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Abstract. We prove existence of weak solutions of the 3D compressible semi-geostrophic (SG)
equations with compactly supported measure-valued initial data. These equations model large-
scale atmospheric flows. Our proof uses a particle discretisation and semi-discrete optimal
transport techniques. We show that, if the initial data is a discrete measure, then the com-
pressible SG equations admit a unique, twice continuously differentiable, energy-conserving and
global-in-time solution. In general, by discretising the initial measure by particles and sending
the number of particles to infinity, we show that for any compactly supported initial measure
there exists a global-in-time solution of the compressible SG equations that is Lipschitz in
time. This significantly generalises the original results due to Cullen and Maroofi (2003), and
it provides the theoretical foundation for the design of numerical schemes using semi-discrete
optimal transport to solve the 3D compressible SG equations.

1. Introduction

The semi-geostrophic (SG) equations for a compressible fluid are a simplified model of the
formation and evolution of atmospheric fronts, which are important for accurate weather pre-
diction on large scales. The model, incorporating the effect of compressibility, was introduced
and analysed in [18].

In this paper we study the system formulated in terms of the so-called geostrophic variables.
In these variables, the governing evolution equation is a continuity equation for a time-dependent
probability measure αt, usually called the potential vorticity.1 The equation for αt is given by

∂tαt +∇ · (αtW[αt]) = 0. (1.1)

The non-local velocity field W[αt] (defined in (1.4) below) is known as the geostrophic wind.
It is defined at each time t by minimising the geostrophic energy given the potential vorticity
αt. Here, and in what follows, the subscript t on a dependent variable denotes evaluation at
time t. The PDE (1.1) is derived in [18] by starting from Euler’s equations for a compressible
fluid, assuming a shallow atmosphere in hydrostatic balance, a rotation-dominated flow, and
making the geostrophic approximation, which is valid for large-scale flows, then transforming
the resulting equations to geostrophic coordinates.

The main goal of this paper is to construct global-in-time weak solutions of (1.1) as the limit
of spatially discrete approximations. This generalises and extends the semi-discrete optimal
transport strategy presented in [7] for the incompressible setting, a generalisation that requires
substantial changes and poses new technical challenges.

There are several benefits of using semi-discrete optimal transport: this approach highlights
an intuitive connection between flows in geostrophic coordinates and corresponding flows in the
fluid domain, it provides the means to construct explicit solutions, and it serves as the theoretical
foundation for adapting Cullen and Purser’s groundbreaking geometric method [19, 21] to solve
the compressible SG equations numerically.

(*) Maxwell Institute for Mathematical Sciences and Department of Mathematics, Heriot-
Watt University, Edinburgh, UK

(†) Institute of Computer Science, University of Göttingen, Germany
1In physical terms, αt is the inverse of the physical potential vorticity; see [13].
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1.1. Summary of results. We denote by X ⊂ R3 the compact set representing the physical
fluid domain, and by Y ⊂ R3 the geostrophic domain where the equations are defined after the
change to geostrophic variables. For further details about the assumptions on the fluid and
geostrophic domains see Section 2.1.

To define the geostrophic energy of the system, consider an absolutely continuous probability
measure σ ∈ Pac(X ). The measure σ is a physical variable, representing the product of the fluid
density and potential temperature. For a given probability measure αt ∈ P(Y) representing
the potential vorticity, let Tc(σ, αt) be the optimal transport cost between σ and αt, given below
by (2.3), for the cost function c : X × Y → R given by equation (2.2). The corresponding
geostrophic energy E(σ, αt) is given by

E(σ, αt) = Tc(σ, αt) + κ

∫
X
σγ dx, (1.2)

where γ ∈ (1, 2) and κ > 0 are physical constants2. The geostrophic energy is the sum of the
kinetic energy of the fluid, its gravitational potential energy, and its internal energy.

The geostrophic windW that appears in (1.1) is defined by minimising the geostrophic energy
over all σ. We show that this minimisation problem has a unique solution

σ∗[αt] = argmin
σ∈Pac(X )

E(σ, αt), (1.3)

which we call the optimal source measure. Let Tαt denote the optimal transport map from σ∗[αt]
to αt for the cost c. Then the velocity field W[αt] : Y → R3 in (1.1) can be formally defined by

W[αt] = J
(
id− T−1

αt

)
, J = fcor

0 −1 0
1 0 0
0 0 0

 , (1.4)

where id denotes the identity on Y, and fcor > 0 is the Coriolis parameter, which we take to be
constant. The optimal transport map Tαt exists and is unique because the cost function c given
by (2.2) satisfies the classical twist condition. We can recover the physical variables from the
components of Tαt . It can be shown that Tαt(x) = (x1 + f−2

corv
g
2(x, t), x2 − f−2

corv
g
1(x, t), θ(x, t)),

where vg = (vg1 , v
g
2 , 0) is the geostrophic velocity of the fluid and θ is its potential temperature

[18, equation (5)]. In general, the transport map Tαt is not invertible, so equation (1.4) is only
formal; we give a rigorous meaning to the PDE (1.1) in Definition 2.6.

To state the first of our results, we formulate the discrete analogue of the PDE (1.1) by
making the discrete ansatz

αN
t =

N∑
i=1

miδzi(t), (1.5)

where zi(t) ∈ Y. Let z(t) =
(
z1(t), . . . , zN (t)

)
∈ YN . Then this ansatz gives rise to the ODE

ż = JN (z−C(z)), (1.6)

where JN ∈ R3N×3N is the block diagonal matrix JN := diag(J, . . . , J), and C is the centroid
map, which is defined in Definition 4.2 (see Figure 1). This centroid map is the discrete analogue
of the map T−1

αt
appearing in (1.4).

We now state our two main results. The notation we use is listed in Section 2. In particular,
by C0,1([0, τ ];P(Y)) we mean Lipschitz continuity with respect to the W 1 Wasserstein metric
on P(Y) and the standard metric on [0, τ ].

Our first theorem asserts the existence and uniqueness of solutions of the ODE (1.6) and
correspondingly of the PDE (1.1) with discrete initial data.

2Interpreted physically, γ is the ratio
cp
cv
, where cp is the specific heat at constant pressure and cv is the specific

heat at constant volume, and κ = cv
(

Rd
p0

)γ−1

, where Rd is the specific gas constant for dry air, and p0 is the

reference pressure.
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Figure 1. On the left is the source space X coloured by the density of the
optimal source measure σ∗[α

N
t ]. The boundaries and centroids Cj(z(t)) of the

corresponding c-Laguerre cells are plotted in black, with the boundary of the i-th
cell, Li

c, highlighted in red. On the right is the target space Y with the seeds
zj(t) in blue. The i-th seed, zi(t), corresponding to the i-th cell is highlighted
in red. The union of the seeds is the support of the target measure αN

t .

Theorem 1.1 (Existence of discrete geostrophic solutions). Fix N ∈ N, an arbitrary final time

τ > 0, and an initial discrete probability measure αN =
∑N

i=1m
iδzi ∈ PN (Y) that is well-

prepared in the sense of (2.8). Then there exists a unique solution z ∈ C2([0, τ ];DN ) of the
ODE (1.6) with initial condition z(0) = (z1, . . . , zN ). Define αN ∈ C0,1([0, τ ];PN (Y)) by

αN
t =

N∑
i=1

miδzi(t).

Then αN is the unique weak solution of the compressible SG equations (in the sense of Definition
2.6) with discrete initial data αN

0 = αN . Moreover, αN is energy-conserving in the sense that

E(σ∗[α
N
t ], αN

t ) = E(σ∗[α
N
0 ], αN

0 ) ∀ t ∈ [0, τ ].

Our second theorem states the existence of global-in-time weak solutions of the compressible
SG equations (1.1) for arbitrary, compactly supported initial data.

Theorem 1.2 (Existence of weak geostrophic solutions). Let τ > 0 be an arbitrary final
time, and let α ∈ Pc(Y) be an initial compactly-supported probability measure. Then there
exists a weak solution α ∈ C0,1([0, τ ];Pc(Y)) of the compressible SG equations with initial
measure α (in the sense of Definition 2.6). Moreover, there exist discrete weak solutions
αN ∈ C0,1([0, τ ];PN (Y)) of the compressible SG equations that approximate α uniformly in
the sense that

lim
N→∞

sup
t∈[0,τ ]

W1(α
N
t , αt) = 0.

We stress that while the incompressible SG system considered in [7] involves the standard
quadratic cost and a fixed source measure, the compressible SG system involves a non-standard
cost c and a time-dependent source measure, defined by the minimisation problem (1.3). This
presents new, significant challenges regarding the regularity of the centroid map C.

Our method of proof gives rise naturally to a numerical method. Indeed, to show that the
ODE (1.6) has a unique solution, we first derive a concave dual formulation of the energy
minimisation problem (1.3) in the case where αt is a discrete measure; see Section 3. We
show that this dual problem is solvable and that its solution can be used to define the optimal
source measure σ∗[αt]. While we do not compute numerical solutions here, the dual problem
is an unconstrained, finite-dimensional, concave maximisation problem, which is numerically
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tractable. (The analogous problem with the quadratic cost is solved numerically for example
in [40].) Hence the velocity field in the ODE (1.6) can, in principle, be computed numerically.
Importantly, solutions of the ODE (1.6) give rise to discrete, energy-conserving solutions of
the PDE (1.1). It has been observed in the incompressible setting that numerical solutions
inherit this conservation property [21, 34]. Implementing a numerical scheme based on these
observations would be a natural extension to the compressible setting of Cullen and Purser’s
geometric method [19, 21].

1.2. Background. The Navier-Stokes equations are the fundamental mathematical model used
by meteorologists to simulate the dynamics of the atmosphere and oceans. Since the viscosity
of air is low, the atmosphere is often modelled as inviscid, so that the diffusion coefficient in
the Navier-Stokes equations can be set to zero to obtain the Euler equations. At length scales
on the order of tens of kilometres, such flows develop singularities known as atmospheric fronts.
These can be modelled using the SG approximation, which is a good approximation for shallow,
rotationally-dominated flows (small Rossby numbers). This approximation was first formulated
in 1949 by Eliassen [22] and rediscovered in the 1970s by Hoskins [32]. Since then it has been
studied extensively (see for example the book [13] and the bibliography therein) and the SG
equations have been used as a diagnostic tool at the UK Met Office [12].

The SG approximation is based on two balances that dictate the dynamics of the system. The
first is hydrostatic balance, namely the assumption that the vertical component of the pressure
gradient is balanced by the gravitational force. The second is geostrophic balance, which assumes
that the first two components of the pressure gradient are balanced by the Coriolis force [22].
The corresponding geostrophic wind (in physical variables) is a large-scale, two-dimensional
approximation of the fluid velocity and is directed along isobars.

From a physical point of view, the model described by the SG equations conserves the
geostrophic energy : the sum of kinetic, potential and internal energy. However, mathemati-
cally, the equations do not appear to be in a conservative form, as is the case for the well-known
quasi-geostrophic reduction. This inconsistency was considered by Hoskins [32], who clarified the
mathematical structure of the incompressible SG equations by an ingenious change of variables
to the so-called geostrophic coordinates, sometimes called dual coordinates.

1.3. Previous results. The change of coordinates to geostrophic variables was made mathe-
matically rigorous in the groundbreaking work of Benamou and Brenier [5], where the incom-
pressible SG equations are formulated in geostrophic variables as a transport equation coupled
to a Monge-Ampère equation. Brenier’s solution of the optimal transport problem for the
quadratic cost in [9] was used to prove the existence of global-in-time weak solutions of the
incompressible SG equations in geostrophic variables. This seminal work provided the founda-
tion for much of the subsequent analysis of the SG equations. Indeed, similar reformulations
are established in [15] for the SG shallow water equations and in [18] for the compressible SG
equations, which we study in this paper, where the template of the proof given in [5] is used to
prove global existence of weak solutions.

In [18] the existence of global-in-time solutions of the compressible SG equations is established
for compactly-supported initial potential vorticity α ∈ Lr(Y) for r ∈ (1,∞). The case r = 1 was
added by Faria in [24]. We extend this result to α ∈ Pc(Y). However, in [18] the term in the
cost function c representing the gravitational potential energy is taken to be any C2 function
whose derivative with respect to the vertical variable is non-zero, which is more general than the
case we treat. The same result is proved in [17] using the general theory for Hamiltonian ODEs
in Wasserstein space developed by Ambrosio and Gangbo in [4]. Additionally, [17] presents a
proof of the existence of weak Lagrangian solutions in physical space, analogous to the results
of Cullen, Feldman & Tudorascu for the incompressible SG equations [14, 25, 27, 28].

In [7] a semi-discrete optimal transport approach is used to prove the global existence of weak
solutions for the incompressible SG equations for measure-valued initial data. Exact solutions
of the incompressible SG equations are constructed starting from spatially discrete initial data.
These discrete solutions are then used to approximate solutions for arbitrary initial data. Similar
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existence results were already established in increasing levels of generality in [5, 29, 37, 26]. The
approach of [7] is distinct from those of earlier papers in its use of a spatial discretisation based
on semi-discrete optimal transport, rather than a combination of time discretisation and spatial
mollification as used in [5]. It is also distinct from the fully discrete approach used to study a
variant of the incompressible SG equations in [16], where both physical and geostrophic variables
are spatially discretised. While we cannot give here an exhaustive reference list to what is now a
very substantial body of work, other important contributions to the analysis of the SG equations
include the works of Ambrosio et al. [1, 2] and recent work on the incompressible SG equations
with non-constant Coriolis term [41]. In this paper we assume that the Coriolis term is constant.

Numerical methods for the SG equations date back to the development of the geometric
method of Cullen & Purser [19]. More recently, major developments in the field of numerical
optimal transport have given rise to efficient numerical methods for solving the SG equations.
Semi-discrete optimal transport has been used to obtain solutions of the 2-dimensional SG Eady
slice equations [21] and the 3D incompressible SG equations [34], while entropy-regularised
discrete optimal transport [6, 11] has been used to solve the Eady slice equations. Other
applications of semi-discrete optimal transport in fluid dynamics are studied for example in [30,
31]. The finite element method has recently been used to solve a 2D version of the compressible
SG equations [44].

1.4. Outline of the paper. Section 2 includes notation, background material, and the def-
inition of a weak solution of (1.1). In Section 3 we derive a dual formulation of the energy
minimisation problem (1.3) and in Section 4 we prove Theorem 1.1. Our main theorem, Theo-
rem 1.2, is proved in Section 5. In Section 6 we give two explicit solutions of the compressible
SG equations, namely an absolutely continuous steady state solution and a discrete solution
with a single particle. In Appendix A we discuss a technical assumption on the fluid domain.
In Appendix B we prove a technical lemma, Lemma 3.6, which is important for establishing the
regularity of the centroid map C.

2. Preliminaries

2.1. Notation and assumptions. Throughout this paper we make the following assumptions:

• g > 0 is the acceleration due to gravity and fcor > 0 is the Coriolis parameter, which
we assume to be constant.

• X ⊂ R3 denotes the fluid domain. We assume that X is nonempty, connected, compact,
and that it coincides with the closure of its interior. Moreover, we assume that the set
Φ−1(X ) is convex, where Φ : R3 → R3 is defined by

Φ(x) =
(
f−2
cor x1, f

−2
cor x2, g

−1
(
x3 − 1

2f
−2
cor

(
x21 + x22

)))
. (2.1)

In Appendix A we give examples of domains satisfying this assumption and show that it
is equivalent to assuming that X is c-convex [33, Definition 1.2], which is an important
notion in regularity theory for semi-discrete optimal transport. We require this technical
assumption to prove Lemma 3.6.

• Y = R2 × (δ, 1δ ) denotes the geostrophic domain, where δ ∈ (0, 1). This is equivalent to
assuming that the initial potential temperature of the fluid is bounded away from zero
and infinity.

We also use the following standard notation:

• D(Y × R) denotes the space of real-valued infinitely-differentiable and compactly sup-
ported test functions on Y × R.

• Hd denotes the d-dimensional Hausdorff measure.
• For a Borel set A ⊂ X , 1A : X → {0, 1} denotes the characteristic function of the set
A. That is

1A(x) =

{
1 if x ∈ A,

0 otherwise.
5



• P(A) denotes the set of Borel probability measures on A ⊆ Rd.
• Pac(A) denotes the set of Borel probability measures on A ⊆ Rd that are absolutely
continuous with respect to the Lebesgue measure.

• Given a Borel map S : A→ B and a measure µ ∈ P(A), the pushforward of µ by S is
the measure S#µ ∈ P(B) defined by S#µ(U) = µ(S−1(U)) for all Borel sets U ⊆ B.

• Pc(Y) denotes the set of Borel probability measures on Y with compact support. In
this paper we always equip Pc(Y) with the W1 Wasserstein metric, which is defined by
W1 : Pc(Y)× Pc(Y) → [0,∞),

W1(α, β) = inf

{∫
Y×Y

∥y − ỹ∥ dγ(y, ỹ) : γ ∈ P(Y × Y), π1#γ = α, π2#γ = β

}
,

where π1 : Y × Y → Y is defined by π1(y, ỹ) = y and π2 : Y × Y → Y is defined by
π1(y, ỹ) = ỹ.

2.2. The compressible SG equations. In this section we define weak solutions of (1.1).

Definition 2.1 (The cost function). The cost function c : X × Y → R associated with the
compressible SG equations is given by

c(x,y) =
1

y3

(
f2cor
2

(x1 − y1)
2 +

f2cor
2

(x2 − y2)
2 + gx3

)
. (2.2)

It is easy to check that c is twisted, namely that c is differentiable in x and that the map
y 7→ ∇xc(x,y) is injective for all x ∈ X [39, Definition 1.16].

Note that, while the term gx3 in (2.2) is physically motivated, it could be replaced by ϕ(x)
for any function ϕ ∈ C2(X ) such that ∂x3ϕ ̸= 0 (so that c is twisted). In [18] the existence of
weak solutions of the compressible SG equations is proved in this more general setting, while
the assumptions on the initial data in [18], as well as the subsequent [17] and [24], are more
restrictive than ours.

Definition 2.2 (Optimal transport cost). The optimal transport cost from σ ∈ P(X ) to
α ∈ P(Y) for the cost function c is defined by

Tc(σ, α) := inf
T :X→Y
T#σ=α

∫
X
c(x, T (x)) dσ(x). (2.3)

If σ ∈ Pac(X ) and α ∈ Pc(Y), then there exists a unique map T : X → Y achieving the
minimum in (2.3); see, for example, [39]. We call T the optimal transport map from σ to α for
the cost c.

Definition 2.3 (Geostrophic energy). We define the compressible geostrophic energy functional
E : P(X )× Pc(Y) → R ∪ {+∞} by

E(σ, α) = Tc(σ, α) + F (σ), (2.4)

where F : P(X ) → R ∪ {+∞} is defined by

F (σ) =

κ
∫
X
σ(x)γ dx if σ ∈ Pac(X ),

+∞ otherwise,

where γ ∈ (1, 2) and κ > 0 are constants.

Lemma 2.4 (Existence and uniqueness of minimisers of E). Given α ∈ Pc(Y), the functional
on P(X ) defined by σ 7→ E(σ, α) is strictly convex and has a unique minimiser σ∗ ∈ Pac(X ).

Proof. This is proved in [18, Theorem 4.1] for the special case α ∈ Pac(X ). The functional
P(X ) ∋ σ 7→ Tc(σ, α) is continuous and convex [39, Propositions 7.4 & 7.17], and F is lower
semi-continuous and strictly convex [39, Proposition 7.7 & Section 7.2]. Therefore E is lower
semi-continuous and strictly convex. Since X is compact, P(X ) is compact with respect to
weak convergence of measures. Therefore E(·, α) has a minimiser σ∗, which belongs to Pac(X )
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because E(·, α) takes the value +∞ on P(X )\Pac(X ). Since E is strictly convex, its minimiser
is unique. □

Definition 2.5 (Optimal source measure and transport map). Given α ∈ Pc(Y), we define
the map σ∗ : Pc(Y) → Pac(X ) by

σ∗[α] = argmin
σ∈Pac(X )

E(σ, α). (2.5)

We denote by Tα : X → Y the optimal transport map from σ∗[α] to α for the cost c.

The formulation of the compressible SG equations given in (1.1) and (1.4) is formal because
the inverse of Tαt may not be well defined. For example, if αt is discrete, then Tαt sends a set of
positive Lebesgue measure to each point in the support of αt, violating injectivity. We therefore
introduce a suitable weak formulation of (1.1).

To derive the weak formulation, we assume provisionally that T−1
αt

exists and that all functions
appearing in (1.1) are sufficiently regular. Multiplying (1.1) by φ ∈ D(Y × R) and integrating
by parts over the domain Y × [0, τ ] yields∫ τ

0

∫
Y

(
∂tφt(y) + J

(
y − T−1

αt
(y)
)
· ∇φt(y)

)
dαt(y)dt =

∫
Y
φτ (y) dατ (y)−

∫
Y
φ0(y) dα0(y),

where we have used the notation φt(y) := φ(y, t). By using the push-forward constraint
(Tαt)#σ∗[αt] = αt to rewrite the term involving T−1

αt
, we arrive at the following weak for-

mulation of the compressible SG equations.

Definition 2.6 (Weak solution). We say that α ∈ C([0, τ ];Pc(Y)) is a weak solution of the
compressible SG equation (1.1) with initial condition α0 = α ∈ Pc(Y) if for all φ ∈ D(Y ×R),∫ τ

0

∫
Y
[∂tφt(y) + (Jy) · ∇φt(y)] dαt(y) dt−

∫ τ

0

∫
X
(Jx) · ∇φt(Tαt(x)) dσ∗[αt](x) dt

=

∫
Y
φτ (y) dατ (y)−

∫
Y
φ0(y) dα(y). (2.6)

Remark 2.7 (Equivalent weak formulation). Following [6, 11], the nonlinear term in (2.6) can
be rewritten as a term that is linear in the optimal transport plan:∫ τ

0

∫
X
(Jx) · ∇φt(Tαt(x)) dσ∗[αt](x) dt =

∫ τ

0

∫
X×Y

(Jx) · ∇φt(y) dγ[αt](x,y) dt, (2.7)

where γ[αt] = (idX × Tαt)#σ∗[αt] is the optimal plan for transporting σ∗[αt] to αt.

2.3. Semi-discrete optimal transport. In this section we summarise the definitions and
results from semi-discrete optimal transport theory used throughout this paper. Here N ∈ N is
any natural number.

• The set DN of seed vectors z is given by

DN :=
{
z =

(
z1, . . . , zN

)
∈ YN : zi ̸= zj whenever i ̸= j

}
.

• We define

∆N :=

{
m = (m1, . . . ,mN ) ∈ (0, 1)N :

N∑
i=1

mi = 1

}
.

• The class of discrete probability measures with N masses is

PN (Y) :=

{
N∑
i=1

miδzi : z ∈ DN , m ∈ ∆N

}
.
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• We say that a discrete probability measure

N∑
i=1

miδzi ∈ PN (Y) is well-prepared if

z ∈ DN
0 where DN

0 :=
{
z ∈ DN : zi3 ̸= zj3 ∀ i, j ∈ {1, . . . , N}, i ̸= j

}
. (2.8)

In other words, a discrete measure is well-prepared if the seeds zi lie in distinct horizontal
planes.

Definition 2.8 (c-Laguerre tessellation). Given (w, z) ∈ RN ×DN , the c-Laguerre tessellation
of X generated by (w, z) is the collection of Laguerre cells {Li

c(w, z)}Ni=1 defined by

Li
c(w, z) :=

{
x ∈ X : c(x, zi)− wi ≤ c(x, zj)− wj ∀ j ∈ {1, . . . , N}

}
, i ∈ {1, . . . , N}.

The c-Laguerre cells form a tessellation of X in the sense that
⋃N

i=1 L
i
c(w, z) = X and

L3
(
Li
c(w, z) ∩ L

j
c(w, z)

)
= 0 if i ̸= j (by [38, Proposition 37]). Intuitively, changing the weight

vector w = (w1, . . . , wN ) shifts the boundaries of the Laguerre cells, thus controlling their
volumes. It is easy to check that if z ∈ DN

0 , then each Laguerre cell Li
c(w, z) is the intersection

of X with N − 1 paraboloids of the form{
x ∈ R3 : x3 ≤ −f

2
cor

2g

(
(x1 − a1)

2 + (x2 − a2)
2
)
+ b

}
,

where a1, a2 ∈ R depend on z and b ∈ R depends on (w, z). In Figure 2 we plot c-Laguerre
tessellations in two dimensions for the following 2D version of the cost (2.2):

c2d((x1, x3), (y1, y3)) =
1

y3

(
f2cor
2

(x1 − y1)
2 + gx3

)
. (2.9)

Characterisation of the optimal transport map. It is well known (e.g., [38, Section 4])
that the optimal transport map T : X → Y from an absolutely continuous source measure
σ ∈ Pac(X ) to a discrete measure αN ∈ PN (Y) for the cost c is given by

T =

N∑
i=1

zi1Li
c(w,z), (2.10)

where w ∈ RN satisfies

σ(Li
c(w, z)) = mi ∀ i ∈ {1, . . . , N}. (2.11)

In other words, T is the piecewise constant function given by T (x) = zi if x ∈ Li
c(w, z). As a

consequence of the fact that c is twisted and of [38, Proposition 37], the intersection of any two
c-Laguerre cells has zero Lebesgue measure, and hence T is well-defined L3-almost everywhere.
In addition, by [38, Theorem 40], w satisfies (2.11) if and only if it maximises the dual transport
functional, namely, if and only if it satisfies

N∑
i=1

(
miwi +

∫
Li
c(w,z)

(
c(x, zi)− wi

)
dσ(x)

)

= max
w̃∈RN

N∑
i=1

(
miw̃i +

∫
Li
c(w̃,z)

(
c(x, zi)− w̃i

)
dσ(x)

)
= Tc(σ, αN ), (2.12)

where the second equality follows from the well-known Kantorovich Duality Theorem.
8



(a) 5 Laguerre cells (b) 10 Laguerre cells

(c) 25 Laguerre cells (d) 50 Laguerre cells

Figure 2. c-Laguerre tessellations (see Definition 2.8) in the (x1, x3)-plane for
the cost function c = c2d (see (2.9)). The colours distinguish the cells. For each
plot, X = [0, 1]2, fcor = 1, g = 1, the seeds zi were sampled uniformly from X ,
and the weights wi were chosen so that the cells have equal area (by maximising
the dual function as in (2.12)).

3. The dual problem

In this section we derive a dual formulation of the minimisation problem (2.5) for the case
where α is a discrete measure. Additionally, we prove necessary and sufficient optimality con-
ditions that characterise the optimal source measure σ∗[α] in terms of the solution of the dual
problem. The main results are contained in Theorem 3.4.

Given (w, z) ∈ RN ×DN , recall that the c-transform of w is the function wc( · ; z) : X → R
defined by

wc(x; z) = min
i∈{1,...,N}

{
c(x, zi)− wi

}
.

In particular, wc(x; z) = c(x, zi)− wi if and only if x ∈ Li
c(w, z).

9



Definition 3.1 (Dual functional). Given m ∈ ∆N , define the dual functional G : RN×DN → R
by

G(w, z) =
N∑
i=1

miwi −
∫
X
f∗(−wc(x; z)) dx =

N∑
i=1

(
miwi −

∫
Li
c(w,z)

f∗(wi − c(x, zi)) dx

)
,

where f∗ : R → R is the Legendre-Fenchel transform of the function f : R → R given by

f(s) =

{
κsγ if s ≥ 0,

+∞ if s < 0,

where γ ∈ (1, 2) and κ > 0.

Remark 3.2 (Properties of f). The function f is strictly convex on [0,∞), lower semi-
continuous, and its Legendre-Fenchel transform is given by

f∗(t) := sup
s∈R

(st− f(s)) =

{
1
γ′ (κγ)1−γ′

tγ
′

if t > 0,

0 if t ≤ 0,

where γ′ ∈ (2,∞) satisfies 1
γ + 1

γ′ = 1. Note that f∗ ∈ C2(R).

Remark 3.3 (Derivation of the dual functional). We give a short derivation of the dual func-
tional before stating a rigorous duality theorem below (see Theorem 3.4). Here we identify
vectors w ∈ RN with real-valued functions on the discrete set {zi}Ni=1 via w(zi) = wi. Applying
the standard Kantorovich Duality Theorem from optimal transport theory gives

inf
σ∈Pac(X )

E(σ, αN ) = inf
σ∈Pac(X )

(
Tc(σ, αN ) + F (σ)

)
= inf

σ∈Pac(X )

(
sup
w∈RN

(∫
X
wc dσ +

∫
Y
w dαN

)
+ F (σ)

)

≥ sup
w∈RN

inf
σ∈Pac(X )

(∫
X
wc dσ +

∫
Y
w dαN + F (σ)

)
= sup
w∈RN

(∫
Y
w dαN − sup

σ∈Pac(X )

(∫
X
(−wc) dσ − F (σ)

)
︸ ︷︷ ︸

=F ∗(−wc)

)

= sup
w∈RN

( N∑
i=1

miwi −
∫
X
f∗(−wc) dx

)
= sup
w∈RN

G(w, z).

In Theorem 3.4 we prove that the inf on the left-hand side is in fact a min, the sup on the
right-hand side is in fact a max, and the inequality is an equality.

Theorem 3.4 (Duality Theorem). Let z ∈ DN , m ∈ ∆N and define

αN :=
N∑
i=1

miδzi .

Assume that zi3 ̸= zj3 for all i, j ∈ {1, . . . , N} with i ̸= j. Then the map σ 7→ E(σ, αN ) is strictly
convex and has a unique minimiser, and the map w 7→ G(w, z) is concave and has a unique
maximiser. Moreover,

min
σ∈Pac(X )

E(σ, αN ) = max
w∈RN

G(w, z). (3.1)

Furthermore, σ ∈ Pac(X ) minimises E(·, αN ) and w ∈ RN maximises G(·, z) if and only if

mi =

∫
Li
c(w,z)

(f∗)′(wi − c(x, zi)) dx ∀ i ∈ {1, . . . , N}, (3.2)

10



σ(x) = (f∗)′(−wc(x; z)) for L3-almost every x ∈ X . (3.3)

Theorem 3.4 is analogous to the duality result given in [40, Proposition 12] but with the cost
c rather than the quadratic cost. Other closely related results include [36, Proposition 5.3] and
[8, Theorems 3.1 and 3.2]. In addition, the Euler-Lagrange equation (3.3) can be derived from
[39, Proposition 7.20].

Remark 3.5 (Optimal transport map). If σ ∈ Pac(X ) minimises E(·, αN ) and w ∈ RN

maximises G(·, z), then the optimality conditions (3.2) and (3.3) imply that the mass constraint
(2.11) holds. In particular, this means that the map T given by (2.10) is the optimal transport
map from σ to αN for the cost c.

We begin by establishing the regularity of G; see Proposition 3.8. To do this we use the
following two lemmas, which will also be used in Section 4 to prove that the centroid map is
continuously differentiable.

Lemma 3.6 (Regularity of integrals over Laguerre cells). Let U ⊂ RN ×DN
0 be the open set

U =

{
(w, z) ∈ RN ×DN

0 : L3(Li
c(w, z)) > 0 ∀ i ∈ {1, . . . , N}

}
.

Define Ψ = (Ψ1, . . . ,ΨN ) : U → RN by

Ψi(w, z) :=

∫
Li
c(w,z)

ζ(x,w, z) dx,

where ζ : X × RN ×DN → R satisfies the following:

• ζ(·,w, z) ∈ C(X ) for all (w, z) ∈ RN ×DN ;
• for each compact set K ⊂ RN ×DN , ζ(x, ·, ·) ∈ C0,1(K) for all x ∈ X and there exists
a constant L(K) > 0 such that supx∈X Lip(ζ(x, ·, ·)|K) ≤ L(K);

• for each (w0, z0) ∈ RN × DN , there exists an open set S(w0, z0) ⊆ X with L3(X \
S(w0, z0)) = 0 such that the partial derivatives ∂ζ/∂w(x, ·, ·), ∂ζ/∂z(x, ·, ·) exist and
are continuous at (w0, z0) for all x ∈ S(w0, z0).

Then Ψ is continuously differentiable. Moreover, for all i, j ∈ {1, . . . , N}, i ̸= j,

∂Ψi

∂wj
(w, z) =

∫
Li
c(w,z)

∂ζ

∂wj
(x,w, z) dx−

∫
Li
c(w,z)∩Lj

c(w,z)

ζ(x,w, z)

∥∇xc(x, zi)−∇xc(x, zj)∥
dH2(x),

∂Ψi

∂zj
(w, z) =

∫
Li
c(w,z)

∂ζ

∂zj
(x,w, z) dx+

∫
Li
c(w,z)∩Lj

c(w,z)

∇yc(x, z
j) ζ(x,w, z)

∥∇xc(x, zi)−∇xc(x, zj)∥
dH2(x),

and

∂Ψi

∂wi
(w, z) =

∫
Li
c(w,z)

∂ζ

∂wi
(x,w, z) dx+

∑
j ̸=i

∫
Li
c(w,z)∩Lj

c(w,z)

ζ(x,w, z)

∥∇xc(x, zi)−∇xc(x, zj)∥
dH2(x),

∂Ψi

∂zi
(w, z) =

∫
Li
c(w,z)

∂ζ

∂zi
(x,w, z) dx−

∑
j ̸=i

∫
Li
c(w,z)∩Lj

c(w,z)

∇yc(x, z
j) ζ(x,w, z)

∥∇xc(x, zi)−∇xc(x, zj)∥
dH2(x).

Proof. The proof is rather technical and is given in Appendix B. □

Note that the set U in the statement of Lemma 3.6 is open because the map (w, z) 7→
L3(Li

c(w, z)) is continuous; cf. [38, Proposition 38(vii)]. The constraint that the seeds in U

satisfy |zi3−z
j
3| > 0 is not necessary, but it is sufficient for our purposes and it slightly simplifies

the proof.

Lemma 3.7. Define ζ : X × RN ×DN → R by

ζ(x,w, z) := (f∗)′(−wc(x; z)).

Then ζ satisfies the assumptions of Lemma 3.6.
11



Proof. Since (f∗)′ is non-decreasing, we have that

ζ(x,w, z) = (f∗)′
(
− min

i∈{1,...,N}
(c(x, zi)− wi)

)
= max

i∈{1,...,N}
(f∗)′(wi − c(x, zi)).

For each i ∈ {1, . . . , N}, define ζi : X × RN ×DN → R by

ζi(x,w, z) = (f∗)′(wi − c(x, zi)). (3.4)

Then ζi is continuously differentiable because (f∗)′ and c are continuously differentiable.
Fix (w, z) ∈ RN × DN and consider the function ζ(·,w, z) = maxi ζ

i(·,w, z). For each
i ∈ {1, . . . , N} the function ζi(·,w, z) is globally Lipschitz on X because ζi is continuously
differentiable and X is compact. Therefore ζ(·,w, z) is the pointwise maximum of a finite
family of Lipschitz functions, hence Lipschitz. In particular, it is continuous.

Now we consider the functions ζ(x, ·, ·) = maxi ζ
i(x, ·, ·) indexed by x ∈ X . LetK ⊂ RN×DN

be compact. As above, ζ(x, ·, ·)|K is the pointwise maximum of a finite family of of Lipschitz
functions, hence Lipschitz. Moreover, the Lipschitz constant of ζi(x, ·, ·)|K can be bounded from
above by a constant Li(K) independent of x since ∂ζi/∂w, ∂ζi/∂z are continuous, and X and
K are compact. Therefore supx∈X Lip(ζ(x, ·, ·)|K) ≤ maxi L

i(K) =: L(K), as required.

Let (w0, z0) ∈ RN × DN and define S(w0, z0) =
⋃N

j=1 int(L
j
c(w0, z0)). Since the cost c is

twisted, L3(X \ S(w0, z0)) = 0 by [38, Proposition 37]. For all x ∈ S(w0, z0), we have

∂ζ

∂wi
(x,w0, z0) =

{
(f∗)′′(wi

0 − c(x, zi0)) if x ∈ int(Li
c(w0, z0)),

0 if x ∈ int(Lj
c(w0, z0)) for j ̸= i,

∂ζ

∂zi
(x,w0, z0) =

{
−∇yc(x, z

i
0)(f

∗)′′(wi
0 − c(x, zi0)) if x ∈ int(Li

c(w0, z0)),

0 if x ∈ int(Lj
c(w0, z0)) for j ̸= i.

(Note that the partial derivatives do not exist if x ∈ Li
c(w0, z0) ∩ Lj

c(w0, z0) for j ̸= i.) In
particular, for all x ∈ S(w0, z0), the partial derivatives ∂ζ/∂w(x, ·, ·), ∂ζ/∂z(x, ·, ·) exist at
(w0, z0). Now we prove that the partial derivatives are continuous. Let x ∈ S(w0, z0). Then
there exists i ∈ {1, . . . , N} such that x ∈ int(Li

c(w0, z0)), so

c(x, zi0)− wi
0 < c(x, zj0)− wj

0 ∀ j ∈ {1, . . . , N} \ {i}.

Since the inequality is strict and c is continuous, x ∈ int(Li
c(w, z)) for all (w, z) sufficiently

close to (w0, z0), and

∂ζ

∂wi
(x,w, z)− ∂ζ

∂wi
(x,w0, z0) ={

(f∗)′′(wi − c(x, zi))− (f∗)′′(wi
0 − c(x, zi0)) if x ∈ int(Li

c(w0, z0)),

0 if x ∈ int(Lj
c(w0, z0)) for j ̸= i.

Since (f∗)′′ and c are continuous, it follows that ∂ζ/∂w(x, ·, ·) is continuous at (w0, z0). Simi-
larly, it can be shown that ∂ζ/∂z(x, ·, ·) is continuous at (w0, z0). This completes the proof. □

Proposition 3.8 (Regularity of G). Let z ∈ DN and w ∈ RN . Then G(·, z) ∈ C1(RN ),
G(w, ·) ∈ C1(DN ), and

∂G
∂wi

(w, z) = mi −
∫
Li
c(w,z)

(f∗)′(wi − c(x, zi)) dx, (3.5)

∂G
∂zi

(w, z) =

∫
Li
c(w,z)

∇yc(x, z
i) (f∗)′(wi − c(x, zi)) dx, (3.6)

for all i ∈ {1, . . . , N}. Moreover, if z ∈ DN satisfies zi3 ̸= zj3 for all i, j ∈ {1, . . . , N}, i ̸= j,
and w ∈ RN satisfies L3(Li

c(w, z)) > 0 for all i ∈ {1, . . . , N}, then G is twice continuously
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differentiable at (w, z), and the second-order partial derivatives of G with respect to w are
∂2G

∂wi∂wj
(w, z) =

∫
Li
c(w,z)∩Lj

c(w,z)

(f∗)′(wi − c(x, zi))

∥∇xc(x, zi)−∇xc(x, zj)∥
dH2(x) for j ̸= i,

∂2G
∂wi∂wi

(w, z) = −
∫
Li
c(w,z)

(f∗)′′(wi − c(x, zi)) dx−
∑
j ̸=i

∂2G
∂wi∂wj

(w, z).

(3.7)

If in addition ∫
Li
c(w,z)

(f∗)′(wi − c(x, zi)) dx > 0 (3.8)

for all i ∈ {1, . . . , N}, then the Hessian matrix D2
wwG(w, z) is negative definite.

Proof. Fix z0 ∈ DN . We begin by showing that G(·, z0) ∈ C1(RN ). Let w0 ∈ RN and, as in the
proof of Lemma 3.7, define the set

S(w0, z0) :=
N⋃
j=1

int(Lj
c(w0, z0)).

For any x ∈ S(w0, z0) there exists i ∈ {1, . . . , N} and ε > 0 such that, for all w ∈ Bε(w0),

c(x, zi0)− wi < c(x, zj0)− wj ∀ j ∈ {1, . . . , N}.

In particular, x ∈ Li
c(w, z0) for all w ∈ Bε(w0), i.e.,

−wc(x; z) = wi − c(x, zi0) ∀w ∈ Bε(w0).

It follows that

∀ x ∈ int(Li
c(w0, z0)),

∂

∂wj
f∗(−wc(x; z))

∣∣∣
w=w0

=

{
(f∗)′(wi

0 − c(x, zi0)) if j = i,

0 otherwise.
(3.9)

By continuity of (f∗)′,

lim
w→w0

(f∗)′(wj − c(x, zj0))1Lj
c(w,z0)

(x) = (f∗)′(wj
0 − c(x, zj0))1Lj

c(w0,z0)
(x) (3.10)

for all j ∈ {1, . . . , N}.
As in the proof of Lemma 3.7, the map w 7→ f∗(−wc(x; z)) is locally Lipschitz continuous

for all x ∈ X , and its Lipschitz constant can be bounded uniformly, independently of x ∈
X . Moreover, for all x ∈ S(w0, z0) this map is differentiable at w0 with derivative given by
(3.9). Then, since X is compact and X \ S(w0, z0) is Lebesgue negligible, by the Dominated
Convergence Theorem

∂G
∂wj

(w0, z0) =
∂

∂wj

(
N∑
i=1

miwi −
∫
X
f∗(−wc(x; z)) dx

)∣∣∣∣∣
w=w0

= mj −
∫
X

∂

∂wj
f∗(−wc(x; z))

∣∣∣
w=w0

dx

= mj −
∫
Lj
c(w0,z0)

(f∗)′(wj
0 − c(x, zj0)) dx.

This establishes (3.5). Similarly, using (3.10) and applying the Dominated Convergence The-
orem proves continuity of the partial derivatives of G(·, z0) at w0. Since w0 was arbitrary,
it follows that G(·, z0) ∈ C1(RN ). Analogously, it can be proved that (3.6) holds and that
G(w0, ·) ∈ C1(DN ) for all w0 ∈ RN ; we omit the proof for brevity.

Now suppose that z ∈ DN satisfies zi3 ̸= zj3 for all i, j ∈ {1, . . . , N}, i ̸= j, and w ∈ RN

satisfies L3(Li
c(w, z)) > 0 for all i ∈ {1, . . . , N}. By Lemmas 3.6 and 3.7, and equations (3.5)

and (3.6), G is twice continuously differentiable in a neighbourhood of (w, z) and its second-order
partial derivatives with respect to w are given by (3.7).
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In addition, suppose that the positivity constraint (3.8) holds. Then∫
Li
c(w,z)

(f∗)′′(wi − c(x, zi)) dx > 0

for all i ∈ {1, . . . , N}. Using this inequality and the non-negativity of (f∗)′ and (f∗)′′ gives∣∣∣∣ ∂2G
∂wi∂wi

(w, z)

∣∣∣∣−∑
j ̸=i

∣∣∣∣ ∂2G
∂wi∂wj

(w, z)

∣∣∣∣ = ∫
Li
c(w,z)

(f∗)′′(wi − c(x, zi)) dx > 0.

Altogether, the Hessian D2
wwG(w, z) is strictly diagonally dominant, symmetric, and has neg-

ative diagonal entries, which implies that it is negative definite, as claimed. □

Now we prove the duality theorem, Theorem 3.4.

Proof of Theorem 3.4. By Lemma 2.4, E(·, αN ) is strictly convex and has a unique minimiser
over Pac(X ).

Now we show that the maximum of G(·, z) over RN is attained. Since G(·, z) is continuous, it
suffices to show that lim∥w∥→∞ G(w, z) = −∞. Since X is compact and c is continuous, there
exists a constant M(z) > 0 such that

max
j∈{1,...,N}

max
x∈X

|c(x, zj)| ≤M(z).

Since f∗ is non-decreasing,

f∗(−wc(x; z)) = f∗
(

max
j∈{1,...,N}

(
wj − c(x, zj)

))
≥ f∗

(
max

j
w −M(z)

)
.

For each w ∈ RN , write w = w+ −w−, where w+,w− are the positive and negative parts of

w, namely, wi
+ = max{wi, 0}, wi

− = −min{wi, 0} for all i ∈ {1, . . . , N}. Since
∑N

i=1m
i = 1,

G(w) ≤
N∑
i=1

mi(wi
+ − wi

−)− L3(X )f∗
(
max

j
w −M(z)

)
≤ ∥w+∥∞ −min

i
mi ∥w−∥∞ − L3(X )f∗

(
max

j
w −M(z)

)
= −min

i
mi ∥w−∥∞ +

{
0 if w+ = 0,

∥w+∥∞ − L3(X )f∗ (∥w+∥∞ −M(z)) if w+ ̸= 0.

The first term tends to −∞ as ∥w−∥∞ → ∞, and the second term tends to −∞ as ∥w+∥∞ → ∞
because f∗ grows superlinearly at +∞. Therefore lim∥w∥→∞ G(w, z) = −∞, as claimed.

Next we show that G(·, z) is concave. Since f∗ is non-decreasing,

G(w, z) =
N∑
i=1

miwi −
∫
X
f∗(−wc(x; z)) dx =

N∑
i=1

miwi −
∫
X

max
j∈{1,...,N}

f∗(wj − c(x, zj)) dx.

Note that the map w 7→ maxj∈{1,...,N} f
∗(wj − c(x, zj)) is convex because f∗ is convex and

the pointwise maximum over a family of convex functions is convex. Therefore it follows by
linearity of integration that G(·, z) is concave.

Now we prove that the maximiser of G(·, z) is unique. Let w be a maximiser of G(·, z). By
Lemma 3.8 the Hessian of G(·, z) at w is negative definite, so w is an isolated maximiser. Since
G(·, z) is concave, its set of maximisers must be convex, hence connected. Therefore, w is the
unique maximiser of G(·, z).

Next we prove weak duality. Recall the Fenchel-Young inequality:

ab ≤ f(a) + f∗(b) ∀ a, b ∈ R, (3.11)

ab = f(a) + f∗(b) ⇐⇒ a ∈ ∂f∗(b) = {(f∗)′(b)} ⇐⇒ b ∈ ∂f(a). (3.12)
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By the Kantorovich Duality Theorem (see (2.12)) and the Fenchel-Young inequality (3.11), for
all σ ∈ Pac(X ), w ∈ RN ,

E(σ, αN ) = Tc(σ, αN ) +

∫
X
f(σ(x)) dx

= max
w̃∈RN

(
N∑
i=1

miw̃i +

∫
X
w̃c(x; z)σ(x) dx

)
+

∫
X
f(σ(x)) dx

≥
N∑
i=1

miwi +

∫
X

(
wc(x; z)σ(x) + f(σ(x))

)
dx

≥
N∑
i=1

miwi −
∫
X
f∗(−wc(x; z)) dx = G(w, z). (3.13)

In particular, we have the weak duality

min
σ∈Pac(X )

E(σ, αN ) ≥ max
w∈RN

G(w, z). (3.14)

It follows that if E(σ, αN ) = G(w, z), then w is a maximiser of G(·, z) and σ is a minimiser of
E(·, αN ).

Now we prove that there exists a pair (σ,w) ∈ Pac(X )× RN satisfying (3.2) and (3.3). Let
w ∈ RN be the unique maximiser of G(·, z). Then ∇wG(w, z) = 0 and hence, by (3.5), w
satisfies (3.2). Define σ : X → R by

σ(x) = (f∗)′(−wc(x; z)).

Since
∑N

i=1m
i = 1 and (3.2) holds, it follows that σ is a probability measure. Therefore the

pair (σ,w) ∈ Pac(X )× RN satisfies (3.2) and (3.3), as claimed.
Finally, we prove strong duality and that (3.2) and (3.3) are necessary and sufficient for

optimality. Let (σ,w) ∈ Pac(X )× RN satisfy (3.2) and (3.3). Then∫
Li
c(w,z)

σ(x) dx = mi ∀ i ∈ {1, . . . , N}.

Therefore w is an optimal Kantorovich potential for transporting σ to αN , and

Tc(σ, αN ) =

∫
X
wc(x; z) dσ(x) +

N∑
i=1

miwi. (3.15)

By (3.3),

σ(x) = (f∗)′(−wc(x; z)) ∈ ∂f∗(−wc(x; z)) ∀ x ∈ X .
Then by the Fenchel-Young inequality (3.12),

−wc(x; z)σ(x) = f(σ(x)) + f∗(−wc(x; z)) ∀ x ∈ X . (3.16)

Combining (3.15) and (3.16) gives

E(σ, αN ) =
N∑
i=1

miwi −
∫
X
f∗(−wc(x; z)) dx = G(w, z).

Therefore, by (3.14), w is a maximiser of G(·, z), σ is a minimiser of E(·, αN ), and strong duality
holds, (3.1).

Conversely, let σ ∈ Pac(X ) minimise E(·, αN ) and w ∈ RN maximise G(·, z). We will show
that (3.2) and (3.3) hold. Since G(·, z) is continuously differentiable and w is its maximiser,
∇w G(w, z) = 0. Therefore w satisfies (3.2) by (3.5). By strong duality, (3.1), the inequality
in (3.13) is in fact an equality with this choice of σ and w. In particular,

wc(x; z)σ(x) + f(σ(x)) = −f∗(−wc(x; z)) for L3-almost every x ∈ X .
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Hence, by the Fenchel-Young inequality (3.12), for all L3-almost every x ∈ X ,

σ(x) ∈ ∂f∗(−wc(x; z)) = { (f∗)′(−wc(x; z)) }.

This proves (3.3) and completes the proof. □

An immediate consequence of Theorem 3.4 and Lemma 3.7 is the following.

Corollary 3.9 (Regularity of the optimal source measure for discrete target measures). Let
αN ∈ PN (Y) be a discrete measure and σ∗[α

N ] ∈ Pac(X ) be the optimal source measure given
in Definition 2.5. Then σ∗[α

N ] is Lipschitz continuous.

4. Discrete solutions of the compressible SG equations

The goal of this section is to prove Theorem 1.1, namely, that for well-prepared initial data,
discrete solutions of the compressible semi-geostrophic equations exist, are unique, and are
energy conserving.

We first define the centroid map C that appears in the ODE (1.6) and show that it is
continuously differentiable.

Definition 4.1 (Optimal weight map). Given m ∈ ∆N , define the map w∗ : D
N
0 → RN by

w∗(z) := argmax
w∈RN

G(w, z). (4.1)

Note that w∗ is well defined by Theorem 3.4.

Definition 4.2 (Centroid map). Given m ∈ ∆N , define the centroid map C : DN
0 → (R3)N by

C(z) := (C1(z), . . . ,CN (z)), where

Ci(z) :=
1

mi

∫
Li
c(w∗(z),z)

xdσ∗[α
N ](x), (4.2)

where

αN =
N∑
i=1

miδzi .

That is, Ci(z) is the centroid (or barycentre) of the set of points T−1
αN ({zi}) transported to zi

in the optimal transport from σ∗[α
N ] to αN for the cost c.

To prove the existence of solutions of the ODE (1.6), we show that the transport velocity
W : DN

0 → R3N is continuously differentiable, where W is defined by

W (z) = JN (z−C(z)),

where JN is the block diagonal matrix JN := diag(J, . . . , J) ∈ R3N×3N .

Lemma 4.3 (Regularity of w∗). The optimal weight map w∗ is continuously differentiable.

Proof. By definition of w∗, ∇wG(w∗(z), z) = 0 for all z ∈ DN . In order to show that w∗
is continuously differentiable, we will apply the Implicit Function Theorem to the function
∇wG. Fix any point z0 ∈ DN

0 and define w0 = w∗(z0). By Proposition 3.8 and equation
(3.2), G is twice continuously differentiable in a neighbourhood of (w0, z0) and D

2
wwG(w0, z0)

is negative definite, hence invertible. By the Implicit Function Theorem, there exists an open
set U ⊂ DN

0 containing z0 and a unique, continuously differentiable function w̃ : U → RN such
that w̃(z0) = w0 and ∇wG(w̃(z), z) = 0 for all z ∈ U . By uniqueness, w̃ coincides with w∗ on
U . Therefore w∗ is continuously differentiable in a neighbourhood of z0, as required. □

Lemma 4.4 (Regularity of C). The centroid map C is continuously differentiable.
16



Proof. Recalling the expression for σ∗[α
N ] derived in Theorem 3.4, we have

Ci(z) =
1

mi

∫
Li
c(w∗(z),z)

x (f∗)′(−(w∗(z))
c(x; z)) dx.

Define Ψ = (Ψ1, . . . ,ΨN ) : RN ×DN
0 → (R3)N by

Ψi(w, z) =
1

mi

∫
Li
c(w,z)

x (f∗)′(−wc(x; z)) dx.

Then C = Ψ ◦ (w∗, id). For j ∈ {1, 2, 3}, define the functions ζj : X × RN × DN → R by
ζj(x,w, z) = xj (f

∗)′(−wc(x; z)). It follows from Lemma 3.7 that ζj satisfy the assumptions
of Lemma 3.6, so Ψ is continuously differentiable by Lemma 3.6. Therefore C is continuously
differentiable by Lemma 4.3 and the Chain Rule. □

We now show that solutions of the ODE (1.6) correspond to weak solutions of the PDE (1.1)
with discrete initial data.

Proposition 4.5 (cf. [7, Lemma 4.2]). Let z ∈ DN and let αN ∈ PN (Y) be the corresponding
discrete initial measure given by

αN =
N∑
i=1

miδzi . (4.3)

Fix a final time τ > 0 and let z ∈ C1([0, τ ];YN ). Define αN : [0, τ ] → PN (Y) by

αN
t =

N∑
i=1

miδzi(t) ∀ t ∈ [0, τ ]. (4.4)

Then αN is a weak solution of the compressible semi-geostrophic equations (in the sense of
Definition 2.6) with initial data αN

0 = αN if and only if z is a solution of the ODE (1.6) with
initial data z(0) = z.

Proof. Suppose that z ∈ C1([0, τ ];YN ) is a solution of the ODE (1.6) and let αN be given by
(4.4). We show that αN satisfies (2.6). For all φ ∈ D(Y × R),∫ τ

0

∫
Y
[∂tφt(y) + (Jy) · ∇φt(y)] dα

N
t (y) dt−

∫ τ

0

∫
X
(Jx) · ∇φt(TαN

t
(x)) dσ∗[α

N
t ](x) dt

=
N∑
i=1

mi

∫ τ

0

[
∂tφt(z

i(t)) + (Jzi(t)) · ∇φt(z
i(t))

]
dt

−
∫ τ

0

N∑
i=1

∫
Li
c(w∗(z(t)),z(t))

(Jx) · ∇φt(z
i(t)) dσ∗[α

N
t ](x) dt

=

N∑
i=1

mi

∫ τ

0

[
∂tφt(z

i(t)) + J
(
zi(t)−Ci(z(t))

)
· ∇φt(z

i(t))
]
dt

=

N∑
i=1

mi

∫ τ

0

[
∂tφt(z

i(t)) + żi(t) · ∇φt(z
i(t))

]
dt

=
N∑
i=1

mi

∫ τ

0

d

dt
φt(z

i(t)) dt

=

N∑
i=1

mi
(
φτ (z

i(τ))− φ0(z
i(0))

)
=

∫
Y
φτ (y) dα

N
τ (y)−

∫
Y
φ0(y) dα

N (y),

as required. From here, the proof follows exactly the proof of Lemma 4.2 given in [7]. □
17



Next we prove global existence and uniqueness of solutions of the ODE (1.6) using the fol-
lowing a priori estimates.

Lemma 4.6 (A priori estimates). Let z : [0, τ ] → DN be continuously differentiable and satisfy
the ODE (1.6) on the interval [0, τ ]. Let R = R(X ) > 0 satisfy X ⊂ BR(0). Then, for each
i ∈ {1, . . . , N} and t ∈ [0, τ ],

∥zi(t)∥ ≤ ∥zi(0)∥+ fcorRτ, (4.5)

∥żi(t)∥ ≤ fcor
(
∥zi(0)∥+R(fcorτ + 1)

)
. (4.6)

Proof. By (1.6), and since J is skew-symmetric with ∥J∥2 = fcor,

d

dt
∥zi(t)∥ =

zi

∥zi(t)∥
· żi(t) = −zi(t) · J Ci(z(t))

∥zi(t)∥
≤ fcor∥Ci(z(t))∥ ≤ fcorR.

Integrating gives (4.5). By (1.6) and (4.5),

∥żi(t)∥ = ∥J(zi(t)−Ci(z(t)))∥ ≤ fcor
(
∥zi(t)∥+ ∥Ci(z(t))∥

)
≤ fcor

(
∥zi(0)∥+ fcorRτ +R

)
,

as required. □

Proposition 4.7 (Existence and uniqueness of solutions of the ODE (1.6)). Let the final time
τ ∈ (0,∞) be arbitrary and let the initial data z ∈ DN

0 . Then there exists a unique function
z ∈ C2([0, τ ];DN

0 ) such that z satisfies the ODE (1.6) on the interval [0, τ ] and z(0) = z.

Proof. The proof of Proposition 4.7 follows exactly the proof of Proposition 4.4 of [7]. Indeed,
local existence and uniqueness follows from the Picard–Lindelöf Theorem, Lemma 4.4, and the
assumption on the initial data z. Global existence then follows from the a priori estimates
(Lemma 4.6) and the fact that the third row of the matrix J is zero, which implies that any
solution z of the ODE satisfies zi3(t) = zi3(0) for all t and i. In particular, for all t, z(t) belongs
to the subset DN

0 of DN where the centroid map C is continuously differentiable. □

Furthermore, we prove that the discrete solutions conserve energy.

Proposition 4.8 (Solutions are energy-conserving). Any solution z ∈ C1([0, τ ];DN
0 ) of the

ODE (1.6) is energy-conserving in the sense that

d

dt
E(σ∗[α

N
t ], αN

t ) = 0 ∀ t ∈ [0, τ ],

where

αN
t =

N∑
i=1

miδzi(t).

Proof. By the duality theorem (Theorem 3.4),

d

dt
E(σ∗[α

N
t ], αN

t ) =
d

dt
G(w∗(z(t)), z(t))

=
N∑
i=1

(
∂G
∂wi

(w∗(z(t)), z(t))
d

dt
wi
∗(z(t)) +

∂G
∂zi

(w∗(z(t)), z(t)) · żi(t)
)

=

N∑
i=1

∂G
∂zi

(w∗(z(t)), z(t)) · żi(t) (4.7)

because w∗(z(t)) is the maximiser (and hence a critical point) of G(·, z(t)). For brevity, define
Li
c(t) := Li

c(w∗(z(t)), z(t)),

and let Ci(t) = Ci(z(t)). By (3.3) and (3.6),

∂G
∂zi

(w∗(z(t)), z(t)) · żi(t) =

(∫
Li
c(t)

∇yc(x, z
i(t))σ∗[α

N
t ](x) dx

)
· żi(t)
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=
1

zi3(t)

∫
Li
c(t)

f2cor(zi1(t)− x1)
f2cor(z

i
2(t)− x2)

−c(x, zi(t))

σ∗[α
N
t ](x) dx

 · żi(t)

=
mif2cor
zi3(t)

(zi −Ci(t)) · J(zi −Ci(t))

= 0 (4.8)

where the final two equalities hold by (1.6), skew-symmetry of J , and the fact that the third
row of J is zero. Combining (4.7) and (4.8) completes the proof. □

Finally, we prove Theorem 1.1.

Proof of Theorem 1.1. Let αN =
∑N

i=1m
iδzi ∈ PN (Y) be well-prepared in the sense of (2.8).

By Proposition 4.7 the ODE (1.6) has a unique solution z ∈ C2([0, τ ];DN
0 ) satisfying z(0) = z.

Define αN : [0, τ ] → PN (Y) by αN
t =

∑N
i=1m

iδzi(t). By Proposition 4.5 αN is weak solution

of the compressible SG equations (in the sense of Definition 2.6) with αN
0 = αN . Furthermore,

αN is energy-conserving by Proposition 4.8. □

5. Existence of weak solutions

In this section we prove Theorem 1.2. The strategy is to approximate the initial measure
α ∈ Pc(Y) by a sequence of discrete measures αN ∈ PN (Y), apply Theorem 1.1 to obtain
a weak solution of (1.1) for each initial data αN , and then pass to the limit N → ∞ to
obtain a weak solution of (1.1) with initial data α. This is the same proof strategy as for the
incompressible system given in [7]. Indeed, some of the preliminary lemmas, namely Lemmas
5.1 and 5.2, are identical and are stated here without proof. The first lemma asserts that any
probability measure µ ∈ Pc(Y) can be approximated in the W1 metric by a discrete measure
µN ∈ PN (Y) with seeds in distinct horizontal planes.

Lemma 5.1 (Quantization, [7, Lemma 5.1]). Let µ ∈ Pc(Y). There exists a compact set
K ⊂ Y and a sequence of well-prepared discrete probability measures µN ∈ PN (Y) (in the
sense of (2.8)) such that

spt(µN ) ⊂ K ∀ N ∈ N, lim
N→∞

W1(µ
N , µ) = 0.

Lemma 5.2 (Compactness, [7, Lemma 5.2]). Let α ∈ Pc(Y) and let αN ∈ PN (Y) given by
Lemma 5.1 be a sequence of well-prepared discrete discrete probability measures converging to α
in W1. Fix τ ∈ (0,∞). Let αN ∈ C0,1([0, τ ];PN (Y)) given by Theorem 1.1 be a discrete weak
solution of (1.1) with initial data αN . Then the sequence (αN )N∈N has a uniformly convergent
subsequence in C([0, τ ];Pc(Y)). To be precise, there exists a subsequence (which we do not
relabel) and a Lipschitz map α ∈ C0,1([0, τ ];Pc(Y)) such that

lim
N→∞

sup
t∈[0,τ ]

W1

(
αN
t , αt

)
= 0. (5.1)

Moreover, there exists a compact set K ⊂ Y such that spt(αN
t ) ⊂ K and spt(αt) ⊂ K for all

t ∈ [0, τ ] and N ∈ N.

The final task is to show that α in Lemma 5.2 satisfies the PDE (1.1). One of the ingredients
of the proof is the following.

Lemma 5.3 (Uniform convergence of source measures). Given a compact set K ⊂ Y and a
sequence βN ∈ PN (Y)∩P(K) converging weakly to β ∈ P(K), the sequence of optimal source
measures σ∗[β

N ] converges uniformly to σ∗[β].

Proof. Recall from Corollary 3.9 that σ∗[β
N ] is Lipschitz continuous for all N ∈ N. Moreover,

it follows from the proof of Lemma 3.7 that its W 1,∞-norm can be bounded independently of N
(by noting that maxz∈DN∩KN ∥ζi(·,w∗(z), z)∥C1(X ) is independent of N , where ζi was defined
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in equation (3.4)). Therefore the sequence σ∗[β
N ] is uniformly bounded and equicontinuous.

By the Ascoli-Arzelá Theorem, there exists σ̃ ∈ C(X ) ∩ Pac(X ) such that σ∗[β
N ] converges

uniformly in X to σ̃ (up to a subsequence that we do not relabel).
Next we show that σ̃ = σ∗[β]. The continuity of Tc (see [39, Theorem 1.51]) and the uniform

convergence of σ∗[β
N ] imply that

E
(
σ∗[β

N ], βN
)
→ E(σ̃, β) and E(σ∗[β], β

N ) → E(σ∗[β], β) as N → ∞.

Assume for a contradiction that E(σ̃, β) > E(σ∗[β], β). Then E(σ∗[β
N ], βN ) > E(σ∗[β], β

N ) for
N sufficiently large, which contradicts the fact that σ∗[β

N ] is the global minimiser of E(·, βN ).
Hence E(σ̃, β) = E(σ∗[β], β) and so σ̃ = σ∗[β] by the uniqueness of the minimiser of E(·, β).
Finally, note that all convergent subsequences of σ∗[β

N ] converge to σ∗[β], hence the whole
sequence must converge. □

For the proof of Theorem 1.2, weak convergence of σ∗[α
N
t ] is in fact sufficient. However,

uniform convergence of σ∗[α
N
t ], along with the fact that σ∗[α

N
t ] is Lipschitz continuous uniformly

in αN
t (see Lemma 3.7), implies the following.

Corollary 5.4 (Regularity of the optimal source measure for general target measures). Let β ∈
Pc(Y) and σ∗[β] ∈ Pac(X ) be the optimal source measure. Then σ∗[β] is Lipschitz continuous.

Proof. This is an immediate consequence of Corollary 3.9 and Lemmas 3.7, 5.1 and 5.3. □

Finally we prove our main theorem.

Proof of Theorem 1.2. Let α ∈ C0,1([0, τ ];Pc(Y)) be the limit of the sequence (αN )N∈N ob-
tained in Lemma 5.2, and let K ⊂ Y be a compact set such that spt(αN

t ) ⊂ K and spt(αt) ⊂ K
for all t ∈ [0, τ ] and N ∈ N. By (2.6) and (2.7), for all φ ∈ D(Y × R),∫ τ

0

∫
Y
[∂tφt(y) + (Jy) · ∇φt(y)] dα

N
t (y) dt−

∫ τ

0

∫
X×Y

(Jx) · ∇φt(y) dγ[α
N
t ](x,y) dt

=

∫
Y
φτ (y) dα

N
τ (y)−

∫
Y
φ0(y) dα

N (y). (5.2)

A standard estimate in optimal transport theory (see [39, Exercise 38] or [42, Theorem 1.14])
gives ∣∣∣∣∫ τ

0

∫
Y
[∂tφt(y) + (Jy) · ∇φt(y)] d

(
αN
t − αt

)
(y) dt

∣∣∣∣
≤
∫ τ

0
max
y∈K

{
∥∇y[∂tφt(y) + (Jy) · ∇φt(y)]∥

}
W1(α

N
t , αt) dt

≤ τ max
t∈[0,τ ]
y∈K

{
∥∇y[∂tφt(y) + (Jy) · ∇φt(y)]∥W1(α

N
t , αt)

}
→ 0 as N → ∞ (5.3)

by uniform convergence of αN (seee (5.1)). Pointwise-in-time convergence of αN implies that

lim
N→∞

∫
Y
φτ (y) d

(
αN
τ − ατ

)
(y) = 0 and lim

N→∞

∫
Y
φ0(y) d

(
αN − α

)
(y) = 0.

By Lemma 5.3, for all t ∈ [0, τ ], σ∗[α
N
t ] ⇀ σ∗[αt] in P(X ). Also, αN

t ⇀ αt in P(K).
Therefore γ[αN

t ] ⇀ γ[αt] in P(X × K), where γ[αt] is the unique optimal transport plan for
transporting σ∗[αt] to αt; see [43, Theorem 5.20] . Define F, FN ∈ L1([0, τ ]) by

FN (t) =

∫
X×Y

(Jx) · ∇φt(y) dγ[α
N
t ](x,y), F (t) =

∫
X×Y

(Jx) · ∇φt(y) dγ[αt](x,y).

Then limN→∞ FN (t) = F (t) for all t ∈ [0, τ ] and

∥FN∥L∞([0,τ ]) ≤ fcormax
x∈X

∥x∥ max
t∈[0,τ ]

∥∇φt∥L∞(K).
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By the Lebesgue Dominated Convergence Theorem,

lim
N→∞

∫ τ

0

∫
X×Y

(Jx) · ∇φt(y) dγ[α
N
t ](x,y) dt =

∫ τ

0

∫
X×Y

(Jx) · ∇φt(y) dγ[αt](x,y) dt. (5.4)

Combining equations (5.2)–(5.4) shows that α is a weak solution of (1.1), as required. □

Remark 5.5 (Convergence of the transport maps). It can be shown that TαN
t
→ Tαt as N → ∞

in Lp for p ∈ (1,∞). This can be combined with the uniform convergence of the source measures
to pass to the limit in the nonlinear term∫ τ

0

∫
X
(Jx) · ∇φt(TαN

t
(x)) dσ∗[α

N
t ](x) dt

to give an alternative, though more involved, proof of Theorem 1.2.

6. Explicit examples

In this section we present two explicit solutions of (1.1): a steady state solution and a discrete
solution with a single seed.

6.1. Steady state example. In this section we make the additional assumption that the fluid
domain satisfies X ⊂ Y.

Proposition 6.1 (Time-independent solution). Given ℓ ∈ R, define σℓ : X → R by

σℓ(x) := (f∗)′(ℓ− g lnx3).

Then there exists ℓ∗ ∈ R such that ∫
X
σℓ∗(x) dx = 1.

Define α : [0, τ ] → Pc(Y) by

αt = σℓ∗L3 ¬ X ∀ t ∈ [0, τ ].

Then α is a weak steady state solution of the compressible SG equation (1.1).

Remark 6.2 (Formal derivation). We give a formal derivation of the steady state α before
giving a rigorous proof of Proposition 6.1. By Definition 2.6, α ∈ C([0, τ ];Pc(Y)) is a steady
solution of (1.1) if αt is independent of t, αt = σ∗[αt] (in particular, spt(αt) ⊆ X ), and Tαt = id.
Then

αt = argmin
σ∈Pac(X )

E(σ, αt)

for all t ∈ [0, τ ]. It follows from [39, Proposition 7.20] that αt satisfies the Euler-Lagrange
equations 

δE

δσ
(αt, αt) = ℓ on the support of αt,

δE

δσ
(αt, αt) ≥ ℓ otherwise,

for some ℓ ∈ R, where δE/δσ denotes the first variation of E with respect to σ. Formally we
expect

δE

δσ
(αt, αt) = φ+ f ′(αt),

where φ : X → R is an optimal c-concave Kantorovich potential for transporting αt to itself
with cost c; see [39, Section 7.2]. Then{

φ+ f ′(αt) = ℓ on the support of αt,

φ+ f ′(αt) ≥ ℓ otherwise.
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If Tαt = id is the optimal transport map from αt to itself , then ∇φ(x) = ∇xc(x,x) for almost
all x in the support of αt [39, Proposition 1.15]. Integrating this expression gives φ(x) = g lnx3,
up to a constant. Then solving the Euler-Lagrange equations yields

αt(x) = (f ′)−1(ℓ− φ(x)) = (f∗)′(ℓ− g lnx3)

for all x in the support of αt. This is the steady state given in Proposition 6.1. The constant ℓ
is determined by the constraint that αt is a probability measure.

Proof of Proposition 6.1. First we show that there exists ℓ∗ ∈ R such that
∫
X σℓ∗(x) dx = 1.

Since X ⊂ Y = R2 × (δ, 1/δ) and (f∗)′ is non-decreasing, then for ℓ ∈ R

(f∗)′(ℓ− g lnx3) ≥ (f∗)′(ℓ− g ln(1/δ))

for all x ∈ X . Therefore∫
X
σℓ(x) dx ≥ (f∗)′(ℓ− g ln(1/δ))|X | → ∞ as ℓ→ ∞.

Let ℓδ = g ln δ. Since x3 ≥ δ for all x ∈ X ,∫
X
σℓδ(x) dx =

∫
X
(f∗)′(ℓδ − g lnx3) dx ≤

∫
X
(f∗)′(ℓδ − g ln δ) dx = (f∗)′(0)|X | = 0.

The map ℓ 7→
∫
X σℓ(x) dx is continuous. Therefore, by the Intermediate Value Theorem, there

exists ℓ∗ ∈ R such that ∫
X
σℓ∗(x) dx = 1,

as claimed. For the remainer of this proof, we take ℓ = ℓ∗
Next we show that the identity map is the optimal transport map for transporting any

measure σ ∈ P(X ) to itself, and that an optimal Kantorovich potential pair is (φ,φc), where
φ : X → R is given by φ(x) = g lnx3, and φ

c : Y → R is given by

φc(y) = min
x∈X

(c(x,y)− φ(x)) = min
x∈X

(c(x,y)− g lnx3).

First we compute an explicit expression for φc(y) for the special case y ∈ X ∩ Y = X . Given
y ∈ X , define θy : X → R by θy(x) = c(x,y)− g lnx3. Then

∇θy(x) =


f2
cor
y3

(x1 − y1)

f2
cor
y3

(x2 − y2)

g
y3

− g
x3

 , D2θy(x) =


f2
cor
y3

0 0

0 f2
cor
y3

0

0 0 g
x2
3

 .

Therefore D2θy(x) is positive definite for all x ∈ X . Hence θy is strictly convex, its minimiser
is y, and its minimum value is

φc(y) = min
x∈X

θy(x) = θy(y) = c(y,y)− g ln y3 = g − g ln y3.

Note that φ(x) + φc(x) = g for all x ∈ X and that σ is supported on X ⊂ Y. Then

Tc(σ, σ) ≤
∫
X
c(x,x) dσ(x) = g =

∫
X
φdσ +

∫
Y
φc dσ ≤ Tc(σ, σ),

which proves that the identity map is optimal for transporting σ ∈ P(X ) to itself, and that
(φ,φc) is an optimal Kantorovich potential pair, as claimed.

Lastly, we show that σℓ = argminσ∈Pac(X )E(σ, σℓ). If x ∈ X satisfies σℓ(x) = 0, then

0 ≥ ℓ− g lnx3 = ℓ− φ(x). Therefore

φ(x) + f ′(σℓ(x)) = φ(x) ≥ ℓ.

On the other hand, if x ∈ X satisfies σℓ(x) > 0, then

φ(x) + f ′(σℓ(x)) = g lnx3 + f ′((f∗)′(ℓ− g lnx3)) = g lnx3 + ℓ− g lnx3 = ℓ
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because f ′((f∗)′(t)) = t for all t > 0. In summary,

φ(x) + f ′(σℓ(x)) ≥ ℓ ∀ x ∈ X , (6.1)

and (
φ(x) + f ′(σℓ(x))

)
σℓ(x) = ℓσℓ(x) ∀ x ∈ X . (6.2)

By the Kantorovich Duality Theorem and the convexity of f , for all σ ∈ Pac(X ),

E(σ, σℓ) = Tc(σ, σℓ) +
∫
X
f(σ) dL3

≥
∫
X
φdσ +

∫
Y
φc dσℓ +

∫
X

(
f(σℓ) + f ′(σℓ)(σ − σℓ)

)
dL3

= E(σℓ, σℓ) +

∫
X

(
φ+ f ′(σℓ)

)
(σ − σℓ) dL3 (6.3)

since φ is an optimal Kantorovich potential for the transport from σℓ to itself. Therefore, by
(6.1), (6.2) and (6.3),

E(σ, σℓ) ≥ E(σℓ, σℓ) + ℓ

∫
X
(σ − σℓ) dL3 = E(σℓ, σℓ),

and so σℓ = argminσ∈Pac(X )E(σ, σℓ), as claimed.

In conclusion, we have shown that σ∗[σℓ] = σℓ and Tσℓ
= id. Therefore the time-independent

map [0, τ ] ∋ t 7→ αt = σℓ is a weak solution of (1.1), as required. □

6.2. Single seed example. When there is only one seed, it is possible to construct an explicit
solution for the case γ = 2. This is because the single Laguerre cell is the entire domain. Note
that, to be physically meaningful, γ ∈ (1, 2). However, for these values of γ, we are not able to
derive such an explicit solution.

Proposition 6.3 (Elliptic orbit of a single seed). Fix γ = 2, κ = 1
2 and τ > 0. Let X =

[−a, a]× [−b, b]× [0, h], where a, b, h > 0. Let z ∈ Y be the initial position of the particle. Define
z : (−∞,∞) → Y to be the solution of the linear ODE

ż(t) = fcor

 0 −A 0
B 0 0
0 0 0

 z(t),

z(0) = z,

where

A = 1− |X |f2cor
3z3

b2, B = 1− |X |f2cor
3z3

a2, |X | = 4abh.

Assume that z3 >
|X |f2

cor
3 max{a2, b2} so that A > 0 and B > 0. Define the ellipse E ⊂ Y by

E := {z(t) : t ∈ (−∞,∞)} =

{
(y1, y2, z3) ∈ R2 × {z3} :

y21
A

+
y22
B

=
z21
A

+
z22
B

}
.

Assume additionally that z3 is sufficiently large so that

c(x,y)− 1

|X |

∫
X
c(·,y) dL3 <

1

|X |
∀ (x,y) ∈ X × E . (6.4)

Define α : [0, τ ] → Pc(Y) by αt = δz(t). Then the following hold:

(1) The optimal weight map w∗ : D → R (defined in (4.1)) satisfies the following:

w∗(z(t)) =
1

|X |

(
1 +

∫
X
c(x, z(t)) dx

)
∀ t ∈ (−∞,∞).

(2) The optimal source measure σ∗[αt] ∈ Pac(X ) is given by

σ∗[αt](x) = w∗(z(t))− c(x, z(t)).
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(3) α is a weak solution of the compressible SG equation (1.1). In particular, the trajectory
of the seed is the ellipse E. Moreover, if a = b, then the seed moves on a circle. If
z1 = z2 = 0, then the seed is stationary.

Proof. Since γ = 2 and κ = 1
2 ,

f∗(t) =

{
1
2 t

2 if t > 0,

0 if t ≤ 0.

Define w : (−∞,∞) → R by

w(t) =
1

|X |

(
1 +

∫
X
c(x, z(t)) dx

)
.

Then, for all x ∈ X , t ∈ (−∞,∞),

w(t)− c(x, z(t)) =
1

|X |

(
1 +

∫
X
c(x̃, z(t)) dx̃

)
− c(x, z(t)) > 0

by (6.4). Therefore

∂G
∂w

(w(t), z(t)) = 1−
∫
X
(f∗)′(w(t)− c(x, z(t))) dx = 1−

∫
X
(w(t)− c(x, z(t))) dx = 0,

hence w(t) maximises the concave function G(·, z(t)). Since the maximiser of G(·, z(t)) is unique
by Theorem 3.4, it follows that w∗(z(t)) = w(t), as claimed. The expression for σ∗[αt] then
follows immediately from (3.3).

It remains to prove that α is a weak solution the compressible SG equation (1.1). By Propo-
sition 4.5, it suffices to show that z satisfies the following ODE:

ż1(t) = fcor(−z2(t) + C2(z(t))),

ż2(t) = fcor(z1(t)− C1(z(t))),

ż3(t) = 0.

In other words, we need to show that

C1(z(t)) = (1−B)z1(t), C2(z(t)) = (1−A)z2(t).

We will just verify the expression for C1; the expression for C2 is similar. By Definition 4.2 and
the symmetry of the domain X ,

C1(z(t)) =

∫
X
x1 σ∗[αt](x) dx

=

∫
X
x1 (w∗(z(t))− c(x, z(t))) dx

= − 1

z3

∫ a

−a

∫ b

−b

∫ h

0
x1

(
f2cor
2

(x1 − z1(t))
2 +

f2cor
2

(x2 − z2(t))
2 + gx3

)
dx3 dx2 dx1

=
f2cor
z3

∫ a

−a

∫ b

−b

∫ h

0
x21z1(t) dx3 dx2 dx1

=
4a3bhf2cor

3z3
z1(t)

= (1−B)z1(t),

as required. □
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Appendix A. Assumptions on the fluid domain X

Recall that Φ : R3 → R3 is the diffeomorphism defined by

Φ(x) =
(
f−2
cor x1, f

−2
cor x2, g

−1
(
x3 − 1

2f
−2
cor

(
x21 + x22

)))
.

In this appendix we discuss the assumption that the fluid domain X satisfies

Φ−1(X ) is convex. (A.1)

In particular, we give examples of domains X satisfying (A.1), we prove that (A.1) is equivalent
to X being c-convex [33, Definition 1.2], and we prove that, given any c-Laguerre tessellation
{Li

c(w, z)}Ni=1, then {Φ−1(Li
c(w, z))}Ni=1 is a classical Laguerre tessellation (with respect to the

quadratic cost). In particular, Φ−1(Li
c(w, z)) is a convex polyhedron for all i. Moreover, we

will see that the cost c satisfies Loeper’s condition [33, Definition 1.1].

Remark A.1 (Interpreting Φ in terms of c-exponential maps). Let y0 = (0, 0, 1). It is easy to
check that Φ is the c-exponential map expcy0

[33, Remark 4.4]:

Φ = expcy0
:= (−Dyc(·,y0))

−1.

In other words,
−Dyc(Φ(x),y0) = x.

Note that c-exponential maps play an important role in regularity theory for semi-discrete
optimal transport [33].

Example A.2 (Domains satisfying assumption (A.1)). Let (a1, a2, a3) ∈ R3. It can be shown
that any paraboloid of the form

X1 =

{
x ∈ R3 : x3 ≤ −f

2
cor

2g

(
(x1 − a1)

2 + (x2 − a2)
2
)
+ a3

}
(A.2)

satisfies (A.1). Its inverse image Φ−1(X1) is a half-space of the form

Φ−1(X1) = {p ∈ R3 : p3 ≤ b1p1 + b2p2 + c},
where b1, b2, c ∈ R. In particular, it is convex. Replacing the inequality ≤ in (A.2) by ≥ gives
another example of a set satisfying (A.1). Another example is the half-space

X2 = {x ∈ R3 : x · n ≥ d}
where d ∈ R and n ∈ R3 with n3 ≥ 0. Its inverse image Φ−1(X2) has the following form for
some b ∈ R3, c ∈ R:

Φ−1(X2) =

{
p ∈ R3 :

n3
gf2cor

(p21 + p22) + b · p+ c ≤ 0

}
. (A.3)

This is convex because it has the form {p ∈ R3 : F (p) ≤ 0} with F convex. We can build other
examples by using the fact that any intersection of sets satisfying (A.1) also satisfies (A.1). For
example, “blister pack” sets of the form

X3 =

{
x ∈ R3 : 0 ≤ x3 ≤ −f

2
cor

2g

(
(x1 − a1)

2 + (x2 − a2)
2
)
+ a3

}
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satisfy (A.1) for all a ∈ R3. It can be seen from (A.3) that the half-space {x ∈ R3 : x · n ≥ d}
does not satisfy (A.1) if n3 < 0.

Remark A.3 (Rectangular domains do not satisfy (A.1)). Rectangular domains of the form
X = [a1, b1] × [a2, b2] × [a3, b3] do not satisfy assumption (A.1). These domains are perhaps
the most natural from a physical point of view. However, in this case an alternative, bespoke
argument can be used to prove Corollary B.1, and hence Theorems 1.1, 1.2; see [35].

Recall the following from [33, Definitions 1.1 and 1.2]: The cost c satisfies Loeper’s condition
if, for each y ∈ Y, there exists a diffeomorphism Φy : R3 → R3 such that the map

R3 ∋ x 7→ c(Φy(x),y)− c(Φy(x), z)

is quasi-convex for all z ∈ Y (meaning that its sublevel sets are convex). If in addition the set
Φ−1
y (X ) is convex for each y ∈ Y, then we say that X is c-convex.

Lemma A.4 (Loeper’s condition and c-convexity). Let x ∈ X , y, z ∈ Y. Then

c(Φ(x),y) = − 1

y3

x1x2
x3

 ·

 y1
y2
−1

+
f2cor
2y3

(
y21 + y22

)
. (A.4)

In particular, u : R3 → R defined by

u(x) = c(Φ(x),y)− c(Φ(x), z)

is affine and the cost c satisfies Loeper’s condition. Moreover, X satisfies assumption (A.1) if
and only if X is c-convex.

Proof. Equation (A.4) is a direct computation. Since u is affine, then it is quasi-convex. There-
fore, by definition, c satisfies Loeper’s condition (with Φy = Φ independent of y), and assump-
tion (A.1) is equivalent to c-convexity of X . □

To prove that c satisfies Loeper’s condition, we could have also chosen the c-exponential maps
Φy = expcy := (−Dyc(·,y))−1 depending on y. However, the fact that Φ is independent of y
(and that u is affine) has important consequences, as we will now see. Let

DN
2 :=

{
y =

(
y1, . . . ,yN

)
∈ (R3)N : yi ̸= yj whenever i ̸= j

}
.

Recall the following definition:

Definition A.5 (Classical Laguerre tessellations). Given (ψ,y) ∈ RN × DN
2 , the (classical)

Laguerre tessellation of Φ−1(X ) generated by (ψ,y) is the partition {Li
2(ψ,y)}Ni=1 defined by

Li
2(ψ,y) =

{
x ∈ Φ−1(X ) : ∥x− yi∥2 − ψi ≤ ∥x− yj∥2 − ψj ∀ j ∈ {1, . . . , N}

}
.

The Laguerre cells Li
2(ψ,y) are the intersection of Φ−1(X ) with convex polyhedra. Con-

sequently, unlike c-Laguerre cells, they can be computed very efficiently. Classical Laguerre
tessellations arise in semi-discrete optimal transport problems with quadratic cost. The fol-
lowing lemma asserts that c-Laguerre tessellations are just classical Laguerre tessellations in
disguise. It also gives a practical way of computing them.

Lemma A.6 (Rewriting c-Laguerre tessellations as classical Laguerre tessellations). Define
ŷ : YN → (R3)N by ŷ(z) = (ŷ1(z), . . . , ŷN (z)), where

ŷi(z) =
1

2zi3

 zi1
zi2
−1

 .

Define ψ̂ : RN × YN → RN by

ψ̂i(w, z) = wi +

(
zi1
2zi3

)2

+

(
zi2
2zi3

)2

+

(
1

2zi3

)2

− f2cor
2zi3

((
zi1
)2

+
(
zi2
)2)

.
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Then, for all i ∈ {1, . . . , N} and (w, z) ∈ RN ×DN ,

Φ−1(Li
c(w, z)) = Li

2(ψ̂(w, z), ŷ(z)).

Proof. By (A.4), for all x ∈ R3, z ∈ Y, w ∈ RN ,

c(Φ(x), zi)− wi = − 1

zi3

x1x2
x3

 ·

 zi1
zi2
−1

+
f2cor
2zi3

((
zi1
)2

+
(
zi2
)2)− wi

= ∥x− ŷi(z)∥2 − ψ̂i(w, z)− ∥x∥2. (A.5)

Let x ∈ Φ−1(X ). Then

x ∈ Φ−1(Li
c(w, z)) ⇐⇒ c(Φ(x), zi)− wi ≤ c(Φ(x), zj)− wj ∀ j

⇐⇒ ∥x− ŷi(z)∥2 − ψ̂i(w, z) ≤ ∥x− ŷj(z)∥2 − ψ̂j(w, z) ∀ j

⇐⇒ x ∈ Li
2(ψ̂(w, z), ŷ(z)),

as required. □

Appendix B. Proof of Lemma 3.6

In this section we prove Lemma 3.6. The main ingredient of the proof is the following lemma.

Lemma B.1 (Regularity theory for semi-discrete optimal transport). Let ζ : X → R be con-
tinuous. Let U ⊂ RN ×DN

0 be the open set

U =

{
(w, z) ∈ RN ×DN

0 : L3(Li
c(w, z)) > 0 ∀ i ∈ {1, . . . , N}

}
.

Define Ψ = (Ψ1, . . . ,ΨN ) : U → RN by

Ψi(w, z) :=

∫
Li
c(w,z)

ζ(x) dx.

Then Ψ is continuously differentiable. Moreover, for all j ∈ {1, . . . , N} \ {i},

∂Ψi

∂wj
(w, z) = −

∫
Li
c(w,z)∩Lj

c(w,z)

ζ(x)

∥∇xc(x, zi)−∇xc(x, zj)∥
dH2(x), (B.1)

∂Ψi

∂zj
(w, z) =

∫
Li
c(w,z)∩Lj

c(w,z)

∇yc(x, z
j) ζ(x)

∥∇xc(x, zi)−∇xc(x, zj)∥
dH2(x), (B.2)

and
∂Ψi

∂wi
(w, z) = −

∑
j ̸=i

∂Ψj

∂wi
(w, z),

∂Ψi

∂zi
(w, z) = −

∑
j ̸=i

∂Ψj

∂zi
(w, z). (B.3)

This lemma could be proved using [20, Theorem 1], by proving that our transport cost c
satisfies assumptions (Diff-2) and (Cont-2) of [20]. However, this is very involved. We give a
shorter proof using Lemma A.6 to reduce to the case of the classical quadratic transport cost.

Proof. Note that det(DΦ) = f−4
corg

−1 > 0 is constant. By the change of variables formula and
Lemma A.6,

Ψi(w, z) =

∫
Li
c(w,z)

ζ dL3 =

∫
Φ−1(Li

c(w,z))
ζ ◦Φdet(DΦ) dL3 = det(DΦ)

∫
Li
2(ψ̂(w,z),ŷ(z))

ζ ◦ΦdL3.

Let U2 ⊂ RN ×DN
2 be the open set

U2 =

{
(ψ,y) ∈ RN ×DN

2 : L3(Li
2(ψ,y)) > 0 ∀ i ∈ {1, . . . , N}

}
.
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Define Ψ2 = (Ψ1
2, . . . ,Ψ

N
2 ) : U2 → RN by

Ψi
2(ψ,y) :=

∫
Li
2(ψ,y)

ζ(Φ(x)) dx.

Then

Ψ(w, z) = det(DΦ)Ψ2(ψ̂(w, z), ŷ(z)). (B.4)

By assumption (A.1) and [20, Proposition 2], Ψ2 is continuously differentiable and, for all
j ∈ {1, . . . , N} \ {i},

∂Ψi
2

∂ψj
(ψ,y) = − 1

2∥yi − yj∥

∫
Li
2(ψ,y)∩Lj

2(ψ,y)
ζ(Φ(x)) dH2(x), (B.5)

∂Ψi
2

∂yj
(ψ,y) =

1

∥yi − yj∥

∫
Li
2(ψ,y)∩Lj

2(ψ,y)
(yj − x)ζ(Φ(x)) dH2(x), (B.6)

and
∂Ψi

2

∂ψi
(ψ,y) = −

∑
j ̸=i

∂Ψj
2

∂ψi
(ψ,y),

∂Ψi
2

∂yi
(ψ,y) = −

∑
j ̸=i

∂Ψj
2

∂yi
(ψ,y). (B.7)

Note that (ψ̂(w, z), ŷ(z)) ∈ U2 for all (w, z) ∈ U . Therefore, by the Chain Rule and the

smoothness of ψ̂ and ŷ, it follows that Ψ is also continuously differentiable.
Next we compute ∂Ψi/∂wj for i ̸= j. For brevity let

Lij
2 = Li

2(ψ̂(w, z), ŷ(z)) ∩ L
j
2(ψ̂(w, z), ŷ(z)).

Then

∂Ψi

∂wj
(w, z) = det(DΦ)

N∑
k=1

∂Ψi
2

∂ψk
(ψ̂(w, z), ŷ(z))

∂ψ̂k

∂wj
(w, z)

= det(DΦ)
∂Ψi

2

∂ψj
(ψ̂(w, z), ŷ(z))

= − det(DΦ)

2∥ŷi(z)− ŷj(z)∥

∫
Lij
2

ζ ◦ ΦdH2. (B.8)

By the generalised area formula (see, e.g., [3, Theorem 2.91] or [10, Equation (2.7)]),∫
Lij
2

ζ ◦ ΦdH2 =

∫
Φ(Lij

2 )

ζ

JΦ ◦ Φ−1
dH2 =

∫
Li
c(w,z)∩Lj

c(w,z)

ζ

JΦ ◦ Φ−1
dH2, (B.9)

where JΦ : R3 → R is the Jacobian

JΦ = ∥(DΦ)−Tn∥ det(DΦ), n =
ŷj(z)− ŷi(z)

∥ŷj(z)− ŷi(z)∥
.

Note that n is the outer unit normal to Li
2(ψ̂(w, z), ŷ(z)) on the face Lij

2 . We will prove below
that JΦ ◦ Φ−1 is uniformly bounded from below by a positive constant, hence the integrals in
(B.9) are well defined and the generalised area formula is valid.

By equation (A.5),

c(x, zi)−wi = −2Φ−1(x) · ŷi(z) + ∥ŷi(z)∥2 − ψ̂i(w, z). (B.10)

Differentiating this with respect to x gives

∇xc(x, z
i) = −2(DΦ−1(x))T ŷi(z) = −2(DΦ(Φ−1(x))−T ŷi(z).

Therefore

∥∇xc(x, z
i)−∇xc(x, z

j)∥ =
2JΦ(Φ

−1(x))∥ŷj(z)− ŷi(z)∥
det(DΦ)

. (B.11)

Combining equations (B.8), (B.9) and (B.11) proves (B.1), as required.
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Next we prove a lower bound on JΦ ◦ Φ−1. Let z ∈ DN
0 and η = mini ̸=j |zi3 − zj3| > 0. Then

∥∇xc(x, z
i)−∇xc(x, z

j)∥ ≥ |∂x3c(x, z
i)− ∂x3c(x, z

j)| = g
|zi3 − zj3|
zi3z

j
3

≥ gηδ2 (B.12)

since zi, zj ∈ Y = R2 × (δ, 1/δ). By (B.11), for all x ∈ X ,

JΦ(Φ
−1(x)) =

det(DΦ)∥∇xc(x, z
i)−∇xc(x, z

j)∥
2∥ŷj(z)− ŷi(z)∥

≥ f−4
cor η δ

2

2∥ŷj(z)− ŷi(z)∥
,

which is the required uniform lower bound.
Next we prove (B.2). Differentiating (B.10) with respect to zi gives

∇yc(x, z
i) = 2

(
∂ŷi

∂zi
(z)

)T

(−Φ−1(x) + ŷi(z))− ∂ψ̂i

∂zi
(w, z). (B.13)

By (B.4), for all i ̸= j,

∂Ψi

∂zj
(w, z) =

= det(DΦ)

(
∂Ψi

2

∂ψj
(ψ̂(w, z), ŷ(z))

∂ψ̂j

∂zj
(w, z) +

(
∂ŷj

∂zj
(z)

)T
∂Ψi

2

∂yj
(ψ̂(w, z), ŷ(z))

)

= − det(DΦ)

2∥ŷi(z)− ŷj(z)∥

∫
Lij
2

ζ(Φ(x)) dH2(x)
∂ψ̂j

∂zj
(w, z)

+

(
∂ŷj

∂zj
(z)

)T
det(DΦ)

∥ŷi(z)− ŷj(z)∥

∫
Lij
2

(ŷj(z)− x)ζ(Φ(x)) dH2(x)

= − det(DΦ)

2∥ŷi(z)− ŷj(z)∥

∫
Φ(Lij

2 )

ζ(x)

JΦ(Φ−1(x))
dH2(x)

∂ψ̂j

∂zj
(w, z)

+

(
∂ŷj

∂zj
(z)

)T
det(DΦ)

∥ŷi(z)− ŷj(z)∥

∫
Φ(Lij

2 )

(ŷj(z)− Φ−1(x))ζ(x)

JΦ(Φ−1(x))
dH2(x)

=
det(DΦ)

2∥ŷi(z)− ŷj(z)∥

∫
Φ(Lij

2 )

ζ

JΦ ◦ Φ−1

(
2

(
∂ŷj

∂zj
(z)

)T

(ŷj(z)− Φ−1)− ∂ψ̂j

∂zj
(w, z)

)
dH2.

Combining this with (B.11) and (B.13) proves (B.2), as desired.
Finally, (B.3) follows by differentiating

N∑
j=1

Ψj(w, z) =

∫
X
ζ(x) dx

with respect to wi and zi. □

Finally we are in a position to prove Lemma 3.6.

Proof of Lemma 3.6. For each i ∈ {1, . . . , N}, define the auxiliary function hi : U × U → R by

hi(w1, z1,w2, z2) =

∫
Li
c(w1,z1)

ζ(x,w2, z2) dx.

Then Ψi(w, z) = hi(w, z,w, z). Fix an arbitrary point (w0, z0) ∈ U and let K ⊂ U be a

compact neighbourhood of (w0, z0) such that |zi3 − zj3| ≥ η for all i, j ∈ {1, . . . , N}, i ̸= j, for
some η > 0. We will prove that hi is continuously differentiable at (w0, z0,w0, z0), and hence
Ψi is continuously differentiable at (w0, z0). To be precise, firstly we will prove that

∀ (w2, z2) ∈ U,
∂hi

∂w1
(·, ·,w2, z2) and

∂hi

∂z1
(·, ·,w2, z2) are continuous in U, (B.14)
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{
∂hi

∂w1
(w1, z1, ·, ·)

}
(w1,z1)∈K

is uniformly Lipschitz continuous in K, (B.15){
∂hi

∂z1
(w1, z1, ·, ·)

}
(w1,z1)∈K

is uniformly Lipschitz continuous in K. (B.16)

Here uniformly Lipschitz means that the Lipschitz constants are independent of (w1, z1) ∈ K.
It follows from (B.14)–(B.16) that the partial derivatives ∂hi/∂w1 and ∂hi/∂z1 are continuous
at (w0, z0,w0, z0). Secondly we will prove that

∀ (w1, z1) ∈ U,
∂hi

∂w2
(w1, z1, ·, ·) and

∂hi

∂z2
(w1, z1, ·, ·) are continuous in U, (B.17){

∂hi

∂w2
(·, ·,w2, z2)

}
(w2,z2)∈K

and

{
∂hi

∂z2
(·, ·,w2, z2)

}
(w2,z2)∈K

are equicontinuous in K.

(B.18)

Therefore the partial derivatives ∂hi/∂w2 and ∂hi/∂z2 are also continuous at (w0, z0,w0, z0).
Step 1: proof of (B.14)–(B.16). By Lemma B.1, the function hi(·, ·,w2, z2) is continuously

differentiable in U for all (w2, z2) ∈ U . (Here we have used the assumption in Lemma 3.6 that
ζ(·,w2, z2) is continuous.) This proves (B.14). Moreover, we read off from Lemma B.1 that, for
all j ∈ {1, . . . , N} \ {i},

∂hi

∂wj
1

(w1, z1,w2, z2) = −
∫
Li
c(w1,z1)∩Lj

c(w1,z1)

ζ(x,w2, z2)

∥∇xc(x, zi1)−∇xc(x, z
j
1)∥

dH2(x), (B.19)

∂hi

∂zj1
(w1, z1,w2, z2) =

∫
Li
c(w1,z1)∩Lj

c(w1,z1)

∇yc(x, z
j
1) ζ(x,w2, z2)

∥∇xc(x, zi1)−∇xc(x, z
j
1)∥

dH2(x), (B.20)

and

∂hi

∂wi
1

(w1, z1,w2, z2) = −
∑
j ̸=i

∂hj

∂wi
1

(w1, z1,w2, z2), (B.21)

∂hi

∂zi1
(w1, z1,w2, z2) = −

∑
j ̸=i

∂hj

∂zi1
(w1, z1,w2, z2). (B.22)

Next we prove (B.15). For all x ∈ X , (w1, z1) ∈ K,

∥∇xc(x, z
i
1)−∇xc(x, z

k
1)∥ ≥ gηδ2

by (B.12). For all (w1, z1), (w2, z2), (w̃2, z̃2) ∈ K and all i, j ∈ {1, . . . , N}, i ̸= j,∣∣∣∣∣ ∂hi∂wj
1

(w1, z1,w2, z2)−
∂hi

∂wj
1

(w1, z1, w̃2, z̃2)

∣∣∣∣∣
≤
∫
Li
c(w1,z1)∩Lj

c(w1,z1)

|ζ(x,w2, z2)− ζ(x, w̃2, z̃2)|
∥∇xc(x, zi1)−∇xc(x, z

j
1)∥

dH2(x)

≤ H2(Li
c(w1, z1) ∩ Lj

c(w1, z1))
L(K)

gηδ2
∥(w2, z2)− (w̃2, z̃2)∥, (B.23)

where L(K) was defined in the statement of Lemma 3.6. Define

f ij =
{
x ∈ R3 : c(x, zi1)− wi

1 = c(x, zj1)− wj
1

}
.

Note that Li
c(w1, z1) ∩ Lj

c(w1, z1) ⊆ f ij . By [23, Theorem 2.8],

H2(Li
c(w1, z1) ∩ Lj

c(w1, z1)) ≤ H2(X ∩ f ij)
≤ Lip(Φ|X )2H2

(
Φ−1(X ∩ f ij)

)
= Lip(Φ|X )2H2

(
Φ−1(X ) ∩ Φ−1(f ij)

)
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≤ Lip(Φ|X )2 π
(
diam(Φ−1(X ))

2

)2

, (B.24)

where in the last line we used the fact that Φ−1(f ij) is a plane (by Lemma A.4) and the isodi-

ametric inequality. Combining (B.23) and (B.24) proves that ∂hi/∂wj
1(w1, z1, ·, ·) is Lipschitz

continuous in K with Lipschitz constant independent of (w1, z1) ∈ K. By (B.21), the same
holds for ∂hi/∂wi

1(w1, z1, ·, ·). This proves (B.15). The proof of (B.16) is very similar.
Step 2: proof of (B.17), (B.18). First we show that the partial derivative ∂hi/∂w2 exists. Fix

(w1, z1,w2, z2) ∈ U ×U and let k ∈ {1, . . . , N} and ε ∈ (0, 1). To show that hi is differentiable
with respect to w2, consider the difference quotient

hi(w1, z1,w2 + εek, z2)− hi(w1, z1,w2, z2)

ε
=

∫
Li
c(w1,z1)

ζ(x,w2 + εek, z2)− ζ(x,w2, z2)

ε
dx,

where {ej}Nj=1 is the standard basis of RN . Note that

lim
ε→0

ζ(x,w2 + εek, z2)− ζ(x,w2, z2)

ε
=

∂ζ

∂w
(x,w2, z2)

for all x ∈ S(w2, z2), in particular, for L3-almost every x ∈ Li
c(w1, z1). Moreover,∣∣∣∣ζ(x,w2 + εek, z2)− ζ(x,w2, z2)

ε

∣∣∣∣ ≤ L(K̃),

where K̃ = {(w2 + ρek, z2) : ρ ∈ [0, 1]} and L was defined in the statement of Lemma 3.6.
Therefore, by the Lebesgue Dominated Convergence Theorem,

∂hi

∂w2
(w1, z1,w2, z2) =

∫
Li
c(w1,z1)

∂ζ

∂w
(x,w2, z2) dx. (B.25)

Similarly,

∂hi

∂z2
(w1, z1,w2, z2) =

∫
Li
c(w1,z1)

∂ζ

∂z
(x,w2, z2) dx. (B.26)

Then (B.17) follows from the assumption that the partial derivatives ∂ζ/∂w(x, ·, ·), ∂ζ/∂z(x, ·, ·)
are continuous at (w2, z2) for all x ∈ S(w2, z2), along with another application of the Lebesgue
Dominated Convergence Theorem.

Finally we prove (B.18). For all (w1, z1), (w̃1, z̃1), (w2, z2) ∈ K,∥∥∥∥ ∂hi∂w2
(w̃1, z̃1,w2, z2)−

∂hi

∂w2
(w1, z1,w2, z2)

∥∥∥∥
=

∥∥∥∥∫
Li
c(w̃1,z̃1)

∂ζ

∂w
(x,w2, z2) dx−

∫
Li
c(w1,z1)

∂ζ

∂w
(x,w2, z2) dx

∥∥∥∥
≤ max

x∈X

∥∥∥∥ ∂ζ∂w (x,w2, z2)

∥∥∥∥∥∥χLi
c(w̃1,z̃1) − χLi

c(w1,z1)

∥∥
L1(X )

≤ L(K)
∥∥χLi

c(w̃1,z̃1) − χLi
c(w1,z1)

∥∥
L1(X )

. (B.27)

It can be read off from the proof of [38, Proposition 38(vii)] that

∥χLi
c(w̃1,z̃1) − χLi

c(w1,z1)∥L1(X ) → 0 as (w̃1, z̃1) → (w1, z1).

Then, by (B.27), ∂hi/∂w2(·, ·,w2, z2) is continuous on the compact set K, hence uniformly
continuous, and moreover its modulus of continuity is independent of (w2, z2). The same holds
for ∂hi/∂z2(·, ·,w2, z2). This proves (B.18).

Step 3. The expressions for the partial derivatives of Ψi in the statement of Lemma 3.6 can
be read off immediately from (B.19)–(B.22), (B.25) and (B.26). □
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