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In this thesis, we prove that the proximal unit normal bundle of the graph of a W2,n-function
in n-variables carries a natural structure of Legendrian cycle. We then generalize Alexan-
drov’s sphere theorems for higher-order mean curvature functions to hypersurfaces in Rn+1

which are locally graphs of arbitrary W2,n-functions, under a general degenerate ellipticity
condition. The proof relies on extending the Montiel-Ros argument to this class of hyper-
surfaces and on the existence of the aforementioned Legendrian cycles. We also prove the
existence of n-dimensional Legendrian cycles with 2n-dimensional support, thus answer-
ing a question posed by Rataj and Zähle. Furthermore, we extend some of these results to
Sobolev-type manifolds, representable as finite unions of W2,n-regular graphs, and general-
ize Reilly’s variational formulas in this context. Finally, we provide a very general version
of the umbilicality theorem for Sobolev-type hypersurfaces.
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Topological and metric space notations:
Rn , Sn−1 euclidean n-dimensional space and its unit sphere.
• , | ··· | euclidean inner product and the induced norm.
{eee1, . . . , eeen} canonical basis of Rn.
Ωn := dX1 ∧ . . . ∧ dXn standard volume form of Rn.
Sn−1
+ , Sn−1

− subsets of points of Sn−1 whose last coordinate is,
respectively, positive and negative.

ν ⊥ ω ν • ω = 0, for ν, ω ∈ Rn.
E topological closure of E.
Int(E) interior of E.
E ⊂⊂ F E ⊆ F, E compact.
∂E topological boundary of E.
Bn

ρ (x) = Bρ(x) open ball in Rn with centre in x and radius ρ > 0.
δδδC distance function from a set C ⊆ Rn, i.e. δδδC(···) := dist(···, C).
Lip( f ) Lipschitz constant of a function f beetwen metric spaces.

Geometric Measure Theory:
P(S) power set of a set S.
B(X) Borel σ-algebra on a topological space X.
Ln Lebesgue outer measure in Rn.
ααα(n) Lebesgue measure of the unit ball of Rn.
Hk k-dimensional Hausdorff outer measure in Rn.
Θk(Hk ⌞ E, x) k-dimensional density of E at x.
Θ∗k(Hk ⌞ E, x) , Θk

∗(Hk ⌞ E, x) upper and lower k-dimensional density of E at x.
Tank(Hk ⌞ E, x) (Hk ⌞ E)-approximate tangent cone of E at x.
JE
k f (x) (Hk ⌞ E)-approximate Jabobian of f at x.
E k(U) space of smooth k-forms on U.
Dk(U) space of smooth k-forms on U, with compact support.
Dk(U) space of k-currents on U.
α contact 1-form.
ω := dα symplectic 2-form.

Functions and function spaces: let f : X → Y.
id identity map.
f |E restriction of f to E ⊆ X.
Im( f ) range of f .
dmn( f ) domain of f .
f f (x) :=

(
x, f (x)

)
for every x ∈ X.

graph( f ), E f , C f assume that f : Rn → R, then:
graph( f ) := {(x, y) ∈ Rn × R : y = f (x)} is the graph of f ,
E f := {(x, y) ∈ Rn × R : y ≥ f (x)} is the epi-graph of f ,
C f := {(x, y) ∈ Rn × R : y ≤ f (x)} is the cato-graph of f .

Wk,p(U) Sobolev space of functions whose weak partial derivatives,
up to order k, lie in Lp(U) for some open set U ⊆ Rn.

Wk,p
loc (U) local Sobolev space of functions f ∈ L1

loc(U), such that
f ∈ Wk,p(V) for every open set V ⊂⊂ U.

Lip(X; Y) space of Lipschitz functions beetwen metric spaces X and Y.



π0(x, y) := x, for (x, y) ∈ Rn × Rn canonical projection on the first factor.
π1(x, y) := y, for (x, y) ∈ Rn × Rn canonical projection on the second factor.∧
(n, k), for k ≤ n set of all increasing functions from {1, . . . , k} to {1, . . . , n}.

Vector spaces:
G(n, k) Grassmann manifold of k-planes in Rn.
ν⊥ ∈ G(n, n − 1) ν⊥ := {z ∈ Rn : z • ν = 0}, for ν ∈ Rn.

Differentiation notations:
∇, D classical gradient and differential.
Di, D2

ij classical partial derivatives.
∇∇∇,DDDk distributional gradient and k-differential

of Sobolev functions.
DDDi,DDD2

ij distributional partial derivatives
of Sobolev functions.

d exterior derivative of differential forms.

Other notations:
c(p1, . . . , pn) positive constant depending only

on the parameters p1, . . . , pn.
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Introduction

Background and motivation

One of the fundamental and most well-known theorems in geometric analysis is the follow-
ing Alexandrov’s sphere theorem (cf. [1]).

Theorem (Alexandrov). A bounded and connected C2-domain Ω ⊂ Rn+1 must be a round ball,
provided there exist a C1-function φ : Rn → R and λ ∈ R such that

φ
(
χΩ,1(p), . . . , χΩ,n(p)

)
= λ

and
∂i φ(χΩ,1(p), . . . , χΩ,n(p)) > 0 for i ∈ {1, . . . , n} , (0.0.1)

for every p ∈ ∂Ω. Here χΩ,1 ≤ . . . ≤ χΩ,n are the principal curvatures of ∂Ω.

This result was proved by Alexandrov using the moving plane method, based on the classical
maximum principle for linear elliptic operators and the Hopf lemma. Its simplest case is
given by the famous rigidity result for hypersurfaces with constant mean curvature. More
generally, choosing φ = σk (where σk is the k-th elementary symmetric function; cf. Defini-
tion 3.1.11), one can deduce the following claim:

if Ω ⊂ Rn+1 is a bounded and connected C2-domain such that HΩ,k is constant,
for some k ∈ {1, . . . , n}, then Ω is a round ball.

In fact, if φ = σk, then (0.0.1) is automatically satisfied. To prove it, we consider the sets

Γi := {λ ∈ Rn : σi(λ) > 0} for i ∈ {1, . . . , n}

and we define Ci to be the connected component of Γi , with (1, . . . , 1) ∈ Ci. Since Ω is
bounded there exists x0 ∈ ∂Ω such that χΩ,i(x0) > 0 for each i ∈ {1, . . . , n}, whence we infer
that HΩ,k(x) > 0 for any x ∈ ∂Ω. Now we consider the continuous function χχχΩ : ∂Ω → Rn,
defined as χχχΩ := (χΩ,1, . . . , χΩ,n), and since χχχΩ(∂Ω) is connected we deduce that

χχχΩ(x0) ∈ χχχΩ(∂Ω) ⊆ Ck .

Now, employing Garding’s theory of hyperbolic polynomials (cf. [18]), we infer that (cf. [50,
Proposition 1.3.3 (3)])

∂nσk
(
χχχΩ(x)

)
≥ . . . ≥ ∂1σk

(
χχχΩ(x)

)
> 0 for every x ∈ ∂Ω ,

so (0.0.1) is satisfied.
Subsequently, using the maximum principle for W2,n-solutions of uniformly elliptic lin-

ear PDE’s (cf. [20, Chapter 9]), Alexandrov observed in [2, p. 305] that the moving plane
method can still be applied to certain Sobolev-type hypersurfaces. In particular, the sphere
theorem can be generalized as follows.

Theorem (Alexandrov). Let Ω ⊂ Rn+1 be a bounded and connected domain, such that ∂Ω can be
locally represented by n-dimensional graphs of C1-functions with second-order distributional deriva-
tives belong to Ln. Assume that there exist a C1-function φ : Rn → R and constants λ, µ1, µ2 ∈ R

such that
φ
(
χΩ,1(p), . . . , χΩ,n(p)

)
= λ
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and
0 < µ1 ≤ ∂i φ(χΩ,1(p), . . . , χΩ,n(p)) ≤ µ2 < ∞ for i ∈ {1, . . . , n} (0.0.2)

for Hn-a.e. every p ∈ ∂Ω, where χΩ,1 ≤ . . . ≤ χΩ,n are the generalized principal curvatures of ∂Ω.
Then Ω must be a round ball.

The proof of the previous theorem is based on the generalization of the moving plane method
through the maximum principle for W2,n-solutions of uniformly elliptic PDE’s. The uniform
ellipticity condition (0.0.2) guarantees the uniform ellipticity of the underlying linear equa-
tions, see [2, Statement A, p. 304]. Furthermore, C1-regularity is used in connection with the
Hopf boundary lemma [2, Statement B]. These two hypotheses are certainly useful condi-
tions to continue addressing the problem using the moving plane method, but are they truly
necessary to prove Alexandrov’s theorem? Furthermore, since χχχΩ is no longer continuous,
we note that the assumption (0.0.2) in the previous theorem, unlike in the C2-case, is not
automatically satisfied if φ = σk.

In order to analyze Alexandrov’s sphere theorem from a different perspective, let us first
recall two results. In the first of these, Hsiung [23, Theorem 1] extends the Minkowski in-
tegral formulas, for convex hypersurfaces, to compact C2-hypersurfaces. Such Minkowski-
Hsiung identities stating that:

if Ω ⊂ Rn+1 is a bounded C2-domain, then∫
∂Ω

HΩ,k−1(x) dHn(x) =
∫

∂Ω

(
x • νΩ(x)

)
HΩ,k(x) dHn(x) for k ∈ {1, . . . , n}.

The second result is given by the Heintze-Karcher inequality (cf. [22]), that is to say:

if Ω ⊂ Rn+1 is a bounded and connected C2-domain,
with mean curvature HΩ(x) ≥ 0 for every x ∈ ∂Ω, then

Ln+1(Ω) ≤ n
n + 1

∫
∂Ω

1
HΩ(x)

dHn(x)

and the equality holds if and only if Ω is a ball.

In the 1980s, Ros in [47], and later jointly with Montiel in [39], combined the Minkowski-
Hsiung identities with the Heintze-Karcher inequality to reprove Alexandrov’s sphere theo-
rem for C2-domains, with a different approach and when φ is the k-th symmetric function σk.
We notice that this approach is based on the area formula for the C1-map νΩ(z) :=

(
z, νΩ(z)

)
,

where νΩ is the outer unit-normal vectorfield to Ω.
It is interesting to mention that Minkowski-Hsiung formulae can be derived as special

cases of variational formulae of certain curvature integrals. Namely, if we define the k-th
total curvature measure of a bounded smooth domain Ω ⊂ Rn+1 as

Ak(Ω) :=
∫

∂Ω
HΩ,k dHn for k ∈ {0, . . . , n}

then Reilly proved in [45] that

d
dt
Ak−1

(
Ft(Ω)

)∣∣∣
t=0

= (n − k + 1)
∫

∂Ω
(V • νΩ) HΩ,k dHn for k ∈ {1, . . . , n} , (0.0.3)

whenever {Ft}t∈(−ϵ,ϵ) is a local variation of Rn+1 with F0 = id|Rn+1 and initial velocity V.
Variational formulae for more general integrands, as well as in space forms and in higher
codimension, were proved in [45] and [44] (cf. also [41]).

One of our aims in this thesis is to investigate the Montiel-Ros approach to prove Alexan-
drov’s sphere theorem, on domains whose topological boundary can be locally represented
as graph of functions with Sobolev W2,n-regularity. Primarily, with the intention of weak-
ening the assumptions originally required by Alexandrov. Moreover, in this approach, it is
necessary to apply the area formula in the Sobolev W1,n-case, which makes our goal interest-
ing from another perspective. In fact, as explained in the following subsection, the validity
of the area formula is critical in the Sobolev W1,n-setting.
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We prove Alexandrov’s theorem in the fundamental case where φ is the k-th elementary
symmetric function σk , and for W2,n-domains, namely open sets whose topological bound-
ary is locally representable as graph of (C0 ∩ W2,n)-regular functions, where neither C1 nor
Lipschitz regularity is required.

As a consequence of classical pointwise differentiability results for Sobolev functions (cf.
[9]), it is not difficult to show that the boundary ∂Ω of a W2,n-domain can be Hn-almost cov-
ered by the union of countably many C2-hypersurfaces (cf. Lemma 3.1.5 (i)). Moreover, it can
be touched from both the inside and the outside by mutually tangent balls at Hn-a.e. points
(cf. Lemma 3.1.5), namely the viscosity boundary1 ∂v

+Ω of Ω has full measure in ∂Ω. There-
fore, an exterior unit normal νΩ is well defined, and it is also approximately differentiable at
Hn-a.e. points, with a symmetric approximate differential (cf. Lemma 3.1.2). We also notice
that every W2,n-domain Ω is a set of locally finite perimeter, that ∂v

+Ω is contained in the
essential boundary of Ω and νΩ is the measure-theoretic exterior normal.

For a W2,n-domain we denote by χΩ,1(p) ≤ . . . ≤ χΩ,n(p) the eigenvalues of the approx-
imate differential ap DνΩ of νΩ at Hn-a.e. p ∈ ∂Ω, and we define the k-th mean curvature
function HΩ,k and the total k-th mean curvature Ak(Ω) as in the smooth case.

Fine properties of gradients of W2,n-functions

An important part of our work is based on the analysis of fine properties of W2,n-functions. If
we consider U ⊆ Rn an open set and f ∈ C0(U) ∩W2,n(U), first we notice that the set S( f ),
of points where f is twice pointwise differentiable, has full Ln-measure in U (cf. Theorem
2.1.7). This is a result obtained by Calderón-Zygmund (cf. [9] or [8, Proposition 2.2]), and we
provide an alternative proof based on the methods used by Trudinger, in [59, Theorem 1], to
treat the second-order differentiability of viscosity solutions of second-order elliptic PDE’s.
A first result in our work, which relies on oscillation estimates obtained by Ulrich Menne
(cf. [37, Appendix B]) and is based on a Rado-Reichelderfer type argument (cf. [32] and
references therein), is that the graph of ∇ f satisfies the Lusin (N)-property on S( f ) (cf. Lemma
2.1.15 and Remark 2.1.16), that is to say

Hn(∇ f (Z)
)
= 0 for every Z ⊂ S( f ) such that Ln(Z) = 0 (0.0.4)

where ∇ f (x) :=
(

x,∇ f (x)
)
. Note that, since S( f ) has full Ln-measure in U, it follows that

∇ f = ∇∇∇ f Ln-a.e. in U (cf. Remark 2.1.13), where ∇ f and ∇∇∇ f represent, respectively, the
classical gradient and the distributional gradient of f . From (0.0.4), a fundamental tool for
our analysis follows, namely the area formula for ∇ f on S( f ) given in (0.0.5). Additionally,
we observe that every W2,n-function is Monge-Ampère (cf. Lemma 2.3.29), and therefore
we can associate to f a unique n-dimensional current [d f ] ∈ Dn(U × Rn) that satisfies the
conditions in Definition 2.3.27. In conclusion, we have the following.

Theorem A (cf. Theorem 2.3.30). Given U ⊆ Rn an open set and f ∈ C0(U) ∩ W2,n
loc (U), then

Hn(∇ f (E)
)
=
∫

E
Jn∇ f dLn (0.0.5)

for every Ln-measurable set E ⊆ S( f ). Moreover ∇ f
(
S( f ) ∩ K

)
is Hn-rectifiable for every K ⊂ U

compact,
[d f ] =

[
Hn ⌞∇ f

(
S( f )

)]
∧ ( #»η f ◦ π0) (0.0.6)

where the n-vectorfield #»η f is defined as

#»η f (x) :=

(
eee1,DDD(∇ f )(x)eee1

)
∧ . . . ∧

(
eeen,DDD(∇ f )(x)eeen

)∣∣(eee1,DDD(∇ f )(x)eee1
)
∧ . . . ∧

(
eeen,DDD(∇ f )(x)eeen

)∣∣ for Ln-a.e. x ∈ U ,

where DDD denotes the distributional differential for Sobolev functions.

1The viscosity boundary ∂v
+Ω of Ω is the set of all points p ∈ ∂Ω for which there exists ν ∈ Sn and r > 0 such that

Br(p + rν) ∩ Ω = ∅ and Br(p − rν) ⊆ Ω .
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From representation (0.0.6), it follows that:

[d f ] is carried by ∇ f
(
S( f )

)
,

and it is not possible to replace ∇ f
(
S( f )

)
with ∇ f (U),

even if f were C1-regular.

To prove the above, first we observe that Tomas Roskovec (cf. [48]), using a Cesari-type
construction, provides an example of a function f ∈ C1([−1, 1]n) such that

∇ f ∈ W1,n((−1, 1)n; Rn) and [−1, 1]n ⊆ ∇ f ([−1, 1]× {0}n−1) .

In other words, ∇ f is a (C0 ∩W1,n)-regular vector field, but it does not satisfy the Lusin (N)-
property since it maps a segment into an n-cube. Naturally, ∇ f ([−1, 1]× {0}n−1) will also
have positive Hn-measure. Taking into account that ∇ f satisfies the Lusin (N)-property on
S( f ), we deduce that

Hn
(
∇ f
(
(−1, 1)n) \ ∇ f

(
S( f )

))
≥ Hn

(
∇ f ([−1, 1]× {0}n−1)

)
> 0 ,

from which we conclude.

Legendrian cycles and sphere theorem

In the context of describing our proof of Alexandrov’s sphere theorem, we first provide a
precise definition of W2,n-domains.

Definition A. An open set Ω ⊆ Rn+1 is a W2,n-domain if and only there exists a pair (Ω′, F), that
satisfies the following properties:

(i) Ω′ ⊆ Rn+1 is an open set such that for each p ∈ ∂Ω′ there exist ϵ > 0, ν ∈ Sn, a bounded set
U open in ν⊥ with 0 ∈ U and f ∈ C0(U) ∩ W2,n(U) with f (0) = 0 such that{

p + b + τν : b ∈ U, −ϵ < τ ≤ f (b)
}
= Ω′ ∩

{
p + b + τν : b ∈ U, −ϵ < τ < ϵ

}
;

(ii) F is a C2-diffeomorphism defined over an open set V ⊆ Rn+1, where Ω′ ⊆ V;

(iii) F(Ω′) = Ω .

The definition above incorporates two key conditions: first, that such domains be locally
representable as cato-graph of (C0 ∩ W2,n)-functions, allowing us to study them through
fine properties of local graphs; and second, that they be invariant under the images of dif-
feomorphisms, which is evidently a necessary condition for generalizing Reilly’s variational
formulas in (0.0.3). However, we are uncertain whether it is truly essential to introduce the
diffeomorphism F in that definition. In other words, if Ω′ belongs to the class S of domains
that satisfy only condition (i) in Definition A, is it then true that F(Ω′) also belongs to S?

Such domains can be highly singular. To provide an example, consider the following
construction by Tatiana Toro (cf. [58, Example 2]). Given a countable dense subset {xi}i∈N

of Bn
1/4(0) and the function f T ∈ W2,n(Bn

1/2(0)
)
, for n ≥ 2, defined by

f T(x) := x • eee1 ln
∣∣ln |x|

∣∣ sin
(

ln
∣∣ln |x|

∣∣) if x ∈ Bn
1/2(0) \ {0} .

Then, by the completeness of Sobolev spaces, the function

f (x) :=
∞

∑
i=1

2−i f T(x − xi) for Ln-a.e. x ∈ Bn
1/4(0)

belongs to W2,n(Bn
1/4(0)

)
and has a countable dense set of singular points.

Now we discuss in detail the generalization, of the Montiel-Ros method (cf. [39]), to
W2,n-domains. This approach, as previously specified, is based on the Minkowski-Hsiung
identities and the Heintze-Karcher inequality. The most delicate part is the extension of the
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Minkowski-Hsiung formulas to W2,n-domains, which can be obtained thanks to a new and
fundamental result on the structure of the Legendrian cycle associated with a W2,n-domain.
We recall that an integer multiplicity locally rectifiable n-current T of Rn+1 × Rn+1, with
support in Rn+1 ×Sn, is called Legendrian cycle of Rn+1 if ∂T = 0 and T ⌞ α = 0, where α is the
contact 1-form of Rn+1 (cf. Definition 1.3.4). It is easy to see that the (exterior) unit normal-
bundle of a C2-domain carries a Legendrian cycle. For readers familiar with the theory of
Monge-Ampère functions, it would not be surprising to assert that Legendrian cycles can be
associated with W2,n-domains (cf. [16] and [26]). On the other hand, this information is not
sufficient for our purpose. What we need is much more precise information, namely that the
Legendrian cycle over a W2,n-domain is carried by the proximal unit normal bundle nor(Ω) of
Ω, which is defined as

nor(Ω) :=
{
(x, u) ∈ ∂Ω × Sn : dist(x + su, Ω) = s for some s > 0

}
. (0.0.7)

It does not seem possible to deduce this fact from classical results for Monge-Ampère func-
tions. Moreover, an analogous result holds for sets of positive reach (cf. [60]). However,
while the proof for the latter is based on the regularity of the level sets of the distance func-
tion, our proof for W2,n-domains, which is exactly the content of the next theorem, is com-
pletely different and makes use of certain fine properties of the gradients of W2,n-regular
functions (some of which have been mentioned previously).

Theorem B (cf. Theorem 3.1.7). Let Ω ⊂ Rn+1 be a bounded W2,n-domain, then nor(Ω) has finite
Hn-measure and there exists an unique n-dimensional Legendrian cycle T such that

T =
(
Hn ⌞nor(Ω)

)
∧ #»η ,

where #»η is a
(
Hn ⌞nor(Ω)

)
-measurable n-vectorfield such that:

| #»η (x, u)| = 1 , #»η (x, u) is simple ,

Tann(Hn ⌞nor(Ω), (x, u)
)

is associated with #»η (x, u)

and
⟨
[∧

nπ0
](

#»η (x, u)
)
∧ u, dX1 ∧ . . . ∧ dXn+1⟩ > 0 ,

for Hn-a.e. (x, u) ∈ nor(Ω).

If Ω were a domain whose topological boundary is locally representable as a graph of W2,p-
regular functions with p > n, then nor(Ω) could be replaced by the classical unit-normal
bundle (since their difference is Hn-negligible2) and Theorem B could be proved relying on
well-known properties of W1,p-maps (which do not hold even for continuous W1,n-maps!)
cf. [33]. We particularly notice that, for the (W2,n ∩ C1)-regular graph of Roskovec’s func-
tion, the difference between the classical unit-normal bundle and the proximal unit-normal
bundle is a set of positive Hn-measure.

Combining Theorem B with the variational formulae for the curvature measures associ-
ated to general Legendrian cycles obtained by Fu in [17] (see also Appendix B), we can ex-
tend Reilly variational formulae (cf. [45]) to W2,n-domains, hence we deduce the Minkowski-
Hsiung formulae in our setting.

Theorem C (cf. Theorem 3.1.15 and Corollary 3.1.17). Suppose Ω ⊂ Rn+1 is a bounded W2,n-
domain and {Ft}t∈(−ϵ,ϵ) is a local variation of Rn+1 with initial velocity vector field V. Then

d
dt
Ak−1(Ft(Ω))

∣∣∣
t=0

= (n − k + 1)
∫

∂Ω
νΩ(x) • V(x) HΩ,k(x) dHn for k ∈ {1, . . . , n}

and
d
dt
An(Ft(Ω))

∣∣∣
t=0

= 0 .

In particular ∫
∂Ω

HΩ,r−1(x) dHn(x) =
∫

∂Ω
x • νΩ(x) HΩ,r(x) dHn(x)

2Note that the proximal unit-normal bundle is a subset of the classical unit-normal bundle, but their difference
can have positive Hn-measure even for C1-regular domains.



6

for k ∈ {1, . . . , n}.

As for the Heintze-Karcher inequality for W2,n-domains, it can be derived from the gen-
eral inequality [24, Theorem 3.20] by exploiting certain fine properties of the normal bundle
(cf. Theorem 3.1.7(i)-(iii)) already used to prove Theorem B.

Theorem D (cf. Theorem 3.2.19). Given Ω ⊂ Rn+1 a bounded and connected W2,n-domain such
that HΩ,1(z) ≥ 0 for Hn-a.e. z ∈ ∂Ω, then

(n + 1)Ln+1(Ω) ≤
∫

∂Ω

1
HΩ,1(x)

dLn(x) .

Moreover, if HΩ,1(z) ≥ Hn(∂Ω)
(n+1)Ln+1(Ω)

for Hn-a.e. z ∈ ∂Ω then Ω is a round ball.

We have now all the ingredients to prove the following generalization of Alexandrov’s
sphere theorem.

Theorem E (cf. Theorem 3.2.20 and Remark 3.2.21). A bounded and connected W2,n-domain
Ω ⊂ Rn+1 must be a round ball, provided there exist k ∈ {2, . . . , n} and λ ∈ R such that

σk(χΩ,1(p), . . . , χΩ,n(p)) = λ

and
∂iσk(χΩ,1(p), . . . , χΩ,n(p)) ≥ 0 for i ∈ {1, . . . , n} , (0.0.8)

for Hn-a.e. p ∈ ∂Ω.

Theorem E contains a new statement only for k ≥ 2. Indeed, if k = 1, this result reduces to
the smooth Alexandrov’s sphere theorem for hypersurfaces with constant mean curvature,
since the condition HΩ,1(z) = λ for Hn-a.e. z ∈ ∂Ω implies that ∂Ω is smooth by Allard’s
regularity theorem (notice that, according to Theorem 3.1.15, the function HΩ,1 is the gener-
alized mean curvature of ∂Ω in the sense of varifolds; cf. [3]).

Regarding the extension of the Montiel-Ros method to W2,n-domains, we note that there
are already generalizations of this approach to sets of positive reach (cf. [24]). However,
the singularities of Sobolev-type domains and sets of positive reach are of a very different
nature (the latter being analogous to the singularities of convex bodies). Therefore, it was
necessary to develop new techniques to extend the Montiel-Ros approach in the context of
W2,n-domains.

These results were presented in [55].

The support of Legendrian cycles

Theorem B finds a natural application in other problems, beyond the rigidity questions we
have considered so far. In Section 2.2, we use it to answer a question implicit in [43]. In [43,
Remark 2.3], the authors ask whether there exist n-dimensional Legendrian cycles in Rn+1

whose support is not locally Hn-rectifiable, or even has positive Hn+1-measure. By com-
bining Theorem B with an observation by J. Fu in [15] about the existence of W2,n-functions
whose differential has a graph dense in Rn × Rn, we prove the following result.

Theorem F. There exist n-dimensional Legendrian cycles of Rn+1 whose support has positive H2n-
measure.

The proof of the previous result is based on two arguments. First, given a set C ⊆ Rn+1 we
note that

(
Hn ⌞nor(C)

)(
B2n+2

r (z)
)
> 0 for every z ∈ nor(C) and for every r > 0 (cf. Lemma

2.2.22 and Remark 2.2.23), where B2n+2
r (z) is the open ball in Rn+1 × Rn+1 with centre in z

and radius r > 0, and this implies that

nor(C) ⊆ spt
(
Hn ⌞nor(C)

)
. (0.0.9)

Then, we consider f ∈ C0(U) ∩ W2,n(U) such that ∇ f
(
Diff( f )

)
is a dense subset of U × Rn

(cf. [15, p. 2260]), where U ⊂ Rn is a bounded open set and Diff( f ) is the set of points where
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f is pointwise differentiable. We also consider the Legendrian cycle of U ×R associated with
Γ := graph( f ), which is given by (cf. (2.1.30) in Remark 2.1.21)

NΓ :=
(
Hn ⌞ N(Γ)

)
∧ #»η Γ ,

where N(Γ) := nor(Γ) ∩ (U × R × Rn+1) and #»η Γ is a Borel n-vectorfield such that

| #»η Γ(z, ν)| = 1 , #»η Γ(z, ν) is simple ,

Tann(Hn ⌞ N(Γ), (z, ν)
)

is associated with #»η Γ(z, ν)

and
⟨
[∧

nπ0
](

#»η Γ(z, ν)
)
∧ ν , dX1 ∧ . . . ∧ dXn+1⟩ > 0

for Hn-a.e. (z, ν) ∈ N(Γ). From (0.0.9), we infer that

N(Γ) ⊆ spt(NΓ) ⊆ Γ × Sn

where N(Γ) is dense in Γ×Sn (cf. Lemma 2.2.24), so spt(NΓ) = Γ×Sn. SinceH2n(Γ×Sn)> 0,
we obtain the desidered result.

This result was presented in [55].

Legendrian cycles on FnW2,n-sets

Ambrosio, Gobbino and Pallara (cf. [4]), based on an idea of De Giorgi, introduce a notion
of Sobolev-type manifold denoted by FdW2,p, whose members are (locally) finite union of
graphs of (C0 ∩ W2,p)-functions of d variables. More precisely, S ⊂ Rn+1 is an FdW2,p-set if

S = {ιιι > 0} ,

where ιιι : Rn+1 → N is a function such that, for every z ∈ Rn+1 where ιιι(z) > 0, there exist a
positive integer q(z) and an open neighborhood U of z such that

ιιι(x) =
q(z)

∑
i=1

111Γi (x) for any x ∈ U ,

where every Γi ∩ U coincides with the graph of a (C0 ∩ W2,p)-function in d variables. In
particular, FdW2,p-sets form a class of curvature varifolds (cf. [4, Remark 1.7]) in the sense of
Hutchinson (cf. [25]). This means that, given S ⊂ Rn+1, an FdW2,p-set with multiplicity ιιι,
then V = vvv(S , ιιι) is a curvature varifold (cf. [25, Definition 5.2.1]).

Definition B. We say that that a closed set S ⊂ Rn+1 is a W 2,n-set if there exists a pair (S ′, F),
that satisfies the following properties:

(i) S ′ is a FnW2,n-set;

(ii) F(S ′) = S , where F is a C2-diffeomorphism of Rn+1.

As in the definition A, this class of domains is invariant under the images of C2 diffeomor-
phisms, which is a necessary condition to generalize Reilly’s variational formulas.

Given a W 2,n-set S , it is possible to consider an Hn-measurable unit vector field νS such
that νS (p) ∈ Norn(Hn ⌞S , p) for Hn-a.e. p ∈ S (cf. section 4.2). Furthermore, νS is ap-
proximately differentiable at Hn-a.e. points of S with a symmetric approximate differential
(cf. Lemma 3.1.2). As usual, we denote by χS ,1(p) ≤ . . . ≤ χS ,n(p) the eigenvalues of
ap DνS (p) at Hn-a.e. p ∈ S , and we define the k-th mean curvature HS ,k and the total k-th
mean curvature Ak(S) as in the smooth case.

As for W2,n-domains, the most delicate part of the results achieved on W 2,n-sets is to
obtain a structure of Legendrian cycles on them. First, given a W 2,n-set S with associated
pair (S ′, F), we introduce the C1-diffeomorphism

ΨF(x, u) :=
(

F(x),
(DF(x)−1)∗(u)
|(DF(x)−1)∗(u)|

)
for every (x, u) ∈ Rn+1 × Sn
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for which we have ΨF
(
nor(S ′)

)
= nor(S) (cf. [54, Lemma 2.1]). Then, the following version

of Theorem B about W 2,n-sets holds true.

Theorem G (cf. Theorem 4.3.22). Given a compact W 2,n-set S with associated pair (S ′, F), then
the integer multiplicity rectifiable current T ∈ Dn(Rn+1 × Rn+1) given by

T :=
(
ιιι ◦ π0 ◦ (ΨF|nor(S ′))−1) (Hn ⌞nor(S)

)
∧ #»

ξ S

is a Legendrian cycle, where π0 : Rn+1 × Rn+1 → Rn+1 is the canonical projection on the first
factor and

#»

ξ S is an
(
Hn ⌞nor(S)

)
-measurable n-vectorfield such that:

| #»

ξ S (x, u)| = 1 ,
#»

ξ S (x, u) is simple ,

Tann(Hn ⌞nor(S), (x, u)
)

is associated with
#»

ξ S (x, u)

and
⟨
[∧

nπ0
]( #»

ξ S (x, u)
)
∧ u, dX1 ∧ . . . ∧ dXn+1⟩ > 0

for Hn-a.e. (x, u) ∈ nor(S).

Combining Theorem G with the variational formulae for the curvature measures asso-
ciated to general Legendrian cycles obtained by Fu in [17] (see also Appendix B), we can
extend Reilly variational formulae (cf. [45]) to W 2,n-sets.

Theorem H (cf. Theorem 4.3.24). Let S be a compact W 2,n-set and let {Ft}t∈(−ϵ,ϵ) be a local
variation of Rn+1, with initial velocity vector field V. If k ∈ {1, . . . , n} is odd, we have

d
dt

Ak−1
(

Ft(S)
)∣∣∣

t=0
= (n − k + 1)

∫
S

V(x) • νS (x) HS ,k(x) ιιι
(

F−1(x)
)

dHn(x) .

Moreover, if n is even
d
dt

An
(

Ft(S)
)∣∣∣

t=0
= 0 .

The Nabelpunktsatz

In the final chapter, we study the problem of extending the umbilicality theorem (or Nabelpunk-
tsatz) from smooth hypersurfaces to those with Sobolev regularity. The classical proof of this
theorem works for hypersurfaces that are at least C3-regular. A proof for C2-hypersurfaces
is given in [57] (see also [40] or [34]), and in the case of C2-regular graphs, the theorem takes
the following form.

Suppose U ⊆ Rn is a connected open set, f ∈ C2(U), f (x) :=
(
x, f (x)

)
and Γ := graph( f ).

We also consider ν : Γ → Sn, the unit normal vector field to Γ, given by

ν
(

f (x)
)

:=
(−∇ f (x), 1)√
1 + |∇ f (x)|2

for any x ∈ U .

If Γ satisfies the umbilicality condition, namely there exists a function µ : Γ → R such that
Dν(z)(τ) = µ(z)τ for every τ ∈ Tan(Γ, z) and every z ∈ Γ , (0.0.10)

then Γ is contained, either in an n-dimensional plane or in an n-dimensional sphere.

Considering more general hypersurfaces, with curvatures defined only almost every-
where, the question of the validity of the Nabelpunktsatz goes back to the classical paper
by Busemann and Feller [7], where they also highlight the existence of convex C1-regular
hypersurfaces that are umbilical at almost every point (see also Remark 5.3.5). In [11], it was
observed that the Nabelpunktsatz still holds for C1,1-hypersurfaces.

In the context of generalizing the previous results, we first note that if f ∈ C2(U) where
U ⊆ Rn is a connected open set, the umbilicality condition (0.0.10) on Γ = graph( f ) can be
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written in the following form

µ
(

f (x)
)[

eeei • eeej + Di f (x)Dj f (x)
]
= −

D2
ij f (x)√

1 + |∇ f (x)|2
,

for every x ∈ U and for every i, j ∈ {1, . . . , n}, where Di f and D2
ij f denotes the classical

partial derivatives of f . Considering this condition in a weak sense, we obtain the following
broad generalization.

Theorem I (cf. Theorem 5.2.2). Suppose U ⊆ Rn is a connected open set, f ∈ W2,1
loc (U) and

µ : U → R is a function such that for Ln-a.e. x ∈ U and for every i, j ∈ {1, . . . , n}, the following
condition holds

µ(x)
[
eeei • eeej +DDDi f (x)DDDj f (x)

]
= −

DDD2
ij f (x)√

1 + |∇∇∇ f (x)|2
, (0.0.11)

where ∇∇∇ f , DDDi f and DDD2
ij f denote the distributional gradient, the distributional partial derivatives and

the second-order distributional partial derivatives of the Sobolev function f , respectively.
Then, either f is Ln-a.e. equal to a linear function on U, or there exists a n-dimensional sphere S

in Rn+1 such that f (x) ∈ S for Ln-a.e. x ∈ U.

We also note that the assumption of W2,1
loc -regularity is essential. To justify this assertion, we

consider the following example. Let C ⊂ [0, 1] be the Cantor ternary set and f : [0, 1] → [0, 1]
the Cantor-Vitali function. Recall that f ∈ C0,α([0, 1]) with α = log3 2 and f (C) = [0, 1], in
particular it is also increasing with f (0) = 0, f (1) = 1 and, finally, f ′(x) = 0 for every x
in the open set [0, 1] \ C. The function f provides an example of a BV-function that is not
absolutely continuous, namely f ∈ BV(0, 1) \ W1,1(0, 1). In fact, since f is increasing, we
deduce that the total variation of f is 1. Furthermore, since L1(C) = 0 and f (C) = [0, 1], we
infer that f does not satisfy the Lusin (N)-property and hence is not absolutely continuous
(cf. [31, Theorem 3.41]). If we now consider the primitive of f , denoted by F, we deduce that
F ∈ C1,α([0, 1]) \ W2,1(0, 1) and since F is piecewise linear in [0, 1] \ C, we conclude that F
satisfies condition (0.0.11) but not the statement of Theorem I.

Notice that the umbilicality condition (0.0.11) acts Ln-a.e. on f , in terms of a strong solution
of a system of elliptic PDE’s, and does not involve the concept of curvature on Γ = graph( f ).
To give a geometric interpretation of condition (0.0.11), that is, in terms of weak curvatures,
the necessary assumption is that f satisfies the Lusin (N)-property, namely

Hn( f (E)
)
= 0 whenever E ⊂ U is Ln-negligible .

Such condition is satisfied if f ∈ W2,p
loc (U), with p > n

2 (cf. Remark 5.3.4), and guaran-
tees that Γ is locally Hn-rectifiable of class 2 and that there exists an (Hn ⌞ Γ)-measurable
map ν such that, for Hn-a.e. x ∈ Γ, we have ν(x) ∈ Norn(Hn ⌞ Γ, x) ∩ Sn; moreover ν is
(Hn ⌞ Γ)-approximately differentiable at x and ap Dν(x) is a symmetric endomorphism of
Tann(Hn ⌞ Γ, x), whose eigenvalues, as usual, represent the approximate principal curva-
tures of Γ. Overall, the following result holds.
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Theorem L (cf. Theorem 5.3.3). Let U ⊂ Rn be a bounded and connected open set, f ∈ W2,1
loc (U),

Γ := graph( f ) and suppose that f (x) :=
(
x, f (x)

)
satisfies the Lusin’s (N)-condition. Assume

also that there exists an (Hn ⌞ Γ)-measurable map ν such that ν(x) ∈ Norn(Hn ⌞ Γ, x) ∩ Sn and
there exists a function µ : Γ → R such that

ap Dν(x)(τ) = µ(x)τ for every τ ∈ Tann(Hn ⌞ Γ, x) , (0.0.12)

for Hn-a.e. x ∈ Γ.
Then Γ is Hn-rectifiable of class 2 and, up to a Hn-negligible set, either Γ is a subset of a n-

dimensional plane or a subset of a n-dimensional sphere.

These results were presented in [55].
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Chapter 1

Notation and background

Given a set of parameters {p1, p2, . . . , pn}, we denote a generic positive constant depending
only p1, . . . , pn by c(p1, . . . , pn).
If f : S → T is a function we define

f : S → S × T , f (x) :=
(
x, f (x)

)
. (1.0.1)

Moreover, we often use the following projection maps

π0 : Rn+1 × Rn+1 → Rn+1 π1 : Rn+1 × Rn+1 → Rn+1 (1.0.2)

defined as π0(x, u) := x and π1(x, u) := u.
In this thesis we use the symbol • to denote scalar product. In particular we fix a scalar
product • on Rn+1 and an orthonormal basis {eee1, . . . , eeen+1} of Rn+1. For a subset E of an
Euclidean space, E is the topological closure of E. We use the symbols Br(a) = Bk

r (a) for the
open ball in Rk centered at a with radius r, and the symbols ∇ and D for the classical gra-
dient and differential. On the other hand, we denote by ∇∇∇ f and DDDk f for the distributional
gradient and the distributional k-differential of a Sobolev map f . If f : U → R is a contin-
uous function defined on an open set U, we denote the set of x ∈ U where f is pointwise
differentiable by Diff( f ). The characteristic function of a set X is 111X . The Grassmannian of
m-dimensional subspaces of Rk is G(k, m), and if T ∈ G(k, m) then πT : Rk → Rk is the
orthogonal projection onto T.

1.1 Basic notions from geometric measure theory

In this thesis we use standard notation from geometric measure theory, for which we refer
to [14]. For reader’s convenience we recall some basic notions here.

Given X ⊂ Rm and a ∈ Rm, we define Tan(X, a), the tangent cone of X at a, as the set of
all v ∈ Rm such that there exists a sequence {ak}k∈N⊂ X \ {a} satisfying

lim
k→∞

ak = a and lim
k→∞

ak − a
|ak − a| =

v
|v| .

In other words, Tan(X, a) is the set of all v ∈ Rm such that for every ϵ > 0, there exist x ∈ X
and r > 0 with |x − a| < r such that |r(x − a)− v| < ϵ. We also define the normal cone of X
at a, with vertex at 0, as follows

Nor(X, a) :=
{

u ∈ Rm : u • v ≤ 0 for v ∈ Tan(X, a)
}

.

Given X ⊂ Rm, a ∈ Rm and a positive integer µ, we define Tanµ(Hµ ⌞ X, a), the (Hµ ⌞ X)-
approximate tangent cone of X at a, as the set of all v ∈ Rm such that

Θ∗µ
(
Hµ ⌞ X ∩ {x : |r(x − a)− v| < ϵ for some r > 0}, a

)
> 0 (1.1.3)

for every ϵ > 0. We also define the (Hµ ⌞ X)-approximate normal cone of X at a, with vertex at
0, as follows

Norµ(Hµ ⌞ X, a) :=
{

u ∈ Rm : u • v ≤ 0 for v ∈ Tanµ(Hµ ⌞ X, a)
}

.
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Remark 1.1.1. (i) We can provide an equivalent definition of the (Hµ ⌞ X)-approximate tan-
gent cone Tanµ(Hµ ⌞ X, a) (cf. [14, 3.2.16]), namely

Tanµ(Hµ ⌞ X, a) =
⋂ {

Tan(E, a) : E ⊆ X , Θµ(Hµ ⌞ X \ E, a) = 0
}

.

Clearly, Tanµ(Hµ ⌞ X, a) is a subcone of Tan(X, a).
(ii) (Locality property of approximate tangent spaces)... Let X and Y be two Hµ-measurable
subsets of Rm, each with finite Hµ-measure. Then, we have the following locality result

Tanµ(Hµ ⌞ X, a) = Tanµ(Hµ ⌞Y, a) for Hµ-a.e. a ∈ X ∩ Y . (1.1.4)

To prove this, we show that Tanµ(Hµ ⌞ X, a) = Tanµ(Hµ ⌞ X ∩ Y, a) for Hµ-a.e. a ∈ X ∩ Y.
Clearly, the inclusion Tanµ(Hµ ⌞ X ∩ Y, a) ⊆ Tanµ(Hµ ⌞ X, a) holds for every a ∈ Rm (cf.
(1.1.3)). We now prove the reverse inclusion

Tanµ(Hµ ⌞ X, a) ⊆ Tanµ(Hµ ⌞ X ∩ Y, a) for Hµ-a.e. a ∈ X ∩ Y .

First, from [14, 2.10.19 (4)], we have that

Θµ(Hµ ⌞ X \ Y, a) = 0 for Hµ-a.e. a ∈ X ∩ Y . (1.1.5)

Now, consider an arbitrary v ∈ Tanµ(Hµ ⌞ X, a), and define

EEE(a, v, ϵ) := {x ∈ Rm : |r(x − a)− v| < ϵ for some r > 0} for ϵ > 0 .

Then, from (1.1.5), we infer that

Θ∗µ
(
Hµ ⌞(X ∩ Y) ∩EEE(a, v, ϵ), a

)
= Θ∗µ

(
Hµ ⌞ X ∩EEE(a, v, ϵ), a

)
> 0 for every ϵ > 0

for Hµ-a.e. a ∈ X ∩ Y, from which the desidered result follows.

Suppose X ⊂ Rm and f maps a subset of Rm into Rk. Given a positive integer µ and
a ∈ Rm we say that f is (Hµ ⌞ X)-approximately differentiable at a (cf. [14, 3.2.16]) if and only
if there exists a mapping g : Rm → Rk pointwise differentiable at a such that f (a) = g(a) if
a ∈ dmn( f ) and

Θµ
(
Hµ ⌞ X ∩ {b : f (b) ̸= g(b)}, a

)
= 0 .

In this case (see [14, 3.2.16]) f determines the restriction of Dg(a) on the approximate tangent
cone Tanµ(Hµ ⌞ X, a) and we define

ap D f (a) := Dg(a)|Tanµ(Hµ ⌞ X, a) .

Suppose X ⊂ Rm and µ is a positive integer. We say that X is countably Hµ-rectifiable if
there exist countably many µ-dimensional C1-submanifolds Σi of Rm such that

Hµ
(

X \
∞⋃

i=1

Σi

)
= 0 . (1.1.6)

In particular, X is said to be locally Hµ-rectifiable if condition (1.1.6) holds and Hµ(X∩K) < ∞
for every compact set K ⊂ Rm. Finally, if (1.1.6) holds and Hµ(X) < ∞, we simply say that
X is Hµ-rectifiable. It is worth mentioning that X is said to be countably Hµ-rectifiable of class
k if condition (1.1.6) holds, where the family {Σi}i∈N consists specifically of µ-dimensional
Ck-submanifolds of Rm.

It is well known that if X is countably Hµ-rectifiable with Hµ(X) < ∞, then Tanµ(Hµ ⌞ X, a)
is a µ-dimensional plane at Hµ-a.e. a ∈ X, and every Lipschitz function f : X → Rk has an
(Hµ ⌞ X)-approximate differential ap D f (a) : Tanµ(Hµ ⌞ X, a) → Rk at Hµ-a.e. a ∈ X. For
such points a we define, for each h ∈ {1, . . . , k}, the (Hh ⌞ X)-approximate Jabobian of f at a as

JX
h f (a) := sup

{∣∣[∧h ap D f (a)](ξ)
∣∣ : ξ ∈ ∧h Tanµ(Hµ ⌞ X, a), |ξ| = 1

}
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(see (1.2.7) for the definition of
∧

h ap D f (a)). The approximate Jacobian naturally appears
in area and coarea formula for f ; cf. [14, 3.2.20, 3.2.22].

1.2 Differential forms and currents

Let V be a vector space. We denote by v1 ∧ . . . ∧ vm the simple m-vector obtained by the
exterior multiplication of vectors v1, . . . , vm in V and

∧
m V is the vector space generated by

all simple m vectors of V. Each linear map f : V → V′ can be uniquely extended to a linear
map ∧

m f :
∧

mV → ∧
mV′ (1.2.7)

such that
∧

m f (v1 ∧ . . . ∧ vm) := f (v1) ∧ . . . ∧ f (vm) for every v1, . . . , vm ∈ V.
The vector space of all alternating m-linear functions f : Vm → R (i.e. f (v1, . . . , vm) = 0

whenever v1, . . . , vm ∈ V and vi = vj for some i ̸= j) is denoted by
∧m V. There is an obvious

isomorphism between
∧m V and the space of all linear R-valued maps on

∧
m V. It is often

convenient to use the following customary notation (cf. [14])

⟨ξ, h⟩ := h(ξ) whenever ξ ∈ ∧mV and h ∈ ∧mV.

If V is an inner product space, then both
∧

m V and
∧m V can be endowed with natural scalar

products, whose associated norms are denoted by | ··· | (cf. [14, 1.7.5]).
Suppose U ⊆ Rp is open and k ∈ N. A k-form is a smooth map ϕ : U → ∧k Rp (if k = 0

we set
∧0 Rp = R). Following [14, 4.1.1, 4.1.7], we denote by E k(U) the space of all smooth

k-forms on U and we denote by Dk(U) the space of all smooth k-forms with compact support in
U. If ϕ ∈ E k(U) we denote by dϕ the exterior derivative of ϕ (cf. [14, 4.1.6]). If X1, . . . , Xp are
the coordinate functions of Rp, then

Ωp := dX1 ∧ . . . ∧ dXp

is the standard volume form of Rp. Moreover, if f is a smooth function mapping U into Rq

and ψ is a k-form defined on an open subset V of Rq with f (U) ⊆ V, then we define the
k-form f #ψ on U by the formula

⟨v1 ∧ . . . ∧ vk, f #ψ(x)⟩ := ⟨∧kD f (x)(v1 ∧ . . . ∧ vk), ψ( f (x))⟩

for x ∈ U and v1, . . . , vk ∈ Rp. We refer to [14, 4.1.6] for the basic properties of f #. Functions
mapping a subset of U into

∧
k(R

p) are called k-vectorfields.
Suppose U ⊆ Rp is open and k ∈ N. A k-current is a continuous R-valued linear map

on Dk(U), with respect to the canonical LF-topology (inductive limit of Fréchet topologies) de-
scribed in [14, 4.1.1] and we denote the space of all k-currents on U by Dk(U). We say that a
sequence {Tℓ}ℓ∈N ⊂ Dk(U) weakly* converges to T ∈ Dk(U), and we write Tℓ → T, if

Tℓ(ϕ) → T(ϕ) for every ϕ ∈ Dk(U) .

If T is a k-current on U, then the boundary of T is the (k − 1)-current ∂T ∈ Dk−1(U) given by

∂T(ϕ) := T(dϕ) for every ϕ ∈ Dk(U) ,

if ∂T = 0 we call T a a cycle. The support of T is defined as

spt(T) := U \
⋃ {

V : V ⊆ U open and T(ϕ) = 0 for every ϕ ∈ Dk(V)} .

If T ∈ Dk(U) has compact support, then T can be naturally extended to a continuous linear
map on E k(U). If ψ ∈ E h(U), T ∈ Dk(U) and h ≤ k we set

(T ⌞ψ)(ϕ) := T(ψ ∧ ϕ) for every ϕ ∈ Dk−h(U) .

If T ∈ Dk(U), V is an open subset of Rq and f : U → V is a smooth map such that f | spt(T)
is proper, then noting that spt f #ϕ ⊆ f−1(spt ϕ) and f−1(spt ϕ) ∩ spt T is a compact subset
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of U for each ϕ ∈ Dk(V), we define f#T ∈ Dk(V) by the formula

f#T(ϕ) := T
[
γ ∧ f #ϕ

]
(1.2.8)

whenever ϕ ∈ Dk(V) and γ ∈ D0(U) with f−1(spt ϕ) ∩ spt T ⊆ Int
(
γ−1({1})

)
. If spt(T) is

a compact subset of U then f#T(ϕ) = T( f #ϕ) whenever ϕ ∈ E k(V). We refer to [14, 4.1.7] for
the basic properties of the map f#.

If W ⊆ U is an open subset, we define the mass of a k-current T ∈ Dk(U) on W as

MW(T) := sup
{

T(ϕ) : ϕ ∈ Dk(U) , sup
x∈U

|ϕ(x)| ≤ 1 , spt(ϕ) ⊂ W
}

.

Let T ∈ Dk(U) be such that MW(T) < ∞ for every open set W ⊂⊂ U. Then, as a conseguence
of the Riesz Representation Theorem, there exists a positive Radon measure ∥T∥ on U and a
∥T∥-measurable k-vectorfield #»τ : U → ∧k Rn such that

| #»τ (x)| = 1 for ∥T∥-a.e. x ∈ U ,

and the following representation by integration holds (cf. [56, 26.7])

T(ϕ) =
∫

U
⟨ #»τ (x), ϕ(x)⟩ d∥T∥(x) for every ϕ ∈ Dk(U) .

A particularly important class of currents, representable by integration, consists of those
associated with rectifiable sets. We say that a current T ∈ Dk(U) is a integer multiplicity locally
rectifiable k-current of U if

T(ϕ) =
∫

M
⟨ #»η (x), ϕ(x)⟩ dHk(x) for every ϕ ∈ Dk(U)

where M ⊂ U is an Hk-measurable and countably Hk-rectifiable set, while #»η is an (Hk ⌞ M)-
measurable k-vectorfield such that:

(i)
∫

K∩M | #»η | dHk < ∞ for every compact subset K of U;

(ii) #»η (x) is a simple and | #»η (x)| is a positive integer for Hk-a.e. x ∈ M;

(iii) Tank(Hk ⌞ M, x) is associated with #»η (x) for Hk-a.e. x ∈ M.

The set M is called carrier of T, it is Hk-almost uniquely determined by T and we denote
it by WT . Moreover, if we define the multiplicity and orientation of T, respectively as

iT := | #»η | and #»η T :=
#»η

| #»η | ,

then
T(ϕ) =

∫
WT

⟨ #»η T(x), ϕ(x)⟩ iT(x) dHk(x) for every ϕ ∈ Dk(U)

and it will be convenient to write T = iT(Hk ⌞WT) ∧ #»η T .

1.3 Legendrian currents and Minkowski-Hsiung identities

Here we introduce the notion of Legendrian cycles and we collect some fundamental facts.

Definition 1.3.2 (Contact 1-form). We say that α ∈ E1(Rn+1 × Rn+1) is the contact 1-form of
Rn+1 if

⟨(y, v), α(x, u)⟩ := y • u for every y, v, x, u ∈ Rn+1 .

Definition 1.3.3 (Legendrian current). Let Ω ⊆ Rn+1 × Rn+1 be an open set and let k ≥ 1 be an
integer. A current S ∈ Dk(Ω) is called Legendrian if S ⌞ α = 0.
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Definition 1.3.4 (Legendrian cycle). Let W ⊆ Rn+1 be an open set. We say that an integer-
multiplicity locally rectifiable n-current T of W × Rn+1 is a Legendrian cycle of W if the following
three conditions are satisfied:

(i) spt(T) ⊆ W × Sn;

(ii) ∂T = 0;

(iii) T ⌞ α = 0.

Lemma 1.3.5. Suppose W1, . . . , Wm ⊂ Rn+1 are bounded open sets and T ∈ Dn(Rn+1 × Rn+1)
such that T ⌞(Wi × Rn+1) is a Legendrian cycle of Wi for every i ∈ {1, . . . , m} and spt(T) is a
compact subset of

⋃m
i=1 Wi × Sn. Then T is a Legendrian cycle of Rn+1.

Proof. For every i ∈ {1, . . . , m} choose an open set Vi with compact closure in Wi and a
function fi ∈ C∞

c (Rn+1) such that spt( fi) is a compact subset of Wi , ∑m
i=1 fi(x) = 1 for every

x ∈ ⋃m
i=1 Vi and spt(T) ⊆ ⋃m

i=1 Vi × Sn. Then T = T ⌞(∑m
i=1 fi ◦ π0), ∑m

i=1 d( fi ◦ π0) = 0 on⋃m
i=1 Vi × Sn,

(T ⌞ α)(ϕ) =
m

∑
i=1

(T ⌞ α)
(
( fi ◦ π0)ϕ

)
= 0

and

∂T(ϕ) =
m

∑
i=1

∂T
(
( fi ◦ π0)ϕ

)
− T

((
∑m

i=1d( fi ◦ π0)
)
∧ ϕ
)
= 0 ,

for every ϕ ∈ Dn−1(Rn+1 × Rn+1). The proof is complete.

Definition 1.3.6 (Lipschitz-Killing forms). For k ∈ {0, . . . , n} the k-th Lipschitz-Killing differ-
ential form φk ∈ En(Rn+1 × Rn+1) is defined by

⟨ξ1 ∧ . . . ∧ ξn, φk(x, u)⟩ := ∑
σ∈Σn,k

⟨πσ(1)(ξ1) ∧ . . . ∧ πσ(n)(ξn) ∧ u, dX1 ∧ . . . ∧ dXn+1⟩ ,

for every ξ1, . . . , ξn ∈ Rn+1 × Rn+1. Where

Σn,k :=
{

σ : {1, . . . , n} → {0, 1}
∣∣ n

∑
i=1

σ(i) = n − k
}

.

The Radon measures T ⌞ φi, where i ∈ {0, . . . , n} and T is a n-dimensional Legendrian
cycle of Rn+1, are called curvature measures of T. In [17], Joseph Fu derived a simple for-
mula for the first variation of the measures T ⌞ φi, even in the more general setting of space
forms, hence generalizing a well known result obtained by Reilly (cf. [45]) for smooth sub-
manifolds. Fu’s elegant proof of this formula employs the Maurer-Cartan forms of the Lie
algebra associated with the space form to compute the exterior derivative of the Lipschitz-
Killing forms (cf. [17, pp. 183-185]). On the other hand, it is also possible to compute such
exterior derivatives in a somewhat more direct way, without relying on any Lie algebra the-
ory. In the following lemma, we present such a computation. For completeness, we also
provide a full proof of Lemma 1.3.11, following Fu’s original approach.

We recall that, for 1 ≤ k ≤ m, the set Λ(m, k) denotes the collection of all increasing maps
from {1, . . . , k} into {1, . . . , m}.

Lemma 1.3.7. [17, Lemma 3.1]. The exterior derivatives of the Lipschitz-Killing differential forms
satisfy the following relations

⟨ξ1 ∧ . . . ∧ ξn+1, dφk(x, u)⟩ = ⟨ξ1 ∧ . . . ∧ ξn+1, α(x, u) ∧ (n − k + 1)φk−1(x, u)⟩ (1.3.9)

for k ∈ {1, . . . , n}, and
⟨ξ1 ∧ . . . ∧ ξn+1, dφ0(x, u)⟩ = 0 , (1.3.10)

whenever ξ1, . . . , ξn+1 ∈ Tan
(
Rn+1 × Sn, (x, u)

)
and (x, u) ∈ Rn+1 × Sn.
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Proof. We fix (x, u) ∈ Rn+1 × Sn. Suppose k ∈ N≥1 and notice that

φk : Rn+1 × Rn+1 → ∧n(Rn+1 × Rn+1)

is a linear map. Therefore, we compute (cf. [14, p. 352])

⟨ξ1 ∧ . . . ∧ ξn+1, dφk(x, u)⟩ (1.3.11)

=
n+1

∑
j=1

(−1)j−1 〈ξ1 ∧ . . . ∧ ξ j−1 ∧ ξ j+1 ∧ . . . ∧ ξn+1, ⟨ξ j, Dφk(x, u)⟩
〉

=
n+1

∑
j=1

(−1)j−1 〈ξ1 ∧ . . . ∧ ξ j−1 ∧ ξ j+1 ∧ . . . ∧ ξn+1, φk(ξ j)
〉

=
n+1

∑
j=1

(−1)j−1 ∑
σ∈Σn,k

⟨πσ(1)(ξ1) ∧ . . . ∧ πσ(j−1)(ξ j−1) ∧ πσ(j)(ξ j+1) ∧ . . .

. . . ∧ πσ(n)(ξn+1) ∧ π1(ξ j), Ωn+1⟩

= (−1)n
n+1

∑
j=1

∑
σ∈Σn,k

⟨πσ(1)(ξ1) ∧ . . . ∧ πσ(j−1)(ξ j−1) ∧ π1(ξ j) ∧ πσ(j)(ξ j+1) ∧ . . .

. . . ∧ πσ(n)(ξn+1), Ωn+1⟩

for ξ1, . . . , ξn+1 ∈ Rn+1 × Rn+1. Letting pu : Rn+1 → Rn+1 be the orthogonal projection
onto span{u}, we use the shuffle formula (cf. [14, 1.4.2]) to compute

⟨ξ1 ∧ . . . ∧ ξn+1, α(x, u) ∧ φk−1(x, u)⟩ (1.3.12)

=
n+1

∑
j=1

(−1)j−1 ⟨ξ j, α(x, u)⟩ ⟨ξ1 ∧ . . . ∧ ξ j−1 ∧ ξ j+1 ∧ . . . ∧ ξn+1, φk−1(x, u)⟩

=
n+1

∑
j=1

(−1)j−1 ∑
σ∈Σn,k−1

⟨πσ(1)(ξ1) ∧ . . . ∧ πσ(j−1)(ξ j−1) ∧ πσ(j)(ξ j+1) ∧ . . .

. . . ∧ πσ(n)(ξn+1) ∧ (π0(ξ j) • u) u, Ωn+1⟩

= (−1)n
n+1

∑
j=1

∑
σ∈Σn,k−1

⟨πσ(1)(ξ1) ∧ . . . ∧ πσ(j−1)(ξ j−1) ∧ pu
(
π0(ξ j)

)
∧ πσ(j)(ξ j+1) ∧ . . .

. . . ∧ πσ(n)(ξn+1), Ωn+1⟩

whenever ξ1, . . . , ξn+1 ∈ Rn+1 × Rn+1. Suppose {τ1, . . . , τn} ⊂ u⊥ is an orthonormal set, we
define

vi := (τi, 0) for i ∈ {1, . . . , n} , vi := (0, τi−n) for i ∈ {n + 1, . . . , 2n} , v2n+1 := (u, 0)

and we notice that {v1, . . . , v2n+1} is an orthonormal basis of

Tan
(
Rn+1 × Sn, (x, u)

)
= Rn+1 × Tan(Sn, u) = Rn+1 × u⊥ .

Then we define

vλ = vλ(1) ∧ . . . ∧ vλ(n+1) whenever λ ∈ Λ(2n + 1, n + 1)

and, recalling that {vλ : λ ∈ Λ(2n + 1, n + 1)} is a basis of
∧

n+1(R
n+1 × u⊥) (cf. [14, 1.3.2]),

we notice that (1.3.9) reduces to check

⟨vλ, dφk(x, u)⟩ = (n − k + 1) ⟨vλ, α(x, u) ∧ φk−1(x, u)⟩

whenever λ ∈ Λ(2n + 1, n + 1).
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First, if λ ∈ Λ(2n + 1, n + 1) and 2n + 1 /∈ Im(λ), it follows that pu(π0(vλ(j))) = 0 for
every j ∈ {1, . . . , n + 1}. Hence, from (1.3.12), we infer

⟨vλ, α(x, u) ∧ φk−1(x, u)⟩ = 0 .

Furthermore, in (1.3.11), for each j ∈ {1, . . . , n + 1} and each σ ∈ Σn,k, the vectors

{πσ(1)(vλ(1)), . . . , πσ(j−1)(vλ(j−1)), π1(vλ(j)), πσ(j)(vλ(j+1)), πσ(n)(vλ(n+1))}

are linearly dependent. Therefore

⟨vλ, dφk(x, u)⟩ = 0 .

Now, assume that λ ∈ Λ(2n+ 1, n+ 1) where 2n+ 1 ∈ Im(λ), namely λ(n+ 1) = 2n+ 1.
Since π1(vλ(j)) = 0 if j ∈ λ−1{1, . . . , n, 2n + 1}, we apply (1.3.11) to deduce

⟨vλ, dφk(x, u)⟩
= (−1)n ∑

j∈λ−1{n+1,...,2n}
∑

σ∈Σn,k
σ(n)=0

⟨πσ(1)(vλ(1)) ∧ . . . ∧ πσ(j−1)(vλ(j−1)) ∧ τλ(j)−n ∧ πσ(j)(vλ(j+1)) ∧ . . .

. . . ∧ πσ(n−1)(vλ(n)) ∧ u, Ωn+1⟩

and, since pu(π0(vλ(n+1))) = u and pu(π0(vλ(j))) = 0 if j ∈ {1, . . . , n}, we infer from (1.3.12)

⟨vλ, α(x, u) ∧ φk−1(x, u)⟩
= (−1)n ∑

σ∈Σn,k−1

⟨πσ(1)(vλ(1)) ∧ . . . ∧ πσ(n)(vλ(n)) ∧ u, Ωn+1⟩ .

Obviously, if H0(λ−1{1, . . . , n}
)
̸= k − 1, we obtain that

⟨vλ, dφk(x, u)⟩ = ⟨vλ, α(x, u) ∧ φk−1(x, u)⟩ = 0 .

Whereas, if H0(λ−1{1, . . . , n}
)
= k− 1 (i.e. H0(λ−1{n+ 1, . . . , 2n}

)
= n− k+ 1), we deduce

that there exists an unique σ ∈ {σ ∈ Σn,k : σ(n) = 0} such that

⟨vλ, dφk(x, u)⟩
= (−1)n ∑

j∈λ−1{n+1,...,2n}
⟨τλ(1) ∧ . . . ∧ τλ(k−1) ∧ τλ(k)−n ∧ . . . ∧ τλ(n)−n ∧ u, Ωn+1⟩

= (−1)n (n − k + 1) ⟨τλ(1) ∧ . . . ∧ τλ(k−1) ∧ τλ(k)−n ∧ . . . ∧ τλ(n)−n ∧ u, Ωn+1⟩ .

Similarly, there exists an unique σ ∈ Σn,k−1 such that

⟨vλ, α(x, u) ∧ φk−1(x, u)⟩
= (−1)n ⟨τλ(1) ∧ . . . ∧ τλ(k−1) ∧ τλ(k)−n ∧ . . . ∧ τλ(n)−n ∧ u, Ωn+1⟩ .

Furthermore, from (1.3.11), and since H0({i : π1(vi) ̸= 0}) = n, we deduce that

⟨vλ, dφ0(x, u)⟩ = (−1)n (n + 1) ⟨
n+1∧
i=1

π1(vλ(i)), Ωn+1⟩ = 0

for every λ ∈ Λ(2n + 1, n + 1). The proof is complete.

Definition 1.3.8. (Local variation). Given ϵ > 0 and a smooth map

F : Rn+1 × (−ϵ, ϵ) → Rn+1 .

We say that {Ft}t∈(−ϵ,ϵ), where Ft(x) := F(x, t), is a local variation of Rn+1 if, for every fixed
t ∈ (−ϵ, ϵ), the map Ft : Rn+1 → Rn+1 is a diffeomorphism and F0 is the identity of Rn+1. For
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such local variation we define the initial velocity field V by

V(x) := lim
t→0

Ft(x)− x
t

for x ∈ Rn+1.

Given a C2-diffeomorphism F : U → V between open subsets of Rn+1, we define the
C1-diffeomorphism ΨF : Rn+1 × Sn → Rn+1 × Sn by

ΨF(x, u) :=
(

F(x),
(DF(x)−1)∗(u)
|(DF(x)−1)∗(u)|

)
for (x, u) ∈ Rn+1 × Sn . (1.3.13)

Example 1.3.9. The smooth map

Ft(x) := etx for (x, t) ∈ Rn+1 × R ,

defines a local variation of Rn+1. In this case, V = id|Rn+1 and

ΨFt(x, y) = (etx, y) for (x, y, t) ∈ Rn+1 × Rn+1 × R .

Definition 1.3.10. We define Rn+1
0 := Rn+1 \ {0}. Given a local variation {Ft}t∈(−ϵ,ϵ), we intro-

duce the smooth map h : Rn+1 × Rn+1
0 × (−ϵ, ϵ) → Rn+1 × Rn+1 by setting (cf. (1.3.13))

h(x, u, t) := ΨFt(x, u) for (x, u, t) ∈ Rn+1 × Rn+1
0 × (−ϵ, ϵ) ,

and we notice that h(x, u, 0) = (x, u) for (x, u) ∈ Rn+1 × Rn+1
0 . Moreover, we define

p : Rn+1 × Rn+1 × R → Rn+1 × Rn+1, p(x, u, t) := (x, u) ,

q : Rn+1 × Rn+1 × R → R , q(x, u, t) := t ,

P : Rn+1 × Rn+1 → Rn+1 × Rn+1 × R , P(x, u) := (x, u, 0) .

Lemma 1.3.11. Suppose T is a Legendrian cycle of Rn+1 with compact support, {Ft}t∈(−ϵ,ϵ) is a
local variation of Rn+1 with initial velocity field V and

θV : (x, y) ∈ Rn+1 × Rn+1 7→ V(x) • y ∈ R ,

θ : (x, y) ∈ Rn+1 × Rn+1 7→ x • y ∈ R .

Then
d
dt
[
(ΨFt)#T

]
(φk)

∣∣∣
t=0

= (n + 1 − k) T(θV φk−1) for k ∈ {1, . . . , n}

and
d
dt
[
(ΨFt)#T

]
(φ0)

∣∣∣
t=0

= 0 .

In particular, T satisfies the following Minkowski-Hsiung identities

k T(φk) = (n + 1 − k) T(θ φk−1) , (1.3.14)

for k ∈ {1, . . . , n}.

Proof. Firstly, we observe that

h#α ◦ P =
(

p#α + θV dq
)
◦ P , (1.3.15)(

h# φk ∧ dq
)
◦ P =

(
p# φk ∧ dq

)
◦ P (1.3.16)

and, if {Ft}t∈R is the local variation in Example 1.3.9, then for a fixed t ∈ R we have

(ΨFt)
# φk = ekt φk for k ∈ {0, . . . , n} . (1.3.17)

To prove the relations (1.3.15) and (1.3.16), we choose an orthonormal basis {w1, . . . , w2n+3}
of Rn+1 ×Rn+1 ×R ≃ R2n+3, whose dual basis is {w′

1, . . . , w′
2n+3} and satisfies w′

2n+3 = dq.
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Moreover, we define

wµ := wµ(1) ∧ . . . ∧ wµ(n) , w′
µ := w′

µ(1) ∧ . . . ∧ w′
µ(n)

whenever µ ∈ Λ(m, l) for l ≤ m ≤ 2n + 3. Since h ◦ P = p, we note that

Dh(x, u, 0)(wi) = p(wi) whenever i ∈ {1, . . . , 2n + 2}

and
⟨Dh(x, u, 0)(w2n+3), α(x, u)⟩ = V(x) • u = θV(x, u) ,

for (x, u) ∈ Rn+1 × Rn+1. Thus, recalling [14, 1.4.3], we compute

h#α(x, u, 0) =
2n+3

∑
i=1

⟨wi, h#α(x, u, 0)⟩w′
i

=
2n+2

∑
i=1

⟨p(wi), α(x, u)⟩w′
i + θV(x, u)w′

2n+3

and

h# φk (x, u, 0) = ∑
λ∈Λ(2n+3,n)

⟨wλ, h# φk (x, u, 0)⟩w′
λ

= ∑
λ∈Λ(2n+2,n)

⟨∧n p(wλ), φk (x, u)⟩w′
λ

+ ∑
λ∈Λ(2n+2,n−1)

⟨∧nDh(x, u, 0)(wλ ∧ w2n+3), φk (x, u)⟩w′
λ ∧ w′

2n+3

for (x, u) ∈ Rn+1 × Rn+1, whence we readily infer (1.3.15) and (1.3.16).
Now, to prove (1.3.17), let {eee1, . . . , eee2n+2} be the canonical basis of Rn+1 × Rn+1, whose

dual basis is {eee′1, . . . , eee′2n+2}. For any µ ∈ Λ(2n + 2, n), we define

eeeµ := eeeµ(1) ∧ . . . ∧ eeeµ(n) , eee′µ := eee′µ(1) ∧ . . . ∧ eee′µ(n) .

Since ΨFt(x, y) = (etx, y), we infer that

D(ΨFt)(x, y)(eeej) =

{
eteeej if j ≤ n + 1
eeej if j ≥ n + 2

for j ∈ {1, . . . , 2n + 2} .

Then, for every fixed λ ∈ Λ(2n + 2, n) and for (x, y) ∈ Rn+1 × Rn+1, from Definition 1.3.6
we deduce that

⟨D(ΨFt)(x, y)(eeeλ(1)) ∧ . . . ∧ D(ΨFt)(x, y)(eeeλ(n)), φk(etx, y)⟩ ̸= 0

if and only if H0({m ∈ {1, . . . , n} : λ(m) ≤ n + 1
})

= k. In that case

⟨D(ΨFt)(x, y)(eeeλ(1)) ∧ . . . ∧ D(ΨFt)(x, y)(eeeλ(n)), φk(etx, y)⟩

= ekt ⟨
k∧

j=1

π0(eeeλ(j)) ∧
n∧

j=k+1

π1(eeeλ(j)) ∧ y, dX1 ∧ . . . ∧ dXn+1⟩ .

Overall, since φk depends only on the second coordinate, we conclude that (cf. [14, 1.4.3])

(ΨFt)
# φk(x, y) = ∑

λ∈Λ(2n+2,n)
⟨eeeλ , (ΨFt)

# φk(x, y)⟩ eee′λ

= ∑
λ∈Λ(2n+2,n)

⟨
[∧

n
D(ΨFt)(x, y)

]
(eeeλ) , φk(etx, y)⟩ eee′λ
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= ekt ∑
λ∈Λ(2n+2,n)

⟨eeeλ, φk(etx, y)⟩ eee′λ = ekt φk(x, y) .

Suppose that T has the form T = iT(Hk ⌞WT) ∧ #»η T (cf. section 1.2, p. 14), that is

T(ϕ) =
∫

WT

⟨ #»η T(x, u), ϕ(x, u)⟩ iT(x, u) dHn(x, u) for each ϕ ∈ Dn(Rn+1 × Rn+1) .

For t > 0, we define J0, tK ∈ D1(R) by the formula

J0, tK(α) :=
∫ 1

0
⟨t, α(st)⟩ dL1(s) =

∫ t

0
⟨1, α(s)⟩ dL1(s) for α ∈ E1(R) .

Denoting by T × J0, tK ∈ Dn+1(R
n+1 × Rn+1 × R) the cartesian product of T and J0, tK, we

use [14, 4.1.8] to compute

(
T × J0, tK

)
(ϕ) =

∫
WT

∫ t

0

〈 #»

ζ T(x, u), ϕ(x, u, s)
〉

dH1(s) dHn(x, u)

whenever ϕ ∈ En+1(Rn+1 × Rn+1 × R), where

#»

ζ T(x, u) :=
(∧

nP
)(

iT(x, u) #»η T(x, u)
)
∧ w2n+3 for Hn-a.e. (x, u) ∈ WT .

Employing [14, 4.1.8, 4.1.9] and taking into account that ∂T = 0, we derive the homotopy
formula (

ΨFt

)
#T − T = (−1)n ∂

[
h#(T × J0, tK)

]
.

Since spt
(
h#
(
T × J0, tK

))
⊆ Rn+1 × Sn we use Lemma 1.3.7 to compute[(

ΨFt

)
#T − T

]
(φk) = (−1)n (n − k + 1) h#(T × J0, tK)(α ∧ φk−1)

= (−1)n (n − k + 1)
∫

WT

∫ t

0

〈 #»

ζ T(x, u), (h#α ∧ h# φk−1)(x, u, s)
〉

dH1(s) dHn(x, u)

whence we infer that

lim
t→0

[(
ΨFt

)
#T − T

]
(φk)

t

= (−1)n (n − k + 1)
∫

WT

〈 #»

ζ T(x, u), (h#α ∧ h# φk−1)(x, u, 0)
〉

dHn(x, u) .

Using (1.3.15) and (1.3.16) we deduce that〈 #»

ζ T(x, u), (h#α ∧ h# φk−1)(x, u, 0)
〉

= ⟨ #»

ζ T(x, u), (p#α ∧ h# φk−1)(x, u, 0)⟩+ ⟨ #»

ζ T(x, u), θV(x, u) (dq ∧ p# φk−1)(x, u, 0)⟩

for Hn-a.e. (x, u) ∈ WT . Moreover, noting that p(w2n+3) = 0 and ⟨τ, α(x, u)⟩ = 0 whenever
τ ∈ Tann(Hn ⌞WT , (x, u)) for Hn-a.e. (x, u) ∈ WT by [42, Theorem 9.2], we obtain that

⟨ #»

ζ T(x, u), (p#α ∧ h# φk−1)(x, u, 0)⟩ = 0 for Hn-a.e. (x, u) ∈ WT

and employing the shuffle formula (cf. [14, 1.4.2]) we compute

⟨ #»

ζ T(x, u), θV(x, u) (dq ∧ p# φk−1)(x, u, 0)⟩
= (−1)n θV(x, u) ⟨

(∧
nP
)(

iT(x, u) #»η T(x, u)
)
, p# φk−1(x, u, 0)⟩

= (−1)n θV(x, u) iT(x, u) ⟨ #»η T(x, u), φk−1(x, u)⟩
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for Hn-a.e. (x, u) ∈ WT . Moreover, from (1.3.10), we obtain

d
dt
[
(ΨFt)#T

]
(φ0)

∣∣∣
t=0

= (−1)n lim
t→0

[h#(T × J0, tK)
]
(dφ0)

t
= 0 .

If {Ft}t∈R is the one-parameter family in Example 1.3.9 we can directly compute the first
variation. Indeed, for every k ∈ {1, . . . , n}, by applying (1.3.17), we have

(n + 1 − k) T(θφk−1) = lim
t→0

[
(ΨFt)#T − T

]
(φk)

t

= lim
t→0

T
(
(ΨFt)

# φk
)
− T(φk)

t

= lim
t→0

T(ekt φk
)
− T(φk)

t

= k T(φk) lim
t→0

ekt − 1
kt

= k T(φk) .

The proof is complete.

The following result describes the approximate tangent space of the carrier of a Legen-
drian cycle.

Theorem 1.3.12 (cf. [42, Theorem 9.2]). Let T be a Legendrian cycle of Rn+1, with carrier WT .
For Hn-a.e. (x, u) ∈ WT there exist numbers

−∞ < κ1(x, u) ≤ . . . ≤ κn(x, u) ≤ +∞

and vectors τ1(x, u), . . . , τn(x, u) such that {τ1(x, u), . . . , τn(x, u), u} is a positively oriented or-
thonormal basis of Rn+1 (i.e. ⟨∧n

i=1τi(x, u) ∧ u, dX1 ∧ . . . ∧ dXn+1⟩ = 1) and the vectors

ξi(x, u) :=

{ (
τi(x, u), κi(x, u)τi(x, u)

)
if κi(x, u) < +∞(

0, τi(x, u)
)

if κi(x, u) = +∞
i ∈ {1, . . . , n}

form an orthogonal basis of Tann(Hn ⌞Q, (x, u)
)

for every Hn-measurable set Q ⊆ WT with
Hn(Q) < ∞ and for Hn-a.e. (x, u) ∈ Q.

The maps κ1, . . . , κn are (Hn ⌞WT)-almost uniquely determined, as well as the substaces of Rn+1

spanned by vectors τj(x, u) belonging to a fixed value among the κi(x, u) (i ∈ {1, . . . , n}) is uniquely
determinated.

Definition 1.3.13. Given T, {τ1, . . . , τn} and {ξ1, . . . , ξn} as in Theorem 1.3.12, we define

#»

ξ T(x, u) :=
ξ1(x, u) ∧ . . . ∧ ξn(x, u)
|ξ1(x, u) ∧ . . . ∧ ξn(x, u)| ∈

∧
n
(Rn+1 × Rn+1) ,

ζT(x, u) :=
1

|ξ1(x, u) ∧ . . . ∧ ξn(x, u)| ∈ (0,+∞) ,

for Hn-a.e. (x, u) ∈ WT .

Remark 1.3.14. This definition is well-posed, in the sense that
#»

ξ T and ζT do not depend, up
to a set of Hn-measure zero, on the choice of {τ1, . . . , τn} (cf. [52, Remark 3.1]).

Definition 1.3.15 (Principal curvatures of Legendrian cycles). Let T be a Legendrian cycle of
Rn+1, with carrier WT . We define the principal curvatures of T as KT,i := κi , where κ1 ≤ . . . ≤ κn
are the functions defined Hn-a.e. on WT given by Theorem 1.3.12.

Definition 1.3.16 (k-th mean curvature of Legendrian cycles). Let T be a Legendrian cycle of
Rn+1, with carrier ΣT . We define the sets

W(i)
T :=

{
(x, u) ∈ WT : KT,i(x, u) < +∞ , KT,i+1(x, u) = +∞} for i ∈ {1, ..., n − 1} ,
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W(0)
T :=

{
(x, u) ∈ WT : KT,1(x, u) = +∞} ,

W(n)
T :=

{
(x, u) ∈ ΣT : KT,n(x, u) < +∞} .

Then we define the k-th mean curvature function of T as

HT,k := 111
W(n−k)

T
+

k

∑
i=1

∑
λ∈∧(n−k+i,i)

KT,λ(1) . . . KT,λ(i) 111
W(n−k+i)

T
for k ∈ {1, . . . , n} ,

HT,0 := 111
W(n)

T
.

The definition of mean curvature functions is motivated by the following result.

Lemma 1.3.17 (cf. [52, Lemma 3.2]). If T = iT(Hn ⌞WT) ∧ #»η T is a Legendrian cycle of Rn+1

and k ∈ {0, . . . , n}, then

(T ⌞ φk)(ϕ) =
∫

WT

ϕ(x, u)iT(x, u)ζT(x, u)HT,n−k(x, u) dHn(x, u)

for every ϕ ∈ D0(Rn+1 × Rn+1).

Corollary 1.3.18 (Minkowski-Hsiung identities for Legendrian cycles).
Let T = iT(Hn ⌞WT) ∧ #»η T be a Legendrian cycle of Rn+1, with compact support. Then, for any
k ∈ {1, . . . , n}, we have∫

WT

(
k HT,k(x, u) θ(x, u)− (n + 1 − k) HT,k−1(x, u)

)
iT(x, u) ζT(x, u) dHn(x, u) = 0 ,

where θ(x, y) := x • y for x, y ∈ Rn+1.

Proof. Since T has compact support, from Lemma 1.3.17, we infer

T(φj) =
∫

WT

iT(x, u)ζT(x, u)HT,n−j(x, u) dHn(x, u) ,

T(θφj−1) =
∫

WT

θ(x, u)iT(x, u)ζT(x, u)HT,n+1−j(x, u) dHn(x, u) ,

for j ∈ {1, . . . , n}. Applying the Minkowski-Hsiung identities (1.3.14), we deduce

j
∫

WT

iT(x, u)ζT(x, u)HT,n−j(x, u) dHn(x, u)

= (n + 1 − j)
∫

WT

θ(x, u)iT(x, u)ζT(x, u)HT,n+1−j(x, u) dHn(x, u) .

Setting n + 1 − j = k, we obtain the desidered result.

1.4 The proximal unit normal bundle

For an arbitrary nonempty subset C ⊆ Rn+1 we define the distance function δδδC from C as

δδδC : x ∈ Rn+1 7→ inf
{
|x − a| : a ∈ C

}
∈ [0,+∞) .

Definition 1.4.19. (Proximal unit normal bundle; cf. [46, p. 212]). Given C ⊆ Rn+1, we define
the proximal unit normal bundle of C as the set

nor(C) :=
{
(x, ν) ∈ C × Sn : δδδC(x + sν) = s for some s > 0

}
.

Moreover, we define

nor(C, x) :=
{

ν ∈ Sn : (x, ν) ∈ nor(C)
}

for x ∈ C

nor(C) ⌞ E :=
{
(x, ν) ∈ nor(C) : x ∈ E

}
for E ⊆ Rn+1 .
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Notice that nor(C) = nor(C). We recall that nor(C) is a Borel set and it is always count-
ably Hn-rectifiable (cf. [51, Remark 4.3]1). Moreover, we say that nor(C) satisfies the Lusin
(N)-property on E ⊂ Rn+1 if Hn(nor(C) ⌞ E) = 0, provided that Hn(E) = 0.

It is proved in [51] that there exists a subset ñor(C) of nor(C) (cf. [51, Definition 4.4]), where
Hn(nor(C) \ ñor(C)

)
= 0 (cf. [51, Remark 4.5]), such that for every (x, u) ∈ ñor(C) there

exists a linear subspace TC(x, u) of u⊥ and a symmetric bilinear form

QC(x, u) : TC(x, u)× TC(x, u) → R ,

whose eigenvalues can be used to provide an explicit representation of the approximate
tangent space of nor(C) at Hn-a.e. points. To this end, for every (x, u) ∈ ñor(C), we define

−∞ < κ1(x, u) ≤ . . . ≤ κn(x, u) ≤ +∞

in the following way:

κ1(x, u), . . . , κm(x, u) are the eigenvalues of QC(x, u),
where m = dim TC(x, u), and κi(x, u) = +∞ for any i ∈ {m + 1, . . . , n} .

The following lemma is a simple extension of well known results for sets of positive reach
(cf. [42, Proposition 4.23 and Lemma 4.24]).

Lemma 1.4.20. Suppose C ⊆ Rn+1. Then, for Hn-a.e. (x, u) ∈ nor(C), there exist the vec-
tors τ1(x, u), . . . , τn(x, u) ∈ Rn+1 such that: {τ1(x, u), . . . , τn(x, u), u} is a positively oriented
orthonormal basis of Rn+1 (i.e. ⟨∧n

i=1τi(x, u) ∧ u, dX1 ∧ . . . ∧ dXn+1⟩ = 1) and the vectors

ξi(x, u) :=
(

1√
1 + κi(x, u)2

τi(x, u),
κi(x, u)√

1 + κi(x, u)2
τi(x, u)

)
i ∈ {1, . . . , n}

form an orthonormal basis of Tann(Hn ⌞Q, (x, u)) for every Hn-measurable set Q ⊆ nor(C) with
Hn(Q) < ∞ and for Hn-a.e. (x, u) ∈ Q (we set 1

∞ = 0 and ∞
∞ = 1).

The maps κ1, . . . , κn can be chosen to be
(
Hn ⌞nor(C)

)
-measurable and they are

(
Hn ⌞nor(C)

)
-

almost uniquely determined.

Proof. The existence part of the statement and the measurability property are discussed in
[51, Section 4] and [24, Section 3] (see in particular [24, Remark 3.7]). While uniqueness can
be proved as in [42, Lemma 4.24].

Definition 1.4.21. Suppose C ⊆ Rn+1, we denote by κC,1, . . . , κC,n the
(
Hn ⌞nor(C)

)
-measurable

maps given by Lemma 1.4.20.

Definition 1.4.22 (Reach function of C). Suppose C ⊆ Rn+1, we define the reach function of C,
at (x, u) ∈ nor(C), as

rrrC(x, u) := sup
{

r > 0 : δδδC(x + ru) = r
}

.

Remark 1.4.23. Let C ⊆ Rn+1. Given (x, u) ∈ ñor(C) and r > 0 such that δδδC(x + ru) = r,
we have that (cf. [51, Lemma 4.8])

QC(x, u)(τ, τ) ≥ −|τ|2
r

whenever τ ∈ TC(x, u) .

1The proximal unit normal bundle of a closed set C, as defined in [51], is denoted with N(C).
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Therefore, for every (x, u) ∈ ñor(C), we deduce that

− 1
rrrC(x, u)

≤ κC,i(x, u) ≤ +∞ for every i ∈ {1, . . . , n} .

Definition 1.4.24. For Hn-a.e. (x, u) ∈ nor(C) we define

#»

ξ C(x, u) :=
ξC,1(x, u) ∧ . . . ∧ ξC,n(x, u)
|ξC,1(x, u) ∧ . . . ∧ ξC,n(x, u)| ∈

∧
n
(Rn+1 × Rn+1) ,

ζC(x, u) := |ξC,1(x, u) ∧ . . . ∧ ξC,n(x, u)|−1 ∈ (0,+∞) ,

where, for any i ∈ {1, . . . , n} and with the notations of Lemma 1.4.20 and Definition 1.4.21, we set

ξC,i(x, u) :=

{ (
τi(x, u), κC,i(x, u)τi(x, u)

)
if κC,i(x, u) < +∞(

0, τi(x, u)
)

if κC,i(x, u) = +∞

for Hn-a.e. (x, u) ∈ nor(C).

Remark 1.4.25. The definitions of
#»

ξ C and ζC does not depend on the choice of {τ1, . . . , τn}, if
the latter is consistent with Lemma 1.4.20. To prove this assertion let us assume that there ex-
ist two choices, {τ1, . . . , τn} and {τ′

1, . . . , τ′
n}, which satisfy Lemma 1.4.20 at (x, u) ∈ nor(C)

and we show that
n∧

i=1

ξC,i(x, u) =
n∧

i=1

ξ ′C,i(x, u) , (1.4.18)

where the vectors {ξC,1(x, u), . . . , ξC,n(x, u)} and {ξ ′C,1(x, u), . . . , ξ ′C,n(x, u)}, given by

ξC,i :=

{ (
τi, κC,iτi

)
if κC,i < +∞

(0, τi) if κC,i = +∞
ξ ′C,i :=

{ (
τ′

i , κC,iτ
′
i
)

if κC,i < +∞
(0, τ′

i ) if κC,i = +∞
,

form two orthogonal bases of Tann(Hn ⌞Q, (x, u)) (see statement of Lemma 1.4.20).
First, we assume that κC,1(x, u) = +∞. Since

∧
n(π1|{0}n+1 × u⊥) is injective and2

[∧
n
(π1|{0}n+1 × u⊥)

]( n∧
i=1

ξC,i(x, u)
)
=

n∧
i=1

π1
(
ξC,i(x, u)

)
=

n∧
i=1

τi(x, u) = ∗∗∗u =
n∧

i=1

τ′
i (x, u)

=
n∧

i=1

π1
(
ξ ′C,i(x, u)

)
=
[∧

n
(π1|{0}n+1 × u⊥)

]( n∧
i=1

ξ ′C,i(x, u)
)

,

we infer that
∧n

i=1 ξC,i(x, u) =
∧n

i=1 ξ ′C,i(x, u). Now, assume that there exist m ∈ {1, . . . , n}
such that

κC,m(x, u) < +∞ and κC,m+1(x, u) = +∞ (if m ∈ {1, . . . , n − 1}) .

Therefore, for any 0 < t < rrrC(x, u) and i ∈ {1, . . . , m}, we have

−1
t
< − 1

rrrC(x, u)
≤ κC,i(x, u) < +∞ ⇒ 1 + t κC,i(x, u) ∈ (0,+∞) .

Since
∧

n
(
(π0 + tπ1)|T

)
is injective, where T := Tann(Hn ⌞Q, (x, u)

)
, and

[∧
n

(
(π0 + tπ1)|T

)]( n∧
i=1

ξC,i(x, u)
)

2Let us consider ∗∗∗ : Rn+1 → ∧
n Rn+1 the Hodge-star operator, with respect to eee1 ∧ . . . ∧ eeen+1 (cf. [14, 1.7.8] or

[19, 4.1.3]). If u ∈ Sn and {τ1, . . . , τn} is an orthonomal basis of u⊥, such that u ∧ τ1 ∧ . . . ∧ τn = eee1 ∧ . . . ∧ eeen+1, then
it follows from the shuffle formula [14, p. 18] that ∗∗∗u = τ1 ∧ . . . ∧ τn .
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=
n∧

i=1

(π0 + t π1)
(
ξC,i(x, u)

)
= tn−m

m

∏
i=1

(
1 + t κC,i(x, u)

) n∧
i=1

τi(x, u)

= tn−m
m

∏
i=1

(
1 + t κC,i(x, u)

)
∗∗∗u = tn−m

m

∏
i=1

(
1 + t κC,i(x, u)

) n∧
i=1

τ′
i (x, u)

=
[∧

n

(
(π0 + tπ1)|T

)]( n∧
i=1

ξ ′C,i(x, u)
)

,

we infer that
∧n

i=1 ξC,i(x, u) =
∧n

i=1 ξ ′C,i(x, u).

The following Heintze-Karcher type inequality for arbitrary closed sets is proved in [24].

Theorem 1.4.26 (cf. [24, Theorem 3.20]). Let C ⊂ Rn+1 be a bounded closed set with non empty
interior. Let K = Rn+1 \ Int(C) and assume that

n

∑
i=1

κK,i(x, u) ≤ 0 , for Hn-a.e. (x, u) ∈ nor(K) .

Then

(n + 1)Ln+1(Int(C)
)
≤
∫

nor(K)
Jnor(K)
n π0(x, u)

n
|∑n

i=1 κK,i(x, u)| dHn(x, u) .

Moreover, if the equality holds and there exists q < +∞ such that |∑n
i=1 κK,i(x, u)| ≤ q for Hn-a.e.

(x, u) ∈ nor(K), then Int(C) is a finite union of disjointed (possibly mutually tangent) open balls.

Lemma 1.4.27. If C ⊆ Rn+1 and α is the contact 1 form of Rn+1 (cf. Definition 1.3.4), then

⟨ξ, α(x, u)⟩ = 0

for every ξ ∈ Tann(Hn ⌞Q, (x, u)
)

and for Hn-a.e. (x, u) ∈ Q, if Q ⊆ nor(C) is a Hn-measurable
set with Hn(Q) < ∞.

Proof. This follows from the definition of α and Lemma 1.4.20.

Definition 1.4.28. Given C ⊆ Rn+1, we define the following subsets of C

N1(C) :=
{

x ∈ C : H0(nor(C, x)
)
= 1

}
,

N2(C) :=
{

x ∈ C : H0(nor(C, x)
)
= 2

}
,

N∞(C) :=
{

x ∈ C : H0(nor(C, x)
)
= ∞

}
.

Definition 1.4.29 (Distance cone of C). We define the distance cone of C ⊆ Rn+1, at x ∈ π0
(
nor(C)

)
, as

Dis(C, x) :=
{

v ∈ Rn+1 : δδδC(x + v) = |v|
}

.

Moreover, for x ∈ π0
(
nor(C)

)
, we denote by aff Dis(C, x) the affine hull of Dis(C, x).

Remark 1.4.30. We notice that Dis(C, x) is a closed convex subset of Nor(C, x), for any choice
of x ∈ π0

(
nor(C)

)
(cf. [13, Theorem 4.8 (2)]). Furthermore, the following property holds

v ∈ Dis(C, x) ⇒ tv ∈ Dis(C, x) , for every t ∈ [0, 1] (1.4.19)

indeed B|tv|(x + tv)∩C ⊆ B|v|(x + v)∩C = ∅ for any v ∈ Dis(C, x) and t ∈ [0, 1]. Moreover

nor(C, x) =
{

u
|u| : u ∈ Dis(C, x) \ {0}

}
. (1.4.20)

Definition 1.4.31 (m-th stratum of C). For any m ∈ {0, . . . , n} we define the m-th stratum of C
by

C(m) :=
{

x ∈ C : 0 < Hn−m(nor(C, x)
)
< ∞

}
.
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Lemma 1.4.32. Let C ⊆ Rn be a closed set. If there exists m ∈ {0, . . . , n − 1} such that

dim
(
aff Dis(C, x)

)
= n − m + 1 for x ∈ π0

(
nor(C)

)
, (1.4.21)

then
Hn−m(nor(C, x)

)
∈ (0,+∞) .

Similarly, if
dim

(
aff Dis(C, x)

)
= 1 for x ∈ π0

(
nor(C)

)
, (1.4.22)

then
H0(nor(C, x)

)
∈ {1, 2} .

Proof. Let x ∈ π0
(
nor(C)

)
such that (1.4.21) holds, first we prove that Hn−m(nor(C, x)

)
<

∞. We notice that
nor(C, x) ⊆ aff Dis(C, x) ∩ Sn ∼= Sn−m

in fact, if ν ∈ nor(C, x) then there exists s > 0 such that δδδC(x + tν) = t for any t ∈ [0, s],
namely {tν : t ∈ [0, s]} ⊆ Dis(C, x). Therefore span{ν} ⊆ aff Dis(C, x), from which the
desidered result follows. Now we prove that Hn−m(nor(C, x)

)
> 0, let ϵ ∈ (0, 1) and we

introduce the Lipschitz mappings ρϵ defined as

ρϵ : v ∈ Disϵ(C, x) 7→ v
|v| ∈ nor(C, x) , Disϵ(C, x) := Dis(C, x) ∩

(
B 1

ϵ
(0) \ Bϵ(0)

)
where Disϵ(C, x) is Hn−m+1-rectifiable (cf. (1.4.21)) and with strictly positive Hn−m+1-measure.
The last property follows from the fact that Dis(C, x) is convex and aff Dis(C, x) has dimen-
sion n − m + 1, hence Dis(C, x) contains an (n − m + 1)-dimensional simplex (cf. [30, Prob-
lems 3.5.4 (14)]). We notice that

H1(ρ−1
ϵ (u)

)
> 0 for every u ∈ Im(ρϵ)

indeed for each u ∈ Im(ρϵ) there exists s ∈ (ϵ, ϵ−1) such that su ∈ Dis(C, x) and applying
(1.4.19) we deduce that {tu : t ∈ [ϵ, s]} ⊆ ρ−1

ϵ (u), furthermore by [14, Theorem 3.2.31] we
infer that Im(ρϵ) is also Hn−m-rectifiable. Overall, by coarea formula for rectifiable sets (cf.
[14, Theorem 3.2.22]), we obtain∫

Disϵ(C,x)
JDis(C,x)
n−m ρϵ dHn−m+1 =

∫
Im(ρϵ)

H1(ρ−1
ϵ (u)

)
dHn−m(u) . (1.4.23)

We remember that our goal is to prove that Hn−m(nor(C, x)
)
> 0 and to this purpose, since

Im(ρϵ) ⊆ nor(C, x), we use (1.4.23) to show that Hn−m(Im(ρϵ)
)
> 0. By virtue of the previ-

ous discussion, we have only to prove that

JDis(C,x)
n−m ρϵ(z) > 0 for Hn−m+1-a.e. z ∈ Disϵ(C, x) .

By the locality property of the approximate tangent spaces (cf. (1.1.4)) and (1.4.21), applying
[14, Lemma 3.2.17] we deduce that

Tann−m+1(Hn−m+1 ⌞Disϵ(C, x), z
)
= Tann−m+1(Hn−m+1 ⌞ aff Dis(C, x), z

)
= aff Dis(C, x) for Hn−m+1-a.e. z ∈ Disϵ(C, x)

therefore

JDis(C,x)
n−m ρϵ(z) = sup

{∣∣[∧n−m Dρϵ(z)](ξ)
∣∣ : ξ ∈ ∧n−m aff Dis(C, x), |ξ| = 1

}
for Hn−m+1-a.e. z ∈ Disϵ(C, x). For every fixed z ∈ Disϵ(C, x), since ker Dρϵ(z) = span{z},
we deduce from (1.4.21) that there exist v1, . . . , vn−m ∈ aff Dis(C, x) linearly indipendent and
such that vi ⊥ z for every i ∈ {1, . . . , n − m}, hence

JDis(C,x)
n−m ρϵ(z) ≥

∣∣∣∣[∧n−m Dρϵ(z)
]( v1 ∧ . . . ∧ vn−m

|v1 ∧ . . . ∧ vn−m|

)∣∣∣∣ > 0
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for Hn−m+1-a.e. z ∈ Disϵ(C, x). Overall we conclude that Hn−m(nor(C, x)
)
∈ (0,+∞).

Let now x ∈ π0
(
nor(C)

)
such that (1.4.22) holds, we prove that H0(nor(C, x)

)
∈ {1, 2}.

Again by [30, Problems 3.5.4 (14)], we infer that Dis(C, x) contains a segment containing the
origin. Namely, there exists u ∈ Sn such that either {tu : t ∈ [0, s]} ⊆ Dis(C, x) for some
s > 0, or {

tu : t ∈ [−s1, s2]
}
⊆ Dis(C, x) for some s1, s2 > 0 .

In the first case we infer that H0(nor(C, x)
)
= 1, while in the second H0(nor(C, x)

)
= 2.

Remark 1.4.33. We notice that the family {C(0), . . . , C(n)} is disjoint. Moreover, it has been
shown (cf. [51, Remark 5.2] and [38, Theorem 4.12]) that every C(m) is a Borel set and is also
countably Hn-rectifiable of class 2.

Corollary 1.4.34. Let C ⊆ Rn be a closed set, then:

(i) π0
(
nor(C)

)
=
⋃n

m=0 C(m);

(ii) N1(C) ∪ N2(C) = C(n);

(iii) N∞(C) =
⋃n−1

m=0 C(m) .

Proof. To prove (i), since every C(m) ⊆ π0
(
nor(C)

)
, we show that π0

(
nor(C)

)
⊆ ⋃n

m=0 C(m).
Let x ∈ π0

(
nor(C)

)
, namely there exist ν ∈ nor(C, x) and s > 0 so that δδδC(x+ tν) = t for any

t ∈ [0, s], therefore {tν : t ∈ [0, s]} ⊆ Dis(C, x). Hence dim
(
aff Dis(C, x)

)
∈ {1, . . . , n + 1},

then by Lemma 1.4.32 the desidered result follows.
To prove (ii), we notice that N1(C) ∪ N2(C) ⊆ C(n). To show that C(n) ⊆ N1(C) ∪ N2(C)

assume that there exists x ∈ C(n) \
(

N1(C) ∪ N2(C)
)
, namely H0(nor(C, x)

)
∈ N \ {0, 1, 2}.

This means that nor(C, x) contains at least two linearly independent unit vectors u1, u2 ∈ Sn,
then from (1.4.19) we infer that {tui : t ∈ [0, si]

}
⊆ Dis(C, x) for any i ∈ {1, 2} and for some

s1, s2 ∈ R+. We deduce that dim
(
aff Dis(C, x)

)
∈ {2, . . . , n + 1} and by Lemma 1.4.32 we

infer H0(nor(C, x)
)
= ∞, which is a contradiction.

To prove (iii), we notice that
⋃n−1

m=0 C(m) ⊆ N∞(C). Now assume that x ∈ N∞(C), again
nor(C, x) contains at least two linearly indipendent unit vectors, so dim

(
aff Dis(C, x)

)
is at

least 2 and applying Lemma 1.4.32 we infer that x ∈ ⋃n−1
m=0 C(m).

Remark 1.4.35. A conseguence, of Lemma 1.4.32 and Corollary 1.4.34, is given by the state-
ment:

if x ∈ N2(C), then there exists u ∈ Sn such that nor(C, x) = {u,−u}.

Again, if there exist u1, u2 ∈ Sn linearly indipendent such that nor(C, x) = {u1, u2}, then
from (1.4.19) and by Lemma 1.4.32 we infer that x ∈ C(m) for some m ∈ {0, . . . , n− 1}, which
is a contradiction since x ∈ C(n) (cf. Corollary 1.4.34 (ii)).

Lemma 1.4.36. Assume that C ⊆ Rn+1 is closed, then the following statements hold.

(i) N1(C), N2(C) and N∞(C) are Borel subset of C .

(ii) Given F a C2-diffeomorphism of Rn+1, then

F
(

Ni(C)
)
= Ni

(
F(C)

)
for i = 1, 2, ∞ .

(iii) The multivalued function

nor(C, ···)|N2(C) : N2(C) → P(Sn)

admits an Hn-measurable selection νC : N2(C) → Sn (namely νC(x) ∈ nor(C, x) for every
x ∈ N2(C)). Moreover,

νC(p) ∈ Norn(Hn ⌞C, p) for every p ∈ N2(C) . (1.4.24)
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Proof. To prove (i), we notice immediately that N∞(C), N1(C) ∪ N2(C) and π0
(
nor(C)

)
are

Borel subsets of C (cf. Remark 1.4.33 and Corollary 1.4.34). Then, if we consider a countable
dense subset D of Sn, our intention is to obtain the desidered result by proving that

X \ N∞(C) = N2(C) , (1.4.25)

where X is the Borel subset of C defined as

X :=
∞⋃

h=1

∞⋂
k=1

∞⋃
j=k

⋃
(s,u,t,v)∈Fh,j

Ck,(s,u,t,v) ,

Ck,(s,u,t,v) :=
{

x ∈ C :
∣∣∣∣δδδC(x + su)

s
− 1
∣∣∣∣ ≤ k−1 ,∣∣∣∣δδδC(x − tv)
t

− 1
∣∣∣∣ ≤ k−1

}
for k ∈ N+, (s, u, t, v) ∈ Fh,j

and

Fh,j :=
{
(s, u, t, v) ∈ Q+ ×D × Q+ ×D : h−1 ≤ s, t ≤ h ,

|(s, u)− (t, v)| ≤ j−1} for h, j ∈ N+ .

To prove (1.4.25), let x ∈ N2(C). Namely, we assume that there exists u ∈ Sn such that
δδδC(x ± su) = s for some s > 0. If we consider {sk}k∈N ⊂ Q+ and {uk}k∈N ⊂ D such that

sk −−−→
k→∞

s , uk −−−→
k→∞

u and
δδδC(x ± skuk)

sk
−−−→
k→∞

1 ,

we readily infer that x ∈ X. Since x /∈ N∞(C) we deduce that N2(C) ⊆ X \ N∞(C). Now, let
x ∈ X \ N∞(C). Namely there exists h ∈ N+ so that, for every k ∈ N+, there exist an integer
mk ≥ k and (sk, uk, tk, vk) ∈ Q+ ×D × Q+ ×D such that∣∣∣∣δδδC(x + skuk)

sk
− 1
∣∣∣∣ ≤ k−1 ,

∣∣∣∣δδδC(x − tkvk)

tk
− 1
∣∣∣∣ ≤ k−1

h−1 ≤ sk, tk ≤ h , |(sk, uk)− (tk, vk)| ≤
1

mk
.

Up to a subsequence we can assume that

uk −−−→
k→∞

u ∈ Sn , vk −−−→
k→∞

v ∈ Sn

sk −−−→
k→∞

s ∈ R+ , tk −−−→
k→∞

t ∈ R+

then we infer that δδδC(x ± su) = s. Since x /∈ N1(C) ∩ N∞(C) and

π0
(
nor(C)

)
= N1(C) ∪ N2(C) ∪ N∞(C) , (1.4.26)

we deduce that x ∈ N2(C), namely X \ N∞(C) ⊆ N2(C). From (1.4.25), since N∞(C) and X
are Borel subset of C, we conclude that N2(C) is a Borel subset of C. Then, from (1.4.26), also
N1(C) is a Borel subset of C.

To prove (ii), we notice that F(C(m)) = F(C)(m) for every m ∈ {0, . . . , n} (cf. [54, Lemma
2.1]). Hence, from Corollary 1.4.34, we infer that

F
(

N∞(C)
)
= N∞

(
F(C)

)
and F

(
N1(C)

)
∪ F
(

N2(C)
)
= N1

(
F(C)

)
∪ N2

(
F(C)

)
and if we prove that

F
(

N1(C)
)
∩ N2

(
F(C)

)
= ∅ , (1.4.27)

F
(

N2(C)
)
∩ N1

(
F(C)

)
= ∅ , (1.4.28)
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we conclude also that F
(

N1(C)
)
= N1

(
F(C)

)
and F

(
N2(C)

)
= N2

(
F(C)

)
. To prove (1.4.27)

assume that there exist x ∈ N1(C), u ∈ Sn and s > 0 such that Bs(F(x)± su) ∩ F(C) = ∅,
namely Ω± ∩ C = ∅ where Ω± := F−1[Bs(F(x)± su)

]
are two disjoint C2-regular domains

with x ∈ ∂Ω+ ∩ ∂Ω− and Tan(∂Ω+, x) = DF−1(x)(u⊥) = Tan(∂Ω−, x) ∈ GGG(n + 1, n) by
[14, 3.1.21]. Since Ω± are C2-regular domains, so they satisfy the interior sphere condition3,
there exists r > 0 such that

Br(x + rν) ⊆ Ω+ and Br(x − rν) ⊆ Ω− ,

where ν ∈ Sn is chosen so that ν⊥ = Tan(∂Ω+, x) = Tan(∂Ω−, x). Hence Br(x± rν)∩C = ∅,
namely a contradiction since x ∈ N1(C). Similarly, to prove (1.4.28), assume that there exist
x ∈ C, v ∈ Sn and s > 0 such that Bs(x ± sv) ∩ C = ∅ and F(x) ∈ N1

(
F(C)

)
. Namely,

Ω± ∩ F(C) = ∅ where Ω± := F
[
Bs(x ± sv)

]
are two disjoint C2-regular domains so that

F(x) ∈ ∂Ω+ ∩ ∂Ω− and Tan
(
∂Ω+, F(x)

)
= Tan

(
∂Ω−, F(x)

)
∈ GGG(n + 1, n), again by the

C2-regularity of Ω± we obtain a contradiction since F(x) ∈ N1
(

F(C)
)
.

To prove (iii), we intend to apply [10, Theorem III .6]. That is, if

N2(C; U) :=
{

x ∈ N2(C) : nor(C, x) ∩ U ̸= ∅
}

is an Hn-measurable subset of C for any open set U in Sn, then the multivalued function
nor(C, ···) : N2(C) → P(Sn) admits an Hn-measurable selection νC : N2(C) → Sn (in order to
apply [10, Theorem III .6], we notice that for any x ∈ N2(C) the set nor(C, x) is compact and
hence complete). Let U be an open set in Sn, we notice that

N2(C; U) = π0
(
nor(C) ∩ (N2(C)× U)

)
(1.4.29)

where nor(C) ∩ (N2(C)× U) is a countably Hn-rectifiable Borel subset of Rn+1, hence with
σ-finite Hn-measure (cf. [36, Lemma 15.5 (1)]). Namely there exists a family {Xi}i∈N of Hn-
measurable sets, with finite Hn-measure, such that nor(C) ∩ (N2(C)× U) =

⋃∞
i=1 Xi. Since

Hn is a Borel-regular outer measure, for any i ∈ N we have that (cf. [19, Proposition 6.2 (ii)])

Hn(Xi) = sup
{
Hn(F) : F ⊆ Xi , F closed

}
,

so there exists a sequence {Fi,j}j∈N of closed subsets of Xi such that Hn(Xi \
⋃∞

j=1 Fi,j) = 0.
Since any closed set in the Euclidean space is countable union of compact sets, there exists a
sequence {Ki,j}j∈N of compact subsets of Xi such that Hn(Xi \

⋃∞
j=1 Ki,j) = 0, overall

Hn
([

nor(C) ∩
(

N2(C)× U
)]

\
∞⋃

i,j=1

Ki,j

)
= 0 .

We infer that N2(C; U) is an Hn-measurable subset of C, indeed from (1.4.29) we obtain

N2(C; U) =
∞⋃

i,j=1

π0(Ki,j) ∪ π0

([
nor(C) ∩

(
N2(C)× U

)]
\

∞⋃
i,j=1

Ki,j

)
,

where any π0(Ki,j) is compact and π0
([

nor(C) ∩
(

N2(C)× U
)]

\⋃∞
i,j=1 Ki,j

)
is Hn-negligible.

The proof of (1.4.24) follows immediately as a consequence of nor(C, x) ⊆ Nor(C, x)
(cf. [13, Theorem 4.8 (2)]) and Tann(Hn ⌞C, x)⊆ Tan(C, x) (cf. Remark 1.1.1 (i)), for any x ∈ C.
The proof is complete.

3Interior sphere condition. Given Ω ⊆ Rn an open set, we say that Ω satisfies the interior sphere condition if
for every x ∈ ∂Ω there exist ν ∈ Sn−1 and r > 0 such that Br(x + rν) ⊆ Ω, notice that x ∈ ∂Br(x + rν). The
interior sphere condition always holds if Ω is a C2-regular domain (cf. [21, Remark 4.3.8]), in this situation we have
Tan(∂Ω, x) = Tan(∂Br(x + rν), x) = ν⊥ (the proof is the same as that performed for (4.1.7)).
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Chapter 2

Fine properties of W2,n-graphs

2.1 Legendrian cycles over W2,n-graphs

Suppose U ⊆ Rn is an open set. We denote by Wk,p(U) (resp. Wk,p
loc (U)) the usual Sobolev

space of k-times weakly differentiable functions, whose distributional derivatives up to or-
der k belong to the Lebesgue space Lp(U) (resp. Lp

loc(U)); cf. [20, Chapter 7]. We denote
by ∇∇∇ f and DDDi f the distributional gradient and the distributional i-differential of a Sobolev
function f .

Definition 2.1.1. Given U ⊆ Rn open set and f ∈ C0(U), we define Γ+( f , U) as the set of x ∈ U
for which there exists p ∈ Rn, such that

f (y) ≤ f (x) + p • (y − x) for every y ∈ U .

Definition 2.1.2. Given U ⊆ Rn open set and f ∈ C0(U), we define S∗( f ) (S∗( f ), resp.) as the
set of x ∈ U where there exists a polynomial function P, of degree at most 2, such that P(x) = f (x)
and

lim sup
y→x

f (y)− P(y)
|y − x|2 < ∞

(
lim inf

y→x

f (y)− P(y)
|y − x|2 > −∞ , resp.

)
.

We set S( f ) to be the set of x ∈ U where there exists a polynomial function P of degree at most 2
such that P(x) = f (x) and

lim
y→x

f (y)− P(y)
|y − x|2 = 0 .

Remark 2.1.3.
(
On the Borelianity of Γ+( f , U), S∗( f ) and S∗( f )

)
.

To prove that Γ+( f , U) ∈ B(U), we define the sets

U+( f , µ) :=
{

a ∈ U : ∃ L ∈ hom(Rn; R), f ≤ L on U,

L(a) = f (a), ∥∇L∥∞ ≤ µ} for µ ≥ 0 .

Since Γ+( f , U) =
⋃∞

i=1 U+( f , i), we conclude if we show that U+( f , µ) ∈ B(U). To this
end, we first introduce the class, which we may assume to be non-empty without loss of
generality,

C+( f , µ) :=
{

L ∈ hom(Rn; R) : f ≤ L on U, ∥∇L∥∞ ≤ µ} ,

then we define the map

L+[ f , µ] : x ∈ U 7→ inf
{

L(x) : L ∈ C+( f , µ)
}
∈ R ∪ {−∞}

and we notice that L+[ f , µ] is upper semicontinuous. Indeed, the infimum of every collec-
tion of upper semicontinuous function, on a topological space, is upper semicontinuous (cf.
[49, (c) p. 38]). Hence, we obtain the desidered result since one can readily prove that

U+( f , µ) =
{

x ∈ U : f (x) = L+[ f , µ](x)
}

.

To show that S∗( f ) ∈ B(U), we assume f ∈ C0(U) ∩ W2,n
loc (U), since (C0 ∩W2,n

loc )-functions
are the object of our discussion. Then, by applying Lemma 2.1.9 and Lemma 2.1.17 (both of
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which are not related to the Borelianity of S∗( f )), one can prove that (cf. Lemma 4.1.7 (ii))

f
(
S∗( f )

)
= N1(C f ) , (2.1.1)

where C f := {(x, u) ∈ U × R : u ≤ f (x)} is the cato-graph of f and

N1(C f ) :=
{

x ∈ C f : H0(nor(C f , x)
)
= 1

}
.

From (2.1.1), since f is continuous and N1(C f ) ∈ B(U × R) (cf. Lemma 1.4.36 (i)), we obtain
the desidered result. Similarly one can prove that S∗( f ) ∈ B(U).

Remark 2.1.4. (Generalized Stepanoff theorem). The following generalization of Stepanoff’s
theorem (cf. [14, 3.1.9]) holds true. Recall some notation from [9]. Given U ⊂ Rn a bounded
open set, f : U → R bounded and a ∈ U, we say that f ∈ T2

∞(a) if there exists an affine
function L : Rn → R such that

L(a) = f (a) and lim sup
x→a

| f (x)− L(x)|
|x − a|2 < ∞ ,

while we say that f ∈ t2
∞(a) if a ∈ S( f ). By [27, Theorem 1] the following assertion holds:

assuming that f : U → R is bounded,

if f ∈ T2
∞(y) for Ln-a.e. y ∈ U then f ∈ t2

∞(y) for Ln-a.e. y ∈ U .

As an application of the generalized Stepanoff’s theorem we give the following.

Lemma 2.1.5. Given U ⊆ Rn an open set and f ∈ C0(U) such that

Ln
(

U \
(
S∗( f ) ∩ S∗( f )

))
= 0 ,

then Ln(U \ S( f )
)
= 0 .

Proof. Let us consider x ∈ S∗( f ) ∩ S∗( f ), then there exist m1, m2 ∈ R such that

m1 ≤ f (y)− f (x)−∇ f (x) • (y − x)
|y − x|2 ≤ m2 for every y ∈ Br(x) \ {x} .

Namely, the following implication holds

x ∈ S∗( f ) ∩ S∗( f ) ⇒ f ∈ T2
∞(x) . (2.1.2)

Since we are assuming that S∗( f ) ∩ S∗( f ) has full Ln-measure in U, from (2.1.2) and by the
generalized Stepanoff’s theorem, we conclude that S( f ) has full Ln-measure in U.

In the following lemma, using a standard approximation procedure, we extend the clas-
sical Alexandrov-Bakelmann-Pucci (ABP) estimate in [20, Theorem 9.2], which is stated for
C2-functions, to W2,n-functions.

Lemma 2.1.6 (ABP estimate). Given U ⊆ Rn an open set and f ∈ C0(U) ∩ W2,n(U), then

sup
U

f ≤ sup
∂U

f +
diam(U)

ααα(n)1/n

( ∫
Γ+( f ,U)

|detDDD2 f | dLn
)1/n

.

Proof. We choose a sequence { fk}k∈N ⊂ C∞(Rn) such that fk → f in W2,n(V) and fk → f
uniformly on V, for every open set V compactly contained in U. Therefore, if V is an open
set compactly contained in U, we use [20, Lemma 9.2] to estimate

sup
V

f ≤ sup
V

| f − fk|+ sup
V

fk

≤ sup
V

| f − fk|+ sup
∂V

fk +
diam(V)

ααα(n)

( ∫
Γ+( fk ,V)

|det D2 fk| dLn
)1/n
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≤ sup
V

| f − fk|+ sup
∂V

| f − fk|+ sup
∂V

f

+
diam(V)

ααα(n)1/n

( ∫
V
|det D2 fk − detDDD2 f | dLn +

∫
Γ+( fk ,V)

|detDDD2 f | dLn
)1/n

.

Let µ := Ln ⌞ |detDDD2 f |. Employing [8, Lemma A.1] we have that⋂
h≥1

⋃
k≥h

Γ+( fk, V) ⊆ Γ+( f , V) ,

and

µ(Γ+( f , V)) ≥ µ

( ⋂
h≥1

⋃
k≥n

Γ+( fk, V)

)

= lim
h→∞

µ

( ⋃
k≥h

Γ+( fk, V)

)
≥ lim sup

h→∞
µ
(
Γ+( fh, V)

)
.

Now we can pass to limit in the estimate above to conclude

sup
V

f ≤ sup
∂V

f +
diam(V)

ααα(n)1/n

( ∫
Γ+( f ,V)

|detDDD2 f | dLn
)1/n

for every V compactly contained in U, and the same inequality holds with V replaced by U.
The proof is complete.

The next result asserts that a W2,n-function is pointwise twice differentiable almost ev-
erywhere. In particular, can be deduced from a more general result of Calderon-Zygmund,
asserting that functions in W2,p(U) with p > n

2 admit second-order Taylor expansion Ln-
a.e. on U (cf. [9] or [8, Proposition 2.2]). Alternatively, can be deduced from [15, Theorem
1.1], where almost everywhere twice differentiability is proved for a larger class of functions,
namely the strongly approximable functions. Here we provide a different proof of this result
for W2,n-functions employing the method used by Trudinger in [59, Theorem 1] to treat the
second order differentiability of viscosity solutions of second order elliptic PDE’s. It is worth
noting that both methods are based on the classical Alexandrov-Bakelmann-Pucci estimate.

Theorem 2.1.7. Let U ⊆ Rn be an open set and let f ∈ C0(U)∩W2,n
loc (U). ThenLn(U \S( f )

)
= 0.

Proof. Fix x ∈ U and r > 0 such that Br(x) ⊂ U. For every positive integer k, we define

vk(y) := f (y)− k(|y − x|2 − r2) for y ∈ U .

Noting that vk(y) = f (y) for y ∈ ∂Br(x) and vk ≥ f + kr2 on U, we apply Lemma 2.1.6 (with
f and U replaced by vk and Br(x)), obtaining

kr2 + sup
Br(x)

f ≤ sup
∂Br(x)

f + c(n) r
( ∫

Γ+(vk ,Br(x))
|detDDD2vk| dLn

)1/n

.

Since DDD2vk(y) ≤ 0 for Ln-a.e. y ∈ Γ+
(
vk, Br(x)

)
, we have that

|detDDD2vk(y)| ≤
1

nn |traceDDD2vk(y)|n

=
1

nn |traceDDD2 f (y) + 2kn|n

≤ c(n)
(
|traceDDD2 f (y)|n + kn) for Ln-a.e. y ∈ Γ+

(
vk, Br(x)

)
.

Therefore,

kr2 + sup
Br(x)

f ≤ sup
∂Br(x)

f + c(n) r
(
∥traceDDD2 f ∥Ln(Br(x)) + k Ln

(
Γ+
(
vk, Br(x)

))1/n)
.
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Noting that for y ∈ Γ+
(
vk, Br(x)

)
there exists p ∈ Rn such that

f (z) ≤ f (y) + k|z − x|2 − k|y − x|2 + p • (z − y) for z ∈ Br(x)

we easily infer that
Γ+
(
vk, Br(x)

)
⊆ S∗( f ) ∩ Br(x)

and

kr2 + sup
Br(x)

f ≤ sup
∂Br(x)

f + c(n) r
(
∥traceDDD2 f ∥Ln(Br(x)) + k Ln(S∗( f ) ∩ Br(x)

)1/n
)

.

Dividing both sides by kr2 and letting k → ∞, we conclude that

1 ≤ c(n)
Ln(S∗( f ) ∩ Br(x)

)
rn . (2.1.3)

Since (2.1.3) holds for every x ∈ U and for every r > 0 small enough, it follows from [14,
2.10.19 (4)] that

Ln(U \ S∗( f )
)
= 0 .

Since S∗( f ) = S∗(− f ), we also infer that Ln(U \ S∗( f )
)
= 0. Therefore

Ln
(

U \
(
S∗( f ) ∩ S∗( f )

))
= 0 ,

whence the conclusion follows from Lemma 2.1.5. The proof is complete.

Lemma 2.1.8. Given U ⊆ Rn an open set and f ∈ W1,1
loc (U; Rk), then f is (Ln ⌞U)-approximately

differentiable at Ln-a.e. x ∈ U with ap D f (x) = DDD f (x). In particular, there exists countably many
Ln-measurable sets Ai ⊆ U such that Ln(U \⋃∞

i=1 Ai
)
= 0 and Lip( f |Ai) < ∞ for any i ∈ N≥1.

Proof. This statement follows from classical pointwise differentiability properties of Sobolev
functions. Indeed, by [61, Theorem 3.4.2] (or [12, Theorem 6.1]),

lim
r→0

r−n−1
∫

Br(x)
| f (y)− f (x)−DDD f (x)(y − x)| dLn(y) = 0 (2.1.4)

for Ln-a.e. x ∈ U. Fix now x ∈ U such that (2.1.4) holds, define also the affine function
Lx(y) := f (x) +DDD f (x)(y − x) for y ∈ Rn and notice that

ϵLn(Br(x) ∩ {y : | f (y)− Lx(y)| ≥ ϵ r}
)

rn ≤ r−n−1
∫

Br(x)
| f (y)− Lx(y)| dLn(y)

for every ϵ > 0. Therefore, by (2.1.4) and [53, Lemma 2.7],

Θn(Ln ⌞{y : | f (y)− Lx(y)| ≥ 2ϵ |y − x|}, x
)
= 0 for every ϵ > 0 ,

we conclude that f is (Ln ⌞U)-approximately differentiable at x with ap D f (x) = DDD f (x)
applying [14, p. 253] with ϕ and m replaced by Ln ⌞U and n. Now we can use [14, 3.1.8] to
infer the existence of the countable cover Ai. The proof is complete.

We now recall a result due to Ulrich Menne (cf. [37, Appendix B]), which provides the
basic oscillation lemma to establish the Lusin (N)-condition in Lemma 2.1.15.

Lemma 2.1.9 (Menne). Given a ∈ Rn, r > 0, f ∈ C0(Br(a)
)
∩W2,n(Br(a)

)
, and g ∈ C2(Br(a)

)
such that

g(a) = f (a) and f (x) ≥ g(x) , for every x ∈ Br(a) .

Then f is pointwise differentiable at a with D f (a) = Dg(a), and there exists a constant c(n),
depending only on n, such that

∥DDD f − D f (a)∥Ln(Br(a)) ≤ c(n) r
(
∥DDD2 f ∥Ln(Br(a)) + r ∥D2g∥L∞(Br(a))

)
, (2.1.5)
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∥ f − La∥L∞(Br(a)) ≤ c(n) r
(
∥DDD2 f ∥Ln(Br(a)) + r ∥D2g∥L∞(Br(a))

)
, (2.1.6)

where La(x) := f (a) + D f (a)(x − a) for x ∈ Rn.

Proof. In this proof we denote the average of a map h defined on (a subset of) Rn, with values
in some normed space Y, as follows

(h)S :=
1

Ln(S)

∫
S

h dLn ∈ Y.

We assume g = 0, noting that the general case easily follows from it. Therefore, f (x) ≥ 0
for every x ∈ Br(a) and f (a) = 0. For each 0 < s ≤ r, noting that (DDD f )Bs(a) is an homomor-
phism from Rn to R, we define the affine functions As : Rn → R by

As(x) := ( f )Bs(a) + (DDD f )Bs(a)(x − a) , for x ∈ Rn

and we notice that ( f − As)Bs(a) = 0 for each 0 < s ≤ r. Since DDD f − (DDD f )Bs(a) = DDD( f − As),
we apply Poincare inequality (cf. [20, (7.45) p. 164])

∥DDD( f − As)∥Ln(Bs(a)) ≤ c(n) s ∥DDD2 f ∥Ln(Bs(a))

and
∥ f − As∥Ln(Bs(a)) ≤ c(n) s2 ∥DDD2 f ∥Ln(Bs(a))

for 0 < s ≤ r. Let T : W2,n(Bs(a)
)
→ W2,n(B1(0)

)
be the linear map defined as

T(u)(x) := u(a + sx) for x ∈ B1(0)

and notice that

∥T(u)∥W2,n(B1(0)) = s−1∥u∥Ln(Bs(a)) + ∥DDDu∥Ln(Bs(a)) + s∥DDD2u∥Ln(Bs(a))

for u ∈ W2,n(Bs(a)). By Sobolev embedding theorem [20, Theorem 7.26] there exists a posi-
tive constant c(n), depending only on n, such that

∥u∥L∞(B1(0)) ≤ c(n)∥u∥W2,n(B1(0)) for u ∈ W2,n(B1(0)) .

Therefore,

∥ f − As∥L∞(Bs(a))

= ∥T( f − As)∥L∞(B1(0))

≤ c(n)∥T( f − As)∥W2,n(B1(0))

≤ c(n)
(

s−1∥ f − As∥Ln(Bs(a)) + ∥DDD( f − As)∥Ln(Bs(a)) + s ∥DDD2( f − As)∥Ln(Bs(a))

)
≤ c(n) s ∥DDD2 f ∥Ln(Bs(a)) .

For 0 < t ≤ s we notice that

|As(a)− At(a)| ≤ ∥As − At∥L∞(Bt(a)) ≤ c(n) s ∥DDD2 f ∥Ln(Bs(a)) .

Since limt→0 At(a) = f (a) = 0, we conclude

|As(a)| = lim
t→0

|As(a)− At(a)| ≤ c(n) s ∥DDD2 f ∥Ln(Bs(a)) .

Moreover, noting that DAs(a)(a− x) = As(a)− As(x) ≤ As(a)− As(x)+ f (x) for x ∈ Br(a),
we conclude

∥DAs(a)∥ = s−1 sup
x∈Bs(a)

DAs(a)(a − x)
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≤ s−1 sup
x∈Bs(a)

[
As(a) + ( f − As)(x)

]
≤ s−1|As(a)|+ s−1∥ f − As∥L∞(Bs(a))

≤ c(n)∥DDD2 f ∥Ln(Bs(a)) .

In conclusion, for 0 < s ≤ r,

∥DDD f ∥Ln(Bs(a)) ≤ ∥DDD( f − As)∥Ln(Bs(a)) + ∥DDDAs∥Ln(Bs(a))

≤ c(n) s ∥DDD2 f ∥Ln(Bs(a)) + c(n) s ∥DDDAs(a)∥

≤ c(n) s ∥DDD2 f ∥Ln(Bs(a)) ,

∥ f ∥L∞(Bs(a)) ≤ ∥ f − As∥L∞(Bs(a)) + |As(a)|+ ∥DAs(a)∥

≤ c(n) s ∥DDD2 f ∥Ln(Bs(a)) .

Therefore,

lim
s→0+

sup
τ∈Sn−1

| f (a + τs)− f (a)|
s

≤ lim
s→0+

∥ f ∥L∞(Bs(a))

s

≤ c(n) lim
s→0+

∥DDD2 f ∥Ln(Bs(a)) = 0 ,

which implies that D f (a) = 0. The proof is complete.

Remark 2.1.10. It follows from Lemma 2.1.9 that if a ∈ S∗( f ) ∪ S∗( f ), then a is a Lebesgue
point of DDD f , the map f is pointwise differentiable at a, and

D f (a) = DDD f (a) .

Definition 2.1.11. Let ψ : Rn → Rn+1 be the function defined by

ψ(y) :=
(−y, 1)√
1 + |y|2

.

Given an open set U ⊆ Rn and a function f ∈ C0(U) ∩ W2,n(U), we define

Φ f (x) :=
(

x, f (x), ψ
(
∇ f (x)

))
for every x ∈ Diff( f ) .

Remark 2.1.12. Let Sn
+ := {(z, t) ∈ Rn × R : |z|2 + t2 = 1, t > 0}. Notice that ψ is a

diffeomorphism onto Sn
+ with inverse given by

φ : (z, t) ∈ Sn
+ 7→ − z

t
∈ Rn

and ∥Dψ(y)∥ ≤ 2 for y ∈ Rn.

Remark 2.1.13. Given U ⊆ Rn an open set and f ∈ C0(U) ∩ W2,n(U), we recall that
∇∇∇ f is (Ln ⌞U)-approximately differentiable at Ln-a.e. a ∈ U, by Lemma 2.1.8. Moreover,
∇ f = ∇∇∇ f Ln-a.e. in U, by Remark 2.1.10. If a ∈ Diff( f ) and ∇ f is (Ln ⌞U)-approximately
differentiable at a, then Φ f is (Ln ⌞U)-approximately differentiable at a and

ap DΦ f (a)(τ) =
(

τ, D f (a)(τ), Dψ
(
∇ f (a)

)[
ap D(∇ f )(a)(τ)

])
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for every τ ∈ Rn. In particular ap DΦ f (a) is injective for Ln-a.e. a ∈ U and, recalling Remark
2.1.12 and noting that DDD(∇ f ) = ap D(∇ f ) by Lemma 2.1.8, we infer that∫

U
∥ap DΦ f ∥n dLn ≤ c(n)

(
Ln(U) +

∫
U
∥D f ∥n dLn +

∫
U
∥DDD2 f ∥n dLn

)
.

It follows that Φ f is a W1,n-map over U.

Remark 2.1.14. The following basic fact from measure theory is used in the proof of Lemma
2.1.15. Let (X,M, µ) be a measure space, let C be a positive constant, and let {Ej}j∈N be a countable
family of sets in M such that H0({j ∈ N : Ej ∩ Ei ̸= ∅}) ≤ C for every i ∈ N. Then, we have

∞

∑
i=1

µ(Ei) ≤ C µ

( ∞⋃
i=1

Ei

)
.

Indeed, let Ji := {j ∈ N : Ei ∩ Ej ̸= ∅} for i ∈ N, and consider the disjoint family {Ai}i∈N

in M defined by A1 := E1, Ai := Ei \
⋃i−1

j=1 Aj for i ∈ N≥2. Then
⋃∞

i=1 Ai =
⋃∞

i=1 Ei and

∞

∑
j=1

µ(Ej) =
∞

∑
j=1

µ
(

Ej ∩
∞⋃

i=1
Ei

)
=

∞

∑
j=1

µ
(

Ej ∩
∞⋃

i=1
Ai

)
=

∞

∑
j=1

∞

∑
i=1

µ(Ej ∩ Ai) =
∞

∑
i=1

∑
j∈Ji

µ(Ej ∩ Ai)

≤
∞

∑
i=1

∑
j∈Ji

µ(Ai) ≤ C
∞

∑
i=1

µ(Ai) = C µ
( ∞⋃

i=1
Ai

)
= C µ

( ∞⋃
i=1

Ei

)
.

The following result is proved using a Rado-Reichelderfer type argument; cf. [32] and
references therein.

Lemma 2.1.15. Given U ⊆ Rn an open set and f ∈ C0(U) ∩ W2,n
loc (U), then Hn(Φ f (Z)

)
= 0 for

every Z ⊂ S∗( f ) such that Ln(Z) = 0.

Proof. Given µ > 0 and V ⊆ U, we define X(V, µ) as the set of x ∈ V for which there
exists a polynomial function Q of degree at most 2 such that f (y) ≤ Q(y) for every y ∈ V,
f (x) = Q(x), ∥DQ(x)∥ ≤ µ and ∥D2Q∥ ≤ µ. If D ⊂ U is a countable dense subset of U and
R(c) := {s ∈ Q : Bs(c) ⊆ U} for every c ∈ D, then we notice that

S∗( f ) ⊆
⋃

c∈D

⋃
s∈R(c)

∞⋃
i=1

X
(

Bs(c), i
)

.

Hence, it is sufficient to show that Hn(Φ f (Z)
)
= 0 whenever Z ⊆ X(U, µ) with Ln(Z) = 0,

for some µ > 0. Notice that f is pointwise differentiable at each point of the set X(U, µ), by
Lemma 2.1.9.

Now we prove the following claim:

there exists c(n) ≥ 0 such that,

for any µ > 0, c ∈ U and 0 < r < 1 such that B3r(c) ⊂ U, we have

∥D f (a)− D f (b)∥ ≤ c(n)
(
∥DDD2 f ∥Ln(B3r(c)) + µr

)
, (2.1.7)

| f (a)− f (b)| ≤ c(n) r
(
∥DDD2 f ∥Ln(B3r(c)) + µ

)
, (2.1.8)

for every a, b ∈ X(U, µ) ∩ Br(c) .

We fix a, b ∈ X(U, µ) ∩ Br(c), a ̸= b, and we define

s :=
|a − b|

2
and d :=

a + b
2

.
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We notice that s ≤ r,

Bs(d) ⊆ B2s(a) ∩ B2s(b) and B2s(a) ∪ B2s(b) ⊆ B3r(c) ,

consequently it follows from (2.1.5) of Lemma 2.1.9 that

∥DDD f − D f (e)∥Ln(Bs(d)) ≤ ∥DDD f − D f (e)∥Ln(B2s(e))

≤ c(n) s
(
∥DDD2 f ∥Ln(B2s(e)) + µs

)
≤ c(n) s

(
∥DDD2 f ∥Ln(B3r(c)) + µr

)
for e ∈ {a, b}, whence we infer

ααα(n)1/n s ∥D f (a)− D f (b)∥ ≤ ∥DDD f − D f (a)∥Ln(Bs(d)) + ∥DDD f − D f (b)∥Ln(Bs(d))

≤ c(n) s
(
∥DDD2 f ∥Ln(B3r(c)) + µr

)
and (2.1.7) is proved. Moreover, combining (2.1.6) of Lemma 2.1.9 with (2.1.7)

| f (a)− f (b)|
≤ ∥ f − La∥L∞(Bs(d)) + ∥ f − Lb∥L∞(Bs(d)) + s ∥D f (a)∥+ s ∥D f (b)∥
≤ ∥ f − La∥L∞(B2s(a)) + ∥ f − Lb∥L∞(B2s(b)) + 2µr

≤ c(n) r
(
∥DDD2 f ∥Ln(B3r(c)) + µ

)
we have obtained (2.1.8 ).

We consider the function f ×∇ f mapping x ∈ Diff( f ) into
(

f (x),∇ f (x)
)
∈ R2n+1. Then

it follows from (2.1.7) and (2.1.8) that

diam
[
( f ×∇ f )

(
Br(c) ∩ X(U, µ)

)]
≤ c(n, µ)

(
∥DDD2 f ∥Ln(B3r(c)) + r

)
. (2.1.9)

Let Z ⊆ X(U, µ) bounded and Ln(Z) = 0. Given ϵ > 0, we choose an open set V ⊆ U such
that Z ⊆ V, and

Ln(V) ≤ ϵ , ∥DDD2 f ∥n
Ln(V) ≤ ϵ . (2.1.10)

We define R : Z → R and ρ : Z → R as

R(x) := inf
{

1,
dist(x, Rn \ V)

4

}
for x ∈ Z

ρ(x) := diam
((

f ×∇ f )
(

BR(x)(x) ∩ X(U, µ)
))

for x ∈ Z .

We notice that R is a Lipschitz function with Lip(R) ≤ 1
4 and, noting that B3R(x)(x) ⊆ V for

every x ∈ Z and combining (2.1.9) and (2.1.10), we obtain

ρ(x) ≤ c(n, µ)
(
∥DDD2 f ∥Ln(B3R(x)(x)) + R(x)

)
≤ c(n, µ) ϵ1/n (2.1.11)

for x ∈ Z. We prove now the following claim:

there exists C ⊆ Z countable such that
{BR(y)/5(y) : y ∈ C} is disjointed,

Z ⊆
⋃

y∈C
BR(y)(y) and

H0({y ∈ C : B3R(y)(y) ∩ B3R(x)(x) ̸= ∅}
)
≤ c(n), for every x ∈ Z .

Applying Besicovitch’s covering theorem [5, Theorem 2.17] (see also the remark at the begin-
ning of page 52), there exists a positive constant ξ(n) depending only on n, and there exist
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Z1, . . . , Zξ(n) ⊆ Z such that

Z ⊆
ξ(n)⋃
i=1

⋃
x∈Zi

BR(x)/5(x) ,

and {BR(x)/5(x) : x ∈ Zi} is disjointed for any i ∈ {1, . . . , ξ(n)}. We now apply [14, Lemma
3.1.12] with S = Zi, U = Z, h = R

5 , λ = 1
20 and α = β = 15, to infer that

H0({y ∈ Zi : B3R(y)(y) ∩ B3R(x)(x) ̸= ∅}
)
≤ c(n) for every i ∈ {1, . . . , ξ(n)} .

We define Z′ :=
⋃ξ(n)

i=1 Zi, and we notice that Z ⊆ ⋃
x∈Z′ BR(x)/5(x) and

H0({y ∈ Z′ : B3R(y)(y) ∩ B3R(x)(x) ̸= ∅}
)
≤ ξ(n)c(n) for every x ∈ Z .

Now, we apply Vitali’s 5r-covering theorem [6, Theorem 2.2.3] to find a countable set C ⊆ Z′

such that the family {BR(x)/5(x) : x ∈ C} is disjointed and

Z ⊆
⋃

x∈C
BR(x)(x) ,

which proves the claim.
Denoting with ϕδ the size δ approximating measure of the n-dimensional Hausdorff mea-

sure Hn of R2n+1 (cf. [14, 2.10.1, 2.10.2]), and combining (2.1.11) with the claim above and
with Remark 2.1.14, we have

ϕ2c(n,µ)ϵ1/n
(
( f ×∇ f )(Z)

)
≤ c(n) ∑

y∈C
ρ(y)n

≤ c(n, µ) ∑
y∈C

(
∥DDD2 f ∥Ln(B3R(y)(y)) + R(y)

)n

≤ c(n, µ) ∑
y∈C

R(y)n + c(n, µ) ∑
y∈C

∫
B3R(y)(y)

∥DDD2 f ∥n dLn

≤ c(n, µ)Ln(V) + c(n, µ)
∫

V
∥DDD2 f ∥n dLn

≤ c(n, µ) ϵ .

Letting ϵ → 0, we deduce that Hn(( f ×∇ f )(Z)
)
= 0. Since Φ f = (111Rn+1 × ψ) ◦ ( f ×∇ f )

(cf. Remark 2.1.12), we conclude that Hn(Φ f (Z)) = 0. The proof is complete.

Remark 2.1.16. Given U ⊆ Rn an open set and a function f ∈ C0(U) ∩ W2,n
loc (U), from the

proof of the above theorem we have that f ×∇ f satisfies the Lusin (N)-property on S∗( f ).
It easly follows that the same property is satisfied by ∇ f and ∇ f . Furthermore, since
S∗( f ) = S∗(− f ), the previous results also hold on S∗( f ).

Lemma 2.1.17. Suppose U ⊆ Rn is open, γ > 1
2 , f ∈ C0,γ(U), x ∈ U, ν ∈ Sn ⊆ Rn × R such

that Bn+1
s
(

f (x) + sν
)
∩ f (U) = ∅ for some s > 0.

Then ν /∈ Rn × {0}. In particular, this is always true for f ∈ C0(U) ∩ W2,n
loc (U).

Proof. We prove the assertion by contradiction. Suppose 0 ∈ U and f (0) = 0, hence there
exists c ∈ U \ {0} such that

Bn+1
|c| (c) ∩ G = ∅ and K := Bn+1

|c| (c) ∩ (Rn × {0}) ⊆ U .
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Suppose L > 0 such that | f (x)− f (y)| ≤ L|x − y|γ for every x, y ∈ K, and define

h±(x) = ±
√
|c|2 − |x − c|2 = ±

√
2c • x − |x|2

for x ∈ K. Therefore, either h+(x) ≤ f (x) for every x ∈ K, or f (x) ≤ h−(x) for every x ∈ K.
In both cases, replacing x with tc and 0 < t < 1, one obtains

t1−2γ(2 − t) ≤ L2|c|2γ−2

for 0 < t < 1. This is clearly impossible, since 1 − 2γ < 0. The proof is complete.

Definition 2.1.18. Given U ⊆ Rn an open set and f : U → R, we define the cato-graph of f as

C f := {(x, u) ∈ U × R : u ≤ f (x)}

and
N f := nor(C f ) ∩ (U × R × Rn+1) .

Lemma 2.1.19. If U ⊂ Rn is a bounded open set and f ∈ C0(U) ∩ W2,n(U), then

N f ∩ (A × R × Rn+1) = Φ f
[
A ∩ S∗( f )

]
(2.1.12)

for every A ⊆ U, and ∫
N f

β dHn =
∫

U
β
(
Φ f (x)

)
JnΦ f (x) dLn(x) (2.1.13)

whenever β : U × R × Rn+1 → R is an Hn-integrable function. In particular, Hn(N f ) < ∞, and

ap DΦ f (x)[Rn] = Tann(Hn ⌞ N f , Φ f (x)
)

(2.1.14)

for Ln-a.e. x ∈ S∗( f ).

Proof. Suppose (z, ν) ∈ N f such that z =
(
x, f (x)

)
, with x ∈ A, and Bn+1

s (z + sν) ∩ C f = ∅,
for some s > 0. Since ν /∈ Rn × {0} by Lemma 2.1.17, we can easily see that there exists an
open set W ⊆ U × R with z ∈ W, an open set V ⊆ U with x ∈ V, and a smooth function
g : V → R such that f (x) = g(x) and

W ∩ Bn+1
s (z + sν) =

{
(y, u) ∈ U × R : x ∈ V, u > g(y)

}
,

in particular f (y) ≤ g(y) for every y ∈ V. It follows that x ∈ S∗( f ), that x ∈ Diff( f ) and
D f (x) = Dg(x) by Lemma 2.1.9. Noting that

ν =
(−∇g(x), 1)√
1 + |∇g(x)|2

we conclude (z, ν) = Φ f (x) and N f ∩ (A × R × Rn+1) ⊆ Φ f (S∗( f ) ∩ A).
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The opposite inclusion is clear, since for every x ∈ S∗( f ) there exists a polynomial func-
tion P and an open neighbourhood V of x, such that P(x) = f (x) and P(y) ≥ f (y) for every
y ∈ V.

We prove now the area formula in (2.1.13). Since Φ f is a W1,n-map (cf. Remark 2.1.13),
by the classical result in [9, Theorem 13], there exists a sequence

{Ψi}i∈N ⊂ C1(Rn; Rn × R × Rn+1) ∩ Lip(Rn; Rn × R × Rn+1)

such that the following Lusin-type approximation holds

Ln(U \⋃∞
i=1
{

x ∈ U : Ψi(x) = Φ f (x)
})

= 0 .

We define Ãi as the set of x ∈ S∗( f ) where Ψi(x) = Φ f (x) and Φ f is approximately differ-
entiable at x, with ap DΦ f (x) = DΨi(x). Then we set

A1 := Ã1 , Ai := Ãi \
⋃i−1

j=1 Ãj for i ≥ 2 .

By combining Theorem 2.1.7, Lemma 2.1.8, [12, Theorem 6.3], Lemma 2.1.15 and (2.1.12)

Ln(U \⋃∞
i=1 Ai

)
= 0 and Hn(N f \

⋃∞
i=1Φ f (Ai)

)
= 0 . (2.1.15)

Let β : U × R × Rn+1 → R be an Hn-measurable non-negative function. Employing [14,
2.4.8, 3.2.5], the injectivity of Φ f and (2.1.15) we obtain

∫
U

β
(
Φ f (x)

)
JnΦ f (x) dLn(x) =

∞

∑
i=1

∫
Ai

β
(
Ψi(x)

)
JnΨi(x) dLn(x)

=
∞

∑
i=1

∫
Φ f (Ai)

β(y) dHn(y)

=
∫

N f

β(y) dHn(y) .

While, if β : U × R × Rn+1 → R is Hn-integrable, it is enough to apply the previous argu-
ment to the positive and negative part of β. Choosing β = 1 we conclude that Hn(N f ) < ∞
and we deduce that Tann(Hn ⌞ N f , (z, ν)

)
is a n-dimensional plane for Hn-a.e. (z, ν) ∈ N f .

Let Di be the set of x ∈ Ai such that Θn(Ln ⌞Rn \ Ai, x) = 0, ap DΦ f (x) is injective and
Tann(Hn ⌞ N f , Φ f (x)

)
is a n-dimensional plane. Noting [14, 2.10.19] and Remark 2.1.13, we

deduce that
Hn(Ai \ Di

)
= 0 .

Since Tann(Ln ⌞ Ai, x) = Rn for x ∈ Di and noting that Ψ|Ai is a bi-lipschitz homeomor-
phism onto Φ f (Ai), we employ [51, Lemma B.2] to conclude

ap DΦ f (x)[Rn] = DΨi(x)
[
Tann(Ln ⌞ Ai, x)

]
⊆ Tann(Hn ⌞Ψi(Ai), Φ f (x)

)
⊆ Tann(Hn ⌞ N f , Φ f (x)

)
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for every x ∈ Di. Since Tann(Hn ⌞ N f , Φ f (x)) is a n-dimensional plane and ap DΦ f (x) is
injective for every x ∈ Di, we conclude that

ap DΦ f (x)[Rn] = Tann(Hn ⌞ N f , Φ f (x)
)

for every x ∈ Di .

The proof is complete.

Theorem 2.1.20. Given U ⊂ Rn a bounded open set and f ∈ C0(U) ∩ W2,n(U), then there exists
a Borel n-vectorfield #»η on N f such that

(Hn ⌞ N f ) ∧ #»η is a Legendrian cycle of U × R

and, for Hn-a.e. (z, ν) ∈ N f ,

| #»η (z, ν)| = 1 , #»η (z, ν) is simple ,

Tann(Hn ⌞ N f , (z, ν)
)

is associated with #»η (z, ν)

and (cf. (1.0.2))
⟨
[∧

nπ0
](

#»η (z, ν)
)
∧ ν , dX1 ∧ . . . ∧ dXn+1⟩ > 0 .

Proof. Let {eee1, . . . , eeen} be the standard basis of Rn and we use the symbols D1, . . . Dn and
ap D1, . . . , ap Dn for the partial derivatives and the approximate partial derivatives with re-
spect to eee1, . . . , eeen. We notice by [14, 3.1.4] that ap DiΦ f is a (Ln ⌞U)-measurable map for any
i ∈ {1, . . . , n}. Hence, by the classical Lusin theorem (cf. [14, 2.3.5, 2.3.6]) there exists a Borel
map ξi : U → Rn+1 × Rn+1 such that ξi is (Ln ⌞U)-a.e. equal to ap DiΦ f for i ∈ {1, . . . , n}.

We define the n-current T ∈ Dn(U × R × Rn+1) by

T(ϕ) :=
∫

U
⟨ξ1(x) ∧ . . . ∧ ξn(x), ϕ

(
Φ f (x)

)
⟩ dLn(x) (2.1.16)

for every ϕ ∈ Dn(U × R × Rn+1), by [14, 1.7.6] and Remark 2.1.13 we notice that

|T(ϕ)| ≤ c(n)
(
Ln(U) + ∥ f ∥n

W2,n(U)

)
∥ϕ∥L∞(U×R×Rn+1) .

We choose a sequence { fk}k∈N ⊂ C∞(U)∩W2,n(U) so that fk → f in W2,n(U), fk(x) → f (x)
and D fk(x) → DDD f (x) for Ln-a.e. x ∈ U; cf. [20, Theorem 7.9]. Since Φ fk

: U → U × R × Rn+1

is a smooth proper map, if we consider the n-current En := Ln ∧ (eee1 ∧ . . . ∧ eeen) defined by
Lebesgue integration (with the canonical orientation of Rn), we define

Tk := (Φ fk
)#(En ⌞U) ∈ Dn(U × R × Rn+1) ,

and we prove that
Tk → T in Dn(U × R × Rn+1) . (2.1.17)

Let ϕ ∈ Dn(U × R × Rn+1). Then,

Tk(ϕ) =
∫

U
⟨D1Φ fk

(x) ∧ . . . ∧ DnΦ fk
(x), ϕ

(
Φ fk

(x)
)
⟩ dLn(x) ,

and we estimate

|Tk(ϕ)− T(ϕ)| (2.1.18)

≤
∫

U

∣∣⟨D1Φ fk
(x) ∧ . . . ∧ DnΦ fk

(x)− ξ1(x) ∧ . . . ∧ ξn(x), ϕ
(
Φ fk

(x)
)
⟩
∣∣ dLn(x)

+
∫

U

∣∣⟨ξ1(x) ∧ . . . ∧ ξn(x), ϕ
(
Φ fk

(x)
)
− ϕ

(
Φ f (x)

)
⟩
∣∣ dLn(x)

≤ ∥ϕ∥L∞(U)

∫
U

∣∣D1Φ fk
(x) ∧ . . . ∧ DnΦ fk

(x)− ξ1(x) ∧ . . . ∧ ξn(x)
∣∣ dLn(x)

+
∫

U

∥∥ϕ
(
Φ f (x)

)
− ϕ

(
Φ fk

(x)
)∥∥ JnΦ f (x) dLn(x) .
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Noting that JnΦ f ∈ L1(U) (cf. Remark 2.1.13) and∥∥ϕ(Φ f (x))− ϕ(Φ fk
(x))

∥∥ JnΦ f (x) ≤ 2 ∥ϕ∥L∞(U×R×Rn) JnΦ f (x)

for Ln-a.e. x ∈ U and for any k ∈ N, applying the dominated convergence theorem, we infer

lim
k→∞

∫
U

∥∥ϕ
(
Φ f (x)

)
− ϕ

(
Φ fk

(x)
)∥∥ JnΦ f (x) dLn(x) = 0 . (2.1.19)

We observe that

D1Φ fk
∧ . . . ∧ DnΦ fk

− ξ1 ∧ . . . ∧ ξn

=
n

∑
i=1

ξ1 ∧ . . . ∧ ξi−1 ∧
(

DiΦ fk
− ξi

)
∧ Di+1Φ fk

∧ . . . ∧ DnΦ fk

and we use the generalized Hölder’s inequality to estimate∫
U

∣∣D1Φ fk
∧ . . . ∧ DnΦ fk

− ξ1 ∧ . . . ∧ ξn
∣∣ dLn (2.1.20)

≤
n

∑
i=1

∫
U

∣∣ξ1 ∧ . . . ∧ ξi−1
∣∣ ··· ∣∣ξi − DiΦ fk

∣∣ ··· ∣∣Di+1Φ fk
∧ . . . ∧ DnΦ fk

∣∣ dLn

≤
n

∑
i=1

∫
U

∥∥ap DΦ f
∥∥i−1 ···

∥∥ap DΦ f − DΦ fk

∥∥ ··· ∥∥DΦ fk

∥∥n−i dLn

≤
n

∑
i=1

( ∫
U

∥∥ap DΦ f
∥∥n dLn

) i−1
n

···
( ∫

U

∥∥ap DΦ f − DΦ fk

∥∥n dLn
) 1

n

···
( ∫

U

∥∥DΦ fk

∥∥n dLn
) n−i

n

.

Moreover, by (2.1.12),∫
U
∥DΦ fk

− ap DΦ f ∥n dLn

≤ c(n)
( ∫

U

∥∥D f k −DDD f
∥∥n dLn +

∫
U

∥∥D(ψ ◦ ∇ fk)−DDD(ψ ◦∇∇∇ f )
∥∥n dLn

)
≤ c(n)

( ∫
U

∥∥D f k −DDD f
∥∥n dLn +

∫
U

∥∥Dψ(∇ fk)
∥∥n ···

∥∥D2 fk −DDD2 fk
∥∥n dLn

+
∫

U

∥∥Dψ(∇ fk)− Dψ(∇∇∇ f )
∥∥n ···

∥∥DDD2 f
∥∥n dLn

)
≤ c(n)

( ∫
U

∥∥D f k −DDD f
∥∥n dLn +

∫
U

∥∥D2 fk −DDD2 fk
∥∥n dLn

+
∫

U

∥∥Dψ(∇ fk)− Dψ(∇∇∇ f )
∥∥n ···

∥∥DDD2 f
∥∥n dLn

)
and

lim
k→∞

∫
U
∥Dψ(∇ fk)− Dψ(∇∇∇ f )∥n ··· ∥DDD2 f ∥n dLn = 0

by dominated convergence theorem. Consequently ∥DΦ fk
−DDDΦ f ∥Ln(U) → 0, and combin-

ing (2.1.18), (2.1.19) and (2.1.20) we obtain (2.1.17).
Since ∂Tk = 0 for every k ∈ N, we readily infer from (2.1.17) that ∂T = 0.
Define G := [Φ f |S∗( f )]−1 : N f → U and notice that G is simply the restriction on N f of

the linear function that maps a point of Rn+1 × Rn+1 onto its first n coordinates, in particular
G is a Borel map (recall that N f is a Borel set). We employ Lemma 2.1.19 to see that

T(ϕ) =
∫

N f

⟨ #»

ξ
[
G(z, ν)

]
, ϕ(z, ν)⟩ dHn(z, ν) for any ϕ ∈ Dn(U × R × Rn+1) (2.1.21)
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where
#»

ξ : U → ∧
n(R

n+1 × Rn+1) is the Borel map defined as

#»

ξ (x) :=
ξ1(x) ∧ . . . ∧ ξn(x)∣∣ξ1(x) ∧ . . . ∧ ξn(x)

∣∣ for x ∈ U .

Then we define the Borel mapping

#»η : y ∈ N f 7→ (
#»

ξ ◦ G)(y) ∈ ∧n(R
n+1 × Rn+1) ,

and we infer that Tann(Hn ⌞ N f , (z, ν)
)

is associated with #»η (z, ν) for Hn-a.e. (z, ν) ∈ N f by
Lemma 2.1.19, and (Hn ⌞ N f ) ∧ #»η is a Legendrian cycle by Lemma 1.4.27.
Finally, denoting by {eee1, . . . , eeen} the canonical basis of Rn and by X1, . . . , Xn+1 the coordinate
functions of Rn+1 ≃ Rn × R, we use Remark 2.1.13 and shuffle formula (cf. [14, p. 19]) to
compute

⟨
[∧

n π0
]( #»

ξ (x)
)
∧ ψ

(
∇ f (x)

)
, dX1 ∧ . . . ∧ dXn+1⟩

=
1

JnΦ f (x)
⟨
(
eee1, D1 f (x)

)
∧ . . . ∧

(
eeen, Dn f (x)

)
∧ ψ

(
∇ f (x)

)
, dX1 ∧ . . . ∧ dXn+1⟩

=
dXn+1

(
ψ
(
∇ f (x)

))
JnΦ f (x)

> 0 for Ln a.e. x ∈ U .

The proof is complete.

Remark 2.1.21. Let U ⊂ Rn be a bounded open set, f ∈ C0(U)∩W2,n(U) and Γ :=graph( f ).
First, we denote by #»η N f the Borel n-vectorfield #»η introduced in Theorem 2.1.20, and by Φ+

f
the map Φ f given in Definition 2.1.11. Then, if we consider the epi-graph of f

E f := {(x, u) ∈ U × R : u ≥ f (x)} ,

also the W1,n-mapping

Φ−
f (x) :=

(
x, f (x),−ψ

(
∇ f (x)

))
for every x ∈ Diff( f )

and
M f := nor(E f ) ∩ (U × R × Rn+1) . (2.1.22)

Similarly to Lemma 2.1.19 and Theorem 2.1.20, one can prove that

M f ∩ (A × R × Rn+1) = Φ−
f
[
A ∩ S∗( f )

]
for every A ⊆ U (2.1.23)

and there exists a Borel n-vectorfield #»η M f on M f , such that

(Hn ⌞ M f ) ∧ #»η M f is a Legendrian cycle of U × R, where Hn(M f ) < ∞ . (2.1.24)

Furthermore, for Hn-a.e. (z, ν) ∈ M f , we have | #»η M f (z, ν)| = 1, #»η M f (z, ν) is simple, also
Tann(Hn ⌞ M f , (z, ν)

)
is associated with #»η M f (z, ν) and

⟨
[∧

nπ0
](

#»η M f (z, ν)
)
∧ ν , dX1 ∧ . . . ∧ dXn+1⟩ > 0 .

Now, if we define
N(Γ) := nor(Γ) ∩ (U × R × Rn+1) , (2.1.25)

we readily infer that
N(Γ) = N f ∪ M f and N f ∩ M f = ∅ (2.1.26)

and, from (2.1.12) and (2.1.23), we deduce that

nor(Γ) ∩ (A × R × Rn+1) = Φ+
f
[
A ∩ S∗( f )

]
∪ Φ−

f
[
A ∩ S∗( f )

]
(2.1.27)
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for every A ⊆ U. In particular, given Z ⊂ Γ such that Hn(Z) = 0, then

N(Γ) ⌞ Z = nor(Γ) ⌞
(
π(Z)× R

)
= Φ+

f
(
π(Z) ∩ S∗( f )

)
∪ Φ−

f
(
π(Z) ∩ S∗( f )

)
where π is the canonical projection on the first n-components (hence Ln(π(Z)

)
= 0). Then,

since Φ+
f and Φ−

f satisfies, respectively, the Lusin (N)-property on S∗( f ) and S∗( f ) (cf.
Lemma 2.1.15 and Remark 2.1.16), we conclude that Hn(N(Γ) ⌞ Z) = 0. Namely, N(Γ) satis-
fies the Lusin (N)-property on Γ. Furthermore, the Borel n-vectorfield

#»η Γ := #»η N f 111N f +
#»η M f 111M f on N(Γ) (2.1.28)

satisfies, for Hn-a.e. (x, ν) ∈ N(Γ), the following properties:

| #»η Γ(z, ν)| = 1 , #»η Γ(z, ν) is simple ,

Tann(Hn ⌞ N(Γ), (z, ν)
)

is associated with #»η Γ(z, ν) ,

⟨
[∧

nπ0
](

#»η Γ(z, ν)
)
∧ ν , dX1 ∧ . . . ∧ dXn+1⟩ > 0 . (2.1.29)

Overall, from Theorem 2.1.20, (2.1.24) and (2.1.27), we conclude that:

NΓ :=
(
Hn ⌞ N(Γ)

)
∧ #»η Γ is a Legendrian cycle of U × R, where

N(Γ) has finite Hn-measure and satisfies the Lusin (N)-property on Γ. (2.1.30)

We denote NΓ as the Legendrian cycle associated with Γ.

2.2 The support of Legendrian cycles

Given C ⊆ Rn+1, we define Unp(C) as the set of x ∈ Rn+1 \C such that there exists an unique
y ∈ C with δδδC(x) = |y − x|. We define also the nearest point projection ξξξC as the multivalued
function mapping x ∈ Rn+1 onto

ξξξC(x) := {a ∈ C : |a − x| = δδδC(x)} .

Notice that ξξξC|Unp(C) is single-valued and we define

νννC(x) :=
x − ξξξC(x)

δδδC(x)
and ψψψC(x) :=

(
ξξξC(x), νννC(x)

)
,

for x ∈ Unp(C). It is well known that, if x ∈ Rn+1 \ C and δδδC is pointwise differentiable at x,
then x ∈ Unp(C) and ∇δδδC(x) = νννC(x) (cf. [13, Theorem 4.8 (3)]). In particular, Rademacher
theorem ensures that

Ln+1
(

Rn+1 \
(
C ∪ Unp(C)

))
= 0 . (2.2.31)

Moreover, the mappings ξξξC, νννC and ψψψC are continuous functions over Unp(C) and it is easy
to see that

nor(C) = ψψψC
(
Unp(C)

)
. (2.2.32)

We also define
ρρρC(x) := sup

{
s > 0 : δδδC

(
a + s(x − a)

)
= s δδδC(x)

}
,

for x ∈ Rn+1 \ C and a ∈ ξξξC(x). This definition does not depend on the choice of a ∈ ξξξC(x),
the function ρρρC : Rn+1 \ C → [1, ∞] is upper-semicontinuous and we set

Cut(C) :=
{

x ∈ Rn+1 \ C : ρρρC(x) = 1
}

(cf. [28, Remark 2.32 and Lemma 2.33]). Finally we define

St(C) :=
{

x ∈ Rn+1 : δδδC(x) = t
}

for t > 0
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and we recall from [24, Lemma 4.2 (53)] that

Hn(St(C) ∩ Unp(C) ∩ Cut(C)
)
= 0 for every t > 0 . (2.2.33)

We are ready to prove the following lemma.

Lemma 2.2.22. If C ⊆ Rn+1 and W ⊆ Rn+1 × Rn+1 is an open set such that W ∩ nor(C) ̸= ∅,
then Hn(W ∩ nor(C)

)
> 0.

Proof. Since nor(C) ̸= ∅, from (2.2.32) we deduce that Rn+1 \ C ̸= ∅. Furthermore, it fol-
lows from the continuity of ψψψC that ψψψ−1

C
(
W ∩ nor(C)

)
is relatively open in Unp(C). That is,

there exists an open set V ⊆ Rn+1 such that

ψψψ−1
C
(
W ∩ nor(C)

)
= V ∩ Unp(C)

from which it follows that the open set V ∩ (Rn+1 \ C) non-empty. Since we have that

V ∩ (Rn+1 \ C) =
(
V ∩ Unp(C)

)
∪
(

V ∩
[
Rn+1 \

(
C ∪ Unp(C)

)])
= ψψψ−1

C
(
W ∩ nor(C)

)
∪
(

V ∩
[
Rn+1 \

(
C ∪ Unp(C)

)])
then, from (2.2.31), we infer

Ln+1
(

ψψψ−1
C
(
W ∩ nor(C)

))
> 0 .

Now we consider δδδC ∈ Lip(Rn+1) and we notice that

J1δδδC(x) = |∇δδδC(x)| = |νννC(x)| = 1 for Ln+1-a.e. x ∈ Rn+1 \ C

then, if we define T := ψψψ−1
C
(
W ∩ nor(C)

)
, by coarea formula (cf. [14, 3.2.11]) we obtain

0 < Ln+1(T) =
∫

T
J1δδδC(x) dLn+1(x)

=
∫ +∞

0
Hn(T ∩ {δδδC = t}) dL1(t) =

∫ +∞

0
Hn(T ∩ St(C)

)
dL1(t) .

Then there exists τ > 0 such that Hn(T ∩ Sτ(C)
)
> 0 and we use (2.2.33) to conclude

Hn((T ∩ Sτ(C)) \ Cut(C)
)
> 0

namely

Hn(T ∩ Sτ(C) ∩ {ρρρC > 1}
)
= lim

k→∞
Hn
(

T ∩ Sτ(C) ∩
{

ρρρC ≥ 1 + 1
k

})
> 0 ,

consequently there exists s > τ such that

Hn(T ∩ Sτ(C) ∩ {ρρρC ≥ s/τ}
)
> 0 .

Since ψψψC|Sτ(C) ∩ {ρρρC ≥ s/τ} is a bi-lipschitz homeomorphism by [24, Theorem 3.16], we
conclude that

Hn
(

ψψψC
(
T ∩ Sτ(C) ∩ {ρρρC ≥ s/τ}

))
> 0

and if we notice that

ψψψC
(
T ∩ Sτ(C) ∩ {ρρρC ≥ s/τ}

)
⊆ ψψψC(T) = W ∩ nor(C)

we obtain the desidered result. The proof is complete.
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Remark 2.2.23. Let us consider the positive measure µ := Hn ⌞nor(C), where C ⊆ Rn+1 is
an arbitrary set. By virtue of Lemma 2.2.22, we deduce that

µ
(

B2n+2
r (z)

)
> 0 for every z ∈ nor(C) and r > 0 .

Overall, since

spt(µ) := (Rn+1 × Sn) \
{

z ∈ Rn+1 × Sn : ∃r > 0 such that µ
(

B2n+2
r (z)

)
= 0

}
,

we infer that nor(C) ⊆ spt µ.

For the next proof we recall that, for a subset C ⊆ Rn+1, the normal cone Nor(C, z)
(cf. [14, p. 3.1.21]) coincides with the cone of regular normals of C at z introduced in [46,
Definition 6.3] (and denoted there by N̂C(z)), while nor(C, z) is the cone of proximal normals
of unit length of C at z defined in [46, Example 6.16].

Lemma 2.2.24. Suppose U ⊆ Rn is open and f ∈ C0(U) such that ∇ f
(
Diff( f )

)
is a dense subset

of U × Rn. Then N(Γ) is dense in Γ × Sn, where Γ := graph( f ) and N(Γ) is given in (2.1.25).

Proof. First, we observe that

ψ
(
∇ f (x)

)
∈ Nor

(
Γ, f (x)

)
for every x ∈ Diff( f ) .

Since ψ is a diffeomorphism of Rn onto Sn
+ and f is continuous, the set Φ f (U) is dense in

Γ × Sn
+ (ψ and Φ f are given in Definition 2.1.11). Consequently we infer that N f is dense in

Γ × Sn
+ by standard approximation of regular normals (cf. [46, Exercise 6.18 (a)]), where N f

is given in Definition 2.1.18. With the same argument we deduce also that M f is dense in
Γ × Sn

− , where M f is given in (2.1.22). Overall, from (2.1.26), we conclude that N(Γ) is dense
in Γ × Sn.

Fu, in [15, p. 2260], observed that there exist a continuous function f , as in Lemma 2.2.24,
that belong to W2,n(U). Consequently, combining Lemma 2.2.22, Lemma 2.2.24 and Remark
2.1.21, we conclude that:

there exists n-dimensional Legendrian cycles (of open subsets on Rn+1),
whose support has positive H2n-measure .

To prove this assertion, first we consider Γ = graph( f ) (as subset of Rn+1) and we employ
Remark 2.2.23 to deduce that

nor(Γ) ⊆ spt
(
Hn ⌞nor(Γ)

)
.

Then, if we consider the Legendrian cycle of U ×R, associated with Γ = graph( f ) and given
by (cf. (2.1.30) in Remark 2.1.21)

NΓ =
(
Hn ⌞ N(Γ)

)
∧ #»η Γ ,

we readily infer that (cf. [56, p. 135])

N(Γ) ⊆ spt
(
Hn ⌞nor(Γ)

)
∩ (U × R × Rn+1)

= spt
(
Hn ⌞ N(Γ)

)
= spt(NΓ) ⊆ Γ × Sn .

In conclusion, since N(Γ) is dense in Γ×Sn (cf. Lemma 2.2.24), we infer that spt(NΓ) = Γ × Sn

and applying Eilenberg’s inequality (cf. [14, 2.10.25]) we obtain the desidered result, namely

H2n( spt(NΓ)
)
= H2n(Γ × Sn)

≥ c(n)
∫ ∗

Sn
Hn( f (U)× {u}

)
dHn(u)

≥ c(n)Ln(U)Hn(Sn) > 0 .
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This answers a question implicit in [43, Remark 2.3].

2.3 The Lagrangian cycle of W2,n-functions

We introduce the notion of Monge-Ampère functions.

Definition 2.3.25 (Symplectic 2-form). The exterior derivative of the contact 1-form α of Rn is
called the symplectic form ω := dα. It is a constant 2-form in Rn × Rn, acting as

⟨(y, v) ∧ (z, w), ω⟩ := v • z − w • y for every y, v, z, w ∈ Rn .

Definition 2.3.26 (Lagrangian current). Let Ω ⊆ Rn × Rn be an open set and let k ≥ 2 be an
integer. A current S ∈ Dk(Ω) is called Lagrangian if S ⌞ω = 0.

Definition 2.3.27 (Monge-Ampère functions). Given an open set U ⊆ Rn, we say that a function
f ∈ W1,1

loc (U) is Monge-Ampère if there exists an integer multiplicity locally rectifiable n-current S
on U × Rn, such that:

(i) ∂S = 0 ;

(ii) S ⌞ω = 0 ;

(iii) ∥S∥(K × Rn) < ∞ for every K ⊂ U compact ;

(iv) S(ϕ dX1 ∧ . . . ∧ dXn) =
∫

U ϕ
(
x,∇∇∇ f (x)

)
dLn(x) for every ϕ ∈ C∞

c (U × Rn) .

The following uniqueness theorem, proved by Fu in [16] for locally Lipschitzian func-
tions and later generalized by Jerrard in [26], guarantees that the current S above is uniquely
determined by the given conditions.

Theorem 2.3.28 ([16, Theorem 1.1] , [26, Theorem 4.1]). Suppose U ⊆ Rn is open and S is an
integer-multiplicity n-dimensional rectifiable Lagrangian current in U × Rn, with no boundary in
U × Rn, such that ∥S∥(K × Rn) < ∞ for every K ⊆ U and

S(ϕ dX1 ∧ . . . ∧ dXn) = 0 for every ϕ ∈ C∞
c (U × Rn) .

Then S = 0.

Hence, if f ∈ W1,1
loc (U) is Monge-Ampère and S satisfies (i)-(iv) above, we write [d f ] := S.

If f ∈ C2(U), then [d f ] = ∇ f #(E
n ⌞U) (where En := Ln ∧ (eee1 ∧ . . .∧ eeen) denote the n- current

in Rn defined by Lebesgue integration, with the canonical orientation of Rn) and

[d f ](ϕ) =
∫

U
⟨
[∧

nD(∇ f )(x)
]
(eee1 ∧ . . . ∧ eeen), ϕ

(
x,∇ f (x)

)
⟩ dLn(x)

=
∫

U
⟨
(
eee1, D(∇ f )(x)eee1

)
∧ . . . ∧

(
eeen, D(∇ f )(x)eeen

)
, ϕ
(
x,∇ f (x)

)
⟩ dLn(x)

for every ϕ ∈ Dn(U × Rn).

Lemma 2.3.29. Let U ⊆ Rn be an open set. Every f ∈ W2,n
loc (U) is a Monge-Ampère function and

[d f ](ϕ) :=
∫

U
⟨
(
eee1,DDD(∇ f )(x)eee1

)
∧ . . . ∧

(
eeen,DDD(∇ f )(x)eeen

)
, ϕ
(
x,∇ f (x)

)
⟩ dLn(x)

for ϕ ∈ Dn(U × Rn).

Proof. Given f ∈ W2,n
loc (U), first we notice that (cf. [14, 1.7.6])∣∣(eee1,DDD(∇ f )(x)eee1
)
∧ . . . ∧

(
eeen,DDD(∇ f )(x)eeen

)∣∣ ≤ (1 + ∥DDD(∇ f )(x)∥
)n for Ln-a.e. x ∈ U .

Moreover the expression

S(ϕ) :=
∫

U
⟨
(
eee1,DDD(∇ f )(x)eee1

)
∧ . . . ∧

(
eeen,DDD(∇ f )(x)eeen

)
, ϕ
(
x,∇ f (x)

)
⟩ dLn(x) ,
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for ϕ ∈ Dn(U × Rn), defines a n-dimensional current S ∈ Dn(U × Rn). To prove it, we
consider {φk}k∈N ⊂ Dn(U × Rn) and φ ∈ Dn(U × Rn) such that there exists a compact set
K ⊂ U × Rn, where {spt(φk)}k∈N ⊂ P(K), spt(φ) ⊆ K and

∥Dα φk − Dα φ∥L∞(K) −−−→k→∞
0 for any multi-index α ∈ Nℵ0

(namely φk → φ with respect to the canonical LF-topology). Since(
∇ f
)−1

(K) ⊆ π0(K) ⊂⊂ U ,

if we define

α[g, ϕ](x) := ⟨
(
eee1,DDD(∇g)(x)eee1

)
∧ . . . ∧

(
eeen,DDD(∇g)(x)eeen

)
, ϕ
(
x,∇g(x)

)
⟩ for Ln-a.e. x ∈ U

whenever g ∈ W2,n
loc (U) and ϕ ∈ Dn(U × Rn), we deduce that

|S(φk)− S(φ)| ≤
∫

U

∣∣α[ f , φk](x)− α[ f , φ](x)
∣∣ dLn(x)

≤ ∥φk − φ∥L∞(K)

∫
(∇ f )−1(K)

(
1 + ∥DDD(∇ f )(x)∥

)n dLn(x) −−−→
k→∞

0 .

We infer that S is a continuous linear operator with respect to the canonical LF-topology,
namely S ∈ Dn(U × Rn).

Now we show that f is Monge-Ampère and [d f ] = S. We choose a sequence { fk}k∈N in
C∞(Rn) such that fk → f in W2,n

loc (U), ∇ fk(x) → ∇ f (x) and D(∇ fk)(x) → DDD(∇ f )(x) for
Ln-a.e. x ∈ U, hence as in the proof of Theorem 2.1.20 (cf. estimate (2.1.18)) we infer that
[d fk](ϕ) → S(ϕ) for every ϕ ∈ Dn(U × Rn). Namely S is a Lagrangian cycle and satisfies
(iv) above, by definition. To check the previous (iii), we notice that given ϕ ∈ Dn(U × Rn)
and V ⊂⊂ U, an open set with spt(ϕ) ⊂ V × Rn, then∣∣S(ϕ)∣∣ ≤ ∫

V

∣∣α[ f , ϕ](x)
∣∣ dLn(x)

≤ ∥ϕ∥L∞(U×Rn)

∫
V

(
1 + ∥DDD(∇ f )(x)∥

)n dLn(x) < ∞ .

The proof is complete.

Theorem 2.3.30. Given U ⊆ Rn an open set and f ∈ C0(U) ∩ W2,n
loc (U), then the area formula

holds for the mappings ∇ f , namely

Hn(∇ f (E)
)
=
∫

E
Jn∇ f dLn (2.3.34)

for every Ln-measurable set E ⊆ S( f ). Moreover ∇ f
(
S( f ) ∩ K

)
is Hn-rectifiable for every K ⊂ U

compact,
[d f ] =

[
Hn ⌞∇ f

(
S( f )

)]
∧ ( #»η f ◦ π0) (2.3.35)

where the n-vectorfield #»η f is defined as

#»η f (x) :=

(
eee1,DDD(∇ f )(x)eee1

)
∧ . . . ∧

(
eeen,DDD(∇ f )(x)eeen

)∣∣(eee1,DDD(∇ f )(x)eee1
)
∧ . . . ∧

(
eeen,DDD(∇ f )(x)eeen

)∣∣ for Ln-a.e. x ∈ U ,

and

Hn
(
∇ f
((

S∗( f ) ∪ S∗( f )
)
\ S( f )

))
= 0 . (2.3.36)

Proof. First we prove (2.3.34). Since ∇ f ∈ W1,n
loc (U; Rn), by the classical result in [9, Theorem

13], there exists a sequence {Φi}i∈N ⊂ C1(Rn; Rn) ∩ Lip(Rn; Rn) such that the following
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Lusin-type approximation holds

Ln(U \⋃∞
i=1
{

x ∈ U : Φi(x) = ∇ f (x)
})

= 0 .

We define Ãi as the set of x ∈ S( f ) where Φi(x) = ∇ f (x) and ∇ f is approximately differen-
tiable at x, with ap D∇ f (x) = DΦi(x). By combining Theorem 2.1.7, Lemma 2.1.8 and [12,
Theorem 6.3], we deduce that Ãi has full Ln-measure in the set

{
x ∈ U : Φi(x) = ∇ f (x)

}
.

Now, if we define the following sequence of disjoint sets

A1 := Ã1 and Ai := Ãi \
⋃i−1

j=1 Ãj for i ≥ 2 ,

it follows that Ln(U \⋃∞
i=1 Ai

)
= 0. Moreover (taking into account of Lemma 2.1.8)

Jn∇ f (x) =
∣∣(eee1,DDD(∇ f )(x)eee1

)
∧ . . . ∧

(
eeen,DDD(∇ f )(x)eeen

)∣∣
=
∣∣(eee1, DΦi(x)eee1

)
∧ . . . ∧

(
eeen, DΦi(x)eeen

)∣∣ = JnΦi(x) (2.3.37)

for Ln-a.e. x ∈ Ai and for every i ∈ N. Then, for every Ln-measurable set E ⊆ S( f ), since
∇ f satisfies the Lusin (N)-property on S( f ) (cf. Remark 2.1.16), by applying [14, 3.2.3 (1)
and 2.4.8] and (2.3.37), we obtain

Hn(∇ f (E)
)
= Hn(∇ f (E \

⋃∞
i=1 Ai)

)
+

∞

∑
i=1

Hn(∇ f (E ∩ Ai)
)

=
∞

∑
i=1

∫
E∩Ai

JnΦi dLn =
∫

E
Jn∇ f dLn .

Again, since ∇ f satisfies the Lusin (N)-property on S∗( f ) ∪ S∗( f ) (cf. Remark 2.1.16), it
follows that (2.3.36) is a consequence of Theorem 2.1.7.

Now, we prove that ∇ f
(
S( f ) ∩ K

)
is Hn-rectifiable for every compact set K ⊂ U. We

consider the map Ψ : Rn × R × Sn
+ → Rn × Rn, defined as Ψ(x, t, u) :=

(
x, φ(u)

)
, where φ

is given in Remark 2.1.12. From (2.1.12), we obtain

∇ f
(
S( f )

)
= (Ψ ◦ Φ f )

(
S( f )

)
⊆ Ψ(N f )

where N f is countably Hn-rectifiable. This implies that ∇ f
(
S( f )

)
is countably Hn-rectifiable.

To show that Hn(∇ f (S( f ) ∩ K)
)
< ∞ for every compact set K ⊂ U, we apply the area for-

mula (2.3.34).
To prove (2.3.35), by applying [14, 2.4.8 and 3.2.5] and (2.3.37), we obtain the following

[d f ](ϕ) =
∫
S( f )

⟨
(
eee1,DDD(∇ f )(x)eee1

)
∧ . . . ∧

(
eeen,DDD(∇ f )(x)eeen

)
, ϕ
(
x,∇ f (x)

)
⟩ dLn(x)

=
∞

∑
i=1

∫
Ai

⟨ #»η f

(
π0
(
Φi(x)

))
, ϕ
(
Φi(x)

)
⟩ JnΦi(x) dLn(x)

=
∞

∑
i=1

∫
Φi(Ai)

⟨ #»η f
(
π0(y)

)
, ϕ(y)⟩ dHn(y)

=
∫
∇ f (S( f ))

⟨ #»η f
(
π0(y)

)
, ϕ(y)⟩ dHn(y)

for every ϕ ∈ Dn(U × Rn). The proof is complete.

Remark 2.3.31 (Roskovec example). The Lusin (N)-property does not generally hold for
Sobolev mappings in the critical W1,n-case. In fact, Tomás Roskovec (cf. [48]), using a Cesari-
type construction, provides an example of a function f ∈ C1([−1, 1]n) such that

∇ f ∈ W1,n((−1, 1)n; Rn) and [−1, 1]n ⊆ ∇ f ([−1, 1]× {0}n−1) .

In other words, ∇ f is a (C0 ∩W1,n)-regular vector field, but it does not satisfy the Lusin (N)-
property since it maps a segment into an n-cube. Naturally, ∇ f ([−1, 1]× {0}n−1) will also
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have positive Hn-measure. Taking into account that ∇ f satisfies the Lusin (N)-property on
S( f ), we deduce that

Hn
(
∇ f
(
(−1, 1)n) \ ∇ f

(
S( f )

))
≥ Hn

(
∇ f ([−1, 1]× {0}n−1)

)
> 0 .

Overall, from representation (2.3.35), we conclude the following:

[d f ] is carried by ∇ f
(
S( f )

)
,

and it is not possible to replace ∇ f
(
S( f )

)
with ∇ f (U),

even if f were C1-regular.
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Chapter 3

Fine properties of W2,n-domains

3.1 Reilly-type variational formulae for W2,n-domains

In this section we study the structure of the unit normal bundle of a W2,n-domain (see The-
orem 3.1.7), and we prove the variational formulae for their mean curvature functions (see
Theorem 3.1.15). The latter extends the well known variational formulae obtained by Reilly
in [45] for smooth domains. As a corollary Minkowski-Hsiung formulae are also proved; cf.
Theorem 3.1.17.

Definition 3.1.1 (Viscosity boundary). Suppose Ω ⊆ Rn+1 be an open set. We define ∂v
+Ω to be

the set of all p ∈ ∂Ω such that there exists ν ∈ Sn and r > 0 such that

Bn+1
r (p + rν) ∩ Ω = ∅ and Bn+1

r (p − rν) ⊆ Ω .

[Notice {p} = ∂Br(p + rν) ∩ ∂Br(p − rν).] Clearly for each p ∈ ∂v
+Ω the unit vector ν is unique.

This defines an exterior unit-normal vector field on ∂v
+Ω,

νΩ : ∂v
+Ω → Sn.

We recall the notion of second order rectifiability. Suppose X ⊂ Rm and µ is a positive
integer such that Hµ(X) < ∞. We say that X is Hµ-rectifiable of class 2 if and only if there
exists countably many µ-dimensional submanifolds Σi ⊂ Rm of class 2 such that

Hµ
(

X \
∞⋃

i=1

Σi

)
= 0 .

Lemma 3.1.2. Suppose X ⊂ Rn+1 is Hn-measurable and Hn-rectifiable of class 2, and ν : X → Sn

is a (Hn ⌞ X)-measurable map such that

ν(a) ∈ Norn(Hn ⌞ X, a) , for Hn-a.e. a ∈ Σ . (3.1.1)

Then there exist a countable family of measurable sets Xi ⊆ X such that Hn(X \ ⋃∞
i=1 Xi

)
= 0

and Lip(ν|Xi) < ∞; moreover, ν is (Hn ⌞ X)-approximately differentiable at Hn-a.e. a ∈ X and
ap Dν(a) is a symmetric endomorphism of Tann(Hn ⌞ X, a).

Proof. Let {Σi}i∈N be a family of n-dimensional C2-hypersurfaces such that

Hn(X \⋃∞
i=1Σi

)
= 0 . (3.1.2)

For each i ∈ N, let ηi : Σi → Sn be a unit normal C1-vectofield to Σi , which, whitout loss of
generality, we assume to be Lipschitz continuous. We define

Σ±
i :=

{
a ∈ Σi ∩ X : ηi(a) = ±ν(a)

}
for i ∈ N . (3.1.3)

By the rectifiability and the locality property of approximate tangent spaces (cf. (1.1.4)) and
Remark 1.1.1 (i), for every i ∈ N, we obtain

Tann(Hn ⌞ X, a) = Tann(Hn ⌞Σi, a) = Tan(Σi, a) ∈ GGG(n + 1, n) (3.1.4)
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for Hn-a.e. a ∈ Σi ∩ X. Finally, combining (3.1.1), (3.1.3) and (3.1.4), we deduce that

Hn((Σi ∩ X) \ (Σ+
i ∪ Σ−

i )
)
= 0 for every i ∈ N

and from (3.1.2), it follows that Hn(X \⋃∞
i=1(Σ

+
i ∪ Σ−

i )
)
= 0.

From the rectifiability of the sets Σ±
i and since Lip(ν|Σ±

i ) < +∞, we apply [14, 3.2.19] to
conclude that ν is (Hn ⌞Σ±

i )-approximately differentiable at Hn-a.e. a ∈ Σ±
i , where

ap Dν(a) : Tann(Hn ⌞Σ±
i , a) → Tann(Hn ⌞Σ±

i , a)

and Tann(Hn ⌞Σ±
i , a) ∈ GGG(n + 1, n). Furthermore, applying [14, 2.10.19 (4)], we infer that

Θn(Hn ⌞ X \ Σ±
i , a) = 0 for Hn-a.e. a ∈ Σ±

i , (3.1.5)

and we deduce that ν is (Hn ⌞ X)-approximately differentiable at Hn-a.e. a ∈ Σ±
i , where

ap Dν(a) : Tann(Hn ⌞ X, a) → Tann(Hn ⌞ X, a)

and Tann(Hn ⌞ X, a) ∈ GGG(n + 1, n). Again by (3.1.5), we infer that

Θ
(
Hn ⌞{x ∈ Σi ∩ X : ηi(x) ̸= ±ν(x)}, a

)
= 0

for Hn-a.e. a ∈ Σ±
i , where

ap Dν(a) = ±Dηi(a)|Tann(Hn ⌞ X, a) .

Hence, the simmetry of ap Dν(a) follows directly from the symmetry of the Weingarten map
Dηi(a)|Tan(Σi, a). The proof is complete.

We introduce now the class of W2,n-domains.

Definition 3.1.3. (W2,n-domains). An open set Ω ⊆ Rn+1 is a W2,n-domain if there exists a pair
(Ω′, F), that satisfies the following properties:

(i) Ω′ ⊆ Rn+1 is an open set such that for each p ∈ ∂Ω′ there exist ϵ > 0, ν ∈ Sn, a bounded
open set U ⊂ ν⊥ with 0 ∈ U and f ∈ C0(U) ∩ W2,n(U) with f (0) = 0 such that{

p + b + τν : b ∈ U, −ϵ < τ ≤ f (b)
}
= Ω′ ∩

{
p + b + τν : b ∈ U, −ϵ < τ < ϵ

}
;

(ii) F is a C2-diffeomorphism defined over an open set V ⊆ Rn+1, where Ω′ ⊆ V;

(iii) F(Ω′) = Ω .

Remark 3.1.4. This class of domains is invariant under images of C2-diffeomorphisms, which
is clearly a necessary condition in order to provide a natural framework to generalize Reilly’s
variational formulae. We do not know if we really need to introduce the diffeomorphism F
in the definition above; in other words, if Ω′ belongs to the class S of domains satisfying
only condition (i) of Definition 3.1.3, is it true that F(Ω′) belongs to S too?

We collect some basic properties of W2,n-domains.

Lemma 3.1.5. If Ω ⊆ Rn+1 is a W2,n-domain, then the following statements hold.

(i) Hn(∂Ω \ ∂v
+Ω) = 0 and K ∩ ∂Ω is Hn-rectifiable of class 2 for every compact set K ⊆ Rn+1.

(ii) For Hn a.e. p ∈ ∂Ω,

Tann(Hn ⌞ ∂Ω, p) = Tan(∂Ω, p) = νΩ(p)⊥.

(iii) For every p ∈ ∂v
+Ω,

Tann+1(Ln+1 ⌞Ω, p) = Tan(Ω, p) = {v ∈ Rn+1 : v • νΩ(p) ≤ 0} .
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Proof. Suppose Ω = F(Ω′), where Ω′ and F are as in Definition 3.1.3. Clearly, F(∂Ω′) = ∂Ω
and F(∂v

+Ω′) = ∂v
+Ω. Therefore, assertion (i) follows from Theorem 2.1.7, Theorem 5.3.3 and

Remark 5.3.4.
If p ∈ ∂v

+Ω, we have Tan(∂Ω, p) ⊆ νΩ(p)⊥; since Tann(Hn ⌞ ∂Ω, p) ⊆ Tan(∂Ω, p) for
every p ∈ ∂Ω and Tann(Hn ⌞ ∂Ω, p) is a n-dimensional plane for Hn-a.e. p ∈ ∂Ω, we obtain
(ii). Finally it follows from definitions that Tan(Ω, p) = {v ∈ Rn+1 : v • νΩ(p) ≤ 0} and
Tann+1(Ln+1 ⌞Ω, p) = {v ∈ Rn+1 : v • νΩ(p) ≤ 0} for every p ∈ ∂v

+Ω.

By Lemma 3.1.2 the map νΩ is (Hn ⌞ ∂Ω)-approximately differentiable with a symmet-
ric approximate differential ap DνΩ(x) at Hn-a.e. x ∈ ∂Ω. Consequently we introduce the
following definition.

Definition 3.1.6 (Approximate principal curvatures). Suppose Ω ⊆ Rn+1 is a W2,n-domain.
The approximate principal curvatures of Ω are the R-valued (Hn ⌞ ∂Ω)-measurable maps

χΩ,1, . . . , χΩ,n

defined so that χΩ,1(p) ≤ . . . ≤ χΩ,n(p) are the eigenvalues of ap DνΩ(p) for Hn-a.e. p ∈ ∂Ω.

We prove now the main structure theorem for the unit normal bundle nor(Ω) of a W2,n-
domain.

Theorem 3.1.7. Given Ω ⊆ Rn+1 a W2,n-domain, then the following statements hold.

(i) Hn(νΩ(Z)) = 0 whenever Z ⊆ ∂v
+Ω with Hn(Z) = 0 .

(ii) Hn(nor(Ω) \ νΩ(∂v
+Ω)

)
= 0 .

(iii) κΩ,i(x, u) = χΩ,i(x) for every i ∈ {1, . . . , n} and for Hn-a.e. (x, u) ∈ nor(Ω). In particular,
κΩ,i(x, u) < ∞ for Hn-a.e. (x, u) ∈ nor(Ω) .

(iv) If ∂Ω is compact, then Hn(nor(Ω)
)
< ∞ and there exists an unique Legendrian cycle T of

Rn+1 such that
T =

(
Hn ⌞nor(Ω)

)
∧ #»η ,

where #»η is a
(
Hn ⌞nor(Ω)

)
-measurable n-vectorfield such that

| #»η (x, u)| = 1 , #»η (x, u) is simple ,

Tann(Hn ⌞nor(Ω), (x, u)
)

is associated with #»η (x, u)

and
⟨
[∧

nπ0
]
( #»η (x, u)) ∧ u, dX1 ∧ . . . ∧ dXn+1⟩ > 0 ,

for Hn-a.e. (x, u) ∈ nor(Ω). In this case #»η = ζ1 ∧ . . . ∧ ζn , where

ζi :=

(
1√

1 + κ2
Ω,i

τi ,
κΩ,i√

1 + κ2
Ω,i

τi

)
, for i ∈ {1, . . . , n}

and {τ1(x, u), . . . , τn(x, u)} is an orthonormal basis of u⊥ such that

τ1(x, u) ∧ . . . ∧ τn(x, u) ∧ u = eee1 ∧ . . . ∧ eeen+1 ,

for Hn-a.e. (x, u) ∈ nor(Ω).

Proof. Suppose Ω = F(Ω′), where Ω′ and F are as in Definition 3.1.3. We recall the definition
of ΨF from (1.3.13) and notice that

ΨF
(
nor(Ω′)

)
= nor(Ω) , (3.1.6)

by [54, Lemma 2.1]. Since F(∂v
+Ω′) = ∂v

+Ω, we readily infer from (3.1.6) that

ΨF
(

x, νΩ′(x)
)
=
(

F(x), νΩ
(

F(x)
))

for every x ∈ ∂v
+Ω′
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and
ΨF

(
νΩ′
(

F−1(S)
))

= νΩ(S) for every S ⊆ ∂v
+Ω . (3.1.7)

To prove the assertions in (i) and (ii) we notice, firstly, that they are true for Ω′ as a
consequence of Lemma 2.1.15 and (2.1.12) of Lemma 2.1.19; then we apply (3.1.6) and (3.1.7).

To prove (iii) we first employ Lemma 3.1.2 to find a countable family of Hn-measurable
sets Xi ⊆ ∂v

+Ω such that Hn(∂Ω \ ⋃∞
i=1 Xi) = 0 and Lip(νΩ|Xi) < ∞ for every i ∈ N;

then we define Yi to be the set of x ∈ Xi such that νΩ is (Hn ⌞ ∂Ω)-approximately differen-
tiable at x, Tann(Hn ⌞ ∂Ω, x) and Tann(Hn ⌞nor(Ω), νΩ(x)

)
are n-dimensional planes, and

Θn(Hn ⌞ ∂Ω \ Xi, x) = 0.
We notice that νΩ|Xi is bi-lipschitz and, since Tann(Hn ⌞nor(Ω), (x, u)

)
is a n-dimensional

plane for Hn-a.e. (x, u) ∈ nor(Ω), we conclude that

Hn(Xi \ Yi) = 0 for every i ∈ N .

It follows from (i) and (ii) that

Hn
(

nor(Ω) \
∞⋃

i=1

νΩ(Yi)
)
= 0 . (3.1.8)

We fix now x ∈ Yi. Then there exists a map g : Rn+1 → Rn+1 ×Rn+1 pointwise differentiable
at x such that g(x) = νΩ(x), Θn(Hn ⌞ ∂Ω \ {g = νΩ}, x) = 0 and

ap DνΩ(x) = Dg(x)|Tann(Hn ⌞ ∂Ω, x) .

Noting that ap DνΩ(x) is injective, g|Xi ∩ {g = νΩ} is bi-lipschitz and

Tann(Hn ⌞ ∂Ω, x) = Tann(Hn ⌞ Xi ∩ {g = νΩ}, x
)

,

we readily infer by [51, Lemma B.2] that

ap DνΩ(x)
[
Tann(Hn ⌞ ∂Ω, x)

]
= Tann(Hn ⌞nor(Ω), νΩ(x)

)
.

Hence, if {τ1, . . . , τn} is an orthonormal basis of Tann(Hn ⌞ ∂Ω, x) with

ap DνΩ(x)(τi) = χΩ,i(x)τi for i ∈ {1, . . . , n} ,

we conclude that{(
1√

1 + χΩ,i(x)2
τi ,

χΩ,i(x)√
1 + χΩ,i(x)2

τi

)
: i ∈ {1, . . . , n}

}

is an orthonormal basis of Tann(Hn ⌞nor(Ω), νΩ(x)). Since x is arbitrarily chosen in Yi,
thanks to (3.1.8), we deduce from the uniqueness stated in Lemma 1.4.20 that

κΩ,i(x, u) = χΩ,i(x) for Hn a.e. (x, u) ∈ nor(Ω) .

Finally we prove (iv). By Lemma 1.4.20 we can choose maps {τ1, . . . , τn} defined Hn-a.e.
on nor(Ω′) such that {τ1(x, u), . . . , τn(x, u), u} is an orthonormal basis of Rn+1,

τ1(x, u) ∧ . . . ∧ τn(x, u) ∧ u = eee1 ∧ . . . ∧ eeen+1 for Hn-a.e. (x, u) ∈ nor(Ω′) (3.1.9)

and the vectors

ζ ′i(x, u) :=

(
1√

1 + κΩ′ ,i(x, u)2
τi(x, u),

κΩ′ ,i(x, u)√
1 + κΩ′ ,i(x, u)2

τi(x, u)

)
for i ∈ {1, . . . , n}
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form an orthonormal basis of Tann(Hn ⌞nor(Ω′), (x, u)
)

for Hn-a.e. (x, u) ∈ nor(Ω′). Then
we define

#»η ′ := ζ ′1 ∧ . . . ∧ ζ ′n

and notice that
| #»η ′(x, u)| = 1 , #»η ′(x, u) is simple ,

Tann(Hn ⌞nor(Ω′), (x, u)
)

is associated with #»η ′(x, u)

and (cf. (1.0.2))

⟨
[∧

nπ0
](

#»η ′(x, u)
)
∧ u, dX1 ∧ . . . ∧ dXn+1⟩ > 0 (by (3.1.9)) (3.1.10)

for Hn-a.e. (x, u) ∈ nor(Ω′). If p ∈ ∂Ω′, ϵ > 0, ν ∈ Sn, U ⊂ ν⊥ is a bounded open set with
0 ∈ U and f ∈ W2,n(U) is a continuous function with f (0) = 0 such that{

p + b + τν : b ∈ U, −ϵ < τ ≤ f (b)
}
= Ω′ ∩ CU,ϵ ,

where CU,t := {p + b + τν : b ∈ U, −t < τ < t} for any 0 < t ≤ +∞, then we observe that

N f = nor(Ω′) ∩ (CU,ϵ × Sn)

where N f := nor(C f ) ∩ (CU,∞ × Sn) and C f :=
{

p + b + τν : b ∈ U, −∞ < τ ≤ f (b)
}

. It
follows from (3.1.10) and Theorem 2.1.20 that #»η ′∣∣[nor(Ω′)∩ (CU,ϵ × Sn)

]
is Hn-a.e. equal to

a Borel n-vectorfield defined over nor(Ω′) ∩ (CU,ϵ × Sn) and

(Hn ⌞
[
nor(Ω′) ∩ (CU,ϵ × Sn)

]
) ∧ #»η ′

is a n-dimensional Legendrian cycle of CU,ϵ. Therefore, we define the integer multiplicity
locally rectifiable n-current

T′ :=
(
Hn ⌞nor(Ω′)

)
∧ #»η ′

and we conclude by Lemma 1.3.5 that T′ is a Legendrian cycle of Rn+1.
We define now ψ := ΨF|nor(Ω′) and, recalling (3.1.6) and noting that

ap Dψ
(
ψ−1(y, v)

)
= DΨF

(
ψ−1(y, v)

)
(3.1.11)

for Hn-a.e. (y, v) ∈ nor(Ω), we define

#»η (y, v) :=

[∧
n ap Dψ

(
ψ−1(y, v)

)]
#»η ′(ψ−1(y, v)

)
Jnor(Ω′)
n ψ

(
ψ−1(y, v)

)
for Hn-a.e. (y, v) ∈ nor(Ω). Since ΨF is a diffeomorphism we have that #»η (y, v) ̸= 0 for
Hn-a.e. (y, v) ∈ nor(Ω). We now apply [14, 4.1.30] with U, K, W, ξ, G and g replaced by
Rn+1 × Rn+1, ∂Ω′ × Sn, nor(Ω′), ΨF and ψ respectively. We infer that

(ΨF)#
[(
Hn ⌞nor(Ω′)

)
∧ #»η ′ ] = (Hn ⌞nor(Ω)

)
∧ #»η

and that | #»η (y, v)| = 1 and Tann(Hn ⌞nor(Ω), (y, v)
)

is associated with #»η (y, v) for Hn-a.e.
(y, v) ∈ nor(Ω). Clearly

(
Hn ⌞nor(Ω)

)
∧ #»η is a cycle, and

[(
Hn ⌞nor(Ω)

)
∧ #»η

]
⌞ α = 0 by

Lemma 1.4.27. Finally, since τ1(x, u) ∧ . . . ∧ τn(x, u) = (−1)n ∗∗∗u and[∧
nπ0

](
#»η
(
ΨF(x, u)

))
=

1

Jnor(Ω′)
n ψ(x, u)

(
n

∏
i=1

1√
1 + κΩ′ ,i(x, u)2

) [
DF(x)

(
τ1(x, u)

)
∧ . . . ∧ DF(x)

(
τn(x, u)

)]

=
(−1)n

Jnor(Ω′)
n ψ(x, u)

(
n

∏
i=1

1√
1 + κΩ′ ,i(x, u)2

) [∧
nDF(x)

]
(∗∗∗u)
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for Hn-a.e. (x, u) ∈ nor(Ω′), it follows by Remark 3.1.8 below and (3.1.6) that either

⟨
[∧

nπ0
](

#»η (y, v)
)
∧ v, dX1 ∧ . . . ∧ dXn+1⟩ > 0 for Hn-a.e. (y, v) ∈ nor(Ω)

or
⟨
[∧

nπ0
](

#»η (y, v)
)
∧ v, dX1 ∧ . . . ∧ dXn+1⟩ < 0 for Hn-a.e. (y, v) ∈ nor(Ω) .

This settles the existence part in statement (iv). Uniqueness easily follows from the defining
conditions of T and the representation of #»η follows from Lemma 1.4.20.
The proof is complete.

Remark 3.1.8. Let ∗∗∗ : Rn+1 → ∧
n Rn+1 be the Hodge-star operator, taken with respect to

eee1 ∧ . . . ∧ eeen+1 (cf. [14, 1.7.8]). We notice that if u ∈ Sn and {τ1, . . . , τn} is an orthonomal basis
of u⊥ such that u ∧ τ1 ∧ . . . ∧ τn = eee1 ∧ . . . ∧ eeen+1, then it follows from the shuffle formula
[14, p. 18] that

∗∗∗u = τ1 ∧ . . . ∧ τn .

Using this remark, we prove that:

if F : Rn+1 → Rn+1 is a diffeomorphism, then either

⟨
[∧

nDF(x)
]
(∗∗∗u) ∧ (DF(x)−1)∗(u), dX1 ∧ . . . ∧ dXn+1⟩ > 0

for every (x, u) ∈ Rn+1 × Sn, or

⟨
[∧

nDF(x)
]
(∗∗∗u) ∧ (DF(x)−1)∗(u), dX1 ∧ . . . ∧ dXn+1⟩ < 0

for every (x, u) ∈ Rn+1 × Sn.

By contradiction, assume that there exists (x, u) ∈ Rn+1 × Sn such that

⟨
[∧

nDF(x)
]
(∗∗∗u) ∧ (DF(x)−1)∗(u), dX1 ∧ . . . ∧ dXn+1⟩ = 0

and choose an orthonormal basis {τ1, . . . , τn} of u⊥ so that u ∧ τ1 ∧ . . . ∧ τn = eee1 ∧ . . . ∧ eeen+1.
Therefore, DF(x)(τ1) ∧ . . . ∧ DF(x)(τn) ∧ (DF(x)−1)∗(u) = 0 and, since {DF(x)(τi)}n

i=1 are
linearly independent, we conclude that there exists c1, . . . , cn ∈ R such that

(DF(x)−1)∗(u) =
n

∑
i=1

ci DF(x)(τi) .

Applying DF(x)−1 to both sides and taking the scalar product with u, we get[
DF(x)−1 ◦ (DF(x)−1)∗

]
(u) • u = 0 ,

whence we infer that (DF(x)−1)∗(u) = 0, a contradiction.

Definition 3.1.9. Given Ω ⊆ Rn+1 a W2,n-domain, we denote by NΩ the Legendrian cycle given
by Theorem 3.1.7 (iv).

Remark 3.1.10. The proof of Theorem 3.1.7 (iv) proves that if F : U → V is a C2-diffeomorphism
between open subsets of Rn+1 and Ω is a bounded W2,n-domain such that Ω ⊆ U, then

(ΨF)#(NΩ) = NF(Ω) .

Definition 3.1.11 (r-th elementary symmetric function). Suppose r ∈ {1, . . . , n}. The r-th
symmetric function σr : Rn → R is defined as

σr(t1, . . . , tn) :=
1
(n

r)
∑

λ∈Λn,r

tλ(1) . . . tλ(r) ,

where Λn,r is the set of all increasing functions from {1, . . . , r} to {1, . . . , n}. We set

σ0(t1, . . . , tn) := 1 for (t1, . . . , tn) ∈ Rn .
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Definition 3.1.12 (r-th mean curvature function). Suppose Ω ⊆ Rn+1 is a W2,n-domain and
r ∈ {0, . . . , n}. Then we define the r-th mean curvature function of Ω as

HΩ,r(z) := σr
(
χΩ,1(z), . . . , χΩ,n(z)

)
,

for Hn a.e. z ∈ ∂Ω.

Lemma 3.1.13. If Ω ⊂ Rn+1 is a bounded W2,n-domain, then

(NΩ ⌞ φn−k)(ϕ) =

(
n
k

) ∫
∂Ω

HΩ,k(x) ϕ
(

x, νΩ(x)
)

dHn(x)

for every ϕ ∈ C∞(Rn+1 × Rn+1) and k ∈ {0, . . . , n}.

Proof. We know by Theorem 3.1.7 (iv) that

NΩ = (Hn ⌞nor(Ω)) ∧ (ζ1 ∧ . . . ∧ ζn) .

Noting that

Jnor(Ω)
n π0(x, u) =

n

∏
i=1

1√
1 + κΩ,i(x, u)2

for Hn-a.e. (x, u) ∈ nor(Ω) ,

we employ Theorem 3.1.7 (iii) to compute

(NΩ ⌞ φn−k)(ϕ) =

(
n
k

) ∫
nor(Ω)

Jnor(Ω)
n π0(x, u) ϕ(x, u) HΩ,k(x) dHn(x, u) ,

whence we conclude using area formula for rectifiable sets in combination with Theorem
3.1.7 (ii) and Lemma 3.1.5 (i).

Definition 3.1.14 (r-th total curvature measure). If Ω ⊂ Rn+1 is a bounded W2,n-domain and
r ∈ {0, . . . , n}, we define

Ar(Ω) :=
∫

∂Ω
HΩ,r dHn.

Now we can quickly derive the following extension of Reilly’s variational formulae (cf.
[45]) to W2,n-domain.

Theorem 3.1.15. Suppose Ω ⊂ Rn+1 is a bounded W2,n-domain and {Ft}t∈(−ϵ,ϵ) is a local varia-
tion of Rn+1 with initial velocity vector field V. Then

d
dt
Ak−1(Ft(Ω))

∣∣∣
t=0

= (n − k + 1)
∫

∂Ω
νΩ(x) • V(x) HΩ,k(x) dHn for k ∈ {1, . . . , n}

and
d
dt
An(Ft(Ω))

∣∣∣
t=0

= 0 . (3.1.12)

Proof. Combining Remark 3.1.10 and Lemma 3.1.13 we obtain

[
(ΨFt)#NΩ

]
(φn−k+1) = NFt(Ω)(φn−k+1) =

(
n

k − 1

)
Ak−1

(
Ft(Ω)

)
for k ∈ {1, . . . , n + 1}. Hence we use Lemma 1.3.11 and again Lemma 3.1.13 to compute

d
dt
[
(ΨFt)#NΩ

]
(φn−k+1)

∣∣∣
t=0

= k
(

n
k

) ∫
∂Ω

V(x) • νΩ(x) HΩ,k(x) dHn(x)

for k ∈ {1, . . . , n} and
d
dt
[
(ΨFt)#NΩ

]
(φ0)

∣∣∣
t=0

= 0 .

The proof is complete.
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Remark 3.1.16. If Ω is a C2-domain, then (3.1.12) follows from the Gauss-Bonnet theorem.
The validity of the Gauss-Bonnet theorem for bounded W2,n-domains is an interesting open
question, and (3.1.12) seems to point to a possible positive answer.

The following integral formulae can be easily deduced from Theorem 3.1.15 by a stan-
dard procedure.

Corollary 3.1.17. If Ω ⊂ Rn+1 is a bounded W2,n-domain and r ∈ {1, . . . , n} then∫
∂Ω

HΩ,r−1(x) dHn(x) =
∫

∂Ω
x • νΩ(x) HΩ,r(x) dHn(x) .

Proof. We consider the local variation Ft(x) = etx for (x, t) ∈ Rn × R and we notice that

Tann(Hn ⌞ ∂Ω, x) = Tann(Hn ⌞ Ft(∂Ω), Ft(x)
)

,

νFt(Ω)

(
Ft(x)

)
= νΩ(x) and χ

Ft(Ω),i
(

Ft(x)
)
= e−t χΩ,i(x) ,

for Hn-a.e. x ∈ ∂Ω and i ∈ {1, . . . , n}. Therefore, we compute by area formula

Ar−1(Ft(Ω)) =
∫

∂Ft(Ω)
HFt(Ω),r−1 dHn

= e−(r−1)t
∫

Ft(∂Ω)
HΩ,r−1

(
F−1

t (y)
)

dHn(y)

= e(n−r+1)t
∫

∂Ω
HΩ,r−1(x) dHn(x)

and we apply Theorem 3.1.15.

Corollary 3.1.18. Suppose Ω ⊂ Rn+1 is a bounded W2,n-domain, k ∈ {1, . . . , n} and

HΩ,i(z) ≥ 0 for i ∈ {0, . . . , k − 1} and for Hn-a.e. z ∈ ∂Ω . (3.1.13)

Then there exists P ⊆ ∂Ω such that Hn(P) > 0 and HΩ,k(z) ̸= 0 for z ∈ P.

Proof. Suppose HΩ,k(z) = 0 for Hn-a.e. z ∈ ∂Ω. Then we can employ Corollary 3.1.17 (with
r = k) and use (3.1.13) (for i = k − 1) to infer that HΩ,k−1(z) = 0 for Hn-a.e. z ∈ ∂Ω. Now
we repeat this argument with r = k − 1 and i = k − 2 to infer that HΩ,k−2(z) = 0 for Hn-a.e.
z ∈ ∂Ω, and we continue until we obtain that HΩ,0(z) = 0 for Hn-a.e. z ∈ ∂Ω, which means
Hn(∂Ω) = 0. Since the latter is clearly impossible, we have proved the assertion.

3.2 Sphere theorems for W2,n-domains

The results in the previous section in combination with the Heintze-Karcher inequality proved
below can be used to generalize classical sphere theorems to W2,n-domains.

Theorem 3.2.19 (Heintze-Karcher inequality). Suppose Ω ⊂ Rn+1 is a bounded and connected
W2,n-domain such that HΩ,1(z) ≥ 0 for Hn-a.e. z ∈ ∂Ω, then

(n + 1)Ln+1(Ω) ≤
∫

∂Ω

1
HΩ,1(x)

dLn(x) .

Moreover, if HΩ,1(z) ≥ Hn(∂Ω)
(n+1)Ln+1(Ω)

for Hn-a.e. z ∈ ∂Ω then Ω is a round ball.

Proof. We define Ω′ := Rn+1 \ Ω and notice that Ω′ is a W2,n-domain. Since ∂v
+Ω′ = ∂v

+Ω
and νΩ′ = −νΩ, it follows from Theorem 3.1.7 that

Hn(nor(Ω′) \
{(

z,−νΩ(z)
)

: z ∈ ∂v
+Ω
})

= 0 ,

and
−χΩ,i(z) = χΩ′ ,i(z) = κΩ′ ,i

(
z,−νΩ(z)

)
for Hn-a.e. z ∈ ∂v

+Ω .
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Therefore
n

∑
i=1

κΩ′ ,i(z, u) = −n HΩ,1(z) ≤ 0 for Hn-a.e. (z, u) ∈ nor(Ω′) (3.2.14)

we infer from Theorem 1.4.26 and area formula for rectifiable sets [14, Theorem 3.2.22 (3)]

(n + 1)Ln+1(Ω) ≤
∫

nor(Ω′)
Jnor(Ω′)
n π0(z, u)

n
|∑n

i=1 κΩ′ ,i(z, u)| dHn(z, u)

=
∫

∂Ω

1
HΩ,1(z)

dHn(z) . (3.2.15)

We assume now that HΩ,1(z) ≥ Hn(∂Ω)
(n+1)Ln+1(Ω)

for Hn-a.e. z ∈ ∂Ω. Then, we observe that

Hn
({

z ∈ ∂Ω : HΩ,1(z) ≥ (1 + ϵ)
Hn(∂Ω)

(n + 1)Ln+1(Ω)

})
= 0 for every ϵ > 0 ,

otherwise we would obtain a contradiction with the inequality (3.2.15) (cf. proof of [24,
Corollary 5.16]). This implies that

HΩ,1(z) =
Hn(∂Ω)

(n + 1)Ln+1(Ω)
for Hn-a.e. z ∈ ∂Ω ,

whence we infer that (3.2.15) holds with equality. Recalling (3.2.14) we deduce from Theorem
1.4.26 that Ω must be a round ball.

Theorem 3.2.20. Suppose k ∈ {1, . . . , n}, λ ∈ R and Ω ⊂ Rn+1 is a bounded and connected
W2,n-domain such that

HΩ,i(z) ≥ 0 for i ∈ {0, . . . , k − 1} , (3.2.16)

HΩ,k(z) = λ (3.2.17)

for Hn-a.e. z ∈ ∂Ω. Then Ω is a round ball.

Proof. Combining Theorem 3.1.17 and divergence Theorem for sets of finite perimeter (it is
clear by Lemma 3.1.5 that Ω is a set of finite perimeter, whose reduced boundary is Hn-a.e.
equal to the topological boundary) we obtain∫

∂Ω
HΩ,k−1 dHn = λ

∫
∂Ω

x • νΩ(x) dHn(x) = λ(n + 1)Ln+1(Ω) (3.2.18)

and we infer that λ ≥ 0. Hence we deduce from [24, Lemma 2.2] and Corollary 3.1.18 that

HΩ,1(z) ≥ . . . ≥ HΩ,k−1(z)
1

k−1 ≥ HΩ,k(z)
1
k = λ

1
k > 0 (3.2.19)

for Hn-a.e. z ∈ ∂Ω. By (3.2.19)∫
∂Ω

HΩ,k−1(z) dHn(z) ≥ λ
k−1

k Hn(∂Ω)

and combining with (3.2.18) we obtain

λ(n + 1)Ln+1(Ω) ≥ λ
k−1

k Hn(∂Ω) .

Since λ > 0, we obtain from (3.2.19) that

HΩ,1(z) ≥
Hn(∂Ω)

(n + 1)Ln+1(Ω)
for Hn-a.e. z ∈ ∂Ω (3.2.20)

and we conclude applying Theorem 3.2.19.
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Remark 3.2.21. Hypothesis (3.2.16) in Theorem 3.2.20 can be replaced by the following as-
sumption:

∂iσk
(
χΩ,1(z), . . . , χΩ,n(z)

)
≥ 0 for every i ∈ {1, . . . , n} and for Hn-a.e. z ∈ ∂Ω . (3.2.21)

Assume (3.2.21) in place of (3.2.16). First, using [50, eq. (1.15)], we obtain

HΩ,k−1(z) =
1
k

n

∑
i=1

∂iσk(χΩ,1(z), . . . , χΩ,n(z)) ≥ 0

for Hn-a.e. z ∈ ∂Ω. Then, as in (3.2.18), we deduce that λ ≥ 0. Finally, applying [50, Propo-
sition 1.3.2], we recover (3.2.16).
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Chapter 4

Fine properties of FnW2,n-sets

4.1 Introduction to FnW2,n-sets

We introduce the class of FnW2,n-functions following Ambrosio, Gobbino and Pallara (cf.
[4]), who developed an idea of De Giorgi.

Definition 4.1.1. (FnW2,n-functions). Given Ω ⊆ Rn+1 an open set and a function ιιι : Ω → N,
we say that ιιι ∈ FnW2,n(Ω) if for any z ∈ {ιιι > 0} there exist an open neighborhood U ⊆ Ω of z,
also a positive integer q(z) and a family {Γi}

q(z)
i=1 of subset of Rn+1, such that

ιιι(x) =
q(z)

∑
i=1

111Γi (x) for any x ∈ U (4.1.1)

where every Γi satisfies the following property:

there exist pi ∈ Γi ∩ U, ηi ∈ Sn, a set Vi open in η⊥
i so that 0 ∈ Vi,

fi ∈ C0(Vi) ∩ W2,n(Vi) such that fi(0) = 0 which also induces the map

fi : x ∈ Vi 7→ x + fi(x)ηi ∈ Rn+1,
in such a way that

Γi ∩ U = fi(Vi) + pi . (4.1.2)

We say fi a graph function of Γi ∩ U, on Vi.

Remark 4.1.2. Given U ⊂ Rn+1 a bounded open set and f ∈ C0(U) ∩W2,n(U), we consider
Γ := graph( f ). Since f satisfies the Lusin (N)-property (cf. Remark 5.3.4), then applying
Theorem 5.3.3 we infer that Γ is Hn-rectifiable of class 2.

Definition 4.1.3. (FnW2,n-sets). We say that a closed set S ⊂ Rn+1 is a FnW2,n-set if

S = {ιιι > 0} ,

for some ιιι ∈ FnW2,n(Rn+1). Moreover, we say ιιι multiplicity function of S .

Remark 4.1.4. Equivalently, a closed set S ⊂ Rn+1 is a FnW2,n-set if for every z ∈ S there
exist a positive integer q(z), an open neighborhood U ⊆ Rn+1 of z (it is not restrictive to
assume that U is bounded) and a family {Γi}

q(z)
i=1 of subset of Rn+1 such that

S ∩ U =
q(z)⋃
i=1

(Γi ∩ U) , (4.1.3)

where every Γi ∩ U coincides with the graph of a (C0 ∩ W2,n)-function.

Definition 4.1.5. (W 2,n-sets). We say that that a closed set S ⊂ Rn+1 is a W 2,n-set if there exists
a pair (S ′, F), that satisfies the following properties:

(i) S ′ is a FnW2,n-set;

(ii) F(S ′) = S , where F is a C2-diffeomorphism of Rn+1.
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Remark 4.1.6. Given S a W 2,n-set with associated pair (S ′, F), let us assume that in an open
neighborhood U ⊆ Rn+1 of z ∈ S ′ holds (4.1.3). Then, we have

Tan
(
S , F(z)

)
=

q(z)⋃
i=1

Tan
(

F(Γi), F(z)
)

(4.1.4)

where every Γi ∩ U coincides with the graph of a (C0 ∩ W2,n)-function. To prove (4.1.4),
first we notice that

⋃q(z)
i=1 Tan

(
F(Γi), F(z)

)
⊆ Tan

(
S , F(z)

)
. In fact, from (4.1.3) it immediately

follows that Tan
(

F(Γi), F(z)
)
⊆ Tan

(
S , F(z)

)
for every i ∈ {1, . . . , q(z)}. Now let us consider

u ∈ Tan
(
S , F(z)

)
∩ Sn, hence there exists {zj}j∈N ⊂ S \ {F(z)} such that

zj −−→
j→∞

F(z) and
zj − F(z)
|zj − F(z)| −−→j→∞

u .

Since S ∩ F(U) is a finite union of F(Γi) ∩ F(U), it follows that there exist h ∈ {1, . . . , q(z)}
and {zjk}k∈N ⊆ {zj}j∈N such that {zjk}k∈N ⊂ F(Γh) \ {F(z)} where

zjk −−−→k→∞
F(z) and

zjk − F(z)
|zjk − F(z)| −−−→k→∞

u ,

namely u ∈ Tan
(

F(Γh), F(z)
)
. Hence Tan

(
S , F(z)

)
⊆ ⋃q(z)

i=1 Tan
(

F(Γi), F(z)
)
.

Lemma 4.1.7. Given U ⊆ Rn an open set, f ∈ C0(U) ∩ W2,n(U), Γ := graph( f ) and x ∈ U,
then the following properties hold.

(i) Let g ∈ C2(U), assume that f (x) = g(x) and Γ is contained either in the epi-graph or in the
cato-graph of g. Then, if we introduce Σ := graph(g), we have that

Tan(Γ, z) = Tan(Σ, z) where z := f (x) = g(x) . (4.1.5)

(ii) If we consider E f and C f , respectively the epi-graph and the cato-graph of f , we have that

f
(
S∗( f ) ∩ S∗( f )

)
= N2(Γ) , (4.1.6)

f
(
S∗( f )

)
= N1(C f ) and f

(
S∗( f )

)
= N1(E f ) .

Proof. About the proof of (i), since Σ is a C2-regular graph and therefore satisfies the two-
sides sphere condition1, we infer that there exists ν ∈ Sn and s > 0 such that

Bs(z + sν) ∩ Γ = ∅ and Bs(z + sν) ∩ Σ = ∅

more specifically, to prove (4.1.5), we show that

Tan(Γ, z) = Tan(Σ, z) = ν⊥. (4.1.7)

First, applying Lemma 2.1.17, we deduce that ν /∈ Rn × {0}. Then, by the implicit function
theorem, there exist δ > 0, h ∈ C∞(Bδ(x)

)
and an open neighborhood V ⊂ U × R of z, such

that V ∩ ∂Bs(z + sν) = graph(h), h(x) = z and (up to a sign)

ν =
(−∇h(x), 1)√
1 + |∇h(x)|2

.

1Two-sides sphere condition. We say that the graph Γ, of a continuos function f , satisfies the two-sides sphere
condition if for every x ∈ Γ there exist ν ∈ Sn−1 and r > 0 such that Br(x + rν) ⊆ E f and Br(x − rν) ⊆ C f , where
E f and C f are, respectively, the epi-graph and the cato-graph of f . The two-sides sphere condition always holds if
Γ is a C2-regular graph (cf. [21, Remark 4.3.8]), in this situation we have Tan(Γ, x) = Tan(∂Br(x ± rν), x) = ν⊥ (the
proof is the same as that performed for (4.1.7)).
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Therefore, by Lemma 2.1.9 and [14, 3.1.21], we conclude that

Tan(Γ, z) = D f (x)[Rn] = Dg(x)[Rn] = Tan(Σ, z)

and
D f (x)[Rn] = Dh(x)[Rn] =

{
(v,∇h(x) • v) : v ∈ Rn} = ν⊥ .

About the proof of (ii), we only show (4.1.6) and similarly one can prove that

f
(
S∗( f )

)
= N1(C f ) and f

(
S∗( f )

)
= N1(E f ) .

To prove f
(
S∗( f )∩ S∗( f )

)
⊆ N2(Γ), we consider an arbitrary x ∈ S∗( f )∩ S∗( f ) and we set

z := f (x). Then, from the definitions of S∗( f ) and S∗( f ), we infer that z ∈ N2(Γ) ∪ N∞(Γ)
and, by the statement (i), we deduce also that Tan(Γ, z) ∈ G(n + 1, n). Therefore, we obtain
a contradiction if z ∈ N∞(Γ). In this situation, in fact, since nor(Γ, z) ⊆ Nor(Γ, z) ∩ Sn (cf.
[13, Theorem 4.8 (2)]), we infer that

∞ = H0(nor(Γ, z)
)
≤ H0(Nor(Γ, z) ∩ Sn) = 2 .

Overall z ∈ N2(Γ), which is the desidered result.
Now we show that N2(Γ) ⊆ f

(
S∗( f ) ∩ S∗( f )

)
. Assume that x ∈ N2(Γ), namely x ∈ U

and there exist ν ∈ Sn and s > 0 such that

Bn+1
s (z ± sν) ∩ Γ = ∅ and π′(Bn+1

s (z ± sν)
)
⊆ U (4.1.8)

where z := f (x) and π′ denotes the canonical projection on the first n components (in the
continuation, we denote by π′′ the canonical projection on the last component). Applying
Lemma 2.1.17 we also deduce that ν ∈ Sn \ (Rn × {0}), namely π′′(ν) ̸= 0. Our goal is to
prove that

Bn+1
s (z − sν) ⊂ C f and Bn+1

s (z + sν) ⊂ E f (or vice versa) , (4.1.9)

where, respectively, C f and E f are the cato-graph and the epi-graph of f . Indeed from (4.1.9),
by the implicit function theorem (remember that π′′(ν) ̸= 0) and the Taylor expansion, we
infer N2(Γ) ⊆ f

(
S∗( f ) ∩ S∗( f )

)
.

If (4.1.9) does not hold, we deduce that Bn+1
s (z − sν

)
and Bn+1

s (z + sν) are both contained
in C f or in E f , otherwise we contradict (4.1.8). So, it si not restrictive to assume that

Bn+1
s (z ± sν

)
⊂ E f and π′′(ν) > 0 .

Then, if we focus our attention on Bn+1
s (z − sν

)
, we notice that:

1. x = π′(z) ∈ π′(Bn+1
s (z − sν)

)
;

2. for every ξ ∈ {y ∈ ∂Bn+1
s (z − sν) : (y − z + sν) • eeen+1 ≤ 0} we have

f (x) = π′′(z) = π′′(z − sν) + s π′′(ν) > π′′(z − sν) ≥ π′′(ξ) ;

3. since Bn+1
s (z − sν

)
⊂ E f , we have

f (y) ≤ min
{

t ∈ R : y + t eeen+1 ∈ Bn+1
s (z − sν)

}
for every y ∈ π′(Bn+1

s (z − sν)
)

;

hence, if we consider ẑ ∈ ∂Bn+1
s (z − sν) such that{

y ∈ ∂Bn+1
s (z − sν) : (y − z + sν) • eeen+1 ≤ 0

}
∩ (π′)−1(x) = {ẑ} ,

we contradict the graphicability of f since f (x) > π′′(ẑ) ≥ f (x). The proof is complete.
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Definition 4.1.8. Let S be a FnW2,n-set and let us assume that (4.1.3) holds in an open neighborhood
U ⊆ Rn+1 of z ∈ S . We define the map

III : x ∈ S ∩ U 7→
{

i ∈ {1, . . . , q(z)} : x ∈ Γi ∩ U
}
∈ N . (4.1.10)

Remark 4.1.9. We notice that H0(III(x)
)
= ιιι(x) for every x ∈ S ∩ U.

Now we collect some fine properties of W 2,n-sets.

Lemma 4.1.10. Given S a W 2,n-set with associated pair (S ′, F) and assume, in an open neighbor-
hood U ⊆ Rn+1 of z ∈ S ′, that there exists a family {Γi}

q(z)
i=1 of subset of Rn+1 such that

S ′ ∩ U =
q(z)⋃
i=1

(Γi ∩ U) , (4.1.11)

where every Γi ∩ U coincides with the graph of a (C0 ∩ W2,n)-function. Then:

(i) K ∩ S is Hn-rectifiable of class 2 for every compact set K ⊂ Rn+1 ;

(ii) nor(S) satisfies the Lusin (N)-property, namely

Z ⊂ S s.t. Hn(Z) = 0 ⇒ Hn(nor(S) ⌞ Z
)
= 0 ;

(iii) If (w, ν) ∈ nor(S), then Tan(S , w) = ν⊥ ;

(iv) N∞(S) = ∅ ;

(v) Hn(N1(S)
)
= 0 ;

(vi) Hn
((

S ′ ∩ U
)
\⋃q(z)

i=1

(
N2(Γi) ∩ U

))
= 0 ;

(vii) given i ∈ {1, . . . , q(z)}, we define νi : N2(Γi) ∩ U → Sn in such a way that the following is
satisfied

nor(Γi , x) =
{

νi(x),−νi(x)
}

for x ∈ N2(Γi) ∩ U .

Then, for Hn-a.e. x ∈ S ′ ∩ U, we infer that

νi(x) = ±νj(x) and Bn+1
s
(
x ± νi(x)

)
∩ S ′ = ∅ for some s > 0

whenever i, j ∈ III(x). Moreover, for Hn-a.e. (x, u) ∈ nor(S ′) ⌞U, we have

q(z)

∑
i=1

111nor(Γi)
(x, u) = ιιι(x) 111nor(S ′)(x, u) (4.1.12)

therefore

Hn
([ q(z)⋃

i=1

nor(Γi) ⌞U
]
\
[
nor(S ′) ⌞U

])
= 0 ; (4.1.13)

(viii) Hn(S \ N2(S)
)
= 0 .

Proof. Since F(S ′) = S , the assertion (i) follows from (4.1.11) and Remark 4.1.2.
To prove (ii), we consider the C1-diffeomorphism

ΨF : (x, y) ∈ Rn+1 × Sn 7→
(

F(x),
(DF(x)−1)∗(y)
|(DF(x)−1)∗(y)|

)
∈ Rn+1 × Sn

for which we have (cf. [54, Lemma 2.1])

ΨF
(
nor(S ′)

)
= nor(S) .
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Hence, for every set Z ⊆ Rn+1 we deduce that

Hn(nor(S) ⌞ Z
)
= Hn

(
ΨF
(
nor(S ′) ⌞ F−1(Z)

))
then, to prove the Lusin (N)-property on nor(S), it is enough to prove the same property on
nor(S ′). To this aim, let us consider an arbitrary z ∈ S ′ and we choose an open neighbor-
hood U ⊆ Rn+1 of z such that (4.1.11) holds, then we readily infer that

nor(S ′) ⌞U ⊆
q(z)⋃
i=1

nor(Γi) ⌞U . (4.1.14)

Hence, from (4.1.14) and (2.1.30), we deduce that

Hn(nor(S ′) ⌞(U ∩ Z)
)
≤

q(z)

∑
i=1

Hn(nor(Γi) ⌞(U ∩ Z)
)
= 0

for every Hn-negligible set Z ⊂ S . Since U is arbitrarily chosen, the Lusin (N)-property on
nor(S ′) easily follows.

Now we prove (iii), hence we choose (w, ν) ∈ nor(S), where w = F(z). There exist an
open neighborhood U of z and {Γi}

q(z)
i=1 such that (4.1.11) holds and

S ∩ F(U) =
q(z)⋃
i=1

(
F(Γi) ∩ F(U)

)
,

where every Γi ∩ U is the graph of a (C0 ∩ W2,n)-function. We claim that, if i ∈ {1, . . . , q(z)}
such that z ∈ Γi ∩ U, then Tan

(
F(Γi), w

)
= ν⊥. This clearly proves (iii), since (cf. (4.1.4))

Tan(S , w) =
q(z)⋃
i=1

Tan
(

F(Γi), w
)

and Tan
(

F(Γi), w
)
= ∅ if w /∈ F(Γi) (indeed w ∈ F(U) and F(Γi) is a closed set in F(U)). If

z ∈ Γi ∩ U, then there exists r > 0 such that

Bn+1
r
(
w + rν

)
∩
(

F(Γi) ∩ F(U)
)
= ∅ .

The domain Ω := F−1[Bn+1
r
(
w + rν

)]
is C2-regular, z ∈ ∂Ω and Tan(∂Ω, z) = DF−1(z)(ν⊥)

by [14, 3.1.21]. Since Ω ∩ Γi ∩ U = ∅, it follows from Lemma 4.1.7 (i) that

Tan(Γi, z) = Tan(∂Ω, z) ,

namely Tan(Γi, z) = DF−1(z)(ν⊥). Again by [14, 3.1.21], we infer that

Tan
(

F(Γi), w
)
= DF(z)

[
Tan(Γi, z)

]
= ν⊥ .

Clearly (iv) follows from (iii).
Now we prove (v) and (vi). To show that Hn(N1(S)) = 0, since N1(S) = F(N1(S ′)) (cf.

Lemma 1.4.36 (ii)), it is enough to prove that Hn(N1(S ′)) = 0. Let us consider an arbitrary
z ∈ S ′ and we choose a bounded open neighborhood U ⊂ Rn+1 of z such that

S ′ ∩ U =
q(z)⋃
i=1

(
Γi ∩ U

)
,

where every
Γi ∩ U = fi(Vi) + pi
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for some Vi open in η⊥
i with 0 ∈ Vi, pi ∈ Γi ∩ U, fi ∈ C0(Vi) ∩ W2,n(Vi) with fi(0) = 0 and

fi : x ∈ Vi 7→ x + fi(x)ηi ∈ Rn+1 .

Therefore, for every i ∈ {1, . . . , q(z)}, by Lemma 4.1.7 (ii) we have that

N1(Γi) ∩ U ⊆ fi

((
S∗( fi) ∪ S∗( fi)

)
\
(
S∗( fi) ∩ S∗( fi)

))
+ pi

and by Theorem 2.1.7 and Remark 5.3.4 we infer

Hn(N1(Γi) ∩ U
)
≤ Hn

(
fi

((
S∗( fi) ∪ S∗( fi)

)
\
(
S∗( fi) ∩ S∗( fi)

)))
= 0 .

Noting that N1(S ′) ∩ U ⊆ ⋃q(z)
i=1 N1(Γi) ∩ U, we obtain that Hn(N1(S ′) ∩ U

)
= 0. Since U is

arbitrarily chosen we conclude that Hn(N1(S ′)) = 0. To prove (vi), applying Lemma 4.1.7
(ii) we deduce that

(S ′ ∩ U) \
q(z)⋃
i=1

(
N2(Γi) ∩ U

)
⊆

q(z)⋃
i=1

[(
Γi \ N2(Γi)

)
∩ U

]

=
q(z)⋃
i=1

[
f i

(
Vi \

(
S∗( fi) ∩ S∗( fi)

))
+ pi

]
then, by Theorem 2.1.7 and Remark 5.3.4, we obtain the desidered result.

To prove (vii), first we recall that the set
⋃q(z)

i=1 (N2(Γi) ∩ U) has full Hn-measure in S ′ ∩U
(cf. statement (vi)). Then, for Hn-a.e. x ∈ N2(Γi) ∩ N2(Γj) ∩ U where i, j ∈ {1, . . . , q(z)}, by
Lemma 4.1.7 (i) (cf. (4.1.7)) and by the locality property of the approximate tangent spaces
(cf. (1.1.4)) we have that

νi(x)⊥ = Tan(Γi , x) = Tann(Hn ⌞ Γi , x)

= Tann(Hn ⌞ Γj , x) = Tan(Γj , x) = νj(x)⊥ ,

hence
νi(x) = ±νj(x) for Hn-a.e. x ∈ N2(Γi) ∩ N2(Γj) ∩ U .

So there exists a map ν, with values in Sn and defined Hn-a.e. on S ′ ∩ U in such a way that

ν(x) ∈ {νi(x),−νi(x)} if x ∈ N2(Γi) ∩ U

for i ∈ {1, . . . , q(z)}, such that for Hn-a.e. x ∈ S ′ ∩ U we have

Bn+1
s
(

x ± sν(x)
)
∩ S ′ = ∅ for some s > 0

namely (cf. statement (iv))
Hn((S ′ ∩ U) \ N2(S ′)

)
= 0 . (4.1.15)

Hence, for every i ∈ {1, . . . , q(z)}, we have that

nor(S ′, x) = nor(Γi , x) = {ν(x),−ν(x)} for Hn-a.e. x ∈ Γi ∩ U

thus, by the Lusin (N)-property on nor(S ′)

111nor(Γi)
(x, u) = 111nor(S ′)(x, u)111Γi (x) for Hn-a.e. (x, u) ∈ nor(S ′) ⌞U .

Therefore, from the definition of ιιι (cf. (4.1.1)), we conclude that

q(z)

∑
i=1

111nor(Γi)
(x, u) = ιιι(x) 111nor(S ′)(x, u) for Hn-a.e. (x, u) ∈ nor(S ′) ⌞U
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hence

Hn
([ q(z)⋃

i=1

nor(Γi) ⌞U
]
\
[
nor(S ′) ⌞U

])
= 0 .

To prove (viii), as usually it is sufficient to show the assertion on S ′ (cf. Lemma 1.4.36 (ii))
and so we conclude from (4.1.15).The proof is complete.

4.2 Curvature notions on W 2,n-sets

Let S be a W 2,n-set , since N2(S) has full Hn-measure in S , from Lemma 1.4.36 (iii) we infer
that the multivalued function

nor(S , ···) : S → P(Sn)

admits an Hn-measurable selection νS : S → Sn, moreover (cf. (1.4.24))

νS (p) ∈ Norn(Hn ⌞S , p) for Hn-a.e. p ∈ S .

Applying Lemma 3.1.2 we infer that νS is (Hn ⌞S)-approximately differentiable at Hn-a.e.
p ∈ S and ap DνS (p) is a symmetric endomorphism of Tann(Hn ⌞S , p), moreover we refer
to νS as selected unit-normal vector field on S .

Definition 4.2.11 (Approximate principal curvatures). Given S a W 2,n-set and νS a selected
unit-normal vector field on S . The approximate principal curvatures of S , with respect to νS , are the
R-valued (Hn ⌞S)-measurable maps

χS ,1, . . . , χS ,n

defined so that χS ,1(p) ≤ . . . ≤ χS ,n(p) are the eigenvalues of ap DνS (p), for Hn-a.e. p ∈ S .

Definition 4.2.12 (k-th mean curvature function). Given S a W 2,n-set, νS a selected unit-normal
vector field on S and k ∈ {0, . . . , n}. The k-th mean curvature function of S , respect to νS , is defined
as follows

HS ,k(p) := σk
(
χS ,1(p), . . . , χS ,n(p)

)
=

1
(n

k)
∑

λ∈Λ(n,k)

χS ,1(p) . . . χS ,k(p) for Hn-a.e. p ∈ S .

Definition 4.2.13. Given S a W 2,n-set, with associated pair (S ′, F) where

S ′ = {ιιι > 0} for ιιι ∈ FnW2,n(Rn+1) ,

and νS a selected unit-normal vector field on S . We define

Ak(S) :=
∫
S

HS ,k(x) ιιι
(

F−1(x)
)

dHn(x) for k ∈ {0, . . . , n} .

Lemma 4.2.14. Given S a compact W 2,n-set, with associated pair (S ′, F), and νS a selected unit-
normal vector field on S . Then, the following statements hold:

(i) Hn(νS (Z)) = 0 for any Z ⊆ N2(S) such that Hn(Z) = 0 ;

(ii) Hn(nor(S) \
[
νS
(

N2(S)
)
∪ −νS

(
N2(S)

)])
= 0 and Hn(nor(S)

)
< ∞ ;

(iii) for any i ∈ {1, . . . , n} we have (cf. Definition 1.4.21)

χS ,i(x) = κS ,i
(

x, νS (x)
)
= −κS ,i

(
x,−νS (x)

)
for Hn a.e. x ∈ S , (4.2.16)

in particular κS ,i(x, u) < +∞ for Hn-a.e. (x, u) ∈ nor(S) .

Proof. Assertion (i) is a readily consequence of the Lusin (N)-property on nor(S) (cf. Lemma
4.1.10 (ii)).
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To prove (ii) we recall the definition of ΨF from (1.3.13) and notice that (cf. [54, Lemma 2.1])

ΨF
(
nor(S ′)

)
= nor(S) ,

hence we deduce that Hn(nor(S)
)
< ∞ from (4.1.3) and (2.1.30). Moreover, since N2(S)

has full Hn-measure in S (cf. Lemma 4.1.10 (vii)), by the Lusin (N)-property on nor(S) we
obtain

Hn(nor(S) \
[
νS
(

N2(S)
)
∪ −νS

(
N2(S)

)])
= Hn(nor(S) \ nor(S) ⌞ N2(S)

)
= 0 .

To prove (iii) we first employ Lemma 3.1.2 to find a countable family of Hn-measurable
sets Xi ⊆ N2(S) such that Hn(S \ ⋃∞

i=1 Xi
)
= 0 and Lip(νS |Xi) < ∞ for every i ∈ N; then

we define Yi to be the set of x ∈ Xi such that νS is (Hn ⌞S)-approximately differentiable at
x, Θn(Hn ⌞(S \ Xi), x

)
= 0 (this property holds Hn-a.e. on Xi , cf. [14, 2.10.19 (4)]), moreover

Tann(Hn ⌞S , x) ∈ G(n + 1, n) and also

Tann(Hn ⌞nor(S), νS (x)
)
= Tann(Hn ⌞ νS

(
N2(S)

)
, νS (x)

)
∈ G(2n + 2, n) ,

Tann(Hn ⌞nor(S), −νS (x)
)
= Tann(Hn ⌞−νS

(
N2(S)

)
, −νS (x)

)
∈ G(2n + 2, n) .

Since νS |Xi and −νS |Xi are bi-lipschitz and Tann(Hn ⌞±νS
(

N2(S)
)
, (x, u)

)
∈ G(2n + 2, n)

for Hn-a.e. (x, u) ∈ ±νS
(

N2(S)
)

(cf. [14, Theorem 3.2.19]), by the locality property of ap-
proximate tangent spaces (cf. (1.1.4)) we infer

Hn(Xi \ Yi) = 0 for every i ∈ N .

It follows from (i) and (ii) that

Hn
(

nor(S) \
∞⋃

i=1

[
νS (Yi) ∪ −νS (Yi)

])
= Hn

([
νS
(

N2(S)
)
∪ −νS

(
N2(S)

)]
\

∞⋃
j=1

[
νS (Yj) ∪ −νS (Yj)

])
= Hn

( ∞⋃
i=1

[
νS (Xi) ∪ −νS (Xi)

]
\

∞⋃
j=1

[
νS (Yj) ∪ −νS (Yj)

])
≤

∞

∑
i=1

Hn
([

νS (Xi) ∪ −νS (Xi)
]
\
[
νS (Yi) ∪ −νS (Yi)

])
≤

∞

∑
i=1

Hn(νS (Xi) \ νS (Yi)
)
+

∞

∑
i=1

Hn(−νS (Xi) \ −νS (Yi)
)
= 0 (4.2.17)

furthermore

Hn
(
S \

∞⋃
i=1

Yi

)
≤

∞

∑
j=1

Hn(Xj \ Yj) = 0 . (4.2.18)

We fix now x ∈ Yi. Then there exists a map g : Rn+1 → Rn+1 pointwise differentiable at x
such that g(x) = νS (x), Θn(Hn ⌞S \ {g = νS}, x) = 0 and

ap DνS (x) := Dg(x)|Tann(Hn ⌞S , x) , ap D−νS (x) := D−g(x)|Tann(Hn ⌞S , x) .

Since g|Xi ∩ {g = νS} and −g|Xi ∩ {−g = −νS} are bi-lipschitz, ap DνS (x) and ap D−νS (x)
are injective and

Tann(Hn ⌞S , x) = Tann(Hn ⌞ Xi ∩ {g = νS}, x
)
,

we infer from [51, Lemma B.2] that

ap DνS (x)
[
Tann(Hn ⌞S , x)

]
= Dg(x)

[
Tann(Hn ⌞S , x)

]
= Dg(x)

[
Tann(Hn ⌞ Xi ∩ {g = νS}, x

)]
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⊆ Tann(Hn ⌞ g(Xi ∩ {g = νS}), g(x)
)

⊆ Tann(Hn ⌞ νS
(

N2(S)
)
, νS (x)

)
= Tann(Hn ⌞nor(S), νS (x)

)
∈ G(2n + 2, n)

and similarly

ap D−νS (x)
[
Tann(Hn ⌞S , x)

]
⊆ Tann(Hn ⌞nor(S), −νS (x)

)
∈ G(2n + 2, n) .

Overall, since Tann(Hn ⌞S , x) ∈ G(n + 1, n) and ap D±νS (x) are injective, we infer

ap DνS (x)
[
Tann(Hn ⌞S , x)

]
= Tann(Hn ⌞nor(S), νS (x)

)
,

ap D−νS (x)
[
Tann(Hn ⌞S , x)

]
= Tann(Hn ⌞nor(S), −νS (x)

)
.

Therefore, if {τ1, . . . , τn} is an orthonormal basis of Tann(Hn ⌞S , x) with

ap DνS (x)(τi) = χS ,i(x)τi for i ∈ {1, . . . , n} ,

we conclude that{(
1√

1 + χS ,i(x)2
τi ,

χS ,i(x)√
1 + χS ,i(x)2

τi

)
: i ∈ {1, . . . , n}

}
,

{(
1√

1 + χS ,i(x)2
τi ,

−χS ,i(x)√
1 + χS ,i(x)2

τi

)
: i ∈ {1, . . . , n}

}

are orthonormal basis of Tann(Hn ⌞nor(S), νS (x)
)

and Tann(Hn ⌞nor(S), −νS (x)
)
, respec-

tively. Since x is arbitrarily chosen in Yi, thanks to (4.2.18), we deduce from the uniqueness
stated in Lemma 1.4.20 (cf. Definition 1.4.21) that

χS ,i(x) = κS ,i
(

x, νS (x)
)
= −κS ,i

(
x,−νS (x)

)
for Hn-a.e. x ∈ S .

Moreover, from (4.2.17), we deduce that

κS ,i
(

x, u) ∈
{

χS ,i(x),−χS ,i(x)
}

for Hn-a.e. (x, u) ∈ nor(S) .

The proof is complete.

Definition 4.2.15. Let S be a compact W 2,n-set, we define

nor(S)(n) :=
{
(x, u) ∈ nor(S) : κS ,n(x, u) < +∞

}
.

Remark 4.2.16. From Lemma 4.2.14 (iii), we infer that

Hn(nor(S) \ nor(S)(n)
)
= 0 . (4.2.19)

Furthermore if π0 : S × Sn → S is the canonical projection on the first factor, then

Jnor(S)
n π0(x, u) =

∣∣∣∣[∧n
Dnor(S)π0(x, u)

]( ξS ,1(x, u) ∧ . . . ∧ ξS ,n(x, u)∣∣ξS ,1(x, u) ∧ . . . ∧ ξS ,n(x, u)
∣∣
)∣∣∣∣

= ζS (x, u)
∣∣π0
(
ξS ,1(y, u)

)
∧ . . . ∧ π0

(
ξS ,n(x, u)

)∣∣
= ζS (x, u)
= ∏n

i=1
(
1 + κS ,i(x, u)2)− 1

2 > 0 (4.2.20)

for Hn-a.e. (x, u) ∈ nor(S), where ζS and {ξS ,1, . . . , ξS ,n} are given in Definition 1.4.24.

Is well posed the following.
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Definition 4.2.17 (k-th mean curvature function of nor(S)). Given S a compact W 2,n-set and
k ∈ {0, . . . , n}, the k-th mean curvature function of nor(S) is given by

Hnor(S),k(x, u) := σk
(
κS ,1(x, u), . . . , κS ,n(x, u)

)
=

1
(n

k)
∑

λ∈Λ(n,k)
κS ,1(x, u) . . . κS ,n(x, u) for Hn-a.e. (x, u) ∈ nor(S) ,

where κS ,1, . . . , κS ,n are given in Definition 1.4.21.

4.3 Reilly-type variational formulae

In this section let S be a compact W 2,n-set with associated pair (S ′, F), namely S = F(S ′)
where S ′ = {ιιι > 0} for some ιιι ∈ FnW2,n(Rn+1). Then, there exists {Ui}N

i=1 a family of
bounded open neighborhoods of {zi}N

i=1 ⊂ S such that

S ′ =
N⋃

i=1

(S ′ ∩ Ui) =
N⋃

i=1

q(zi)⋃
j=1

(Γ(i)
j ∩ Ui) , (4.3.21)

where every Γ(i)
j ∩Ui coincides with the graph of a (C0 ∩W2,n)-function (cf. Definition 4.1.1).

Namely, for a fixed i ∈ {1, . . . , N} and for each j ∈ {1, . . . , q(zi)} there exist p(i)j ∈ Γ(i)
j ∩ Ui

and η
(i)
j ∈ Sn so that

Γ(i)
j ∩ Ui = f

(i)
j (V(i)

j ) + p(i)j ,

for some sets V(i)
j open in (η

(i)
j )⊥ such that 0 ∈ V(i)

j , and some graph functions f (i)j on V(i)
j .

We associate to nor(S ′) and nor(S), respectively, the n-vectorfields
#»

ξ S ′ and
#»

ξ S defined
in according to Definition 1.4.24 and Lemma 1.4.20. In particular, for Hn-a.e. (x, u) ∈ nor(S ′)

#»

ξ S ′(x, u) :=
ξS ′ ,1(x, u) ∧ . . . ∧ ξS ′ ,n(x, u)
|ξS ′ ,1(x, u) ∧ . . . ∧ ξS ′ ,n(x, u)| ∈

∧
n
(Rn+1 × Rn+1) ,

ζS ′(x, u) :=
1

|ξS ′ ,1(x, u) ∧ . . . ∧ ξS ′ ,n(x, u)| ∈ (0,+∞)

where each ξS ′ ,i is given by (notice that nor(S ′)(n) has full Hn-measure in nor(S ′); cf. (4.2.19))

ξS ′ ,i(x, u) =
(
τi(x, u), κS ′ ,i(x, u)τi(x, u)

)
for Hn-a.e. (x, u) ∈ nor(S ′). The maps {τ1, . . . , τn} are defined Hn-a.e. on nor(S ′) in such
a way that {τ1(x, u), . . . , τn(x, u), u} form a positively oriented orthonormal basis of Rn+1 for
Hn-a.e. (x, u) ∈ nor(S ′) (cf. Lemma 1.4.20), namely ⟨∧n

i=1τi(x, u) ∧ u, dX1 ∧ . . . ∧ dXn+1⟩ = 1.

Lemma 4.3.18.
#»

ξ S ′ is an
(
Hn ⌞nor(S ′)

)
-measurable n-vectorfield.

Proof. For every fixed i ∈ {1, . . . , N} and for j ∈ {1, . . . , q(zi)}, we prove that
#»

ξ S ′(y, u) = #»η
Γ(i)

j ∩Ui
(y, u) for Hn-a.e. (y, u) ∈ nor(Γ(i)

j ) ⌞Ui (4.3.22)

where the n-vectorfield, on the right hand-side of the previous one, is the Borel n-vectorfield
given in (2.1.28) (cf. Remark 2.1.21). By the Hn-rectifiability of the unit normal bundle, the
locality property of the approximate tangent spaces (cf. (1.1.4)) and (4.1.13), we infer

Tann(Hn ⌞nor(S ′), (y, u)
)

= Tann(Hn ⌞nor(Γ(i)
j ), (y, u)

)
∈ G(2n + 2, n) ,
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for Hn-a.e. (y, u) ∈ nor(Γ(i)
j ) ⌞Ui. For such points (y, u), we have∧

n

[
Tann(Hn ⌞nor(S ′), (y, u)

)]
=
∧

n

[
Tann(Hn ⌞nor(Γ(i)

j ), (y, u)
)]

and

dim
(∧

n

[
Tann(Hn ⌞nor(S ′), (y, u)

)])
= dim

(∧
n

[
Tann(Hn ⌞nor(Γ(i)

j ), (y, u)
)])

= 1 ,

therefore we readily deduce that
#»

ξ S ′(y, u) = ± #»η
Γ(i)

j ∩Ui
(y, u) for Hn-a.e. (y, u) ∈ nor(Γ(i)

j ) ⌞Ui . (4.3.23)

Now we introduce the sets

Z :=
{
(y, u) ∈ nor(Γ(i)

j ) ⌞Ui :
#»

ξ S ′(y, u) = − #»η
Γ(i)

j ∩Ui
(y, u)

}
,

Z′ := Z ∩ nor(S ′)(n),

with the aim to prove that Hn(Z) = 0. In particular, since Hn(Z \ Z′) = 0 (cf. (4.2.19) and
(4.1.13)), we obtain the desidered result if Hn(Z′) = 0. First of all we notice that

[∧
n

π0
]( #»

ξ S ′(y, u)
)
=

π0
(
ξS ′ ,1(y, u)

)
∧ . . . ∧ π0

(
ξS ′ ,n(y, u)

)
|ξS ′ ,1(y, u) ∧ . . . ∧ ξS ′ ,n(y, u)|

= ζS ′(y, u) ··· τ1(y, u) ∧ . . . ∧ τn(y, u) for Hn-a.e. (y, u) ∈ Z′

and, since {τ1(x, u), . . . , τn(x, u), u} form a positively oriented orthonormal basis of Rn+1,
we obtain

⟨
[∧

n
π0
]( #»

ξ S ′(y, u)
)
∧ u, dX1 ∧ . . . ∧ dXn+1⟩ = ζS ′(y, u) > 0 for Hn-a.e. (y, u) ∈ Z′ .

This inequality gives a contradiction, from which the desidered result follows. Indeed[∧
n

π0
]( #»

ξ S ′(y, u)
)
= −

[∧
n

π0
](

#»η
Γ(i)

j ∩Ui
(y, u)

)
for any (y, u) ∈ Z′

where (cf. (2.1.29))

⟨
[∧

n
π0
](

#»η
Γ(i)

j ∩Ui
(y, u)

)
∧ u, dX1 ∧ . . . ∧ dXn⟩ > 0 for Hn-a.e. (y, u) ∈ Z′ .

The proof is complete.

Definition 4.3.19. We define NS ′ ∈ Dn(Rn+1 × Rn+1) as follows

NS ′ := (ιιι ◦ π0)
(
Hn ⌞nor(S ′)

)
∧ #»

ξ S ′ , (4.3.24)

where π0 : Rn+1 × Rn+1 → Rn+1 is the canonical projection on the first factor.

Theorem 4.3.20. NS ′ is a Legendrian cycle of Rn+1, we denote it as the Legendrian cycle associated
with S ′. Moreover, for a selected unit-normal vector field νS ′ on S ′, the following relations hold(

NS ′ ⌞ φn−k
)
(ϕ) (4.3.25)

=

(
n
k

) ∫
S ′

[
ϕ
(

x, νS ′(x)
)
+ (−1)k ϕ

(
x,−νS ′(x)

)]
HS ′ ,k(x) ιιι(x) dHn(x) ,

for any ϕ ∈ C∞(Rn+1 × Rn+1) and any k ∈ {0, . . . , n}.

Proof. To prove that NS ′ is a Legendrian cycle of Rn+1, we notice that NS ′ ⌞(Ui × Rn+1) is a
Legendrian cycle of Ui for any i ∈ {1, . . . , N}. Indeed, for every φ ∈ Dn(Ui × Rn+1), from
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(4.1.12) and (4.3.22) we obtain[
NS ′ ⌞(Ui × Rn+1)

]
(φ) =

∫
nor(S ′) ⌞Ui

⟨ #»

ξ S ′ , φ⟩ ιιι ◦ π0 dHn

=
q(zi)

∑
j=1

∫
nor(Γ(i)

j ) ⌞Ui

⟨ #»

ξ S ′ , φ⟩ dHn

=
q(zi)

∑
j=1

∫
nor(Γ(i)

j ) ⌞Ui

⟨ #»η
Γ(i)

j ∩Ui
, φ⟩ dHn

=
q(zi)

∑
j=1

N
Γ(i)

j ∩Ui
(φ) ,

where every
N

Γ(i)
j ∩Ui

∈ Dn(Ui × Rn+1)

is a Legendrian cycle of Ui (cf. (2.1.30) in Remark 2.1.21). Overall, applying Lemma 1.3.5, we
infer that NS is a Legendrian cycle of Rn+1.

To prove (4.3.25), we recall that (cf. (4.2.20))

Jnor(S ′)
n π0(y, u) = ζS ′(y, u) > 0 for Hn-a.e. (y, u) ∈ nor(S ′)(n) .

If we apply Lemma 1.3.17, Lemma 4.1.10 (ii) and (vii), Lemma 4.2.14 (iii), (4.2.19) and the
area formula for rectifiable sets [14, Theorem 3.2.22 (3)], we infer (notice that spt(NS ′) is
compact)

(
NS ′ ⌞ φn−k

)
(ϕ) =

(
n
k

) ∫
nor(S ′) ⌞ N2(S ′)

ϕ(y, u) ιιι(y) Hnor(S ′),k(y, u) Jnor(S ′)
n π0(y, u) dHn(y, u)

=

(
n
k

) ∫
N2(S ′)

∑
(y,u)∈(π0|nor(S ′) ⌞ N2(S ′))−1(x)

[
ϕ(y, u) Hnor(S ′),k(y, u) ιιι(y)

]
dHn(x)

=

(
n
k

) ∫
S ′

[
ϕ
(

x, νS ′(x)
)
+ (−1)k ϕ

(
x,−νS ′(x)

)]
HS ′ ,k(x) ιιι(x) dHn(x) ,

for any ϕ ∈ C∞(Rn+1 × Rn+1) and k ∈ {0, . . . , n}. The proof is complete.

Now we consider again the C1-diffeomorphism

ΨF : (x, y) ∈ Rn+1 × Sn 7→
(

F(x),
(DF(x)−1)∗(y)
|(DF(x)−1)∗(y)|

)
∈ Rn+1 × Sn ,

for which we have (cf. [54, Lemma 2.1])

ΨF
(
nor(S ′)

)
= nor(S) . (4.3.26)

Definition 4.3.21. We define NS ∈ Dn(Rn+1 × Rn+1) as follows

NS := (ΨF)#(NS ′) .

Theorem 4.3.22. NS is a Legendrian cycle of Rn+1 and we denote it as the Legendrian cycle associ-
ated with S , in particular

NS =
(
ιιι ◦ π0 ◦ (ΨF|nor(S ′))−1) (Hn ⌞nor(S)

)
∧ #»

ξ S . (4.3.27)

Moreover, for a selected unit-normal vector field νS on S , the following relations hold(
NS ⌞ φn−k

)
(ϕ) (4.3.28)
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=

(
n
k

) ∫
S

[
ϕ
(

x, νS (x)
)
+ (−1)k ϕ

(
x,−νS (x)

)]
HS ,k(x) ιιι

(
F−1(x)

)
dHn(x) ,

for any ϕ ∈ C∞(Rn+1 × Rn+1) and k ∈ {0, . . . , n}.

Proof. We introduce ψ := ΨF|nor(S ′), recalling (4.3.26) and since

ap Dψ
(
ψ−1(y, v)

)
= DΨF

(
ψ−1(y, v)

)∣∣Tann(Hn ⌞nor(S ′), ψ−1(y, v)
)

(4.3.29)

for Hn-a.e. (y, v) ∈ nor(S), we define the simple
(
Hn ⌞nor(S)

)
-measurable n-vectorfield

#»η (y, v) : =

[∧
n ap Dψ

(
ψ−1(y, v)

)] #»

ξ S ′
(
ψ−1(y, v)

)∣∣∣[∧n ap Dψ
(
ψ−1(y, v)

)] #»

ξ S ′
(
ψ−1(y, v)

)∣∣∣
=

[∧
n ap Dψ

(
ψ−1(y, v)

)] #»

ξ S ′
(
ψ−1(y, v)

)
J nor(S ′)
n ψ

(
ψ−1(y, v)

) for Hn-a.e. (y, v) ∈ nor(S) .

Then, by the area formula for rectifiable currents (cf. [14, 4.1.30] or [29, p. 197]) we obtain

(ΨF)#(NS ′) = (ιιι ◦ π0 ◦ ψ−1)
(
Hn ⌞nor(S)

)
∧ #»η ,

moreover | #»η (y, v)| = 1 and Tann(Hn ⌞nor(S), (y, v)
)

is associated with #»η (y, v) for Hn-a.e.
(y, v) ∈ nor(S). Clearly (ΨF)#(NS ′) is a cycle, furthermore by the shuffle formula (cf. [14,
1.4.2]) and Lemma 1.4.27 we deduce that is also Legendrian.
Since τ1(x, u) ∧ . . . ∧ τn(x, u) = (−1)n ∗∗∗u for Hn-a.e. (x, u) ∈ nor(S ′), we infer (cf. (4.2.19))[∧

n
π0

](
#»η
(
ΨF(x, u)

))
=

∏n
i=1
(
1 + κS ′ ,i(x, u)2)− 1

2

Jnor(S ′)
n ψ(x, u)

[∧
n

DF(x)
](

τ1(x, u) ∧ . . . ∧ τn(x, u)
)

= (−1)n ∏n
i=1
(
1 + κS ′ ,i(x, u)2)− 1

2

Jnor(S ′)
n ψ(x, u)

[∧
n

DF(x)
]
(∗∗∗u) for Hn-a.e. (x, u) ∈ nor(S ′) .

Therefore, from (4.3.26) and by Remark 3.1.8, it follows that either

⟨
[∧

n
π0

](
#»η (y, v)

)
∧ v, dX1 ∧ . . . ∧ dXn+1⟩ > 0 for Hn-a.e. (y, v) ∈ nor(S)

or
⟨
[∧

n
π0

](
#»η (y, v)

)
∧ v, dX1 ∧ . . . ∧ dXn+1⟩ < 0 for Hn-a.e. (y, v) ∈ nor(S)

furthermore, for Hn-a.e. (y, v) ∈ nor(S), Tann(Hn ⌞nor(S), (y, v)
)

is associated with both
the n-vectorfields #»η (y, v) and

#»

ξ S (y, v), where (cf. Definition 1.4.24 and Lemma 1.4.20)

⟨
[∧

n
π0

]( #»

ξ S (y, v)
)
∧ v, dX1 ∧ . . . ∧ dXn+1⟩ > 0 for Hn-a.e. (y, v) ∈ nor(S) .

Overall, up to a change of sign, we deduce that

#»η (y, v) =
#»

ξ S (y, v) for Hn-a.e. (y, v) ∈ nor(S)

namely (ΨF)#(NS ′) = NS .
To prove (4.3.28), as before we apply Lemma 1.3.17, Lemma 4.1.10 (ii) and (vii), Lemma

4.2.14 (iii), (4.2.19) and the area formula for rectifiable sets [14, Theorem 3.2.22 (3)] to infer

(
NS ⌞ φn−k

)
(ϕ) =

(
n
k

) ∫
nor(S) ⌞ N2(S)

ϕ(y, u) ιιι
(

F−1(y)
)

Hnor(S),k(y, u) Jnor(S)
n π0(y, u) dHn(y, u)



76 Chapter 4. Fine properties of FnW2,n-sets

=

(
n
k

) ∫
N2(S)

∑
(y,u)∈(π0|nor(S) ⌞ N2(S))−1(x)

[
ϕ(y, u) Hnor(S),k(y, u) ιιι

(
F−1(y)

)]
dHn(x)

=

(
n
k

) ∫
S

[
ϕ
(

x, νS (x)
)
+ (−1)k ϕ

(
x,−νS (x)

)]
HS ,k(x) ιιι

(
F−1(x)

)
dHn(x) ,

for any ϕ ∈ C∞(Rn+1 × Rn+1) and k ∈ {0, . . . , n}. The proof is complete.

Remark 4.3.23. Given G a C2-diffeomorphism of Rn+1, then

(ΨG)#(NS ) = (ΨG◦F)#(NS ′) = NG(S) . (4.3.30)

Moreover, for a selected unit-normal vector field νG(S) on G(S), from (4.3.28) we obtain

NG(S)(φn−k) =

(
n
k

) ∫
G(S)

(
1 + (−1)k)HG(S),k(x) ιιι

(
(G ◦ F)−1(x)

)
dHn(x)

=

 2
(

n
k

)
Ak(G(S)) if k is even

0 if k is odd
, for every k ∈ {0, . . . , n} (4.3.31)

where HG(S),k is the k-th mean curvature of G(S), with respect to νG(S).

Now we derive the following extension of Reilly’s variational formulae to W 2,n-sets.

Theorem 4.3.24. Let {Ft}t∈(−ϵ,ϵ) be a local variation of Rn+1, with initial velocity vector field V.
If k ∈ {1, . . . , n} is odd, then

d
dt

Ak−1
(

Ft(S)
)∣∣∣

t=0
= (n − k + 1)

∫
S

V(x) • νS (x) HS ,k(x) ιιι
(

F−1(x)
)

dHn(x) .

Moreover, if n is even
d
dt

An
(

Ft(S)
)∣∣∣

t=0
= 0 .

Proof. Combining (4.3.30) and (4.3.31), we obtain[
(ΨFt)#(NS )

]
(φn−k+1) = NFt(S)(φn−k+1)

=

 2
(

n
k − 1

)
Ak−1

(
Ft(S)

)
if k ∈ {1, . . . , n + 1} is odd

0 if k ∈ {1, . . . , n + 1} is even .
(4.3.32)

From (4.3.32), if k ∈ {1, . . . , n} is odd and θV(x, y) := V(x) • y for x, y ∈ Rn+1, applying
Lemma 1.3.11 and (4.3.28) we obtain

2
(

n
k − 1

)
d
dt
Ak−1

(
Ft(S)

)∣∣∣
t=0

=
d
dt
[
(ΨFt)#(NS )

]
(φn−k+1)

∣∣∣
t=0

= k NS (θV φn−k)

=
(
1 + (−1)k+1) k

(
n
k

) ∫
S

V(x) • νS (x) HS ,k(x) ιιι
(

F−1(x)
)

dHn(x)

= 2 (n − k + 1)
(

n
k − 1

) ∫
S

V(x) • νS (x) HS ,k(x) ιιι
(

F−1(x)
)

dHn(x) .

Moreover, if n is even (namely k = n + 1 odd), from Lemma 1.3.11 we conclude

d
dt
An
(

Ft(S)
)∣∣∣

t=0
=

d
dt
[
(ΨFt)#(NS )

]
(φ0)

∣∣∣
t=0

= 0 .

The proof is complete.
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Chapter 5

Nabelpunksatz for Sobolev graphs

In this final chapter we extend the Nabelpunktsatz to graphs of twice weakly differentiable
functions in terms of the approximate curvatures of their graphs. In particular, Theorem 5.3.3
provides a general version of the Nabelpunktsatz for W2,1-graphs. In view of well known
examples of convex functions, this result is sharp; cf. Remark 5.3.5. In this chapter we use
the symbols DDDi and DDD2

ij (respectively Di and D2
ij) for the distributional partial derivatives of

a Sobolev function (respectively the classical partial derivatives of a function) with respect
to the standard basis {eee1, . . . , eeen} of Rn.

5.1 Nabelpunksatz for C2-graphs

Let U ⊆ Rn be a connected open set and let f ∈ C2(U). We define Γ :=
{(

x, f (x)
)

: x ∈ U
}

,
and ν : Γ → Sn ⊆ Rn+1 so that

ν
(

f (x)
)

:=
(−∇ f (x), 1)√
1 + |∇ f (x)|2

(5.1.1)

for every x ∈ U. Differentiating (5.1.1) we get

Dν
(

f (x)
)(

v, D f (x)(v)
)
=

(
− D(∇ f )(x)(v), 0

)√
1 + |∇ f (x)|2

− ∇ f (x) • D(∇ f )(x)(v)
1 + |∇ f (x)|2 ν

(
f (x)

)
for any v ∈ Rn. We recall that Γ is umbilical if and only if there exists a function λ : Γ → R

such that
Dν(z) = λ(z) id|Tan(Γ, z) for every z ∈ Γ .

Therefore, since Tan
(
Γ, f (x)

)
=
{(

v, D f (x)(v)
)

: v ∈ Rn}, we conclude that:

Γ is umbilical if and only if

λ
(

f (x)
)[

eeei • eeej + Di f (x)Dj f (x)
]
= −

D2
ij f (x)√

1 + |∇ f (x)|2
, (5.1.2)

for every x ∈ U and for every i, j ∈ {1, . . . , n}.

It follows from [57] (see also [34]) that:

if U ⊆ Rn is a connected open set,

f ∈ C2(U) and λ : Γ → R is a function such that (5.1.2) holds for every x ∈ U,

then either f (U) is contained in an n-dimensional plane,

or f (U) is contained in an n-dimensional sphere.

The next theorem extends this result to functions f ∈ W2,1
loc (U).
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5.2 Nabelpunksatz for W2,1
loc -functions

Suppose U ⊆ Rn is an open set, ν ∈ Sn−1 and πν is the orthogonal projection onto ν⊥.
Then, we define

Uν := πν(U)

and
Uν

y := {t ∈ R : y + tν ∈ U} ⊆ R for y ∈ Uν .

Notice that Uν is an open subset of ν⊥ and Uν
y is an open subset of R for every y ∈ Uν.

Lemma 5.2.1. Suppose U ⊆ Rn be an open set, g ∈ W1,1
loc (U) and k ∈ {1, . . . , n} such that

DDDkg(x) = 0 for Ln a.e. x ∈ U .

Then, for Ln−1-a.e. y ∈ Uek , the function mapping t ∈ Uek
y into g(y + tek) is L1-a.e. equal to a

constant function.

Proof. It follows from [61, Theorem 2.1.4] that there exists a representative g̃ of g such that
the restriction of g̃ on Uek

y is absolutely continuous and

DDDkg(y + tek) =
d
dt

g̃(y + tek) for L1-a.e. t ∈ Uek
y ,

for Ln−1-a.e. y ∈ Uek . By the hypothesis, we have

d
dt

g̃(y + tek) = 0

for L1-a.e. t ∈ Uek
y and for Ln−1-a.e. y ∈ Uek , and we readily obtain the conclusion from the

absolute continuity hypothesis of g̃.

We now prove the first result of this chapter.

Theorem 5.2.2. Suppose that U ⊆ Rn is a connected open set, f ∈ W2,1
loc (U) and µ : U → R is a

function satisfying

µ(x)
[
eeei • eeej +DDDi f (x)DDDj f (x)

]
= −

DDD2
ij f (x)√

1 + |∇∇∇ f (x)|2
(5.2.3)

for Ln-a.e. x ∈ U and for every i, j ∈ {1, . . . , n}.
Then, either f is Ln-a.e. equal to a linear function on U, or there exists a n-dimensional sphere S

in Rn+1 such that f (x) ∈ S for Ln-a.e. x ∈ U.

Proof. Recall the diffeomorphism ψ from Remark 2.1.12 and define η := ψ ◦ ∇∇∇ f . By the
classical chain-rule formula for Sobolev mappings (cf. [20]), η ∈ W1,1

loc (U, Rn+1) and

DDDη(x)(v) =
[
Dψ
(
∇∇∇ f (x)

)
◦DDD(∇∇∇ f )(x)

]
(v)

=
(−DDD(∇∇∇ f )(x)(v), 0)√

1 + |∇∇∇ f (x)|2
− ∇∇∇ f (x) •DDD(∇∇∇ f )(x)(v)

1 + |∇∇∇ f (x)|2 η(x)
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for Ln-a.e. x ∈ U. In particular, noting that η(x) •
(
eeej,DDDj f (x)

)
= 0 for every j ∈ {1, . . . , n}

and for Ln-a.e. x ∈ U, we employ the umbilicality condition to obtain

DDDiη(x) •
(
eeej,DDDj f (x)

)
= −

DDD2
ij f (x)√

1 + |∇∇∇ f (x)|2

= µ(x)
(
eeei,DDDi f (x)

)
•
(
eeej,DDDj f (x)

)
for Ln-a.e. x ∈ U and for every i, j ∈ {1, . . . , n}. Consequently, for every i ∈ {1, . . . , n} and
for Ln-a.e. x ∈ U, there exists λi(x) ∈ R such that

DDDiη(x)− µ(x)
(
eeei,DDDi f (x)

)
= λi(x) η(x) . (5.2.4)

On the other hand, since η is a unit-length vector, it follows (again from the chain-rule for-
mula for Sobolev mappings) that η(x) •DDDiη(x) = 0 for Ln-a.e. x ∈ U and for i ∈ {1, . . . , n}.
Thus, from (5.2.4), we deduce that λi(x) = 0 and

DDDiη(x) = µ(x)
(
eeei,DDDi f (x)

)
= µ(x)DDDi f (x) (5.2.5)

for Ln-a.e. x ∈ U. For k ∈ {1, . . . , n}, let gk ∈ W1,1
loc (U) be defined as

gk := − DDDk f√
1 + |∇∇∇ f |2

.

From (5.2.5), we observe that

DDDigj = 0 whenever i, j ∈ {1, . . . , n} and i ̸= j , (5.2.6)

DDDigi = µ whenever i ∈ {1, . . . , n} . (5.2.7)

Now, we fix an open cube Q ⊂ U with sides parallel to the coordinate axes, a function
ϕ ∈ C∞

c (Q) and fix k ∈ {1, . . . , n}, we prove that∫
Q

µ Dkϕ dLn = 0 . (5.2.8)

Let j ∈ {1, . . . , n} be chosen with k ̸= j. Since, by (5.2.6), we have DDDkgj = 0, it follows from
Lemma 5.2.1 that for Ln−1-a.e. y ∈ Ueeek there exists vj(y) ∈ R such that

gj(y + tek) = vj(y) for L1-a.e. t ∈ Ueeek
y .

Next, we use (5.2.7) to obtain∫
Q

µ Dkϕ dLn =
∫

Q
DDDjgj Dkϕ dLn

= −
∫

Q
gj Dj

(
Dkϕ

)
dLn

= −
∫

Qek

vj(y)
∫

Qy
eeek

Dk
(

Djϕ
)
(y + teeek) dL1(t) dLn−1(y) = 0 .

The last equality follows since the function mapping t ∈ Qeeek
y into Djϕ(y + tek) has compact

support in Qeeek
y .

Since (5.2.8) holds for every open cube Q with sides parallel to the coordinate axes and
for every ϕ ∈ C∞

c (Q), and since U is connected, we infer from [5, Proposition 3.2 (a)] that

µ is Ln-a.e. equal to a constant function on U. (5.2.9)

Considering that U is connected, we combine (5.2.9) and (5.2.5) to infer that there exists
c ∈ R and w ∈ Rn+1 such that

η(x)− c f (x) = w for Ln-a.e. x ∈ U .
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If c ̸= 0 the last equation evidently implies that f (x) ∈ ∂Bn+1
1/|c|(−w/c) for Ln-a.e. x ∈ U.

If c = 0, we have that w • en+1 = (1 + |∇∇∇ f |2)−1/2 and

DDDi f (x) = − w • ei
w • en+1

for Ln-a.e. x ∈ U and i ∈ {1, . . . , n} .

This implies that f is Ln-a.e. equal to linear function on U, since U is connected.

5.3 Nabelpunksatz for Sobolev graphs

Suppose X ⊂ Rn+1 is Hn-measurable and Hn-rectifiable of class 2. We say that X is ap-
proximate totally umbilical if there exists an (Hn ⌞ X)-measurable mapping ν such that ν(x) ∈
Norn(Hn ⌞ X, x) ∩ Sn and there exists a function µ : X → R such that

ap Dν(x)(τ) = µ(x)τ for every τ ∈ Tann(Hn ⌞ X, x) , (5.3.10)

for Hn-a.e. x ∈ X (keep in mind Lemma 3.1.2).
Moreover, if U ⊆ Rn is an open set and g : U → Rk (k ≥ n) then we say that g satisfies

the Lusin’s (N) condition if Hn(g(Z)
)
= 0 for every Z ⊂ U with Ln(Z) = 0.

We are now ready to prove the second result of this chapter.

Theorem 5.3.3. Suppose U ⊂ Rn is a bounded and connected open set, f ∈ W2,1
loc (U), and f satisfies

the Lusin’s (N)-condition, with Γ := f (U).
Then Γ is Hn-rectifiable of class 2. Moreover, if Γ is approximate totally umbilical, then, up to a

Hn-negligible set, either Γ is a subset of a n-dimensional plane or a subset of an n-dimensional sphere.

Proof. By virtue of [9, Theorem 13] and [14, 2.10.19 (4), 2.10.43] we can find a sequence
{gi}i∈N ⊂ C2(Rn) such that Ln(U \ ⋃∞

i=1{gi = f }) = 0 and Lip(gi) < ∞ for every i ∈ N.
Hence, thanks to the Lusin’s (N) condition, we readily infer that Γ is Hn-rectifiable of class
2. We define Vi as the set of x ∈ {gi = f } such that

Θn(Ln ⌞U \ {gi = f }, x) = 0 , Dgi(x) = DDD f (x)

and Tann(Hn ⌞ Γ, f (x)
)

is a n-dimensional plane. Since Dgi(x) = ap D f (x) for every x ∈ Vi,
it follows from [14, 2.10.19 (4), 3.2.19] and Lemma 2.1.8 that

Ln({gi = f } \ Vi) = 0 for every i ∈ N .

Since Tann(Ln ⌞{gi = f }, x) = Rn for every x ∈ Vi, and noting that gi : Rn → gi(R
n) is a

bi-lipschitz homeomorphism, we use [51, Lemma B.2] to conclude

DDD f (x)[Rn] = Dgi(x)
[
Tann(Ln ⌞{gi = f }, x)

]
⊆ Tann(Hn ⌞ Γ, f (x)

)
,

for every x ∈ Vi. Since DDD f (x) is injective whenever it exists, we conclude that

DDD f (x)[Rn] = Tann(Hn ⌞ Γ, f (x)
)

and
ψ(∇∇∇ f (x)) ∈ Norn(Hn ⌞ Γ, f (x)

)
,

for every x ∈ Vi and i ∈ N. Let V :=
⋃∞

i=1 Vi and notice that Hn(Γ \ f (V)
)
= 0 (again by

Lusin’s (N) condition). Let ν be the (Hn ⌞ Γ)-measurable map defined by

ν := ψ ◦∇∇∇ f ◦ (π|Γ) ,

where π : Rn × R → R is the orthogonal projection onto R. We observe that if z ∈ f (Vi)

and Θn(Hn ⌞ Γ \ f (Vi), z
)
= 0, then ν is (Hn ⌞ Γ)-approximately differentiable at z

(
since

ν| f (Vi) = (ψ ◦ ∇gi ◦ π)| f (Vi)
)

and

ap Dν(z) = D(ψ ◦ ∇gi ◦ π)(z)
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= D(ψ ◦ ∇gi)
(
π(z)

)
◦
(
π|Tann(Hn ⌞ Γ, z)

)
= ap D(ψ ◦∇∇∇ f )

(
π(z)

)
◦
(
π|Tann(Hn ⌞ Γ, z)

)
= DDD(ψ ◦∇∇∇ f )

(
π(z)

)
◦
(
π|Tann(Hn ⌞ Γ, z)

)
,

whence we infer
ap Dν(z) ◦DDD f

(
π(z)

)
= DDD(ψ ◦∇∇∇ f )

(
π(z)

)
. (5.3.11)

By [14, 2.10.19 (4)] we conclude that (5.3.11) is true for Hn-a.e. z ∈ Γ.
If Γ is approximate totally umbilical, it is easy to see that the unit normal vector field ν

defined above fulfils the umbilicalilty condition in (5.3.10) with some function µ. Hence

µ
(

f (x)
)(

eeei • eeej +DDDi f (x)DDDj f (a)
)
=
(
ap Dν

(
f (x)

)
◦DDD f (x)

)
(eeei) •

(
eeej,DDDj f (x)

)
= DDDi(ψ ◦ ∇ f )(x) •

(
eeej,DDDj f (x)

)
= −

DDD2
ij f (x)√

1 + |∇∇∇ f (a)|2
,

for every i, j ∈ {1, . . . , n} and for Ln-a.e. x ∈ U. By Theorem 5.2.2 and by the Lusin’s (N)-
property we deduce that, up to a Hn-negligible set, Γ is either a subset of a n-dimensional
plane, or a subset of a n-dimensional sphere of Rn+1. The proof is complete.

Remark 5.3.4. If f ∈ W2,p
loc (U) with n

2 < p < n, the Sobolev embedding theorem [20, The-
orem 7.26] ensures that f ∈ W1,p∗

loc (U) with p∗ > n. Therefore, f satisfies the Lusin’s (N)-
condition by [35, Theorem 1.1].

Remark 5.3.5. It is easy to find convex functions f ∈ C1,α(Rn) such that the approximate
principal curvatures of their graph are zero Hn-almost everywhere, and the conclusion of
Theorem 5.3.3 fails (notice that such a graph is Hn-rectifiable of class 2 and f satisfies the
Lusin’s (N)-condition). Indeed, the gradient of these functions are continuous maps of
bounded variation, whose distributional derivative is not a function. An example of such a
functions is given by the primitive of the ternary Cantor function. Let C ⊂ [0, 1] be the Can-
tor ternary set and f : [0, 1] → [0, 1] the Cantor-Vitali function. Recall that f ∈ C0,α([0, 1])
with α = log3 2 and f (C) = [0, 1], in particular it is also increasing with f (0) = 0, f (1) = 1
and, finally, f ′(x) = 0 for every x in the open set [0, 1] \ C. The function f provides an ex-
ample of a BV-function that is not absolutely continuous, namely f ∈ BV(0, 1) \ W1,1(0, 1).
In fact, since f is increasing, we deduce that the total variation of f is 1. Furthermore, since
L1(C) = 0 and f (C) = [0, 1], we infer that f does not satisfy the Lusin (N)-property and
hence is not absolutely continuous (cf. [31, Theorem 3.41]). If we now consider the primitive
of f , denoted by F, we deduce that F ∈ C1,α([0, 1]) \W2,1(0, 1) and since F is piecewise linear
in [0, 1] \ C, we infer that the approximate principal curvature of graph(F) are zero H1-a.e.,
but the conclusion of Theorem 5.3.3 fails.
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