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1. Introduction

The optimal transport (OT) problem, which was first proposed by Monge in 1781 [24]
and subsequently relaxed by Kantorovich during the 1940-s [19, 20], involves identifying
the most efficient way to transfer mass from one probability measure to another, all while
minimizing a specified cost function. This profound problem is intricately connected many
areas of mathematics, including partial differential equations [18, 26] and statistics [28,
5, 30], and its applications are vast, extending into fields such as economics [13], fluid
mechanics [2, 6], image processing [27], and machine learning [29]. In recent decades,
advancements in computational techniques, notably entropic regularization [9, 3, 14, 8],
have facilitated the practical implementation of OT in large-scale scenarios as well as the
numerical resolution of many variational problems involving Optimal Transport terms.

In this paper, we focus specifically on the semi-discrete optimal transport (OT) problem,
that is

max
γ∈Π(ρ,µ)

∫
b(x, y)dγ , (1)

where the source measure ρ(x) is absolutely continuous with respect to the Lebesgue mea-
sure, the target measure µ is supported on a finite set and Π(ρ, µ) is the set of couplings
having ρ and µ as marginals. This particular variant has garnered increased interest re-
cently due to its relevance in applications such as geometric optics [7] and mesh generation
[12]. Numerous studies have discussed various numerical algorithms relevant to this prob-
lem [21, 11]; we refer the reader to [23] and the references within for an overview on this
topic. Motivated by some recent works in the discrete case [25, 17], our focus here is on
the entropic regularized version of the semi-discrete OT problem

max
γ∈Π(ρ,µ)

∫
X×Y

b(x, y)dγ − εEnt(γ | ρ⊗ σ) , (2)

where σ is the counting measure on Y and Ent(γ | ρ ⊗ σ) is the relative entropy with
respect to the product measure. In particular by studying the dual (semi-discrete) entropic
problem

min
v∈RN

∫
X
ε log

( N∑
k=1

e
b(x,yk)−vk

ε

)
dρ+

N∑
k=1

vkµk + ε , ε > 0 . (3)

we manage to equivalently characterize the curve of solutions with respect to the regular-
ization parameter ε 7→ v(ε) through a well-posed (even when the regularization parameter
vanishes) ordinary differential equation. This extends a result in the remarkable paper by
Delalande [10] where it was shown that a given curves of solutions to the entropic prob-
lem satisfy an ODE, but not the converse, that any solution of the corresponding Cauchy
problem must be in fact be a curve of solutions to the entropic OT problem. Let us
also emphasize that our work here applies to general cost functions, whereas [10] focuses
exclusively on the quadratic cost b(x, y) = −|x − y|2. Moreover, we establish uniform
bound on the smallest eigenvalue of the Hessian of the dual functional when the curve
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ε 7→ v(ε) approaches the solution to the unregularized problem. This bound seems to be
a special feature of the semi-discrete setting, as we don’t see a clear way to obtain similar
estimates in fully discrete problems. It has important computational consequences, as it
allows one to avoid numerical instabilities and therefore compute the solution to the fully
unregularized problem (1) by numerically solving the ODE characterizing solutions to (2)
up to ε = 0. In addition, it allows us to estimate convergence rates of the solutions as
ε→ 0, in the spirit of the results in [1] and [10], but for a generic cost function.

Overview of the paper The paper is organized as follows: Section 2 presents theoreti-
cal results associated with the problem statement, particularly highlighting the uniform
boundedness of the Hessian matrix. Next, Section 3 establishes that solutions can be
characterized as solutions to an appropriate ODE. In Section 4, we provide an extensive
collection of computational examples for one-dimensional, two-dimensional, and three-
dimensional examples, incorporating various cost functions. Additionally, we compare the
solution derived from the ODE approach with the traditional Newton’s method, observing
that the proposed algorithm is competitive for problems involving the squared Euclidean
distance but demonstrates superior performance when dealing with different powers of the
Euclidean cost function and in scenarios where the target points are not contained within
the source measure.

2. Entropic optimal transport and the governing ODE

Consider X a compact convex subset of Rn and and a finite set Y = {y1, y2, . . . , yN} ⊂ Rn
of N points. Take two probability measures ρ ∈ P(X) and µ ∈ P(Y ) satisfying the
following hypothesis

(H1) ρ(x) is absolutely continuous with respect to the Lebesgue measure and bounded
from above and below, that is ∃ m,m > 0 such that 0 < m ≤ ρ(x) ≤ m <∞;

(H2) µ =
∑N

k=1 µkδyk is discrete probability measure on Y , bounded from below by a
positive constant, µk ≥ µ > 0, ∀k.

Then, the entropic (semi-discrete) optimal transport (OT) can be formulated as follows:

max
γ∈Π(ρ,µ)

∫
X×Y

b(x, y)dγ − εEnt(γ | ρ⊗ σ) , (4)

where ε ∈ [0,∞) is a regularization parameter, Π(ρ, µ) is the set of probability measures
on X × Y having ρ and µ as marginals, σ is the counting measure on Y , b(x, y) is a cost
function and Ent(·|ρ⊗σ) is the Boltzmann-Shannon relative entropy (or Kullback-Leibler
divergence) w.r.t. the product measure ρ⊗σ, defined for general probability measures p, q
as

Ent(p | q) =


∫
Rd
η log(η) dq if p = ηq,

+∞ otherwise.
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The fact that q is a probability measure ensures that Ent(p | q) ≥ 0. It is easy to show,
see for instance [4, 16], that (4) admits the following dual formulation :

min
v∈RN

∫
X
ε log

( N∑
k=1

e
b(x,yk)−vk

ε

)
dρ+

N∑
k=1

vkµk + ε , ε > 0 . (5)

Remark 2.1. Notice that the term ε log

(∑N
k=1 e

b(x,yk)−vk
ε

)
in (5) is the so called b-soft-

transform; roughly speaking this term converges to the usual b-transform of OT theory
vb(x) := supy b(x, y)− v(y) as ε→ 0.

Before going into details let us reformulate problems (4) (5) in a more convenient way:
consider the following change of variables: t = 1−ε with t ∈ [0, 1] and b(x, yi) = −tc(x, yi).
Then the primal problem (4) can be re-written as

min
γ∈Π(ρ,µ)

t

∫
X×Y

c(x, y)dγ + (1− t)Ent(γ | ρ⊗ σ), t ∈ [0, 1]. (6)

Notice that (6) can be now seen as an interpolation between the case where the entropy
is dominant, at t = 0, for which the solution is explicit, γ = ρ ⊗ σ, and the original
unregularized semi-discrete optimal transport problem, at t = 1. It is straightforward to
then derive the new dual problem which takes the form:

min
ψ∈RN

Φ(ψ, t) :=

∫
X

(1− t) log

[ N∑
k=1

e
ψk−tc(x,yk)

1−t

]
dρ(x)−

N∑
k=1

ψkµk − (1− t) . (7)

From now we will focus on the regularized problems (6), and (7) and their unregularized
counterpart

min
γ∈Π(ρ,µ)

∫
X
c(x, y)dγ(x, y), min

ψ∈RN
−

N∑
k=1

∫
Lagi(ψ)

(c(x, y)− ψi)dρ−
N∑
k=1

ψkµk,

where Lagi(ψ) is the i−th Laguerre cell defined below.

Definition 2.2 (Laguerre cell). Given a vector ψ ∈ RN , the Laguerre cell corresponding
to a target point yi is:

Lagi(ψ) := {x ∈ X | c(x, yi)− ψi ≤ c(x, yk)− ψk, ∀k 6= i}

Furthermore, the measure of the Laguerre cell with respect to the density ρ(x) supported
on X is given by ρ(Lagi(ψ)) :=

∫
Lagi(ψ) dρ(x).

Definition 2.3 (Smoothed Laguerre cell). Given a vector ψ ∈ RN , we define the entropic
counterpart of the Laguerre cell above, that is the smoothed Laguerre cell corresponding
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to a target point yi:

RLagti(ψ) :=
e
ψi−tc(x,yi)

1−t∑N
k=1 e

ψk−tc(x,yk)
1−t

2.1. Preliminary results on semi-discrete entropic optimal transport and
convexity of the objective function

Before introducing the governing ODE in order to characterise (7), let us state some
preliminary results concerning the entropic Kantorovich functional Φ(ψ, t). We will in
particular focus on some convexity properties of the entropic Kantorovich functional in
two different regimes: (1) the entropy term is dominant, that is the case when t ∈ [0, t∗];
(2) the optimal transport term becomes stronger and the entropic solution ψ(t) is close
to the solution ψ(1) of the unregularized problem t ∈ [t∗, 1] . Notice that the existence of
such a t∗ comes from the fact that we can easily show that ψ(t) converges to ψ(1) and so
there exists a t∗ such that for all t ≥ t∗ we have ‖ψ(t)− ψ(1)‖ ≤ δ for some δ > 0, which
will be selected later on to ensure appropriate bounds on the Hessian of Φ.

Let us start by stating some general results and then see how we can improve them in
the case where t ∈ [t∗, 1].

It is quite easy to show that a solution ψ(t) to (7) is actually bounded (notice that X
is compact and c is a continuous cost function, for more details see [15][Chapter 3]) by
2‖c‖∞ such that we can check strong convexity of the functional Φ on the set U := {ψ ∈
RN | ‖ψ‖ ≤ 2‖c‖∞, ψ ⊥ 1}. In particular we obtain the following results

Lemma 2.4. Let ψ ∈ RN be a vector such that
∑N

i=1 ψi = 0. Also, let µ̂ ∈ RN be a
discrete probability vector with a lower bound µ̂, µ̂i ≥ µ̂ > 0, ∀i. Denote by Varµ̂(ψ) :=
the variance of ψ with respect to µ̂. Then, it follows that Varµ̂(ψ) ≥ µ̂||ψ||22.

Proof. Let ψ̄ denote the expectation of ψ with respect to the density µ̂, ψ̄ =
∑N

i=1 µ̂iψi.

Varµ̂(ψ) =
N∑
i=1

µ̂i(ψi − ψ̄)2 ≥
N∑
i=1

µ̂(ψi − ψ̄)2 = µ̂

N∑
i=1

(ψi − ψ̄)2 ≥ µ̂
N∑
i=1

ψ2
i = µ̂||ψ||22 ,

where

N∑
i=1

(ψi − ψ̄)2 =
N∑
i=1

(ψ2
i + ψ̄2 − 2ψ̄ψi) =

N∑
i=1

ψ2
i +Nψ̄2 − 2ψ̄

N∑
i=1

ψi =
N∑
i=1

ψ2
i +Nψ̄2 ≥

N∑
i=1

ψ2
i .

Lemma 2.5. Let ρ a probability measure on the compact set X satisfying (H1). If ψ̂ ∈ U ,
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then ∃µ̂ > 0, such that µ̂i ≥ µ̂, ∀i, where

µ̂i =

∫
X

e
ψ̂i−tc(c,yi)

1−t∑N
k=1 e

ψ̂k−tc(c,yk)
1−t

dρ(x) , t ∈ [0, 1) .

Proof. By using the bounds on ψ̂, c and ρ we get

µ̂i ≥
m

e2 1+t
1−t‖c‖∞

Remark 2.6. Notice that

{∇Φ(ψ̂, t)}i =

∫
X

e
ψ̂i−tc(c,yi)

1−t∑N
k=1 e

ψ̂k−tc(c,yk)
1−t

dρ(x)− µ̂i , t ∈ [0, 1) .

Theorem 2.7 (Strong convexity of Φ). Let ρ ∈ P(X) and µ ∈ P(Y ) satisfying hypoth-
esis (H1) and (H2), respectively. If ψ̂ ∈ U then there exists Ĉ = Ĉ(t) > 0 such that
∇2
ψ,ψΦ(ψ̂, t) � ĈIdN > 0 for t ∈ [0, 1), where

∇2
ψ,ψΦ(ψ̂, t) =

1

1− t
(
diag(∇Φ(ψ̂, t)−∇Φ(ψ̂, t)⊗∇Φ(ψ̂, t)

)
,

and

{∇Φ(ψ̂, t)}i =

∫
X

e
ψ̂i−tc(x,yi)

1−t∑N
k=1 e

ψ̂k−tc(x,yk)
1−t

dρ(x)− µ̂i .

Proof. Take a ψ̂ ∈ U we easily get that:

〈v,∇2Φ(ψ̂, t)v〉 ≥ 1

C̃
Varµ̂(v) ∀v ∈ RN ,

where C̃ = e2||c||∞diam(X)m
m + (1 − t) > 0, ∀t ∈ [0, 1) and µ̂ defined as in Lemma 2.5.

Furthermore, using Lemma 2.4, we obtain that

Varµ̂(v) ≥ µ̂||v||22 =⇒ 〈v,∇2Φ(ψ̂, t)v〉 ≥ 1

C̃
µ̂||v||22 .

Finally, using Lemma 2.5, one derives the existence and bound on µ̂ and thus the lower
bound for the smallest eigenvalue of ∇2Φ:

λmin{∇2Φ(ψ̂, t)} ≥ 1

C
> 0, ∀t ∈ [0, 1) .
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As a result, we get that C = m

C̃e
2 1+t
1−t ‖c‖∞

, and the Hessian matrix is positive semi-definite

with simple zero eigenvalue and corresponding eigenvector 1.

Notice that the result above provides strong convexity only on the interval [0, 1) since
the lower bound degenerates as t→ 1. In order to get strong convexity for all t ∈ [0, 1] we
should better study the case in which the entropic solution is close to the solution of the
unregularized problem, namely we focus on the case in which t ∈ [t∗, 1].

2.2. Strong convexity on [t∗, 1]

Firstly, we state some results when we consider a set of vectors ψ which are small per-
turbations of a vector ψ0 such that µi = ρ(Lagi(ψ

0)). The main results here is again the
strong convexity of Φ but in the case where the lower bound for the smallest eigenvalue
of ∇2

ψ,ψΦ(ψ̂, t) does not depend on the regularization parameter.

Lemma 2.8. Let µ ∈ RN+ be a discrete probability vector with a lower bound µ, µi ≥ µ > 0,

∀i. In addition, let ψ0 ∈ RN be a vector such that µi = ρ(Lagi(ψ
0)), ∀i. If ψ̂ is a small

perturbation of ψ0, ||ψ̂ − ψ0||22 ≤ δ, then ∃µ̂ > 0, such that µ̂i ≥ µ̂, ∀i, where

µ̂i =

∫
X

e
ψ̂i−tc(x,yi)

1−t∑N
k=1 e

ψ̂k−tc(x,yk)
1−t

dρ(x), t ∈ [0, 1] .

Proof. Given that ψ̂ is a small perturbation of ψ0, it follows that:

ρ(Lagi(ψ̂)) ≥ 1

2
ρ(Lagi(ψ

0)) ≥ 1

2
µ .

Next, using that Lagi(ψ̂i) ⊂ X, ∀i, and X = ∪Ni=1Lagi(ψ̂i), we get that:

µ̂i =

∫
X

e
ψ̂i−tc(x,yi)

1−t∑N
k=1 e

ψ̂k−tc(x,yk)
1−t

dρ(x) ≥
∫

Lagi(ψ̂)

e
ψ̂i−tc(x,yi)

1−t∑N
k=1 e

ψ̂k−tc(x,yk)
1−t

dρ(x) .

From the definition of Laguerre cell it follows:

x ∈ Lagi(ψ̂) ⇐⇒ c(x, yi)−ψ̂i ≤ c(x, yk)−ψ̂k ⇐⇒ c(x, yi)−c(x, yk)+ψ̂k−ψ̂i ≤ 0 , ∀k 6= i.
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Thus, we get:

µ̂i ≥
∫

Lagi(ψ̂)

1∑N
k=1 e

tc(x,yi)−tc(x,yk)+ψ̂k−ψ̂i
1−t

dρ(x)

≥
∫

Lagi(ψ̂)

1∑N
k=1 e

c(x,yk)−c(x,yi)
dρ(x)

≥
∫

Lagi(ψ̂)

1∑N
k=1 e

2‖c‖∞
dρ(x) =

1

Ne2‖c‖∞
ρ(Lagi(ψ̂)) ≥ 1

2Ne2‖c‖∞
µ .

Finally, it follows that µ̂i ≥ µ̂, ∀i, where µ̂ = 1
2Ne2‖c‖∞

µ > 0.

Theorem 2.9. Let ρ ∈ P(X) and µ ∈ P(Y ) satisfying hypothesis (H1) and (H2), respec-
tively. In addition, let ψ0 ∈ RN be a vector such that µi = ρ(Lagi(ψ

0)), ∀i. Then, there
exists a constant Ĉ, which is independent of t, such that if ψ̂ is a small perturbation of
ψ0, ||ψ̂ − ψ0||22 ≤ δ, and ψ̂ ⊥ 1, then λmin{∇2

ψ,ψΦ(ψ, t)} ≥ Ĉ > 0.

Proof. Take a ψ̂ satisfying the hypothesis of the theorem, similarly to Theorem 3.2 of [10],
we easily get that:

〈v,∇2
ψ,ψΦ(ψ̂, t)v〉 ≥ 1

C
Varµ̂(v) ∀v ∈ RN ,

where C = eLcdiam(X)m
m + 1 > 0, Lc the Lipschitz constant of the cost and µ̂ defined as in

Lemma 2.8. Furthermore, using Lemma 2.4, we obtain that

Varµ̂(v) ≥ µ̂||v||22 =⇒ 〈v,∇2
ψ,ψΦ(ψ̂, t)v〉 ≥ 1

C
µ̂||v||22 .

Finally, using Lemma 2.8, one derives the existence and bound on µ̂:

µ̂ =
1

2N
µ =⇒ λmin{∇2

ψ,ψΦ(ψ̂, t)} ≥ 1

C

1

2Ne2‖c‖∞
µ > 0 .

As a result, we get that Ĉ = 1
2NCe2‖c‖∞

µ, and the Hessian matrix is positive semi-definite
with simple zero eigenvalue and corresponding eigenvector 1.

3. An ODE characterization of semi-discrete entropic optimal
transport

Notice now that since the functional is convex any minimizer of (7) is equivalently a
solution to the equation ∇Φ(ψ(t), t) = 0. Thanks to the regularity of Φ one can now
differentiate with respect to t and obtaining the following governing ODE:

∇2
ψ,ψΦ(ψ(t), t)ψ′(t) +

∂

∂t
∇ψΦ(ψ(t), t) = 0, t ∈ [0, 1] , (8)
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where the gradient vector of Φ(ψ, t) from (7) is

∂Φ(ψ, t)

∂ψj
:= µj −

∫
X

e
ψj−tc(x,yj)

1−t∑N
k=1 e

ψk−tc(x,yk)
1−t

dρ(x) , j = 1, 2, . . . , N . (9)

Using direct calculation, we get the derivative vector:

∂

∂t

[
∂Φ(ψ, t)

∂ψj

]
=

∫
X

∑N
k=1,k 6=j Ak(x, 1)e

Ak(x,t)]

1−t[
(1− t)

(
1 +

∑N
k=1,k 6=j e

Ak(x,t)

1−t

)]2 dρ(x) , j = 1, 2, . . . , N , (10)

where Ak(x, t) = ψk − ψj + tc(x, yj) − tc(x, yk). Similarly, one can compute the Hessian
matrix:

∇2
ψψΦ(ψ(t), t) =

1

1− t
Eρ[π(ψ)π(ψ)T − diag(π(ψ))] ,

where Eρ[f(x)] :=
∫
X f(x)dρ(x) and

π(ψ)j =
e
ψj−tc(x,yj)

1−t∑N
k=1 e

ψk−tc(x,yk)
1−t

, j = 1, 2, . . . , N ,

Hence we get the following Cauchy problem

Theorem 3.1. Let ψ(t) be a solution to (7) for t ∈ [0, 1). Then the trajectory t 7→ ψ(t)
is smooth and is characterized on t ∈ [0, 1) as the unique solution to the Cauchy problem{

∇2
ψ,ψΦ(ψ(t), t)ψ′(t) + ∂

∂t∇Φ(ψ(t), t) = 0, t ∈ [0, 1),

ψ(0) = log µ− 1
N

∑N
k=1 logµk.

(11)

Remark 3.2. The theorem implies that one can solve the Cauchy problem (11) uniquely
to obtain ψ(t) for t ∈ [0, 1). As it is well known that limt→1 ψ(t) = ψ(1), one can
then take the limit to obtain ψ(1) and, consequently, one can recover the solution to
the unregularized problem from the ODE. In practice, one might worry that numerical
instabilities could potentially arise from degeneracies of the Hessian; Theorem 2.9 ensures
that this is not the case.

Under stonger conditions, one can actually go slightly further and show that the ODE
is satisifed up to t = 1.

Proof. For any fixed t̄ < 1, we prove existence and uniqueness of a solution to the Cauchy
problem on [0, t̄] by applying the Cauchy Lipschitz theorem on [0, t̄]×U , where U := {ψ ∈
RN | ‖ψ‖ ≤ 2‖c‖∞, ψ ⊥ 1}. Since Φ is smooth, it has bounded derivative on this set,
and, as noted above, it is known that the optimal ψ remains in U . Since the Hessian
∇2
ψ,ψΦ(ψ, t) is uniformly positive definite on [0, t̄] × U by Theorem 2.7, one can rewrite
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the ODE as:

ψ′(t) = F (ψ(t), t) := −
[
∇2
ψ,ψΦ(ψ(t), t)

]−1( ∂
∂t
∇Φ(ψ(t), t)

)
,

where the function F is Lipschitz on [0, t̄]×U . The Cauchy-Lipschitz theorem then yields
well-posedness on [0, t̄]; as t̄ < 1 is arbitrary, we get existence and uniqueness on [0, 1).

To ensure that ψ(t) solves the ODE in (11) up to t = 1, we require stronger conditions
on c,X, Y and ρ, which we define in the following. Before doing this we need three more
definitions

Definition 3.3 (Twisted cost). We say that c is twisted if for each x ∈ X the mapping
y 7→ ∇xc(x, y) is injective on Y.

Definition 3.4 (Y generic with respect to c). We say that Y is generic with respect to c
if for all distinct, y0, y1, y2 ∈ Y the intersection of any level sets of x 7→ c(x, y0)− c(x, y1)
and x 7→ c(x, y0)− c(x, y2) has (n− 1) -dimensional Hausdorff measure 0.

Definition 3.5 (Y generic with respect to ∂X). We say Y is generic with respect to ∂X
if for any y0, y1 ∈ Y , the intersection of any level set of x 7→ c(x, y0) − c(x, y1) with ∂X
has (n− 1) -dimensional Hausdorff measure 0.

(H3) The measure ρ satisfies the assumption (H1) with an α−Hölder continuous density.

(H4) The cost function is C2(X × Y ) and twisted.

Proposition 3.6. Let c, ρ, ν verify (H1)-(H4), Y be generic with respect to both c and
∂X, and c be twisted. Then ∂

∂t∇Φ(ψ, t)→ 0 as t→ 1 with ψ solution to (11).

The proof of the proposition is very similar to the one of [10][Proposition 5.1] the main
difference consists in partitioning the space X, to estimate the integral in (10), by looking
at what happens on the tangent space x 7→ ∇xc(x, yj) for every x ∈ X and for each
component j of the derivative. For sake of completeness we have detailed the proof in this
case in the Appendix A.

Proposition 3.7. If c is twisted, Y is generic with respect to both c and ∂X and assump-
tions (H1)-(H4) are satsifed, the ODE in (11) is satisfied on [0, 1].

Proof. We need only to show that the ODE is satisfied at t = 1. It is well known that
ψ(t) → ψ(1), the solution to the unregularized problem. Furthermore, the conditions
ensure C2 smoothness of the Hessian ∇2

ψψΦ(ψ, 1) of the unregularized problem (Theorem

47 in [23], as well as the convergence of ∇2
ψψΦ(ψ, t) to it (Theorem 54 in [23]). Since the

mixed derivative ∂
∂t∇Φ(ψ, t) → 0, we can take the limit of the ODE in (11) as t → 1 to

obtain that the ODE is satisifed at t = 1.
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Remark 3.8 (Rate of convergence). Notice that the results above imply that one can
obtain the rate of convergence of the dual potentials, the primal solution and the entropic
cost as in [10, 1], for a generic cost function. In particular, since ψ′(1) = 0 by Propositions
3.6 and 3.7, we have ‖ψ(1− t)− ψ(1)‖ = o(1− t).
Remark 3.9 (Mass of the Laguerre cells). In [21] the authors proved strong convexity of
the hessian of the unregularized Kantorovich functional on the set Sc := {ψ | ρ(Lagi(ψ)) ≥
c > 0, ∀i = 1, ..., N}. It would have been natural then to prove the well-posedness of the
ODE on the same set for some constant c. In order to do this one must assure that
then for every t the vector ψ(t), solution to entropic problem, belongs actually to Sc.
Unfortunately, in Figure 1 we notice that the mass of the Laguerre cells along the curve
t 7→ ψ(t) can be equal to zero.

Figure 1: Mass of Laguerre cells in 2-d as a function of t

4. Computational Examples

The initial value problem (IVP) to solve is:

∇2
vvΦ(v(t), t)v′(t) +

∂

∂t
∇Φ(v(t), t) = 0, t ∈ [0, 1] , (12)

11



where
∑N

k=1 vk(0) = 0. Observe that the value of the initial condition can be directly

determined from (9) by setting t = 0 and applying the constraint
∑N

k=1 vk(0) = 0. Subse-
quently, the initial value problem (IVP) (12) can be reformulated as follows:

v′(t) = −[∇2
vvΦ(v(t), t)]†

∂

∂t
∇Φ(v(t), t), v(0) = logµ− 1

N

N∑
k=1

logµ, t ∈ [0, 1], (13)

where [∇2
vvΦ]† denotes the pseudo-inverse of ∇2

vvΦ taken in the orthogonal complement
of ker(∇2

vvΦ) = 1. For solving (13) in all examples presented below, we will use the
Runge-Kutta method from Remark 4.1 with parameters α = 1

8 and β = 1
4 . Furthermore,

we will provide the value of the error in v: Error = ||v(1)− vexact||∞, where vexact is the
solution of the unregularized semi-discrete optimal transport problem, either determined
exactly in one-dimensional examples or known a-priori for two-dimensional cases.

Remark 4.1 (Third-Order Runge-Kutta Method). A family of the third-order Runge-
Kutta methods with α and β parameters:

k1 = f(tn, yn) , k2 = f(tn + c2h, yn + a21hk1) , k3 = f(tn + c3h, yn + h(a31k1 + a32k2)

=⇒ yn+1 = yn + h
[
b1k1 + b2k2 + b3k3

]
,

where α, β 6= 0, α 6= β, α 6= 2
3 , and

a21 = α , a31 =
β

α

β − 3α(1− α)

3α− 2
, a32 = −β

α

β − α
3α− 2

,

b1 = 1− 3α+ 3β − 2

6αβ
, b2 =

3β − 2

6α(β − α)
, b3 =

2− 3α

6β(β − α)
, c1 = α , c2 = β .

4.1. Problems in 1-d

Consider the following problems on X = [0, 1]:

dρ(x) = dx , y = {0.25, 0.5, 0.75} , µ =
(

0.3
0.4
0.3

)
. (E1)

dρ(x) = 1.8305e−10(x−0.5)2dx , y = {0.25, 0.5, 0.75} , µ =
(

0.3
0.4
0.3

)
. (E2)

dρ(x) = dx , y = {−3.4584, −2.3668, 0.3374, 2.4005} , µ =

(
0.0078
0.4920
0.4823
0.0179

)
. (E3)

In addition to solving IVP (13), we will also solve the above problems using Newton’s
method for comparison reasons. The details of Newton’s method are outlined in Remark
4.2.
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Remark 4.2 (Newton’s Method in 1-d). To solve the semi-discrete OT problem in one
dimension with c(x, y) = ||x−y||p2, p ≥ 2, one can perform the following Newton’s iterations
until convergence:

v(k+1) = v(k) − [∇G(v(k))]†G(v(k)) ,

where [∇G]† represents the inverse of∇G taken in the orthogonal complement of ker(∇G) =
1,

{G(v)}i = µi − ρ(Lagi(v)) = µi −
∫
Lagi(v)

ρ(x)dx , i = 1, 2, . . . , N ,

{∇G(v)}ij =

∫
Lag(vi)∩Lag(vj)

ρ(x)

|∇xc(x, yi)−∇xc(x, yj)|
ds =

ρ(xij)

|∇xc(xij , yi)−∇xc(xij , yj)|
, i 6= j ,

{∇G(v)}ij = −
N∑

j=1,j 6=i

{∇G(v(k))}ij = −
N∑

j=1,j 6=i

ρ(xij)

|∇xc(xij , yi)−∇xc(xij , yj)|
, i = 1, 2, . . . , N ,

and xij = Lagi(v) ∪ Lagj(v).

As demonstrated in Table 1, we discern a third-order convergence rate in t when
c(x, y) = ||x − y||22, as anticipated. Nevertheless, the algorithm encounters a specific
mesh size where it fails, attributed to integration inaccuracies. As t→ 1, a high-precision
integrator becomes necessary because the integrand found in the derivative term and the
Hessian matrix tends to resemble a delta function. For all our experiments, we utilized the
MATLAB integration functions: integral for 1-dimensional, integral2 for 2-dimensional,
and integral3 for 3-dimensional problems. Additionally, Figure 2 illustrates the progression
of Laguerre cells as we near the standard unregularized semi-discrete optimal transport
problem, revealing a non-monotonic evolution.

∆t (E1) (E2) (E3)

10−1 1.3891 ∗ 10−3 3.1750 ∗ 10−3 1.3942 ∗ 10−2

10−2 3.2996 ∗ 10−7 9.3938 ∗ 10−6 5.6056 ∗ 10−4

10−3 3.9462 ∗ 10−10 1.1194 ∗ 10−9 3.1528 ∗ 10−8

10−4 6.5607 ∗ 10−13 1.2871 ∗ 10−12 NAN

10−5 NAN NAN NAN

Table 1: Error for IVP (13) solution with c(x, y) = ||x− y||22

Regarding Newton’s method, comparison with our approach in Table 2 indicates similar
error magnitudes in v. However, Newton’s method exhibits significant sensitivity to the
initial conditions, leading to its failure in solving Example (E3) because the target points
are outside of X, rendering the zero initial guess inadequate.

Furthermore, Table 3 presents the error convergence for c(x, y) = ||x − y||32. Here, we
observe third-order convergence once again, albeit less consistently than with the squared

13



(a) Example (E1) (b) Example (E2)

Figure 2: Time evolution of Laguerre cells

Initial Guess (E1) (E2) (E3)

10 ∗ rand(N, 1) 2.5647 2.1454 NAN

1 ∗ rand(N, 1) 3.5738 ∗ 10−13 1.7328 ∗ 10−1 NAN

0.1 ∗ rand(N, 1) 5.2463 ∗ 10−13 4.0957 ∗ 10−13 NAN

0.01 ∗ rand(N, 1) 7.5187 ∗ 10−13 1.8947 ∗ 10−13 NAN

0 2.7284 ∗ 10−13 1.8087 ∗ 10−13 NAN

Table 2: Error for Newton’s solution with c(x, y) = ||x− y||22

Euclidean distance. In a parallel analysis in Table 4, we report the Newton’s method
performance under this cost. The impact of the initial guess is more pronounced; for
instance, convergence to the solution in Example (E2) was only achieved when we started
within 1% deviation of the zero initial guess, whereas with c(x, y) = ||x − y||22, obtaining
a solution was possible even with a 10% perturbation.

4.2. Problems in 2-d

Consider the following problems on X = [0, 1]× [0, 1]:

dρ(x) = dx1dx2 , y =
{

( 0
0 ) , ( 0

1 ) , ( 1
1 )} , µ =

(
1
2

(1−b)
b

1
2

(1−b)

)
, vexact =

( 1
3

(1−2
√
b)

− 2
3

(1−2
√
b)

1
3

(1−2
√
b)

)
,

(E4)
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∆t (E1) (E2) (E3)

10−1 7.8197 ∗ 10−3 7.4895 ∗ 10−4 7.6901 ∗ 10−3

10−2 4.8828 ∗ 10−4 3.7807 ∗ 10−4 3.5379 ∗ 10−6

10−3 1.7791 ∗ 10−8 2.3371 ∗ 10−7 3.5732 ∗ 10−9

10−4 3.0193 ∗ 10−11 4.1936 ∗ 10−11 NAN

10−5 NAN NAN NAN

Table 3: Error for IVP (13) solution with c(x, y) = ||x− y||32

Initial Guess (E1) (E2) (E3)

10 ∗ rand(N, 1) 2.7753 1.6201 NAN

1 ∗ rand(N, 1) 1.9808 ∗ 10−1 4.5294 ∗ 10−1 NAN

0.1 ∗ rand(N, 1) 8.1341 ∗ 10−13 2.3304 ∗ 10−1 NAN

0.01 ∗ rand(N, 1) 2.6465 ∗ 10−13 5.6829 ∗ 10−13 NAN

0 6.9658 ∗ 10−13 2.9445 ∗ 10−13 NAN

Table 4: Error for Newton’s solution with c(x, y) = ||x− y||32

where 0 < b < 1.

dρ(x) = dx1dx2 , y =
{

( 0
0 ) , ( 0

1 )} , µ = ( 0.726759
0.273241 ) , vexact =

(
1
4

− 1
4

)
. (E5)

dρ(x) = dx1dx2 , y =
{

( 0
0 ) , ( 0

1 )} , µ = ( 0.872066
0.127934 ) , vexact =

(
1
2

− 1
2

)
. (E6)

In the above examples, exact solutions are obtained for the cost function c(x, y) =
||x − y||22 in Example (E4), and for the cost function c(x, y) = ||x − y||42 in Examples
(E5) and (E6). Analogously to the 1-d examples, we compare the solution of the IVP
(13) with the results of Newton’s method. When using the squared Euclidean distance
as the cost, Laguerre cells can be efficiently determined using a lifting algorithm (refer to
[22]). Subsequently, we calculate the Jacobian matrix using the Centered Finite Difference
scheme. However, for c(x, y) = ||x − y||p2 with p > 2, there is no efficient computational
algorithm. Consequently, we approximate the Laguerre cell on a fixed mesh and again
compute the Jacobian matrix using the Centered Finite Difference scheme.

In Table 5, a third-order convergence is apparent in all examples except Example (E6).
Additionally, we note that precise integration becomes increasingly critical as the method
fails even with a mesh size of 10−3, unlike the one-dimensional cases. Furthermore, Figure
3 illustrates the temporal progression of Laguerre partitions as t → 1, exhibiting similar
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non-monotonic behavior as seen in the one-dimensional scenario.

∆t (E4) with b = 0.5 (E4) with b = 0.1 (E5) (E6)

10−1 9.5043 ∗ 10−4

0.41 sec.

4.2964 ∗ 10−4

0.41 sec.

2.8436 ∗ 10−4

0.72 sec.

3.8182 ∗ 10−4

0.70 sec.

10−2 1.9683 ∗ 10−8

10.13 sec.

2.1324 ∗ 10−7

12.46 sec.

7.9821 ∗ 10−8

16.60 sec.

1.3475 ∗ 10−5

14.88 sec.

10−3 NAN NAN NAN NAN

Table 5: Error for IVP (13) solution

(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Figure 3: Time Evolution of Laguerre cells in Example (E4) with b = 0.5

Next, as demonstrated in Table 6, the performance of Newton’s method in terms of
accuracy and time is comparable to our approach. Nonetheless, the importance of an
initial guess becomes crucial in two-dimensional problems, as convergence to a solution in
Example (E6) is not achieved. Overall, it is feasible to incorporate both methods by using
the ODE solution as the initial guess for Newton’s method.

Finally, to demonstrate robustness of ODE solver as the number of points increases.
Figure 4 illustrates the convergence of the Laguerre cell measure to µ over t. In this
problem, target points are randomly distributed within the unit square, both source and
target measures are uniform, the cost function is the squared Euclidean distance, and the
time step is ∆t = 10−2. The exact potential vexact is unknown; however, we can evaluate
the measure error ||ρ(Lag(v(1))) − µ||∞. For instance, this error is 4.6587 × 10−4 for 10
random target points and 1.4668× 10−3 for 25 target points. Additionally, Figures 5 and
6 illustrate the evolution of Laguerre cells with respect to t.

4.3. Problems in 3-d

This section delves into evaluating the effectiveness of the ODE solver in a three-dimensional
context, comparing it to Newton’s method, and examining the impact of dimensionality
on computation time. Consider the following problem on X = [0, 1] × [0, 1] × [0, 1] with

16



Initial Guess (E4) with b = 0.5 (E4) with b = 0.1 (E5) (E6)

1 ∗ rand(N, 1)
1.9160 ∗ 10−8

7.89 sec.

2.1022 ∗ 10−8

7.36 sec.

1.9524 ∗ 10−5

15.00 sec.
NAN

0.1 ∗ rand(N, 1)
1.3244 ∗ 10−8

6.97 sec.

1.5153 ∗ 10−8

6.66 sec.
NAN NAN

0.01 ∗ rand(N, 1)
7.5942 ∗ 10−9

7.10 sec.

1.1396 ∗ 10−8

6.86 sec.
NAN NAN

0
5.7658 ∗ 10−9

6.70 sec.

2.1945 ∗ 10−8

8.05 sec.
NAN NAN

Table 6: Error for Newton’s solution

c(x, y) = ||x− y||22, and

dρ(x) = dx1dx2dx3 , y =
{( 0.5508

0.8963
0.0299

)
,
(

0.7081
0.1256
0.4568

)
,
(

0.2909
0.2072
0.6491

)
,
(

0.5108
0.0515
0.2785

)
,
(

0.8929
0.4408
0.6763

)
} , µ =

1

5
1 .

(E7)

Tables 7 and 8 show the performance of the ODE method and Newton’s method, re-
spectively. For non-trivial 3-d problems, the exact solution vexact is typically not available,
rendering the calculation of Error = ||v(1)− vexact||∞ infeasible. Nevertheless, it remains
possible to compute the error in measure: Measure Error = ||ρ(Lag(v(1))) − µ||∞. As
indicated in Table 7, there is first-order convergence towards µ, suggesting second-order
convergence in v due to the integration. Moreover, Figure 7 illustrates the progression of
Laguerre cells as t approaches 1.

Finally, Figure 8 provides a comparative analysis of computational time across different
dimensions for the ODE solution. In this scenario, the 3-d Example pertains to (E7),
while the 1-d Example and 2-d Example relate to analogous problems on the unit line and
unit square, respectively: five random target points, uniform target and source measures,
squared Euclidean cost, and 100 time-steps are used. It is observed that calculation
time escalates exponentially with increasing dimensions. Additionally, there’s a rise in
computation time as t nears the value of 1 in every dimension. This is attributed to the
internal numerical integration process where the integrand approaches a delta function,
necessitating finer spatial discretization as t converges to 1.
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(a) 10 points (b) 25 points

Figure 4: Time evolution of measures

(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Figure 5: Time evolution of Laguerre cells with 10 random points
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A. Proof of Proposition 3.6

Proof. The proof is based on the one of [10][Proposition 5.1] adapted to the case of a
generic cost function. First of all let us re-write ∂

∂t∇Φ(ψ, t) as follows

∂

∂t
∇Φ(ψ, t) =

∫
X

N∑
j=1

(
∆ij(x, 1)

(1− t)2

)
πi(x)πj(x)dρ(x),

where the quantity

∆i,j(x, t) = ψi − tc(x, yi)− (ψj − tc(x, yj)),

can be interpreted as a duality gap and

πi(x) =
1∑N

k=1 exp

(
∆ki(x, t)

1− t

) .
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In order to estimate the integral over X we are going to make a similar partition as the
one in [10]: we consider the set

Xi,η,+ := {x ∈ Lagi(ψ) | ∀j 6= i,
∆ij(x, 1)

||pxi − pxj ||
≥ η},

and

Xi,η,− := {x ∈ X | ∀j ∈ argmaxk(ψk − c(x, yk)),
∆ji(x, 1)

||pxj − pxi ||
≥ η},

where pxi := ∇xc(x, yi). Notice that this two sets corresponds respectively to the points
of Lagi(ψ) and X \ Lagi(ψ) which are far from the boundary of the Laguerre cell i. The
idea behind the proof is to create then a tube around the common boundary between
the Laguerre cells to have better estimates. Moreover, notice that thanks to the twisted
assumption the quantity ||pxj − pxi || is never null. We the define for any j 6= i the common
boundary between Lagi(ψ) and Lagj(ψ) as Hij = Lagi(ψ) ∩ Lagj(ψ) and for a parameter
γ > 0 the set of points of Hij that are at least a distance controlled by γ from the other
Laguerre cells

Hγ
ij := {x0 ∈ Hij | ∀k 6= i, j,∆ik(x0, 1) = ∆jk(x0, 1) ≥ γmax(||px0i − p

x0
k ||, ||p

x0
j − p

x0
k ||).}

Denote then by

Ti,η,γ = ∪j 6=i{x0 + sdx0ij , x0 ∈ Hγ
ij , s ∈ [−η||px0i − p

x0
j ||, η||p

x0
i − p

x0
j ||]}

with dx0ij =
p
x0
i −p

x0
j

||px0i −p
x0
j ||2

the union of tubular sets around the common boundary without the

corners and Ci,η,γ = X \ (Xi,η,+ ∪Xi,η,− ∪ Ti,η,γ) the neighbourhood of the corners of the
Laguerre cell. Before going into the details notice that thanks to the assumptions on the
cost and the set X we can easily control the term pxi − pxj for all x and couple of indexes
i, j. It is then quite easily to observe that on both Xi,η,+ and Xi,η,− we get the following
control on the integrand

N∑
j=1

(
∆ij(x, 1)

(1− t)2

)
πi(x)πj(x) .

e−η/(1−t)

(1− t)2
.

We turn now our attention on the evaluation of the integral over Ti,η,γ . Notice first that
for x ∈ Ti,η,γ there exists and index j and x0 ∈ Hγ

ij such that x = x0 + sdx0ij such that we
get, by a Taylor expansion,

∆ij(x, 1) = ∆ij(x0, 1) + s〈∇x∆(x0, 1), dx0ij 〉+
s2

2
〈∇2

xx∆(ξ, 1)dx0ij , d
x0
ij 〉

= s+
s2

2
〈∇2

xx∆(ξ, 1)dx0ij , d
x0
ij 〉,
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where the quadratic term will not play an important role since we will take s depending
by 1− t and for t→ 1 the first order term will be the dominant one. For any k 6= i, j we
have by definition of Hγ

ij and, again by a Taylor expansion,

∆ik(x, t) ≥ γ||px0i − p
x0
j || − |s|C ≥ γ̃

and in the same way we have ∆i,k(x, t) ≥ γ̃. Now the integral on Ti,η,γ can be written as
follows

∑
j

∫
x0∈Hγ

ij

∫ η||px0i −p
x0
j ||

0
(gi(x0 − sdx0ij ) + gi(x0 + sdx0ij ))dtdHd−1(x0), (E8)

where gi(x) =
∑

j 6=i
(∆ij(x,1)

(1−t)2
)
πi(x)πj(x)ρ(x). Denote by xs = x0 + sdx0ij and x−s =

x0 − sdx0ij then

gi(xs) =

(
∆ij(x−s, 1)

(1− t)2
)

)
πi(xs)πj(xs)ρ(xs) +

∑
k 6=i,j

(
∆ik(x−s, 1)

(1− t)2
)

)
πi(xs)πk(xs)ρ(xs)

.
s

(1− t)2
πi(xs)πj(xs)ρ(xs) +

s2

2(1− t)2
πi(xs)πj(xs)ρ(xs) +

1

(1− t)2
e−γ̃/(1−t)

where we have used the fact that πk(xs) ≤ e−γ̃/(1−t) to get an upper bound on the second
term of g. In the same way we obtain

g(x−s) .
−s

(1− t)2
πi(x−s)πj(x−s)ρ(x−s)+

s2

2(1− t)2
πi(x−s)πj(x−s)ρ(x−s)+

1

(1− t)2
e−γ̃/(1−t),

thus we get

|gi(xs) + gi(x−s)| .
s

(1− t)2
|πi(xs)πj(xs)ρ(xs)− πi(x−s)πj(x−s)ρ(x−s)|

+
s2

2(1− t)2
|πi(xs)πj(xs)ρ(xs) + πi(x−s)πj(x−s)ρ(x−s)|

+
1

(1− t)2
e−γ̃/(1−t)

.
s

(1− t)2
|πi(xs)πj(xs)− πi(x−s)πj(x−s)|ρ(xs)

+
s

(1− t)2
πi(x−s)πj(x−s)|ρ(xs)− ρ(x−s)|

+
s2

2(1− t)2
|πi(xs)πj(xs)ρ(xs) + πi(x−s)πj(x−s)ρ(x−s)|

+
1

(1− t)2
e−γ̃/(1−t).

(E9)
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First by Hölder continuity of ρ we obtain

|ρ(xs)− ρ(x−s)| ≤ C||xs − x−s||α . sα.

Consider now the term πi(xs) and re-write it as

πi(xs) =
1

1 + exp

(
∆ji(x, t)

1− t

)
+
∑N

k 6=i,j exp

(
∆ki(x, t)

1− t

) ,
now for the second term at the denominator we can use the Taylor expansion where as for
the third we have the bound . e−γ̃/(1−t) so that we get

|πi(xs)πj(xs)− πi(x−s)πj(x−s)| . e−γ̃/(1−t)et(s+s
2)/(1−t).

Injecting now all these bounds into the integral on Ti,η,γ , and considering that η is going
to be very small, yields∣∣∣∣ ∫

Ti,η,γ

∑
j 6=i

∆ij(x, t)

(1− t)2
πi(x)πj(x)dρ(x)

∣∣∣∣ . ∫ ηκ

0

1

(1− t)2
(se−γ̃/(1−t)ets/(1−t) + s2 + s1+α + eγ̃/(1−t))dt

.
η2+α

(1− t)2
+

η3

(1− t)2
+
e−γ̃/(1−t)

(1− t)2
(η + (1− t)ηeη/(1−t) − (1− t)2(eη/(1−t) − 1)),

where κ = maxi 6=j maxx∈X ||pxi − pxj ||. The control on Ci,η,γ is exactly obtained as in [10]
and we get that∣∣∣∣ ∫

Ci,η,γ

∑
j 6=i

∆ij(x, t)

(1− t)2
πi(x)πj(x)dρ(x)

∣∣∣∣ . γ2

(1− t)2
(η + e−η/(1−t)).

Finally∣∣∣∣ ∫
X

N∑
j=1

(
∆ij(x, 1)

(1− t)2

)
πi(x)πj(x)dρ(x)

∣∣∣∣ . ∣∣∣∣ ∫
Xi,η,−

N∑
j=1

(
∆ij(x, 1)

(1− t)2

)
πi(x)πj(x)dρ(x)

∣∣∣∣+∣∣∣∣ ∫
Xi,η,+

N∑
j=1

(
∆ij(x, 1)

(1− t)2

)
πi(x)πj(x)dρ(x)

∣∣∣∣+

∣∣∣∣ ∫
Ti,η,γ

N∑
j=1

(
∆ij(x, 1)

(1− t)2

)
πi(x)πj(x)dρ(x)

∣∣∣∣+∣∣∣∣ ∫
Ci,η,γ

N∑
j=1

(
∆ij(x, 1)

(1− t)2

)
πi(x)πj(x)dρ(x)

∣∣∣∣ . e−η/(1−t)

(1− t)2
+

γ2

(1− t)2
(η + e−η/(1−t))

+
η2+α

(1− t)2
+

η3

(1− t)2
+
e−γ̃/(1−t)

(1− t)2
(η + (1− t)ηeη/(1−t) − (1− t)2(eη/(1−t) − 1))

and by correctly choosing γ and η we get the result.
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