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Abstract. We rigorously derive a Blake-Zisserman-Kirchhoff theory for thin plates with material

voids, starting from a three-dimensional model with elastic bulk and interfacial energy featuring a
Willmore-type curvature penalization. The effective two-dimensional model comprises a classical

elastic bending energy and surface terms which reflect the possibility that voids can persist in the

limit, that the limiting plate can be broken apart into several pieces, or that the plate can be
folded. Building upon and extending the techniques used in the authors’ recent work [34] on the

derivation of one-dimensional theories for thin brittle rods with voids, the present contribution

generalizes the results of [57], by considering general geometries on the admissible set of voids and
constructing recovery sequences for all admissible limiting configurations.

1. Introduction

The rigorous derivation of variational theories for lower dimensional elastic objects, e.g., mem-
branes, plates, shells, beams, and rods, has been one of the fundamental and challenging questions
in the mathematical development of continuum mechanics. A common aspect in the analysis is
always an appropriate model of three-dimensional nonlinear elasticity, and the key feature for the
resulting theory is the energy scaling with respect to the thickness parameter of the initial do-
main. Despite the longstanding interest in such questions [6, 7], early results were usually relying
on some a priori ansatzes, often leading to contrasting theories. Over the last decades though,
modern techniques from the Calculus of Variations and Applied Analysis have been implemented
very successfully for the rigorous derivation of effective models for thin elastic objects. From a
technical point of view, the fundamental ingredient to perform these rigorous justifications has been
the celebrated geometric rigidity estimate in the seminal work by G. Friesecke, R.D. James,
and S. Müller [36], which has had a striking number of applications in dimension-reduction prob-
lems in the context of pure (hyper)elasticity. The interested reader is referred for instance to
[18, 25, 36, 37, 44, 47, 48, 52, 53, 58, 59], for a by far non-exhaustive list of references regarding
dimension-reduction results related to plate or rod theories in the bending regime.

However, concerning the investigation of phenomena beyond the perfectly elastic regime, for
instance the behavior of solids with defects and impurities such as plastic slips, dislocations, cracks,
or stress-induced voids, the mathematical understanding is far less well settled. In the case of thin
elastic materials with voids, the natural variational formulation involves energies driven by the
competition between bulk elastic and interfacial energies of perimeter type. Such variational models
describe stress driven rearrangement instabilities (SDRI) in elastic solids, and have recently been a
focal point of considerable attention both from the mathematical and the physics community, see
for example [11, 13, 20, 26, 32, 33, 34, 38, 40, 41, 45, 46, 56, 61].

As far as dimension-reduction results beyond the purely elastic setting are concerned, we now
present a concise summary of some important recent developments. In the framework of plasticity,
we refer the reader, e.g., to [15, 23, 24, 49, 51]. Regarding models for brittle fracture, despite a
significant recent progress on brittle plates and shells in the linear setting [1, 3, 9, 39], the theory
in the nonlinear framework is mainly restricted to static and evolutionary models in the membrane
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regime [2, 8, 14]. Smaller energy regimes are less well studied, the only rigorous available result for
now appearing to be for a two-dimensional thin brittle beam [60]. The main result in that work is
the derivation of an effective Griffith-Euler-Bernoulli energy defined on the midline of the possibly
fractured beam, which takes into account possible jump discontinuities of the limiting deformation
and its derivative. From a technical perspective, the key tool in [60] is an appropriate generalization
of [36], namely a quantitative piecewise geometric rigidity theorem for SBD functions [35]. Up
to now, such a general result is available only in two dimensions, which is the main obstruction
for the generalization of dimension-reduction results to settings of three-dimensional fracture. Let
us mention, however, that similar rigidity results in higher dimensions are available in models for
nonsimple materials [31], where a singular perturbation term depending on the second gradient of
the deformation is incorporated in the elastic energy.

In the setting of SDRI models for solids with material voids, a first analysis on plate theories
with surface discontinuities in the bending (Kirchhoff) energy regime has been performed in [57].
However, the results therein are conditional in two aspects. Firstly, only voids with restrictive as-
sumptions on their distribution and geometry (satisfying the so-called minimal droplet assumption)
are considered, which allows to resort to the classical rigidity theorem of [36]. Secondly, recovery se-
quences are only constructed under a specific regularity property for the outer Minkowski-content of
voids and discontinuities. In our recent work [34], a related result for thin rods without restriction on
the void geometry was accomplished, generalizing the results of [52] from the purely elastic setting.
The cornerstone of our approach was a novel piecewise rigidity result in the realm of SDRI-models
[32], which is based on a curvature regularization of the surface term.

The goal of the present article is to extend the methods used in [34] in order to show that the
Blake-Zisserman-Kirchhoff model of [57] is the Γ-limit of the three-dimensional model, without
restricting the void geometries and without restricting to a special class of configurations for the
construction of recovery sequences.

We now describe our setting in more detail. We consider a three-dimensional thin plate with
reference configuration

Ωh := S × (−h
2 ,

h
2 ) ⊂ R3

of thickness 0 < h≪ 1, where the midsurface is represented by a bounded Lipschitz domain S ⊂ R2.
Variational models for thin plates describing the formation of material voids which are not a priori
prescribed, fall into the framework of free discontinuity problems [4], leading to an energy of the
form

Fh
el,per(v,E) :=

�
Ωh\E

W (∇v) dx+ βh

�
∂E∩Ωh

φ(νE) dH2 . (1.1)

Here, E ⊂ Ωh represents the (sufficiently regular) void set within an elastic plate with reference
configuration Ωh ⊂ R3, and v is the corresponding elastic deformation. The first term in (1.1)
represents the nonlinear elastic energy with density W (see Section 2 for details), whereas the
second one depends on a parameter βh > 0 and a possibly anisotropic norm φ evaluated at the
outer unit normal νE to ∂E ∩ Ωh. For purely expository reasons, we restrict our analysis to the
isotropic case, i.e., φ(·) ≡ | · |2, see Remark 2.4 for some comments.

At a heuristic level, it is well known that an elastic energy scaling of the order h3 corresponds to the
bending Kirchhoff theory, leaving the midsurface S unstretched. At the same time, the surface area
of voids completely separating the plate is of order h. Now, depending on the choice of the parameter
βh, one can expect different limiting models, after rescaling (1.1) with max{h−3, (βhh)

−1}: the case
βh ≫ h2 will result in a purely elastic plate model, while the choice βh ≪ h2 will lead to a model
of purely brittle fracture. The critical regime βh ∼ h2 is the most interesting and mathematically
most challenging one, since the elastic and surface contributions in this case compete at the same
order.
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Hence, from here on we set for simplicity βh := h2. After rescaling the total energy in (1.1) by
h−3, our aim is to rigorously derive effective two-dimensional theories by means of Γ-convergence
[12, 21]. As in [34], the presence of a priori unprescribed voids in the model hinders the use of
the classical rigidity result [36]. Indeed, the distribution of voids in the material might possibly
exhibit highly complicated geometries, for instance densely packed thin spikes or microscopically
small components with small surface measure on different length scales, see Figure 1.

Figure 1. Densely packed thin spikes and microscopically small components leading to loss of

rigidity. For simplicity, the figure illustrates a two-dimensional example.

To remedy these phenomena, motivated by our recent works [32, 34], we introduce a curvature
regularization of the form

Fh
curv(E) := h2κh

�
∂E∩Ωh

|A|2 dH2 , (1.2)

where A denotes the second fundamental form of ∂E ∩ Ωh and κh satisfies κh → 0+ as h → 0+

at a sufficient rate (see (2.5) for details). The presence of this additional Willmore-type energy
penalization allows us to use the piecewise rigidity estimate [32, Theorem 2.1] in the analysis. It is a
singular perturbation for the void set E and not for the deformation v, i.e., no higher-order derivatives
of v are involved in the model. We also refer the interested reader to [33], where a related atomistic
model is studied and additional explanations for the presence of a microscopic analog of the term in
(1.2) are given, see [33, Subsection 2.5]. As mentioned therein, curvature regularizations of similar
type are commonly used in the mathematical and physical literature of SDRI models, for instance
in the description of heteroepitaxial growth of elastically stressed thin films or material voids, see
[5, 27, 28, 42, 43, 55, 61]. Despite the possible modeling relevance, we mention that the presence of
the curvature contribution in our model is only for mathematical reasons as a regularization term.
In particular, it does not affect the structure of the effective limiting model.

The total energy of a pair (v,E) is then given by the sum of the two terms in (1.1) and (1.2), i.e.,

Fh(v,E) := Fh
el,per(v,E) + Fh

curv(E) ,

having set βh := h2 and φ(ν) ≡ 1 for all ν ∈ S2. The main outcome of this work is then Theorem 2.3,
where we show that the rescaled energies

(
h−3Fh(·, ·)

)
h>0

Γ-converge in an appropriate topology
to an effective two-dimensional model that is of the form

1

24

�
S\V

Q2

(
IIy(x

′)
)
dx′ +H1

(
∂∗V ∩ S

)
+ 2H1

(
J(y,∇′y) \ ∂∗V

)
. (1.3)

Here, V ⊂ S denotes a set of finite perimeter in S ⊂ R2 and represents the void part in the limiting
two-dimensional plate. As in [57], the limiting admissible deformations turn out to be possibly

fractured and creased flat isometric immersions, i.e., y ∈ SBV 2,2
isom(S;R3), see Section 2.2 for precise

definitions. The approximate gradient of y is denoted here by∇′y and IIy denotes the induced second
fundamental form on y(S). The density of the limiting elastic energy, which should be conceived
as a curvature energy on isometric immersions of the midsurface S, depends on a quadratic form
Q2 which is defined through the quadratic form D2W (Id) of linearized elasticity via a suitable
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minimization problem, see (2.12) for its precise definition. The second term in (1.3) accounts for
the presence of limiting voids by measuring the total length of their boundaries. The last term in
(1.3) takes the fact into account that, in the limit, voids might collapse into discontinuities of the
limiting deformation y or its derivative ∇′y, corresponding to cracks or folds of the limiting plate,
respectively. Exactly due to their origin, the length of those should be counted twice in the energy.

Let us once again mention that one fundamental difference between our work and that of [57]
lies in the assumptions on the admissible void sets. While we allow for voids with general geometry
employing a mild curvature regularization, [57] is based on specific restrictive assumptions on the
void geometry, namely the so-called ψ-minimal droplet assumption, cf. [57, Equation (6)]. This can
be interpreted as an L∞-diverging bound on the curvature of the boundary of the voids in the initial
thin plate. In our setting, the curvature penalization term (1.2) can be thought of as imposing an
L2-diverging bound on the curvature: its nature allows for the voids to concentrate at arbitrarily
small scales (independently of h), while also allowing for a diverging (with h) number of connected
components of voids, see Remark 2.4(iv). Of course, our more general model comes at the expense
of using more sophisticated geometric rigidity estimates [32] compared to the classical one of [36].
As in [34], our strategy relies on modifying the deformations and their gradients on a small part
of the domain such that the new deformations are actually Sobolev except for the boundaries of a
controllable number of cubes, with a good control on the elastic energy. Concerning the derivation
of compactness and Γ-liminf, the estimate for the surface parts in (1.3) is the most delicate step
and requires a fine control on the jump height of these modifications. By means of a contradiction
argument based on a blow up method, we are able to reduce the problem to the setting of thin rods,
which allows us to directly use the compactness result from [34, Theorem 2.1].

Besides the geometry of voids, our work differs from [57] by the fact that therein recovery se-
quences are only provided under specific regularity properties for the outer Minkowski-content of
∂∗V and J(y,∇′y). By means of the coarea formula, the latter assumption allows to construct a se-
quence of three-dimensional voids with the required regularity, in particular satisfying the minimal
droplet assumption. In the general case, however, a density result for boundaries of void sets and
jump sets of SBV -functions appears to be required. Although many results are available in this
direction, see, e.g., [19], to the best of our knowledge they are all incompatible with the isometry

constraint, i.e., with y ∈ SBV 2,2
isom(S;R3). As approximation results are usually built on convolution

techniques, it indeed cannot be expected to obtain a density result satisfying exactly an isometry
constraint. Yet, we are able to obtain a density result which can control the deviation from an isom-
etry in a controlled way, quantified in terms of the thickness h. This is then enough to construct
recovery sequences by adapting the ansatz from the purely elastic case [36]. We regard this part as
the most original technical novelty of the current paper, and we believe that the technique may be
applicable also in other related settings.

1.1. Organization of the paper. Our paper is organized as follows. In Section 2 we introduce
the model and state the main compactness and Γ-convergence results, i.e., Theorems 2.1 and 2.3,
respectively, together with some additional modeling remarks. In Section 3, we collect the necessary
technical ingredients for the proofs, namely the nonlinear piecewise rigidity estimates from [32] and
the Korn-Poincaré inequality for SBV 2-functions with small jump set from [16] adapted to our
setting, see Subsection 3.1, as well as the construction of almost Sobolev replacements for sequences
of deformations with equibounded energy, see Subsections 3.2–3.3. Section 4 contains the proof of
Theorem 2.1, while Sections 5 and 6 contain the proof of Theorem 2.3(i),(ii) respectively. Finally,
in Appendices A and B we give the proofs of some auxiliary facts that are themselves not new but
that are presented here for completeness only.
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1.2. Notation. We close the introduction with some basic notation. Given d ∈ N, U ⊂ Rd open,
we denote by M(U) the collection of all measurable subsets of U , and by P(U) the one of subsets
of finite perimeter in U . Given A,B ∈ M(U), we write χA for the characteristic function of A,
A△B for their symmetric difference, A ⊂⊂ B iff A ⊂ B, and distH(A,B) for the Hausdorff distance
between A and B. For v ∈ Rd we denote by |v|∞ := max{|vk| : k = 1, . . . , d} its ℓ∞-norm, while for
the | · |∞-distance of a point x (respectively a set B) to a set A, we write dist∞(x,A) (respectively
dist∞(A,B)). For every A ⊂ Rd and δ > 0, we define

(A)δ := {x ∈ Rd : dist(x,A) < δ} . (1.4)

For E ∈ P(U) we denote by ∂∗E the essential boundary of E, see [4, Definition 3.60]. For d = 3 we
also denote by Areg(U) the collection of all open sets E ⊂ U such that ∂E ∩U is a two-dimensional
C2-surface in R3. Surfaces and functions of C2-regularity will be called C2-regular or just regular
in the following. For E ∈ Areg(U) we denote by A the second fundamental form of ∂E ∩ U , i.e.,

|A| =
√
κ21 + κ22, where κ1 and κ2 are the corresponding principal curvatures. By νE we indicate

the outer unit normal to ∂E ∩ U .
The inner product of two vectors a, b ∈ R3 will be denoted by a · b, and their exterior product by

a ∧ b. We further write S2 := {ν ∈ R3 : |ν| = 1}. By id we denote the identity mapping on R3 and
by Id ∈ R3×3 the identity matrix. For each F ∈ R3×3 we let sym(F ) := 1

2

(
F + FT

)
and we also

introduce SO(3) := {F ∈ R3×3 : FTF = Id, detF = 1}. Moreover, we denote by R3×3
sym and R3×3

skew

the space of symmetric and skew-symmetric matrices, respectively. For σ > 0, we denote by Tσ the
linear transformation in R3 with matrix representation given by

Tσ := diag(1, 1, σ) (1.5)

with respect to the canonical basis {e1, e2, e3} of R3. For d, k ∈ N, we indicate by Ld and Hk the
d-dimensional Lebesgue measure and the k-dimensional Hausdorff measure, respectively.

For U ⊂ Rn open, for p ∈ [1,∞] and d, k ∈ N we denote by Lp(U ;Rd) and W k,p(U ;Rd) the
standard Lebesgue and Sobolev spaces, respectively. Partial derivatives of a function f : U → Rd

will be denoted by (∂if)i=1,2,3. We use standard notation for SBV -functions, cf. [4, Chapter 4]
for the definition and a detailed presentation of the properties of this space. In particular, for a
function u ∈ SBV (U ;Rd), we write ∇u for the approximate gradient, Ju for its jump set, and u±

for the one-sided traces on Ju. Finally,

SBV 2(U ;Rd) :=
{
u ∈ SBV (U ;Rd) :

�
U

|∇u|2 dx+Hd−1(Ju ∩ U) < +∞
}
.

2. The models and the main results

In this section we introduce the model and present our main results.

2.1. The three-dimensional model. We denote the reference configuration of the thin plate by

Ωh := S × (−h
2 ,

h
2 ) ⊂ R3 , (2.1)

where S ⊂ R2 is a bounded Lipschitz domain describing the midsurface of the thin plate, and
0 < h ≪ 1 denotes its infinitesimal thickness. For a large but fixed constant M ≫ 1, the set of
admissible pairs of function and set is given by

Ah :=
{
(v,E) : E ∈ Areg(Ωh), v ∈W 1,2(Ωh \ E;R3) , v|E ≡ id , ∥v∥L∞(Ωh) ≤M

}
. (2.2)

The third condition in (2.2) is for definiteness only. While the last one therein is merely of technical
nature to ensure compactness, it is also justified from a physical viewpoint since it corresponds to
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the assumption that the solid under consideration is confined in a bounded region. For each pair
(v,E) ∈ Ah, we consider the energy

Fh(v,E) :=

�
Ωh\E

W (∇v) dx+ h2H2(∂E ∩ Ωh) + h2κh

�
∂E∩Ωh

|A|2 dH2 . (2.3)

The first two terms correspond to the elastic and the surface energy of perimeter-type, respectively,
while the third one is a curvature regularization of Willmore-type, where A denotes the second
fundamental form of ∂E ∩ Ωh and κh is a suitable infinitesimal parameter specified in (2.5) below.
The factor h2 in front of the surface terms ensures that the elastic and the surface energy are of
same order, since the elastic energy per unit volume is of order h2, see the introduction for some
heuristic explanations of the model.

The function W : R3×3 → R+ in (2.3) represents the stored elastic energy density, satisfying
standard assumptions of nonlinear elasticity. In particular, we suppose that W ∈ C0(R3×3;R+)
satisfies

(i) Frame indifference: W (RF ) =W (F ) for all R ∈ SO(3) and F ∈ R3×3 ,

(ii) Single energy-well structure: {W = 0} ≡ SO(3) ,

(iii) Regularity: W is C2-regular in a neighborhood of SO(3) ,

(iv) Coercivity: There exists c > 0 such that for all F ∈ R3×3 it holds that

W (F ) ≥ cdist2(F, SO(3)) ,

(v) Growth condition: There exists C > 0 such that for all F ∈ R3×3 it holds that

W (F ) ≤ C dist2(F, SO(3)) .

(2.4)

We note that condition (v) excludes the natural assumption W (F ) → +∞ as detF → 0+, but
it is needed in our analysis for the construction of recovery sequences. The choice of an isotropic
perimeter energy is purely for simplicity of the exposition, and more general anisotropic perimeters
can be chosen in the model without substantial changes in the proofs, see also Remark 2.4 below.
As for the parameter κh > 0 in the curvature regularization, we require

κhh
−2 → 0 , κhh

−52/25 → +∞ as h→ 0 . (2.5)

Similarly to its role in [34, Equation (2.5)], it is a technical assumption that has been chosen
for simplicity rather than optimality. Its choice is related to the application of suitable piecewise
rigidity results [32] and Korn inequalities [16], and will become apparent along the proof, see in
particular (3.17).

As is by now customary in dimension-reduction problems, we perform an anisotropic change of
variables to reformulate the problem in a fixed reference domain: recalling (1.5), we rescale our
variables and set

Ω := Ω1 , V := T1/h(E) = {x ∈ Ω : Thx ∈ E} . (2.6)

Accordingly, the rescaled deformations are defined by y : Ω → R3 via

y(x) := v(Thx) . (2.7)

The total energy is rescaled by a factor h3, hence we set

Eh(y, V ) := h−3Fh(v,E) , (2.8)

where the pair (y, V ) is related to (v,E) via (2.6) and (2.7). In this rescaling, one factor h corresponds
to the change of volume and the other factor h2 corresponds to the average elastic energy per unit
volume in the bending regime for plates.
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The corresponding rescaled gradient will be denoted as usual by

∇hy(x) :=
(
∂1y, ∂2y,

1

h
∂3y
)
(x) = ∇v(Thx) .

Therefore, by a change of variables we find

Eh(y, V ) = h−2

�
Ω\V

W (∇hy(x)) dx+

�
∂V ∩Ω

∣∣(ν1V (z), ν2V (z), h−1ν3V (z)
)∣∣dH2(z) + Eh

curv(V ) , (2.9)

where νV (z) :=
(
ν1V (z), ν

2
V (z), ν

3
V (z)

)
denotes the outer unit normal to ∂V ∩Ω at the point z. Note

that for the rescaling of the perimeter part of the energy, one can test with smooth functions and
use the divergence theorem, as we also commented in [34, Equation (2.10)].

Regarding the term Eh
curv(V ) which denotes the curvature-related energetic contribution for the

rescaled set V , its precise expression after the change of variables will not be of specific use in the
subsequent analysis. Hence, we refrain from giving its explicit form.

In view of (1.5) and (2.2), the space of rescaled admissible pairs of deformations and voids is
given by

Âh :=
{
(y, V ) : V ∈ Areg(Ω) , y ∈W 1,2(Ω \ V ;R3) , y|V ≡ Th(id) , ∥y∥L∞(Ω) ≤M

}
. (2.10)

2.2. Limiting model and main result. As in the purely elastic case considered in [36], the density
of the limiting elastic energy will depend on the quadratic form Q3 : R3×3 → R, which is defined as

Q3(G) := D2W (Id)[G,G] . (2.11)

Due to (2.4), Q3 vanishes on R3×3
skew and is strictly positive-definite on R3×3

sym. We also define

Q2 : R2×2 → R as
Q2(A) := min

c∈R3
Q3(Â+ c⊗ e3) , (2.12)

by minimizing over stretches in the x3-direction. Here, for a matrix A ∈ R2×2 we denote by Â its
extension to a (3× 3)-matrix by adding zeros in the third row and column.

As in [57], where a similar model under more restrictive geometric assumptions on the voids was
studied, the limiting energy will be defined on the space

A :=
{
(y, V ) ∈ SBV 2,2

isom(S;R
3)× P(S) : y|V = id|V , ∥y∥L∞(Ω) ≤M

}
, (2.13)

where

SBV 2,2
isom(S;R

3) := {y ∈ SBV 2(S;R3) : ∇′y ∈ SBV 2(S;R3×2), (∇′y, ∂1y ∧ ∂2y) ∈ SO(3) a.e.} ,
and ∇′y := (∂1y, ∂2y), i.e., the limiting admissible deformations are isometric away from the jump
set

J(y,∇′y) := Jy ∪ J∇′y . (2.14)

We denote by ỹ : Ω → R3 maps of the form

ỹ(x) = y(x1, x2) ∀x ∈ Ω , for some y ∈ SBV 2,2
isom(S;R

3) , (2.15)

and, similarly, by Ṽ ⊂ Ω sets of the form

Ṽ = V ×
(
−1

2
,
1

2

)
for some V ∈ P(S) . (2.16)

In what follows, the pair (ỹ, Ṽ ) will always be associated to (y, V ) via (2.15) and (2.16) whenever

it appears. For a mapping y ∈ SBV 2,2
isom(S;R3), we also introduce its second fundamental form via

IIy :=
(
∂iy · ∂j(∂1y ∧ ∂2y)

)
1≤i,j≤2

. (2.17)
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With the definitions (2.12) and (2.14) in mind, for each (y, V ) ∈ A, the limiting two-dimensional
energy of Blake-Zisserman-Kirchhoff-type (cf. also [10, 17, 57]) is defined as

E0
(
y, V

)
:=

1

24

�
S\V

Q2(IIy(x
′)) dx′ +H1

(
∂∗V ∩ S

)
+ 2H1

(
J(y,∇′y) \ ∂∗V

)
. (2.18)

As mentioned also in the introduction, the limiting two-dimensional model features the classical
bending-curvature energy derived in [36] and two surface terms related to the presence of voids. The
middle term on the right-hand side of (2.18) corresponds to the energy contribution of the limiting
void V , whereas the last one therein is associated to discontinuities or folds of the deformation,
represented by Jy and J∇′y, respectively. The origin of this term is due to the fact that voids may
collapse into discontinuity curves in the limit, and thus appears with a factor 2, see Figure 2.

vh

y

h ! 0 h ! 0

Figure 2. Bending a plate with voids and cracks: Collapsing voids lead to discontinuity curves
for Jy . Folds corresponding to the presence of J∇′y are not depicted for simplicity.

With these definitions and notations, our main results can be summarized as follows.

Theorem 2.1. (Compactness) Let (hj)j∈N ⊂ (0,∞) with hj ↘ 0 and (yhj
, Vhj

) ∈ Âhj
(cf. (2.10))

be such that

sup
j∈N

Ehj (yhj , Vhj ) < +∞ . (2.19)

Then, there exists (y, V ) ∈ A (cf. (2.13)) such that, up to a non-relabeled subsequence,

(i) χVhj
−→ χṼ in L1(Ω) ,

(ii) yhj
−→ ỹ in L1(Ω;R3) ,

(iii) ∇hj
yhj

−→
(
∇′ỹ, ∂1ỹ ∧ ∂2ỹ

)
strongly in L2(Ω;R3×3) ,

(2.20)

where (ỹ, Ṽ ) is associated to (y, V ) via (2.15) and (2.16).

Definition 2.2. We say that (yhj
, Vhj

)
τ−→
(
y, V

)
as j → ∞ if and only if (2.20) holds.

Note that (2.10) implies that supj∈N ∥yhj∥L∞(Ω) ≤M , and therefore the convergence in (2.20)(ii)

actually holds in Lp(Ω;R3) for every p ∈ [1,+∞). We are now ready to state the main Γ-convergence
result.
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Theorem 2.3. (Γ-convergence) Let (hj)j∈N ⊂ (0,∞) with hj ↘ 0. The sequence of functionals

(Ehj )j∈N Γ(τ)-converges to the functional E0 of (2.18), i.e., the following two inequalities hold true.

(i) (Γ-liminf inequality) Whenever (yhj
, Vhj

)
τ−→
(
y, V

)
, then

lim inf
j→+∞

Ehj (yhj , Vhj ) ≥ E0
(
y, V

)
.

(ii) (Γ-limsup inequality) For every
(
y, V

)
∈ A there exists (yhj

, Vhj
) ∈ Âhj

for each j ∈ N such

that (yhj , Vhj )
τ−→
(
y, V

)
and

lim sup
j→+∞

Ehj (yhj , Vhj ) ≤ E0
(
y, V

)
.

Remark 2.4 (Possible extensions and variants). (i) One could consider more general perimeter
energies of the form

βh

�
∂E∩Ωh

φ(νE) dH2 ,

where limh→0(h
−2βh) = β > 0 and φ is a norm in R3. Similarly to [34], for simplicity of the

exposition we have chosen βh := h2 and φ to be the standard isotropic Euclidean norm in R3. The
general case is analogous in its treatment, where the limiting surface energy in (2.18) is given by�

∂∗V ∩S

φ0(νV ) dH2 + 2

�
J(y,∇′y)\∂∗V

φ0(νJ(y,∇′y)
) dH2 ,

with
φ0(x1, x2) := min

c∈R
φ(x1, x2, c) ,

see [57, Sections 2 and 6] for details, especially related to some technical adjustments needed in the
construction of recovery sequences for the void sets in the presence of anisotropic surface energy
densities.

(ii) Completely analogously to [34, Remark 2.1(ii)], any singular perturbation of the form

h2κh

�
∂E∩Ωh

|A|q dH2

with q ≥ 2 would be a legitimate choice for a curvature regularization, up to adjusting the condition
for κh in (2.5) (which would then depend also on q). Let us nevertheless also mention here that the
choice q ≥ 2 is essential, see [32, Lemma 2.12 and Example 2.13]. For simplicity, we have chosen
q = 2, which corresponds to a curvature regularization of classical Willmore-type.

(iii) We also remark that compressive boundary conditions and body forces can be included into
the Γ-convergence statement. Although we omit the details here, we refer the interested reader to
[36, Section 6] for a discussion in this direction, in the purely elastic case.

(iv) Finally, [34, Example 2.1] can easily be adjusted to our setting, the only difference coming
from the energy rescaling by a factor h−3 instead of h−4 in this case. This allows to exhibit
configurations (vh, Eh) ∈ Ah with

sup
h>0

h−3Fh(vh, Eh) < +∞ ,

where Eh consists of balls which concentrate on arbitrarily small scales (independently of h), and
whose number is diverging at a rate faster than h−1. In contrast, in the setting of [57] and for void
sets consisting of a disjoint union of balls, the minimal droplet assumption implies a lower bound of
order h on the radius of each ball and an upper bound of order h−1 for the total number of balls,
cf. [57, Remark 3.1].
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3. Piecewise rigidity and Sobolev modification of deformations

In this section we collect some preparatory ingredients which are of utter importance in the proofs
of the compactness result of Theorem 2.1 in Section 4 and the Γ-liminf inequality of Theorem 2.3
in Section 5. Our reasoning follows in spirit the analogous one in [34, Section 3] and relies on the
approximation of a sequence of deformations with equibounded energy by mappings which enjoy
good Sobolev bounds on a large portion (and asymptotically all) of the bulk domain of the thin
plate, while still retaining a good control on their total jump set in the full domain. This will
allow us to use tools from the theory of SBV functions, in particular Ambrosio’s compactness and
lower semicontinuity theorems (cf. [4, Theorems 4.7 and 4.8]), together with the proof strategy from
[36, 57].

In this and the following sections, we will use the continuum subscript h > 0 instead of the
sequential subscript notation (hj)j∈N purely for notational convenience. To state the main results
of this section, we need to introduce some further notation. Recall the definition of Ωh in (2.1). As
the estimates provided by the rigidity result stated in Theorem 3.3 below are only local, we need to
introduce a slightly smaller reference domain. To this end, for every ρ ∈ (0, 1), we define

Ωh,ρ :=
{
x′ ∈ S : dist(x′, ∂S) > ρ

}
×
(
− (1−ρ)

2 h, (1−ρ)
2 h

)
. (3.1)

Eventually, in Sections 4–5 we will send ρ → 0+, after the convergence h → 0+. In what follows,
for every i ∈ Z2, we introduce cubes and cuboids of sidelengths proportional to h > 0, namely

Qh(i) := (hi, 0) + (−h
2 ,

h
2 )

3 and Q̂h(i) := (hi, 0) + (− 3h
2 ,

3h
2 )2 × (−h

2 ,
h
2 ) , (3.2)

which will serve to cover Ωh, up to the negligible skeleton of the covering. In particular, we set

Qh := {Qh(i) : Q̂h(i) ⊂ Ωh} .

Similarly, for every ρ ∈ (0, 1) we set

Qh,ρ(i) := (hi, 0) + (1− ρ)(−h
2 ,

h
2 )

3 , Q̂h,ρ(i) := (hi, 0) + (1− ρ)
(
(− 3h

2 ,
3h
2 )2 × (−h

2 ,
h
2 )
)
. (3.3)

Given a measurable set K ⊂ R3 and γ > 0, we introduce the localized version of the total surface
energy as

Gγ
surf(E;K) := H2(∂E ∩K) + γ

�
∂E∩K

|A|2 dH2 , (3.4)

using a general parameter γ in place of κh for later purposes. The total rescaled energy is then
given by

Gh(v,E) :=
1

h3

�
Ωh\E

W (∇v) dx+
1

h
Gκh

surf(E; Ωh) = h−3Fh(v,E) , (3.5)

for (v,E) ∈ Ah, cf. (2.2), where Fh is as in (2.3). Note again that one factor h in the rescaling of
the elastic energy corresponds to the volume of Ωh, while the extra factor h2 corresponds to the
average elastic energy per unit volume.

Proposition 3.1 (Sobolev modification of deformations and their gradients). Let 0 < ρ ≤ ρ0 for
some universal ρ0 > 0. Then, there exist constants C := C(S,M) > 0 and h0 = h0(ρ) > 0 such that
for every sequence (vh, Eh)h>0 with (vh, Eh) ∈ Ah and

sup
h>0

Gh(vh, Eh) < +∞ , (3.6)
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and for every 0 < h ≤ h0 there exist fields rh ∈ SBV 2(Ωh,ρ;R3) and Rh ∈ SBV 2(Ωh,ρ;R3×3)
satisfying the following properties:

(i) ∥rh∥L∞(Ωh,ρ) + ∥Rh∥L∞(Ωh,ρ) ≤ C ,

(ii) H2(Jrh) +H2(JRh
) ≤ Ch ,

(iii)

�
Ωh,ρ

|∇rh|2 dx+

�
Ωh,ρ

|∇Rh|2 dx ≤ Ch ,

(iv) h−1L3(Ωh,ρ ∩ {|vh(x)− rh| > θh}) → 0 , h−1L3(Ωh,ρ ∩ {|∇vh −Rh| > θh}) → 0 ,

(3.7)

where (θh)h>0 ⊂ (0,+∞) is a sequence with

θh → 0 and θhh
−1 → ∞ . (3.8)

Moreover, there exists wh ∈ SBV 2(Ωh,ρ;R3) such that

(i) h−1L3({wh ̸= vh} ∩ Ωh,ρ) → 0 as h→ 0 ,

(ii)

�
Ωh,ρ

|∇wh −Rh|2 dx ≤ Ch3 ,

(iii) ∥wh∥L∞(Ωh,ρ) + h−1H2(Jwh
) + h−1

�
Ωh,ρ

|∇wh|2 dx ≤ C ,

(iv) Jwh
⊂ Ωh,ρ ∩

⋃
Qh(i)∈Qvh

∂Qh(i) , for some Qvh ⊂ Qh with #Qvh ≤ Ch−1 .

(3.9)

The maps rh, Rh can be thought of as regularized piecewise affine/constant approximations of
vh, ∇vh, respectively, see (3.7)(iv). These approximations enjoy good SBV 2-bounds provided by
(3.7)(i)–(iii), which will be crucial later to employ compactness and lower semicontinuity results
in SBV 2 on their appropriate T1/h-rescalings. The role of the maps wh in the second part of the
proposition is analogous, with the extra advantage that wh is obtained by changing the map vh
on an asymptotically vanishing portion of the volume, see (3.9)(i), while having a more precise
information on the geometry of the jump set, the latter being in a sense cubic, see (3.9)(iv).

We note that rh, Rh, and wh depend on ρ which we do not include in the notation for simplicity.
In the rest of this section, we focus on proving Proposition 3.1, so that starting from Section 4 we
can give the proofs of our main compactness and Γ-convergence results. In the proofs, we will send
the parameters h, ρ to zero in this order. Thus, for the sake of keeping the notation simple, generic
constants which are independent of h, ρ will be denoted by C, and we will use a subscript notation
in order to highlight the dependence of a particular constant on a specific parameter.

3.1. Rigidity results. This subsection is devoted to recalling some rigidity results which are the
basis for our proofs, as was also the case for the derivation of effective theories for elastic rods with
voids in our previous work [34].

Geometric rigidity in variable domains: We first recall the result [32, Theorem 2.1], see also
[34, Section 3.1]. As mentioned in the introduction, the behavior of deformations v on connected
components of Ωh \E might fail to be rigid, cf. [32, Example 2.6]. The main result in [32] consists in
showing that rigidity estimates can be obtained outside of a slightly thickened version of the voids.
We omit the proofs of the next two results, since they are identical to the ones of [34, Proposition 3.3
and Theorem 3.1].

Proposition 3.2 (Global thickening of sets). Let h, ρ > 0 and γ ∈ (0, 1). There exists a universal
constant C0 > 0 and η0 = η0(ρ) ∈ (0, 1), such that for every η ∈ (0, η0] the following holds:
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Given E ∈ Areg(Ωh), we can find an open set Eh,η,γ such that E ⊂ Eh,η,γ ⊂ Ωh, ∂Eh,η,γ ∩Ωh is
a union of finitely many C2-regular submanifolds, and

(i) L3(Eh,η,γ \ E) ≤ hηγ1/2Gγh2

surf(E; Ωh), distH(E,Eh,η,γ) ≤ hηγ1/2 ,

(ii) H2(∂Eh,η,γ ∩ Ωh) ≤ (1 + C0η)Gγh2

surf(E; Ωh) .
(3.10)

On the complement of Ωh,ρ \Eh,η,γ one can obtain good quantitative piecewise rigidity estimates,
as provided by the following theorem. For its statement, we recall (3.2)–(3.3), and mention that
this version is specific to our purposes compared to the more general one of [34, Theorem 3.1], from
which it actually follows by a direct application.

Theorem 3.3 (Geometric rigidity in variable domains). Let h, ρ > 0 and γ ∈ (0, 1). There exist a
universal constant C0 > 0, η0 = η0(ρ) > 0, and for each η ∈ (0, η0] there exists Cη > 0 such that
the following holds:
For every E ∈ Areg(Ωh), denoting by Eh,η,γ the set of Proposition 3.2, for every Qh(i) ∈ Qh, for

the connected components (Uj)j of Q̂h,ρ(i) \ Eh,η,γ and for every y ∈ W 1,2(Ωh \ E;R3) there exist
corresponding rotations (Rj)j ⊂ SO(3) and vectors (bj)j ⊂ R3 such that

(i)
∑

j

�
Uj

∣∣sym((Rj)
T∇y − Id

)∣∣2 dx ≤ C0

(
1 + Cηγ

−15/2h−3ε
) �

Q̂h(i)\E
dist2(∇y, SO(3)) dx ,

(ii)
∑

j

�
Uj

∣∣(Rj)
T∇y − Id

∣∣2 dx ≤ Cηγ
−3

�
Q̂h(i)\E

dist2(∇y, SO(3)) dx ,

(iii)
∑

j

�
Uj

1

h2
∣∣y − (Rjx+ bj)

∣∣2 dx ≤ Cηγ
−5

�
Q̂h(i)\E

dist2(∇y, SO(3)) dx , (3.11)

where for brevity ε :=
�
Q̂h(i)\E dist2(∇y, SO(3)) dx.

In the subsequent proofs we will choose the parameters η and γ depending on the regime of the
elastic energy ε such that Cηγ

−15/2h−3ε ≤ 1 and Cηγ
−5 ≤ ε−θ for some θ > 0 small. With these

choices, we obtain a sharp control on symmetrized gradients with repect to ε, see (3.11)(i), while
the estimate in (3.11)(ii) and the Poincaré-type estimate (3.11)(iii) yield a suboptimal control in
the exponent, of the order ε1−θ.

Korn and Poincaré inequalities in SBV 2: As in [34], the issue of the suboptimal exponent in the
gradient estimate can be remedied in case the surface area of the void set is small. This relies on
sophisticated Korn and Poincaré inequalities in the space GSBD2 [22]. Since we will here need the
results only for SBV 2-functions, we formulate the corresponding statements of [16, Theorem 1.1,
Theorem 1.2] in a simplified setting. In the sequel, we call a mapping a : R3 → R3 an infinitesimal
rigid motion if a is affine with sym(∇a) = 0.

Theorem 3.4 (Korn-Poincaré inequality for functions with small jump set). Let U ⊂ Rd be a
bounded Lipschitz domain. Then, there exists a constant c = c(U, d) > 0 such that for all u ∈
SBV 2(U ;Rd) there exists a set of finite perimeter ω ⊂ U with

Hd−1(∂∗ω) ≤ cHd−1(Ju) , Ld(ω) ≤ c(Hd−1(Ju))
d/d−1 , (3.12)

and an infinitesimal rigid motion a such that

(diam(U))−1∥u− a∥L2(U\ω) + ∥∇u−∇a∥L2(U\ω) ≤ c∥sym(∇u)∥L2(U) .

Moreover, there exists v ∈W 1,2(U ;Rd) such that v ≡ u on U \ ω and

∥sym(∇v)∥L2(U) ≤ c∥sym(∇u)∥L2(U) .

Furthermore, if u ∈ L∞(U ;Rd), one has ∥v∥L∞(U) ≤ ∥u∥L∞(U).
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Remark 3.5. We refer the reader to the discussion below [34, Theorem 3.2] on the derivation of
the above theorem from the results in [16]. Note that the result is indeed only relevant if Hd−1(Ju)
is small, since otherwise ω = U is possible and the statement is empty. Moreover, it is easily seen
that the constant c = c(U, d) of Theorem 3.4 is invariant under dilations of the domain U .

An easy consequence of the above theorem is a version of the Poincaré inequality in SBV in
arbitrary codimension, namely the following.

Corollary 3.6. Let U ⊂ Rd be a bounded Lipschitz domain and m ∈ N. Then, there exists a
constant c = c(U, d,m) > 0 such that for all u ∈ SBV 2(U ;Rm) there exists a set of finite perimeter
ω ⊂ U with

Hd−1(∂∗ω) ≤ cHd−1(Ju) , Ld(ω) ≤ c(Hd−1(Ju))
d/(d−1) , (3.13)

and a constant vector b ∈ Rm such that(
diam(U)

)−1∥u− b∥L2(U\ω) ≤ c∥∇u∥L2(U) . (3.14)

Proof. The statement is a simple consequence of Theorem 3.4. Without restriction we can assume
thatm ≥ d, as otherwise we add (d−m)-components to u which are identically zero. We denote by Σ
the collection of all strictly increasing multi-indices of length d from {1, . . . ,m}, so that #Σ =

(
m
d

)
.

For every σ ∈ Σ and t ∈ Rm, we denote by πσt ∈ Rm the orthogonal projection of t onto the
components indicated by σ. In a similar fashion, we define πσu : U → Rm. We apply Theorem 3.4
on πσu (which is essentially Rd-valued) to obtain ωσ ⊂ U satisfying (3.13) (for ωσ in place of ω)
and bσ ∈ Rm such that (

diam(U)
)−1∥πσu− bσ∥L2(U\ωσ) ≤ c∥∇u∥L2(U) .

We define ω :=
⋃

σ∈Σ ωσ and observe that (3.13) holds. Defining

b :=
1(
m

d−1

) ∑
σ∈Σ

bσ ∈ Rm ,

it can be easily verified that (3.14) holds, noticing that also u = 1

( m
d−1)

∑
σ∈Σ πσu. □

As in Theorem 3.4, we emphasize that the application of the previous corollary is only meaningful
if Hd−1(Ju) is smaller than a sufficiently small constant depending on U .

Difference of affine maps: We close this subsection with the statement of the following elementary
lemma, cf. [34, Lemma 3.1], whose proof can be found therein. By Br(x) ⊂ R3 we denote the open
ball centered at x ∈ R3 with radius r > 0.

Lemma 3.7 (Estimate on affine maps). Let δ > 0. Then there exists a constant C > 0 only
depending on δ such for every G ∈ R3×3, b ∈ R3, x ∈ R3, and E ⊂ Br(x) for some r > 0 with
L3(E) ≥ δr3,we have

∥G ·+b∥L∞(Br(x)) ≤ Cr−3/2∥G ·+b∥L2(E) , |G| ≤ Cr−5/2∥G ·+b∥L2(E) .

3.2. Local rigidity estimates and Sobolev replacement on good cubes. In this subsection
we first introduce some extra necessary notation and definitions for the rest of the section. We start
by introducing the thickened void sets and then partition our reference domain Ωh,ρ, see (3.1) into
cubes, where the partitioning is with respect to the surface area of the boundary of the thickened
void and the size of the local elastic energy in each cuboid of the partition.
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Let us start with a sequence (vh, Eh)h>0 of admissible deformations and void sets in the thin
plate Ωh. Recalling (3.5), we suppose that

sup
h>0

Gh(vh, Eh) < +∞ . (3.15)

We fix

0 < ρ ≤ ρ0 := 1− (127/128)1/3 (3.16)

as in Proposition 3.1 and recall the choice of (κh)h>0 in (2.5). Let η0 = η0(ρ) ∈ (0, 1) be the
minimum of the constants in Proposition 3.2 and Theorem 3.3. In view of (2.5), we can choose a
sequence (ηh)h>0 ⊂ (0, η0) converging slowly enough to zero, so that the constant Cηh

in (3.11),
obtained by applying Theorem 3.3 for ρ, η = ηh ∈ (0, η0(ρ)), and γ = κh/h

2, satisfies

lim sup
h→0

Cηh

(h2
κh

)5
h2/5 ≤ 1 . (3.17)

Applying Proposition 3.2 with the above choice of ρ, η and γ, for all h > 0 we find open sets E∗
h

with Eh ⊂ E∗
h ⊂ Ωh such that ∂E∗

h ∩ Ωh is a union of finitely many C2-regular submanifolds and

(i) h−2L3(E∗
h \ Eh) → 0, h−1 distH(E∗

h, Eh) → 0 as h→ 0 ,

(ii) lim inf
h→0

h−1H2(∂E∗
h ∩ Ωh) ≤ lim inf

h→0
h−1Gκh

surf(Eh; Ωh) .
(3.18)

Here, we made use of (3.10), ηh → 0, (2.5), and the fact that h−1Gγh2

surf(Eh; Ωh) = h−1Gκh

surf(Eh; Ωh)
is uniformly bounded by (3.5) and (3.15). In the estimates (3.11), the behavior of the deformation
inside E∗

h cannot be controlled. Thus, in accordance to (2.2), for definiteness only we can without
restriction assume that the deformation is the identity also inside E∗

h, i.e., we define v∗h : Ωh → R3

by

v∗h(x) :=

{
vh(x) if x ∈ Ωh \ E∗

h ,

x if x ∈ E∗
h .

(3.19)

In view of (2.2) and (3.18)(i), we get

h−2L3({v∗h ̸= vh}) ≤ h−2L3(E∗
h \ Eh) → 0 as h→ 0 . (3.20)

In view of Remark 3.5, set cKP := c(Q̂1(0)) and also introduce the (small) parameter

α :=
(128

9
max{2cisop, cKP}

)−2/3

, (3.21)

where cisop denotes the relative isoperimetric constant of the cuboid Q̂1(0) in R3, the latter being
also scaling invariant, cf. [4, Equation (3.43)] for a version stated on balls instead of cuboids. For
every Qh(i) ∈ Qh, we also introduce the localized elastic energy

εi,h :=

�
Q̂h(i)\Eh

dist2(∇vh, SO(3)) dx . (3.22)

We now divide the family of cubes Qh into two subfamilies: first, we consider the family of indices
associated to good cubes, defined by

Ihg :=
{
i ∈ Z2 : Qh(i) ∈ Qh, H2(∂E∗

h ∩ Q̂h,ρ(i)) ≤ αh2 , εi,h ≤ h4
}
. (3.23)

For each cube in this subfamily, Theorem 3.4 is applicable without introducing a too large exceptional
set, cf. (3.12). The complementary family of indices will correspond to the bad cubes, namely we set

Ihb := {i ∈ Z2 \ Ihg : Qh(i) ∈ Qh} .
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We also remark that, for each i ∈ Z2,

#
{
i′ ∈ Z2 : Q̂h,ρ(i) ∩ Q̂h,ρ(i

′) ̸= ∅
}
≤ 25 . (3.24)

By (3.23)–(3.24), (3.18)(ii), (2.4)(iv), (3.5), and (3.15), for h > 0 small enough, we obtain

#Ihb ≤ α−1h−2
∑
i∈Ih

b

H2(∂E∗
h ∩ Q̂h,ρ(i)) + h−4

∑
i∈Ih

b

εi,h

≤ Cα−1h−2H2(∂E∗
h ∩ Ωh) + Ch−4

�
Ωh\E

W (∇vh) dx ≤ Ch−1Gh(vh, Eh) ≤ Ch−1 ,

i.e., we deduce that

#Ihb ≤ Ch−1 (3.25)

for an absolute constant C = C(α) > 0, independent of h. Moreover, by using again (2.4)(iv),
(3.24), (3.5), and (3.15), we also obtain the estimate∑

i∈Ih
g ∪Ih

b

εi,h ≤ C

�
Ωh\Eh

dist2(∇vh, SO(3)) dx ≤ Ch3 . (3.26)

Proposition 3.8 (Local rigidity and Sobolev approximation). Let 0 < ρ ≤ ρ0. There exist an
absolute constant C > 0 independent of h and h0 = h0(ρ) > 0 such that for all 0 < h ≤ h0 and for

every i ∈ Ihg there exists a set of finite perimeter Di,h ⊂ Q̂h,ρ(i), satisfying

L3
(
Q̂h,ρ(i) \Di,h

)
≤ ChH2

(
∂E∗

h ∩ Q̂h(i)
)
, L3(Q̂h(i) \Di,h) ≤

1

32
L3(Q̂h(i)) , (3.27)

H2(∂∗Di,h ∩ Q̂h,ρ(i)) ≤ CH2
(
∂E∗

h ∩ Q̂h,ρ(i)
)
, (3.28)

and a corresponding rigid motion ri,h(x) := Ri,hx + bi,h, where Ri,h ∈ SO(3) and bi,h ∈ R3 with
|bi,h| ≤ CM (recall (2.2)), such that

h−2

�
Di,h

∣∣v∗h(x)− ri,h(x)
∣∣2 dx+

�
Di,h

∣∣∇v∗h(x)−Ri,h

∣∣2 dx ≤ Cεi,h , (3.29)

with v∗h defined as in (3.19).

Furthermore, there exists a Sobolev map zi,h ∈W 1,2(Q̂h,ρ(i);R3) such that

(i) zi,h ≡ v∗h on Di,h ,

(ii) h−2

�
Q̂h,ρ(i)

∣∣zi,h(x)− ri,h(x)
∣∣2 dx+

�
Q̂h,ρ(i)

∣∣∇zi,h(x)−Ri,h

∣∣2 dx ≤ Cεi,h ,

(iii) ∥zi,h∥L∞(Q̂h,ρ(i))
≤ CM .

(3.30)

Since L3(Q̂h(i)\Di,h) is small, we will be hereafter referring to Di,h as the dominant component,
and in a similar fashion ri,h will be referred to as the dominant rigid motion which approximates

v∗h in Q̂h,ρ(i). Of course, it is still possible that Di,h ⊂ E∗
h, which should be interpreted as the void

having large volume in Q̂h,ρ(i).
The reader might have already noticed that the estimate (3.29) for the full gradient and also for

the deformations v∗h comes with the optimal exponent in the local elastic energy εi,h, which at first
glimpse might be in contrast to (3.11), as γ−1 = (κh/h

2)−1 is diverging with h → 0+, cf. (2.5). As
shown in the proof, such an improvement is possible by applying the Korn-Poincaré inequality of
Theorem 3.4, in the case of void sets with small surface area.

The proof of Proposition 3.8 is basically a repetition of the analogous one in [34, Proposition 3.5].
For the sake of completeness, we include it in Appendix A. The main difference is the additional
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requirement εi,h ≤ h4 in the definition of Ihg in (3.23). We refer to Remark A.1 for a comment in
this direction.

By a standard argument, which is again repeated in Appendix A, an immediate consequence of
the previous proposition is an optimal estimate for the difference of two dominant rigid motions on
neighboring good cubes.

Corollary 3.9 (Difference of rigid motions). Let i, i′ ∈ Ihg be such that |i − i′|∞ ≤ 1. The rigid
motions ri,h, ri′,h of Proposition 3.8 satisfy

h−2∥ri,h − ri′,h∥2L∞(Q̂h(i)∪Q̂h(i′))
+
∣∣Ri,h −Ri′,h

∣∣2 ≤ Ch−3(εi,h + εi′,h) . (3.31)

3.3. Construction of almost Sobolev replacements and proof of Proposition 3.1. In this
subsection we construct the fields (rh)h>0, (Rh)h>0, and (wh)h>0 of Proposition 3.1, and afterwards
give the proof of the proposition.

First of all, recalling (3.1) and (3.23), we introduce index sets related to interior good cubes by

Ihint :=
{
i ∈ Ihg : i

′ ∈ Ihg for every i′ ∈ Z2 with |i′ − i|∞ ≤ 1
}
, (3.32)

and exterior good cubes by

Ih,ρext :=
{
i ∈ Ihg \ Ihint : Qh(i) ∩ Ωh,ρ ̸= ∅

}
.

Note that, for h > 0 small enough, if i ∈ Ih,ρext , then there exists at least one i′ ∈ Z2 with |i′− i|∞ ≤ 1
such that i′ ∈ Ihb . By (3.25) this yields

#Ih,ρext ≤ Ch−1 , (3.33)

for a universal constant C > 0.
For the construction of the sequences (rh)h>0, (Rh)h>0, and (wh)h>0, we consider a partition of

unity subordinate to Ihint, cf. (3.32). For every h > 0, we introduce (ψi
h)i∈Ih

int
⊂ C∞

c (R3) such that∑
i∈Ih

int

ψi
h = 1 , (3.34)

and, for every i ∈ Ihint ,

0 ≤ ψi
h ≤ 1 , ψi

h ≡ 1 on Q̃9h/10(i) , ψi
h ≡ 0 on R2 \ Q̃11h/10(i) , ∥∇ψi

h∥L∞(R2) ≤
C

h
, (3.35)

where for s > 0 we have used the notation

Q̃sh(i) := (hi, 0) +

(
−sh

2
,
sh

2

)
2 ×

(
−h
2
,
h

2

)
.

Then, we define rh ∈ SBV 2(Ωh,ρ;R3), Rh ∈ SBV 2(Ωh,ρ;R3×3) and wh ∈ SBV 2(Ωh,ρ;R3) as

rh(x) :=

{
x if x ∈ Qh(i) ∩ Ωh,ρ for some i /∈ Ihint ,∑

i∈Ih
int
ψi
h(x)ri,h(x) otherwise ,

(3.36)

Rh(x) :=

{
Id if x ∈ Qh(i) ∩ Ωh,ρ for some i /∈ Ihint ,∑

i∈Ih
int
ψi
h(x)Ri,h otherwise ,

(3.37)

wh(x) :=

{
x if x ∈ Qh(i) ∩ Ωh,ρ for some i /∈ Ihint ,∑

i∈Ih
int
ψi
h(x)zi,h(x) otherwise ,

(3.38)
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where the fields ri,h, Ri,h, and zi,h are given in Proposition 3.8. The construction and the definition
of Ωh,ρ in (3.1) implies that rh ∈ SBV 2(Ωh,ρ;R3), Rh ∈ SBV 2(Ωh,ρ;R3×3), wh ∈ SBV 2(Ωh,ρ;R3),
and the jump sets satisfy, for h > 0 sufficiently small,

Jrh ∪ JRh
∪ Jwh

⊂ Ωh,ρ ∩
⋃

i∈Ih
b∪Ih,ρ

ext

∂Qh(i) . (3.39)

We are now ready to give the proof of Proposition 3.1, following the strategy of the proof of the
corresponding result in the setting of rods, namely [34, Proposition 3.1].

Proof of Proposition 3.1. First of all, the bounds in (3.7)(i) follow from the definitions (3.36)–(3.37),
the bound |bi,h| ≤ CM for i ∈ Ihg , and the fact that SO(3) ⊂ R3×3 is compact. Next, (3.7)(ii) follows
directly from (3.39), (3.25), and (3.33).

We proceed to show (3.7)(iii), which we verify first for the fields (Rh)h>0. For this, we first obtain
a control on ∥∇Rh∥L∞(Qh(i)∩Ωh,ρ) for every i ∈ Ihint. Indeed, in view of (3.37), (3.34)–(3.35), and

(3.31), for i ∈ Ihint fixed, x ∈ Qh(i) ∩ Ωh,ρ, and k ∈ {1, 2, 3}, we can estimate

|∂kRh(x)| =
∣∣∣ ∑
j∈Ih

int

∂kψ
j
h(x)Rj,h

∣∣∣ = ∣∣∣ ∑
j∈Ih

int

∂kψ
j
h(x)(Rj,h −Ri,h)

∣∣∣
≤

∑
j∈N (i)

∥∂kψj
h∥L∞ |Rj,h −Ri,h| ≤

C

h
h−3/2

∑
j∈N (i)

ε
1/2
j,h ,

where

N (i) := {j ∈ Z2 : |j − i|∞ ≤ 1} . (3.40)

Therefore,

∥∇Rh∥2L∞(Qh(i)∩Ωh,ρ)
≤ Ch−5

∑
j∈N (i)

εj,h . (3.41)

Using (3.37), (3.41), and (3.26), we can thus estimate�
Ωh,ρ

|∇Rh|2 dx ≤
∑
i∈Ih

int

�
Qh(i)∩Ωh,ρ

|∇Rh|2 dx ≤ Ch−5h3
∑
i∈Ih

g

εi,h ≤ Ch . (3.42)

Analogously, for i ∈ Ihint, x ∈ Qh(i) ∩Ωh,ρ, and k ∈ {1, 2, 3}, using (3.36), (3.34)–(3.35), and (3.31),
we estimate

|∂krh(x)| =
∣∣∣ ∑
j∈Ih

int

(∂kψ
j
h(x)rj,h(x) + ψj

h(x)Rj,hek)
∣∣∣ ≤ ∣∣∣ ∑

j∈Ih
int

∂kψ
j
h(x)(rj,h(x)− ri,h(x))

∣∣∣+ 1

≤
∑

j∈N (i)

∥∂kψj
h∥L∞∥rj,h − ri,h∥L∞(Qh(i)) + 1 ≤ Ch−3/2

∑
j∈N (i)

ε
1/2
j,h + 1 .

Thus,

∥∇rh∥2L∞(Qh(i)∩Ωh,ρ)
≤ Ch−3

∑
j∈N (i)

εj,h + 1 . (3.43)

In a similar fashion as before, using (3.36), (3.25), (3.33), (3.43), and (3.26), we can estimate�
Ωh,ρ

|∇rh|2 dx = 3
∑

i∈Ih
b∪Ih,ρ

ext

L3(Qh(i) ∩ Ωh,ρ) +
∑
i∈Ih

int

�
Qh(i)∩Ωh,ρ

|∇rh|2 dx

≤ C
[(
#Ihb +#Ih,ρext

)
h3 +

∑
i∈Ih

g

εi,h + h
]
≤ C(h2 + h3 + h) ≤ Ch .

(3.44)
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Collecting (3.42) and (3.44), we conclude the proof of (3.7)(iii).
We now proceed to verify (3.7)(iv). Using (3.25), (3.33), (3.27), (3.24), (3.15), (3.18), (3.4), and

(3.5) we first estimate for h > 0 sufficiently small,

L3
(
Ωh,ρ \

⋃
i∈Ih

int

Di,h

)
≤

∑
i∈Ih

b∪Ih,ρ
ext

L3(Q̂h,ρ(i)) +
∑
i∈Ih

int

L3(Q̂h,ρ(i) \Di,h)

≤ C
(
#Ihb +#Ih,ρext

)
h3 + Ch

∑
i∈Ih

int

H2(∂E∗
h ∩ Q̂h(i))

≤ Ch2 + ChH2(∂E∗
h ∩ Ωh) ≤ Ch2 .

(3.45)

Choose a sequence (θh)h>0 ⊂ (0,+∞) as in (3.8). Then, using Chebyshev’s inequality, (3.36),
(3.34)–(3.35), (3.29), (3.31), and (3.26), we find

L3
(
{|v∗h(x)− rh| > θh} ∩

⋃
i∈Ih

int

Di,h

)
≤ θ−2

h

∑
i∈Ih

int

�
Di,h

∣∣∣ ∑
j∈N (i)

ψj
h(v

∗
h(x)− rj,h)

∣∣∣2 dx
≤ Cθ−2

h

∑
i∈Ih

int

∑
j∈N (i)

�
Di,h

∣∣v∗h(x)− ri,h
∣∣2 dx

+ Cθ−2
h

∑
i∈Ih

int

∑
j∈N (i)

�
Di,h

∣∣ri,h − rj,h
∣∣2 dx

≤ Cθ−2
h h2

∑
i∈Ih

g

εi,h ≤ Ch5θ−2
h . (3.46)

Combining now (3.20), (3.45), and (3.46), we obtain

L3
(
Ωh,ρ ∩ {|vh(x)− rh| > θh}

)
≤ L3

(
{v∗h ̸= vh}

)
+ L3

(
Ωh,ρ \

⋃
i∈Ih

int

Di,h

)
+ L3

(
{|v∗h(x)− rh| > θh} ∩

⋃
i∈Ih

int

Di,h

)
≤ Ch2 + Ch5θ−2

h . (3.47)

Using the same estimates as for (3.46), we also get

L3
(
{|∇v∗h(x)−Rh| > θh} ∩

⋃
i∈Ih

int

Di,h

)
≤ Ch3θ−2

h ,

so that, in the same way as for (3.47), we obtain

L3
(
Ωh,ρ ∩ {|∇vh(x)−Rh| > θh}

)
≤ Ch2 + Ch3θ−2

h . (3.48)

Now, (3.7)(iv) follows from (3.47)–(3.48) and (3.8). Similarly, we observe that

{wh ̸= vh} ∩ Ωh,ρ ⊂ {vh ̸= v∗h} ∪
⋃

i∈Ih
b∪Ih,ρ

ext

Q̂h,ρ(i) ∪
⋃

i∈Ih
int

(
Q̂h,ρ(i) \Di,h

)
,
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so that (3.9)(i) follows from (3.20) and (3.45). We proceed with (3.9)(ii). By (3.37), (3.38), (3.34)–
(3.35), and (3.40), we can estimate�
Ωh,ρ

|∇wh −Rh|2 dx ≤
∑
i∈Ih

int

�
Q̂h,ρ(i)

∣∣∣ ∑
j∈N (i)

zj,h ⊗∇ψj
h +

∑
j∈N (i)

ψj
h(∇zj,h −Rj,h)

∣∣∣2
=
∑
i∈Ih

int

�
Q̂h,ρ(i)

∣∣∣ ∑
j∈N (i)

(zj,h − ri,h)⊗∇ψj
h +

∑
j∈N (i)

ψj
h(∇zj,h −Rj,h)

∣∣∣2
≤ Ch−2

∑
i∈Ih

int

∑
j∈N (i)

�
Q̂h,ρ(i)

|zj,h − ri,h|2 dx+ C
∑
i∈Ih

g

�
Q̂h,ρ(i)

|∇zi,h −Ri,h|2 dx

≤ Ch−2
∑
i∈Ih

int

∑
j∈N (i)

h3∥ri,h − rj,h∥2L∞(Q̂h(i)∪Q̂h(j))

+ C
∑
i∈Ih

g

�
Q̂h,ρ(i)

(
h−2|zi,h − ri,h|2 + |∇zi,h −Ri,h|2

)
dx . (3.49)

Using (3.30)(ii), (3.24), (3.31), and (3.26), we therefore estimate�
Ωh,ρ

|∇wh −Rh|2 dx ≤ C
∑
i∈Ih

g

εi,h ≤ Ch3 ,

which proves (3.9)(ii). Then, the gradient bound in (3.9)(iii) follows from (3.9)(ii) and (3.7)(i). The
L∞-bound in (3.9)(iii) follows from the definition (3.38) and the uniform control in (3.30)(iii).The
surface area bound therein is a consequence of (3.39), (3.25), and (3.33). Finally, (3.9)(iv) follows

directly from (3.39) for Qvh := {Qh(i) ∈ Qh : i ∈ Ihb ∪ Ih,ρext }, where we recall once again (3.25) and
(3.33). The proof is now complete. □

4. Proof of Theorem 2.1

We again use the continuum subscript h > 0 instead of the sequential subscript notation (hj)j∈N
for convenience.

Proof of Theorem 2.1. We split the proof into two steps.
Step (1): Compactness for the voids. By the energy bound (2.19) and (2.9) we have that

h−2

�
Ω\Vh

W (∇hyh(x)) dx+

�
∂Vh∩Ω

∣∣(ν1Vh
(z), ν2Vh

(z), h−1ν3Vh
(z)
)∣∣dH2(z) ≤ C , (4.1)

where νVh
(z) := (ν1Vh

(z), ν2Vh
(z), ν3Vh

(z)) denotes the outward pointing unit normal to ∂Vh∩Ω at the
point z. Note that (4.1) implies

sup
h>0

(
L3(Vh) +H2(∂Vh ∩ Ω)

)
≤ C .

Hence, by the standard compactness result for sets of finite perimeter, cf. [4, Theorem 3.39], there

exists Ṽ ∈ P(Ω) such that, up to a non-relabeled subsequence, we have

χVh
→ χṼ in L1(Ω) . (4.2)

Invoking also Reshetnyak’s lower semicontinuity theorem, cf. [4, Theorem 2.38], applied to the lower
semicontinuous, positively 1-homogeneous, convex function ϕ : R2 → [0,+∞) with ϕ(ν) := |ν3|, and
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using again (4.1), we obtain�
∂∗Ṽ ∩Ω

|ν3
Ṽ
|dH2 ≤ lim inf

h→0

�
∂Vh∩Ω

|ν3Vh
|dH2 ≤ C lim inf

h→0
h = 0 ,

where νṼ denotes the measure-theoretic outer unit normal to ∂∗Ṽ . This implies that

ν3
Ṽ
(x) = 0 for H2-a.e. x ∈ ∂∗Ṽ ∩ Ω . (4.3)

In order to prove that the set Ṽ is cylindrical over a two-dimensional set, we proceed as follows. Let

V :=
{
(x1, x2) ∈ S : H1

(
((x1, x2)× R) ∩ Ṽ

)
> 0
}
. (4.4)

Our aim is to prove that

L3
(
Ṽ△

(
V × (− 1

2 ,
1
2 )
))

= 0 . (4.5)

In view of Fubini’s theorem, for the verification of (4.5) it is enough to show that

H1
([
Ṽ△

(
V × (− 1

2 ,
1
2 )
)]

∩
(
(x1, x2)× R

))
= 0 for L2-a.e. (x1, x2) ∈ S . (4.6)

Trivially, for every (x1, x2) /∈ V we have by (4.4)

H1
([
Ṽ△

(
V × (− 1

2 ,
1
2 )
)]

∩
(
(x1, x2)× R

))
≤ H1

(
Ṽ ∩

(
(x1, x2)× R

))
= 0 . (4.7)

On the other hand, if (x1, x2) ∈ V , we can use (4.3) and the coarea formula, cf. [50, Formula 4.36],
to obtain

0 =

�
∂∗Ṽ ∩Ω

|ν3
Ṽ
|dH2 =

�
S

H0
(
(∂∗Ṽ ∩ Ω) ∩

(
(x1, x2)× R

))
dx1dx2 .

In particular, for L2-a.e. (x1, x2) ∈ V we find that H0((∂∗Ṽ ∩Ω)∩ ((x1, x2)×R)) = 0, which further
implies that

H1
([
Ṽ△

(
V × (− 1

2 ,
1
2 )
)]

∩
(
(x1, x2)× R

))
= 0. (4.8)

Now, (4.7)–(4.8) imply (4.6). As discussed above, this in turn gives (4.5), which in particular implies
that V ∈ P(S). Then, (4.2) yields (2.20)(i).

Step (2): Compactness for the deformations. Let (vh, Eh)h>0 be the sequence related to the

sequence (yh, Vh)h>0 via (2.6)-(2.7), and let us fix ρ > 0 sufficiently small. In order to show
(2.20)(ii),(iii) for the sequence (yh)h>0, we first consider the fields (r̃h)h>0 ⊂ SBV 2(Ω1,ρ;R3) and

(R̃h)h>0 ⊂ SBV 2(Ω1,ρ;R3×3), defined via

r̃h(x) := rh(Thx) and R̃h(x) := Rh(Thx) , (4.9)

where we recall (3.36), (3.37), and (1.5). Let us mention once again that r̃h, R̃h may depend also
on ρ, which we do not include in the notation for simplicity. By (3.7)(i),(iii) we can estimate

∥r̃h∥L∞(Ω1,ρ) + ∥∇r̃h∥L2(Ω1,ρ) ≤ ∥r̃h∥L∞(Ω1,ρ) + ∥∇hr̃h∥L2(Ω1,ρ)

≤ ∥rh∥L∞(Ωh,ρ) + h−
1
2 ∥∇rh∥L2(Ωh,ρ) ≤ C . (4.10)

By (3.7)(ii) and a simple change of variables (analogously to (4.1)), we also get

H2(Jr̃h) ≤
�
Jr̃h

|(ν1Jr̃h
, ν2Jr̃h

, h−1ν3Jr̃h
)|dH2 = h−1H2(Jrh) ≤ C . (4.11)

Exactly in the same fashion, we also have

∥R̃h∥L∞(Ω1,ρ) + ∥∇hR̃h∥L2(Ω1,ρ) +H2(JR̃h
) ≤ C . (4.12)
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Thus, we can apply Ambrosio’s SBV compactness theorem, cf. [4, Theorems 4.8], to obtain fields
rρ ∈ SBV 2(Ω1,ρ;R3) and Rρ ∈ SBV 2(Ω1,ρ;R3×3) such that, up to subsequences (not relabeled),

(i) r̃h → rρ strongly in L2(Ω1,ρ;R3) , ∇r̃h ⇀ ∇rρ weakly in L2(Ω1,ρ;R3×3)

(ii) R̃h → Rρ strongly in L2(Ω1,ρ;R3×3) , ∇R̃h ⇀ ∇Rρ weakly in L2(Ω1,ρ;R3×3×3) .
(4.13)

We now verify that

(i) ∂3rρ = 0 L3-a.e. in Ω1,ρ , Rρ ∈ SO(3) with ∂3Rρ = 0 L3-a.e. in Ω1,ρ .

(ii) ∇′rρ = R′
ρ , where R

′
ρ :=

(
Rρe1|Rρe2

)
∈ SBV 2(Ω1,ρ;R3×2)

(4.14)

where we recall the notation ∇′ := (∂1, ∂2). Indeed, by the lower semicontinuity of the L2-norm
under weak convergence, (4.10), and (4.12) we obtain

∥∂3rρ∥L2(Ω1,ρ) + ∥∂3Rρ∥L2(Ω1,ρ) ≤ lim inf
h→0

∥∂3r̃h∥L2(Ω1,ρ) + lim inf
h→0

∥∂3R̃h∥L2(Ω1,ρ)

≤ lim inf
h→0

(
h∥∇hr̃h∥L2(Ω1,ρ)

)
+ lim inf

h→0

(
h∥∇hR̃h∥L2(Ω1,ρ)

)
≤ C lim inf

h→0
h = 0 .

Moreover, by (4.9), (3.37), (3.34)–(3.35), (3.40), (3.31), and (3.26),�
Ω1,ρ

dist2(R̃h, SO(3)) dx = h−1

�
Ωh,ρ

dist2(Rh, SO(3)) dx ≤ h−1
∑
i∈Ih

int

�
Qh(i)∩Ωh,ρ

|Rh −Ri,h|2 dx

≤ h−1
∑
i∈Ih

int

�
Qh(i)∩Ωh,ρ

∣∣∣ ∑
j∈N (i)

ψj
h(x)(Rj,h −Ri,h)

∣∣∣2 dx
≤ Ch−1h3

∑
i∈Ih

int

∑
j∈N (i)

|Rj,h −Ri,h|2 ≤ Ch−1
∑
i∈Ih

int

∑
j∈N (i)

(εi,h + εj,h)

≤ Ch−1
∑
i∈Ih

g

εi,h ≤ Ch2 . (4.15)

By passing to the limit as h→ 0 in (4.15), and using (4.13)(ii), we obtain�
Ω1,ρ

dist2(Rρ, SO(3)) dx = lim
h→0

�
Ω1,ρ

dist2(R̃h, SO(3)) dx = 0 ⇒ dist(Rρ, SO(3)) = 0 a.e. in Ω1,ρ .

This concludes the proof of (4.14)(i). We now get that

yh → rρ in measure on Ω1,ρ , ∇hyh → Rρ in measure on Ω1,ρ , (4.16)

which follows easily from (4.13)(i),(ii), (4.9), (2.7), and (3.7)(iv) via a change of variables. In
particular, using (2.10), (2.4)(iv), (2.9), and (2.19), we obtain

sup
h>0

(
∥∇yh∥L2(Ω1,ρ) +H2(Jyh

) + ∥yh∥L∞(Ω1,ρ)

)
≤ C ,

so that (4.16) and Ambrosio’s closure theorem [4, Theorems 4.7] lead to (4.14)(ii).
Recalling (3.1), the convergence in (4.16), together with a monotonicity argument as ρ → 0,

allows us to define fields r ∈ SBV 2(Ω;R3) and R ∈ SBV 2(Ω;R3×3), such that

(i) ∂3r = 0 L3-a.e. in Ω , R ∈ SO(3) with ∂3R = 0 L3-a.e. in Ω ,

(ii) ∇′r = R′ , where R′ :=
(
Re1|Re2

)
∈ SBV 2(Ω;R3×2) ,

(4.17)

so that in particular Re3 = ∂1r ∧ ∂2r, and
yh → r in measure on Ω , ∇hyh → R in measure on Ω . (4.18)
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We next prove that

∇hyh → R strongly in L2(Ω;R3×3) . (4.19)

Indeed, defining Lh := {x ∈ Ω : |∇hyh(x)| > 2
√
3}, by (4.1) and (2.4)(iv) we get

3L3(Lh) ≤
1

4

�
Lh

|∇hyh|2 dx ≤
�
Ω

dist2(∇hyh, SO(3)) dx ≤ Ch2 . (4.20)

This shows that χΩ\Lh
→ 1 boundedly in measure on Ω and thus, in view of (4.18), we get

χΩ\Lh
∇hyh → R strongly in L2(Ω;R3×3). By (4.20) we further get ∥χLh

∇hyh∥L2(Ω) ≤ Ch, which
concludes the proof of (4.19).

Hence, setting ỹ := r, collecting (4.17)–(4.19) and recalling the uniform bound on deformations
assumed in (2.2), we derive (2.20)(ii)-(iii). This concludes the proof of compactness. □

Corollary 4.1. In the setting of Proposition 3.1, let (w̃h)h>0 ⊂ SBV 2(Ω1,ρ;R3) be defined by

w̃h(x) := wh(Thx) , (4.21)

where wh ∈ SBV 2(Ωh,ρ;R3) is as in (3.9) and Th as in (1.5). Then, for (y, V ) ∈ A given in
Theorem 2.1, we also have, up to subsequences (not relabeled),

(i) w̃h −→ ỹ in L1(Ω1,ρ;R3) ,

(ii) ∇hw̃h →
(
∇′ỹ, ∂1ỹ ∧ ∂2ỹ

)
strongly in L2(Ω1,ρ;R3×3) .

(4.22)

Proof. Using (4.10)–(4.11) with w̃h in place of r̃h (cf. (3.9)(iii)) and once again Ambrosio’s SBV
compactness theorem, the corollary follows from (3.9)(i),(ii) and (3.7)(iv), after a simple change of
variables, together with (4.9) and (4.13)(ii). □

5. Proof of Theorem 2.3(i)

In this section we give the proof of the lower bound of Theorem 2.3, for which we prove separately
the lower bound for the bulk and the surface part of the energy. Recalling Definition 2.2, we consider

(yh, Vh)h>0 and (y, V ) ∈ A such that (yh, Vh)
τ−→ (y, V ), i.e., (2.20)(i)–(iii) hold true. We start

with the lower bound of the elastic energy.

Proposition 5.1. Suppose that (yh, Vh)
τ−→ (y, V ) for some (y, V ) ∈ A, cf. (2.13). Then,

lim inf
h→0

(
h−2

�
Ω\Vh

W (∇hyh) dx
)
≥ 1

24

�
S\V

Q2(IIy(x
′)) dx′ , (5.1)

where we also recall the definition of IIy in (2.17).

Proof. Since it is not restrictive to assume that the sequence of total energies (Eh(yh, Vh))h>0 is
bounded, i.e., that (3.6) holds, we can apply Proposition 3.1 for ρ > 0 small and the sequence
(vh, Eh)h>0 related to (yh, Vh)h>0 via (2.6)–(2.7).

Recalling the definition of Ihint in (3.32), we introduce the sequence of piecewise constant rotation
fields (R̄h)h>0 ⊂ SBV 2(Ω1,ρ;R3×3), defined by

R̄h(x) :=

{
Id if x ∈ T1/h(Qh(i)) ∩ Ω1,ρ for some i /∈ Ihint ,

Ri,h if x ∈ T1/h(Qh(i)) ∩ Ω1,ρ for some i ∈ Ihint .
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With a similar argument as in (3.49), recalling (4.9), (3.37), (3.34)–(3.35), (3.40), (3.31), and (3.26),
we estimate

h−2

�
Ω1,ρ

|R̃h − R̄h|2 dx = h−3

�
Ωh,ρ

|Rh − R̄h|2 = h−3
∑
i∈Ih

int

�
Ωh,ρ∩Qh(i)

∣∣∣( ∑
j∈N (i)

ψj
hRj,h

)
−Ri,h

∣∣∣2
≤ h−3

∑
i∈Ih

int

�
Qh(i)

∣∣∣ ∑
j∈N (i)

ψj
h(Rj,h −Ri,h)

∣∣∣2 ≤ C
∑
i∈Ih

int

∑
j∈N (i)

|Rj,h −Ri,h|2

≤ Ch−3
∑
i∈Ih

int

∑
j∈N (i)

(εj,h + εi,h) ≤ Ch−3
∑
i∈Ih

g

εi,h ≤ C . (5.2)

Thus, combining (5.2) with (3.9)(ii) and using a change of variables, we deduce

sup
h>0

∥h−1(R̄T
h∇hw̃h − Id)∥L2(Ω1,ρ) ≤ C , (5.3)

where w̃h is defined as in (4.21). In particular, we deduce that there exists G ∈ L2(Ω1,ρ;R3×3) such
that, up to a subsequence (not relabeled),

Gh :=
R̄T

h∇hw̃h − Id

h
⇀ G weakly in L2(Ω1,ρ;R3×3) . (5.4)

We can then proceed with a classical linearization argument, cf. [36, 57], which we nevertheless
detail in Appendix B for the reader’s convenience. This leads to

lim inf
h→0

(
h−2

�
Ω\Vh

W (∇hyh) dx
)
≥ 1

2

�
Ω1,ρ

Q3(G) dx ≥ 1

2

�
Ω1,ρ

Q2(G
′) dx , (5.5)

where we recall (2.12), and where for a matrix F ∈ R3×3 we use the notation F ′ ∈ R2×2 for its
upper-leftmost (2× 2)-block.

Hence, as in the purely elastic setting, we are confronted with identifying the upper-left block G′

of the weak limit G in (5.4). Although the sequence (w̃h)h>0 is not Sobolev in the entire domain,
due to its construction, cf. (3.9) and (4.21), it does not exhibit jumps in the transversal x3-direction,
so that the strategy originally devised in [36, Proof of Theorem 6.1(i)] is applicable. We next give
the details of the proof.

Let G̃h := (Ghe1|Ghe2) ∈ R3×2 denote the matrix of the first two columns of Gh, and similarly

G̃ for the weak L2-limit G. In the slightly smaller domain Ω1,2ρ, we consider the finite difference
quotients in x3-direction, (Hh)h>0 ⊂ L2(Ω1,2ρ;R3×2), defined by

Hh(x
′, x3) :=

G̃h(x
′, x3 + z)− G̃h(x

′, x3)

z
= (R̄h)

T
1
h∇′w̃h(x

′, x3 + z)− 1
h∇′w̃h(x

′, x3)

z
, (5.6)

where |z| ≤ ρ (z ̸= 0). In view of (5.4), we have

Hh ⇀ H :=
G̃(x′, x3 + z)− G̃(x′, x3)

z
weakly in L2(Ω1,2ρ;R3×2) . (5.7)

By (5.3) and (4.22)(ii), (R̄h)h>0 converges boundedly in measure to (∇′ỹ|bỹ) ∈ SBV 2(Ω1,2ρ;R3×3),
where

bỹ := ∂1ỹ ∧ ∂2ỹ , (5.8)

so that by (5.6)–(5.8) we obtain

1
h∇′w̃h(x

′, x3 + z)− 1
h∇′w̃h(x

′, x3)

z
⇀ (∇′ỹ|bỹ)H weakly in L2(Ω1,2ρ;R3×2) . (5.9)
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In order to identify the weak limit H, we can then argue as in the end of the proof of the lower
bound for the elastic energy in [57, Section 5]. Setting

fh(x
′, x3) :=

w̃h(x
′, x3 + z)− w̃h(x

′, x3)

hz
∈ SBV 2(Ω1,2ρ;R3), (5.10)

we observe that, by (3.9)(iv) and a slicing argument,

fh(x
′, x3) =

� 1

0

1

h
∂3w̃h(x

′, x3 + tz) dt .

By Corollary 4.1, see (4.22) and (5.8), we have that 1
h∂3w̃h → bỹ strongly in L2(Ω1,ρ;R3), and

therefore

fh →
� 1

0

bỹ(·, ·+ tz) dt = bỹ strongly in L2(Ω1,2ρ;R3) ,

where the last equality follows from the fact that bỹ is independent of x3. By (5.9), (4.22)(ii), and
(3.9)(iii), we have

sup
h>0

∥∇fh∥L2(Ω1,2ρ) < +∞ and sup
h>0

H2(Jfh) < +∞ ,

so that, by the basic closure theorem in SBV , cf. [4, Theorem 4.7], we deduce that

∇′fh ⇀ ∇′bỹ weakly in L2(Ω1,2ρ;R3×3) . (5.11)

Combining (5.9), (5.11), the fact that (y, V ) ∈ A (see (2.13)), and recalling the identification (2.15),
and (2.17), we obtain

H = (∇′ỹ|bỹ)T∇′bỹ ∈ SBV 2(Ω1,2ρ;R3×2) .

Thus, (5.7) implies

G̃(x′, x3) = G̃(x′, 0) + x3H(x′) for (x′, x3) ∈ Ω1,2ρ . (5.12)

Using the bilinearity of Q2 in (2.12), (5.12), that
� 1/2−2ρ

−1/2+2ρ
x3 dx3 = 0, and the definition of the

second fundamental form (2.17), we obtain

1

2

�
Ω1,ρ

Q2(G
′) dx =

1

2

�
Ω1,2ρ

Q2(G
′(x′, 0)) dx+

1

2

�
Ω1,2ρ

x23Q2(IIy(x
′)) dx ,

≥ 1

2

�
Ω1,2ρ

x23Q2(IIy(x
′)) dx .

(5.13)

Then, (5.1) follows from (5.5) and (5.13), after letting ρ→ 0. □

We now proceed with the lower bound for the surface part of the energy, namely

Eh
surf(Vh) := Eh(yh, Vh)− h−2

�
Ω\Vh

W (∇hyh) dx = h−1Gκh

surf(Eh; Ωh) ,

where we refer to (2.8) and (3.4). Our approach deviates significantly from the proof of lower bounds
in relaxation results for energies defined on pairs of deformations and sets, cf. [13], [20], [57], the
main reason being that our piecewise nonlinear geometric rigidity result allows for a control only in
a large part of Ω \ Vh.

While the justification for the middle term on the right-hand side of (2.18) is standard, for the last
one therein the argument is based on a fine blow-up analysis around jump points of J(y,∇′y)\∂∗V . In
particular, a delicate contradiction argument is employed to obtain the desired density lower bound
of the surface energy. For technical reasons, the latter is augmented with a vanishing contribution
of the elastic energy, see (5.15) and (5.16) below. A suitable (two-dimensional in nature) blow-up
of the deformations, their derivatives, as well as the void sets (cf. (5.19)), together with a De-Giorgi
type argument, will allow us to identify, up to translations, an appropriate three-dimensional thin
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rod on which the sequence (vh, Eh)h>0 enjoys uniform energy bounds, related to the bending energy
for thin rods with voids, see [34, Equations (2.3) and (2.8)]. Finally, our compactness result from
[34, Theorem 2.1] and the particular structure of the limiting pair will allow us to conclude the
contradictory argument.

Proposition 5.2. Suppose that (yh, Vh)
τ−→ (y, V ) for some (y, V ) ∈ A. Then,

lim inf
h→0

Eh
surf(Vh) ≥ H1(∂∗V ∩ S) + 2H1

(
J(y,∇′y) \ ∂∗V

)
. (5.14)

Proof. Let (Eh)h>0 be the void sets associated to (Vh)h>0 according to (2.6). Let (ỹ, Ṽ ) be the pair
associated to (y, V ) as in (2.15) and (2.16) respectively.

Step (1): Blow-up argument. In order to prove (5.14), we perform a blow-up argument. Let

h > 0 and η > 0 (η will be eventually sent to 0 after we send h→ 0+). We introduce the family of
Radon measures µη,h : M(S) → R+, defined by

µη,h(K) := ηh−3

�
(K×(−h

2 ,
h
2 ))\Eh

W (∇vh) dx+ h−1Gκh

surf

(
Eh;K ×

(
−h
2
,
h

2

))
, (5.15)

where we recall (2.7) and (3.4). By the assumption that the sequence (Eh(yh, Vh))h>0 is bounded
(cf. also the proof of Lemma 5.1), and after passing to a subsequence (not relabeled), we may suppose
that (µη,h)h>0 converges weakly* to some Radon measure µη. Let also

λ := H1⌞(∂∗V ∪J(y,∇′y))∩S ,

and dµη/dλ be the corresponding Radon-Nikodym derivative. In view of the lower semicontinuity of
the mass under weak*-convergence, the equi-boundedness of the total energy, and the arbitrariness
of η > 0, the estimate in (5.14) will follow by proving that for every Lebesgue point of µη with
respect to λ there holds

dµη

dλ
(x0) ≥

{
1 , if x0 ∈ ∂∗V ∩ S ,
2 , if x0 ∈ J(y,∇′y) \ ∂∗V .

(5.16)

Now, fix x0 ∈ (∂∗V ∪ J(y,∇′y)) ∩ S such that a generalized unit normal at the point x0 exists,

which we denote by ν(x0). Since this property holds for H1-a.e. point, it suffices to prove (5.16)
in this case. Without loss of generality we assume that x0 = 0 and ν(x0) = e1. For r < 1 we let
Qr := (− r

2 ,
r
2 )

2. Noting that λ(Qr) = r+ o(r) as r → 0, in order to prove (5.16), it suffices to show
that

lim inf
r→0

lim inf
h→0

µη,h(Qr)

r
≥
{
1 , if x0 ∈ ∂∗V ∩ S ,
2 , if x0 ∈ J(y,∇′y) \ ∂∗V .

(5.17)

Step (2): Boundary of voids. Regarding the first case in (5.17), for 0 ∈ ∂∗V ∩ S, with a change

of variables, cf. (2.9), we can estimate from below

µη,h(Qr) ≥ h−1H2

(
∂Eh ∩

(
Qr ×

(
−h
2
,
h

2

)))
=

�
∂Vh∩(Qr×(− 1

2 ,
1
2 ))

∣∣(ν1Vh
, ν2Vh

, h−1ν3Vh

)∣∣dH2 ≥ H2

(
∂Vh ∩

(
Qr ×

(
−1

2
,
1

2

)))
.

(5.18)
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Since Vh → Ṽ in L1(Ω), the L1-lower semicontinuity of the perimeter, (5.18), (2.16), and the fact
that 0 ∈ ∂∗V ∩ S imply

lim inf
r→0

lim inf
h→0

µη,h(Qr)

r
≥ lim inf

r→0
lim inf
h→0

H2
(
∂Vh ∩

(
Qr ×

(
− 1

2 ,
1
2

)))
r

≥ lim inf
r→0

H2
(
∂∗Ṽ ∩

(
Qr ×

(
− 1

2 ,
1
2

)) )
r

= lim inf
r→0

H1 (∂∗V ∩Qr)

r
= 1 .

Step (3): Jump points. Regarding the second case in (5.17), let 0 ∈ J(y,∇′y) \ ∂∗V , in particular

we have 0 ∈ V 0, where by V 0 we denote the set of points with two-dimensional density 0 with
respect to V . We now define the auxiliary fields Yh : Ωh → R3 × R3×3 and Y : S → R3 × R3×3 as

Yh := (vh,∇vh) and Y :=
(
y, (∇′y, ∂1y ∧ ∂2y)

)
,

respectively, and observe that

JY = J(y,∇′y) .

The assumption 0 ∈ V 0 ∩ J(y,∇′y) = V 0 ∩ JY together with (2.20)(ii),(iii) and a scaling argument
implies

(i) lim
r→0

lim
h→0

L3
(
Eh ∩

(
Qr ×

(
−h

2 ,
h
2

)))
r2h

= 0 ,

(ii) lim
r→0

lim
h→0

 
Qr×(−h

2 ,
h
2 )

|Yh − Y ±|dx = 0 ,

(5.19)

where

Y ± :=

{
Y +(0) , if x1 > 0

Y −(0) , if x1 ≤ 0 ,
(5.20)

with Y +(0) = (y+, R+) and Y −(0) = (y−, R−) being the one-sided traces of Y at 0 ∈ JY . Suppose
by contradiction that the desired assertion was false, i.e., there exists 0 < δ < 1 such that

lim inf
r→0

lim inf
h→0

µη,h(Qr)

r
< 2− δ .

We will proceed to show a contradiction, namely we will show that

(a) y+ = y− and (b) R+ = R− . (5.21)

This implies that Y +(0) = Y −(0) and thus 0 /∈ JY : a contradiction. Up to passing to subsequences
in r and h, for all 0 < r ≤ r0(δ) and 0 < h ≤ h0(r) small enough,

µη,h(Qr) ≤ (2− δ)r . (5.22)

Step (4): Preparations for the proof of (5.21). The following arguments will be performed for
fixed r > 0, which will be chosen sufficiently small along the proof. For j ∈ Z we define the
(pairwise disjoint) stripes

Sh(j) := hje2 +
(
− r

2
,
r

2

)
×
(
− h

2
,
h

2

)
,

and note that Sh(j) ⊆ Qr for all |j| ≤ r
2h − 1

2 . We set Nh := ⌊ r
2h − 1

2⌋ and define

Sgood
h :=

{
j ∈ Z : |j| ≤ Nh , µη,h(Sh(j)) <

(
2− δ

2

)
h

}
, (5.23)



DERIVATION OF KIRCHHOFF-TYPE PLATE THEORIES FOR ELASTIC MATERIALS WITH VOIDS 27

and Sbad
h := {j ∈ Z : |j| ≤ Nh} \ Sgood

h . In view of (5.22) and (5.23), we can estimate

#Sbad
h ≤ 4− 2δ

(4− δ)

r

h
.

Therefore, for h ∈ (0, h0(r)] small enough, we obtain

#Sgood
h = 2Nh + 1−#Sbad

h ≥ 2

(
r

2h
− 1

2

)
− 1− 4− 2δ

(4− δ)

r

h
≥ δ

4

r

h
. (5.24)

We note that (5.24) and (5.19)(i),(ii) imply that there exists jh ∈ Sgood
h such that

L3

(
Eh ∩

(
Sh(jh)×

(
−h
2
,
h

2

)))
+

�
Sh(jh)×(−h

2 ,
h
2 )

|Yh − Y ±| ≤ 4

δ
σrrh

2 , (5.25)

for all 0 < r ≤ r0 and 0 < h ≤ h0, for a modulus of continuity σr → 0+ as r → 0+. Since jh ∈ Sgood
h ,

by the definition in (5.23) and (5.15) we immediately have

ηh−4

�
(Sh(jh)×(−h

2 ,
h
2 ))\Eh

W (∇vh) dx+ h−2Gκh

surf

(
Eh;Sh(jh)×

(
−h
2
,
h

2

))
< 2− δ

2
. (5.26)

Introducing the notation

Sr,h,h =
(
− r

2
,
r

2

)
×
(
− h

2
,
h

2

)2
,

up to translation of Eh and the domain of vh by −hjhe2 (not relabeled), (5.26) is equivalent to

h−4

�
Sr,h,h\Eh

ηW (∇vh) dx+ h−2Gκh

surf(Eh;Sr,h,h) < 2− δ

2
. (5.27)

For r > 0 fixed, we now apply [34, Theorem 2.1] to obtain

((yrod|d2|d3), I) ∈ SBV 2
isom

(
−r
2
,
r

2

)
× P

(
−r
2
,
r

2

)
(cf. the definition in [34, (2.13)]) such that, up to a subsequence in h (not relabeled),

χV rod
h

−→ χV rod in L1(Sr,1,1) ,

yrodh −→ ȳrod in L1(Sr,1,1;R3) , (5.28)

where yrodh (x) = vh(x1, hx2, hx3) and ȳ
rod(x) = yrod(x1) for x ∈ Sr,1,1, as well as

V rod
h = {x ∈ Sr,1,1 : (x1, hx2, hx3) ∈ Eh} ,

and V rod = I × (− 1
2 ,

1
2 )

2 (see also [34, Equations (2.6) and (2.14)] for the notations). By definition

of SBV 2
isom

(
− r

2 ,
r
2

)
, we particularly have that

Rrod(x1) := (∂1y
rod|d2|d3)(x1) ∈ SO(3) for L1-a.e. x1 ∈

(
−r
2
,
r

2

)
. (5.29)

Moreover, by [34, Theorem 2.1] we get

χSr,1,1\V rod
h

(
∂1y

rod
h , 1h∂2y

rod
h , 1h∂3y

rod
h

)
⇀ χSr,1,1\V rodR̄rod weakly in L2(Sr,1,1;R3×3) , (5.30)

where R̄rod(x) = Rrod(x1) for x ∈ Sr,1,1 (see also [34, Equations (2.9) and (2.15)] for the notations).
By the lower semicontinuity result in [34, Lemmata 5.2 and 5.3] and (5.27), we then get

c∗η

�
(− r

2 ,
r
2 )

|(Rrod)T∂1R
rod|2 dx1 +H0

(
∂I ∩ (− r

2 ,
r
2 )
)
+ 2H0

(
(Jyrod ∪ JRrod) \ ∂I

)
< 2− δ

2
(5.31)

for some c∗ > 0. Here, we observe that the quadratic form on the right-hand side of [34, Equa-
tion (5.3)] is coercive, which can be seen by comparison to its form in the isotropic case addressed
in [52, Remark 3.5].
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Now, (5.31) implies

(Jyrod ∪ JRrod) \ ∂I = ∅ and H0
(
∂I ∩

(
− r

2 ,
r
2

))
≤ 1 . (5.32)

From (5.25) and a change of variables we get L1(I) ≤ r
3 , provided that r > 0 is small enough

such that σr <
δ
4
1
3 . This and (5.32) imply that I ⊂

(
− r

2 ,− r
6

)
or I ⊂

(
r
6 ,

r
2

)
. Furthermore, for

Y rod := (yrod, Rrod), by (5.25), and (5.28)–(5.30), the lower semicontinuity of the L1-norm under
weak convergence, and a change of variables, we have�

(− r
6 ,

r
6 )

|Y rod − Y ±|dx1 ≤ 4

δ
rσr , (5.33)

where we recall (5.20).
Step (5): Proof of (5.21). First, we show (5.21)(a), i.e., y+ = y−. Assume by contradiction that

|y+ − y−| > 0, and choose r > 0 such that

r < |y+ − y−| and σr <
δ

48
|y+ − y−| . (5.34)

Let x− ∈ (− r
6 , 0), x

+ ∈ (0, r6 ) be such that

|yrod(x+)− y+| ≤ 6

r

�
(0, r6 )

|Y rod − Y +|dx1 and |yrod(x−)− y−| ≤ 6

r

�
(− r

6 ,0)

|Y rod − Y −|dx1 .

Then, by (5.33) and (5.34) we obtain

|yrod(x+)− yrod(x−)| ≥ |y+ − y−| − |yrod(x+)− y+| − |yrod(x−)− y−|

≥ |y+ − y−| − 6

r

�
(− r

6 ,
r
6 )

|Y rod − Y ±|dx1 ≥ 1

2
|y+ − y−| > r/2 , (5.35)

where the last step follows from the choice of r in (5.34). On the other hand, as Jyrod ∩ (− r
6 ,

r
6 ) = ∅,

cf. (5.32), by the Fundamental Theorem of Calculus and (5.29), we obtain

|yrod(x+)− yrod(x−)| ≤
�
(x−,x+)

|∂1yrod|dx1 = |x+ − x−| ≤ r/3 . (5.36)

Now, (5.35) and (5.36) contradict each other, which shows that y+ = y−.
Now, in a similar manner, we show (5.21)(b), i.e., R+ = R−. Assume by contradiction that

|R+ −R−| > 0 and choose r > 0 small enough so that

r1/4 < |R+ −R−| and σr <
δ

48
|R+ −R−| . (5.37)

Let x− ∈ (− r
6 , 0), x

+ ∈ (0, r6 ) be such that

|Rrod(x+)−R+| ≤ 6

r

�
(0, r6 )

|Y rod − Y +|dx1 and |R(x−)−R−| ≤ 6

r

�
(− r

6 ,0)

|Y rod − Y −|dx1 .

This, along with (5.33) and the choice of r in (5.37), shows

|Rrod(x+)−Rrod(x−)| ≥ |R+ −R−| − |Rrod(x+)−R+| − |Rrod(x−)−R−|

≥ |R+ −R−| − 6

r

�
(− r

6 ,
r
6 )

|Y rod − Y ±|dx1 ≥ 1

2
|R+ −R−| > 1

2
r1/4 .

(5.38)
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On the other hand, using (5.31) we get that ∥∂1Rrod∥L2((− r
6 ,

r
6 ))

≤ C̄ for a constant C̄ > 0 depending

on η, but independent of r. Using this L2-bound, together with the Fundamental Theorem of
Calculus along with the fact that JRrod ∩ (− r

6 ,
r
6 ) = ∅, cf. again (5.32), shows

|Rrod(x+)−Rrod(x−)| ≤ C̄r1/2 . (5.39)

For r > 0 sufficiently small (depending on η > 0), (5.38) and (5.39) contradict each other, which
shows R+ = R−. This concludes the proof. □

6. Proof of Theorem 2.3(ii)

In this last section we construct recovery sequences for admissible limits (y, V ) ∈ A, see (2.13),
for which we proceed in several steps.

Step (1): Preparations. The first step is devoted to the smoothening of the void set V and
covering most of the jump set J(y,∇′y) by a suitable smooth void set. We fix an arbitrary error
parameter η ∈ (0, 1), which we will send to zero only at the end of the proof by means of a diagonal
argument. We choose a smooth set Zη ⊂ R2 such that

L2((V△Zη) ∩ S) ≤ η, H1(∂Zη ∩ S) ≤ H1(∂∗V ∩ S) + η, H1(∂∗V \ Zη) ≤ η. (6.1)

Indeed, we first apply [54, Theorem 3.1, Remark 3.2(i)] to find a relatively open set Z ′
η ∈ P(S) such

that ∂Z ′
η ∩ S is a 1-dimensional C1-submanifold, with

L2(V△Z ′
η) ≤

η

2
and H1(∂∗V△∂Z ′

η) ≤
η

2
.

Then, for (6.1), it suffices to choose a smooth set Zη ⊃ Z ′
η with

L2(Zη \ Z ′
η) ≤

η

2
and H1(∂Zη ∩ S) ≤ H1(∂Z ′

η ∩ S) +
η

2
.

Let

Jη := (J(y,∇′y) ∪ ∂∗V ) \ Zη .

By a standard Besicovitch covering argument (see, e.g., [29, Equations (2.3), (2.6)] for details), we
can find a finite number of pairwise disjoint closed rectangles (Ri)

N
i=1, so that for every i = 1, . . . , N ,

Ri ⊂⊂ S \ Zη, with length li and height ηli, and

H1

(
Jη \

N⋃
i=1

Ri

)
≤ η,

N∑
i=1

li ≤ (1 + η)H1(Jη) . (6.2)

We can also pick pairwise disjoint smooth sets Ti ⊂⊂ S \ Zη, i = 1, . . . , N , so that

Ti ⊃ Ri , L2(Ti) ≤ (1 + η)L2(Ri) , and H1(∂Ti) ≤ (1 + η)H1(∂Ri) . (6.3)

We define Vη := Zη ∪
⋃N

i=1 Ti and yη ∈ SBV 2,2
isom(S;R3) by

yη(x
′) :=

{
y(x′) for x′ ∈ S \ Vη ,
x′ for x′ ∈ Vη .

(6.4)

We also denote by ỹη : Ω → R3 the corresponding deformation indicated by the identification (2.15).
By the fact that the jump set of (yη,∇′yη) is contained in Jη ∪ ∂Vη, (6.2) and (6.3) yield

H1
(
J(yη,∇′yη) ∩ (S \ Vη)

)
≤ η . (6.5)
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Moreover, (6.1)–(6.3) also imply that

H1(∂Vη ∩ S) ≤ H1(∂Zη ∩ S) +
N∑
i=1

H1(∂Ti) ≤ H1(∂∗V ∩ S) + η +

N∑
i=1

(1 + η)(2 + 2η)li

≤ H1(∂∗V ∩ S) + 2H1(Jη) + Cη ≤ H1(∂∗V ∩ S) + 2H(Jη \ ∂∗V ) + Cη

≤ H1(∂∗V ∩ S) + 2H1
(
J(y,∇′y) \ ∂∗V

)
+ Cη , (6.6)

where C > 0 depends only on H1(Jη) and thus only on (y, V ). Using again (6.1)–(6.3), we also find

L2
(
(V△Vη) ∩ S

)
≤ L2((V△Zη) ∩ S) +

N∑
i=1

L2(Ti)

≤ η + (1 + η)η

N∑
i=1

l2i ≤ η + CηH1(Jη) ≤ Cη ,

(6.7)

where we employed that li ≤ (1 + η)H1(Jη) ≤ C for every i = 1, . . . , N .

Baring this construction in mind, our goal now is to construct sets (Ṽh)h>0 and functions (yh)h>0

as follows (for the sake of not overburdening the notation in the following, subscripts h will indicate
that the objects depend on both h and η): we need to find smooth sets (W void

h )h>0 ⊂ Areg(R2) with

lim
h→0

L2(W void
h ) = 0 , H1(∂W void

h ) ≤ Cη , (6.8)

such that also the set Vh := int(Vη ∪W void
h ) is smooth, and Ṽh := Vh × (− 1

2 ,
1
2 ) ⊂ Ω satisfies

(i) χṼh
→ χṼη

in L1(Ω) as h→ 0

(ii) κh

�
∂Ṽh∩Ω

|A|2 dH2 → 0 as h→ 0 , (6.9)

where Ṽη := Vη× (− 1
2 ,

1
2 ). Moreover, we need to find a sequence (yh)h>0 with yh ∈W 1,2(Ω\ Ṽh;R3)

such that

(i) yh → ỹη strongly in L1(Ω;R3) as h→ 0 ,

(ii) ∇hyh −→
(
∇′ỹη, ∂1ỹη ∧ ∂2ỹη

)
strongly in L2(Ω;R3×3) as h→ 0 ,

(iii) lim sup
h→0

(
h−2

�
Ω\Ṽh

W (∇hyh(x)) dx

)
≤ 1

24

�
S\Vη

Q2(IIyη
(x′)) dx′ + η ,

(iv) ∥yh∥L∞(Ω) ≤M .

(6.10)

Then, recalling (2.3), (2.8), (2.9), by (6.10)(iii), (6.8),(6.9), and the fact that ∂Vh \ ∂Vη ⊂ ∂W void
h ,

we find

lim sup
h→0

Eh(yh, Ṽh) ≤
( 1

24

�
S\Vη

Q2(IIyη (x
′)) dx′ +H1(∂Vη ∩ S)

)
+ Cη

where we used that (6.9)(ii) is equivalent to

h−1κh

�
∂(Th(Ṽh))∩Ωh

|A|2 dH2 → 0 as h→ 0 ,

since ∂Ṽh ∩ Ω is cylindrical over ∂Vh ∩ S. Recalling (2.18), we also observe that

lim sup
η→0

( 1

24

�
S\Vη

Q2(IIyη
(x′)) dx′ +H1(∂Vη ∩ S)

)
≤ E0(y, V ) as η → 0 ,
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by (6.4) and (6.6),(6.7). As L2({yη ̸= y}) ≤ Cη by (6.4) and (6.7), using a diagonal argument in
the theory of Γ-convergence, we obtain the desired recovery sequence. Here, we also use (6.9)(i) and
(6.10)(i),(ii) to see that the convergence τ defined in Definition 2.2 is satisfied, and we use (6.10)(iv)

to guarantee that yh (extended by Th(id) inside Ṽh) is admissible, cf. (2.10).
Summarizing, in the sequel it suffices to construct the sets (W void

h )h>0 and the functions (yh)h>0

such that (6.8)–(6.10) hold.
Step (2): Meshes and auxiliary regularization of the jump set. In view of (6.5), the jump set

J(yη,∇′yη) inside S \ Vη has small H1-measure. To be in the position to repeat the arguments from

the elastic case [36, Section 6], it would be necessary to replace yη by a Sobolev function on S\Vη. A
first idea could be to apply Corollary 3.6 (or the corresponding Sobolev replacement in Theorem 3.4)
on S \Vη. Yet, this approximation is not compatible with the nonlinear rotationally invariant elastic
energy, and would provide inadequate estimates. Better approximations can be obtained by applying
Corollary 3.6 on meshes of scales smaller or equal to h. To this end, for n ∈ N0 and some Λ ≥ 1,
we partition R2 up to a set of negligible measure into the squares

Qn
h :=

{
Qn

h(p) := p+ Λ2−nh(− 1
2 ,

1
2 )

2, p ∈ Λ2−nhZ2
}
. (6.11)

The parameter Λ will be chosen eventually in (6.70) (depending only on η) and plays a role in an
extension procedure, which will become clear in Steps 7–8 below. We write

Uη := S \ Vη (6.12)

for notational convenience. Our strategy consists in defining a Whitney-type covering related to
Uη such that the jump set is covered by squares with small area, see Proposition 6.1 below for the
precise statement and particularly (6.27). For technical reasons in this construction, it is convenient
to regularize the jump set of yη. For notational convenience, we write

(Fη, bη) := (∇′yη, ∂1yη ∧ ∂2yη) . (6.13)

By the density result [19, Theorem 3.1] we can find functions (zh)h>0 ⊂ SBV 2(Uη;R3) and
(Fh, bh)h>0 ⊂ SBV 2(Uη;R3×3) such that Jzh and J(Fh,bh) consist of a finite number of segments,
and

(i) ∥zh − yη∥L1(Uη) + ∥∇′zh −∇′yη∥L2(Uη) ≤ h2 ,

(ii) ∥(Fh, bh)− (Fη, bη)∥L2(Uη) + ∥∇′(Fh, bh)−∇′(Fη, bη)∥L2(Uη) ≤ h2 ,

(iii) H1(Γh) ≤ 2η, for Γh := Jzh ∪ J(Fh,bh) ,

(iv) ∥zh∥L∞(Uη) ≤ ∥yη∥L∞(Uη) , ∥bh∥L∞(Uη) ≤ ∥bη∥L∞(Uη) ,

(6.14)

where for (6.14)(iii) we used (6.5) and (6.12). Note that the jump sets of zh and (Fh, bh) depend
on h and therefore this regularization does not appear to be helpful yet, as it does not allow for
uniform estimates. The only reason for this approximation is that it guarantees that the Whitney-
type covering in Proposition 6.1 terminates at some finite scale QKh

h for Kh ∈ N depending on h,
see the discussion below (6.33).

Step (3): Construction of W void
h . Recalling (6.11), we denote generic squares in Qn

h, n ∈ N0, by

q. By ℓ(q) we indicate the sidelength of the square, i.e., ℓ(q) := Λ2−nh for some n ∈ N0. Moreover,
by q′ and q′′ we denote squares with the same center as q and

ℓ(q′) =
3

2
ℓ(q), ℓ(q′′) = 21ℓ(q) . (6.15)

(The value 21 is chosen for definiteness only and could also be any odd number sufficiently large.)
Since we consider squares of size ∼ h, the jump set Γh, see (6.14)(iii), is not necessarily small
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compared to ℓ(q) in each square q, which might prevent the application of Corollary 3.6. To this
end, we define

QU
h := {q ∈ Q0

h : q ⊂ Uη} , (6.16)

and given some universal θ ∈ (0, 1
16 ) small to be specified later (see below (6.44)), we introduce the

collection of bad squares defined by

Qbad
h :=

{
q ∈ QU

h : H1(Γh ∩ q′) ≥ θΛh} . (6.17)

We define the sets

Uh :=
⋃

q∈QU
h

q , Ubad
h :=

⋃
q∈Qbad

h

q′′ . (6.18)

From the definition of Qbad
h in (6.17) and (6.14)(iii) as well as (6.15), we get

L2(Ubad
h ) ≤ C(Λh)2#Qbad

h ≤ CΛhH1(Γη) ≤ CΛh ,

H1(∂Ubad
h ) ≤ C(Λh)#Qbad

h ≤ CH1(Γη) ≤ Cη
(6.19)

for a constant C > 0 depending only on θ, where we used that each x ∈ R2 is only contained in a
(universally) bounded number of squares q′, for q ∈ Q0

h.
Then, recalling the notation in (1.4), we can choose a smooth W void

h ⊃ (Ubad
h )Λh, satisfying (6.8).

More precisely, since Ubad
h consists of at most Cη(Λh)−1-many squares of sidelength Λh, this can

be done in such a way that

∥A∥L∞(∂W void
h ) ≤ C(Λh)−1 ,

cf. also [33, Lemma 3.5] for a similar construction. Therefore, by a careful choice of the sets W void
h

so that also Vh := int(Vη ∪W void
h ) is smooth, in view of (6.8), the set Ṽh = Vh × (− 1

2 ,
1
2 ) satisfies�

∂Ṽh∩Ω

|A|2 dH2 ≤
�
(∂Vη∩S)×(− 1

2 ,
1
2 )

|A|2 dH2 + CH1(∂W void
h )h−2 ≤ Cη + Cηh−2,

where Cη > 0 depends on Vη and thus on η. By (2.5) this shows (6.9)(ii). Clearly, (6.8) implies
(6.9)(i).

For convenience, we define Ugood
h := Uh \ Ubad

h . For later purposes, we extend the set Ugood
h by

adding two extra layers around it. More precisely, we define

U ext
h := Ugood

h ∪
⋃

q∈Qext
h

q , (6.20)

where

Qext
h :=

{
q ∈ Q0

h : q /∈ Ugood
h , dist∞(q, Ugood

h ) ∈ {0,Λh}
}
. (6.21)

Using the definition of Ubad
h in (6.18), and the fact that W void

h ⊃ (Ubad
h )Λh, it is elementary to check

that

U ext
h ∪W void

h ⊃ (Uη)(2−
√
2)Λh . (6.22)

Step (4): Construction of a Whitney-type covering. We now construct a covering of Ugood
h . The

main point is that Corollary 3.6 (for d = 2) is then applicable in all squares and that the entire jump
set Γh, cf. (6.14)(iii), can be covered by a set with small area, see (6.25)–(6.27). In the covering we

also ensure that the squares at the boundary of Ugood
h are in Q0

h, which later will allow us to easily
extend the covering to the set U ext

h defined in (6.20). For the next statement we recall the notations
q, q′, q′′ introduced before (6.15), and refer to Figure 3 for an illustration of the covering the next
Proposition describes.
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Proposition 6.1. There exists a covering of Whitney-type Wh := (qi)i∈I ⊂ ⋃Kh

n=0 Qn
h for some

Kh ∈ N such that the squares (qi)i∈I are pairwise disjoint, and satisfy

(i)
⋃
i∈I

qi = Ugood
h ,

(ii) q′i ∩ q′j ̸= ∅ =⇒ 1

2
ℓ(qi) ≤ ℓ(qj) ≤ 2ℓ(qi) ,

(iii) #{j ∈ I : q′i ∩ q′j ̸= ∅} ≤ 12 for all i ∈ I .

(6.23)

Moreover, defining

Wbdy
h := {qi : ∂qi ∩ ∂Ugood

h ̸= ∅} ,

W jump
h := {qi /∈ Wbdy

h : θ2ℓ(qi) ≤ H1(Γh ∩ q′i)} ,

Wempt
h := {qi /∈ Wbdy

h : H1(Γh ∩ q′i) = 0} ,

Wneigh
h := Wh \

(
Wbdy

h ∪W jump
h ∪Wempt

h

)
,

(6.24)

it holds that

(i) qi ∈ Q0
h for all qi ∈ Wbdy

h ,

(ii) H1(Γh ∩ q′i) ≤ θℓ(qi) for all qi ∈ Wbdy
h ∪W jump

h ∪Wneigh
h ,

(iii) q′′i ⊂W cov
h for all qi ∈ Wneigh

h ,

(6.25)

where

W cov
h :=

⋃
q∈Wbdy

h ∪Wjump
h

q′′ . (6.26)

In particular, the set W cov
h satisfies

L2(W cov
h ) ≤ Ch , (6.27)

for C > 0 only depending on Λ, θ, and η.

Proof of Proposition 6.1. First, all q ∈ Q0
h with q ⊂ Ugood

h and ∂q ∩ ∂Ugood
h ̸= ∅ are collected in

Wbdy
h . Note that (6.25)(i) holds and by the definition ofQbad

h in (6.17), property (6.25)(ii) is satisfied

for each q ∈ Wbdy
h .

Step 1: Induction. The rest of the covering is constructed inductively. We first construct the

collections W jump
h and Wneigh

h . All q ∈ Q0
h, q ⊂ Ugood

h , with

H1(Γh ∩ q′) ≥ θ2ℓ(q) = θ2Λh , (6.28)

or q ∈ Wbdy
h are collected in Y jump

0 , and we define Y0 :=
⋃

q∈Yjump
0

q. (Note that for later purposes

it is convenient to also add the squares at the boundary to this set.) For definiteness, we also define

Yneigh
0 = ∅.
Suppose that for some k ∈ N the collections Y jump

j ,Yneigh
j ⊂ Qj

h, 0 ≤ j ≤ k, and

Yk :=

k⋃
j=0

⋃
q∈Yjump

j ∪Yneigh
j

q (6.29)
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Figure 3. An illustration of the dyadic construction giving the covering Wh. The jump set Γh

is depicted by the black segments.

have already been constructed such that

(i) q′1 ∩ q′2 ̸= ∅ for q1, q2 ∈
k⋃

j=0

Y jump
j ∪ Yneigh

j =⇒ 1

2
ℓ(q2) ≤ ℓ(q1) ≤ 2ℓ(q2) ,

(ii) θ2ℓ(q) ≤ H1(Γh ∩ q′) for all q ∈
k⋃

j=0

Y jump
j \Wbdy

h ,

(iii) H1(Γh ∩ q′) ≤ θℓ(q) for all q ∈
k⋃

j=0

Y jump
j ∪ Yneigh

j and q ∈ Yrest
k ,

(iv) for each q ∈ Yneigh
k ∃j ∈ {0, . . . , k − 1}, q̃ ∈ Y jump

j , so that dist∞(q, q̃) ≤ Λh

k−1∑
l=j

2−l ,

(v) for all q ∈
k⋃

j=0

(Y jump
j ∪ Yneigh

j ) \Wbdy
h : ∂q ∩ ∂Yk ̸= ∅ =⇒ q ∈ Qk

h ,

(6.30)

where we have set

Yrest
k := {q ∈ Qk

h : q ⊂ Ugood
h \ Yk} .

Clearly, by construction all the above properties are satisfied for k = 0, see (6.17), (6.28), and (6.29).

Before we proceed with the induction step, let us briefly explain the relevance of these properties.
First, (6.30)(i) will be needed for (6.23)(ii),(iii), and (6.30)(ii),(iii) are essential for (6.25)(ii) and for
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the definition of W jump
h , respectively. Next, (6.30)(iv) will lead to (6.25)(iii), and finally (6.30)(v)

is needed to obtain (6.30)(i) in the next iteration step.

We now come to the step k + 1. We define Y jump
k+1 and Yneigh

k+1 as follows: recalling (6.29), we let

Yneigh
k+1 := {q ∈ Qk+1

h : q ⊂ Ugood
h \ Yk , ∂q ∩ ∂Yk ̸= ∅} . (6.31)

Then, we let

Y jump
k+1 := {q ∈ Qk+1

h \ Yneigh
k+1 : q ⊂ Ugood

h \ Yk , H1(Γh ∩ q′) ≥ θ2ℓ(q)} . (6.32)

We now confirm the properties (6.30) for the step k + 1. First, (6.30)(i),(v) for step k guarantee
(6.30)(i) for step k+1. Moreover, the construction in (6.31) and (6.32) directly shows (6.30)(ii),(v)
in step k + 1.

Next, we address (6.30)(iii). To this end, fix q ∈ Y jump
k+1 ∪ Yneigh

k+1 ∪ Yrest
k+1, and choose the unique

square q∗ ∈ Qk
h with q ⊂ q∗. Note that H1(Γh ∩ q′∗) < θ2ℓ(q∗), as otherwise q∗ would have been

added to Y jump
k in the previous iteration step. This shows

H1(Γh ∩ q′) ≤ H1(Γh ∩ q′∗) < θ2ℓ(q∗) = 2θ2ℓ(q) ≤ θℓ(q) ,

where we used that 0 < θ ≤ 1/2, recalling the choice before (6.17).

It remains to show (6.30)(iv) in step k + 1. For q ∈ Yneigh
k+1 , in view of the definitions (6.31)

and (6.29), property (6.30)(v) in step k yields that there exists q̂ ∈ Y jump
k ∪ Yneigh

k such that

dist∞(q, q̂) = 0. If q̂ ∈ Y jump
k , the statement follows for q̃ = q̂. Otherwise, if q̂ ∈ Yneigh

k , by (6.30)(iv)

in step k, we find j ∈ {0, . . . , k − 1} and q̃ ∈ Y jump
j such that dist∞(q̂, q̃) ≤ Λh

∑k−1
l=j 2−l. Since

dist∞(q, q̃) ≤ dist∞(q̂, q̃) + Λh2−k, the statement also follows in this case.

Step 2: Definition of the covering. We now show that we can terminate the iteration at some

step Kh. To this end, we claim that there exists Kh ∈ N such that for all q ∈ QKh

h , q ⊂ Ugood
h \YKh

,
we have

H1(Γh ∩ q′) = 0 . (6.33)

In fact, choose Kh large enough such that Λ2−Khh is smaller than each of the length of the finite
number of segments forming Γh, cf. (6.14)(iii). (This is the only point where we use the regularity

and polygonal structure of the jump set.) Suppose by contradiction that there exists q ∈ QKh

h such

that q ⊂ Ugood
h \ YKh

and H1(Γh ∩ q′) ̸= 0. Choose q∗ ∈ QKh−1
h with q∗ ⊃ q, and observe that

q∗ ∈ Yrest
Kh−1. As Γh consists of line segments whose length exceed Λ2−Khh, it is elementary to verify

that

H1(Γh ∩ q′∗) ≥
1

4
ℓ(q) =

1

8
ℓ(q∗) ,

which contradicts (6.30)(iii) as 0 < θ < 1
16 .

We now come to the definition of Wh, cf. (6.24). First, Wbdy
h has already been defined, and we

let

W jump
h :=

Kh⋃
j=0

Y jump
j \Wbdy

h . (6.34)

Moreover, we introduce the auxiliary collection

Wneigh,aux
h :=

Kh⋃
j=0

Yneigh
j .
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In view of (6.30)(i),(v), we can cover of Ugood
h \YKh

with cubes in QKh

h , denoted by Wempt,aux
h such

that Wbdy
h ∪W jump

h ∪Wneigh,aux
h ∪Wempt,aux

h satisfy (6.23), where we use that (6.23)(iii) is a simple
consequence of (6.23)(ii). Eventually, we define

Wempt
h := Wempt,aux

h ∪
{
q ∈ Wneigh,aux

h : H1(Γh ∩ q′) = 0
}
, Wneigh

h := Wneigh,aux
h \Wempt

h . (6.35)

We note that the covering Wh consisting of the four families in (6.24) still satisfies (6.23). The
collections satisfy the respective properties stated in (6.24) by (6.30)(ii) and (6.33)–(6.35).

It remains to show (6.25)–(6.27). Property (6.25)(i) holds by construction and (6.25)(ii) follows
from (6.30)(iii). Next, (6.25)(iii) follows by an elementary computation using (6.29), (6.34)–(6.35),

property (6.30)(iv), and the fact that ℓ(q′′) = 21ℓ(q). Finally, using the property of W jump
h in (6.24),

as well as (6.17)–(6.19) we compute

L2(W cov
h ) =

∑
q∈Wbdy

h ∪Wjump
h

L2(q′′) ≤ Ch
∑

q∈Wbdy
h ∪Wjump

h

ℓ(q)

≤ Cθ−2h
∑

q∈Wjump
h

H1(Γh ∩ q′) + ChH1(∂Ugood
h ) ≤ Cθ−2hH1(Γh) + Ch ≤ Ch ,

for a constant C > 0 depending on Λ, θ and η, where in the penultimate step we have employed

(6.23)(iii), the definition of Ugood
h before (6.20), and the fact that (by the regularity of Uη)

H1(∂Uh) ≤ CH1(∂Uη) ≤ Cη .

The last step follows from (6.14)(iii). This concludes the proof of the proposition. □

Step (5): Auxiliary estimates on the Whitney-type covering. Before we can come to the defi-

nition of the deformations (yh)h>0, we need some preliminary estimates on the squares of the
Whitney-type covering Wh defined in Proposition 6.1 which allow us to control the behavior on
adjacent squares. Recalling the notation in (6.12)–(6.13), for notational convenience, we define

ah := h−2
(
|∇′zh −∇′yη|+ |(Fh, bh)− (Fη, bη)|

)
∈ L2(Uη) , (6.36)

which is bounded in L2(Uη), uniformly in h > 0, by (6.14). For every i ∈ I we apply Corollary 3.6 on
q′i for the function (Fh, bh) to find a set of finite perimeter ω1

i ⊂ q′i and a matrix field (Fi, bi) ∈ R3×3

such that

(i) H1(∂∗ω1
i ) ≤ CH1(Γh ∩ q′i) ,

(ii) ∥(Fh, bh)− (Fi, bi)∥L2(q′i\ω1
i )

≤ Cℓ(qi)∥∇′(Fh, bh)∥L2(q′i)
,

(6.37)

where we recall the definition of Γh in (6.14)(iii). (Clearly, the objects ω1
i , (Fi, bi) also depend on h

which we do not include in the notation for simplicity.) In view of (6.36), (6.37), and the fact that
∇′yη = Fη, see (6.13), we also get

∥∇′zh − Fi∥L2(q′i\ω1
i )

≤ Cℓ(qi)∥∇′(Fh, bh)∥L2(q′i)
+ Ch2∥ah∥L2(q′i)

. (6.38)

Then, we define

ui(x
′) := χq′i\ω1

i
(x′)

(
zh(x

′)− Fix
′) for x′ ∈ q′i . (6.39)

We note that ui ∈ SBV 2(q′i;R3) with

∥∇′ui∥L2(q′i)
= ∥∇′zh − Fi∥L2(q′i\ω1

i )
≤ Ch∥∇′(Fh, bh)∥L2(q′i)

+ Ch2∥ah∥L2(q′i)
,

and

H1(Jui
) ≤ CH1(Γh ∩ q′i) , (6.40)
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where we also used that ℓ(qi) ≤ Ch for a constant C > 0 depending on Λ, together with (6.37)(i)
and the fact that

Jui
⊂ (Jzh ∩ q′i) ∪ ∂∗ω1

i ⊂ (Γh ∩ q′i) ∪ ∂∗ω1
i .

By applying Corollary 3.6 on q′i once more, this time for the function ui, we obtain another set of
finite perimeter ω2

i ⊂ q′i with H1(∂∗ω2
i ) ≤ CH1(Γh ∩ q′i), see (6.40), and ci ∈ R3 such that

∥ui − ci∥L2(q′i\ω2
i )

≤ Cℓ(qi)∥∇′ui∥L2(q′i)
≤ Cℓ(qi)

(
h∥∇′(Fh, bh)∥L2(q′i)

+ h2∥ah∥L2(q′i)

)
. (6.41)

For later reference, we note that the estimates (6.37)–(6.38) and (6.41) are true for ω1
i = ω2

i = ∅,
whenever qi ∈ Wempt

h , see (6.24). Now, we define the affine function

yi(x
′) := Fix

′ + ci . (6.42)

Recalling (6.39), we note that

zh(x
′) = ui(x

′) + yi(x
′)− ci for x′ ∈ q′i \ ωi , (6.43)

where we set ωi := ω1
i ∪ ω2

i . By the isoperimetric inequality and (6.25)(ii) we get

L2(ωi) ≤ C
(
H1(∂∗ω1

i ∪ ∂∗ω2
i )
)2 ≤ C(H1(Γh ∩ q′i))2 ≤ Cθ2ℓ(qi)

2 ≤ 1

100
ℓ(qi)

2 , (6.44)

for θ ∈ (0, 1/16) sufficiently small. Given i ∈ I, we define

Ni := {qj : q′j ∩ q′i ̸= ∅} , N(qi) :=
⋃

qj∈Ni

q′j . (6.45)

It is then easy to deduce that for each i ∈ I
∥yi − yj∥L2(q′i)

+ h∥(Fi, bi)− (Fj , bj)∥L2(q′i)

≤ Cℓ(qi)
(
h∥∇′(Fh, bh)∥L2(N(qi)) + h2∥ah∥L2(N(qi))

)
for all qj ∈ Ni . (6.46)

Indeed, since yi is affine, by Lemma 3.7, (6.44), (6.43), (6.41),(6.23)(ii), and q′i ∩ q′j ⊂ N(qi) for all
qj ∈ Ni, we obtain

∥yi − yj∥L2(q′i)
≤ C∥yi − yj∥L2((q′i∩q′j)\(ωi∪ωj)) ≤ C∥yi − zh∥L2(q′i\ωi) + C∥zh − yj∥L2(q′j\ωj)

≤ C∥ui − ci∥L2(q′i\ωi) + C∥uj − cj∥L2(q′j\ωj)

≤ Cℓ(qi)
(
h∥∇′(Fh, bh)∥L2(N(qi)) + h2∥ah∥L2(N(qi))

)
. (6.47)

Similarly, using that (Fi, bi), (Fj , bj) are constant, (6.44), and (6.37)(ii), we get

h∥(Fi, bi)− (Fj , bj)∥L2(q′i)
≤ Ch∥(Fi, bi)− (Fj , bj)∥L2((q′i∩q′j)\(ωi∪ωj))

≤ Ch∥(Fi, bi)− (Fh, bh)∥L2(q′i\ωi) + Ch∥(Fh, bh)− (Fj , bj)∥L2(q′j\ωj)

≤ Chℓ(qi)∥∇′(Fh, bh)∥L2(N(qi)) . (6.48)

Combining (6.47) and (6.48), the estimate (6.46) follows.
By a similar argument, using (6.44), that (Fη, bη) ∈ SO(3) (see (6.13) and (6.4)), (6.37)(ii), and

(6.36), we get

∥ dist((Fi, bi), SO(3))∥L2(q′i)
≤ C∥ dist((Fi, bi), SO(3))∥L2(q′i\ω1

i )
≤ C∥(Fi, bi)− (Fη, bη)∥L2(q′i\ω1

i )

≤ C∥(Fi, bi)− (Fh, bh)∥L2(q′i\ω1
i )

+ C∥(Fh, bh)− (Fη, bη)∥L2(q′i\ω1
i )

≤ Ch∥∇′(Fh, bh)∥L2(q′i)
+ Ch2∥ah∥L2(q′i)

. (6.49)
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For notational convenience, recalling (6.14), we also introduce the functions{
ȳi(x

′) := zh(x
′) , b̄i := bh(x

′) for x′ ∈ q′i , qi ∈ Wempt
h ,

ȳi(x
′) := yi(x

′), b̄i := bi for x′ ∈ q′i , qi /∈ Wempt
h .

(6.50)

Note that for every qi /∈ Wempt
h , the functions ȳi, b̄i are affine or constant, respectively. The fact

that ω1
i = ω2

i = ∅ for qi ∈ Wempt
h , along with (6.37)–(6.38), (6.41)–(6.43), and (6.46) also implies,

for all qj ∈ Ni,

∥ȳi − ȳj∥L2(q′i)
+ h∥(∇′ȳi, b̄i)− (∇′ȳj , b̄j)∥L2(q′i)

≤ Cℓ(qi)
(
h∥∇′(Fh, bh)∥L2(N(qi)) + h2∥ah∥L2(N(qi))

)
.

(6.51)

We are now ready to proceed to the next step, namely the definition of the approximating sequence

(yh)h>0 satisfying (6.10). Recall the definition of Ugood
h and U ext

h before and in (6.20). Following
the notation in (2.16), we also define

Ũgood
h := Ugood

h × (− 1
2 ,

1
2 ) , Ũ ext

h := U ext
h × (− 1

2 − Λh, 12 + Λh) , (6.52)

where for the second set it will turn out to be convenient to thicken slightly also in the x3-direction.

Our next steps (Steps 6 and 7) consist in defining yh first on Ũgood
h and then on Ũ ext

h . As during
the extension we slightly change the function, we denote the functions in Step 6 by ȳh and in Step 7
by yh for a better distinction.

Step (6): Definition of ȳh on Ũgood
h . Recalling the covering Wh := (qi)i∈I provided by Proposi-

tion 6.1, we choose (φi)i∈I ⊂ C∞
c (R2; [0, 1]) with

(i)
∑
i∈I

φi(x
′) = 1 ∀x′ ∈ Ugood

h , (ii) supp (φi) ⊂ q′i , (iii) ∥∇φi∥∞ ≤ Cℓ(qi)
−1 ∀i ∈ I . (6.53)

As the proof of the existence of such a partition is very similar to the construction of a partition of
unity for Whitney coverings (see [62, Chapter VI.1]), we omit it here. We also refer to [30, Proof of
Theorem 4.6] for similar arguments.

Fix d ∈ C1
0 (S;R3) to be specified later, see the choice before (6.62) below. Recalling (6.50), we

define ȳh ∈W 1,2(Ũgood
h ;R3) by

ȳh(x) :=
∑
i∈I

φi(x
′)
(
ȳi(x

′) + hx3b̄i(x
′)
)
+ h2

x23
2
d(x′) . (6.54)

We further introduce

W bjn
h :=

⋃
q∈Wbdy

h ∪Wjump
h ∪Wneigh

h

q′ , W empt
h := Ugood

h \W bjn
h . (6.55)

We again use the notation W̃ bjn
h and W̃ empt

h for the corresponding cylindrical sets in R3, see also

(6.52). We also note that W bjn
h ⊂ W cov

h by (6.25)(iii). Observe that the definition of Ugood
h in

Step 3, the definition of QU
h in (6.16), and (6.19) shows that L2(Uη \ Ugood

h ) → 0 as h→ 0. By the

definition of W empt
h in (6.55), together with (6.27) and the previous observation, we find

L2(Uη \W empt
h ) → 0 as h→ 0 . (6.56)

In view of (6.53) and (6.54), on W̃ empt
h , the definition of the deformation is similar to the ansatz for

the recovery sequence in [36, Equation (6.24)], namely, using also (6.50), we have

ȳh(x) = zh(x
′) + hx3bh(x

′) + h2
x23
2
d(x′) for x′ ∈ W̃ empt

h , (6.57)
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with

∇hȳh(x) =
(
Rh(x

′) + hx3(∇′bh(x
′), d(x′))

)
+ h2

x23
2
(∇′d(x′), 0) , (6.58)

where Rh(x
′) := (∇′zh(x

′), bh(x
′)). Here, we can repeat the estimate from the purely elastic case

[36, Proof of Theorem 6.1(ii)], which we perform here for the sake of completeness. In view of (6.58),
we obtain

RT
η ∇hȳh − Id = hx3R

T
η

(
∇′bh, d

)
+ h2

x23
2
RT

η (∇′d, 0) +RT
ηRh − Id =: Ah , (6.59)

where we set Rη := (Fη, bη) ∈ SO(3), cf. (6.13). Define χh := χ
W̃ empt

h
for brevity. In view of

(6.14)(i),(ii) and (6.56), we get that, up to subsequences in h (not relabeled),

1

h
χh(R

T
ηRh − Id) → 0 and

1

h
χhAh → x3R

T
η (∇′bη, d) pointwise L3-a.e. on Ω \ Ṽη . (6.60)

Moreover, (2.4)(i), (6.59), the growth from above on W in (2.4)(v), and (6.14)(ii) yield

h−2χhW (∇hȳh) ≤ Ch−2|Ah|2 ≤ C(|∇′bη|2 + |d|2 + |∇′d|2) + O(h) on W̃ empt
h ,

where O(h) has to be understood in the L1-sense. Therefore, by the Dominated Convergence
Theorem, a Taylor expansion of W , see (2.4) and (2.11), (6.56), (6.59), and (6.60), we obtain

lim
h→0

h−2

�
W̃ empt

h

W (∇hȳh(x)) dx =
1

2

�
Ω\Ṽη

x23Q3(R
T
η (∇′bη, d)) dx . (6.61)

Now, recalling (2.12) and (2.17), we can choose a function d ∈ C1
0 (S;R3) such that

lim
h→0

h−2

�
W̃ empt

h

W (∇hȳh(x)) dx ≤ 1

24

�
S\Vη

Q2(IIyη (x
′)) dx′ + η . (6.62)

We now come to the integral over W̃ bjn
h . On this set, the derivative of ȳh reads as

∇hȳh(x) =
∑
j∈I

φj(x
′)
(
(∇′ȳj(x

′), b̄j(x
′)) + hx3(∇′b̄j(x

′), d(x′))
)
+ h2

x23
2
(∇′d(x′), 0)

+
∑
j∈I

(
ȳj(x

′) + hx3b̄j(x
′)
)
⊗ (∇′φj(x

′), 0) . (6.63)

Fix qi ∈ Wbdy
h ∪W jump

h ∪Wneigh
h , and set q̃′i := q′i × (− 1

2 ,
1
2 ). Since ∇′(∑

j∈I φj

)
= 0, see (6.53)(i),

we get∥∥∥∑
j∈I

(
ȳj + hx3b̄j

)
⊗ (∇′φj , 0)

∥∥∥
L2(q̃′i)

=
∥∥∥∑

j∈I

(
(ȳj − ȳi) + hx3(b̄j − b̄i)

)
⊗ (∇′φj , 0)

∥∥∥
L2(q̃′i)

.

By (6.51) and the fact that ∥∇′φj∥∞ ≤ Cℓ(qi)
−1 for all j ∈ I with supp(φj) ∩ q′i ̸= ∅, see (6.23)(ii)

and (6.53)(ii),(iii), we thus find∥∥∥∑
j∈I

(
ȳj + hx3b̄j

)
⊗ (∇′φj , 0)

∥∥∥
L2(q̃′i)

≤ Ch∥∇′(Fh, bh)∥L2(N(qi)) + Ch2∥ah∥L2(N(qi)) .

This along with (6.63), (6.50), (6.51), the fact that ∇′b̄j ∈ {0,∇′bh}, and ℓ(qi) ≤ Ch, shows

∥∇hȳh − (∇′ȳi, b̄i)∥L2(q̃′i)
≤ Ch∥∇′(Fh, bh)∥L2(N(qi)) + Ch2∥ah∥L2(N(qi)) + Ch∥d∥W 1,2(q′i)

.

Then, by (6.36), (6.42), and (6.49), we get

∥dist(∇hȳh, SO(3))∥L2(q̃′i)
≤ Ch∥∇′(Fh, bh)∥L2(N(qi)) + Ch2∥ah∥L2(N(qi)) + Ch∥d∥W 1,2(q′i)

.
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Summing over all qi ∈ Wbdy
h ∪W jump

h ∪Wneigh
h and using (6.55), (6.23)(iii), and (6.25)(iii), we deduce

∥dist(∇hȳh, SO(3))∥2
L2(W̃bjn

h )
≤ Ch2∥∇′(Fh, bh)∥2L2(W cov

h ) + Ch2∥d∥2W 1,2(W cov
h ) + Ch4∥ah∥2L2(W cov

h ) ,

(6.64)

where we also used N(qi) ⊂ q′′i , see (6.45). Now, by (6.14)(ii), (6.27), and (6.36) we find that

h−2∥dist(∇hȳh, SO(3))∥2
L2(W̃bjn

h )
→ 0 as h→ 0 .

This, along with (6.55), (6.62), and (2.4)(v) shows

lim
h→0

h−2

�
Ũgood

h

W (∇hȳh(x)) dx ≤ 1

24

�
S\Vη

Q2(IIyη (x
′)) dx′ + η .

Step (7): Definition of yh on Ũ ext
h . We now come to the definition of yh on the extended set

Ũ ext
h defined in (6.52). Recall that Wbdy

h ⊂ Q0
h, see (6.25)(i). We can thus extend the Whitney-

type covering Wh given by Proposition 6.1 to a new covering, denoted by Wext
h , by adding all

squares of Qext
h , see (6.21). On each of these squares qi ∈ Wext

h \ Wh, we pick one of the squares

qj ∈ Wbdy
h which is closest to qi and define Fi := Fj and bi := bj , where Fj and bj are given in

(6.37). Accordingly, we also define the affine function yi, see (6.42), and as in (6.50) we introduce
the notation ȳi(x

′) := yi(x
′) and b̄i := bi. Exploiting the fact that for neighboring squares the

difference of these objects can be controlled, see (6.46) and its justification in (6.47) and (6.48), it
is elementary to check that (6.51) still holds for the extended covering.

We let (φi)i∈I′ be a partition of unity related to Wext
h satisfying (6.53). Then, choosing a field

d ∈ C1
0 (S;R3) as in Step 6, we define yh ∈W 1,2(Ũ ext

h ;R3) by

yh(x) :=
∑
i∈I′

φi

(
ȳi(x

′) + hx3b̄i(x
′)
)
+ h2

x23
2
d(x′) . (6.65)

The estimate (6.61) holds still true for yh in place of ȳh and W empt
h × (− 1

2 − Λh, 12 + Λh) in place

of W̃ empt
h . In particular, the limit is not affected by the thickening in the x3-direction. In a similar

fashion, arguing as in Step 6, by replacing the estimate on W̃ bjn
h in (6.64) accordingly by a calculation

on W ∗
h := (W bjn

h ∪ (U ext
h \ Ugood

h ))× (− 1
2 − Λh, 12 + Λh), we get

h−2∥dist(∇hyh, SO(3))∥2L2(W∗
h ) ≤ C∥∇′(Fh, bh)∥2L2(W cov,∗

h ) +C∥d∥2W 1,2(W cov,∗
h ) +Ch2∥ah∥2L2(W cov,∗

h ) ,

where we set W cov,∗
h :=W cov

h ∪ (U ext
h \Ugood

h ). Hence, repeating verbatim the argument after (6.64),
we obtain

h−2∥dist(∇hyh, SO(3))∥2L2(W∗
h ) → 0 as h→ ∞ . (6.66)

A combination of these estimates as before, shows

lim
h→0

h−2

�
Ũext

h

W (∇hyh(x)) dx ≤ 1

24

�
S\Vη

Q2(IIyη
(x′)) dx′ + η . (6.67)

Step (8): Conclusion. We define yh : Ω → R3 by yh = Th(id) on Ṽh (recall its definition before

(6.9)) and otherwise as the restriction of the function in (6.65) to Ω \ Ṽh. Here, we use (6.22), recall

also (6.12), to ensure that Ω \ Ṽh ⊂ Ũ ext
h . We first treat the case that ∥y∥L∞(S) < M . In view of

(6.4), (6.14)(iv), and (6.65), we find ∥yh∥L∞(Ω) ≤ M for h sufficiently small, i.e., (6.10)(iv) holds.
Here, recalling the estimates in Step 5 it is indeed not restrictive to assume that ∥ȳi∥∞ ≤ ∥zh∥∞
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and ∥b̄i∥∞ ≤ ∥bh∥∞. From the representation of yh and ∇hyh on W̃ empt
h , see (6.57)–(6.58), by using

(6.9)(i), (6.14), and the fact that L3((Ω \ Ṽh) \ W̃ empt
h ) → 0, see (6.56), we find

χ
W̃ empt

h
yh → ỹη in L1(Ω;R3) , and χ

W̃ empt
h

∇hyh → (∇′ỹη, ∂1ỹη ∧ ∂2ỹη) strongly in L2(Ω;R3×3) .

This together with ∥yh∥L∞(Ω) ≤ M and (6.66) shows (6.10)(i),(ii). Eventually, (6.10)(iii) follows
from (6.67).

We close the proof by explaining the necessary adaptations in the case that ∥y∥L∞(S) =M . Note
that the sequence (yh)h>0 as defined in Step 7 might not satisfy ∥yh∥L∞ ≤ M in this case. Using

(6.22) and recalling the definition of Ũ ext
h in (6.52) we find

(Ω \ Ṽh)(2−√
2)Λh ⊂ Ũ ext

h .

Then, choosing a universal C > 0 large enough such that Ω ⊂ BC(0) ⊂ R3, and defining

σh := 1 +
1

2C
Λh , (6.68)

it is elementary to check that

σhx ∈ Ũ ext
h for all x ∈ Ω \ Ṽh . (6.69)

We define the sequence deformations (ŷh)h>0 with ŷh ∈ W 1,2(Ω \ Ṽh;R3), by ŷh := Th(id) on Ṽh
and

ŷh(x) := σ−1
h yh(σhx) on Ω \ Ṽh,

where yh is given in (6.65). By (6.69) this is well defined. From (6.65) and (6.14)(iv) we obtain
∥yh∥L∞(Ω) ≤M +Dh, where D := ∥d∥∞ + ∥bη∥∞. Recalling the choice (6.68) and choosing further

Λ ≥ 2C ·D
M

, (6.70)

which clearly only depends on η, we find ∥ŷh∥L∞(Ω) ≤ M . This shows (6.10)(iv). As σh → 1 for
h→ 0, we easily get that also (6.10)(i)–(iii) are satisfied. This concludes the proof.

Appendix A. Proofs of Proposition 3.8 and Corollary 3.9

Proof of Proposition 3.8. We recall once again that by C > 0 we denote generic constants which
are independent of h, ρ. We fix i ∈ Ihg . Let

Pi,h :=
{
(P j

i,h)j the connected components of Q̂h,ρ(i) \ ∂E∗
h

}
,

with the enumeration being such that L3(P 1
i,h) is always maximal. We can use the maximality of

P 1
i,h in terms of its volume, the relative isoperimetric inequality, and (3.23) to estimate

L3(Q̂h,ρ(i) \ P 1
i,h) =

∑
j≥2

L3(P j
i,h) ≤ cisop

∑
j≥2

[H2(∂P j
i,h ∩ Q̂h,ρ(i))]

3/2

≤ cisopα
1/2h

∑
j≥2

H2(∂P j
i,h ∩ Q̂h,ρ(i)) ≤ ChH2

(
∂E∗

h ∩ Q̂h(i)
)
,

(A.1)

for C := 2cisopα
1/2. Furthermore, by (3.2), (3.3), (3.23), (A.1), and the choice of α in (3.21) and ρ

in (3.16),

L3(Q̂h(i) \ P 1
i,h) ≤ L3(Q̂h(i) \ Q̂h,ρ(i)) + 2cisopα

3/2h3 ≤ 9h3

128
+

9h3

128
=

1

64
L3(Q̂h(i)) . (A.2)

We now distinguish between the two cases, namely

(a) P 1
i,h ⊂ E∗

h , (b) P 1
i,h ∩ E∗

h = ∅ .
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Case (a): If P 1
i,h ⊂ E∗

h, we just defineDi,h := P 1
i,h, Ri,h := Id, bi,h := 0, and zi,h ∈W 1,2(Q̂h,ρ(i);R3)

by zi,h := id. Then (3.27) holds by (A.1) and (A.2), while (3.28), (3.29), and (3.30) are trivially
satisfied, recalling (3.19).

Case (b): Suppose now that P 1
i,h∩E∗

h = ∅. Then, we apply Theorem 3.3 to the map v∗h for ρ > 0,

γ := κh/h
2, and ηh → 0 satisfying (3.17). Property (3.11) provides a rotation R1

i,h ∈ SO(3) and

b1i,h ∈ R3 such that

(i)

�
P 1

i,h

∣∣sym((R1
i,h)

T∇v∗h − Id
)∣∣2 dx ≤ C

(
1 + Cηh

(h−2κh)
−15/2h−3εi,h

)
εi,h ,

(ii) h−2

�
P 1

i,h

|v∗h − (R1
i,hx+ b1i,h)|2 dx+

�
P 1

i,h

∣∣(R1
i,h)

T∇v∗h − Id
∣∣2 dx ≤ Cηh

(h−2κh)
−5εi,h ,

where we recall (3.22) and we have set γ = κh/h
2. Our choice of (ηh)h>0 in (3.17), the definition in

(3.23), and (2.5) ensure that, for h > 0 small enough depending on ρ,

(i)

�
P 1

i,h

∣∣sym((R1
i,h)

T∇v∗h − Id
)∣∣2 dx ≤ C0εi,h ,

(ii) h−2

�
P 1

i,h

|v∗h − (R1
i,hx+ b1i,h)|2 dx+

�
P 1

i,h

∣∣(R1
i,h)

T∇v∗h − Id
∣∣2 dx ≤ C0h

−2/5εi,h ,

(A.3)

for a universal constant C0 > 0. It is also easy to verify that

|b1i,h| ≤ CM (A.4)

for a universal constant C > 0 that is independent of h > 0. Indeed, since ∥vh∥L∞(Ωh) ≤ M for
M ≥ 1, using the triangle inequality we obtain

L3(P 1
i,h)|b1i,h|2 ≤ C

�
P 1

i,h

|v∗h(x)− (R1
i,hx+ b1i,h)|2 + CL3(P 1

i,h)
(
∥vh∥2L∞(Ωh)

+ (diam(Ωh))
2
)
. (A.5)

Using further (A.2), (A.3)(ii), and (3.23), we get

|b1i,h|2 ≤ Ch−3h2h−2/5εi,h + C(M2 + C) ≤ C(M2 + C) , (A.6)

hence |b1i,h| ≤ CM .

We now show that we can use Theorem 3.4 to obtain a Sobolev function satisfying (3.30). Intro-

ducing the function ui,h ∈ SBV 2(Q̂h,ρ(i);R3) by

ui,h(x) := χP 1
i,h

(x)
[
(R1

i,h)
T v∗h(x)− x− (R1

i,h)
T b1i,h

]
, (A.7)

we observe that Jui,h
⊂ ∂E∗

h ∩ Q̂h,ρ(i). Now, (A.7), (A.3), and (3.23) imply that

(i)

�
Q̂h,ρ(i)

|sym(∇ui,h)|2 dx ≤ Cεi,h ,

(ii) h−2

�
Q̂h,ρ(i)

|ui,h|2 dx+

�
Q̂h,ρ(i)

|∇ui,h|2 dx ≤ Cε
9/10
i,h .

(A.8)

Applying Theorem 3.4 to the map ui,h, in view of Remark 3.5 and (3.23), we obtain a set of finite

perimeter ωi,h ⊂ Q̂h,ρ(i) that satisfies

H2(∂∗ωi,h) ≤ cKPH2(Jui,h
) ≤ cKPH2(∂E∗

h ∩ Q̂h,ρ(i)) , (A.9)
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and

L3(ωi,h) ≤ cKP

(
H2(Jui,h

)
)3/2 ≤ cKP

(
H2(∂E∗

h ∩ Q̂h,ρ(i))
)3/2

≤ cKPα
1/2hH2(∂E∗

h ∩ Q̂h,ρ(i)) ≤ cKPα
3/2h3 ≤ 9

128
h3 <

1

64
L3(Q̂h(i)) ,

(A.10)

where we used again (3.21). Theorem 3.4 provides also a Sobolev function ζi,h ∈W 1,2(Q̂h,ρ(i);R3)
such that

(i) ζi,h ≡ ui,h on Q̂h,ρ(i) \ ωi,h ,

(ii) ∥sym(∇ζi,h)∥L2(Q̂h,ρ(i))
≤ cKP∥sym(∇ui,h)∥L2(Q̂h,ρ(i))

,

(iii) ∥ζi,h∥∞ ≤ ∥ui,h∥∞ ≤ CM ,

(A.11)

where the final estimate in (A.11)(iii) follows from ∥v∗h∥∞ ≤M , (A.4), and the definition of ui,h in
(A.7).

We then define as dominant component the set

Di,h := P 1
i,h \ ωi,h , (A.12)

so that by (A.1), (A.2), and (A.10) we indeed verify that (3.27) holds. The estimate (3.28) follows

directly from the definition (A.12), the fact that ∂P 1
i,h ∩ Q̂h,ρ(i) ⊂ ∂E∗

h ∩ Q̂h,ρ(i), and (A.9).

Applying the classical Korn’s inequality in W 1,2, we find Ai,h ∈ R3×3
skew such that�

Q̂h,ρ(i)

|∇ζi,h −Ai,h|2 dx ≤ CKP

�
Q̂h,ρ(i)

|sym(∇ui,h)|2 dx ≤ CCKPεi,h (A.13)

for a universal CKP > 0, where we used (A.11)(ii) and (A.8)(i). We now set

zi,h := R1
i,hζi,h +R1

i,hid + b1i,h ∈W 1,2(Q̂h,ρ(i);R3) , (A.14)

and observe that by (A.7), (A.11)(i), and (A.12) it holds that zi,h ≡ v∗h on Di,h, which in particular
implies (3.30)(i). Moreover, (3.30)(iii) follows from (A.11)(iii) and (A.4).

It remains to show (3.29) and (3.30)(ii). In view of (A.13) and (A.14), we have�
Q̂h,ρ(i)

|∇zi,h −R1
i,h(Id +Ai,h)|2 dx ≤ Cεi,h . (A.15)

Next, we substitute R1
i,h(Id+Ai,h) in (A.15) by a suitable rotation. For this purpose, we prove that

there exists Ri,h ∈ SO(3) such that

L3(Q̂h,ρ(i))|R1
i,h(Id +Ai,h)−Ri,h|2 ≤ Cεi,h . (A.16)

Indeed, by (3.27) together with (A.11)(i), (A.12), (A.8)(ii), and (A.13), we get

h3|Ai,h|2 ≤ L3(Di,h)|Ai,h|2 =

�
Di,h

∣∣∇ui,h +Ai,h −∇ζi,h
∣∣2 dx

≤ 2
(�

Di,h

|∇ui,h|2 dx+

�
Di,h

|∇ζi,h −Ai,h|2 dx
)
≤ C(ε

9/10
i,h + εi,h) .

Using that εi,h ≤ h4, see (3.23), we obtain

|Ai,h|2 ≤ Ch−3ε
9/10
i,h ≤ Ch−7/5ε

1/2
i,h .

A standard Taylor expansion, cf. [36, Equation (33)], gives

dist(G,SO(3)) = |sym(G)− Id|+O(|G− Id|2) ,
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which further yields

dist2
(
Id +Ai,h, SO(3)

)
≤ C|Ai,h|4 ≤ Ch−14/5εi,h ,

i.e., there exists Ri,h ∈ SO(3) such that

|R1
i,h(Id +Ai,h)−Ri,h|2 ≤ Ch1/5h−3εi,h ≤ Ch−3εi,h ≤ C(L3(Q̂h,ρ(i)))

−1εi,h .

This proves (A.16) which, combined with (A.15), gives
�
Q̂h,ρ(i)

|∇zi,h −Ri,h|2 dx ≤ Cεi,h .

This yields the second part of (3.30)(ii). Applying the Poincaré inequality on W 1,2(Q̂h,ρ(i);R3) we
obtain a vector bi,h ∈ R3 such that the rigid motion ri,h(x) := Ri,hx+ bi,h satisfies

h−2

�
Q̂h,ρ(i)

|zi,h(x)− ri,h(x)|2 dx ≤ Cεi,h ,

concluding the proof of (3.30)(ii). Moreover, (3.29) is an immediate consequence of (3.30)(i),(ii).
Finally, by repeating verbatim the argument in (A.5)–(A.6) with bi,h in place of b1i,h, we also obtain

that |bi,h| ≤ CM . This concludes the proof. □

Remark A.1. Note again that the indices considered in Ihg are related to cuboids for which εi,h ≤
h4. In [34, Equation (3.47)] this additional requirement was not necessary since the global elastic
energy scaling was h4. In contrast, in the present setting, the global elastic energy scaling is h3, and
an additional control is needed for the following reason: Since the proof of Proposition 3.8 relies on
applying Theorem 3.3 on Q̂h,ρ(i), in order to ensure that the constant in (3.11)(i) can be chosen
independently of h > 0, it is essential that εi,h ≪ h3. Thus, using the global energy bound εi,h ≤ h3

would not be sufficient for this purpose. Yet, considering any bound of the form εi,h ≤ h3+µ, for
µ > 0, would be sufficient, up to adjusting the curvature regularization parameter κh in (2.5).

The choice µ = 1 is canonical, since the cardinality of indices i such that εi,h > h4 is of the same

order (namely h−1) as the one of the indices i′ for which H2(∂E∗
h ∩ Q̂h,ρ(i

′)) > αh2, i.e., for which
the surface area condition in the definition (3.23) is violated.

Proof of Corollary 3.9. By (3.29) and the triangle inequality we can estimate
�
Di,h∩Di′,h

∣∣ri,h − ri′,h
∣∣2 dx ≤ 2

�
Di,h

∣∣v∗h(x)− ri,h(x)
∣∣2 dx+ 2

�
Di′,h

∣∣v∗h(x)− ri′,h(x)
∣∣2 dx

≤ Ch2(εi,h + εi′,h) . (A.17)

Note that L3(Q̂h(i)∩ Q̂h(i
′)) > 9

8h
3 and L3(Q̂h(j) \Dj,h) ≤ 9

32h
3 by (3.27) for j = i, i′. This yields

L3(Di,h ∩Di′,h) ≥ L3(Q̂h(i) ∩ Q̂h(i
′))− L3(Q̂h(i) \Di,h)− L3(Qh(i

′) \Di′,h) ≥
9

16
h3 .

Moreover, Q̂h(i)∪ Q̂h(i
′) is contained in a ball of radius r = ch for a universal constant c > 0. This

along with (A.17) and Lemma 3.7 shows the first part of (3.31). The estimate for |Ri,h − Ri′,h|2
therein follows exactly in the same fashion, using again (3.29). □
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Appendix B. A linearization argument for the elastic energy liminf.

We detail the by now classical linearization argument to obtain (5.5). Let (λh)h>0 ⊂ (0,∞) be
such that

λh → ∞ , hλh → 0 as h→ 0 , (B.1)

and define

Θh,ρ := Ω1,ρ ∩ {w̃h = yh} ∩ {|Gh| ≤ λh} . (B.2)

Note that L3({w̃h ̸= yh} ∩ Ω1,ρ) → 0 by (4.21), (2.7), (3.9)(i), and a scaling argument. Combining
this with the fact that suph>0 ∥Gh∥L2(Ω1,ρ) ≤ C, see (5.4), λh → +∞, and Chebyshev’s inequality,
we obtain

L3(Ω1,ρ \Θh,ρ) → 0 as h→ 0 , (B.3)

i.e., χΘh,ρ
→ 1 boundedly in measure on Ω1,ρ as h → 0. By (2.10), W (Id) = 0, W ≥ 0, and the

definition of Θh,ρ, we get

lim inf
h→0

(
h−2

�
Ω\Vh

W (∇hyh) dx
)
= lim inf

h→0

(
h−2

�
Ω

W (∇hyh) dx
)

≥ lim inf
h→0

(
h−2

�
Ω1,ρ

χΘh,ρ
W (∇hw̃h) dx

)
.

The regularity and the structural hypotheses on W , recall (2.4), imply that

W (Id + F ) = 1
2Q3(F ) + Φ(F ) ,

where Φ: R3×3 → R satisfies

sup
{ |Φ(F )|

|F |2 : |F | ≤ σ
}
→ 0 as σ → 0 . (B.4)

Together with the definition of Gh in (5.4), we obtain

lim inf
h→0

(
h−2

�
Ω\Vh

W (∇hyh) dx
)
≥ lim inf

h→0

(
h−2

�
Ω1,ρ

χΘh,ρ
W (Id + hGh) dx

)
≥ lim inf

h→0

�
Ω1,ρ

χΘh,ρ

(
1
2Q3(Gh) + h−2Φ(hGh)

)
dx

= lim inf
h→0

1

2

�
Ω1,ρ

χΘh,ρ
Q3(Gh) dx . (B.5)

In the passage to the last line above, we made use of the fact that

lim sup
h→0

�
Ω1,ρ

χΘh,ρ
h−2|Φ(hGh)|dx ≤ lim sup

h→0

(
sup

{
|Φ(hGh)|
|hGh|2 : |hGh| ≤ hλh

}�
Ω1,ρ

χΘh,ρ
|Gh|2 dx

)
= 0 ,

which follows from the fact that (Gh)h>0 is bounded in L2(Ω1,ρ;R3×3), (B.2), (B.4), and hλh → 0 ,
cf. (B.1). Hence, (B.5), (5.4), the fact that χΘh,ρ

→ 1 boundedly in measure in Ω1,ρ, see (B.3), and
the convexity of Q3 imply that

lim inf
h→0

(
h−2

�
Ω\Vh

W (∇hyh) dx
)
≥ 1

2

�
Ω1,ρ

Q3(G) dx ≥ 1

2

�
Ω1,ρ

Q2

(
G′) dx ,

which is exactly (5.5) .
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jump set. Mathematische Annalen 383 (2022), 1179–1216.

[17] M. Carriero, A. Leaci, F. Tomarelli. A survey on the Blake-Zisserman functional. Milan J. Math. 83 (2015),

397–420.
[18] S. Conti, G. Dolzmann. Γ-convergence for incompressible elastic plates. Calc. Var. Partial Differential Equations

34 (2009), 531–551.
[19] G. Cortesani, R. Toader. A density result in SBV with respect to non-isotropic energies. Nonlinear Analysis

38 (1999), 585–604.
[20] V. Crismale, M. Friedrich. Equilibrium configurations for epitaxially strained films and material voids in

three-dimensional linear elasticity. Arch. Ration. Mech. Anal. 237 (2020), 1041–1098.
[21] G. Dal Maso. An introduction to Γ-convergence. Birkhäuser, Boston · Basel · Berlin 1993.
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[47] M. Lewicka, D. Lučić. Dimension reduction for thin films with transversally varying prestrain: the oscillatory

and the non-oscillatory case. Comm. Pure Appl. Math. 73 (2020), 1880–1932.

[48] M. Lewicka, M.G. Mora, M.R. Pakzad. Shell theories arising as low energy Γ-limit of 3d nonlinear elasticity.
Ann. Sc. Norm. Super. Pisa, Cl. Sci. IX (2010), 1–43.

[49] M. Liero, A. Mielke. An evolutionary elasto-plastic plate model derived via Γ-convergence. Math. Models
Methods Appl. Sci. (M3AS) 21 (2011), 1961–1986.

[50] F. Maggi. Sets of finite perimeter and geometric variational problems: an introduction to Geometric Measure

Theory. 135, Cambridge University Press, (2012).
[51] G.B. Maggiani, M.G. Mora. A dynamic evolution model for perfectly plastic plates. Math. Models Methods

Appl. Sci. (M3AS) 26 (2016), 1825-1864.
[52] M.G. Mora, S. Müller. Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ-

convergence. Calc. Var. Partial Differential Equations 18 (2003), 287–305.

[53] M.G. Mora, S. Müller, M.G. Schultz. Convergence of equilibria of planar thin elastic beams. Indiana Univ.

Math. J. 56 (2007), 2413–2438.
[54] T. Quentin de Gromard. Strong approximation of sets in BV (Ω) by sets with C1 boundary. C. R. Acad. Sci.

Paris, Ser. I 348 (2010), 369–372.
[55] A. Rätz, A. Ribalta, A. Voigt. Surface evolution of elastically stressed films under deposition by a diffuse

interface model. J. Comput. Phys. 214 (2006), 187–208.

[56] M. Santilli, B. Schmidt. Two phase models for elastic membranes with soft inclusions. Rend. Lincei-Mat.
Appl. 34 (2023), 401–431.

https://ems.press/journals/aihpc/articles/14298093
https://arxiv.org/abs/1503.06821


48 MANUEL FRIEDRICH, LEONARD KREUTZ, AND KONSTANTINOS ZEMAS

[57] M. Santilli, B. Schmidt. A Blake-Zisserman-Kirchhoff theory for plates with soft inclusions. J. Math. Pures

Appl. 175 (2023), 143–180.

[58] B. Schmidt. A derivation of continuum nonlinear plate theory from atomistic models. SIAM Multiscale Model.
Simul. 5 (2006), 664–694.

[59] B. Schmidt. Plate theory for stressed heterogeneous multilayers of finite bending energy. J. Math. Pures Appl.

88 (2007), 107–122.
[60] B. Schmidt. A Griffith–Euler–Bernoulli theory for thin brittle beams derived from nonlinear models in varia-

tional fracture mechanics. Math. Models Methods Appl. Sci. (M3AS) 27 (2017), 1685–1726.

[61] M. Siegel, M.J. Miksis, P.W. Voorhees. Evolution of material voids for highly anisotropic surface nergy. J.
Mech. Phys. Solids 52 (2004), 1319–1353.

[62] E. Stein. Singular Integrals and Differentiability Properties of Functions. (PMS-30) Princeton University Press,

1970.

(Manuel Friedrich) Department of Mathematics, FAU Erlangen-Nürnberg. Cauerstr. 11, D-91058 Er-

langen, Germany

Email address: manuel.friedrich@fau.de

(Leonard Kreutz) Department of Mathematics, School of Computation, Information and Technology,

Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
Email address: leonard.kreutz@tum.de

(Konstantinos Zemas) Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60,

53115 Bonn, Germany
Email address: zemas@iam.uni-bonn.de


	1. Introduction
	1.1. Organization of the paper
	1.2. Notation

	2. The models and the main results
	2.1. The three-dimensional model
	2.2. Limiting model and main result

	3. Piecewise rigidity and Sobolev modification of deformations
	3.1. Rigidity results
	3.2. Local rigidity estimates and Sobolev replacement on good cubes
	3.3. Construction of almost Sobolev replacements and proof of Proposition 3.1

	4. Proof of Theorem 2.1
	5. Proof of Theorem 2.3(i)
	6. Proof of Theorem 2.3(ii)
	Appendix A. Proofs of Proposition 3.8 and Corollary 3.9
	Appendix B. A linearization argument for the elastic energy liminf.
	Acknowledgements
	References

