

2
L∞(Ω)

osc(a2)
m2 , (1.1)

where u(·,∞) is the solution of the corresponding stationary problem
If moreover θ ≥ 1 and mθ ≥ M θ/2, then

min
Ω×Ω×[0,+∞]×[0,+∞]×[0,1]

C
u

θ(1−q)
2θ+1

≥ − 2θ
2θ + 1

1
m

∥u(·,∞)∥
(θ−1)(1−q)

2θ+1
L∞(Ω) sup

Ω×Ω×[0,1]
(C−

aθ )1/θ. (1.2)

Remark 1.9. We observe the following facts.
• In Theorem 1.7 one may consider also other nonlinearities, like the ones in Theorem 1.1

(see Corollary 4.5). Moreover, if u0 is not assumed to be log-concave, than an additional
error related to Clog(u0) appears (see Remark 4.2).

• We observe that ∥u(·,∞)∥L∞(Ω) could be bounded in terms of known quantities of the
problems, i.e. n, |Ω|, q, m and M , see e.g. [21, proof of Corollary 1.4(b)]. Notice that,
choosing θ = 1 in (1.2), we can drop the dependence on the L∞-norm and the statement
become

min
Ω×Ω×[0,+∞]×[0,+∞]×[0,1]

C
u

1−q
3

≥ −2
3

1
m

sup
Ω×Ω×[0,1]

C−
a .

• The condition mθ ≥ M θ/2 comes into play in showing quantitative concavity properties of
products (see Lemma B.1), but we believe it is technical.

• We highlight that estimate (1.1) is slightly finer if compared with the ones obtained in the
elliptic setting in [13, 29]. Moreover, the estimate (1.2) does not involve the oscillation of a
and is totally new, even for the elliptic setting.

As just mentioned in Remark 1.9, some results of this paper can be easily adapted to the elliptic
setting, allowing to improve and generalize some previous results [13, 29]. By way of example, with
the same techniques, we obtain the following statement. We leave the details to the reader.

Theorem 1.10 (θ-concavity estimate). Let Ω ⊂ Rn, n ≥ 2, be a bounded, convex domain which
satisfies the interior sphere property, and let q ∈ [0, 1). Let u ∈ C2(Ω) ∩C1(Ω) be a positive solution
of {

−∆u = a(x)uq in Ω,
u = 0 on ∂Ω.

Suppose a : Ω → R to be measurable and 0 < m ≤ a ≤ M and 1 ≤ θ ≤ log(2)/ log(M
m ). Then

min
Ω×Ω×[0,1]

C
u

θ(1−q)
1+2θ

≥ − 2θ
1 + 2θ

1
m

||u||
(θ−1)(1−q)

1+2θ
∞ sup

Ω×Ω×[0,1]
(C−

aθ )1/θ.

As already mentioned, the main tool of this paper is composed by concavity and harmonic
concavity maximum principles, which allow to give an estimate on the concavity function Cv of a
solution of a general PDE in terms of the concavity/harmonic concavity function of the nonlinear
term (see Definition 2.8). The equation treated do not rely on the boundary conditions and can
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have very general form (see Theorems 3.1, 3.3), and in particular include the equations satisfied
by v = log(u) or v = uα, α ∈ (0, 1), where u is the solution of the equation of interest. To further
treat equations like the logarithmic one, we need to implement a correction in time of the type eµt,
µ large, which allows to decrease the monotonicity of the nonlinearity involved (see Theorem 3.1).
We highlight that the concavity principle approach is flexible since it can be used, for example, to
deal with weak solutions of quasilinear equations, see [11, 29, 53] (see also Remark 4.9 for another
nonsmooth setting).

Such maximum principles require that the minimum of the concavity function is in the interior
of the domain: to ensure such a property we will exploit both the information at the boundary
of Ω and the information at t = 0; when treating equations in (0,+∞), we will exploit also the
information on the stationary problem (i.e. t = +∞). When a(x, t) depends on t in a coercive way
(for instance, a(x, t) = a(x)tγ) we also implement a truncation argument in order to be able to
compare the problem with a stationary one at infinity. In such a way, we control all the information
on ∂(Ω × (0,+∞)) and we can apply the concavity maximum principles. We notice that, when
dealing with T < +∞, the nonlinearity is concave and concavity is discussed only in the spatial
sense, no a priori information on t = T is needed.

To gain the above results, we make some technical assumptions: on the nonlinearity b(x, s, t) we
require some conditions to ensure that u(x, ·) is monotone nondecreasing, and it converges to the
stationary problems (see conditions (H2), (H3) and (i)–(iv) in Remark 2.3). Moreover, we need to
ensure the validity of some comparison principles (notice that b(x, ·, t), in this setting, cannot be
generally assumed locally Lipschitz) and that u can be compared through such a tool with some
suitable known subsolution, whose behaviour near t = 0 and near ∂Ω is known (see conditions
(H1)-(H2)); in particular we highlight that, compared with [44], the nonlinearities of interest in
this paper vanish at zero, thus a finer analysis is needed. We notice again that, when logarithmic
transformations are considered and the concavity is discussed only in the spatial sense, then the
analysis on the boundary essentially relies on the strong convexity of the domain.

Finally, in order to adapt the above proofs to some quantitative version and keep track of all the
interested quantities in play, a finer and technical analysis of the relations among concavity and
harmonic concavity functions is needed.

The paper is organized as follows. In Section 2 we recall some basic facts on parabolic equations,
and we introduce the main assumptions that we will require on the nonlinearity. Moreover, we recall
notations and properties about concavity functions; more technical results are instead collected
in Appendix B. Section 3 is devoted to the proof of the main concavity principles, which take
into account only the PDE and not the boundary/initial conditions; these theorems will lead both
to exact and quantitative results. In particular, we show both concavity principles in space (in
presence of nonlinearities which are concave but not necessarily decreasing, and set in (0, T ]) and
in space-time (in the case of harmonic concave and decreasing nonlinearities set in (0,+∞)); the
latter will require the use of the harmonic concavity function. In Section 4 we take into account
the boundary conditions and the initial condition, employing a suitable analysis of the solution and
of the concavity function near the boundary of the parabolic cylinder; this analysis exploits also
comparison principles and Hopf lemmas which are collected in Appendix A. Some applications and
examples follow, including the proofs of the main theorems presented in the introduction. When
the nonlinearity does not depend on u, finally, we present some further results (both simplifications
and improvements of the previous ones) in Section 5.

2. Preliminaries
In what follows, we will denote by Ω ⊂ Rn an open, bounded and convex domain. By smooth

we will mean ∂Ω ∈ C2,α, while by strongly convex we will mean that the second fundamental form
with respect to its interior normal is positive definite everywhere. We also set dΩ(x) := dist(x, ∂Ω)
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and
Ωρ := {x ∈ Ω : dΩ(x) > ρ}

for ρ > 0. We will also denote f+ := max{0, f} and f− := max{0,−f} the positive and negative
parts of a function f : Ω → R, so that f = f+ − f−, and by

osc(f) := sup
Ω
f − inf

Ω
f

the oscillation of f , whenever well defined.
In the whole paper, · represents spatial dependence and ⋆ time dependence, e.g. we write u(·, ⋆)

for u : Ω × [0, T ] → R. We will also use the following notation.
Notation. To say that u : Ω × [0, T ] → R verifies u(·, t) ∈ Ck(Ω) for each t ∈ (0, T ] (or t > 0 if

T = +∞) and u(x, ⋆) ∈ Ch([0, T ]) for each x ∈ Ω, we will simply write u ∈ Ck(Ω) ∩ Ch([0, T ]).
We finally denote

Du := (Dxu, ∂tu) = (Dxu, ut)
where Dx is the spatial gradient and ∂t is the time derivative of u; in this regard, we will often
decompose vectors as p = (p̃, pn+1) ∈ Rn × R = Rn+1.

2.1. On parabolic equations
In this subsection we recall some facts on the parabolic problem

ut − ∆u = b(x, u,Du, t) in Ω × (0,+∞),
u > 0 in Ω × (0,+∞),
u = 0 on ∂Ω × (0,+∞),
u = u0 on Ω × {0},

(2.1)

where b : Ω × R × Rn+1 × R → R.

Remark 2.1. We briefly comment existence and regularity results for problem (2.1) when
b(x, s, p, t) = a(x)f(s) and u0 = 0. Assumed a ∈ C(Ω) ∩ Cσ(Ω), σ ∈ (0, 1], a ̸≡ 0, a ≥ 0,
f ∈ C([0,+∞)), non decreasing, f(0) = 0 and f > 0 on (0,+∞) we have that (2.1) admits a non
trivial solution if (and only if) [27, 49]� ε

0

1
f(s)ds < +∞ for some ε > 0.

Observe that f(s) = sq with q ∈ [0, 1) satisfies such condition. For regularity results we refer again
to [27, 49]. For local and global existence in the case u0 ̸= 0 see e.g. [43, Lemma 3.5 and Theorem
2.1]. We further mention the existence of weighted eigenfunctions with periodic conditions, see
[23, 31] and references therein; see also Remark 4.6 for some comments on the logarithmic equation.

To give concavity information on the boundary of (0,+∞), and in particular for t = +∞, we
need to be able to compare the evolutive problem with the stationary one. We give thus the
following definition.

Definition 2.2. Let Ω ⊂ Rn be open and consider u : Ω × (0,+∞) → R such that (2.1) holds. We
will say that b satisfies the stability parabolic condition if

lim
t→+∞

||u(·, t) − v||L∞(Ω) = 0 (2.2)

for some v : Ω → R solution of {
−∆v = b(x, v,Dv,∞) in Ω,
v = 0 on ∂Ω;

(2.3)

here b(x, s, p,∞) := lim
t→+∞

b(x, s, p, t) is assumed to exist for all (x, s, p) ∈ Ω × (0,+∞) × Rn+1.
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Remark 2.3. We briefly comment the validity of the stability parabolic condition: in [1, Theorem
1.1] it is proved that such property is satisfied by the power b(x, s, p, t) = |s|q−1s where 0 < q < 1.
Other examples can be deduced by [43]: suppose indeed that b(x, s, p, t) = b(x, s) satisfies the
following facts

i) b ∈ C(Ω × R) ∩ Cσ
loc(R) for some σ ∈ (0, 1) and b(x, ·) is odd for each x ∈ Ω;

ii) there exist C > 0 such that

|b(x, s)| ≤ C(|s|q + 1) for s ∈ R, x ∈ Ω,

where q > 1 if n = 1, 2 and q ∈ (1, n
n−2) if n ≥ 3;

iii) it holds

lim sup
|s|→+∞

(
max
x∈Ω

b(x, s)
s

)
< λ1,

where λ1 is the first eigenvalue of the Laplacian.
Then, for any u0 ∈ H1

0 (Ω), [43, Theorem 2.1] states that the orbit of u(·, t) for all t ∈ (0,+∞) is
relatively compact in C1,θ(Ω) for some θ ∈ (0, 1), and the limit points are stationary solutions.1
Suppose moreover that

iv) s ∈ (0,+∞) 7→ b(x,s)
s is strictly decreasing for each x ∈ Ω

so that the limit problem (2.3) admits a unique solution v by a Brezis-Oswald result (see e.g. [29,
Lemma A.1]), then u(·, t) → v in C1,θ(Ω), which in particular implies (2.2). Notice that, if (i) and
(iv) hold, then (iii) means infs>0

(
maxx∈Ω

b(x,s)
s

)
< λ1.

Some functions that satisfy (i)–(iv) are given by b(x, s) = a(x)f(s) with f(s) = |s|q−1s, f(s) =
−s log |s| or f(s) = (1 − s)qχ(0,1)(s), q ∈ (0, 1) (observed that the solutions verify u(Ω) ⊂ [0, 1]),
and a ∈ C(Ω) is positive. Moreover, also the sum of these functions satisfies (i)–(iv).

Our problems will often involve a nonlinear term b = b(x, s, t); we present here some main
assumptions. We will require b : Ω × (0,+∞) × (0,+∞) → R to satisfy:

(H1) There exists T > 0, M > 0, k > 0, q ∈ [0, 1), and γ ∈ [0, 1], such that

b(x, s, t) ≥ ktγsq for all (x, s, t) ∈ Ω × (0,M ] × (0, T ].

(H2) There exists T > 0 such that b(·, s, t) is measurable and nonnegative for (s, t) ∈
(0,+∞) × (0, T ), and for all M > 0 there exists L = L(M,T ) > 0 verifying

b(x, s, t) − b(x, r, t) ≤ L

r
(s− r) for all 0 < r ≤ s ≤ M and (x, t) ∈ Ω × (0, T ].

(H3) The function b(x, s, ·) is nondecreasing for each (x, s) ∈ Ω × (0,+∞).
With no loss of generality, whenever assumed together, we can choose the constant T in (H1)-(H2)
to be the same. In practical situations, the constant M in (H2) will actually be given by the
L∞-norm of the solution involved. Moreover, since we will apply (H1) only for small values of t, if
u0 = 0 then for t small ∥u(·, t)∥L∞(Ω) can be chosen to be smaller than the fixed M in (H1) (see
also condition (H1∗)).

Remark 2.4. Observe that the function b(x, s, t) = a(x, t)sq, with q ∈ (0, 1) and a ∈ L∞(Ω × R)
nonnegative, satisfies (H2). Indeed, for each 0 < r ≤ s ≤ M by Lagrange theorem there exists

1 We are confident that this relative compactness to stationary solutions – which is weaker than the stability
parabolic condition, and does not require (iv) below – is sufficient to prove Theorem 4.15. On the other hand, in
order to make use of the notation v(·, ∞) and keep the presentation simple, we prefer not to improve the generality
of the result.
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ξ ∈ (r, s) such that

b(x, s, t) − b(x, r, t) = a(x, t) q

ξ1−q
(s− r) ≤ ∥a∥∞

qsq

r
(s− r) ≤ ∥a∥∞

qM q

r
(s− r).

In a similar way, we see that also b(x, s, t) = a(x, t)sq log(s) satisfies such condition for q ∈ [0, 1]
(notice that for q = 0 b is not continuous in s = 0). Notice finally that (H2) is closed under
summation.

Remark 2.5. In our arguments, it is possible to substitute (H2) with the following:
(H2∗) There exists T > 0 and ω ∈ [1

2 , 1] such that b(·, s, t) is measurable and nonnegative
for (s, t) ∈ (0,+∞) × (0, T ), and for all M > 0 there exists L = L(M,T ) > 0 verifying
b(x, s, t) − b(x, r, t) ≤ L(s− r)ω for all 0 < r ≤ s ≤ M , x ∈ Ω and t ∈ (0, T ).

Notice that any ω-Hölder function with ω ∈ [1
2 , 1] satisfies (H2∗); moreover b(s) =

√
s|1 − s|

satisfies (H2∗) but not (H2). On the other hand, from a practical point of view related to the
applications in the present paper, we see that (H2∗) is somehow stronger than (H2), since b(s) = sq

with q ∈ (0, 1
2) satisfies (H2) but not (H2∗). See also Remark 4.25.

Remark 2.6. As a consequence of the uniqueness result in Corollary A.1, we see that fixed T > 0
and set

bT (x, s, t) :=
{
b(x, s, t) for t ∈ [0, T ],
b(x, s, T ) for t ∈ [T,+∞),

then, if b satisfies (H2), then bT satisfies (H2) as well. Since they coincide for t ∈ [0, T ], we see
that positive solutions of

ut − ∆u = b(x, u, t) in Ω × (0,+∞),
u = 0 on ∂Ω × (0,∞),
u = u0 on x ∈ Ω × {0},


vt − ∆v = bT (x, v, t) in Ω × (0,+∞),
v = 0 on ∂Ω × (0,∞),
v = u0 on x ∈ Ω × {0},

coincide on [0, T ]. As a consequence, to study (exact) concavity of the first equation, we can study
concavity of the second one and obtain the result thanks to the arbitrariness of T . Notice that the
second problem has the advantage of possibly satisfying the parabolic stability condition even if
b(x, s, t) → +∞ as t → +∞ (for instance, b(x, s, t) = tγa(x)uq). Indeed, consider v solution of the
second system and define ṽ(x, t) := v(x, t+ T ). Then ṽ satisfies

ṽt − ∆ṽ = bT (x, ṽ, t+ T ) = b(x, ṽ, T ) in Ω × (0,+∞),
ṽ = 0 on ∂Ω × (0,∞),
ṽ = v(T ) ∈ H1

0 (Ω) on x ∈ Ω × {0}.

Thus, if b(x, s, T ) satisfies the parabolic stability condition and ṽ(·, t) → v̄ uniformly, v̄ solution
of a stationary problem −∆v̄ = b(x, v̄, T ), then v(·, t) → v̄ uniformly as well, and thus bT (x, s, t)
satisfies the parabolic stability condition as well.

2.2. Power concavity and concavity functions
Let us recall some notions about α-concavity, see [45] for details.
Notation. Throughout the paper, whenever z1, z3 are picked in a convex domain together with

a λ ∈ [0, 1], we will denote by z2 the convex combination
z2 ≡ λz3 + (1 − λ)z1.

Moreover, whenever a function g is in play, we will denote
gi ≡ g(zi) for i = 1, 2, 3,

if it creates no ambiguity. Finally if x ∈ Rn, then xi denotes the i-th components of x.
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Let α ∈ [−∞,+∞]. We recall that a nonnegative function u : Ω → R is α-concave if

u is constant if α = +∞,

uα is concave if 0 < α < +∞,

log(u) is concave if α = 0,
uα is convex if − ∞ < α < 0,
{x ∈ Ω : u(x) > t} are convex ∀t ∈ R if α = −∞;

(2.4)

if −∞ < α ≤ 0 we additionally require u > 0. Moreover, we say that u is log-concave if it is
0-concave, harmonic concave if it is (−1)-concave, and quasi-concave if it is (−∞)-concave. In
what follows, for the sake of brevity, we adopt the conventions 0−1 = +∞, (+∞)−1 = 0 and 00 = 1.

Proposition 2.7 ([45]). Let u : Ω → R be a nonnegative function.
i) If u is α-concave and β ≤ α, then u is β-concave.

ii) Let u be quasi-concave. Set α(u) := sup {β ∈ R : u is β-concave}, we have that u is α(u)-
concave.

iii) For α ≥ 1, the α-concave functions are closed under positive addition and positive scalar
multiplication.

iv) If α, β ∈ [0,+∞], u is α-concave and v is β-concave, then the product u v is γ-concave for
γ−1 = α−1 + β−1.

v) If u is harmonic concave, then u− k is harmonic concave for each nonnegative k ∈ R.
vi) If u is concave and u > 0, then x 7→ (x1)2

u(x) is convex.

With the aim of treating perturbations of concavity, we introduce two operators which allow to
quantify the concavity of a function.

Definition 2.8. Let u : Ω × (0,+∞) → R, then for each x1, x3 ∈ Ω, t1, t3 ∈ (0,+∞) and λ ∈ [0, 1],
then the concavity function Cu is defined as

Cu(x1, x3, t1, t3, λ) := u(x2, t2) − λu(x3, t3) − (1 − λ)u(x1, t1) (2.5)
where we recall x2 = λx3 + (1 − λ)x1 and t2 = λt3 + (1 − λ)t1.

Let g : Ω × (0,+∞) → R, then for each x1, x3 ∈ Ω, s1, s3 ∈ (0,+∞), λ ∈ [0, 1] such that
λg(x1, s1) + (1 − λ)g(x3, s3) > 0 or g(x1, s1) = g(x3, s3) = 0

the harmonic concavity function HCg is defined as

HCg
(
(x1, s1), (x3, s3), λ

)
:=


g(x2, s2) − g(x1, s1)g(x3, s3)

λg(x1, s1) + (1 − λ)g(x3, s3)

if λg(x1, s1) + (1 − λ)g(x3, s3) > 0,

g(x2, s2) if g(x1, s1) = g(x3, s3) = 0.
We say that g is harmonic concave if HCg ≥ 0. Notice that, if g : Ω × (0,+∞) → [0,+∞), then
HCg is defined everywhere.

It can be easily seen that, whenever g > 0, the above definition of harmonic concavity coincide
with the (−1)-concavity. Moreover it holds [13, page 4]

HCg ≥ Cg, (2.6)
and, for any β ∈ (0, 1], (see [39, equation (2.2)])

HCu(·,⋆β)(x1, x3, t1, t3, λ) ≥ HCu(·,⋆)(x1, x3, t
β
1 , t

β
3 , λ). (2.7)

In Appendix B we show some generalizations of Proposition 2.7 (iv), (v) and (vi) in terms of the
concavity and harmonic concavity functions.
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We highlight that C and HC measure the concavity also with respect to t. When the concavity
in time is not taken into account, we consider

C∗
u(x1, x3, λ, t) := u2(t) − λu3(t) − (1 − λ)u1(t),

where
ui(t) := u(xi, t).

Notice again that C∗ differs from C since there is no variation in time. Additionally, we will use the
following notation.

Notation. We will write

HCg(·,u(·,⋆))(x1, x3, t1, t3, λ) := g
(
x2, λu3 + (1 − λ)u1

)
− g(x1, u1)g(x3, u3)
λg(x1, u1) + (1 − λ)g(x3, u3) ,

C∗
g(·,u(·,⋆),⋆)(x1, x3, λ, t) := g

(
x2, λu3(t) + (1 − λ)u1(t), t

)
− λg(x3, u3(t), t) − (1 − λ)g(x1, u1(t), t),

for g : Ω × (0,+∞) → R and u : Ω × (0,+∞) → R.

Furthermore, we recall the following classical result [34, Theorem 2].

Proposition 2.9 (Hyers-Ulam, [34]). Let X be a space of finite dimension and K ⊂ X convex.
Assume that f : K → R is δ-concave, i.e.

Cf ≥ −δ in K ×K × [0, 1].

Then there exists a concave function g : K → R such that

∥f − g∥L∞(D) ≤ knδ,

where kn > 0 depends only on n = dim(X).

We highlight that the optimal constant kn has been explicitly estimated, for instance by [34]
and [48] we know that 1

4 log2(n
2 ) ≤ kn ≤ n(n+3)

4(n+1) . Notice that X can be chosen as the minimal
hyperplane containing K.

We finally state the following constant rank theorem, consequence of [8, 14] and [18, 19].

Proposition 2.10 (Constant rank theorem). Let w ∈ C2(Ω) × C1((0,+∞)) be a spatially convex
solution of

wt − ∆w = B̃(x,w,Dxw, t) in Ω × (0, T ] (2.8)
and assume B̃(·, ·, p̃, t) locally convex for each (p̃, t) ∈ Rn × (0, T ). Then, for each t > 0, the rank
of D2

xw(·, t) is constant. Moreover, called ℓ(t) such value, we have that t ∈ (0,+∞) 7→ ℓ(t) ∈ N is
nondecreasing.

If moreover w is regular and spacetime-convex and B̃(·, ·, p̃, ·) locally convex for each p̃ ∈ Rn,
then the same conclusion as above applies to D2w(·, t).

Remark 2.11. We observe the following facts.
• The above result will be applied in the following way: let u be a solution of our Dirichlet

problem, and v = φ(u) its concave transformation. Then w := −v is convex and satisfies an
equation as (2.8). By [28, Proposition 2.6] and the Dirichlet boundary condition, for each t
the matrix D2

xw(x, t) has full rank in a point (equal to n). Thus, by the above constant
rank theorem, it is maximum in the whole Ω, and hence here w is strictly convex for each t.
That is, v(·, t) is strictly concave for each t.

If w is also spacetime-convex, then D2v(x, t) has constant rank for each t, and it can be
equal to n or n+ 1; more precisely, by the monotonicity, it is equal to n in (0, t0) and equal
to n+ 1 in (t0,+∞) for some t0 ∈ [0,+∞].
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• In the elliptic case [46], the condition B̃(·, ·, p̃, ·) convex can be substituted by B̃(·, ·, p̃, ·)
positive and harmonic convex: as highlighted in [9], this is essentially related to the fact
that the equation 0 = ∆w + B̃(x,w,Dw, t) =: F (D2

xw, x,w,Dw, t) can be rewritten as
0 = 1

∆w + 1
B̃(x,w,Dw,t)

=: F̄ (D2
xw, x,w,Dw, t). This is clearly not the case for parabolic

equations wt = F (D2
xw, x,w,Dw, t); this is the reason why we obtain the strict concavity in

Theorem 1.1 but not in Theorem 1.4. A weaker parabolic counterpart of this generalization
can anyway be found in [9, Theorem 2.3].

3. Concavity and harmonic concavity maximum principles
We start by showing a maximum principle which allows to relate the interior minimum of the

concavity function of a solution v to the concavity function of the source; in applications, v will
be the transformation of a solution of a PDE. In this section we consider a generalization of the
result by Korevaar [47], by dealing with equations which may include weighted eigenfunctions
ut − ∆u = a(x, t)u. Differently from Theorem 3.3, the corresponding B is not strictly decreasing;
actually, we will allow ∂sB to be also positive, but bounded, in the spirit of [58] (see also [32]): this
permits to study also equations of the type ut − ∆u = a(x, t)u log(u) (see [28]). In these results,
we look at some concavity of B, and we study concavity of u in x for each t.

We recall the notation p = (p̃, pn+1) ∈ Rn+1.

Theorem 3.1 (Concavity maximum principle). Let T > 0 and v ∈ C2(Ω) ∩C1((0, T ]) be such that

−
n∑

i,j=1
aij(Dxv, t)D2

ijv = B(x, v,Dv, t) in Ω × (0, T ]

where B : Ω × R × Rn+1 × (0, T ] → R and (aij(p̃, t))ij is symmetric and positive definite for all
(p̃, t) ∈ Rn × (0, T ]. Assume that (s, pn+1) ∈ v(Ω) × R 7→ B(x, s, p̃, pn+1, t) is differentiable for
all (x, p̃, t) ∈ Ω × Rn × (0, T ]. Let µ ∈ [0,+∞) and suppose e−µ(⋆)C∗

v admits a negative interior
minimum at (x1, x3, λ, t) ∈ Ω × Ω × [0, 1] × (0, T ]. Then

ξ̃ := Dxv(x1, t) = Dxv(x2, t) = Dxv(x3, t). (3.1)

Assume moreover
∂pn+1B ≤ 0

and that there exists σ > 0 such that2

∂sB + µ∂pn+1B ≤ −σ < 0.

Then

inf
Ω×Ω×[0,1]×(0,T ]

(
e−µ(⋆)C∗

v

)
≥ e−µt

σ
C∗

B(·,v(·,⋆),ξ̃,vt(·,⋆),⋆)(x1, x3, λ, t).

As a consequence, set ρ := min {d(x1, ∂Ω), d(x3, ∂Ω)} > 0, we have

inf
Ω×Ω×[0,1]×(0,T ]

C∗
v ≥ −eµT

σ
sup

Ωρ×Ωρ×[0,1]×(0,T ]

(
C∗

B(·,v(·,⋆),ξ̃,vt(·,⋆),⋆)

)−
.

Proof. Let us define
w(x, t) := e−µtv(x, t)

2 It is indeed sufficient to assume
(
∂sB + µ∂pn+1B

)(
x2, eµtz, eµtξ̃, eµt(µz + ζ), t

)
≤ Λ for any z ∈ [w2(t), λw3(t) +

(1 − λ)w1(t)] and ζ ∈ [wt(x2, t), λwt(x3, t) + (1 − λ)wt(x1, t)].
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which satisfies

−
n∑

i,j=1
aij(eµtDxw, t)D2

ijw = e−µtB
(
x, eµtw, eµtDxw, e

µt(µw + wt), t
)

=: B̃(x,w,Dw, t) in Ω × (0, T ].
We notice that (x1, x3, λ, t) is an interior minimum for C∗

w; since it is an interior critical point (with
respect to the spatial variable), we obtain

ξ̄ := Dxw(x1, t) = Dxw(x2, t) = Dxw(x3, t),
and thus (3.1) holds, with ξ̃ = eµtξ̄. Exploiting that it is an interior minimum (thus the Hessian
matrix with respect to the spatial variable is positive definite) and the definite positiviness of
aij(eµtξ̄, t), by [45, Lemma A.1] we obtain

n∑
i,j=1

aij(eµtξ̄, t)D2
ijw(x2, t) − λ

n∑
i,j=1

aij(eµtξ̄, t)D2
ijw(x3, t) − (1 − λ)

n∑
i,j=1

aij(eµtξ̄, t)D2
ijw(x1, t) ≥ 0

and thus, by the equation,
B̃
(
x2, w2(t), ξ̄, wt(x2, t), t

)
≤ λB̃

(
x3, w3(t), ξ̄, wt(x3, t), t

)
+ (1 − λ)B̃

(
x1, w1(t), ξ̄, wt(x1, t), t

)
.

Subtracting B̃
(
x2, λw3(t) + (1 − λ)w1(t), ξ̄, λwt(x3, t) + (1 − λ)wt(x1, t), t

)
on both sides and

applying Lagrange theorem, we know that there exists z ∈ [w2(t), λw3(t) + (1 − λ)w1(t)] and
ζ ∈ [wt(x2, t), λwt(x3, t) + (1 − λ)wt(x1, t)] such that

∇s,pn+1B̃(x2, z, ξ̄, ζ, t) ·
(
C∗

w(x1, x3, λ, t), ∂tC∗
w(x1, x3, λ, t)

)
≤ −C∗

B̃(·,w(·,⋆),ξ̄,wt(·,⋆),⋆)
(x1, x3, λ, t).

Using that (x1, x3, λ, t) is a minimum (with respect to the time variable), we obtain
∂tC∗

w(x1, x3, λ, t) ≤ 0,
which plugged in the previous inequality together with ∂pn+1B ≤ 0, implies

∂sB̃(x2, z, ξ̄, ζ, t)C∗
w(x1, x3, λ, t) ≤ −C∗

B̃(·,w(·,⋆),ξ̄,wt(·,⋆),⋆)
(x1, x3, λ, t).

By the definition of B̃, the assumptions and C∗
w(x1, x3, λ, t) < 0, we achieve

− σC∗
w(x1, x3, λ, t) ≤ −C∗

B̃(·,w(·,⋆),ξ̃,wt(·,⋆),⋆)
(x1, x3, λ, t) (3.2)

and thus
e−µtC∗

v(x1, x3, λ, t) ≥ e−µt

σ
C∗

B(·,v(·,⋆),ξ̃,vt(·,⋆),⋆)(x1, x3, λ, t)
which is the first claim. As a consequence

inf
Ω×Ω×[0,1]×(0,T ]

(
e−µ(⋆)C∗

v

)
≥ −e−µt

σ
sup

Ωρ×Ωρ×[0,1]×(0,T ]

(
C∗

B(·,v(·,⋆),ξ̃,vt(·,⋆),⋆)

)−

≥ − 1
σ

sup
Ωρ×Ωρ×[0,1]×(0,T ]

(
C∗

B(·,v(·,⋆),ξ̃,vt(·,⋆),⋆)

)−

and hence the second claim, observed that (recall that infΩ×Ω×[0,1]×(0,T ]
(
e−µ(⋆)C∗

v

)
< 0)

inf
Ω×Ω×[0,1]×(0,T ]

C∗
v = inf

Ω×Ω×[0,1]×(0,T ]

(
eµ(⋆)e−µ(⋆)C∗

v

)
≥ eµT inf

Ω×Ω×[0,1]×(0,T ]

(
e−µ(⋆)C∗

v

)
. □

Remark 3.2. If B(x, v,Dv, t) ≡ B(x, v,Dxv, t)−vt, as in the heat equation, we see that ∂pn+1B =
−1 ≤ 0, while

∂sB + µ∂pn+1B ≡ ∂sB − µ ≤ Λ − µ ≤ −σ < 0
is satisfied if ∂sB is bounded from above by some Λ ∈ R and µ is sufficiently large (µ > Λ).
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We show now a maximum principle which allows to relate the interior minimum of the concavity
function of solution v to the harmonic concavity function of the source. Notice that here we need
the source to enjoy some strict monotonicity (differently from Theorem 3.1). In these results, we
look at some harmonic concavity (rather than concavity) of B, and we study concavity of u in
(x, t) (rather than concavity in x for each t).

Theorem 3.3 (Harmonic concavity maximum principle). Let v ∈ C2(Ω) ∩ C1((0,+∞)) be such
that

−
n∑

i,j=1
aij(Dv)D2

ijv = B(x, v,Dv, t) in Ω × (0,+∞),

where B : Ω × R × Rn+1 × (0,+∞) → R and (aij(p))ij is symmetric and positive definite for all
p ∈ Rn+1. Assume that s ∈ v(Ω) 7→ B(x, s, p, t) is differentiable for all (x, p, t) ∈ Ω×Rn+1×(0,+∞)
Suppose Cv admits a negative interior minimum at (x1, x3, t1, t3, λ) ∈ Ω × Ω × (0,+∞) × (0,+∞) ×
[0, 1]. Then

ξ := Dv(x1, t1) = Dv(x2, t2) = Dv(x3, t3). (3.3)
Assume moreover that there exists σ > 0 such that

sup
z∈[v(x2,t2),λv(x3,t3)+(1−λ)v(x1,t1)]

∂sB(x2, z, ξ, t2) ≤ −σ. (3.4)

Then
inf

Ω×Ω×(0,+∞)×(0,+∞)×[0,1]
Cv ≥ 1

σ
HCB(·,v(·,⋆),ξ,⋆)(x1, x3, t1, t3, λ). (3.5)

Proof. Notice first that (x1, t1) ̸= (x3, t3) and λ ∈ (0, 1), otherwise Cv(x1, x3, t1, t3, λ) = 0 which is
a contradiction. Being (x1, x3, t1, t3, λ) in the interior of the domain we obtain

DCv(x1, x3, t1, t3, λ) = 0

and in particular Dy1Cv = Dy3Cv = Dτ1Cv = Dτ3Cv = 0 imply (3.3). Set now A := (aij(ξ))ij and
define the 2n× 2n matrices

C :=
[
D2

y1,y1Cv(x1, x3, t1, t3, λ) D2
y1,y3Cv(x1, x3, t1, t3, λ)

D2
y1,y3Cv(x1, x3, t1, t3, λ) D2

y3,y3Cv(x1, x3, t1, t3, λ)

]
,

which is positive semidefinite since (x1, x3, t1, t3, λ) is a minimum for Cv and

B :=
[
s2aij(ξ) sraij(ξ)
sraij(ξ) r2aij(ξ)

]
,

which is positive semidefinite by hypothesis. So by [45, Lemma A.1] we have Tr(BC) ≥ 0, that is

αs2 + 2βsr + γr2 ≥ 0 for all s, r ∈ R (3.6)

where
α := Tr(AD2

y1,y1Cv), β := Tr(AD2
y1,y3Cv), γ := Tr(AD2

y3,y3Cv),
which rewrite as

α = (1 − λ)2Q2 − (1 − λ)Q1, β = λ(1 − λ)Q2, γ = λ2Q2 − λQ3,

where we have set for k ∈ {1, 2, 3}

Qk :=
n∑

i,j=1
aijD

2
ijv(xk, tk).
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By (3.6) we obtain α ≥ 0, γ ≥ 0 and β2 − αγ ≤ 0, i.e.

Q2 ≥ Q1
1 − λ

, (3.7)

Q2 ≥ Q3
λ
, (3.8)

Q1Q3 ≥ Q2((1 − λ)Q3 + λQ1), (3.9)
where we justify the last by

0 ≥ λ2(1 − λ)2Q2
2 − ((1 − λ)2Q2 − (1 − λ)Q1)(λ2Q2 − λQ3)

= λ(1 − λ)((1 − λ)Q2Q3 + λQ2Q1 −Q1Q3).

Claim: (1 − λ)Q3 + λQ1 < 0 or Q1 = Q3 = 0.
If (1 − λ)Q3 + λQ1 ≥ 0, then by (3.7) and (3.9)

Q2
(
(1 − λ)Q3 + λQ1

)
≥ Q1

1 − λ

(
(1 − λ)Q3 + λQ1

)
,

Q2
(
(1 − λ)Q3 + λQ1

)
≥ Q1Q3 + λ

1 − λ
Q2

1,

Q2
(
(1 − λ)Q3 + λQ1

)
≥ Q2

(
(1 − λ)Q3 + λQ1

)
+ λ

1 − λ
Q2

1,

which implyQ1 = 0. Similarly (exploiting (3.8) and (3.9)) we haveQ3 = 0. Then if (1−λ)Q3+λQ1 <
0 and from (3.9), it holds

Q2 ≥ Q1Q3
(1 − λ)Q3 + λQ1

.

Being Qk = B
(
xk, vk, ξ, tk

)
, we get

−B
(
x2, v2, ξ, t2

)
≥ −

B
(
x1, v1, ξ, t1

)
B(x3, v3, ξ, t3

)
(1 − λ)B

(
x3, v3, ξ, t3

)
+ λB

(
x1, v1, ξ, t1

) .
Adding on both sides B

(
x2, λv3 + (1 − λ)v1, ξ, t2

)
and applying Lagrange theorem, we obtain

−∂sB(x2, z, ξ, t2)Cv(x1, x3, t1, t3, λ) ≥ HCB(·,v(·,⋆),ξ,⋆)(x1, x3, t1, t3, λ)
for some z ∈ [v2, λv3 + (1 − λ)v1]. Otherwise if Q1 = Q3 = 0, then Q2 ≥ 0 and by the same
arguments as before it holds

−∂sB(x2, z, ξ, t2)Cv(x1, x3, t1, t3, λ) ≥ HCB(·,v(·,⋆),ξ,⋆)(x1, x3, t1, t3, λ).
Since Cv(x1, x3, t1, t3, λ) < 0 and ∂sB(x2, z, ξ, t2) ≤ −σ, in any case it follows that

σCv(x1, x3, t1, t3, λ) ≥ −∂sB(x2, z, ξ)Cv(x1, x3, t1, t3, λ) ≥ HCB(·,v(·,⋆),ξ,⋆)(x1, x3, t1, t3, λ),
and thus the claim. □

We see that, in Theorem 3.3, the nonlinear term B actually includes vt in any form. In the
special case of heat type equations, we can remove the dependence on the right side of (3.5) from
vt by assuming v monotone.

Corollary 3.4. In the setting of Theorem 3.3, assume that B has the form

B(x, v,Dv, t) ≡ B̃(x, v,Dxv, t) − k(t)vt

with HCk ≤ 0 (for instance, k is constant). Assume moreover that ξn+1 ≥ 0 (recall ξn+1 =
vt(x1, t1) = vt(x2, t2) = vt(x3, t3)). Then

inf
Ω×Ω×(0,+∞)×(0,+∞)×[0,1]

Cv ≥ 1
σ

HC
B̃(·,v(·,⋆),ξ̃,⋆)(x1, x3, t1, t3, λ).
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Proof. It is sufficient to apply Theorem 3.3 and Lemma B.4. □

Remark 3.5. We notice in Corollary 3.4 the essential role of vt being constant on (x1, t1), (x2, t2),
(x3, t3). This is a consequence of the fact that we study the space-time concavity in (0,+∞) (and
not only space concavity in (0, T ]).

4. Maximum principles with boundary conditions
In Section 3 we dealt with the value of the concavity function in the interior of the domain.

In this section we focus on the behaviour on the boundary: to this aim, we consider a Dirichlet
boundary condition and a Cauchy initial datum. For the sake of simplicity, we focus now on
equations of heat type, that is with main operator ∂t − ∆.

4.1. Concavity
In this subsection we apply Theorem 3.1 to v, transformation of a solution u of a Cauchy-Dirichlet

problem.

Theorem 4.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded, smooth, strongly convex domain. Let T > 0,
b : Ω × (0,+∞) × (0, T ], b(x, ·, t) differentiable for all (x, t) ∈ Ω × (0, T ], u0 ∈ C1(Ω) with u0 = 0
on ∂Ω and u ∈ C2(Ω) ∩ C1(Ω × [0, T ]), be such that

ut − ∆u = b(x, u, t) in Ω × (0, T ]
with 

u > 0 in Ω × (0, T ],
u = 0 on ∂Ω × [0, T ],
Dxu · ν > 0 on ∂Ω × [0, T ],
u = u0 on Ω × {0}.

(4.1)

Assume there exists Λ ∈ R such that
∂s
(
e−sb(x, es, t)

)
≤ Λ for each (x, t) ∈ Ω × (0, T ].

Assume moreover that u0 is log-concave. Then there exists ρ > 0 such that

inf
Ω×Ω×[0,1]×[0,T ]

C∗
log(u) ≥ −Te1+ΛT sup

Ωρ×Ωρ×[0,1]×(0,T ]

(
C∗

b(·,u(·,⋆),⋆)
u(·,⋆)

)−
.

Proof. We see that v := log(u) solves
vt − ∆v = e−vb(x, ev, t) + |Dxv|2 =: B(x, v,Dxv, t) in Ω × (0, T ]

with ∂sB ≤ Λ. If C∗
v ≥ 0 the claim holds. Otherwise, assume that C∗

v is somewhere negative.
Let µ > Λ. By the assumption on the initial condition, and by the assumption on the boundary
coupled with [47, Lemma 2.4], the function e−µtC∗

v(x1, x3, λ, t) cannot get negative for t → 0 nor
(x1, x3) → ∂(Ω × Ω). Then it must admit an interior negative minimum. Thus, by Theorem 3.1,
we obtain

inf
Ω×Ω×[0,1]×(0,T ]

C∗
v ≥ − eµT

Λ − µ
sup

Ωρ×Ωρ×[0,1]×(0,T ]

(
C∗

e−v(·,⋆)b(·,ev(·,⋆),⋆)

)−
.

Since the choice of µ > Λ is arbitrary, we maximize the right hand side (which is the case for
µ = 1

T + Λ) and conclude. □

Remark 4.2. If in Theorem 4.1 we do not assume u0 to be log-concave, then we take into account
also Clog(u0), obtaining

inf
Ω×Ω×[0,1]×[0,T ]

C∗
log(u) ≥ − max

{
Te1+ΛT sup

Ωρ×Ωρ×[0,1]×(0,T ]

(
C∗

b(·,u(·,⋆),⋆)
u(·,⋆)

)−
, sup

Ω×Ω×[0,1]
C−

log(u0)

}
.
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Corollary 4.3. In the assumptions of Theorem 4.1 assume moreover that
• (s, x) 7→ s−1b(x, s, t) is concave for each t > 0.

Then u(·, t) is strictly log-concave for each t > 0.

Proof. By Theorem 4.1 we obtain that v = log(u) is concave. Arguing as in Remark 2.11 and
applying Proposition 2.10 to w = −v, we obtain the strict concavity. □

4.1.1. Applications
We start observing the following.

Proof of Theorem 1.1 and Theorem 1.3. They are a consequence of Corollary 4.3 and Proposition
2.7 (iv). □

Remark 4.4. We deduced strict concavity in Theorem 1.1 thanks to the constant rank theorem.
In the eigenfunction case b(x, s, t) = a(x, t)s, by assuming a(·, t) strictly concave for each t > 0, we
can reach the same claim in a more straightforward way.

Indeed, assume by contradiction that there exists t > 0 and x1 ̸= x3, λ ∈ (0, 1) such that
C∗

log(u)(x1, x3, λ, t) = 0; recalled that we already proved C∗
log(u) ≥ 0, in the notations of the

proof of Theorem 3.1 – fixed a whatever µ > 0 – we have w = e−µtv = e−µt log(u), thus
C∗

w ≥ 0 = C∗
w(x1, x3, λ, t), and hence (x1, x3, λ, t) is a point of minimum for C∗

w. Thus by (3.2) we
obtain

0 ≤ −C∗
B̃(·,w(·,⋆),ξ,⋆)

(x1, x3, λ, t) = −e−µtC∗
a(x,t)(x1, x3, λ, t) < 0,

thanks to the strict concavity of a and the assumption x1 ̸= x3, λ ∈ (0, 1). This contradiction
concludes the proof.

We focus now on perturbed concavity as consequence of Theorem 4.1. Exploiting it together
with Propositions B.1 and B.2 we obtain the following statement. Notice that {∂r(e−rf(er)) | r ∈
R} ≡ {s∂s(s−1f(s)) | s > 0}.

Corollary 4.5. Let Ω ⊂ Rn, n ≥ 2, be a bounded, smooth, strongly convex domain. Let T > 0,
a : Ω × (0, T ] → R locally bounded, f : (0,+∞) → R differentiable, u0 ∈ C1(Ω) with u0 = 0 on ∂Ω
and u ∈ C2(Ω) ∩ C1(Ω × [0, T ]) be such that

ut − ∆u = a(x, t)f(u) in Ω × (0, T ]

with (4.1). Set f̄(s) := f(s)
s for s > 0 and assume

Λ := sup
s>0

(
sf̄ ′(s)

)
∈ R.

Assume moreover that u0 is log-concave. Then there exists ρ > 0 such that the following facts hold.
i) If f̄ is constant, then

inf
Ω×Ω×[0,1]×[0,T ]

C∗
log(u) ≥ −Te1+ΛT sup

Ωρ×Ωρ×[0,1]×(0,T ]

(
C∗

a(·,⋆)

)−
.

ii) If f̄ is θ′-concave, with θ′ > 1, and m ≤ a ≤ M with mθ ≥ 1
2M

θ, 1
θ + 1

θ′ = 1, then

inf
Ω×Ω×[0,1]×[0,T ]

C∗
log(u) ≥ −Te1+ΛT ∥f̄(u)∥L∞(Ωρ) sup

Ωρ×Ωρ×[0,1]×(0,T ]

((
C∗

aθ(·,⋆)

)−
) 1

θ

.

iii) If f̄ is concave and a is bounded, then

inf
Ω×Ω×[0,1]×[0,T ]

C∗
log(u) ≥ −Te1+ΛT ∥f̄(u)∥L∞(Ωρ)osc(a).
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We note that Corollary 4.5 applies to the following sources f(s) = s (case i), f(s) = s logq(1 + s),
f(s) = sq+1

1+sq with q ∈ (0, 1) (case ii), f(s) = s2

1+s , f(s) = s log(1 + s), f(s) = s log(s) (case iii).

Proof of Theorem 1.7. It is a particular case of Corollary 4.5. □

Remark 4.6. Consider b(x, s, t) = s log(s). In [28] the authors show the existence of a log-
concave solution for the stationary problem; here, in Theorem 1.1, we show the log-concavity of
the evolutionary solution in each [0, T ], whenever such solution exists. We discuss the possible
(pointwise) convergence of u(x, t) to a stationary solution as t → +∞ and, thus, the possibility of
achieving the result in [28] through a parabolic approach. We start noticing that the assumptions in
Remark 2.3 are not fulfilled. Let u0 be a log-concave function. If I(u0) := |∇u0|22 −

�
Ω u

2
0 log(u0) < 0,

then by [33] we obtain that u(x, t) → +∞ as t → +∞. If I(u0) = 0, then exploiting the logarithmic
Sobolev inequality and arguing as in [62, Lemma 2.3], we obtain |u0|22 ≥ (2π)n/2en; if equality
holds, then by [20] we have u(x, t) → 0 as t → +∞. The cases I(u0) = 0 with |u0|22 > (2π)n/2en,
and I(u0) > 0 are – up to the authors’ knowledge – still open problems. We further observe that
condition (H2) is verified, thus if u0 is also a subsolution of the stationary problem (in particular,
I(u0) ≤ 0), then by Corollary A.3 we have that u(x, ·) is nondecreasing, thus a limit must exists.

Example 4.7. As particular cases of concave a we may consider a(x, t) = tγdΩ(x)ω, γ, ω ∈ [0, 1],
with γ + ω = 1 (see Proposition 2.7). In such a case the solutions of

ut − ∆u = tγd(x, ∂Ω)ωu

are log-concave.

As an additional consequence of Theorem 4.1, we may consider also population models [15].

Corollary 4.8. Let Ω ⊂ Rn, n ≥ 2, be a bounded, smooth, strongly convex domain. Let T > 0,
a : Ω×(0, T ] → R bounded, u0 ∈ C(Ω) with u0 = 0 on ∂Ω and u ∈ C2(Ω)∩C1((0, T ])∩C(Ω× [0, T ])
be such that

ut − ∆u = a(x, t)u− u2 in Ω × (0, T ]

with (4.1). Assume moreover that u0 is log-concave. Then there exists ρ > 0 such that

inf
Ω×Ω×[0,1]×[0,T ]

C∗
log(u) ≥ −eT sup

Ωρ×Ωρ×[0,1]×(0,T ]

(
C∗

a(·,⋆)

)−
.

Remark 4.9. We see that some results in Corollary 4.8 can be extended to piecewise constant
weights a = a(x) rising in bang-bang optimization theory (see [15, Theorem 3.9]), i.e. equal to
a1 > 0 on some region of Ω and to −a2 < 0 on some other region. We give just a sketch of the proof.
Let indeed a be as above, and let aε ∈ L∞(RN ) be a suitable equibounded regular approximating
sequence for a. Let uε be positive solutions of of ∂tuε−∆uε = aε(x)uε−u2

ε, uε = 0 on ∂Ω, uε(0) = u0.
Exploiting that aε(x)t − t2 ≤ 0 for t ≥ supε ∥aε∥∞ and the maximum principle we obtain that
∥uε∥∞ is equibounded; then standard regularity theory implies that uε is also equibounded in some
C0,σ, and hence it converges uniformly up to a subsequence by Ascoli-Arzelà theorem. We can
thus pass to the limit the weak formulation (see e.g. [16]) of the equations and obtain that uε → u
solution of the equation with weight a(x). Since uε are regular, then they satisfy the assumptions
of Corollary 4.8 and thus, in particular, inf C∗

log(uε) ≥ −eT sup
(
C∗

aε(·,⋆)

)−
≥ −eTosc(aε). Passing

to the limit, we obtain
inf C∗

log(u) ≥ −eT (a1 + a2).

We leave the details to the interested reader.
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4.2. Harmonic concavity
In this subsection we consider applications of Cauchy-Dirichlet type to Theorem 3.3. The main

assumption we assume are the following ones.
- Domain:

Ω ⊂ Rn, n ≥ 2, bounded convex domain which satisfies the interior sphere property. (4.2)
- Regularity:

u ∈ C2(Ω) ∩ C1(Ω) ∩ C1((0,+∞)) ∩ C(Ω × [0,+∞)). (4.3)
- Equation:

ut − ∆u = b(x, u, t) in Ω × (0,+∞). (4.4)
- Boundary conditions: 

u > 0 in Ω × (0,+∞),
u = 0 on ∂Ω × [0,+∞),
u = 0 on Ω × {0}.

(4.5)

Our aim is to ensure that a negative minimum of the concavity function is attained in the interior
of Ω × (0,+∞) or at infinity. In the following propositions, thus, we run out the possibility of
having a minimum on ∂Ω or t = 0.

We start with some boundary estimates. We refer also to Lemma 5.3 for a version including
f(x0, t) = 0 for x0 ∈ ∂Ω. We mention also [55, Theorem 5].

Lemma 4.10 (Boundary estimates). Let Ω satisfy (4.2), and u be a function such that (4.3), (4.4)
and (4.5) hold. Suppose b : Ω × (0,+∞) × (0,+∞) → R satisfies (H1), and consider M,T, q, γ
therein; we can assume T small enough in such a way ∥u∥L∞(Ω×[0,T ]) < M . The following facts
hold.

(i) [Dealing with Ω × {0}]: let φ1 be the first Dirichlet eigenfunction on Ω with eigenvalue λ1,
normalized by ∥φ1∥∞ = 1. Then,

u(x, t) ≥ Ce−λ1tt
1+γ
1−q φ1(x) in Ω × (0, T )

for some explicit C = C(∥u∥L∞(Ω×[0,T ]), q, γ, T ) > 0.
(ii) [Dealing with ∂Ω × {0}]: for any x0 ∈ ∂Ω and β ∈ (0, 2], there exists δ = δ(x0, T, β) > 0

such that

u(x0 + tν, tβ) ≥ δt
2β(1+γ)+(2−β)(1−q)

2(1−q) for t ∈ (0, T ) small,
where ν is the interior normal to ∂Ω in x0.

Proof. From (H1) with M = ∥u∥L∞(Ω×[0,T ]), we know that there exists k = k(M,T ) > 0 such that
u satisfies (4.5) and

ut − ∆u = b(x, u, t) ≥ ktγuq in Ω × (0, T ).
Set

w(x, t) := Ce−λ1tt
1+γ
1−q φ1(x)

and C := ( 1−q
1+γk)

1
1−q . A straightforward computation shows that w satisfies (4.5) together with

wt − ∆w = C
1 + γ

1 − q
e−λ1tt

γ+q
1−q φ1(x) in Ω × (0,+∞)

and hence, since q < 1 and by definition of C,

wt − ∆w = 1
k
C1−q 1 + γ

1 − q
e−(1−q)λ1tφ1−q

1 (x)(ktγwq) ≤ ktγwq in Ω × (0,+∞).

Then by Proposition A.1, u ≥ w in Ω × (0, T ), which is the first claim.
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To show the second claim, assume first that x0 = 0 ∈ ∂Ω. Let η ∈ (0,min{1, T β}) and define wη

and Ωη by

wη(x, t) := η
1+γ
1−qw(η−1/2x, η−1t), Ωη := √

ηΩ
which satisfy 

∂twη − ∆wη ≤ ktγ(wη)q in Ωη × (0,+∞),
wη > 0 in Ωη × (0,+∞),
wη = 0 on ∂Ωη × (0,+∞),
wη = 0 on Ωη × {0}.

Noticed that Ωη ⊂ Ω, by Proposition A.1 we obtain u ≥ wη in Ωη × (0, T ). Now let t = η
1
β ∈ (0, T )

and, observed 0 ∈ ∂Ωη, we choose x = tν ∈ Ωη, so that

u(tν, tβ) ≥ t
β(1+γ)

1−q w(t
2−β

2 ν, 1). (4.6)

If β = 2 we obtain u(tν, t2) ≥ t
2(1+γ)

1−q w(ν, 1), and the claim follows choosing δ := w(ν, 1). If
β ∈ (0, 2), by Lagrange theorem there exists ξt ∈ (0, t

2−β
2 ν) such that (recall w(0, 1) = 0)

w(t
2−β

2 ν, 1) = t
2−β

2 ν ·Dw(ξt, 1).

Being δ := 1
2ν ·Dw(0, 1) > 0 thanks to Lemma A.4, for t small enough we have ν ·Dw(ξt, 1) > δ

and hence we obtain
w(t

2−β
2 ν, 1) ≥ δt

2−β
2 for t small. (4.7)

Thus, by (4.6) and (4.7) we obtain u(tν, tβ) ≥ δt
2β(1+γ)+(2−β)(1−q)

2(1−q) .
The case of general x0 can be obtained straightforwardly, noticed the equation related to

u 7→ ktγuq is x-translation invariant. □

Proposition 4.11. Let Ω satisfy (4.2), and u be such that (4.3), (4.4) and (4.5) hold. Suppose
b : Ω × (0,+∞) × (0,+∞) → R is such that b(x, ·, t) is differentiable for all (x, t) ∈ Ω × (0,+∞)
and satisfies (H1), and let α ∈

(
0, 2(1−q)

2β(1+γ)+(2−β)(1−q)
)

and β ∈ (0, 2]. Then Cuα(·,⋆β) cannot achieve
any negative minimum at (x1, x3, t1, t3, λ) ∈ Ω × Ω × [0,+∞) × [0,+∞) × (0, 1) such that one
t1, t3 ∈ {0}, or one of x1, x2, x3 ∈ ∂Ω.

Proof. Assume now by contradiction that Cuα admits a negative minimum at (x1, x3, t1, t3, λ) such
that one t1, t3 ∈ {0} or one x1, x2, x3 ∈ ∂Ω. Set v(x, t) := uα(x, tβ). If t1, t3 ∈ [0,+∞) and
x1, x3 ∈ ∂Ω, then Cv(x1, x3, t1, t3, λ) = v(x2, t2) ≥ 0, which is not possible. If t1, t3 = 0 and
x1, x3 ∈ Ω, Cv(x1, x3, t1, t3, λ) = 0 which again is not possible.

If t1, t3 ∈ (0,+∞), x1 ∈ ∂Ω and x3 ∈ Ω, the parabolic Hopf Lemma A.4 implies Dν̄1u(x1, t
β
1 ) > 0,

where ν1 is the interior normal at (x1, t1) and ν̄1 := (ν̃1, βt
β−1
1 νn+1

1 ) thus

lim
(y1,y3,τ1,τ3,η)→(x1,x3,t1,t3,λ)

Dν1Cv(y1, y3, τ1, τ3, η)

= lim
(y1,y3,τ1,τ3,η)→(x1,x3,t1,t3,λ)

(
(1 − η)Dν1v(y2, τ2) − (1 − η)αuα−1(y1, τ

β
1 )Dν̄1u(y1, τ

β
1 )
)

= −∞,

and this is a contradiction since it is a minimum point. The same argument holds if t1 ∈ (0,+∞),
t3 = 0, x1 ∈ ∂Ω, x3 ∈ Ω.

If t1 = 0, t3 ∈ (0,+∞), x1 ∈ Ω and x3 ∈ Ω, by Lemma 4.10 (i) we have

lim
τ→0

vt(x1, τ) ≥ lim
τ→0

v(x1, τ)
τ

≥ Cα lim
τ→0

e−αλ1τβ

τ
1− 1+γ

1−q
αβ

(φ(x1))α = +∞
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by the assumption α < 2(1−q)
2β(1+γ)+(2−β)(1−q) ≤ 1−q

β(1+γ) , which implies

lim
(y1,y3,τ1,τ3,η)→(x1,x3,t1,t3,λ)

Dt1Cv(y1, y3, τ1, τ3, η) = −∞

again a contradiction.
We are left with the case t1 = 0, t3 ∈ (0,+∞), x1 ∈ ∂Ω, x3 ∈ Ω. By Lemma 4.10 (ii) there exists

δ > 0 such that
uα(x1 + tν, tβ)

t
≥ δαt

α
2β(1+γ)+(2−β)(1−q)

2(1−q) −1 for t > 0 small,

which positively diverges as t → 0+ since α < 2(1−q)
2β(1+γ)+(2−β)(1−q) by assumption. Thus (ν, 1) ·

D(x1,t1)Cv negatively diverges while approaching (x1, t1) and this implies (x1, x3, t1, t3, λ) can not
be a minimum. □

To deal with the case t = ∞ we need to be able to compare the evolutive problem with the
stationary one, and to this aim we will exploit the stability condition in Definition 2.2.

Let us consider a function u : Ω → R which satisfies (4.5) and the equation (4.4). For α ∈ (0, 1)
and β ∈ (0, 2], set

v(x, t) := uα(x, tβ).
By some straightforward computations, and recalled that v > 0, we have that the equation solved
by v is

− ∆v = B(x, v,Dv, t) in Ω × (0,+∞), (4.8)
where

B(x, s, p, t) := B̃(x, s, p̃, t) − 1
β
t1−βpn+1

:= 1 − α

α

|p̃|2

s
+ αs

α−1
α b

(
x, s1/α, tβ

)
− 1
β
t1−βpn+1.

(4.9)

From now on with B̃(x, s, p̃,∞) and v(x,∞) we mean their pointwise limit in time whenever the
stability condition is assumed.

Remark 4.12. Assuming vt ≥ 0 in Ω × (0,+∞) and v(x, t) → v(x,∞) < +∞ as t → +∞,
if (x1, x3, t1, t3, λ) ∈ Ω × Ω × [0,+∞) × {+∞} × (0, 1) is a global minimum for Cv, then also
(x1, x3,+∞,+∞, λ) is a global minimum for Cv. Indeed

Cv(x1, x3, t1, t3, λ) = v(x2,∞) − λv(x3, t3) − (1 − λ)v(x1,∞)
≥ v(x2,∞) − λv(x3,∞) − (1 − λ)v(x1,∞).

Remark 4.13. Let us discuss the case when λ ∈ {0, 1}. Assume vt ≥ 0 in Ω × (0,+∞) and
v(x, t) → v(x,∞) < +∞ as t → +∞. If t1, t3 ∈ [0,+∞), then Cuα(·,⋆β) = 0. If t3 = +∞ and λ = 1,
then Cuα(·,⋆β) = 0. If λ = 0, t3 = +∞ let us consider a minimizing sequence (xn

1 , x
n
3 , t

n
1 , t

n
3 , λ

n)
converging to (x1, x3, t1,+∞, 0) where (x1, x3, t1) ∈ Ω × Ω × [0,+∞]. We can assume, up to
subsequence, that tn2 converges to t2 ∈ [t1,+∞]. Since xn

2 tends to x1, then
lim

n→+∞
Cv(xn

1 , x
n
3 , t

n
1 , t

n
3 , λ

n) = v(x1, t2) − v(x1, t1) ≥ 0.

In light of Remarks 4.12 and 4.13, we will use the following convention.
Convention. If vt ≥ 0, then by a global point of minimum for Cv on Ω×Ω× [0,+∞]× [0,+∞]×

[0, 1] we mean a point picked in
(
Ω×Ω×[0,+∞)×[0,+∞)×[0, 1]

)
∪
(
Ω×Ω×{+∞}×{+∞}×(0, 1)

)
.

Proposition 4.14. Under the same assumption of Proposition 4.11, assume moreover vt ≥ 0 and
b satisfying the stability parabolic condition (e.g. i)–iv) in Remark 2.3 hold). Then Cuα(·,⋆β) cannot
achieve any negative minimum at (x1, x3, t1, t3, λ) ∈ Ω × Ω × [0,+∞] × [0,+∞] × (0, 1) such that
one t1, t3 ∈ {0}, or one of x1, x2, x3 ∈ ∂Ω.
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Proof. In light of Proposition 4.11 and Remark 4.12, we need to exclude only the stationary case
t1 = t3 = +∞ and x1 ∈ ∂Ω, x3 ∈ Ω; this can be done as in the proof of Proposition 4.11. See also
[13, 45]. □

Theorem 4.15. Let Ω satisfy (4.2), and u be a function such that (4.3), (4.4) and (4.5) hold.
Let β ∈ [1, 2] and suppose b : Ω × (0,+∞) × (0,+∞) → R is such that b(x, ·, t) is differentiable in
R \ {0} for all (x, t) ∈ Ω × (0,+∞), (H1), (H2) hold and

i) s 7→ sα−1b(x, s, t) is strictly decreasing for all (x, t) ∈ Ω × (0,+∞) for some α ∈ (0, 1) as
in Proposition 4.11.

ii) b satisfies the stability parabolic condition (e.g. i)–iv) in Remark 2.3 hold).
iii) b(x, s, ·) is nondecreasing for each (x, s) ∈ Ω × (0,+∞).

Then ut ≥ 0. Let (x1, x3, t1, t3, λ) ∈ Ω × Ω × [0,+∞] × [0,+∞] × [0, 1] be a global minimum for Cuα

(with the above convention). Then (3.4) holds true for some σ > 0 and

min
Ω×Ω×[0,+∞]×[0,+∞]×[0,1]

Cuα(·,⋆β) ≥ − 1
σ

HC−
B̃(·,uα(·,⋆β),Dxuα(x1,tβ

1 ),⋆)
(x1, x3, t1, t3, λ).

Proof. By (H2) we can apply Corollary A.3 and obtain ut ≥ 0 in Ω× (0,+∞), which in turn implies
vt ≥ 0 (so we are in the setting of the above convention). If the minimum is nonnegative, the
statement holds. Assume Cuα(·,⋆β) admits a negative minimum. By Remark 4.13 and Proposition
4.14, we know that (x1, x3, t1, t3, λ) ∈ Ω × Ω × (0,+∞] × (0,+∞] × (0, 1).

Let us verify the hypothesis of Corollary 3.4 on the equation (4.8) satisfied by v. As first
α−1(1 − α)s−1|p|2 is decreasing with respect to s. Then denoting r for s

1
α , the second term of

B becomes αrα−1b(x, r, tβ) which is strictly decreasing for hypothesis with respect to r. Hence
B(x, ·, p, t) is strictly decreasing for all p ∈ Rn, x ∈ Ω and t ∈ (0,+∞), which implies the existence
of σ > 0 such that (3.4) holds.

If (x1, x3, t1, t3, λ) ∈ Ω × Ω × (0,+∞) × (0,+∞) × (0, 1), then the claim follows by Theorem
3.3. If t1 = t3 = +∞ the claim follows by [13, Lemma 2.9]. We conclude by observing that, being
β ∈ [1, 2], we have HC⋆1−β ≤ 0. □

Corollary 4.16. In the assumptions of Theorem 4.15, we also have

min
Ω×Ω×[0,+∞]×[0,+∞]×[0,1]

Cuα(·,⋆β) ≥ −α

σ

C−
g̃(·,uα(·,⋆β),⋆)(x1, x3, t1, t3, λ)

(λuα(x3, t
β
3 ) + (1 − λ)uα(x1, t

β
1 ))2

where g̃(x, s, t) := s
3α−1

α b(x, s1/α, tβ).

Proof. Since Theorem 4.15 holds, let us give lower bound for the HC−
B̃

. Set

g(x, s, t) := s2B̃(x, s, ξ̃, t) = 1 − α

α
|ξ̃|2s+ αs

3α−1
α b(x, s1/α, tβ)

where ξ̃ = Dxu
α(x1, t

β
1 ), and moreover v(x, t) = uα(x, tβ). By Proposition B.3 we have

HC
B̃(·,v(·,⋆),ξ̃,⋆)(x1, x3, t1, t3, λ) ≥

Cg(·,v(·,⋆),⋆)(x1, x3, t1, t3, λ)
(λv3 + (1 − λ)v1)2 .

Since Cg = αCg̃(·,v(·,⋆),⋆), we obtain

HC
B̃(·,v(·,⋆),ξ̃,⋆)(x1, x3, t1, t3, λ) ≥ α

Cg̃(·,v(·,⋆),⋆)(x1, x3, t1, t3, λ)
(λv3 + (1 − λ)v1)2

and thus the claim. □

As a consequence of Corollary 4.16 we obtain the following result.

Theorem 4.17. In the assumptions of Theorem 4.15, assume moreover
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iv) (x, s, t) 7→ s
3α−1

α b(x, s
1
α , tβ) is a concave function.

Then uα(·, ⋆β) is a concave function in Ω × [0,+∞].

4.2.1. Applications
Let Ω be a convex bounded domain of Rn and suppose u is a function such that (4.3) and (4.5)

hold together with (4.4) in the case b(x, u, t) = a(x, t)uq, namely
ut − ∆u = a(x, t)uq in Ω × (0,+∞), (4.10)

where q ∈ [0, 1), a : Ω × (0,+∞) → R such that a(·, t) measurable for all t ∈ (0,+∞).
Let us start from some exact results. For the sake of simplicity, we focus on a(x, t) = a(x)tγ , but

more general behaviours in time may be considered.

Proof of Theorem 1.4. Let us verify hypothesis of Theorem 4.17 with

α = θ(1 − q)
1 + 2θ + βγθ

<
2(1 − q)

2β(1 + γ) + (2 − β)(1 − q) < 1 − q

and b(x, s, t) = a(x)tγsq. Notice s 7→ sα−1b(x, s, t) = a(x)tγsα−(1−q) is strictly decreasing for all
x ∈ Ω and t > 0. Moreover s 7→ s

3α−1
α b(x, s1/α, tβ) = a(x)tγβs3− 1−q

α is concave as a product since
1
θ + βγ + 3 − 1−q

α = 1, by the assumptions we have 3 − 1−q
α ≥ 0 and thus the claim in light of

Proposition 2.7 (iv). To get the parabolic condition3, we argue as in Remark 2.6 thanks to Remark
2.3, while we see that (H1) is satisfied as shown in Remark 2.4. Then we can apply Theorem 4.17
and get the thesis. Moreover if a is a constant, then a is θ-concave for all θ ≥ 1, thus the claim
by Proposition 2.7 (ii). Finally, we see that, if β = 1

γ ≤ 2 and a is constant, we can repeat the
previous arguments with α = 1−q

2+βγ and obtain the claim. □

Proof of Theorem 1.6. Let us verify that b(x, s) = a(x)sp + sq satisfies the hypothesis of Theorem
4.17 with α = 1−q

2 . Since s
1−q

2 −1(a(x)sp + sq) = a(x)s
−1−q+2p

2 + s
q−1

2 , it is strictly decreasing by
the hypothesis on p. Moreover the stability parabolic condition is guaranteed by Remark 2.3 and
b(x, s) = a(x)sp + sq satisfies (H1) as shown in Remark 2.4. Regarding the concavity we observe
that s 7→ a(x)s

1−3q+2p
1−q + s is concave by the assumptions. Thus we have the claim. □

Proposition 4.18. Let Ω satisfy (4.2), and u be a function such that (4.3) and (4.5) hold. Suppose
ut − ∆u = (1 − u)p in Ω × (0,+∞)

for some p ∈ (0, 1). Then u(·, ⋆2) is 1
2 -concave in Ω × [0,+∞).

Proof. Observe that b(s) = (1 − s)p satisfies (H2) (being nonincreasing), and it satisfies (H1) with
q = 0 for M < 1. To conclude it is sufficient to observe that sα−1b(s) is strictly decreasing for
each α ∈ (0, 1), while s

3α−1
α b(s

1
α ) is concave for each α ∈ [1

3 ,
1
2 ]. Noticed that α = 1

2 , satisfies the
restriction of Proposition 4.11, then the claim holds by Theorem 4.17. □

Remark 4.19. In [44] the author shows that, for β = 1, the solution u is such that φp(u) is
concave, where φp(s) :=

� s
0

1√
1−(1−r)p+1dr. Set ψ(s) :=

√
s the transformation found in Proposition

4.18, by the fact that ψ ◦ φ−1
p is (strictly) concave, we see that, generally, the information given by

φp is better. This fact is due to the choice of a transformation not necessarily of power type, but
tailed on the nonlinearity, that is, up to constants, φp(s) =

� t
0

1√
F (r)

dr, where F (s) =
� t

0 f(r)dr,
f(s) = (1 − s)p. This choice is coherent with the approach in [3, 11, 29]. In the present paper, we
decided not to pursue this approach in order to focus on the difficulties given by the parabolic

3 Notice that the solution of the stationary solution of −∆u = a(x)uq is θ(1−q)
1+2θ

-concave, where θ(1−q)
1+2θ

≥ θ(1−q)
1+2θ+βγθ

.
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framework and avoid technicalities. On the other hand, similar arguments could be developed, and
we leave the details to the interested reader.

Let us now move to some perturbative result. For the sake of simplicity, we consider a = a(x)
locally bounded (see also Remark 4.24), and β = 1.

Let (x1, x3, t1, t3, λ) ∈ Ω × Ω × (0,+∞] × (0,+∞] × (0, 1) be a global interior minimum of C
u

1−q
2

,
then by (3.3) in Theorem 3.3 we have ξ := Dxu(x1, t1) = Dxu(x2, t2) = Dxu(x3, t3). We define, for
any ρ > 0 small enough,

mρ := 2
1 − q

inf
x∈Ωρ

f ξ(x), Mρ := 2
1 − q

sup
x∈Ωρ

f ξ(x), (4.11)

where

fp(x) := 1 + q

1 − q
|p|2 + 1 − q

2 a(x), for p ∈ Rn and x ∈ Ω. (4.12)

Notice that

Mρ − mρ = sup
Ωρ

a− inf
Ωρ

a, mρ ≥ inf
Ωρ

a. (4.13)

Proposition 4.20 (Oscillation estimate). Let Ω satisfy (4.2), and u be a function such that (4.3),
(4.5) and (4.10) hold. Suppose moreover a : Ω → R measurable, locally bounded and a ≥ m > 0.
Then u is increasing in time and there exists ρ > 0 such that

min
Ω×Ω×[0,+∞]×[0,+∞]×[0,1]

C
u

1−q
2

≥ −
∥u(·,∞)∥

1−q
2

L∞(Ω)
mρ

(
inf

Ωρ×Ωρ×[0,1]
Ca − Mρ

mρ
ε

)−

.

where ε := Mρ − mρ ≥ 0 and Mρ,mρ are defined in (4.11). In particular

min
Ω×Ω×[0,+∞]×[0,+∞]×[0,1]

C
u

1−q
2

≥ −∥u(·,∞)∥
1−q

2
L∞(Ωρ)

(
2 + ε

infΩρ
a

)
ε

infΩρ
a
.

Proof. We want to apply Theorem 4.15 with α = 1−q
2 and b(x, s) = a(x)sq. Since a is bounded

from below, b(x, s) ≥ msq. Moreover sα−1b(x, s) = s
1−q

2 −1a(x)sq = a(x)s
q−1

2 is strictly decreasing
function of s, the parabolic condition on b is satisfied by Remark 2.3 and (H1) is satisfied as shown
in Remark 2.4. Thus we can apply Theorem 4.15. Notice that B̃ defined in (4.9) takes the form

B̃(x, s, p) = fp(x)
s

where fp is given in (4.12). Let (x1, x3, t1, t3, λ) ∈ Ω × Ω × [0,+∞] × [0,+∞] × [0, 1] be a global
minimum for Cv. By Proposition 4.11, we know that (x1, x3, t1, t3, λ) ∈ Ω×Ω× (0,+∞]× (0,+∞]×
[0, 1]. If the minimum is positive, the statement holds. Suppose Cv admits a negative minimum at
(x1, x3, t1, t3, λ) ∈ Ω × Ω × (0,+∞) × (0,+∞) × (0, 1), then we need to estimate of the harmonic
concavity function. Define

ρ := min
{
d(x1, ∂Ω), d(x3, ∂Ω)

}
> 0.
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Then by (4.11), it holds (recall (2.6))

HCB(·,v(·,⋆),ξ)(x1, x3, t1, t3, λ)

= f ξ
2

λv3 + (1 − λ)v1
− f ξ

1
v1

f ξ
3
v3

v1v3

λf ξ
1v3 + (1 − λ)f ξ

3v1

= 1
λv3 + (1 − λ)v1

(
f ξ

2 − f ξ
1f

ξ
3

λv3 + (1 − λ)v1

λf ξ
1v3 + (1 − λ)f ξ

3v1

)

≥ 1
λv3 + (1 − λ)v1

(
HCfξ(x1, x3, t1, t3, λ) + f ξ

1f
ξ
3

(
1

λf ξ
1 + (1 − λ)f ξ

3
− 2

(1 − q)mρ

))

≥ 1
λv3 + (1 − λ)v1

(
HCfξ(x1, x3, t1, t3, λ) + 1 − q

2 M2
ρ

(
1
Mρ

− 1
mρ

))

≥ 1
λv3 + (1 − λ)v1

(
Cfξ(x1, x3, t1, t3, λ) − 1 − q

2
Mρ

mρ
(Mρ − mρ)

)

=1 − q

2
1

λv3 + (1 − λ)v1

(
Ca(x1, x3, t1, t3, λ) − Mρ

mρ
ε

)
.

In the case as t1 = +∞ or t3 = +∞, the previous inequality holds by the same arguments for
HCB(·,v(·,⋆),ξ)(x1, x3,+∞,+∞, λ). Thus it holds

HCB(·,v(·,⋆),ξ)(x1, x3,+∞,+∞, λ) ≥ 1 − q

2
1

λv3 + (1 − λ)v1

(
Ca(x1, x3, λ) − Mρ

mρ
ε

)
.

Let us write explicitly the constant σ of (3.4) recalling that v2 < λv3 + (1 − λ)v1:

sup
z∈[v2,λv3+(1−λ)v1]

∂sB(x2, z,Dxv2) ≤ fDxv2(x2) sup
z∈[v2,λv3+(1−λ)v1]

(
− 1
z2

)
≤ −1 − q

2
mρ

(λv3 + (1 − λ)v1)2

which leads to σ := 1−q
2

mρ

(λv3+(1−λ)v1)2 . Finally by Theorem 4.15, it holds

min
Ω×Ω×[0,+∞]×[0,+∞]×[0,1]

C
u

1−q
2

≥ min
{

0, λv3 + (1 − λ)v1
mρ

(
Ca(x1, x3, λ) − Mρ

mρ
ε

)}

which implies the claim. We conclude by observing that Ca ≥ infΩρ
a− supΩρ

a on Ωρ, (4.13) and
the trivial identity Mρ

mρ
= Mρ−mρ

mρ
+ 1. □

Remark 4.21. We highlight that, in the previous proof, we exploited infΩ a > 0. On the other
hand, in regard of the conclusion, we observe that if a → 0 on ∂Ω the final expression is still well
defined; we refer to Section 5 for some generalization for the torsion problem in this direction.

Assumed a bounded and set M := supΩ a, m := infΩ a, the final statement in Proposition 4.20
implies

min
Ω×Ω×[0,+∞]×[0,+∞]×[0,1]

C
u

1−q
2

≥ −∥u(·,∞)∥
1−q

2∞

(
2 + osc(a)

m

) osc(a)
m

where we recall osc(a) = M −m. Finally, if a ∈ C1(Ω), it is possible to express ε in terms of the
gradient of a. Indeed for some x̄, x̃ ∈ Ωρ and z̄ on the segment [x̄, x̃] lying in Ωρ, it holds

ε = Mρ − mρ = ∇a(z̄) · (x̄− x̃) ≤ ∥∇a∥∞diam(Ω).
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As a consequence of Proposition 2.9, Proposition 4.20 and Remark 4.21 we obtain the following
result.

Corollary 4.22 (Hyers-Ulam approximation). Under the assumptions of Proposition 4.20, there
exist a C = C

(
∥u(·,∞)∥∞, infΩ a, osc(a), γ, n

)
> 0 (with a linear dependence with respect to osc(a))

and a concave function w : Ω × (0,+∞) → R such that

∥u
1−q

2 − w∥L∞(Ω×(0,+∞)) ≤ Cosc(a).

Proposition 4.23 (θ-concavity estimate). Let Ω satisfy (4.2), θ ≥ 1, and u be a function such
that (4.3), (4.5) and (4.10) hold. Suppose moreover a : Ω → R measurable, 0 < m ≤ a ≤ M and
mθ ≥ M θ/2. Let (x1, x3, t1, t3, λ) ∈ Ω × Ω × [0,+∞] × [0,+∞] × [0, 1] be a global minimum for
C

u
θ(1−q)
1+2θ

. Then there exists ρ > 0 such that

min
Ω×Ω×[0,+∞]×[0,+∞]×[0,1]

C
u

θ(1−q)
1+2θ

≥ − 2θ
1 + 2θ

||u(·,∞)||
(θ−1)(1−q)

1+2θ

L∞(Ω)
mρ

(C−
aθ )1/θ(x1, x3, λ).

Proof. As in Proposition 4.20, the hypothesis imply Corollary 4.16. Being b(x, s) = a(x)sq, we need
to we evaluate Cg̃(·,v(·,⋆)) with g̃(x, s) := a(x)s

3α−1+q
α and α = θ(1−q)

1+2θ . We see that s 7→ s
3α−1+q

α is(
1 − 1

θ

)−1
-concave. If θ > 1, applying Proposition B.1 it holds

Cg̃(·,v(·,⋆))(x1, x3, λ) ≥ − (C−
aθ )1/θ(x1, x3, λ)

(
λv

1−1/θ
3 + (1 − λ)v1−1/θ

1
)
.

Instead if θ = 1, the previous inequality is obvious. So by Corollary 4.16

Cuα(x1, x3, t1, t3, λ) ≥ − α

σ

C−
g̃(·,v(·,⋆))(x1, x3, t1, t3, λ)

(λv2 + (1 − λ)v1)2

≥ − θ(1 − q)
1 + 2θ

1
σ

(λv1−1/θ
3 + (1 − λ)v1−1/θ

1 )
(λv3 + (1 − λ)v1)2 (C−

aθ )1/θ(x1, x3, λ).

Define ρ := min {d(x1, ∂Ω), d(x3, ∂Ω)} > 0. Then as in Proposition 4.20, we can take σ :=
1−q

2
mρ

(λv3+(1−λ)v1)2 and this leads to

Cuα(x1, x3, t1, t3, λ) ≥ − 2θ
1 + 2θ

(λv1−1/θ
3 + (1 − λ)v1−1/θ

1 )
mρ

(C−
aθ )1/θ(x1, x3, λ)

≥ − 2θ
1 + 2θ

||u||
(θ−1)(1−q)

1+2θ
∞
mρ

(C−
aθ )1/θ(x1, x3, λ). □

Proof of Theorem 1.8. It is a consequence of Proposition 4.23 and Remark 4.21. □

Remark 4.24. The above perturbative results can be extended also to time-dependent nonlinearities
a(x, t). If, for instance, a(x, t) is bounded and a(x, t) → ā(x) as t → +∞, it makes sense to
investigate the parabolic stability condition for b. Moreover, if a > 0 in Ω × (0,+∞), one can
consider the infimum over Ωρ × [ρ,+∞), where ρ := min

{
d(x1, ∂Ω), d(x3, ∂Ω), t1, t3

}
> 0.

If instead a(x, t) ∼ a(x)tγ , then one may consider a truncation argument (see Remark 2.6) so
that a becomes bounded. In such a case, anyway, the perturbative estimate will depend on T . We
omit the the details, and leave them to the interested reader.

Remark 4.25 (Comments on u(·, 0) ̸= 0). In the whole Subsection 4.2 we considered only zero
initial conditions u(·, 0) = u0 = 0, in accordance to [36, 38, 39, 44]. Many of our arguments, anyway,
could be adapted also to nonzero initial conditions. First, assume, in place of (H1), the following
slightly stronger assumption:
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(H1∗) There exist T > 0, q ∈ [0, 1) and γ ∈ [0, 1] such that for all M > 0 there exists
k = k(M,T ) > 0 verifying

b(x, s, t) ≥ ktγsq for all (x, s, t) ∈ Ω × (0,M ] × (0, T ].
As in (H2), ∥u∥∞ takes the place of M . Notice that that f(s) = (1 − s)p (studied in Proposition
4.18) satisfies (H1) but not (H1∗). Assuming

• u0 ∈ C(Ω), u0 = 0 on ∂Ω,4

u0 ≥ δdΩ for some δ > 0, (4.14)
u0 is α-concave for some (suitable) α, and

u(·, t) ≥ u0 for each t > 0
(for instance, when (H3) holds, we can require u0 to be a subsolution of the stationary
problem, see Corollary A.3),5

all the arguments still hold, except for the ones in Lemma 4.11, case t1 = 0, t3 ∈ (0,+∞) and
x1, x3 ∈ Ω. As a matter of facts, in this case we have

lim sup
τ→0

vt(τ) ≥ lim sup
τ→0

v(x, τ) − v(x, 0)
τ

,

with v(x, 0) = uα
0 (x) > 0, and we are not able to show that this limit explodes to +∞, no matter

who α is. More in details, by assuming for simplicity b(x, s, t) = a(x)sq, q ∈ [0, 1), a(x) ≥ m > 0,
then an improvement of Proposition A.1 leads to

u(x, t) ≥ v(x, t) + eLtS(t)(u(x, 0) − v(x, 0)),
for any supersolution u and any subsolution v; here L = qm

∥u∥1−q
∞

≥ 0 and S(t) is the heat semigroup.
Exploiting this improvement in the proof of Lemma 4.10 (i), we obtain

u(x, t) ≥ Ce−λ1tt
1

1−qφ1(x) + eLtS(t)u0

with C = ((1 − q)m)
1

1−q . As a consequence, straightforward computations imply, if β = 1 and
u0 ∈ C2(Ω),

lim sup
τ→0

vt(x, τ) ≥ αuα−1
0 (x)∆u0(x) + αLuα

0 (x) + Cuα−1
0 (x)φ1(x) lim sup

τ→0
τ

1
1−q

−1
,

where the right hand side corresponds to αuα−1
0 (x)h(x) with

h := ∆u0 + m

α
φ1 if q = 0, h := ∆u0 + Lu0 if q ∈ (0, 1).

As abovementioned, these are finite quantities (positive under suitable assumptions on u0), and
thus do not allow to conclude in Lemma 4.11.

With similar computations we see that, if β < 1, then we actually obtain lim supτ→0 vt(τ) = +∞:
with such an information at disposal, we can conclude Lemma 4.11 and apply it to obtain (arguing
as in Theorem 4.15 and Corollary 4.16)

min
Ω×Ω×[0,+∞]×[0,+∞]×[0,1]

Cuα(·,⋆β) ≥ −α

σ

C−
g̃(·,uα(·,⋆β))(x1, x3, t1, t3, λ)

(λuα(x3, t
β
3 ) + (1 − λ)uα(x1, t

β
1 ))2

− ξn+1HC⋆1−β (t1, t3, λ),

4 We highlight that the requirement (4.14) is related to the application of the comparison principles, see Proposition
A.1. By requiring more regularity on b (see (H2∗)), this condition can be dropped (see Proposition A.2).

5 The set of functions satisfying these conditions is nonempty. For example, consider Ω = B1, b(x, s, t) = a(x) ∈
L∞(Ω) with a ≥ m > 0. Let u0(x) = δdΩ(x) = δ(1 − |x|), δ small enough, on B1 \ B 1

2
and extended smoothly

and in a concave way to B 1
2
. Then −∆u0 = δ N−1

|x| ≤ a(x) in B1 \ B 1
2

and we can require also −∆u0 ≤ a(x) in
B 1

2
. Thus u0 satisfies all the assumptions (α = 1). Less trivial examples (such as perturbations of the present

examples) hold as well.
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where g̃(x, s) := a(x)s
3α−1+q

α . While the first term, as in the case u0 = 0 (see the proof of Theorem
1.4), can be positively estimated under suitable assumptions on α, q and a(x), we see that for any
β < 1 the second term remains negative (notice that t1 or t3 may go to zero as β → 1−). Thus we
are not able to deduce any exact concavity in such a case.

Overall, we observe that conservation of concavity for nontrivial initial data is a delicate issue:
in the case of porous medium equations, indeed, it has been proved that 1

2 -concavity is preserved
[51], while there are counterexamples in the case of α-concavity, α < 1

2 , [17]; this is in contrast with
the general spirit of the present paper, where information on some α implies information also on
smaller exponents.

5. Further results on the weighted torsion problem
Let us deal with the case q = 0 in (4.10). First, we can find more explicit constant and comparison

function in Corollary 4.22; moreover, we have more freedom in the choice of the sign of a.

Proposition 5.1. Let Ω satisfy (4.2), and u, v be some functions such that (4.3) and (4.5) hold.
Suppose

ut − ∆u = a(x, t) in Ω × (0,+∞), vt − ∆v = K in Ω × (0,+∞)
where K > 0, a : Ω × R → R and there exist m,M ∈ R such that m ≤ a ≤ M. Then v is 1

2 -concave
and

∥u1/2 − v1/2∥∞ ≤ eR
√

max {|m−K|, |M −K|},
where R is such that Ω ⊆ B(0, R).

Proof. Let us subtract the two equations obtaining that w := u− v satisfies the problem
wt − ∆w = a(x, t) −K in Ω × (0,+∞),
w = 0 on ∂Ω × (0,+∞),
w = 0 on Ω × {0}.

Set ψ := e2R − ex1+R. Then
ψt − ∆ψ = ex1+R ≥ 1 in Ω × (0,+∞).

Set f(x, t) := a(x, t) −K, hence we have (∂t − ∆)(w − ψ supΩ×(0,+∞) f
+) ≤ 0 in Ω × (0,+∞) and

w− ψ supΩ×(0,+∞) f
+ ≤ 0 on the parabolic boundary (see (A.4)). Then by the maximum principle

[52, Corollary 2.5], it holds
sup

Ω×(0,+∞)
(w − ψ sup

Ω
f+) ≤ 0,

so
sup

Ω×(0,+∞)
w ≤ e2R sup

Ω×(0,+∞)
|f |.

In a similar way we obtain
inf

Ω×(0,+∞)
w ≥ −e2R sup

Ω×(0,+∞)
|f |.

Then it holds

∥u1/2 − v1/2∥∞ ≤ ∥u− v∥1/2
∞ ≤ eR

√
sup

Ω×(0,+∞)
|f | = eR

√
max {|m−K|, |M −K|}.

Finally, v is 1
2 -concave by Proposition 4.20. □

When dealing with the torsion problem (q = 0), more general classes of concave weights a(x)
can be considered, in particular by allowing a(x) = 0 on ∂Ω. In particular, instead of (H1) we can
consider the following condition
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(H1′) There exists T > 0, k > 0, ω ≥ 0 and γ ∈ [0, 1), such that,
b(x, t) ≥ kdω

Ω(x)tγ for all (x, t) ∈ Ω × (0, T ].

Remark 5.2. The presence of dΩ in assumption (H1′) is due to the following fact: if a(x) is a
nonnegative concave function, then it is positive in Ω (but not necessarily in Ω), and there exists
C > 0 such that

a(x) ≥ CdΩ(x) in Ω.

The fact that, differently from (H1), we focus on q = 0 in (H1′), allows us to compare our
solutions, time-scaled by β = 2, with the one of the equation Ut − ∆U + U = kdω

Ω(x)tγ for which a
representation formula holds. Thus combining [39, Lemma 3] and Proposition A.1, we obtain an
alternative version of Lemma 4.10.

Lemma 5.3. Let n ≥ 2, Ω be bounded, convex and smooth, and u be a function such that (4.3),
(4.4) and (4.5) hold. Suppose b : Ω × (0,+∞) → (0,+∞) satisfies (H1′), and let T, γ, ω given
therein. Then

(i) there exists C > 0 such that

u(x, t) ≥ Ct
2+2γ+ω

2 in Ω × (0, T ).
(ii) for any x0 ∈ ∂Ω there exists δ > 0 such that

u(x0 + tν, t2) ≥ δt2+2γ+ω for t ∈ (0, T ) small,
where ν is the interior normal to ∂Ω in x0.

Thanks to this result, we are able to show the counterpart of Proposition 4.11 in the case β = 2,
that is

Proposition 5.4. In the setting of Proposition 4.11, suppose b satisfies (H1′), and let α ∈
(0, 1

2+2γ+ω ). Then Cuα(·,⋆2) cannot achieve any negative minimum at (x1, x3, t1, t3, λ) ∈ Ω × Ω ×
[0,+∞] × [0,+∞] × (0, 1) such that one t1, t3 ∈ {0}, or one x1, x2, x3 ∈ ∂Ω.

Proof. The proof proceed similarly to the one of Proposition 4.11. In particular if t1 = 0, t3 ∈
(0,+∞), x1 ∈ Ω and x3 ∈ Ω, by Lemma 5.3 (i),

lim
τ→0

vt(x1, τ) ≥ Cα lim
τ→0

1
τ1−(2+2γ+ω)α = +∞

by the assumption α < 1
2+2γ+ω which implies the contradiction. If t1 = 0, t3 ∈ (0,+∞), x1 ∈ ∂Ω,

x3 ∈ Ω, by Lemma 5.3 (ii)
uα(x1 + tν, t2)

t
≥ δαtα(2+2γ+ω)−1 for t > 0 small,

which positively diverges as t → 0+ again by assumptions and thus again a contradiction. □

With this tool, we can prove a refinement of Theorem 1.4 when q = 0.

Proposition 5.5 (Weighted torsion). Let γ ∈ [0, 1
2 ], Ω satisfy (4.2), and u be a function such that

(4.3), (4.5) and
ut − ∆u = c(t)a(x) in Ω × (0,+∞).

We assume c nondecreasing, 1
γ -concave, and

c(t) ≥ tγ .

If γ < 1
2 and a ≥ 0 is θ-concave for some θ ≥ 1

1−2γ , then u(·, ⋆2) is θ
2θ+2θγ+1 -concave. If a is

constant, then u(·, ⋆2) is 1
2+2γ -concave.
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Proof. By Remark 5.2 we may assume a ≥ Cdω
Ω for ω = 1

θ . By Remark 2.6 we can restrict to study

ut − ∆u = cT (t)a(x) in Ω × (0,+∞)

where T is fixed and cT (t) = c(t) for t ∈ [0, T ] and cT (t) = c(T ) for t ≤ T . Clearly b(x, t) := cT (t)a(x)
satisfies (H1′) and (H2), as well as the stability parabolic condition thanks again to Remark 2.6.
To apply Theorem 4.17 with α ∈ (0, 1

2+2γ+ω ) ⊂ (0, 1), we observe that s 7→ sα−1b(x, t) is strictly
decreasing and moreover (x, s, t) 7→ s

3α−1
α b(x, t2) = s

3α−1
α c(t2)a(x) is concave if 3α−1

α ≥ 0 and
3α−1

α + 2γ + 1
θ = 1 by Proposition 2.7 (iv). Both conditions imply that the optimal α is given by

α = θ
2θ+2θγ+1 . Noticed that the solution of the stationary problem −∆u = a(x) is θ

2θ+1 -concave,
and θ

2θ+2θγ+1 ≤ θ
2θ+1 , then we obtain u is θ

2θ+2θγ+1 -concave. □

Appendix A. Comparison principles
We state now a comparison principle, which is the nonautonomous counterpart of [25, Corollary

2.3] (see also [16]). We recall that w = w(x, t) is a subsolution (resp. supersolution) of
wt − ∆w = b(x,w, t) in Ω × (0, T ),
w = 0 on ∂Ω × (0, T ),
w = u0 on Ω × {0},

(A.1)

if the above three equalities are substituted by ≤ (resp. ≥).

Proposition A.1 (Comparison and uniqueness, I). Let Ω ⊂ Rn be a bounded open domain with
the interior sphere property. Let T > 0 and b : Ω × (0,+∞) × (0, T ) → [0,+∞) satisfying (H2) and
assume b(x, ·, t) continuous for all (x, t) ∈ Ω × (0, T ). Let u0 ∈ C(Ω) with u0 ≥ δdΩ for some δ > 0
or u0 ≡ 0. Let u, v ∈ C2(Ω) ∩ C1((0, T ]) ∩ C(Ω × [0, T ]) and (u − v)+ ∈ H1(Ω). Assume u is a
positive supersolution and v is a subsolution of (A.1). Then u(·, t) ≥ v(·, t) for all 0 ≤ t ≤ T . In
particular, there exists at most one positive solution of (A.1).

Proof. Consider first the case u0 ≥ δdΩ. Based on Hardy’s inequality, it holds
�

Ω

φ2

d2
Ω

≤ C

�
Ω

|∇φ|2, (A.2)

for all φ ∈ H1
0 (Ω). Being b nonnegative, we have ut − ∆u ≥ 0 and thus by comparison and

the semigroup representation of the heat equation we obtain u(·, t) ≥ S(t)u(·, 0), S(t) = et∆. In
particular there exists γ > 0 such that u(·, t) ≥ γdΩ for all t ∈ [0, T ]. Taking t ∈ (0, T ), testing the
inequalities satisfied by u and v with (v(·, t) − u(·, t))+ and taking the difference we obtain

1
2
d

dt

�
Ω

|
(
v(x, t) − u(x, t)

)+|2dx+
�

Ω
|Dx(v(x, t) − u(x, t))+|2dx

≤
�

{v(·,t)>u(·,t)}

(
b(x, v, t) − b(x, u, t))(v(x, t) − u(x, t)

)+
dx

≤LM

�
{v(·,t)>u(·,t)}

|
(
v(x, t) − u(x, t)

)+|2

u(x, t) dx,

with M := max
{

||u||L∞((0,T )×Ω), ||v||L∞((0,T )×Ω)
}

. Since

1
u(·, t) ≤ 1

γdΩ
≤ ε

d2
Ω

+ C(ε) for all ε > 0,
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we deduce that
1
2
d

dt

�
Ω

|(v(x, t) − u(x, t))+|2dx+
�

Ω
|Dx(v(x, t) − u(x, t))+|2dx

≤ε
�

Ω

|(v(x, t) − u(x, t))+|2

d2
Ω(x)

dx+ C(ε)
�

Ω
|(v(x, t) − u(x, t))+|2dx.

Applying (A.2) and choosing ε > 0 sufficiently small, we then obtain
1
2
d

dt

�
Ω

|(v(x, t) − u(x, t))+|2dx ≤ C

�
Ω

|(v(x, t) − u(x, t))+|2dx,

from which the result follows by Gronwall inequality�
Ω

|(v(x, t) − u(x, t))+|2dx ≤ e2C

�
Ω

|(v(x, 0) − u(x, 0))+|2dx.

Now let us deal with the case u0 ≡ 0. Since ut − ∆u ≥ 0, by [16, Remark 6.1] (see also Lemma
A.4) we have that u(·, t) ≥ S(t − r)u(·, r) for all 0 < r < t ≤ T and hence, being u(·, r) > 0, we
obtain u(·, t) ≥ δ(t)dΩ for all t ∈ (0, T ) with δ(t) > 0. Let us fix t ∈ (0, T ). By the previous
arguments, applied with initial time t to u(·, ⋆+ t) and v, we conclude that u(·, s+ t) ≥ v(·, t) for
all 0 < s < T − t. The result follows by letting s tend to 0. □

By requiring a more restrictive regularity of b(x, ·, t), we show now that the request u ≥ δdΩ can
be dropped in Proposition A.1; notice anyway that such regularity is satisfied by b(x, s, t) = a(x)sq

only for q ∈ [1
2 , 1]. We refer also to [36, Section A.1] and references therein for other comparison

principles which involve nonincreasing b(x, ·, t).

Proposition A.2 (Comparison and uniqueness, II). Let Ω ⊂ Rn be a bounded open domain with
the interior sphere property. Let T > 0 and b : Ω × (0,+∞) × (0, T ) → [0,+∞) satisfying (H2∗)
and b(x, ·, t) continuous for all (x, t) ∈ Ω × (0, T ). Let u0 ∈ C(Ω). Let u, v ∈ C2(Ω) ∩ C1((0, T ]) ∩
C(Ω × [0, T ]) and (u− v)+ ∈ H1(Ω). Assume u is a positive supersolution and v is a subsolution
of (A.1). Then u(·, t) ≥ v(·, t) for all 0 ≤ t ≤ T . In particular, there exists at most one positive
solution of (A.1).

Proof. The proof follows the lines of the one in Proposition A.1, with no need of the Hardy inequality,
but by exploiting D1,2(Ω) ↪→ L2∗(Ω) ↪→ L2ω(Ω) and Hölder inequality, where we highlight that
L2ω(Ω) is well defined as Lebesgue space by the assumption 2ω ≥ 1. □

We state now a condition for monotonicity of solutions (see also [16, Proposition 6.12] and [57,
Lemma 4.1, pag 199]).

Corollary A.3 (Monotonicity). In the assumptions of Proposition A.1 or Proposition A.2, assume
in addition (H3). Let u be a positive solution to

ut − ∆u = b(x, u, t) in Ω × (0,+∞),
u = 0 on ∂Ω × (0,+∞),
u = u0 on Ω × {0}.

Assume moreover that
u(·, t) ≥ u0 for each t > 0. (A.3)

Then ut ≥ 0 in Ω×(0,+∞). A condition to ensure (A.3) is that u0 is a subsolution of the stationary
problem {

−∆w = b(x,w, 0) in Ω,
w = 0 on ∂Ω.
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Proof. Fix τ > 0 and set ũ(x, t) := u(x, t+ τ), then ũ satisfies
ũt − ∆ũ = b(x, ũ, t+ τ) ≥ b(x, ũ, t) in Ω × (0,+∞),
ũ = 0 on ∂Ω × (0,+∞),
ũ ≥ u0 on Ω × {0}.

Since (H2) holds, by Proposition A.1 or A.2 we have ũ(x, t) ≥ u(x, t) for all (x, t) ∈ Ω × (0,+∞),
that is u(x, t+ τ) ≥ u(x, t), which is the claim. To see the last statement, it is sufficient to apply
again Proposition A.1 or A.2 with v = u0, after having observed that b(x, s, 0) ≤ b(x, s, t) thanks
to (H3). □

To state the parabolic version of the Hopf lemma, we recall some usual notation for the domain
and the boundary. Let Ω be a bounded open set in Rn, T > 0 and define the parabolic boundary as

∂pΩT :=
(
Ω × [0, T ]

)
\
(
Ω × (0, T ]

)
. (A.4)

We observe that, if Ω satisfies the interior sphere condition, then every point (x̄, t̄) ∈ ∂pΩT

satisfies the spherical cap condition, that is there exists an open ball Br(x0, t0), x0 ̸= x̄, such that
(x̄, t̄) ∈ ∂Br(x0, t0) and

Cr(x̄, t̄) := Br(x0, t0) ∩
{
t < t̄

}
⊂ Ω × (0, T ].

We recall thus the Hopf lemma for parabolic equations, see e.g. [59, Theorem 3, page 170].

Lemma A.4 (Parabolic Hopf lemma). Let Ω be an open bounded set in Rn satisfying the interior
sphere condition, T > 0 and u ∈ C2(Ω) ∩ C1((0, T ]) ∩ C(Ω × [0, T ]). Suppose further

ut + Lu ≥ 0 in Ω × (0, T ]

where

Lu := −
n∑

i,j=1
aijD

2
iju+

n∑
i=1

biDiu

with aij , bi ∈ L∞(Ω×(0, T ])∩C(Ω×(0, T ]). Moreover, suppose that there exists a point (x̄, t̄) ∈ ∂pΩT

such that
u(x̄, t̄) < u(x, t) ∀(x, t) ∈ Cr(x̄, t̄).

Let e ∈ Rn+1 be a direction such that (x̄, t̄)+se ∈ Cr(x, t) for some s > 0, and assume that ∂eu(x̄, t̄)
exists. Then ∂eu(x̄, t̄) > 0.

Appendix B. Properties of concavity functions
Proposition B.1 (Concavity of the product). Consider α, β ∈ (0,+∞) with α−1 + β−1 = 1, K a
convex set and f, g : K → R. Suppose on f one of the following:

i) m1 ≤ f ≤ M1 for some mα
1 ≥ 1

2M
α
1 > 0,

ii) C−
fα = 0,

and on g one of the following:
i) m2 ≤ g ≤ M2 for some mβ

2 ≥ 1
2M

β
2 > 0,

ii) C−
gβ = 0.

Then, for each x1, x3 ∈ K and λ ∈ [0, 1], it holds

Cfg(x1, x3, λ) ≥ − (C−
fα)1/α(x1, x3, λ)(λg3 + (1 − λ)g1) − (C−

gβ )1/β(x1, x3, λ)(λf3 + (1 − λ)f1)+

+ (C−
fα)1/α(x1, x3, λ)(C−

gβ )1/β(x1, x3, λ).
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Proof. Suppose α, β ∈ (1,+∞) and set µ := 1
α . Assume for a moment that

f
1/µ
i − C−

f1/µ(x1, x3, λ) ≥ 0, g
1/(1−µ)
i − C−

g1/(1−µ)(x1, x3, λ) ≥ 0 for i ∈ 1, 3. (B.1)

Then

f2g2 =
(
f

1/µ
2

)µ (
g

1/(1−µ)
2

)1−µ
= lim

p→0

(
µf

p/µ
2 + (1 − µ)gp/(1−µ)

2

)1/p

≥ lim
p→0

(
µ
(
λf

1/µ
3 + (1 − λ)f1/µ

1 − C−
f1/µ(x1, x3, λ)

)p
+

+ (1 − µ)
(
λg

1/(1−µ)
3 + (1 − λ)g1/(1−µ)

1 − C−
g1/(1−µ)(x1, x3, λ)

)p
)1/p

≥ lim
p→0

λ
(
µ(f1/µ

3 − C−
f1/µ(x1, x3, λ))p + (1 − µ)

(
g

1/(1−µ)
3 − C−

g1/(1−µ)(x1, x3, λ)
)p)1/p

+

+ (1 − λ)
(
µ(f1/µ

1 − C−
f1/µ(x1, x3, λ))p + (1 − µ)

(
g

1/(1−µ)
1 − C−

g1/(1−µ)(x1, x3, λ)
)p)1/p

=λ
(
f

1/µ
3 − C−

f1/µ(x1, x3, λ)
)µ (

g
1/(1−µ)
3 − C−

g1/(1−µ)(x1, x3, λ)
)1−µ

+

+ (1 − λ)
(
f

1/µ
1 − C−

f1/µ(x1, x3, λ)
)µ (

g
1/(1−µ)
1 − C−

g1/(1−µ)(x1, x3, λ)
)1−µ

,

where we used the inequality [45, Property 7]

(1 − λ)
(
fp

1 + gp
1
)1/p + λ

(
fp

3 + gp
3
)1/p ≤

((
(1 − λ)f1 + λf3

)p +
(
(1 − λ)g1 + λg3

)p)1/p
.

Since µ ∈ (0, 1], then for all A,B ≥ 0 it holds (A−B)µ ≥ Aµ −Bµ, and hence

f2g2 ≥λ
(
f3 − (C−

f1/µ)µ(x1, x3, λ)
)(
g3 − (C−

g1/(1−µ))1−µ(x1, x3, λ)
)
+

+ (1 − λ)
(
f1 − (C−

f1/µ)µ(x1, x3, λ)
)(
g1 − (C−

g1/(1−µ))1−µ)(x1, x3, λ)

which implies the claim, observed that 1
µ = α and 1

1−µ = β. We are left to verify (B.1). If
C−

f1/µ(x1, x3, λ) = 0, then the inequality trivially holds true. Otherwise consider (y1, y3, λ) ∈
K ×K × [0, 1] the negative minimum of Cf1/µ . By hypothesis on M,m:

f
1/µ
1 ≥ m

1/µ
1 ≥ M

1/µ
1 −m

1/µ
1 ≥ −Cf1/µ(y1, y3, λ) = C−

f1/µ(y1, y3, λ) ≥ C−
f1/µ(x1, x3, λ).

Similar computations hold for g. This concludes the proof. □

We deal now with the boundary case α = ∞ and β = 1.

Proposition B.2. Let K be a convex set and f, g : K → R. Then

Cfg(x1, x3, λ) ≥ Cg(x1, x3, λ)f2 − osc(f)(λ|g3| + (1 − λ)|g1|).

In particular, if f is nonnegative and g is concave and bounded, then

Cfg(x1, x3, λ) ≥ −∥g∥∞osc(a).

Proof. We have

Cfg(x1, x3, λ) = f2g2 − λf3g3 − (1 − λ)f1g1

= Cg(x1, x3, λ)f2 + λg3(f2 − f3) + (1 − λ)g1(f2 − f1)

and thus the two claims. □
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Proposition B.3. Let K ⊆ Rn, n ≥ 1, be a convex set. Let g : K → R and j ∈ {1, . . . , n}, and
consider f : x ∈ K 7→ g(x)

(xj)2 ∈ R. Then for all x, y ∈ K and λ ∈ [0, 1] it holds

HCf (x1, x3, λ) ≥ Cg(x1, x3, λ)
(xj

2)2
.

Proof. For clarity, let us set ζ := xj . If f1 = f3 = 0, then g1 = g3 = 0 and thus

HCf (x1, x3, λ) = f2 = g2
ζ2

2
= Cg(x1, x3, λ)

ζ2
2

.

Assume now λf1 + (1 − λ)f3 > 0. Then we have

HCf (x1, x3, λ) = = g2
ζ2

2
− g1g3
λg1ζ2

3 + (1 − λ)g3ζ2
1

=λg3 + (1 − λ)g1 + Cg(x1, x3, λ)
ζ2

2
− g1g3
λg1ζ2

3 + (1 − λ)g3ζ2
1

=λ(1 − λ) (g1ζ3 − g3ζ1)2

ζ2
2 (λg1ζ2

3 + (1 − λ)g3ζ2
1 )

+ Cg(x1, x3, λ)
ζ2

2
≥ Cg(x1, x3, λ)

ζ2
2

. □

Proposition B.4. Let K be a convex set and f, g : K → R with g > 0. Then
HCf−g ≥ HCf − HCg.

In particular, if HCg ≤ 0 (e.g., if g is constant or g(t) = tγ with γ ∈ [−1, 0]), then
HCf−g ≥ HCf .

Proof. Set for simplicity h := f − g. Let x1, x3 ∈ Ω and λ ∈ [0, 1]. Suppose h1 = h3 = 0, then
f1 = g1 and f3 = g3, which imply λf1 + (1 − λ)f3 = λg1 + (1 − λ)g3 > 0. Moreover

HCf (x1, x3, λ) − HCg(x1, x3, λ) = g2 − f2 = h2 = HCh(x1, x3, λ).
Otherwise, if λh1 + (1 − λ)h3 > 0, then λf1 + (1 − λ)f3 > λg1 + (1 − λ)g3 > 0 by the positivity of
g. Moreover a straightforward computation implies

HCh(x1, x3, λ) − HCf (x1, x3, λ) + HCg(x1, x3, λ) =

= λ(1 − λ)(f1g3 − f3g1)2(
λf1 + (1 − λ)f3

)(
λg1 + (1 − λ)g3

)(
λ(f1 − g1) + (1 − λ)(f3 − g3)

) ≥ 0. □
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