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Abstract

The dynamics of atmospheric disturbances are often described in terms of displacements of
air parcels relative to their locations in a notional background state. Modified Lagrangian Mean
(MLM) states have been proposed by M. E. McIntyre using the Lagrangian conserved variables
potential vorticity and potential temperature to label air parcels, thus avoiding the need to
calculate trajectories explicitly. Methven and Berrisford further defined a zonally symmetric
MLM state for global atmospheric flow in terms of mass in zonal angular momentum (z) and
potential temperature (θ) coordinates. We prove that for any snapshot of an atmospheric
flow in a single hemisphere, there exists a unique energy-minimising MLM state in geophysical
coordinates (latitude and pressure). Since the state is an energy minimum, it is suitable for
quantification of finite amplitude disturbances and examining atmospheric instability. This
state is obtained by solving a free surface problem, which we frame as the minimisation of an
optimal transport cost over a class of source measures. The solution consists of a source measure,
encoding surface pressure, and an optimal transport map, connecting the distribution of mass in
geophysical coordinates to the known distribution of mass in (z, θ). We show that this problem
reduces to an optimal transport problem with a known source measure, which has a numerically
feasible discretisation. Additionally, our results hold for a large class of cost functions, and
generalise analogous results on free surface variants of the semi-geostrophic equations.

1 Introduction

The dynamics of atmospheric disturbances and geophysical fluid instability are often described in
terms of displacements of air parcels relative to a notional background state. Such disturbances
include large amplitude waves, vortices, and other weather systems. In [17], Modified Lagrangian
Mean (MLM) states were proposed as a suitable choice of background state by using the conserved
variables potential vorticity (Q) and potential temperature (Θ) to label air parcels, thus avoiding the
need to calculate 3-D trajectories explicitly to measure disturbance activity. In a chaotic dynamical
system, neighbouring trajectories separate exponentially on average, rendering them sensitive to
initial conditions and increasingly complex and infeasible to calculate, even numerically, while Q
and Θ can typically be calculated from instantaneous data. The authors of [21] further obtained
a zonally symmetric MLM state from global atmospheric data by finding the distribution of mass
in alternative coordinates defined by zonal angular momentum (Z) and Θ which are conserved for
zonally symmetric flows. In the current work, we prove the existence, uniqueness and stability (with
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respect to input data) of energy-minimising MLM states in geophysical coordinates (latitude and
pressure) given the distribution of mass in conserved variable coordinates (Z,Θ). We achieve this by
adapting the framework set out in [5, Section 4.5] for an incompressible atmosphere. This provides
a rigorous principle by which to select a unique background state of the atmosphere suitable for
the examination of fluid dynamical instability.

We phrase the problem of finding energy-minimising MLM states as the minimisation of an
optimal transport cost over a suitable space of source measures (µ) for a given target measure
(ν). In the language of optimal transport, the source space corresponds to geophysical coordinates
(latitude and pressure) and the target space is defined by the conserved variable coordinates (Z,Θ).
In physical terms, the optimal transport solution maps the mass from the target space (distribution
taken as given) into the source space, while also minimising a cost which is shown to be equal to
the energy of the state.

We now describe the general mathematical problem that we study, our main results, and their
interpretation in the context of finding energy minimising MLM states. For more detail on this
interpretation see Section 1.3 and Figure 1. Let d ∈ N, d > 1, and let B ⊂ Rd−1 be compact.
Define the source space X := B× [0,+∞). For a probability density p̄ defined on B, define the set

Xp̄ := {(s, p) ∈ X : 0 ≤ p ≤ p̄(s)}.

That is, Xp̄ is the intersection of the subgraph of p̄ with the upper half-space. Let µp̄ be the
restriction of the Lebesgue measure to Xp̄, and let ν be a probability measure on Rd with support
contained in a compact set Y ⊂ Rd. For a cost function c : Rd × Rd → R denote by Tc(µp̄, ν) the
optimal transport cost from µp̄ to ν for the cost c. We study the minimisation problem

argmin
p̄∈Pac(B)

Tc(µp̄, ν). (1)

Here, Pac(B) is the space of probability measures on B that are absolutely continuous with respect
to the (d−1)-dimensional Lebesgue measure, and we conflate a measure in Pac(B) with its density.

In the setting of MLM states, d = 2, the coordinates s and p of the source spaceX represent sine-
of-latitude and pressure, respectively, and the set B is a compact interval. The measure ν represents
the mass distribution over the space of zonal angular momentum and potential temperature of the
atmosphere at a snapshot in time. An MLM state is determined by a latitude-dependent probability
density p̄, representing axisymmetric surface pressure, and an admissible transport map from µp̄ to
ν, representing an axisymmetric mass-preserving rearrangement of the zonal angular momentum
and potential temperature of the full state. From a physical perspective, the optimal transport
map relates air parcels and their conserved properties, given by the parcel locations in (Z,Θ), to
their distribution in geophysical coordinates. The cost function c defined by (11) represents the
energy density, and the corresponding transport cost is the energy of the MLM state. Assumptions
2.1 and 2.6 are both satisfied by c, so our results establish a rigorous principle uniquely selecting
MLM states based on energy minimisation.

Our main result is that for a large class of cost functions c (Assumption 2.1), the minimisation
problem (1) has a unique solution p̄, which has continuous density (Theorem 3.13), and can be
recovered by solving an optimal transport problem with a known source measure, an adjusted
target measure and an extended cost function (see Theorem 5.1 and Figure 2). We use this to
derive a numerically tractable discretisation of (1); see Corollary 5.3. Moreover, for target measures
ν with common compact support, we show that the set of all such solutions is uniformly bounded
and equicontinous, and that solutions are stable with respect to ν (Theorem 4.1). Our existence,
uniqueness and stability results generalise analogous results obtained for cost functions defining free
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Figure 1: Schematic diagram of an MLM state at a snapshot in time. The measure ν represents
the distribution of mass in the space of zonal angular momentum z and potential temperature
θ. It is assumed to have support contained in a compact set Y ⊂ (0,+∞)2. The source space
X = [ε0, 1 − ε1] × [0,+∞) has coordinates s = sin(ϕ), where ϕ is latitude, and pressure p. The
constants ε0, ε1 > 0 exclude the pole and the equator. The surface pressure p is a function of s
and is an unknown of the problem. It determines the measure µp̄ as the restriction of the Lebesgue
measure to the set Xp. Zonal angular momentum Z and potential temperature Θ are unknown
scalar functions of (s, p). The triple (p̄, Z,Θ) is an MLM state for ν if (Z,Θ) is an admissible
transport map from µp̄ to ν.

surface variants of the semi-geostrophic equations [4, 6, 8] and a model for axissymmetric vortices
[11], which rely on the use of convex potentials and their relation to optimal transport with the
quadratic cost.

1.1 Motivation and physical problem statement

Considering atmospheric disturbances as perturbations from a background state, wave activity
conservation laws, which describe how disturbance amplitude can propagate from one location to
another, have been obtained for arbitrary large amplitude disturbances provided that the flow is
adiabatic and frictionless and the background state is itself a solution of the equations of motion
[18]. The laws are derived using Lagrangian conservation properties of fluid dynamics to label air
masses. For global atmospheric dynamics on the sphere, as modelled by the primitive equations,
these labels are potential temperature (Θ) and Ertel potential vorticity (Q).

Modified Lagrangian Mean (MLM) states [17] are background states of the atmosphere defined
in terms of Q and Θ labels. Every Q-contour in an MLM state is axisymmetric and the state is
a solution of the equations of motion. Atmospheric motions can be described with reference to
an MLM state by displacement of Q-contours relative to their reference positions. Since MLM
states are time symmetric (steady) for adiabatic motions, as well as axisymmetric, there are two
disturbance conservation laws for pseudoenergy and pseudomomentum [14, 20]. This follows gen-
erally from Noether’s theorem relating conservation laws to symmetries in Hamiltonian dynamical
systems [24]. However, the definition of the disturbances themselves depends on the choice of MLM
state. This is not satisfactory if you would like to answer questions like whether the atmosphere
is unstable and disturbances are expected to grow, so a principle by which to uniquely select an
MLM state is desirable.

Several heuristics have been used to define and compute MLM states. In [17], an MLM state
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Figure 2: Reduction of Problem 2.4 to the optimal transport problem between the ‘extended’ source
measure µext = Ld ¬

(B × [0, P ]) and the ‘extended’ target measure νext = ν + (P − 1)δyext . Here,
µext = Ld ¬

(B × [0, P ]), where B is a compact subset of Rd−1 and the constant P > 0 is an upper
bound on the minimiser p̄ of Problem 2.4. The measure ν is represented by empty circles. The
point yext is represented by a filled circle, and is outside the support of ν. The cost function is
extended to yext by zero. The optimal transport map Text sends the hatched cell to yext, the lower
boundary of this cell is the graph of p̄, and the restriction of Text to Xp̄ is the optimal transport
map from µp̄ to ν.

is defined by an adiabatic rearrangement of fluid parcels, with Θ increasing with height and Q
axisymmetric and increasing polewards on surfaces of constant Θ. In [21], an MLM state with
(approximately) the same mass distribution in the space of potential vorticity and potential tem-
perature as the full flow is defined using two time-invariant integral quantities: mass and Kelvin’s
circulation. In particular, consider a snapshot of a full 3-dimensional atmospheric flow. Let θ > 0,
δθ > 0, and q ∈ R. Denote by V(q, θ) the region in the atmosphere bounded vertically by the Θ-
surfaces Θ = θ− δθ and Θ = θ+ δθ, and bounded laterally by a closed Q-contour Q = q. The mass
M(q, θ) of the region V(q, θ), and Kelvin’s circulation C(q, θ), which is the mass-weighted integral
of Q over V(q, θ), are computed for points (q, θ) on an axis-aligned rectangular grid in R2. An MLM
state is defined by requiring that its mass and circulation integrals are the same as those computed
for the full snapshot. In this way, the MLM state is described as an adiabatic rearrangement of the
full state because if the flow is adiabatic and frictionless then the full state could be accessible from
the background state through adiabatic motions of the fluid, which conserve Q, Θ, M and C.

In order to calculate the full properties of a background state, and corresponding perturbations,
it is necessary and sufficient to obtain its zonal angular momentum Z and potential temperature Θ
as functions of latitude ϕ and pressure p. Under the condition of zonal symmetry, C is proportional
to Z, which in turn can be related to the Earth’s radius a, planetary rotation rate Ω, latitude ϕ,
and the zonal wind (relative to the Earth’s surface) u, via

C = 2πZ = 2π
(
ua cosϕ+Ωa2 cos2 ϕ

)
. (2)

Importantly, since C is a functional of Ertel potential vorticity and potential temperature, the zonal
wind can only be determined from Z by knowing the latitudes of Q-contours. Potential temperature
is defined in terms of temperature, T , and pressure, p, by

Θ = T

(
p

pr

)−κ
, (3)
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where pr is a constant reference pressure and κ = 2/7 is the Poisson constant for a diatomic ideal
gas. Consequently, temperature can only be deduced from Θ if pressure is known. The energy
density of the background state is given in terms of u and T by

E =
1

2
u2 + CpT, (4)

where Cp is the specific heat capacity at constant pressure. Once these background variables are
obtained, it is possible to find any quantities defined as perturbations of Q-contours relative to
their positions in the background state (called the “equivalent latitudes” of Q-contours), as well as
perturbation wind and energy. Moreover, in pressure coordinates, the extent of the physical domain
is defined by the unknown surface pressure p, which is a function of ϕ and represents the pressure at
the lower boundary of the atmosphere. Finite-amplitude stability results for the atmosphere, which
yield upper bounds on disturbance energy, depend on knowing p [2]. Obtaining background Θ and
Z as functions of (ϕ, p), and background surface pressure p as a function of ϕ, is therefore essential
to the analysis of perturbation evolution and atmospheric stability. In particular, it is desirable to
obtain an MLM state that is an energy minimiser, accounting consistently for the surface pressure.

1.2 Optimal transport

We recall some fundamental concepts and results from optimal transport theory that form the basis
of our analysis of MLM states. A more thorough exposition of optimal transport theory can be
found in several standard texts such as [19], [22] or [25].

The starting point of optimal transport is the Monge problem: given X, Y ⊂ Rd, a cost function
c : X × Y → R, Borel probability measures µ ∈ P(X) and ν ∈ P(Y ), find

inf

{∫
X
c(x, T (x)) dµ(x)

∣∣∣∣ T : X → Y is Borel measureable and T#µ = ν

}
. (5)

Here, T#µ is the probability measure on Y defined by

(T#µ)(A) = µ(T−1(A))

for all Borel sets A ⊆ Y , which is called the pushforward of µ by T . The spaces X and Y are often
referred to as the source and target spaces, respectively, and the measures µ and ν as the source
and target measures. If T satisfies the constraint T#µ = ν, then it is said to be an admissible
transport map from µ to ν. If T attains the infimum in (5) it is said to be an optimal transport
map from µ to ν.

Admissible transport maps do not necessarily exist. For example, if µ is a single Dirac mass and
ν is a sum of two weighted Dirac masses at distinct locations, then the Monge problem is infeasible.
The standard relaxation of the Monge problem is the Kantorovich problem, in which the optimal
transport cost is defined by

Tc(µ, ν) := inf
γ∈Γ(µ,ν)

{∫
X
c(x, y) dγ(x, y)

}
, (6)

where
Γ(µ, ν) := {γ ∈ P(X × Y ) |πX#γ = µ, πY #γ = ν},

and where πX and πY denote the projections onto X and Y , respectively. The convex set Γ(µ, ν)
is called the set of admissible transport plans from µ to ν. Under mild assumptions on the cost
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function c, the Kantorovich problem has a solution γ, which is called an optimal transport plan
from µ to ν, and Tc(µ, ν) is the optimal transport cost from µ to ν. The Kantorovich Duality
Theorem states that

Tc(µ, ν) = sup
ψ∈C(Y )

{∫
X
ψc(x) dµ(x) +

∫
Y
ψ(y) dν(y)

}
, (7)

where C(Y ) is the space of continuous functions on Y , and ψc : X → R ∪ {−∞} is the c-transform
of ψ defined by

ψc(x) = inf
y∈Y

{c(x, y)− ψ(y)}. (8)

(See, e.g., [22, Theorem 1.39] or [25, Theorem 5.10].) Again, under mild assumptions on the cost
function c and the sets X and Y , the supremum in (7) is attained. A function ψ that achieves the
maximum is called a Kantorovich potential.

The Gangbo-McCann Theorem gives conditions under which the Monge problem has a unique
solution. (See, for example, [13], [19, Theorem 12], or [25, Theorem 10.28].) Moreover, it ties
together the three formulations of optimal transport given above. Indeed, if T is the optimal
transport map, then γ := (idX , T )#µ is the unique optimal transport plan, and for any Kantorovich
potential ψ,

c(x, y) = ψc(x) + ψ(y) for γ-almost-every (x, y) ∈ X × Y. (9)

In particular, the optimal transport map can be recovered from a Kantorovich potential via the
expression T (x) = (∇xc(x, ·))−1(∇ψc(x)). This expression is well defined when ∇xc(x, ·) exists and
is injective, a condition known as the twist condition.

1.3 Relating Modified Lagrangian Mean states to optimal transport

To formulate the definition of an MLM state mathematically, consider a snapshot of a full at-
mospheric flow. Let ν be a probability measure on R2 representing the mass distribution of this
snapshot in zonal angular momentum and potential temperature coordinates. We consider states
with positive zonal angular momentum. Since potential temperature is positive, and both zonal
angular momentum and potential temperature are bounded, ν has compact support contained in
(0,+∞)2. Let Y ⊂ (0,+∞)2 be a compact set containing the support of ν. Let s = sin(ϕ), where
ϕ is latitude. Let pmin > 0 be a prescribed and arbitrary minimum pressure, and let p be the
positive deviation of pressure from pmin. We seek axissymmetric MLM states defined in pressure
coordinates (s, p) on a single hemisphere with a spherical cap from the pole and a small region close
to the equator removed. That is, for some ε0, ε1 ∈ (0, 1/2) , we consider the physical domain

X := [ε0, 1− ε1]× [0,+∞)

containing points x = (s, p). Under the assumption of hydrostatic balance (i.e., that the fluid
density multiplied by gravitational acceleration g, is the negative vertical gradient of pressure) the
fluid density in pressure coordinates (s, p), often called the pseudodensity, is uniform (and equal to
−1/g) [15, Chapter 6]. An MLM state is then defined by three maps: surface pressure p, potential
temperature Θ, and zonal angular momentum Z. In the following definition Pac([ε0, 1−ε1]) denotes
the space of probability measures on [ε0, 1− ε1] that are absolutely continuous with respect to the
Lebesgue measure, and we conflate such measures with their densities.

Definition 1.1 (MLM state, c.f. Figure 1). Let p ∈ Pac([ε0, 1− ε1]). Define the domain

Xp := {(s, p) ∈ X : p ≤ p(s)}.

6



Consider Borel measurable maps Z, Θ : Xp → R, with extension by zero to X. The triple (p, Z,Θ)
is an MLM state for ν if and only if

(Z,Θ)#µp = ν, (10)

where
µp := Ld ¬

Xp

is the restriction of the d-dimensional Lebesgue measure to the set Xp.

Interpreted physically, the pushforward constraint (10) means that (p, Z,Θ) represents a mass-
preserving rearrangement of the snapshot of zonal angular momentum and potential temperature.
Mathematically, it means that (Z,Θ) is an admissible transport map from µp to ν.

We now define the energy of an MLM state, and interpret it as a transport cost. Our goal of
finding energy-minimising MLM states can then be phrased as minimising the optimal transport
cost to ν over all source measures of the form µp for p : [ε0, 1− ε1] → [0,+∞).

Definition 1.2 (Background state cost function). Define the cost function c : X × Y → [0,+∞)
by

c((s, p), (z, θ)) :=
1

2

(
z

a
√
1− s2

− Ωa
√
1− s2

)2

+ Cpθ

(
p+ pmin

pr

)κ
, (11)

where a > 0 is the radius of the earth, Ω > 0 is the angular velocity of the earth, Cp > 0 is the
specific heat capacity of air at constant pressure, pmin > 0 is a prescribed and arbitrary minimum
pressure, pr > 0 is a constant reference pressure, and κ = 2/7 is the Poisson constant for a diatomic
ideal gas.

Remark 1.3. Using pmin > 0, we force pressure to be positive, which ensures that the cost function
is locally Lipschitz. This is not restrictive when computing MLM states because pressure tending
zero corresponds to leaving the atmosphere and entering outer space, so atmospheric data will only
ever extend to small but non-zero pressure. However, p = 0 would be the natural physical boundary
condition, so we hope to consider the case pmin = 0 in future work.

Note that the cost function c is a rewriting of the energy density (4). The total energy E of
an MLM state (p, Z,Θ) is given by the integral of the energy density over the whole hemispheric
domain:

E(p, Z,Θ) =

∫ 1−ε1

ε0

∫ p(s)

0
c
(
(s, p), (Z(s, p),Θ(s, p))

)
dp ds. (12)

It follows by definition of µp that

E(p, Z,Θ) =

∫
X
c
(
x, (Z,Θ)(x)

)
dµp(x).

This is precisely the cost of transporting the measure µp to the measure ν using the admissible
transport map (Z,Θ) with the cost function c. For a given surface pressure p, the minimal energy
over all (Z,Θ) such that (p, Z,Θ) is an MLM state is Tc(µp, ν). To minimise the energy E over all
MLM states (p, Z,Θ), we therefore minimise Tc(µp, ν) over all surface pressures p ∈ Pac([ε0, 1−ε1]).

Problem 1.4 (MLM state energy minimisation). Given a distribution ν ∈ P(Y ) of zonal angular
momentum and potential temperature, find a corresponding MLM state (p∗, Z∗,Θ∗) with minimal
energy. That is, find

p∗ ∈ argmin
p∈Pac([ε0,1−ε1])

Tc(µp, ν),
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and

(Z∗,Θ∗) ∈ argmin
(Z,Θ)#µp∗=ν

∫
X
c
(
x, (Z,Θ)(x)

)
dµp∗(x).

We prove existence, uniqueness and stability of solutions of a general formulation of Problem
1.4, defined in Problem 2.4, under assumptions on the cost function and the source and target
spaces as set out in Section 2. In Proposition 6.1 we show that the cost function (11) defining the
energy of an MLM state satisfies these assumptions, meaning that the results that we prove are
applicable to Problem 1.4.

1.4 Rearrangements and optimal transport in the atmospheric sciences

The current work builds on the long-standing connection between optimal transport and the atmo-
spheric sciences [5]. The cornerstone of this connection is the interpretation of energy-minimising
mass-preserving rearrangements of vector fields as optimal transport maps. We use this perspective
to interpret the definition of MLM states in terms of optimal transport, which enables us to prove
their existence, uniqueness and stability. Meteorologists Cullen and Purser first used monotone
rearrangements of vector fields in their study of the semi-geostrophic (SG) equations [10], which
model the formation of atmospheric fronts, and found them to be minimisers of the geostrophic
energy. Brenier’s celebrated Polar Factorisation Theorem [3] later identified such rearrangements
as optimal transport maps for the quadratic cost. Interpreting the geostrophic energy as a trans-
port cost and the energy-minimising rearrangement as an optimal transport map subsequently
allowed for the rigorous mathematical analysis of the SG equations in several settings (see [5] for a
comprehensive overview).

The 3-dimensional free surface [4, 8], 2-dimensional shallow water [6], and 3-dimensional com-
pressible [9, 12, 7] variants of the SG equations, and the model for forced axisymmetric flows con-
sidered in [11], are all continuity equations with velocity defined at each time instant by minimising
a transport cost over a space of source measures, similar to Problem 1.4. In the 3-dimensional
free surface SG equations, given a target measure ν ∈ P(R3), the energy functional is defined for
p̄ ∈ Pac(R2), modelling surface pressure, by

p̄ 7→ Tc(µp̄, ν).
Here µp̄ is the restriction of the 3-dimensional Lebesgue measure to the subgraph of p̄ intersected
with the upper half space, as in Definition 1.1, and the cost function is given by

c(x, y) =
1

2
|x1 − y1|2 +

1

2
|x2 − y2|2 + x3y3. (13)

The corresponding energy minimisation problem is a special case of Problem 2.4. The vertical
coordinate of the target space represents potential temperature, so the support of the target measure
ν in contained in the upper half-space. It is straightforward to verify that this cost function satisfies
Assumption 2.1 and the twist condition (Assumption 2.5).

The 2-dimensional shallow water SG equations are the special case of the 3-dimensional free
surface SG equations where potential temperature is constant. The energy functional then takes
the form

ρ 7→ Tc(ρ, ν) +
∫
ργ (14)

where ρ represents the fluid density, ν is a given target measure, c is a given transport cost, and
γ = 2. This energy minimisation problem is the same as computing the Moreau envelope in the
Wasserstein space, as studied in [23]. The energy functional for the compressible SG equations is
also of the form (14) but with γ ∈ (1, 2).
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1.5 Towards numerical computation of MLM states

The MLM state in [21] was computed using a numerical technique called equivalent latitude iteration
with potential vorticity inversion (ELIPVI). While numerical solutions were obtained, questions of
existence and uniqueness of such solutions, as well as convergence of the numerical scheme, were
not addressed. It was also not clear whether or not the computed background states were energy
minimising.

We show in Section 5 that the problem of finding energy minimising MLM states (Problem 1.4)
reduces to an optimal transport problem where a single weighted Dirac mass has been added to the
target measure and the cost to that point is set to zero, as illustrated in Figure 2. This is similar in
spirit to the notion of partial optimal transport considered in [16] and used to generate Lagrangian
meshes with free boundaries. With a view to solving Problem 1.4 numerically, in Corollary 5.3 we
consider the case where the mass distribution ν is a discrete measure. This corresponds precisely
to the setting considered in [21]. There, mass and circulation integrals M(q, θ) and C(q, θ) are
computed for the full 3-dimensional atmospheric state for points (q, θ) on an axis-aligned rectangular
grid in R2. Correspondingly, ν would be given by

ν =
∑
(q,θ)

M(q, θ)δ(C(q,θ)
2π

,θ
),

where we recall that the circulation is proportional to zonal angular momentum for axissymmetric
flow (2). By Corollary 5.3, Problem 1.4 then reduces to a standard semi-discrete optimal transport
problem, which is numerically tractable [19, Section 4]. Hence, our analysis not only provides
rigorous means by which to select an MLM state given a full atmospheric flow, with guarantees
of existence, uniqueness and stability, it also provides a tractable numerical method for computing
such states. Implementation of this method using atmospheric data will be the subject of a separate
work.

1.6 Notation and conventions

For d ∈ N = {1, 2, 3, . . .}, let A ⊆ Rd be a Borel set. We denote the interior of A by int(A), the
boundary of A by ∂A, the diameter of A by diam(A), and the characteristic function of A by 1A.
That is,

1A(x) =

{
1 if x ∈ A,

0 otherwise.

For a function f : A→ R, we denote by graph(f) its graph, that is, graph(f) := {(x, f(x)) : x ∈ A}.
We denote the Lebesgue measure of dimension d by Ld, and its restriction to A by Ld ¬

A. The
space of Borel probability measures on A is denoted by P(A). We denote by spt(µ) the support of
a measure µ ∈ P(A). The set of Borel probability measures on A that are absolutely continuous
with respect to Ld is denoted by Pac(A). We conflate a measure µ ∈ Pac(A) with its density with
respect to Ld, and the corresponding element of L1(A). We denote by C(A) and Cb(A) the spaces
of continuous functions on A and bounded continuous functions on A, respectively. When A is a
compact set, we equip C(A) with the uniform norm, which we denote by ∥ · ∥C(A). Given Borel sets

A, B ⊆ Rd, a cost function c : A × B → R, and measures µ ∈ P(A) and ν ∈ P(B), we denote by
Tc(µ, ν) the optimal transport cost from µ to ν. For a Borel measureable function f : A → B, the
pushforward of µ by f is the measure f#µ ∈ P(B) defined by (f#µ)(U) := µ(f−1(U)) for Borel
sets U ⊆ B. For ϕ ∈ C(A) and ψ ∈ C(B) we denote by ϕ⊕ ψ the element of C(A× B) defined by
(ϕ⊕ ψ) (x, y) = ϕ(x)⊕ψ(y). For µ ∈ P(A) and ν ∈ P(B) we denote by µ⊗ ν the product measure
defined by (µ⊗ ν)(U × V ) = µ(U)ν(V ) for Borel sets U ⊆ A and V ⊆ B.

9



1.7 Outline and main contributions

A precise mathematical statement of the energy minimisation problem, Problem 2.4, studied in
this paper is given in Section 2. Our main contributions are:

• Theorem 3.13, which establishes the existence and uniqueness of solutions via duality, and
gives optimality conditions relating the solutions of the primal and dual problems.

• Theorem 4.1, which establishes stability of solutions with respect to input data.

• Theorem 5.1 and Corollaries 5.2 and 5.3, which reduce the free surface minimisation problem,
Problem 2.4, to a standard optimal transport problem, and treat the case of twisted costs
and discrete target measures.

2 Problem statement and assumptions

In this section we precisely state the problem under study in this paper (Problem 2.4), which is
a direct generalisation of Problem 1.4 for finding energy-minimising MLM states. We also state
assumptions under which our results hold (Assumptions 2.1, 2.5, and 2.6), which are all satisfied
by the cost defining the energy of an MLM state; see Proposition 6.1.

Let d ≥ 2, and let B ⊂ Rd−1 be a compact set with non-empty interior. Define the source
domain X := B × [0,+∞), and let Y ⊂ Rd be a non-empty compact target domain. We denote by
x = (s, p) a point in X and by y a point in Y .

Assumption 2.1. The cost function c : X × Y → [0,+∞) satisfies the following properties:

A. c is locally Lipschitz.

B. For all s ∈ B and all y ∈ Y the function c((s, ·), y) : [0,+∞) → [0,+∞) is strictly increasing
and unbounded.

C. The set of functions {c((·, p), y) : B → [0,+∞) | p ∈ [0,+∞), y ∈ Y } is equicontinuous.

Unless otherwise stated, we consider cost functions c : X × Y → [0,+∞) satisfying only As-
sumption 2.1.

Definition 2.2 (Primal functional). For p̄ ∈ Pac(B) define the set

Xp̄ := {(s, p) ∈ X | p ≤ p̄(s)}.

Define µ : Pac(B) → Pac(X), p̄ 7→ µp̄ by

µp̄ := Ld ¬
Xp̄. (15)

For ν ∈ P(Y ) and a cost function c : X × Y → [0,+∞), we define the primal functional Fν :
Pac(B) → [0,+∞) by

Fν(p̄) := Tc(µp̄, ν),
where Tc is the optimal transport cost from µp̄ to ν for the cost function c (6).
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Remark 2.3. For each p̄ ∈ Pac(B), Xp̄ is well defined up to Ld-negligible sets, 1Xp̄ is a well-defined
element of L1(X) and is the Lebesgue density of µp̄, and µp̄ is a probability measure. Moreover, by
definition, for any p̄0, p̄1 ∈ Pac(B),

∥µp̄0 − µp̄1∥L1(X) = ∥p̄0 − p̄1∥L1(B),

and for any ξ ∈ Cb(X), ∫
X
ξ dµp̄0 =

∫
B

∫ p̄0(s)

0
ξ(s, p) dp ds.

Problem 2.4 (Primal problem). Given ν ∈ P(Y ), find

p̄∗ ∈ argmin
p̄∈Pac(B)

Fν(p̄).

When Assumption 2.1 holds, for any ν ∈ P(Y ) Problem 1.4 has a unique solution (Theorem
3.13) and this solution has a continuous density. The set of all such solutions is uniformly bounded
and equicontinuous (Proposition 3.4), and Problem 1.4 is stable with respect to ν (Theorem 4.1).

Assumption 2.5 (Twist condition). There exist open sets ΩX , ΩY ⊂ Rd such that X ⊂ ΩX and
Y ⊂ ΩY , and an extension of the cost function c onto ΩX × ΩY such that c ∈ C1(ΩX × ΩY ) and
for all x0 ∈ ΩX the function ∇xc(x0, ·) : ΩY → Rd is injective.

The twist condition is a classical sufficient condition for the existence of transport maps [19,
Definition 8]. We show that when both Assumptions 2.1 and 2.5 hold, Problem 2.4 admits a solution
p̄ and that there exists a unique optimal transport map between µp̄ and ν, and that this map is
stable with respect to ν; see Theorem 4.2.

In Section 5, we show that under Assumption 2.1, Problem 2.4 can be reduced to a single
optimal transport problem by appropriate extension of the source and target measures. For the
existence of a corresponding optimal transport map, we impose the following condition on the cost
function c.

Assumption 2.6 (Extended twist condition). Assumption 2.5 holds and there exists a constant
ℓ > 0 such that min

y∈Y
∥∇xc(x0, y)∥Rd ≥ ℓ for all x0 ∈ ΩX .

Since the cost function (11) defining the background state energy (12) satisfies Assumptions 2.1
and 2.6, the existence, uniqueness, and stability of energy-minimising MLM states (i.e., solutions of
Problem 1.4), follows from Theorems 3.13, 4.1, and 4.2. Moreover, by Corollary 5.2, any such state
can be found by solving the Monge problem (5) with an adjusted target measure and an extended
cost function.

3 Existence and uniqueness of optimal surfaces

In this section we prove the existence, uniqueness and characterisation of solutions of Problem 2.4;
see Theorem 3.13. We work in the setting described in Section 2 and our working hypothesis is
that the cost function c : X × Y → [0,+∞) satisfies Assumption 2.1. Our results are obtained by
deriving a dual functional (Definition 3.2), which we write using the c-transform defined in (8).

Lemma 3.1 (Weak duality). For ν ∈ P(Y ),

inf
p̄∈Pac(B)

Fν(p̄) ≥ sup
ψ∈C(Y )

{
inf

p̄∈Pac(B)

{∫
X
ψc dµp̄ +

∫
Y
ψ dν

}}
. (16)
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Proof. By the Kantorovich Duality Theorem (see, e.g., [25, Theorem 5.10]),

inf
p̄∈Pac(B)

Fν(p̄) = inf
p̄∈Pac(B)

Tc(µp̄, ν) = inf
p̄∈Pac(B)

{
sup

ψ∈C(Y )

{∫
X
ψc dµp̄ +

∫
Y
ψ dν

}}
.

The infimum over p̄ ∈ Pac(B) can be exchanged up to inequality with the supremum over ψ ∈ C(Y )
in the usual way to obtain (16).

Lemma 3.1 naturally gives rise to the following dual functional.

Definition 3.2 (Dual functional). For ν ∈ P(Y ), we define the dual functional Gν : C(Y ) → R by

Gν(ψ) := inf
p̄∈Pac(B)

{∫
X
ψc dµp̄ +

∫
Y
ψ dν

}
= inf

p̄∈Pac(B)
K(ψ;µp̄, ν),

where K( · ;µp̄, ν) is the Kantorovich dual function given source measure µp̄ and target measure ν.
In addition, for ψ ∈ C(Y ) we define Hν,ψ : P(B) → R ∪ {+∞} by

Hν,ψ(p̄) :=

{
K(ψ;µp̄, ν) if p̄ ∈ Pac(B),

+∞ otherwise.

In this notation we can rewrite the dual functional as

Gν(ψ) = inf
p∈P(B)

Hν,ψ(p).

We will show that for each ψ ∈ C(Y ) the infimum of Hν,ψ is uniquely attained by some p̄ψ ∈
Pac(B) for which we obtain a formula; see Theorem 3.8. We will then show that p̄ minimises the
primal functional and ψ maximises the dual functional if and only if p̄ = p̄ψ and ψ is a Kantorovich
potential from µp̄ to ν; see Theorem 3.13.

3.1 Characterisation and properties of optimal surfaces

The aim of this subsection is to show that Hν,ψ has a unique minimiser and to obtain an explicit
expression for this minimiser. We first derive this expression formally. Let ν ∈ P(Y ), ψ ∈ C(Y )
and p̄ ∈ Pac(B). By definition,

Hν,ψ(p̄) = K(ψ;µp̄, ν) =

∫
B
fψ(s, p̄(s)) ds,

where fψ : B × R → R ∪ {+∞} is defined by

fψ(s, u) :=


∫ u

0
ψc(s, p) dp+ Cψ if u ≥ 0,

+∞ otherwise,
(17)

and

Cψ :=
1

Ld−1(B)

∫
Y
ψ dν.

By the Fundamental Theorem of Calculus, the partial derivative of fψ with respect to u is ψc on
(0,+∞). Since c is strictly increasing in p (Assumption 2.1.B.), so is ψc because it is the pointwise
minimum of a family of strictly increasing functions. Therefore ∂ufψ is strictly increasing in u
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on (0,+∞), and it follows that fψ is strictly convex with respect to u on the positive real line,
and convex with respect to u on the whole real line. A formal calculation suggests that the first
variation (in the sense of [22, Definition 7.12]) of Hν,ψ at p̄ is the function

B ∋ s 7→ ∂fψ
∂u

(s, p̄(s)) = ψc(s, p̄(s)) ∈ R.

Then, if p̄ is a minimiser of Hν,ψ with continuous density, the first-order necessary optimality
conditions stated in [22, Theorem 7.20] would imply that there exists a constant τ ∈ R such that{

ψc(s, p̄(s)) = τ for s ∈ spt(p̄),

ψc(s, p̄(s)) ≥ τ for s ∈ B \ spt(p̄).
(18)

By definition of the c-transform, if (18) holds then for any s ∈ B,

c((s, p̄(s)), y)− ψ(y) ≥ τ ∀ y ∈ Y.

Since c and ψ are continuous on the compact set Y , if p̄(s) > 0 then this holds with equality for
some y ∈ Y . By Assumptions 2.1.A.-B., c((s, ·), y) is continuous and strictly increasing on [0,+∞),
so it is invertible and its inverse is strictly increasing and non-negative. It follows that

p̄(s) ≥ c((s, ·), y)−1(ψ(y) + τ) ∀ y ∈ Y,

which implies that
p̄(s) ≥ max

y∈Y

{
c((s, ·), y)−1(ψ(y) + τ)

}
,

with equality if p̄(s) > 0. This motivates the following definition.

Definition 3.3. Define q : B × Y × R → [0,+∞) by

q(s, y, σ) :=

{
c((s, ·), y)−1(σ) if σ ≥ c((s, 0), y),

0 otheriwse.
(19)

The following proposition defines the function p̄ψ for each ψ ∈ C(Y ), which we show to be the
unique minimiser of Hν,ψ in Theorem 3.8.

Proposition 3.4. For each ψ ∈ C(Y ) there exists a unique constant τψ ∈ R such that the map
p̄ψ : B → R defined by

p̄ψ(s) := max
y∈Y

{q(s, y, ψ(y) + τψ)} (20)

is a probability density, where q is defined by (19). Moreover, the set

S := {p̄ψ | ψ ∈ C(Y )}

is uniformly bounded and equicontinuous.

Before proving Proposition 3.4, we state two lemmas. Since p̄ψ is defined as a pointwise maxi-
mum over a set of functions, to prove that S is uniformly bounded and equicontinuous we use the
following simple lemma whose proof we omit.

13



Lemma 3.5 (c.f., [22, Box 1.8]). For arbitrary index sets I and J , and a compact set A ⊂ Rn,
suppose that the family {fij}(i,j)∈I×J ⊂ C(A) is uniformly bounded and equicontinuous. For each
i ∈ I, define fi : A→ R by

fi(a) = sup
j∈J

fij(a).

Then the set {fi}i∈I is also uniformly bounded and equicontinuous.

In order to use Lemma 3.5 to show that S is uniformly bounded and equicontinuous, we prove
the following lemma.

Lemma 3.6. For any compact interval U ⊂ R, the set

Q := {q(·, y, ·)|B×U}y∈Y

is uniformly bounded and equicontinuous.

Proof. Let U ⊂ R be a compact interval. We first prove that Q is uniformly bounded. Note that

q(s, y, σ) = max {0, min{t ∈ R : c((s, t), y) ≥ σ}} . (21)

Let (pn)n∈N be a sequence in R diverging to +∞, for each n ∈ N let

(sn, yn) ∈ argmin{c((s, pn), y) : s ∈ B, y ∈ Y },

and let (s∗, y∗) be a cluster point of the sequence ((sn, yn))n∈N, which exists by compactness of B
and Y . Assume for contradiction that there exists a constant M > 0 such that

c((sn, pn), yn) = min{c((s, pn), y) : s ∈ B, y ∈ Y } ≤M ∀n ∈ N.

Then, by continuity of c (Assumption 2.1.A.), for sufficiently large n ∈ N, c((s∗, pn), y∗) is bounded
by M + 1. This contradicts Assumption 2.1.B. that c((s∗, ·), y∗) is unbounded. Hence,

lim
n→∞

min{c((s, pn), y) : s ∈ B, y ∈ Y } = +∞, (22)

and, in particular, there exists P > 0 such that

min{c((s, P ), y) : s ∈ B, y ∈ Y } ≥ max
σ∈U

σ.

Then, by (21), Q is uniformly bounded by P .
Let P > 0 be a uniform upper bound for Q. Define ω : [0,+∞) → [0,+∞) by

ω(δ) = min {c((s, p+ δ), y)− c((s, p), y) : (s, p, y) ∈ B × [0, P ]× Y } .

This is well defined because c is continuous and B×[0, P ]×Y is compact. We claim that ω is strictly
increasing, unbounded, and continuous. By Assumption 2.1.B., c((s, ·), y) is strictly increasing for
all (s, y) ∈ B×Y , so ω is strictly increasing. By (22) and the fact that c is bounded on the compact
set B × [0, P ]× Y , ω is unbounded. Next, for arbitrary n ∈ N, let A = [0, n]. The restriction of ω
to A is the function

δ 7→ −max
j∈J

fj(δ),

where J = B × [0, P ]× Y is compact and, for each j = (s, p, y) ∈ J , fj : A→ R is defined by

fj(δ) = c((s, p), y)− c((s, p+ δ), y).
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By Assumption 2.1.A., c is Lipschitz on (B × [0, P + n]) × Y so the functions fj are uniformly
bounded and equicontinuous. By Lemma 3.5, it follows that the restriction of ω to A is continuous.
Since n was arbitrary, this implies that ω is continuous. Since ω is strictly increasing, unbounded,
and continuous, it is invertible and its inverse ω−1 : [0,+∞) → [0,+∞) is strictly increasing and
continuous. In particular, since ω(0) = 0, ω−1 is continuous at 0 and lim

δ→0
ω−1(δ) = 0.

We now prove that Q is equicontinuous. Let y ∈ Y and (si, σi) ∈ B × U for i ∈ {1, 2} and
denote q(si, y, σi) by qi. Then qi ≤ P for i ∈ {1, 2}. Since c is locally Lipschitz, there exists a
Lipschitz constant L > 0 for c on (B × [0, P ])× Y . Therefore, by construction,

ω(|q2 − q1|) ≤ |c((s2, q2), y)− c((s2, q1), y)|
≤ |c((s2, q2), y)− c((s1, q1), y)|+ |c((s1, q1), y)− c((s2, q1), y)|
≤ |σ2 − σ1|+ L∥s2 − s1∥Rd−1

≤ (1 + L)∥(s2, σ2)− (s1, σ1)∥Rd .

(23)

Since ω is invertible and its inverse is strictly increasing, applying ω−1 to both sides of (23) gives

|q(s2, y, σ2)− q(s1, y, σ1)| = |q2 − q1| ≤ ω−1 ((1 + L)∥(s2, σ2)− (s1, σ1)∥Rd) . (24)

Define the function ω̃ : [0,+∞) → [0,+∞) by ω̃(δ) = ω−1((1+L)δ). Then lim
δ→0

ω̃(δ) = 0, and by (24),

ω̃ is a modulus of continuity for every function in Q, which implies that Q is equicontinuous.

We now prove Proposition 3.4.

Proof of Proposition 3.4. Let ψ ∈ C(Y ), and let τ0, τ1 ∈ R satisfy τ0 ≤ τ1. Since Y is compact and
ψ is continuous, there exists a compact set U ⊂ R such that ψ(y)+τ ∈ U for all (y, τ) ∈ Y × [τ0, τ1].
By Lemma 3.6, the set

Q := {q(·, y, ·)|B×U}y∈Y
is uniformly bounded and equicontinuous. This implies that the functions qψ,y : B × [τ0, τ1] →
[0,+∞), defined for each y ∈ Y by

qψ,y(s, τ) = q(s, y, ψ(y) + τ),

are uniformly bounded and equicontinuous. By Lemma 3.5, the function qψ : B × [τ0, τ1] → R
defined by

qψ(s, τ) = max
y∈Y

{q(s, y, ψ(y) + τ)}

is therefore well defined, continuous, and bounded. It follows by the Dominated Convergence
Theorem that the function I : R → R defined by

I(τ) :=
∫
B
qψ(s, τ) ds

is continuous.
We now find τ0, τ1 ∈ R such that I(τ0) = 0 and I(τ1) ≥ 1, and we show that I is strictly

increasing wherever it is positive. Then by the Intermediate Value Theorem, there exists a unique
constant τψ such that I(τψ) = 1, which, by non-negativity of q, is therefore the unique constant
such that p̄ψ = qψ(·, τψ) is a probability density.

Let r = 1/Ld−1(B) and define constants

m := min
(s,y)∈B×Y

c((s, 0), y), M := max
(s,y)∈B×Y

c((s, r), y),
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which are well defined because c is continuous and B × Y is compact. In addition, define the
constants

τ0 := m−max
y∈Y

ψ(y), τ1 :=M −max
y∈Y

ψ(y),

which depend on ψ, and are well defined since ψ is continuous. By construction

ψ(y) + τ0 ≤ c((s, 0), y) ∀ s ∈ B, y ∈ Y,

so, by definition of q,

qψ(s, τ0) = max
y∈Y

{q(s, y, ψ(y) + τ0)} = 0 ∀ s ∈ B.

Therefore, I(τ0) = 0. Since c((s, ·), y) is strictly increasing for every s ∈ B and y ∈ Y , and by
definition of M and τ1, for y ∈ Y maximising ψ,

M = ψ(y) + τ1 ≥ c((s, r), y) ≥ c((s, 0), y) ∀ s ∈ B.

Since c
(
(s, ·), y

)−1
is increasing, this implies that

q(s, y, ψ(y) + τ1) = c
(
(s, ·), y

)−1
(ψ(y) + τ1) ≥ r ∀ s ∈ B.

Then, by definition of r,

I(τ1) ≥
∫
B
q(s, y, ψ(y) + τ1) ds ≥

∫
B
r ds = 1.

So I(τ0) = 0 ≤ 1 ≤ I(τ1), as required.
Let τψ ∈ R satisfy I(τψ) = 1. We claim that this uniquely defines τψ. By the Intermediate

Value Theorem, there exists τ ∈ R such that 0 < I(τ) < 1, so it is sufficient to show that I is
strictly increasing on [τ,+∞). By definition of I and non-negativity of q, there exists a set A ⊆ B
with positive Ld−1 measure such that

0 < qψ(s, τ) ∀ s ∈ A.

Let s ∈ A and take y ∈ Y to be a maximiser of q(s, ·, ψ(y) + τ) over Y . Then by definition of q,
c((s, 0), y) < ψ(y) + τ and

qψ(s, τ) = q(s, y, ψ(y) + τ) = c((s, ·), y)−1(ψ(y) + τ).

Since c
(
(s, ·), y

)−1
is strictly increasing, for any δ > 0

qψ(s, τ) = c((s, ·), y)−1(ψ(y) + τ) < c((s, ·), y)−1(ψ(y) + τ + δ) ≤ qψ(s, τ + δ).

It follows that I is strictly increasing on [τ,+∞), as required.
We have shown that for all ψ ∈ C(Y ) there exists a unique constant τψ such that p̄ψ defined

by (20) is a probability density. We now show that the set S of all such probability densities is
uniformly bounded and equicontinuous. Since τψ ≤ τ1 for each ψ ∈ C(Y ), by definition of τ1, the
uniform bound

ψ(y) + τψ ≤M ∀ y ∈ Y ∀ψ ∈ C(Y )
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holds. Moreover, by definition of q,

q(·, y, σ) = 0 ∀ y ∈ Y ∀σ ≤ m.

Therefore

S0 := {q(·, y, ψ(y) + τψ) | y ∈ Y, ψ ∈ C(Y )} ⊆ {q(·, y, σ) | y ∈ Y, σ ∈ [m,M ]} ∪ {0},

which is uniformly bounded and equicontinuous by Lemma 3.6. Then by Lemma 3.5 (with index
sets I = C(Y ) and J = Y ), S is also uniformly bounded and equicontinuous, as required.

Having shown that the functions are p̄ψ are well defined and form a uniformly bounded and
equicontinuous subset of C(Y ), we now show that fψ(s, ·) defined by (17) is strictly convex on
[0,+∞) for each s ∈ B, and we use this to prove that p̄ψ is the unique minimiser of Hν,ψ. We also
prove additional properties of fψ(s, ·), which we use in Theorem 3.12 to derive optimality conditions
for maximisers of the dual functional.

Lemma 3.7. For each ψ ∈ C(Y ) and s ∈ B, the function fψ(s, ·) defined by (17) satisfies

fψ(s, ũ) > fψ(s, u) + ψc(s, u)(ũ− u) ∀ ũ, u ∈ [0,+∞), ũ ̸= u. (25)

Moreover, it is proper, convex, and lower semi-continuous on R, and strictly convex on [0,+∞).

Proof. Let u ∈ [0,+∞) and consider ũ ∈ (u,+∞). By the Fundamental Theorem of Calculus the
partial derivative of fψ with respect to u is ψc. Since c is locally Lipschitz, ψc is locally Lipschitz
and therefore continuous (c.f., [22, Box 1.8]). For each s ∈ B, ψc(s, ·) is strictly increasing because
it is the pointwise minimum of a set of strictly increasing functions. Since fψ(s, ·) is continuous on
[u, ũ] and continuously differentiable on (u, ũ), by the Mean Value Theorem there exists r ∈ (u, ũ)
such that

fψ(s, ũ)− fψ(s, u)

ũ− u
=
∂fψ
∂u

(s, r) = ψc(s, r) > ψc(s, u). (26)

The inequality (26) rearranges to give (25). An analogous argument holds when ũ < u. Therefore
fψ(s, ·) is strictly convex on [0,+∞). Since fψ(s, 0) = 0 and fψ(s, u) = +∞ for u < 0, it follows
that fψ(s, ·) is proper, convex, and lower semi-continuous.

We now state and prove the main result of this section.

Theorem 3.8. For ν ∈ P(Y ) and ψ ∈ Rn, p̄ψ defined by (20) is the unique minimiser of Hν,ψ

over Pac(B). In particular, {
ψc(s, p̄ψ(s)) = τψ if p̄(s) > 0,

ψc(s, p̄ψ(s)) ≥ τψ if p̄(s) = 0.
(27)

Proof. Let ψ ∈ Rn. We first show that (27) holds. (These are similar to the first-order optimality
conditions (18) that were formally derived above.) For simplicity, denote p̄ψ by p̄ and τψ by τ .
By Proposition 3.4, p is a continuous probability density on B, so it is defined pointwise and is
non-negative. Recall that

p̄(s) = max
y∈Y

{q(s, y, ψ(y) + τ)} .

For x ∈ B such that p̄(x) = 0, by definition,

q(s, y, ψ(y) + τ) = 0 ∀ y ∈ Y,
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which implies that ψ(y) + τ ≤ c
(
(s, 0), y

)
for all y ∈ Y , so

τ ≤ min
y∈Y

{
c
(
(s, 0), y

)
− ψ(y)

}
= ψc(s, p̄(s)).

Now consider x ∈ B such that p̄(x) > 0. By definition, there exists ỹ ∈ Y such that

p̄(s) = q(s, ỹ, ψ(ỹ) + τ) = c((s, ·), ỹ)−1(ψ(ỹ) + τ),

which implies that
τ = c((s, p̄(s)), ỹ)− ψ(ỹ). (28)

Moreover, for any y ∈ Y it holds that

p̄(s) ≥ q(s, y, ψ(y) + τ) =

{
c((s, ·), y)−1(ψ(y) + τ) if ψ(y) + τ ≥ c((s, 0), y),

0 otheriwse.
(29)

Since c((s, ·), y) is increasing for all y ∈ Y (Assumption 2.1.B.), and p̄(s) > 0, (29) implies that{
c
(
(s, p̄(s)), y

)
≥ ψ(y) + τ if ψ(y) + τ ≥ c((s, 0), y),

c
(
(s, p̄(s)), y

)
≥ c

(
(s, 0), y

)
> ψ(y) + τ otheriwse.

(30)

Combining (28) and (30) gives

ψc(s, p̄(s)) = min
y∈Y

{
c
(
(s, p̄(s)), y

)
− ψ(y)

}
= c

(
(s, p̄(s)), ỹ

)
− ψ(ỹ) = τ,

so (27) holds.
We now use (27) to show that p̄ is the unique minimiser of Hν,ψ over P(B). By Lemma 3.7, for

any distinct ũ, u ∈ [0,+∞)

fψ(s, ũ) > fψ(s, u) + ψc(s, u)(ũ− u). (31)

If p̄0 ∈ P(B) \ Pac(B) then Hν,ψ(p̄0) = +∞ > Hν,ψ(p̄). Let p̄ ̸= p̄0 ∈ Pac(B). Suppressing the
argument s, (27) and (31) give

Hν,ψ(p̄0) =

∫
B
fψ(·, p̄0) ds

>

∫
B
[fψ(·, p̄) + ψc(·, p̄)(p̄0 − p̄)] ds

=

∫
B
fψ(·, p̄) ds+ τ

∫
B∩{p̄>0}

(p̄0 − p̄) ds+

∫
B∩{p̄=0}

ψc(·, p̄)p̄0 ds

≥
∫
B
fψ(·, p̄) ds+ τ

∫
B∩{p̄>0}

(p̄0 − p̄) ds+

∫
B∩{p̄=0}

τ p̄0 ds

=

∫
B
fψ(·, p̄) ds+ τ

∫
B
(p̄0 − p̄) ds

=

∫
B
fψ(·, p̄) ds

= Hν,ψ(p̄).

Here, the final inequality holds because p̄0 is non-negative, and the penultimate equality holds
because p̄ and p̄0 are probability densities.
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3.2 Maximisers of the dual functional

We now show that maximisers of the dual function Gν (Definition 3.2) exist and satisfy a necessary
and sufficient first-order optimality condition; see Theorem 3.12. Recall that

Gν(ψ) = inf
p̄∈Pac(B)

K( · ;µp̄, ν),

where K( · ;µp̄, ν) is the Kantorovich functional for source and target measures µp̄ and ν, respec-
tively. Each Kantorovich functional is concave and upper semi-continuous. As such, Gν is concave
and upper-semi continuous. The existence of a maximiser of Gν then follows by restriction to the
set A(Y ) defined in Lemma 3.9, which we show to have compact closure. To establish the optimal-
ity condition, we apply [26, Theorem 2.4.18] to obtain an expression for the superdifferential of Gν .
We see that ψ is a maximiser of Gν if and only if it is a Kantorovich potential from µp̄ to ν with
p̄ = p̄ψ.

Let P > 0 be a uniform bound for the set {p̄ψ |ψ ∈ C(Y )}, which exists by Proposition 3.4. For
φ ∈ C(B × [0, P ]), define φc̄ : Y → R by

φc̄(y) := min
x∈B×[0,P ]

{c(x, y)− φ(x)} .

Here, the minimum is taken over the compact set B × [0, P ], so by continuity of c and φ it is
attained. We call φc̄ the c̄-transform of φ. (The notation c̄ is simply used to indicate that the
minimum is taken over the source space B × [0, P ], distinguishing the c̄-transform from the the
c-transform (8), which is defined by minimisation over the target space Y .) We say that a function
ψ ∈ C(Y ) is c-concave if there exists φ ∈ C(B × [0, P ]) such that ψ = φc̄.

Lemma 3.9. Define

A(Y ) := {ψ ∈ C(Y ) | ψ is c̄-concave, and min
y∈Y

ψ(y) = 0}.

Then A(Y ) is non-empty and
sup

ψ∈C(Y )
Gν(ψ) = sup

ψ∈A(Y )
Gν(ψ). (32)

Proof. Let ψ ∈ C(Y ). Since B × [0, P ] is compact and c is locally Lipschitz (Assumption 2.1.A.),
the functions c(·, y) − ψ(y) for y ∈ Y are Lipschitz on B × [0, P ] and all have the same Lipschitz
constant. As the pointwise minimum of these functions, ψc is Lipschitz on B × [0, P ]. Likewise,
ψcc : Y → R defined by

ψcc(y) := min
x∈B×[0,P ]

{c(x, y)− ψc(x)}

is also Lipschitz. In particular, letting λ = min
y∈Y

ψcc(y),

ψ̃ := ψcc − λ = (ψ + λ)cc

is continuous, c-concave, and has minimum value zero, so is an element of A(Y ). By [22, Proposition
1.34], ψccc = ψc on B× [0, P ] and ψcc ≥ ψ. Then, for any p̄ ∈ Pac(B) with continuous density such
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that ∥p̄∥C(B) ≤ P , the support of µp̄ is contained in B × [0, P ] and

K(ψ;µp̄, ν) =

∫
X
ψc dµp̄ +

∫
Y
ψ dν

≤
∫
X
ψccc dµp̄ +

∫
Y
ψcc dν.

=

∫
X

(
ψccc + λ

)
dµp̄ +

∫
Y

(
ψcc − λ

)
dν

=

∫
X
ψ̃c dµp̄ +

∫
Y
ψ̃ dν

= K(ψ̃;µp̄, ν). (33)

Recall that by definition K(ψ;µp̄, ν) = Hν,ψ(p̄), similarly for ψ̃. By Theorem 3.8, each of the
functionalsHν,ψ andHν,ψ̃ has a unique minimser over Pac(B), and by Proposition 3.4 this minimiser
is continuous and bounded by P . Taking the minimum over p̄ in (33) therefore gives

Gν(ψ) = min
p̄∈Pac(B)

K(ψ;µp̄, ν) ≤ min
p̄∈Pac(B)

K(ψ̃;µp̄, ν) = Gν(ψ̃).

So, for any ψ ∈ C(Y ) we have found ψ̃ ∈ A(Y ) such that Gν(ψ) ≤ Gν(ψ̃), which establishes
(32).

In order to derive optimality conditions using [26, Theorem 2.4.18], we now show that the map
p̄ 7→ K(ψ, µp̄, ν) = Hν,ψ(p̄) is lower semi-continuous for every ψ ∈ C(Y ) by applying the following
special case of [1, Theorem 3.3].

Proposition 3.10 ([1, Theorem 3.3]). Let f : B × R → [0,+∞] be such that, for every s ∈ B,
f(s, ·) is proper, convex, lower semi-continuous, and equal to +∞ on (−∞, 0). Suppose also that

lim
t→+∞

f(·,t)
t = +∞ uniformly on B. Then the functional defined on P(B) by

p̄ 7→


∫
B
f(s, p̄(s)) ds if p̄ ∈ Pac(B)

+∞ otherwise,

is lower semi-continuous with respect to the weak-* topology on P(B).

Lemma 3.11. For any ν ∈ P(Y ) and ψ ∈ C(Y ) the functional Hν,ψ is lower semi-continuous with
respect to the weak-* topology on P(B).

Proof. By definition,

Hν,ψ(p̄) =


∫
B
fψ(s, p̄(s)) ds if p̄ ∈ Pac(B)

+∞ otherwise,

where fψ is defined by (17). Define
f̃ψ := fψ − Cψ.

Since Cψ is constant in p̄, it is sufficient to show that f̃ψ satisfies the hypotheses of Proposition
3.10. Moreover, since Hν,ψ(p̄) = Hν,ψ+λ(p̄) for all λ ∈ R and Y is compact, we assume without loss
of generality that ψ(y) < 0 for all y ∈ Y .
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By Lemma 3.7, for every s ∈ B, f̃ψ(s, ·) is proper, convex, and lower semi-continuous, and it is
equal to +∞ on the interval (−∞, 0) by definition. Since c non-negative and ψ is negative, it holds
that Cψ < 0 and

ψc(s, p) = min
y∈Y

{c((s, p), y)− ψ(y)} > 0 ∀ p ∈ [0,+∞). (34)

It follows immediately that f̃ψ is non-negative.

It remains to show that lim
t→+∞

f̃ψ(·,t)
t = +∞ uniformly on B. That is

∀M > 0, ∃ T > 0 such that t ≥ T =⇒ f̃ψ(x, t)

t
≥M ∀ s ∈ B.

Let M > 0 and let r ∈ R satisfy

r > max
(s,y)∈B×Y

q(s, y,M + ψ(y)) ≥ 0.

This maximum is well-defined and non-negative because q is non-negative and continuous by Propo-
sition 3.6 and B × Y is compact. By construction and Assumption 2.1.B.,

c((s, r), y) > M + ψ(y) ∀ s ∈ B, y ∈ Y,

which implies that

−M +min
s∈B

ψc(s, r) = −M +min
s∈B

min
y∈Y

{c((s, r), y)− ψ(y)} > 0. (35)

Define the constant

T :=
rmax
s∈B

ψc(s, r)

−M +min
s∈B

ψc(s, r)
,

which is positive by (34) and (35). By (31), for any s̃ ∈ B and t ≥ T ,

f̃ψ(s̃, t)

t
≥
f̃ψ(s̃, r) + (t− r)

∂f̃ψ
∂t

(s̃, r)

t
=
f̃ψ(s̃, r)− rψc(s̃, r)

t
+ ψc(s̃, r).

By definition of f̃ψ and positivity of ψc,

f̃ψ(s̃, r)− rψc(s̃, r) =

∫ r

0
(ψc(s̃, r̃)− ψc(s̃, r)) dr̃ > −rmax

s∈B
ψc(s, r)

It follows that

f̃ψ(s̃, t)

t
≥

−rmax
s∈B

ψc(s, r)

T
+min

s∈B
ψc(s, t) =M,

as required. Applying Proposition 3.10 with f = f̃ψ completes the proof.

We now state and prove the main result of this section.

Theorem 3.12. For each ν ∈ P(Y ) there exists a maximiser of Gν . In particular, ψ maximises
Gν if and only if ψ is a Kantorovich potential from µp̄ to ν with p̄ = p̄ψ.
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Proof. We first prove existence of a maximiser of Gν . By Lemma 3.9, it is sufficient to prove
that the closure of A(Y ) is a compact subset of C(Y ), and that Gν is proper, concave, upper
semi-continuous, and bounded above on A(Y ).

Let ψ ∈ A(Y ). Then there exists φ ∈ C(B × [0, P ]) such that ψ = φc. By Assumption 2.1.A.,
the cost c is Lipschitz on the compact set (B× [0, P ])× Y with some Lipschitz constant L > 0. As
the pointwise minimum over a family of L-Lipschitz functions, ψ is L-Lipschitz on Y . Then, since
min
y∈Y

ψ(y) = 0,

|ψ(y)| ≤ Ldiam(Y ) ∀ y ∈ Y, (36)

which is finite since Y is compact. As such, A(Y ) is uniformly bounded and equicontinuous, so by
the Arzela-Ascoli Theorem, its closure is compact in C(Y ) with respect to the uniform topology.

Next we show that Gν is concave and upper semi-continuous with respect to the uniform
topology. Let p̄ ∈ Pac(B) and let ψ0, ψ1 ∈ C(Y ). Let x ∈ X, and let yi ∈ Y be such that

ψci (x) = c(x, yi)− ψi(yi)

for each i ∈ {0, 1}. Then, using the definition of the c-transform,

ψc1(x)− ψc0(x) = min
y∈Y

{c(x, y)− ψ1(y)} − (c(x, y0)− ψ0(y0))

≤ (c(x, y0)− ψ1(y0))− (c(x, y0)− ψ0(y0))

= ψ1(y0)− ψ0(y0)

≤ ∥ψ1 − ψ0∥C(Y ).

By symmetry, it follows that

|ψc1(x)− ψc0(x)| = max {ψc1(x)− ψc0(x), ψ
c
0(x)− ψc1(x)} ≤ ∥ψ1 − ψ0∥C(Y ).

Since x ∈ X was arbitrary,

|K(ψ1;µp̄, ν)−K(ψ0;µp̄, ν)| =
∣∣∣∣∫
X
(ψc1 − ψc0) dµp̄ +

∫
Y
(ψ1 − ψ0) dν

∣∣∣∣ ≤ 2 ∥ψ1 − ψ0∥C(Y ) .

So K( · ;µp̄, ν) is 2-Lipschitz on C(Y ). In particular, it is upper semi-continuous. Moreover, for
λ ∈ (0, 1) and x ∈ X,

((1− λ)ψ1 + λψ0)
c(x) = min

y∈Y
{c(x, y)− (1− λ)ψ1(y)− λψ0(y)}

≥ (1− λ)min
y∈Y

{c(x, y)− ψ1(y)} − λmin
y∈Y

{c(x, y)− ψ0(y)}

= (1− λ)ψc1(x) + λψc0(x).

Therefore,

K((1− λ)ψ1 + λψ0;µp̄, ν) =

∫
X
((1− λ)ψ1 + λψ0)

c dµp̄ +

∫
Y
(1− λ)ψ1 + λψ0 dν

≥ (1− λ)

(∫
X
ψc1 dµp̄ +

∫
Y
ψ1 dν

)
+ λ

(∫
X
ψc0 dµp̄ +

∫
Y
ψ0 dν

)
= (1− λ)K(ψ1;µp̄, ν) + λK(ψ0;µp̄, ν),

so K( · ;µp̄, ν) is concave. As the pointwise minimum of a family of concave 2-Lipschitz functions,
Gν is concave and 2-Lipschitz. In particular, it is upper semi-continuous.
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We now show that Gν is real valued (in particular proper) and bounded above on A(Y ). Indeed,
let ψ ∈ A(Y ) and let p̄ = p̄ψ. By Theorem 3.8, p̄ψ minimises Hν,ψ, so by definition of Gν ,

Gν(ψ) = K(ψ;µp̄, ν). (37)

By Proposition 3.4, ∥p̄∥C(B) ≤ P , where P > 0 is a constant independent of ψ. Since c is Lipschitz
on the compact set (B × [0, P ]) × Y , its maximum over that set, which we denote by cmax, is
attained. Using the bound (36) and the fact that min

y∈Y
ψ(y) = 0,

K(ψ;µp̄, ν) =

∫
X
ψc dµp̄ +

∫
Y
ψ dν

≤
(
cmax −min

y∈Y
ψ(y)

)∫
B
p̄(s) ds+ Ldiam(Y )

= cmax + Ldiam(Y ),

which is an upper bound for Gν on A(Y ) by (37). In particular, since p̄ is bounded and ψ and ψc

are continuous, Gν(ψ) is real valued so Gν is proper. Since this holds for any ψ ∈ C(Y ), Gν is real
valued. This concludes the proof that a maximiser of Gν over C(Y ) exists.

Finally we prove the necessary and sufficient optimality condition. Since Gν is concave and real
valued, for every ψ ∈ C(Y ) the superdifferential of Gν at ψ, denoted by ∂+Gν(ψ), is non-empty and
contains 0 if and only if ψ is a maximiser of Gν . By Lemma 3.11, for every ψ ∈ C(Y ) the functional
Hν,ψ is lower semi-continuous with respect to the weak-* topology on P(B). By definition

Gν(ψ) = inf
p̄∈P(Y )

Hν,ψ(p̄).

Let ψ ∈ C(Y ) and let p̄ = p̄ψ be the unique minimiser of Hν,ψ, which exists by Theorem 3.8. Then
by [26, Theorem 2.4.18],

∂+Gν(ψ) = ∂+ [K( · ;µp̄, ν)] (ψ).
Hence, ψ is a maximiser of Gν if and only if 0 ∈ ∂+ [K( · ;µp̄, ν)] (ψ), which holds if and only if ψ
is a Kantorovich potential from µp̄ to ν.

3.3 Duality and existence and uniqueness of optimal surfaces

We now combine the results of this section to prove that the primal problem (Problem 2.4) has a
unique solution, to prove that duality holds between the primal and dual problems, and to derive
an optimality condition relating both problems.

Theorem 3.13. For each ν ∈ P(Y ), there exists a unique minimiser of Fν . In particular,

min
p̄∈Pac(B)

Fν(p̄) = max
ψ∈C(Y )

Gν(ψ), (38)

and p̄ and ψ are optimal in their respective problems if and only if p = pψ and ψ is a Kantorovich
potential from µp̄ to ν.

Proof. First we prove duality and existence of a minimiser of Fν (38). Let ψ ∈ C(Y ) be a maximiser
of Gν , which exists by Theorem 3.12. By Theorem 3.8, p̄ = p̄ψ is the unique minimiser of Hν,ψ, and
the optimality condition stated in Theorem 3.12 implies that ψ is a Kantorovich potential from µp̄
to ν. Hence, by the Kantorovich Duality Theorem,

Gν(ψ) = inf
Pac(B)

Hν,ψ = K(ψ;µp̄, ν) = max
C(Y )

K( · ;µp̄, ν) = Tc(µp̄, ν) = Fν(p̄).
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Then, using weak duality (Lemma 3.1),

max
C(Y )

Gν = Gν(ψ) = Fν(p̄) ≥ inf
Pac(B)

Fν ≥ sup
C(Y )

Gν , (39)

So all inequalities in (39) must be equalities, meaning that p̄ is a minimiser of the primal functional
F over Pac(B). This establishes the existence of a minimiser of Fν over Pac(B), and proves that
(38) holds.

By Theorem 3.8, argmin
Pac(B)

Hν,ψ = {p̄ψ} is a singleton for every ψ ∈ C(Y ). To prove that the

minimiser of Fν is unique, it is therefore sufficient to prove that

argmin
Pac(B)

Fν = argmin
Pac(B)

Hν,ψ ∀ψ ∈ argmax
C(Y )

Gν . (40)

Let ψ be a maximiser of Gν and let p̄ = p̄ψ be the unique minimiser of Hν,ψ. By Theorem 3.12, ψ
is a Kantorovich potential from µp̄ to ν. Then by (38) and the Kantorovich Duality Theorem,

min
Pac(B)

Fν = max
C(Y )

Gν = Gν(ψ) = min
Pac(B)

Hν,ψ = K(ψ;µp̄, ν) = Tc(µp̄, ν) = Fν(p̄).

Hence
argmin
Pac(B)

Hν,ψ ⊆ argmin
Pac(B)

Fν . (41)

For a contradiction, suppose that there exists p̄ ∈ argmin
Pac(B)

Fν \ argmin
Pac(B)

Hν,ψ. By the Kantorovich

Duality Theorem,

min
Pac(B)

Fν = Fν(p̄) = Tc(µp̄, ν) ≥ K(ψ;µp̄, ν) = Hν,ψ(p̄). (42)

By assumption,

Hν,ψ(p̄) > min
Pac(B)

Hν,ψ = Gν(ψ) = max
C(Y )

Gν . (43)

Together, (42) and (43) imply that

min
Pac(B)

Fν > max
C(Y )

Gν ,

which contradicts (38). Hence, it must hold that

argmin
Pac(B)

Hν,ψ ⊇ argmin
Pac(B)

Fν . (44)

Together, (41) and (44) establish (40), as required.
We conclude the proof by establishing the necessary and sufficient optimality conditions. By

(40), p̄ and ψ are optimal in their respective problems if and only if

p̄ = p̄ψ and ψ ∈ argmax
C(Y )

Gν .

By Theorem 3.12, this holds if and only if ψ is a Kantorovich potential from µp̄ to ν, as required.
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4 Stability

In this section, we establish stability of Problem 2.4 with respect to the target measure ν. We
work in the setting described in Section 2 and cost functions c : X × Y → [0,+∞) satisfying only
Assumption 2.1, unless otherwise specified. Using the stability of the optimal transport cost Tc
with respect to source and target measures [25, Theorem 5.20], we show that for νn converging to ν
in P(Y ), the sequence of minimisers p̄n of the functionals Fνn converges uniformly to the minimiser
p̄ of Fν (Theorem 4.1). If the cost c additionally satisfies the twist condition (Assumption 2.5) then
there exists a corresponding sequence of optimal transport maps Tn between µp̄n and νn, and we
show that this sequence converges to the optimal transport map T between µp̄ and ν (Theorem
4.2).

Theorem 4.1. The map F :
(
Pac(B) ∩ L∞(B), ∥ · ∥L∞(B)

)
× P(Y ) → R given by

F (p̄, ν) := Fν(p̄) = Tc(µp̄, ν)

is continuous, where P(Y ) is equipped with the weak topology. In particular, suppose that νn ⇀ ν
in P(Y ), and let p̄n (respectively p̄) be the unique minimiser of Fνn (respectively Fν) over Pac(B)

for each n ∈ N. Then Fνn
Γ→ Fν on

(
Pac(B) ∩ L∞(B), ∥ · ∥L∞(B)

)
, p̄n → p̄ in C(B), and µp̄ → µp̄n

strongly in L1(X). Moreover, if γn (respectively γ) is an optimal transport plan from µp̄n to νn
(respectively from µp̄ to ν) for each n ∈ N, then up to a subsequence γn ⇀ γ in P(X × Y ).

Proof. We first show that F is continuous. Let ((p̄n, νn))n∈N be a sequence converging in(
Pac(B) ∩ L∞(B), ∥ · ∥L∞(B)

)
× P(Y ) to a point (p̄, ν). Since B is compact, ∥p̄n − p̄∥L1(B) → 0,

and by Remark 2.3, ∥µp̄n − µp̄∥L1(X) → 0. This implies that

µp̄n ⇀ µp̄. (45)

Since the sequence (p̄n)n∈N converges in L∞(B), it is uniformly bounded, so µp̄ and µp̄n have
common compact support, say A ⊂ X. By continuity of c (Assumption 2.1.A.) and compactness
of A× Y ,

Tc(µp̄, ν) < +∞ and Tc(µp̄n , νn) < +∞ ∀n ∈ N. (46)

For each n ∈ N let γn be an optimal transport plan from µp̄n to νn. Since µp̄n ⇀ µp̄ and νn ⇀ ν
and the corresponding transport costs are finite (46), by [25, Theorem 5.20], there exists an optimal
transport plan γ from µp̄ to ν such that, up to a subsequence, γn ⇀ γ. For all n ∈ N, the support
of γn and γ is necessarily contained in A× Y , on which c is a bounded continuous function, so, up
to a subsequence,

F (p̄n, νn) = Tc(µp̄n , νn) =
∫
A×Y

cdγn →
∫
A×Y

cdγ = Tc(µp̄, ν) = F (p̄, ν).

Since the limit is independent of the chosen subsequence, the whole sequence converges to this limit.
This establishes the claimed continuity of F , which immediately implies the claimed Γ-convergence.

Finally, suppose that νn → ν in P(Y ), let p̄n be the unique minimiser of Fνn over Pac(B) for
each n ∈ N, and let p̄ be the unique minimiser of Fν over Pac(B). By Theorem 3.13, (p̄n)n∈N ⊂ S,
which is uniformly bounded and equicontinuous by Proposition 3.4. By the Ascoli-Arzela Theorem,
any subsequence has a further subsequence that converges uniformly, and therefore with respect to

the strong L∞ topology. Since Fνn
Γ→ Fν on (Pac(B)∩L∞(B), ∥ · ∥L∞(B)), the limit of this further

subsequence must be equal to p̄. Since the limit is independent of the choice of subsequence, the
whole sequence converges to this limit. By Remark 2.3, µp̄n → µp̄ strongly in L1(X). Letting
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γn (respectively γ) by an optimal transport plan from µp̄n to νn (respectively from µp̄ to ν) for
each n ∈ N, applying [25, Theorem 5.20] as above gives that, up to a subsequence, γn ⇀ γ in
P(X × Y ).

Theorem 4.1 establishes stability of minimisers of Problem 2.4 with respect to ν. We now show
that when the cost c is twisted (Assumption 2.5), if p̄ is the minimiser of Fν then there is a unique
optimal transport map T from µp̄ to ν, and T is also stable with respect to ν.

Theorem 4.2 (Existence and stability of transport maps). Suppose that the cost c : X × Y → R
satisfies Assumption 2.5. Then for any p̄ ∈ Pac(B) ∩ L∞(B) and ν ∈ P(Y ) there exists a unique
optimal transport map T from µp̄ to ν, which is defined µp̄ almost everywhere. Moreover, suppose
that νn ⇀ ν in P(Y ), let (p̄n)n∈N be the corresponding sequence of minimisers of Problem 2.4,
and for each n ∈ N let Tn (respectively T ) be the unique optimal transport map from µp̄n to νn
(respectively µp̄ to ν) that is zero outside the support of µp̄n (respectively µp̄). Then

∥Tn − T∥Lr(X) → 0 ∀ r ∈ [1,+∞).

Proof. For any p̄ ∈ Pac(B)∩L∞(B) and ν ∈ P(Y ), both µp̄ and ν have compact support, and µp̄ is
absolutely continuous with respect to Ld. Since c is twisted (Assumption 2.5), by the Gangbo-
McCann Theorem (see for example [13] or [19, Theorem 12]), there exists a unique optimal
transport map T from µp̄ to ν, which is defined µp̄ almost everywhere. Moreover, the measure
γ := (idX , T )#(µp̄) is the unique optimal transport plan from µp̄ to ν.

Suppose that νn ⇀ ν in P(Y ), let (p̄n)n∈N be the corresponding sequence of minimisers of
Problem 2.4, and for each n ∈ N let Tn (respectively T ) be the unique optimal transport map
from µp̄n to νn (respectively µp̄ to ν) extended by zero onto X. Define γn := (idX , Tn)#(µp̄n) and
γ := (idX , T )#(µp̄). Let r ∈ [1,+∞) and ε ∈ (0, 1). We aim to find N ∈ N such that for n ≥ N ,
∥T − Tn∥rLr(X) ≤ ε.

By Theorem 3.13, p̄n, p̄ ∈ S for all n ∈ N, and by Proposition 3.4, S is equicontinuous and
uniformly bounded. Let P > 0 be a uniform bound for S. Define the compact set

XP := {(s, p) ∈ X : p ≤ P},

and for each n ∈ N define

∆n,ε :=
{
x ∈ XP : ∥T (x)− Tn(x)∥ ≥ ε

3

}
.

We first show that with
δ =

ε

3diam(Y )r

there exists N0 ∈ N such that for n ≥ N0, µp̄(∆n,ε) ≤ δ.
By Theorem 4.1, ∥µp̄ − µp̄n∥L1(X) → 0 and γn ⇀ γ, where the convergence is along the whole

sequence by uniqueness of γ. Hence, there exists N ∈ N such that for all n ≥ N

∥µp̄ − µp̄n∥L1(X) ≤
δ

4
. (47)

By Lusin’s Thoerem, there exists a compact set A ⊂ XP such that T |A is continuous and

µp̄(X \A) ≤ δ

4
. (48)
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In particular, the set

Aε :=
{
(x, y) ∈ A× Y : ∥T (x)− y∥ ≥ ε

3

}
is closed. Since γ is concentrated on the graph of T , γ(Aε) = 0, so weak convergence of γn to γ
and closedness of Aε implies that there exists N1 ∈ N such that for n ≥ N1

γn(Aε) ≤
δ

4
. (49)

We have,

µp̄n(∆n,ε ∩A) = µp̄n

({
x ∈ A : ∥T (x)− Tn(x)∥ ≥ ε

3

})
= γn

({
x ∈ A : ∥T (x)− Tn(x)∥ ≥ ε

3

}
× Y

)
= γn

({
(x, y) ∈ A× Y : ∥T (x)− y∥ ≥ ε

3

})
= γn(Aε),

where the second equality holds because γn has first marginal µp̄n , and the third equality holds
because spt(γn) ⊆ graph(Tn). For all n ≥ N2 := max{N0, N1},

γn(Aε) = µp̄n(∆n,ε ∩A) = µp̄n(∆n,ε \ (XP \A))
≥ µp̄n(∆n,ε)− µp̄n(XP \A)
= µp̄n(∆n,ε) + (µp̄(XP \A)− µp̄n(XP \A))− µp̄(XP \A)
≥ µp̄n(∆n,ε)− ∥µp̄ − µp̄n∥L1(X) − µp̄(XP \A).

Then by (47), (48), and (49),

µp̄n(∆n,ε) ≤
3δ

4
. (50)

Then by (47) and (50), for all n ≥ N2,

µp̄(∆n,ε) = µp̄(∆n,ε)− µp̄n(∆n,ε) + µp̄n(∆n,ε) ≤ ∥µp̄ − µp̄n∥L1(X) + µp̄n(∆n,ε) ≤ δ,

as claimed.
Since the optimal transport maps Tn and T map into Y

∥T − Tn∥L∞(X) ≤ diam(Y ).

By definition of ∆n,ε, and since µp̄ is a probability measure on X, it follows that for all n ≥ N2,

∥T − Tn∥rLr(X,µp̄) =
∫
X
∥T − Tn∥rRd dµp̄

=

∫
X\∆n,ε

∥T − Tn∥rRd dµp̄ +
∫
∆n,ε

∥T − Tn∥rRd dµp̄

≤
(ε
3

)r
+ µp̄(∆n,ε)diam(Y )r

<
ε

3
+ δdiam(Y )r

=
2ε

3
.
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Finally, since Y is compact, there exists R > 0 such that Y ⊂ BR(0) ⊂ Rd. Uniform convergence
of p̄n to p̄ implies that there exists N3 ∈ N such that for all n ≥ N3

∥p̄− p̄n∥L1(B) ≤
ε

3Rr
.

Let N = max{N2, N3}. Since T is zero outside of spt(µp̄), and Tn is zero outside of spt(µp̄n), for
n ≥ N

∥T − Tn∥rLr(X) =

∫
X
∥T (x)− Tn(x)∥rRd dx

= ∥T − Tn∥rLr(X,µp̄) +
∫
X
∥Tn(x)∥rRd1{p̄(s)≤p≤p̄n(s)}(x) dx

≤ 2ε

3
+Rr∥p̄− p̄n∥L1(B)

= ε,

which completes the proof.

5 Reduction to an optimal transport problem

We now use the optimality conditions of Theorem 3.13 to show that under Assumption 2.1 Prob-
lem 2.4 reduces to a standard optimal transport problem. In addition, we show that if the cost
function c is twisted (Assumption 2.5) and its gradient with respect to x is bounded away from
zero (Assumption 2.6), then the corresponding Monge problem admits a unique solution (Corollary
5.2). In the case where ν is discrete, we derive the form of this solution in terms of Laguerre cells
(Corollary 5.3). The relationship between Problem 2.4 and the optimal transport problem to which
it can be reduced is illustrated in Figure 2.

Theorem 5.1. Let yext ∈ Rd \ Y and define cext : X × Y ∪ {yext} → [0,+∞) by

cext(x, y) =

{
c(x, y) if y ∈ Y

0 if y = yext.

Let P > 0 be a uniform upper bound on the set S, and define

µext := Ld−1 ¬
(B × [0, P ]), νext := ν + (P − 1)δyext .

For ν ∈ P(Y ),

p̄ ∈ argminFν

ψ ∈ argmaxGν

γ ∈ argmin
γ̃∈Γ(µp̄,ν)

∫
X×Y

c dγ̃

 ⇐⇒


p̄ = max

y∈Y
q(·, y, ψext(y)− ψext(yext))

ψext is a Kantorovich potential from µext to νext

γext ∈ argmin
γ̃∈Γ(µext,νext)

∫
X×Y

cext dγ̃

(51)

where
γext := γ +

(
Ld ¬ {(s, p) : s ∈ B, p̄(s) ≤ p ≤ P}

)
⊗ δyext , (52)

and

ψext(y) =

{
ψ(y) if y ∈ Y,

−τψ if y = yext.
(53)
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Proof. Let ν ∈ P(Y ). The optimality conditions for Problem 2.4 given in Theorem 3.13 state that

p̄ ∈ argminFν

ψ ∈ argmaxGν

}
⇐⇒

{
p̄ = p̄ψ

ψ is a Kantorovich potential from µp̄ to ν.

Combining this with the classical optimality conditions for optimal transport relating optimal
transport plans to Kantorovich potentials (see for example [19, Proposition 8]), and definition of
p̄ψ, gives

p̄ ∈ argminFν

ψ ∈ argmaxGν

γ ∈ argmin
γ̃∈Γ(µp̄,ν)

∫
X×Y

cdγ̃

 ⇐⇒

p̄ = max
y∈Y

q(·, y, ψ(y) + τψ)

ψc ⊕ ψ = c γ-a.e
(54)

where τψ is the unique constant such that p̄ψ is a probability measure on B. Conversely, again by
[19, Proposition 8],

p̄ = max
y∈Y

q(·, y, ψext(y)− ψext(yext))

ψext is a Kantorovich potential from µext to νext

γext ∈ argmin
γ̃∈Γ(µext,νext)

∫
X×Y

cext dγ̃


⇐⇒

p̄ = max
y∈Y

q(·, y, ψext(y)− ψext(yext))

ψcextext ⊕ ψext = cext γext-a.e.

Therefore, to establish (51), it is sufficient to show that

ψc ⊕ ψ = c γ-a.e ⇐⇒ ψcextext ⊕ ψext = cext γext-a.e (55)

where ψ ∈ C(Y ), τψ ∈ R, and ψext ∈ C(Y ×{yext}) are related via (53), and γext is defined by (52).
In particular, since B × {0} is Ld-negligible, the set N := (B × {0}) × Y has zero γ measure and
zero γext measure, and it is sufficient to show that

ψc ⊕ ψ = c on spt(γ) \N ⇐⇒ ψcextext ⊕ ψext = cext on spt(γext) \N. (56)

First, we show that

ψcextext (x) + ψext(y) = cext(x, y) ∀ (x, y) ∈ spt(γext) \ (N ∪ spt(γ)), (57)

regardless of any hypotheses on ψ and γ. Let , (x, y) = ((s, p), y) ∈ spt(γext) \ (N ∪ spt(γ)). By
construction p ≥ p̄(s) > 0, y = yext, and τψ = −ψext(y) = cext(x, y) − ψext(y). Let ỹ ∈ Y . On the
one hand, if c((s, 0), ỹ) ≤ ψ(ỹ) + τψ, since c((s, ·), ỹ) is increasing,

c((s, p), ỹ) ≥ c((s, p̄(s)), ỹ) ≥ ψ(ỹ) + τψ,

where the final inequality holds by definition of q. On the other hand, if c((s, 0), ỹ) ≥ ψ(ỹ) + τψ,
then

c((s, p), ỹ) ≥ c((s, 0), ỹ) ≥ ψ(ỹ) + τψ.

In either scenario,
cext(x, ỹ)− ψ(ỹ) ≥ τψ = cext(x, y)− ψext(y),

so (57) holds.
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To complete the proof, let (x, y) = ((s, p), y) ∈ spt(γ) \ N . Then y ∈ Y and 0 < p ≤ p̄(s). In
particular, there exists ỹ ∈ Y such that

c((s, p̄(s), ỹ)− ψ(ỹ) ≤ τψ,

otherwise p̄(s) would be zero by definition. Since c((s, ·), ỹ) is increasing (Assumption 2.1.B.),

ψc(x) = ψc((s, p)) ≤ c((s, p), ỹ)− ψ(ỹ) ≤ c((s, p̄(s)), ỹ)− ψ(ỹ) ≤ τψ.

By construction
τψ = cext((s, p̄(s)), yext)− ψext(yext).

It follows that ψc(x) = ψcextext (x). Therefore,

ψc(x) + ψ(y) = c(x, y) ⇐⇒ ψcextext (x) + ψext(y) = cext(x, y). (58)

Since spt(γ) ⊆ spt(γext), this establishes the backwards implication in (56). Together, (57) and
(58) establish the forwards implication in (56), which completes the proof.

If Assumption 2.6 holds, then the cost function cext is twisted. The following corollary is
therefore a direct consequence of Theorem 5.1 and the Gangbo-McCann Theorem (see for example
[13] or [19, Theorem 12]).

Corollary 5.2. Let cext, µext, νext, ψext, γext, and P be defined as in Theorem 5.1. If Assumption
2.6 holds, then there exists a unique optimal transport map Text from µext to νext for the cost cext,
and it satisfies γext = (idB×[0,P ], Text)#µext, and

∇xcext(x, Text(x)) = ∇ψcext(x) ∀x ∈ B × [0, P ].

In particular, if p̄ ∈ argminFν is the unique solution of Problem 2.4 then T := Text|Xp̄ is the optimal
transport map from µp̄ to ν for the cost c, where we recall that Xp̄ = {(s, p) ∈ X | p ≤ p̄(s)}.

With a view to solving Problem 2.4 numerically, we now write down the formulation of Corollary
5.2 in the case that ν is a finitely supported measure. This reduces Problem 2.4 to a standard semi-
discrete optimal transport problem. (See [19, Section 4] for an overview of semi-discrete optimal
transport). By [19, Proposition 37] the corresponding Monge problem has a solution T expressed
in (60) in terms of so-called Laguerre cells Li (see (59) and more generally [19, Definition 17]). The
intersection of any two Laguerre cells is Ld-negligible [19, Proposition 37], so T is well defined and
corresponds to a labelled partition of the set Xp̄.

Corollary 5.3. Suppose Assumption 2.6 holds. Let n ∈ N, and for i ∈ {1, . . . , n} let yi ∈ Y be
distinct and mi > 0 be such that

∑n
i=1mi = 1. Let

ν =

n∑
i=1

miδyi ,

and let p̄ ∈ argminFν be the unique solution of Problem 2.4. Let yext, cext, µext, and νext be
defined as in Theorem 5.1, and let ψext be a Kantorovich potential between µext and νext for the
cost cext. Define Ψ := (ψext(yi))

n+1
i=1 and y = (yi)

n+1
i=1 , with the convention that yn+1 = yext. For

i ∈ {1, . . . , n+ 1}, define

Li(Ψ,y) :=

{
x ∈ B × [0, P ]

∣∣∣∣ cext(x, yi)−Ψi ≤ cext(x, yj)−Ψj ∀ j ∈ {1, . . . , n+ 1}
}
. (59)
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Then
graph(p̄) ⊆ ∂Ln+1(Ψ,y),

and T : Xp → Y defined by

T :=

n∑
i=1

yi1Li(Ψ,y) (60)

is the optimal transport map from µp̄ to ν for the cost c.

6 Cost function

We now show that the cost function (11) that defines the energy of an MLM state satisfies As-
sumptions 2.1 and 2.6.

Proposition 6.1. Let ε0, ε1 ∈ (0, 1/2), define X = [ε0, 1− ε1]× [0,+∞), and let Y ⊂ (0,+∞)2 be
compact and non-empty. Consider the cost function c : X × Y → [0,+∞) defined by

c((s, p), (z, θ)) :=
1

2

(
z

a
√
1− s2

− Ωa
√
1− s2

)2

+ Cpθ

(
p+ pmin

pr

)κ
, (61)

where κ = 2/7 and a, Ω, Cp, pmin, and pr are positive constants. Assumptions 2.1 and 2.6 are
satisfied by c.

Proof. First we show that c satisfies Assumption 2.6. Define ΩX := (ε0/2, 1−ε1/2)×(−p̄min/2,+∞).
Since Y ⊂ (0,+∞)2 is compact, there exists θmin > 0 such that ΩY := (0,+∞)×(θmin,+∞) contains
Y . Extend c to ΩX × ΩY by the formula (61). Then c ∈ C1(ΩX × ΩY ) and for ((s, p), (z, θ)) ∈
ΩX × ΩY ,

∇(s,p)c((s, p), (z, θ)) =


z2s

a2 (1− s2)2
− Ω2a2s

κCpθ

pr

(
p+ pmin

pr

)κ−1

 . (62)

Since s > 0 and p+ pmin > 0, ∇(s,p)c((s, p), ·) is injective on ΩY . It is immediate from (62) that for
all (s, p) ∈ ΩX ,

∥∇(s,p)c((s, p), ·)∥C(ΩY ) ≥
κCpθmin

pr

(
pmin

2pr

)κ−1

=: ℓ > 0,

so Assumption 2.6 holds.
Now we show that c satisfies Assumption 2.1. Since c ∈ C1(ΩX ×ΩY ), it is locally Lipschitz on

X × Y , so Assumption 2.1.A. holds. Assumption 2.1.B. holds because κ, Cp, pmin, pr > 0, so the
map

p 7→ Cpθ

(
p+ pmin

pr

)κ
is strictly increasing and unbounded on [0,+∞) for all θ ∈ (θmin,+∞). Since Y is compact, there
exists a positive constant zmax such that Y ⊂ (0, zmax) × (0,+∞). Let ((s, p), (z, θ)) ∈ X × Y .
Since s ≤ 1− ε1 and ε1 ∈ (0, 1/2),

a2
(
1− s2

)2 ≥ a2
(
1− (1− ε1)

2
)2

= a2ε21(2− ε21) ≥ a2ε21.

It follows from (62) that ∣∣∣∣ ∂∂sc((s, p), (z, θ))
∣∣∣∣ ≤ z2max

a2ε21
+Ω2a2 =: L.
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The set {
c((·, p), (z, θ)) : [ε0, 1− ε1] → [0,+∞)

∣∣ p ∈ [0,+∞), (z, θ) ∈ Y
}

therefore consists of L-Lipschitz functions so is equicontinuous (Assumption 2.1.C.).

7 Conclusion

In this work, we have given a rigorous definition of a Modified Lagrangian Mean (MLM) state in a
single hemisphere in latitude-pressure coordinates (Definition 1.1). Such a state consists of a surface
pressure function p determining the extent of the source domain, and an admissible transport map
T = (Z,Θ) between the uniform density on the source domain and a mass distribution ν in the
space of zonal angular momentum and potential temperature. We have proved that if ν has compact
support in (0,+∞)2, then there exists a unique energy-minimising MLM state defined on a domain
excluding the equator and the pole (Theorem 3.13). Optimality conditions imply that this state is
in fact the solution of a single optimal transport problem (Theorem 5.1). Our results hold not only
for the cost function defining the energy of an MLM state (11) but for a wide class of cost functions
satisfying mild assumptions. These include the cost function (13) defining free-surface variants of
the semi-geostrophic equations [4, 7, 6].

Regarding energy-minimising MLM states specifically, our results come with three main caveats.
First, the exclusion of the extreme latitudes in the given hemisphere. The pole is excluded to ensure
that the cost function is sufficiently regular (locally Lipschitz; Assumption 2.1.A.). The equator
is excluded to ensure that the cost function is twisted (Assumption 2.5) and admits a twisted
extension (Assumption 2.6). This guarantees the existence of optimal transport maps (rather than
merely optimal transport plans), which can be interpreted as energy-minimising rearrangements
of zonal angular momentum and potential temperature. Second, and for the same two reasons,
an arbitrary minimum pressure is assumed and built into the cost function (11). Third, the zonal
angular momentum is assumed to be positive and bounded away from zero to ensure that the cost
function is twisted.

In addition to the general existence and uniqueness result, we have shown that to compute an
energy-minimising MLM state from a discrete mass distribution in zonal angular momentum and
potential temperature coordinates, as in the setting of [21], it is sufficient to solve a semi-discrete
optimal transport problem with a twisted cost (Corollary 5.3). This reduces to maximising the
Kantorovich dual functional, which is a concave, finite dimensional, unconstrainted maximisation
problem [19, Section 4], and is, in principle, numerically tractable.
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