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Abstract. We consider a dynamic viscoelastic problem with memory in a domain with
a crack growing with constant velocity. Through a careful analysis of the singularity

of the solutions around the crack tip we show that for suitable values of the material
constants there exist solutions that satisfy the energy-dissipation balance. It is known

that this is not possible for the Kelvin-Voigt model.
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1. Introduction

We study a dynamic viscoelastic problem with memory in the isothermal antiplane case
in a domain with a prescribed time-dependent crack growing along the x -axis.

Let Ω be a bounded open set in R2 with Lipschitz boundary. We assume that (0, 0) ∈ Ω.
For every a ∈ R let

Γa := (−∞, a]× {0}. (1.1)

In our problem the crack at time t is given by Γ`(t) ∩ Ω, where `(t) is a prescribed non-
decreasing function of time. Given a time-dependent Dirichlet boundary condition w(t), in
our viscoelastic model with memory the boundary value problem for the displacement u(t)
is formally written as

ü(t)− div σ(t) = 0 in Ω \ Γ`(t) , σ(t)e2 = 0 on Γ`(t) ∩ Ω , u(t) = w(t) on ∂Ω . (1.2)

Here and henceforth dots denote time derivatives, div is the space divergence, and σ(t)
denotes the stress, which is the sum of the elastic stress σe(t) and the viscous stress σv(t),
while e2 is the second vector of the canonical basis in R2 , which is normal to Γ`(t) . The
constitutive relations for these components of the stress are

σe(t) = ce∇u(t) ,

σv(t) = cv∇u(t)− cv
∫ t

−∞
es−t∇u(s)ds ,

for suitable constants ce > 0 and cv > 0, where ∇ denotes the space gradient. By a
convenient choice of the units of u and t we can assume that ce + cv = 1, so that

σ(t) = σe(t) + σv(t) = ∇u(t)− cv
∫ t

−∞
es−t∇u(s)ds .
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Therefore the boundary value problem for u(t) can be formally written in the more explicit
form

ü(t)−∆u(t) = −cv
∫ t

−∞
es−t∆u(s)ds in Ω \ Γ`(t) , (1.3)

∂yu(t) = cv

∫ t

−∞
es−t∂yu(s)ds on Γ`(t) ∩ Ω , (1.4)

u(t) = w(t) on ∂Ω , (1.5)

where ∆ is the space Laplacian and ∂y denotes the partial derivative with respect to y .
In the model of crack growth we are considering, the functions `(t) and u(t) are related by

the dynamic energy-dissipation balance (see, e.g., [10] for the case without viscosity). This
condition, introduced by Mott [15], extends to the dynamic regime the classical Griffith’s
criterion for the quasistatic problem (see [11]). In our case the relevant energy terms are:
• the sum of the kinetic and the elastic energies

E(t) :=
1

2

∫
Ω\Γ`(t)

|u̇(t)|2dxdy +
ce
2

∫
Ω\Γ`(t)

|∇u(t)|2dxdy ;

• the energy dissipated by viscosity in the time interval [t1, t2] , which can be written as

D(t1, t2) :=
cv
2

∫
Ω\Γ`(t2)

|∇u(t2)|2dxdy − cv
2

∫
Ω\Γ`(t1)

|∇u(t1)|2dxdy −
∫ t2

t1

(∫
Ω\Γ`(t)
Fu(t)∇u̇(t)dxdy

)
dt ,

where

Fu(t) := cv

∫ t

−∞
es−t∇u(s)ds ; (1.6)

• the work of the forces acting on ∂Ω in the time interval [t1, t2]

W(t1, t2) :=

∫ t2

t1

(∫
∂Ω

σ(t)νẇ(t)dH1
)
dt ,

where ν is the outer unit normal to ∂Ω;
• the energy dissipated by the crack growth in the time interval [t1, t2] , which, according
to Griffith’s theory, is assumed to be proportional to the added length, i.e.,

K(t1, t2) := β(`(t2)− `(t1)) ,

for some constant β > 0 that represents the fracture toughness of the material.
The energy-dissipation balance is given by

E(t2)− E(t1) +D(t1, t2) +K(t1, t2) =W(t1, t2) (1.7)

for almost every t1 < t2 .
In the Kelvin-Voigt model, where the viscous stress is given by σv(t) = cv∇u̇(t) and the

energy dissipated by viscosity is given by

D(t1, t2) := cv

∫ t2

t1

(∫
Ω\Γ`(t)
|∇u̇(t)|2dxdy

)
dt ,

we can prove that

E(t2)− E(t1) +D(t1, t2) =W(t1, t2)

for every t1 < t2 , see [6]. This implies that the energy-dissipation balance (1.7) is satisfied if
and only if K(t1, t2) = 0, hence `(t1) = `(t2) for every t1 < t2 . Therefore the crack cannot
grow in the Kelvin-Voigt model when the energy-dissipation balance is satisfied. This is
known as the viscoelastic paradox for crack growth, see, e.g., [17].

In this paper, when cv is sufficiently small and β > 0 is arbitrary, we provide an example
of solution to (1.3)-(1.5), with `(t) = ct for some constant 0 < c < 1 and a suitable Dirichlet
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boundary condition w(t), such that the energy-dissipation balance (1.7) is satisfied (see
Theorem 6.1). Hence the viscoelastic paradox does not occur in this model with memory.

In particular, this shows that the model considered in [3], based on the energy-dissipation
balance and on a maximal dissipation condition, leads to a growing crack for suitable values
of the data.

Our result is obtained as a consequence of the precise form of the singular behaviour of the
gradient of the solution u(t) near the crack tip (see Section 6). We analyse this singularity
only when the solution has the special form u(t, x, y) = v(x− ct, y), which requires a special
form of the boundary datum w(t). By (1.3) the function v must satisfy an elliptic equation
with a non-local term in a domain with the fixed crack Γ0 (see Section 3). The singularity
of the gradient of the solution of a local elliptic equation in these domains has been studied
in detail by Grisvard. The main difficulty in our analysis is to extend these results to our
non-local equation (see Section 4). Our approach is perturbative, therefore it requires a
restriction on the viscosity constant cv and the crack tip velocity c .

2. Preliminaries

2.1. Basic notation. In this paper we study an evolutionary boundary value problem in a
suitable time interval and in a domain contained in the plane R2 with coordinates x and y .
Given a time-dependent function ψ defined on a subset of R2 , its time derivative is denoted
by ψ̇ , the partial derivatives with respect to the spatial coordinates x and y are denoted
by ∂x and ∂y , respectively, while ∇ , div , and ∆ denote the gradient, the divergence, and
the Laplacian with respect to (x, y).

2.2. A model of viscoelastic material with memory. We shall consider a specific
model for a viscoelastic material with fading memory in the isothermal antiplane case, with
reference configuration Ω ⊂ R2 . In detail, the evolution of the (scalar) displacement u(t) is
governed by the partial differential equation

ü(t)− div σ(t) = 0 , (2.1)

where the stress σ(t) ∈ R2 is decomposed as σ(t) := σe(t) + σv(t), with the elastic stress
σe and the viscous stress σv given by the constitutive equations

σe(t) := ce∇u(t) and σv(t) := cv∇u(t)− cv
∫ t

−∞
es−t∇u(s)ds . (2.2)

Here and henceforth ce > 0 is the elasticity constant and cv > 0 is the viscosity constant.
The study of models for viscoelastic materials with memory goes back to Maxwell [14],

Boltzmann [2], and Volterra [20]-[22]. There is now a huge literature on these models for
which we refer to the books [18, 8, 19, 9, 1] and the references therein. We refer to Dafermos
[5] for the precise formulation of (2.1) and (2.2) in suitable function spaces and for the proof
of an existence result with prescribed time dependent Dirichlet boundary conditions.

For this problem the following energy-dissipation balance holds:

E(t2)− E(t1) +D(t1, t2) =W(t1, t2) , for t1 < t2 , (2.3)

where

E(t) :=
1

2

∫
Ω

|u̇(t)|2dxdy +
ce
2

∫
Ω

|∇u(t)|2dxdy

is the sum of the kinetic and elastic energies, W(t1, t2) is the work, in the time interval
[t1, t2] , of the external forces due to the imposed time-dependent Dirichlet boundary condi-
tion, while

D(t1, t2) :=
cv
2

∫
Ω

|∇u(t2)|2dxdy − cv
2

∫
Ω

|∇u(t1)|2dxdy −
∫ t2

t1

(∫
Ω

Fu(t)∇u̇(t)dxdy
)
dt (2.4)
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with Fu(t) defined in (1.6). In view of (2.3) D(t1, t2) has to be interpreted as the energy
dissipated by viscosity in the interval [t1, t2] (see, e.g., [17, Chapter 7]).

2.3. The evolution problem with a prescribed growing crack. We now introduce a
model for the dynamic evolution of a viscoelastic material with memory in a domain with
a prescribed growing crack. The reference configuration is a bounded open domain Ω ⊂ R2

with Lipschitz boundary. For simplicity we assume that (0, 0) ∈ Ω and that the crack
grows along the x -axis. More precisely, we fix T0 < T1 and a non decreasing function
` : [T0, T1]→ R . The crack at time t ∈ [T0, T1] is given by Γ`(t) ∩ Ω, where Γ is defined in
(1.1).

In this case equation (2.1) is replaced by

ü(t)− div σ(t) = 0 in Ω \ Γ`(t) , σ(t)e2 = 0 on Γ`(t) ∩ Ω , (2.5)

where σ(t) = σe(t)+σv(t) and the constitutive equations for the elastic and viscous stresses
are still given by (2.2), while e2 is the second vector of the canonical basis in R2 , which is
normal to Γ`(t) . Of course, in this non-local in time formulation the usual initial conditions
at t = T0 are replaced by the condition u(t) = u0(t) for a.e. t ∈ (−∞, T0), where u0 is a
prescribed function.

By a suitable choice of the units of u and t we can assume that ce + cv = 1, so that,
setting α := cv ∈ (0, 1), we have

σ(t) = ∇u(t)− α
∫ t

−∞
es−t∇u(s)ds (2.6)

and the boundary value problem can be formally written in the more explicit form:

ü(t)−∆u(t) = −α
∫ t

−∞
es−t∆u(s)ds in Ω \ Γ`(t) for a.e. t ∈ (T0, T1) , (2.7)

∂yu(t) = α

∫ t

−∞
es−t∂yu(s)ds on Γ`(t) ∩ Ω for a.e. t ∈ (T0, T1) , (2.8)

u(t) = u0(t) for a.e. t ∈ (−∞, T0) . (2.9)

We assume that u0 ∈ L∞((−∞, T0);H1(Ω\Γ`(T0))). Let us introduce the function spaces
which are used to study (2.7)-(2.8) in the time interval (T0, T1). For every t ∈ [T0, T1] let
Vt := H1(Ω \ Γ`(t)), let H := L2(Ω), let

V := {u ∈ L∞((T0, T1);VT1
) ∩H1((T0, T1);H) : u(t) ∈ Vt for a.e. t ∈ (T0, T1)} ,

and let

V0 := {u ∈ V : u(t) = 0 on ∂Ω for a.e. t ∈ (T0, T1)} .
Given

u ∈ L∞((T0, T1);H1(Ω \ Γ`(T1))), (2.10)

to write in a precise way the weak form of (2.7)-(2.9) it is convenient to introduce, for every
t ∈ (T0, T1), the function

Fu(t) := α

∫ T0

−∞
e−(t−s)∇u0(s)ds+ α

∫ t

T0

e−(t−s)∇u(s)ds , (2.11)

defined as a Bochner integral in the space L2(Ω;R2). Of course, if u is extended to (−∞, T0)
by setting u(t) = u0(t) for t ∈ (−∞, T0), the function Fu satisfies (1.6). Note that Fu ∈
L∞((T0, T1);L2(Ω;R2)). To fulfill the formal requirement (2.6) we set

σ(t) := ∇u(t)− Fu(t) (2.12)

for a.e. t ∈ (T0, T1).
The following definition is inspired by [7, Definition 2.7].
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Definition 2.1. A weak solution of (2.7)-(2.9) is a function u ∈ V satisfying (2.9) and the
equality

−
∫ T1

T0

(∫
Ω\Γ`(t)

u̇(t)ϕ̇(t)dxdy
)
dt+

∫ T1

T0

(∫
Ω\Γ`(t)

∇u(t)∇ϕ(t)dxdy
)
dt

=

∫ T1

T0

(∫
Ω\Γ`(t)

Fu(t)∇ϕ(t)dxdy
)
dt (2.13)

for every ϕ ∈ V0 with ϕ(T0) = ϕ(T1) = 0 a.e. in Ω.

Definition 2.2. Given w ∈ V we say that u is a weak solution of (2.7)-(2.9) with Dirichlet
boundary condition u = w on ∂Ω if it is a weak solution in the sense of Definition 2.1 and
u(t) = w(t) on ∂Ω, in the sense of traces, for a.e. t ∈ (T0, T1).

Remark 2.3. The following uniqueness result is proved in [4]: for every w ∈ V there exists
at most one weak solution of (2.7)-(2.9) in (T0, T1) with Dirichlet boundary condition u = w
on ∂Ω.

Remark 2.4. So far the existence result has been proved in [16] under stronger assumptions
on the Dirichlet boundary data: w ∈ H2((T0, T1);L2(Ω)) ∩H1((T0, T1);H1(Ω \ Γ`(T0))).

2.4. Energy-dissipation balance in the presence of cracks. We now analyse the ener-
getic terms associated to a weak solution u of (2.7)-(2.9) in (T0, T1) in the sense of Definition
2.1. For a.e. t ∈ (T0, T1) let E(t) be the sum of the kinetic and elastic energy at time t ,
that is

E(t) :=
1

2

∫
Ω\Γ`(t)
|u̇(t)|2dxdy +

ce
2

∫
Ω\Γ`(t)
|∇u(t)|2dxdy . (2.14)

To write the viscous dissipation we assume in addition that

u(t) ∈W 2,p(Ω \ Γ`(t)) and u̇(t) ∈W 1,p(Ω \ Γ`(t)) for a.e. t ∈ (T0, T1) , (2.15)

for some 1 < p < 4/3, and

Fu(t) ∈ Lq(Ω \ Γ`(t);R2) for a.e. t ∈ (T0, T1) , (2.16)

where q is the exponent conjugate to p . Moreover, we assume that

ess sup
t∈(T0,T1)

(
‖u(t)‖W 2,p(Ω\Γ`(t)) + ‖u̇(t)‖W 1,p(Ω\Γ`(t))

)
< +∞ , (2.17)

ess sup
t∈(T0,T1)

‖Fu(t)‖Lq(Ω\Γ`(t)) < +∞ . (2.18)

According to (2.4) for a.e. T0 < t1 < t2 < T1 the viscous dissipation between t1 and t2
is given by

D(t1, t2) :=
cv
2

∫
Ω\Γ`(t2)

|∇u(t2)|2dxdy − cv
2

∫
Ω\Γ`(t1)

|∇u(t1)|2dxdy −
∫ t2

t1

(∫
Ω\Γ`(t)
Fu(t)∇u̇(t)dxdy

)
dt . (2.19)

We now analyse the work done to produce the boundary displacement u(t) = w(t).
Besides (2.15) and (2.17) we assume that

Fu(t) ∈W 1,p(Ω \ Γ`(t);R2) for a.e. t ∈ (T0, T1) , (2.20)

ess sup
t∈(T0,T1)

‖Fu(t)‖W 1,p(Ω\Γ`(t)) < +∞ , (2.21)

for the same 1 < p < 4/3. About w we assume that

w(t) ∈ H1(Ω \ Γ`(T0)) and ẇ(t) ∈W 1,r(Ω \ Γ`(T0)) for a.e. t ∈ (T0, T1) , (2.22)

ess sup
t∈(T0,T1)

(
‖w(t)‖H1(Ω\Γ`(T0)) + ‖ẇ(t)‖W 1,r(Ω\Γ`(T0))

)
< +∞ , (2.23)
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for some 1 < r < 2 with 1/r + 1/p ≤ 3/2. The force acting on the boundary of Ω has
density σ(t)ν , where σ is given in (2.12) and ν is the outer unit normal to ∂Ω. Then (2.15)
and (2.20) give

σ(t) ∈W 1,p(Ω \ Γ`(t)) for a.e. t ∈ (T0, T1) , (2.24)

while (2.17) and (2.21) give

ess sup
t∈(T0,T1)

‖σ(t)‖W 1,p(Ω\Γ`(t)) < +∞ .

Therefore the trace of σ(t) on ∂Ω is well defined, it belongs to Lp/(2−p)(∂Ω) (see [13,
Theorem 18.24]), and

ess sup
t∈(T0,T1)

‖σ(t)‖Lp/(2−p)(∂Ω) < +∞ . (2.25)

On the other hand by (2.22) and [13, Theorem 18.24] the trace of ẇ(t) on ∂Ω belongs to
Lr/(2−r)(∂Ω) and by (2.23)

ess sup
t∈(T0,T1)

‖ẇ(t)‖Lr/(2−r)(∂Ω) < +∞ . (2.26)

Since our assumption 1/r + 1/p ≤ 3/2 implies that (2− r)/r + (2− p)/p ≤ 1, the integral∫
∂Ω

σ(t)νẇ(t)dH1 (2.27)

is well defined for a.e. t ∈ (T0, T1). It represents the power at time t of the force acting on
∂Ω. Therefore the work done by this force in the time interval [t1, t2] ⊂ (T0, T1) is given by

W(t1, t2) =

∫ t2

t1

(∫
∂Ω

σ(t)νẇ(t)dH1
)
dt . (2.28)

Note that the integral in time is well defined thanks to (2.25) and (2.26).
Finally, according to Griffith’s theory, the energy dissipated by the crack growth in the

time interval [t1, t2] is assumed to be proportional to the added length, i.e.,

K(t1, t2) := β(`(t2)− `(t1)) , (2.29)

for some constant β > 0 that represents the fracture toughness of the material.

Definition 2.5. Let w be a function satisfying (2.22) and (2.23) and let u be a weak solution
of (2.7)-(2.9) in the sense of Definition 2.1 with Dirichlet boundary condition u = w on ∂Ω.
Assume that (2.15)-(2.18), (2.20), and (2.21) hold. We say that u satisfies the energy-
dissipation balance if

E(t2)− E(t1) +D(t1, t2) +K(t1, t2) =W(t1, t2)

for a.e. t1 < t2 in (T0, T1).

3. A particular solution

In the rest of the paper, under suitable assumptions on the crack tip velocity and on
the viscosity constant α > 0, for an arbitrary fracture toughness β > 0 we construct a
particular Dirichlet boundary condition w such that the corresponding solution u satisfies
the energy-dissipation balance.

For every a > 0 let Ra := (−a, a)× (−1, 1) and Sa := (−a,+∞)× (−1, 1). Throughout
the rest of the paper we choose T0 = −1 and T1 = 1. Moreover, we fix a constant 0 < c < 1,
which represents the constant velocity of the crack tip and we consider only the function
`(t) = ct for t ∈ (−1, 1). We study our evolutionary problem in the time interval (−1, 1)
with reference configuration Ω = R1 . We want to find a solution u to (2.7)-(2.9) of the
form

u(t, x, y) = v(x− ct, y) , −∞ < t ≤ 1 , (x, y) ∈ R1 \ Γct , (3.1)
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for some function v : S` \ Γ0 → R , with

` := 1 + c , (3.2)

taking
u0(t, x, y) := v(x− ct, y) for every t < −1 and (x, y) ∈ R1 \ Γ−c . (3.3)

By (2.7) and (2.8) for −1 ≤ t ≤ 1 the formal boundary value problem that v must satisfy
for (x, y) ∈ R1\Γct is

(1− c2)∂2
xv(x− ct, y) + ∂2

yv(x− ct, y) = α

∫ t

−∞
es−t∆v(x− cs, y)ds,

∂yv(x− ct, 0) = α

∫ t

−∞
es−t∂yv(x− cs, 0)ds for − 1 ≤ x ≤ ct .

This happens in particular if v is a solution of the formal boundary value problem

(1− c2)∂2
xv(x, y) + ∂2

yv(x, y) = α

∫ t

−∞
es−t∆v(x+ c(t− s), y)ds in R` \ Γ0,

∂yv(x, 0) = α

∫ t

−∞
es−t∂yv(x+ c(t− s), 0)ds for − ` ≤ x ≤ 0 ,

which can be written in the form

(1− c2)∂2
xv(x, y) + ∂2

yv(x, y) = α

∫ +∞

0

e−s∆v(x+ cs, y)ds in R` \ Γ0 , (3.4)

∂yv(x, 0) = α

∫ +∞

0

e−s∂yv(x+ cs, 0)ds for − ` ≤ x ≤ 0 . (3.5)

The arguments used so far are only formal. We shall introduce a weak formulation of the
boundary value problem (3.4)-(3.5) and we shall prove, in a rigorous way, that for every weak
solution v of this problem the function u given by (3.1) is a weak solution of (2.7)-(2.9)
according to Definition 2.1 with u0 given by (3.3).

We begin with a lemma that allows us to give a precise meaning to the integrals from 0
to +∞ which appear in the weak formulation.

Lemma 3.1. Let 1 ≤ p < +∞ , a > 0 , γ > 0 , and z ∈ Lp(Sa \ Γ0) . Then∫ 1

−1

(∫ +∞

−a

(∫ +∞

0

e−s|z(x+ γs, y)|ds
)p
dx
)
dy ≤

∫ 1

−1

(∫ +∞

−a
|z(x, y)|pdx

)
dy . (3.6)

Proof. Let us fix y ∈ (−1, 1). By a change of variables for every x > −a we have∫ +∞

0

e−s|z(x+ γs, y)|ds =

∫ +∞

−∞
f(σ)g(x+ σ)dσ ,

where f(σ) := 1
γ e
−σγ for σ ≥ 0 and f(σ) := 0 for σ < 0, while g(x) = |z(x, y)| for x > −a

and g(x) = 0 for x ≤ −a . Since
∫
R f(σ)dσ = 1, by the Young Inequality for convolutions

we have ∫ +∞

−a

(∫ +∞

0

e−s|z(x+ γs, y)|ds
)p
dx ≤

∫ +∞

−a
|z(x, y)|pdx .

Integrating with respect to y we get (3.6). �

Definition 3.2. Given a > 0 we say that v is a weak solution of the boundary value
problem

(1− c2)∂2
xv(x, y) + ∂2

yv(x, y) = α

∫ +∞

0

e−s∆v(x+ cs, y)ds in Ra \ Γ0 , (3.7)

∂yv(x, 0) = α

∫ +∞

0

e−s∂yv(x+ cs, 0)ds for − a ≤ x ≤ 0 . (3.8)
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if v ∈ H1(Sa \ Γ0) and the equality

(1− c2)

∫
Ra\Γ0

∂xv(x, y)∂xϕ(x, y)dxdy +

∫
Ra\Γ0

∂yv(x, y)∂yϕ(x, y)dxdy

= α

∫
Ra\Γ0

(∫ +∞

0

e−s∇v(x+ cs, y)ds
)
∇ϕ(x, y)dxdy (3.9)

holds for every ϕ ∈ H1(Ra \ Γ0) with ϕ = 0 on ∂Ra .

We now prove in a rigorous way that a weak solution of (3.4)-(3.5) generates a weak
solution of (2.7)-(2.9) with u0 given by (3.3).

Lemma 3.3. Let v ∈ H1(S` \ Γ0) be a weak solution of (3.4)-(3.5) according to Definition
3.2 and let u0 be defined by (3.3). Then u defined by (3.1) is a weak solution of (2.7)-(2.9)
in Ω = R1 according to Definition 2.1.

Proof. Let us check that u0 ∈ L∞((−∞,−1);H1(R1 \ Γ−c)) and u ∈ V . It follows im-
mediately from the definitions that u0(s) ∈ H1(R1 \ Γ−c) for a.e. s ∈ (−∞,−1) and
u(t) ∈ H1(R1 \ Γct) for a.e. t ∈ (−1, 1). Moreover,∫

R1\Γ−c

(
|u0(s, x, y)|2 + |∇u0(s, x, y)|2

)
dxdy ≤

∫
S`\Γ0

(
|v(x, y)|2 + |∇v(x, y)|2

)
dxdy ,∫

R1\Γct

(
|u(t, x, y)|2 + |∇u(t, x, y)|2

)
dxdy ≤

∫
S`\Γ0

(
|v(x, y)|2 + |∇v(x, y)|2

)
dxdy ,

for a.e. s ∈ (−∞,−1) and a.e. t ∈ (−1, 1). Hence u0 ∈ L∞((−∞,−1);H1(R1 \ Γ−c)) and
u ∈ L∞((−1, 1);V1). Using the equality u̇(t, x, y) = −c∂xv(x− ct, y), it can be easily shown
that u ∈ H1((−1, 1);H).

Let ϕ ∈ V0 with ϕ(−1) = ϕ(1) = 0 on R1 . Then for a.e. t ∈ (−1, 1) we have ϕ(t) ∈
H1(R1\Γct) and ϕ(t) = 0 on ∂R1 , hence we can extend it to a function ϕ(t) ∈ H1(R2\Γct)
by setting ϕ = 0 on R2 \R1 . For a.e. t ∈ (−1, 1) and for every (x, y) ∈ R` \ Γ0 we set

ϕc(t, x, y) := ϕ(t, x+ ct, y) . (3.10)

Let Rct1 := (−1− ct, 1− ct)× (−1, 1). Since

ϕc(t, ·, ·) = 0 on R2 \Rct1 (3.11)

and Rct1 ⊂ R` , for a.e. t ∈ (−1, 1) we have ϕc(t, ·, ·) ∈ H1(R` \ Γ0) and ϕc(t, ·, ·) = 0 on
∂R` . Using ϕc(t) as test function in (3.9) for a.e. t ∈ (−1, 1) we obtain

(1− c2)

∫
Rct1 \Γ0

∂xv(x, y)∂xϕc(t, x, y)dxdy +

∫
Rct1 \Γ0

∂yv(x, y)∂yϕc(t, x, y)dxdy

= α

∫
Rct1 \Γ0

(∫ +∞

0

e−s∇v(x+ cs, y)ds
)
∇ϕc(t, x, y)dxdy . (3.12)

Taking into account (3.1), by a change of variable for every (x, y) ∈ Rct1 \ Γ0 we obtain∫ +∞

0

e−s∇v(x+ cs, y)ds =

∫ t

−∞
e−(t−s)∇v(x+ c(t− s), y)ds

=

∫ t

−∞
e−(t−s)∇u(s, x+ ct, y)ds , (3.13)
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hence (3.12) can be written as

(1− c2)

∫
Rct1 \Γ0

∂xu(t, x+ ct, y)∂xϕ(t, x+ ct, y)dxdy

+

∫
Rct1 \Γ0

∂yu(t, x+ ct, y)∂yϕ(t, x+ ct, y)dxdy

= α

∫
Rct1 \Γ0

(∫ t

−∞
e−(t−s)∇u(s, x+ ct, y)ds

)
∇ϕ(t, x+ ct, y)dxdy . (3.14)

By a change of variables we obtain

(1− c2)

∫
R1\Γct

∂xu(t, x, y)∂xϕ(t, x, y)dxdy

+

∫
R1\Γct

∂yu(t, x, y)∂yϕ(t, x, y)dxdy

= α

∫
R1\Γct

(∫ t

−∞
e−(t−s)∇u(s, x, y)ds

)
∇ϕ(t, x, y)dxdy . (3.15)

This equality can be written in the form

−c2
∫
R1\Γct

∂xu(t, x, y)∂xϕ(t, x, y)dxdy +

∫
R1\Γct

∇u(t, x, y)∇ϕ(t, x, y)dxdy

= α

∫
R1\Γct

(∫ t

−∞
e−(t−s)∇u(s, x, y)ds

)
∇ϕ(t, x, y)dxdy . (3.16)

Recalling the definition (2.11) of Fu(t) and the definition (3.3) of u0 , to conclude the proof
of (2.13) it remains to show that∫ 1

−1

(∫
R1\Γct
u̇(t, x, y)ϕ̇(t, x, y)dxdy

)
dt = c2

∫ 1

−1

(∫
R1\Γct
∂xu(t, x, y)∂xϕ(t, x, y)dxdy

)
dt . (3.17)

By (3.1) and (3.10) we have

u̇(t, x, y) = −c∂xv(x− ct, y) and ϕ̇(t, x, y) = ϕ̇c(t, x− ct, y)− c∂xϕc(t, x− ct, y) ,

hence ∫
R1\Γct

u̇(t, x, y)ϕ̇(t, x, y)dxdy = −c
∫
R1\Γct

∂xv(x− ct, y)ϕ̇c(t, x− ct, y)dxdy

+c2
∫
R1\Γct

∂xv(x− ct, y)∂xϕc(t, x− ct, y)dxdy .

Therefore, to prove (3.17) it is enough to show that∫ 1

−1

(∫
R1\Γct

∂xv(x− ct, y)ϕ̇c(t, x− ct, y)dxdy
)
dt = 0 .

Changing variables again, by (3.11) the left-hand side can be written as∫ 1

−1

(∫
R`\Γ0

∂xv(x, y)ϕ̇c(t, x, y)dxdy
)
dt =

∫
R`\Γ0

∂xv(x, y)(ϕc(1, x, y)− ϕc(−1, x, y))dxdy ,

and the last integral is equal to 0 because ϕc(−1) = ϕc(1) = 0 as a consequence of the fact
that ϕ(−1) = ϕ(1) = 0. This concludes the proof. �
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It is convenient to consider a change of variables which transforms (3.7) and (3.8) into
the problem

∆v̂(x, y) = α

∫ +∞

0

e−s∆v̂(x+ γs, y)ds+ αγ2

∫ +∞

0

e−s∂2
xv̂(x+ γs, y)ds in Râ \ Γ0 , (3.18)

∂y v̂(x, 0) = α

∫ +∞

0

e−s∂y v̂(x+ γs, 0)ds for − â ≤ x ≤ 0 , (3.19)

for suitable constants γ > 0 and â > 0.

Definition 3.4. Given γ > 0 and â > 0, we say that v̂ is a weak solution of (3.18)-(3.19)
if v̂ ∈ H1(Sâ \ Γ0) and∫

Râ\Γ0

∇v̂(x, y)∇ϕ(x, y)dxdy = α

∫
Râ\Γ0

(∫ +∞

0

e−s∇v̂(x+ γs, y)ds
)
∇ϕ(x, y)dxdy

+αγ2

∫
Râ\Γ0

(∫ +∞

0

e−s∂xv̂(x+ γs, y)ds
)
∂xϕ(x, y)dxdy (3.20)

for every ϕ ∈ H1(Râ \ Γ0) with ϕ = 0 on ∂Râ .

We now show the equivalence between (3.7)-(3.8) and (3.18)-(3.19).

Lemma 3.5. Let a > 0 and let â := a/λ , with λ :=
√

1− c2 . Let v ∈ H1(Sa \ Γ0) and let
v̂ ∈ H1(Sâ \ Γ0) be defined by v̂(x, y) := v(λx, y) for every (x, y) ∈ Sâ \ Γ0 . Then v is a
weak solution of (3.7)-(3.8) according to Definition 3.2 if and only if v̂ is a weak solution

of (3.18)-(3.19), with γ := c/
√

1− c2 , in the sense of Definition 3.4.

Proof. Let ϕ ∈ H1(Râ \ Γ0) with ϕ = 0 on ∂Râ and ϕ̌ ∈ H1(Ra \ Γ0) with ϕ̌ = 0 on ∂Ra
be such that ϕ̌(x, y) = ϕ(xλ , y) for every (x, y) ∈ Ra \ Γ0 .

Since λ =
√

1− c2 , using the relations between v and v̂ and ϕ and ϕ̌ , respectively, we
see that

(1− c2)

∫
Ra\Γ0

∂xv(x, y)∂xϕ̌(x, y)dxdy +

∫
Ra\Γ0

∂yv(x, y)∂yϕ̌(x, y)dxdy

= α

∫
Ra\Γ0

(∫ +∞

0

e−s∇v(x+ cs, y)ds
)
∇ϕ̌(x, y)dxdy

is equivalent to∫
Ra\Γ0

∂xv̂(
x

λ
, y)∂xϕ(

x

λ
, y)dxdy +

∫
Ra\Γ0

∂y v̂(
x

λ
, y)∂yϕ(

x

λ
, y)dxdy

= α

∫
Ra\Γ0

(∫ +∞

0

e−s
1

λ2
∂xv̂(

x+ cs

λ
, y)ds

)
∂xϕ(

x

λ
, y)dxdy

+α

∫
Ra\Γ0

(∫ +∞

0

e−s∂y v̂(
x+ cs

λ
, y)ds

)
∂yϕ(

x

λ
, y)dxdy ,

which in turn, by a change of variables, is equivalent to∫
Râ\Γ0

∂xv̂(x, y)∂xϕ(x, y)dxdy +

∫
Râ\Γ0

∂y v̂(x, y)∂yϕ(x, y)dxdy

=
α

λ2

∫
Râ\Γ0

(∫ +∞

0

e−s∂xv̂(x+ γs, y)ds
)
∂xϕ(x, y)dxdy

+α

∫
Râ\Γ0

(∫ +∞

0

e−s∂y v̂(x+ γs, y)ds
)
∂yϕ(x, y)dxdy .

Hence (3.9) is equivalent to (3.20), which concludes the proof. �
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We conclude this section by proving the existence and uniqueness of a solution v̂ of (3.18)-
(3.19), which in view of the previous lemma provides the existence of a unique solution v
of (3.7)-(3.8).

Theorem 3.6. Let γ > 0 , â > 0 , and w ∈ H1(Sâ \Γ0) . Assume that α(1+γ2) < 1 . Then
there exists a unique solution v̂ of (3.18)-(3.19), according to Definition 3.4, with v̂ = w
on ∂Râ in the sense of traces and v̂ = w a.e. on Sâ \Râ .

Proof. We consider the space H1
∂Râ

(Râ \ Γ0) := {z ∈ H1(Râ \ Γ0) : z = 0 on ∂Râ \ Γ0} .

When needed every z ∈ H1
∂Râ

(Râ \Γ0) is extended to a function z ∈ H1(Sâ \Γ0) by setting
z = 0 on Sâ \Râ .

Let v̂ ∈ H1(Sâ\Γ0) with v̂ = w on ∂Râ in the sense of traces and v̂ = w a.e. on Sâ\Râ .
It is convenient to write v̂ = w + ζ , with ζ ∈ H1

∂Râ
(Râ \ Γ0). By (3.20) the function v̂ is a

solution of our problem if and only if ζ satisfies∫
Râ\Γ0

∇ζ(x, y)∇ϕ(x, y)dxdy +

∫
Râ\Γ0

∇w(x, y)∇ϕ(x, y)dxdy

= α

∫
Râ\Γ0

(∫ +∞

0

e−s
(
(1 + γ2)∂xζ(x+ γs, y), ∂yζ(x+ γs, y)

)
ds
)
∇ϕ(x, y)dxdy (3.21)

+α

∫
Râ\Γ0

(∫ +∞

0

e−s
(
(1 + γ2)∂xw(x+ γs, y), ∂yw(x+ γs, y)

)
ds
)
∇ϕ(x, y)dxdy

for every ϕ ∈ H1
∂Râ

(Râ \ Γ0). Thanks to Lemma 3.1 the above integrals are well-defined.

On H1
∂Râ

(Râ \ Γ0) we consider the norm

‖ϕ‖H1
∂Râ

(Râ\Γ0) := ‖∇ϕ‖L2(Râ\Γ0) . (3.22)

Let H−1
∂Râ

(Râ\Γ0) be the dual space of H1
∂Râ

(Râ\Γ0) and let Φ: H1(Râ\Γ0)→ H−1
∂Râ

(Râ\
Γ0) be the linear operator defined by

〈Φz, ϕ〉 :=

∫
Râ\Γ0

∇z(x, y)∇ϕ(x, y)dxdy (3.23)

for every z ∈ H1(Râ \ Γ0) and ϕ ∈ H1
∂Râ

(Râ \ Γ0). The restriction of Φ to H1
∂Râ

(Râ \ Γ0)
is denoted by Φ0 . It is well-known that Φ0 is a bijective isometry.

Let Ψ: H1(Sâ \ Γ0)→ H−1
∂Râ

(Râ \ Γ0) be the operator defined by

〈Ψz, ϕ〉 :=

∫
Râ\Γ0

(∫ +∞

0

e−s
(
(1 + γ2)∂xz(x+ γs, y), ∂yz(x+ γs)

)
ds
)
∇ϕ(x, y)dxdy (3.24)

for every z ∈ H1(Sâ \ Γ0) and every ϕ ∈ H1
∂Râ

(Râ \ Γ0). By Lemma 3.1 we have that

‖Ψ‖ ≤ 1 + γ2 .
With this notation problem (3.21) becomes: find ζ ∈ H1

∂Râ
(Râ \ Γ0) such that

Φ0ζ = αΨζ + αΨw − Φw , (3.25)

which is equivalent to

ζ = αΦ−1
0 Ψζ + αΦ−1

0 Ψw − Φ−1
0 Φw . (3.26)

By hypothesis α(1 + γ2) < 1, hence the function ζ 7→ αΦ−1
0 Ψζ + αΦ−1

0 Ψw − Φ−1
0 Φw is a

contraction in H1
∂Râ

(Râ \ Γ0). Since ζ is a solution of problem (3.21) if and only if ζ is a
fixed point of this function, we have existence and uniqueness of the solution ζ of problem
(3.21). This concludes the proof. �
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4. Singularity at the origin

The aim of this section is to show that, for a suitable Dirichlet boundary condition on
∂R` , the gradient of the solution v of (3.4)-(3.5) according to Definition 3.2 is singular, at
least when α is sufficiently small. The detailed study of this singularity will be crucial for
the developments of the next section.

Since we want the smallness condition for α to be independent of c , at least for c
sufficiently far from 0 and 1, we fix two constants 0 < c0 < c1 < 1 and in the rest of the
paper we always assume

c0 ≤ c ≤ c1. (4.1)

We set

`1 := 1 + c1 , λ1 :=
√

1− c21 , and ˆ̀
1 := `1/λ1 = (1 + c1)/

√
1− c21 . (4.2)

To simplify the notation, in this section R denotes the rectangle Rˆ̀
1

and S denotes the

strip Sˆ̀
1
. We consider the space H1

∂R(R \ Γ0) := {z ∈ H1(R \ Γ0) : z = 0 on ∂R \ Γ0} .

When needed every z ∈ H1
∂R(R \ Γ0) is extended to a function z ∈ H1(S \ Γ0) by setting

z = 0 on S\R . Hence the space H1
∂R(R\Γ0) can be considered as a subspace of H1(S\Γ0).

In view of Lemma 3.5, we shall first describe the behaviour near the origin of the weak
solution v̂ of (3.18)-(3.19) with

γ := c/
√

1− c2 . (4.3)

To this end we introduce the function ψ : R2 \ Γ0 → R defined by

ψ(x, y) :=
√
ρ(x, y) sin

θ(x, y)

2
for every (x, y) ∈ R2 \ Γ0 , (4.4)

where ρ(x, y) :=
√
x2 + y2 and θ(x, y) ∈ (−π, π) is the oriented angle between the positive

x axis and the vector (x, y), so that x = ρ cos θ and y = ρ sin θ . We observe that

ψ ∈W 1,s(R \ Γ0) ∩W 2,p(R \ Γ0) for every 1 ≤ s < 4 and every 1 ≤ p < 4/3 . (4.5)

Since ψ is harmonic in R2 \ Γ0 and ∂yψ = 0 on Γ0 , we have∫
R\Γ0

∇ψ(x, y)∇ϕ(x, y)dxdy = 0 for every ϕ ∈ H1
∂R(R \ Γ0). (4.6)

We shall prove in Theorem 4.3 that, given 4/3 < r < 1, under suitable assumptions on
α depending on r , the weak solution v̂ of (3.18)-(3.19) in the sense of Definition 3.4 with
the Dirichlet boundary condition v̂ = ψ on ∂R can be written as

v̂ = κψ + v̂reg in R \ Γ0 ,

with κ > 0 and v̂reg ∈W 2,r(R\Γ0). This result is based on the following classical estimates,
due to Grisvard, concerning the weak solutions of the boundary value problems

−∆z = f in R \ Γ0 ,

∂yz = 0 on R ∩ Γ0 ,

z = 0 on ∂R .

(4.7)

The main difficulty of this section is to extend these estimates to the case of (3.18)-(3.19)
where non-local terms are present.

The structure of the solution of (4.7) near the origin is described by the following result.

Theorem 4.1. Let 4/3 < r < 2 , let f ∈ Lr(R\Γ0) , and let z ∈ H1
∂R(R\Γ0) be the unique

solution of the problem∫
R\Γ0

∇z(x, y)∇ϕ(x, y)dxdy =

∫
R\Γ0

f(x, y)ϕ(x, y)dxdy for every ϕ ∈ H1
∂R(R \ Γ0) , (4.8)
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which is the weak formulation of (4.7). Then z can be written in a unique way as

z = κψ + zreg in R \ Γ0 , (4.9)

with κ ∈ R and zreg ∈W 2,r(R\Γ0) . Moreover, there exists a constant Ar > 0 , independent
of f , such that the estimate

|κ|+ ‖zreg‖W 2,r(R\Γ0) ≤ Ar‖f‖Lr(R\Γ0) (4.10)

holds.

Proof. Using the results in [12, Theorem 4.4.3.7] we obtain that there exist κ ∈ R and zreg ∈
W 2,r(R \ Γ0) such that (4.9) holds. Since the function ψ does not belong to W 2,r(R \ Γ0)
we deduce that κ and zreg are uniquely determined.

Let us now prove (4.10). Let X be the closed linear subspace of Y := R×W 2,r(R\Γ0;R2)
defined by

X := {(κ, v) ∈ Y : κψ + zreg = 0 on ∂R and ∂yz
reg = 0 on R ∩ Γ0},

and let Λ: X → Lr(R \ Γ0) be the continuous linear operator defined by

Λ(κ, zreg) := −∆zreg .

Given f ∈ Lr(R\Γ0) we consider the unique solution z of (4.8), which can be represented as
in (4.9) for some κ ∈ R and zreg ∈W 2,r(R \Γ0), uniquely determined by z . Since ∂yz = 0
and ∂yψ = 0 on R ∩ Γ0 , we deduce that ∂yz

reg = 0 on R ∩ Γ0 . Moreover, since z = 0 on
∂R we have κψ + zreg = 0 on ∂R . Finally, since −∆z = f and −∆ψ = 0 in R \ Γ0 , we
have also −∆zreg = f in R \Γ0 . This implies that there exists a unique (κ, zreg) ∈ X such
that Λ(κ, zreg) = f , proving that Λ: X → Lr(R \ Γ0) is bijective. Since Λ is continuous,
by the Closed Graph Theorem its inverse is continuous, which implies (4.10). �

We consider now the case in which the homogeneous condition z = 0 on ∂R is replaced
by the non-homogeneous boundary condition z = w on ∂R .

Corollary 4.2. Let 4/3 < r < 2 , f ∈ Lr(R \ Γ0) , w ∈ W 2,r(R \ Γ0) , and let z ∈
H1
∂R(R \ Γ0) +w be the unique weak solution of problem (4.8) in this space. Then z can be

written in a unique way as

z = κψ + zreg in R \ Γ0 ,

with κ ∈ R and zreg ∈W 2,r(R\Γ0) . Moreover, there exists a constant Br > 0 , independent
of f and w , such that the estimate

|κ|+ ‖zreg‖W 2,r(R\Γ0) ≤ Br(‖f‖Lr(R\Γ0) + ‖w‖W 2,r(R\Γ0))

holds.

Proof. Since 4/3 < r < 2 and hence 1 − 1/r < 1/r , by [12, Theorem 1.5.2.8 and Remark
1.7.4] there exists a function ζ ∈W 2,r(R \ Γ0) such that

∂yζ = 0 on R ∩ Γ0 , ∂νζ = ∂νw on ∂R ,

ζ = w on ∂R ∪ Γ0 .

We observe that ζ is not uniquely determined. However, we can choose ζ so that

‖ζ‖W 2,r(R\Γ0) ≤ cr‖w‖W 2,r(R\Γ0)

for a suitable constant cr > 0 independent of w . To prove this estimate, it is enough to
consider the surjective continuous linear map Λ introduced in [12, Theorem 1.5.2.8] and
to apply the Closed Graph Theorem to its quotient defined on the Banach space W 2,r(R \
Γ0)/Ker Λ.

The conclusion now follows by applying the previous theorem to the function z − ζ . �
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Since ψ /∈ H1(S \ Γ0), we fix a cut-off function ω ∈ C∞c (R2) with ω = 1 in R and we
set

ψ0 := ωψ , (4.11)

observing that ψ0 = ψ in R \ Γ0 and ψ0 ∈ H1(S \ Γ0) ∩W 2,p(S \ Γ0) for 1 ≤ p < 4/3.
Moreover, we have ψ0 ∈ C∞(S \R).

We are now ready to state the main result of this section. It concerns the structure of the
weak solution v̂ of (3.18)-(3.19) in R \ Γ0 with boundary condition v̂ = ψ0 on ∂R , whose
existence and uniqueness are guaranteed by Theorem 3.6.

Theorem 4.3. Given 4/3 < r < 2 , there exists a constant Mr > 1 such that, if αMr ≤
1 − c21 and γ = c/

√
1− c2 , then the unique solution v̂ of (3.18)-(3.19) in R \ Γ0 with

boundary condition v̂ = ψ on ∂R , satisfying v̂ = ψ0 in S \ R , can be written in a unique
way in the form

v̂ = κ0ψ + v̂reg in R \ Γ0 , (4.12)

with κ0 ∈ R , κ0 > 0 , and v̂reg ∈W 2,r(R \ Γ0) .

Proof. Assume that α < 1− c21 . Recalling the definition of γ and the inequalities c0 ≤ c ≤
c1 , this implies that α(1+γ2) < 1. Hence Theorem 3.6 with â = ˆ̀

1 and w = ψ0 guarantees
existence and uniqueness of the solution v̂ mentioned in the statement. Let Φ, Φ0 , and Ψ
be the operators defined in the proof of that theorem. Therefore we can write

v̂ = ψ0 + ζ , (4.13)

where ζ ∈ H1
∂R(R \ Γ0) is the unique fixed point of the map ζ 7→ αΦ−1

0 Ψζ + αΦ−1
0 Ψψ0 −

Φ−1
0 Φψ0 = αΦ−1

0 Ψζ + αΦ−1
0 Ψψ0 , where the equality is due to the fact that Φψ0 = 0 in

R \Γ0 by (4.6). Since this map is a contraction in the space H1
∂R(R \Γ0) with norm (3.22),

its fixed point ζ can be obtained as limit of the sequence (ζn) defined inductively in the
following way: ζ0 = 0 and ζn+1 = αΦ−1

0 Ψζn + αz0 for n ≥ 0, where

z0 := Φ−1
0 Ψψ0 ∈ H1

∂R(R \ Γ0). (4.14)

Let U : H1(S \ Γ0)→ H1
∂R(R \ Γ0) ⊂ H1(S \ Γ0) be the operator defined by

U := Φ−1
0 Ψ . (4.15)

By construction we have ζn+1 = αUζn + αz0 . Therefore we can write ζn+1 as

ζn+1 =

n∑
j=0

αj+1U jz0 ,

and consequently the fixed point ζ satisfies

ζ =

∞∑
j=0

αj+1U jz0 =

∞∑
j=0

αj+1zj , (4.16)

where the series converges strongly in H1
∂R(R \ Γ0) and

zj := U jz0 . (4.17)

In order to prove (4.12) we study the singularity of the gradients of the functions zj .
Given 1 ≤ p < +∞ , it is convenient to introduce the operators V : Lp(S\Γ0)→ Lp(S\Γ0)

defined by

(V z)(x, y) :=

∫ +∞

0

e−sz(x+ γs, y)ds for every z ∈ Lp(S \ Γ0) (4.18)

and VR : Lp(R \ Γ0)→ Lp(R \ Γ0) defined by

(VRz)(x, y) := (V zR)(x, y) =

∫ ˆ̀
1−x
γ

0

e−sz(x+ γs, y)ds for every z ∈ Lp(R \ Γ0), (4.19)
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where ˆ̀
1 is defined in (4.2) and zR is the extension of z obtained by setting zR := 0 in

S \R . The fact that V maps Lp(S \Γ0) into Lp(S \Γ0) follows from Lemma 3.1. Moreover,
we observe that V maps W 1,p(S \ Γ0) into W 1,p(S \ Γ0) and that

∂x(V z) = V (∂xz) and ∂y(V z) = V (∂yz). (4.20)

The analogous result for VR is given by the following lemma.

Lemma 4.4. Let 1 ≤ p < +∞ and let z ∈W 1,p(R \ Γ0) . Then VRz ∈W 1,p(R \ Γ0) and

∂x(VRz)(x, y) =

∫ ˆ̀
1−x
γ

0

e−s∂xz(x+ γs, y)ds− 1

γ
e
x−ˆ̀

1
γ z(ˆ̀

1, y) ,

∂y(VRz)(x, y) =

∫ ˆ̀
1−x
γ

0

e−s∂yz(x+ γs, y)ds ,

where z(ˆ̀
1, ·) denotes the trace of z on the segment {ˆ̀1} × (−1, 1) . Moreover, there exists

a constant Dp > 0 , independent of z and of c ∈ [c0, c1] , such that

‖VRz‖W 1,p(R\Γ0) ≤ Dp‖z‖W 1,p(R\Γ0) . (4.21)

Proof. The proof is standard if z is of class C1 in a suitable neighbourhood of ∂R \ Γ0 .
The general case can be obtained by approximation. Estimate (4.21) follows from the trace
inequality and from Lemma 3.1 applied to the extensions of z , ∂xz , and ∂yz obtained by
setting them equal to 0 in S \ R , taking into account the fact that 1/γ is bounded from
above due to (4.1). �

For future use we state also a more general version of the previous result.

Lemma 4.5. Let 1 ≤ p < +∞ , a ≥ 1/2 , δ > 0 , and z ∈W 1,p(Ra \Γ0) . Then the function
za,δ : Ra \ Γ0 → R defined by

za,δ(x, y) :=

∫ a−x
δ

0

e−sz(x+ δs, y)ds

belongs to W 1,p(Ra \ Γ0) and

∂xza,δ(x, y) =

∫ a−x
δ

0

e−s∂xz(x+ δs, y)ds− 1

δ
e
x−a
δ z(a, y) ,

∂yza,δ(x, y) =

∫ a−x
δ

0

e−s∂yz(x+ δs, y)ds ,

where z(a, ·) denotes the trace of z on the segment {a} × (−1, 1) . Moreover, there exists a
constant Ep > 0 , independent of z , a , and δ , such that

‖za,δ‖W 1,p(Ra\Γ0) ≤ Ep(1 +
1

δ
)‖z‖W 1,p(Ra\Γ0) . (4.22)

Proof. As in the previous lemma the proof is standard if z is of class C1 in a suitable
neighbourhood of ∂Ra \Γ0 , and the general case can be obtained by approximation. For all

terms appearing in ‖za,δ‖W 1,p(Ra\Γ0) , except for the Lp -norm of 1
δ e

x−a
δ z(a, y), the estimate

(4.22) follows from Lemma 3.1 applied to the extensions of z , ∂xz , and ∂yz obtained by

setting them equal to 0 in Sa \ Ra . To estimate the Lp -norm of 1
δ e

x−a
δ z(a, ·) we use the

continuity of the trace operator from W 1,p((a − 1, a) × (−1, 1)) into Lp({a} × (−1, 1)),
observing that the norm of this operator does not depend on a and that the rectangle
(a− 1, a)× (−1, 1) is contained in Ra . �

We shall use the following integrability result. Note that, while V ψ0 depends on c
through γ , the final estimate of its norm is independent of c ∈ [c0, c1] .



16 GIANNI DAL MASO AND RODICA TOADER

Lemma 4.6. Let 1 ≤ r < 2 . Then the function V ψ0 belongs to W 2,r(R \ Γ0) and there
exists a constant Fr > 0 , independent of c ∈ [c0, c1] , such that ‖V ψ0‖W 2,r(R\Γ0) ≤ Fr .

Proof. Since ψ0 ∈ H1(S \ Γ0), by Lemma 3.1 applied to ψ0 , ∂xψ0 , and ∂yψ0 we deduce
from (4.20) that V ψ0 ∈W 1,r(R \ Γ0) and that

‖V ψ0‖W 1,r(R\Γ0) ≤ Fr,0 (4.23)

for a suitable positive constant Fr,0 independent of c ∈ [c0, c1] .
Since, by (4.20), ∂xx(V ψ0) = V (∂xxψ0), ∂xy(V ψ0) = V (∂xyψ0), and ∂yy(V ψ0) =

V (∂yyψ0), to deal with the second derivatives of V ψ0 we consider the functions

(x, y) 7→
∫ +∞

0

e−s|∂xxψ0(x+ γs, y)|ds , (4.24)

(x, y) 7→
∫ +∞

0

e−s|∂xyψ0(x+ γs, y)|ds , (4.25)

(x, y) 7→
∫ +∞

0

e−s|∂yyψ0(x+ γs, y)|ds . (4.26)

We claim that they belong to Lr(R \ Γ0) for every 1 ≤ r < 2 and that their Lr -norms are
bounded by a constant depending only on r .

We prove the claim only for (4.24), the proof for the other ones being analogous. By
direct computation we see that there exists a constant A > 0 such that

|ψ(x, y)| ≤ (|x|+ |y|)1/2 , |∂xψ(x, y)| ≤ A

(|x|+ |y|)1/2
, |∂xxψ(x, y)| ≤ A

(|x|+ |y|)3/2

for every (x, y) ∈ R2 \ Γ0 . Since ∂xxψ0 = ∂xxψ ω + 2∂xψ ∂xω + ψ ∂xxω , there exists a
constant B > 0 such that for every (x, y) ∈ R2 \ Γ0 we have

|∂xxψ0(x, y)| ≤ B

(|x|+ |y|)3/2
χ(x, y) +

B

(|x|+ |y|)1/2
χ(x, y) +B(|x|+ |y|)1/2χ(x, y) ,

where χ ∈ C∞c (R2), 0 ≤ χ ≤ 1 on R2 , and χ = 1 on suppω .
Then for every (x, y) ∈ R2 \ Γ0 we have∫ +∞

0

e−s|∂xxψ0(x+ γs, y)|ds ≤ B f1(x, y) +B f2(x, y) +B f3(x, y) ,

where

f1(x, y) :=

∫ +∞

0

e−s
1

(|x+ γs|+ |y|)3/2
ds ,

f2(x, y) :=

∫ +∞

0

e−s
χ(x+ γs, y)

(|x+ γs|+ |y|)1/2
ds ,

f3(x, y) :=

∫ +∞

0

e−s(|x+ γs|+ |y|)1/2ds .

By Lemma 3.1 for every r < 4 we have

‖f2‖Lr(R\Γ0) ≤
(∫

suppχ

dxdy

(|x|+ |y|)r/2
)1/r

=: Fr,2 .

Since

f3(x, y) ≤ (|x|+ |y|)1/2 + γ1/2

∫ +∞

0

e−ss1/2ds ,

the function f3 belongs to L∞(R \Γ0). Recalling that the function c 7→ γ is increasing and
that c0 ≤ c ≤ c1 , we deduce that

‖f3‖Lr(R\Γ0) ≤ Fr,3
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for a suitable positive constant Fr,3 independent of c .
As for f1 , in order to integrate by parts we notice that

d

ds

1

(|x+ γs|+ |y|)1/2
= −1

2

γ sign(x+ γs)

(|x+ γs|+ |y|)3/2
.

Hence for x > 0 we have

f1(x, y) = − 2

γ

e−s

(|x+ γs|+ |y|)1/2

∣∣∣s=+∞

s=0
− 2

γ

∫ +∞

0

e−s

(|x+ γs|+ |y|)1/2
ds ≤ 2

γ(|x|+ |y|)1/2
.

To estimate f1 for x < 0 we write

f1(x, y) =

∫ −x/γ
0

e−sds

(|x+ γs|+ |y|)3/2
+

∫ +∞

−x/γ

e−sds

(|x+ γs|+ |y|)3/2

=
2

γ

e−s

(|x+ γs|+ |y|)1/2

∣∣∣s=−x/γ
s=0

+

∫ −x/γ
0

2

γ

e−sds

(|x+ γs|+ |y|)1/2

− 2

γ

e−s

(|x+ γs|+ |y|)1/2

∣∣∣s=+∞

s=−x/γ
−
∫ +∞

−x/γ

2

γ

e−sds

(|x+ γs|+ |y|)1/2
≤ C

γ|y|1/2

for a suitable constant C > 0 independent of x and y . Recalling that the function c 7→ γ
is increasing and that c0 ≤ c ≤ c1 , we obtain that f1 ∈ Lr(R \ Γ0) for every r < 2 and

‖f1‖Lr(R\Γ0) ≤ Fr,1
for some positive constant Fr,1 independent of c . Together with the results for f2 and f3

this concludes the proof of the claim for (4.24).
The conclusion of the lemma follows from (4.23) and from the estimates obtained in the

claim. �

In the following lemma the estimates for the first derivatives proved in Lemma 4.4 are
extended, under more restrictive assumptions, to second order derivatives.

Lemma 4.7. Let 1 < r < 2 and let z ∈ H1(R \Γ0) with z(ˆ̀
1, y) = 0 in the sense of traces

on the segment {ˆ̀1} × (−1, 1) . Assume that there exist κ ∈ R and zreg ∈ W 2,r(R \ Γ0)
such that

z = κψ + zreg in R \ Γ0 . (4.27)

Then VRz ∈ W 2,r(R \ Γ0) and there exists a constant Gr > 0 , independent of z , κ , zreg ,
and c ∈ [c0, c1] , such that

‖VRz‖W 2,r(R\Γ0) ≤ Gr(|κ|+ ‖zreg‖W 2,r(R\Γ0)) . (4.28)

Proof. By Lemma 4.4 applied to z we have that VRz ∈ H1(R \ Γ0) and that for a.e.
(x, y) ∈ R \ Γ0

∂x(VRz)(x, y) =

∫ ˆ̀
1−x
γ

0

e−s∂xz(x+ γs, y)ds , (4.29)

∂y(VRz)(x, y) =

∫ ˆ̀
1−x
γ

0

e−s∂yz(x+ γs, y)ds , (4.30)

which implies

∂x(VRz) = VR(∂xz) and ∂y(VRz) = VR(∂yz) . (4.31)

By applying Lemma 3.1 to suitable extensions of VRz , ∂x(VRz), and ∂y(VRz), we obtain
that

‖VRz‖W 1,r(R\Γ0) ≤ ‖z‖W 1,r(R\Γ0) . (4.32)

To prove that VRz ∈W 2,r(R \ Γ0) we fix 1 < r̂ < 4/3 with r̂ ≤ r , and begin by proving
that VRz ∈ W 2,r̂(R \ Γ0). By (4.5) and (4.27) we have that z ∈ W 2,r̂(R \ Γ0). Recalling
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(4.31), by Lemma 4.4 applied to ∂xz and ∂yz , with p = r̂ , we obtain that VRz ∈W 2,r̂(R\Γ0)
and for a.e. (x, y) ∈ R \ Γ0

∂xx(VRz)(x, y) =

∫ ˆ̀
1−x
γ

0

e−s∂xxz(x+ γs, y)ds− 1

γ
e
x−ˆ̀

1
γ ∂xz(ˆ̀

1, y) , (4.33)

∂xy(VRz)(x, y) =

∫ ˆ̀
1−x
γ

0

e−s∂xyz(x+ γs, y)ds , (4.34)

∂yy(VRz)(x, y) =

∫ ˆ̀
1−x
γ

0

e−s∂yyz(x+ γs, y)ds , (4.35)

where in the last equalities we used the fact that the trace of z on the segment {ˆ̀1}×(−1, 1)

satisfies z(ˆ̀
1, y) = 0 for a.e. y ∈ (−1, 1), and hence ∂yz(ˆ̀

1, y) = 0 for a.e. y ∈ (−1, 1).
These equalities allow us to improve the regularity of VRz and to obtain that VRz ∈

W 2,r(R \ Γ0). Indeed, by (4.27) we obtain

∂xx(VRz)(x, y) = κ

∫ ˆ̀
1−x
γ

0

e−s∂xxψ(x+ γs, y)ds− κ

γ
e
x−ˆ̀

1
γ ∂xψ(ˆ̀

1, y)

+

∫ ˆ̀
1−x
γ

0

e−s∂xxz
reg(x+ γs, y)ds− 1

γ
e
x−ˆ̀

1
γ ∂xz

reg(ˆ̀
1, y) . (4.36)

From the proof of Lemma 4.6 we know that the function

(x, y) 7→
∫ ˆ̀

1−x
γ

0

e−s∂xxψ(x+ γs, y)ds

belongs to Lr(R \ Γ0) and that its Lr -norm is bounded by Fr . Moreover, the function

(x, y) 7→ 1

γ
e
x−ˆ̀

1
γ ∂xψ(ˆ̀

1, y) (4.37)

belongs to Lr(R \ Γ0) because ψ is of class C∞ in a neighbourhood of the segment {ˆ̀1} ×
[−1, 1]. Recalling that the function c 7→ γ is increasing and that c0 ≤ c ≤ c1 , we deduce
that the Lr -norm of (4.37) is bounded by some positive constant Hr .

By Lemma 3.1 the function

(x, y) 7→
∫ ˆ̀

1−x
γ

0

e−s∂xxz
reg(x+ γs, y)ds

belongs to Lr(R \ Γ0) and its norm is bounded by ‖zreg‖W 2,r(R\Γ0) . Moreover, using the
monotonicity of c 7→ γ , the inequalities c0 ≤ c ≤ c1 and the continuity of the trace operator
imply that there exists a constant Kr > 0 such that(∫

R\Γ0

| 1
γ
e−

ˆ̀
1−x
γ ∂xϕ(ˆ̀

1, y)|rdxdy
)1/r

≤ Kr‖ϕ‖W 2,r(R\Γ0) , (4.38)

for every ϕ ∈ W 2,r(R \ Γ0). Applying this inequality to ϕ = zreg , from (4.36) and the
previous inequalities we conclude that

‖∂xx(VRz)‖Lr(R\Γ0) ≤ κ(Fr +Hr) + (1 +Kr)‖zreg‖W 2,r(R\Γ0). (4.39)

Similarly, we estimate the other two terms ∂xy(VRz) and ∂yy(VRz) in Lr(R \ Γ0). To-
gether with the estimate (4.32) of the W 1,r -norm, this concludes the proof. �
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Proof of Theorem 4.3 (continuation). We now introduce two operators Ψ1 and Ψ2 from
H1(S \ Γ0) into H−1

∂R(R \ Γ0) defined by

〈Ψ1z, ϕ〉 :=

∫
R\Γ0

(∫ +∞

0

e−s∇z(x+ γs, y)ds
)
∇ϕ(x, y)dxdy , (4.40)

〈Ψ2z, ϕ〉 :=

∫
R\Γ0

(∫ +∞

0

e−s∂xz(x+ γs, y)ds
)
∂xϕ(x, y)dxdy , (4.41)

for every z ∈ H1(S \ Γ0) and every ϕ ∈ H1
∂R(R \ Γ0), where γ = c/

√
1− c2 as in (4.3).

Recalling the definition (3.24) of Ψ we have

Ψ = Ψ1 + γ2Ψ2 in H1(S \ Γ0) . (4.42)

We also note that by (4.20) we have

〈Ψ1z, ϕ〉 =

∫
R\Γ0

∇(V z)(x, y)∇ϕ(x, y)dxdy ,

for every z ∈ H1(S \ Γ0) and every ϕ ∈ H1
∂R(R \ Γ0), hence

Ψ1 = ΦV in H1(S \ Γ0) , (4.43)

where Φ is defined in (3.23).
In the following lemma we use these operators to describe in detail the structure of the

functions zj introduced in (4.17).

Lemma 4.8. Let 4/3 < r < 2 . Then there exists a constant µr ≥ 1 , independent of α ,
such that for every µ ≥ µr and every j ≥ 0 there exist κj ∈ R and zregj ∈ W 2,r(R \ Γ0)
satisfying

zj = κjψ + zregj in R \ Γ0 and |κj |+ ‖zregj ‖W 2,r(R\Γ0) ≤ µj+1 . (4.44)

Proof. We proceed by induction. Taking into account (4.14), (4.42), and (4.43) we have

z0 = Φ−1
0 Ψψ0 = Φ−1

0 ΦV ψ0 + γ2Φ−1
0 Ψ2ψ0 . (4.45)

Let us consider the term z0,1 := Φ−1
0 ΦV ψ0 . We have z0,1 ∈ H1

∂R(R\Γ0) and Φz0,1 = ΦV ψ0 .
Hence z0,1 = V ψ0 + v0,1 with v0,1 ∈ H1(R \ Γ0) satisfying Φv0,1 = 0, i.e.,∫

R\Γ0

∇v0,1(x, y)∇ϕ(x, y)dxdy = 0

for every ϕ ∈ H1
∂R(R \Γ0). Since z0,1 = 0 on ∂R we deduce that v0,1 = −V ψ0 on ∂R . By

Corollary 4.2 there exist κ0,1 ∈ R and vreg0,1 ∈W 2,r(R \ Γ0) such that

v0,1 = κ0,1ψ + vreg0,1 in R \ Γ0 , (4.46)

|κ0,1|+ ‖vreg0,1 ‖W 2,r(R\Γ0) ≤ Br‖V ψ0‖W 2,r(R\Γ0) ≤ BrFr , (4.47)

where in the last inequality we used Lemma 4.6.
To study the term z0,2 := Φ−1

0 Ψ2ψ0 , we set

f0(x, y) :=

∫ +∞

0

e−s∂xxψ0(x+ γs, y)ds = (V ∂xxψ0)(x, y) .

By Lemma 4.6 we have f0 ∈ Lr(R \ Γ0) and ‖f0‖Lr(R\Γ0) ≤ Fr .

We claim that Ψ2ψ0 = −f0 in H−1
∂R(R \ Γ0), which means that∫

R\Γ0

(∫ +∞

0

e−s∂xψ0(x+ γs, y)ds
)
∂xϕ(x, y)dxdy = −

∫
R\Γ0

f0(x, y)ϕ(x, y)dxdy

for every ϕ ∈ H1
∂R(R \ Γ0). This can be written in the form∫

R\Γ0

(V ∂xψ0)(x, y) ∂xϕ(x, y)dxdy = −
∫
R\Γ0

f0(x, y)ϕ(x, y)dxdy. (4.48)
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By (4.20) we have ∂x(V ∂xψ0) = V ∂xxψ0 = f0 , and ∂y(V ∂xψ0) = V ∂xyψ0 . By Lemma 4.6
the functions V ∂xxψ0 and V ∂xyψ0 belong to Lr(R \ Γ0), hence V ∂xψ0 ∈ W 1,r(R \ Γ0).
Since ϕ ∈ H1

∂R(R \ Γ0), and hence ϕ ∈ Lq(R \ Γ0) by the Sobolev Embedding Theorem
for every 1 ≤ q < +∞ , we can integrate by parts in the left-hand side of (4.48). Since the
x -component of the normal to Γ0 is zero, no boundary term appears and, using the equality
∂x(V ∂xψ0) = f0 , from the integration by parts we obtain (4.48), concluding the proof of
the claim.

By Theorem 4.1 there exist κ0,2 ∈ R and zreg0,2 ∈W 2,r(R \ Γ0) such that

z0,2 = Φ−1
0 Ψ2ψ0 = −Φ−1

0 f0 = κ0,2ψ + zreg0,2 in R \ Γ0 , (4.49)

|κ0,2|+ ‖zreg0,2 ‖W 2,r(R\Γ0) ≤ Ar‖f0‖Lr(R\Γ0) ≤ ArFr . (4.50)

Therefore (4.45)-(4.47), together with the monotonicity of c 7→ γ and the inequalities c0 ≤
c ≤ c1 , imply that

z0 = z0,1 + γ2z0,2 = (κ0,1 + γ2κ0,2)ψ + vreg0,1 + V ψ0 + γ2zreg0,2 in R \ Γ0 (4.51)

|κ0,1 + γ2κ0,2|+ ‖vreg0,1 + V ψ0 + γ2zreg0,2 ‖W 2,r(R\Γ0) ≤ (Br + 1 + γ2
1Ar)Fr , (4.52)

where γ1 := c1/
√

1− c21 . This implies that (4.44) is satisfied for j = 0 with κ0 := κ0,1 +
γ2κ0,2 and zreg0 := vreg0,1 + V ψ0 + γ2zreg0,2 provided

µ ≥ µr,0 := (Br + 1 + γ2
1Ar)Fr. (4.53)

Let now j ≥ 1 and assume that (4.44) holds for j − 1, that is to say

zj−1 = κj−1ψ + zregj−1 in R \ Γ0 and |κj−1|+ ‖zregj−1‖W 2,r(R\Γ0) ≤ µj (4.54)

for suitable κj−1 ∈ R , zregj−1 ∈ W 2,r(R \ Γ0), and µ > 0. By (4.15) and (4.17) we have

zj = Φ−1
0 Ψzj−1 . Therefore (4.42) gives

zj = zj,1 + γ2zj,2 , (4.55)

where, taking (4.43) into account, we set

zj,1 := Φ−1
0 Ψ1zj−1 = Φ−1

0 ΦV zj−1 , (4.56)

zj,2 := Φ−1
0 Ψ2zj−1 . (4.57)

Let us consider first the term zj,1 . We have zj,1 ∈ H1
∂R(R \ Γ0) and Φzj,1 = ΦV zj−1 .

Hence

zj,1 = V zj−1 + vj,1 , (4.58)

where vj,1 ∈ H1(R \ Γ0) satisfies Φvj,1 = 0, i.e.,∫
R\Γ0

∇vj,1(x, y)∇ϕ(x, y)dxdy = 0

for every ϕ ∈ H1
∂R(R \ Γ0). Since zj,1 = 0 on ∂R , we deduce that vj,1 = −V zj−1 on ∂R .

By Corollary 4.2 there exist κj,1 ∈ R and vregj,1 ∈W 2,r(R \ Γ0) such that

vj,1 = κj,1ψ + vregj,1 in R \ Γ0 , (4.59)

|κj,1|+ ‖vregj,1 ‖W 2,r(R\Γ0) ≤ Br‖V zj−1‖W 2,r(R\Γ0) . (4.60)

Since zj−1 ∈ H1
∂R(R \ Γ0), we have V zj−1 = VRzj−1 . By Lemma 4.7 and (4.54) we have

VRzj−1 ∈W 2,r(R \ Γ0) and

‖V zj−1‖W 2,r(R\Γ0) = ‖VRzj−1‖W 2,r(R\Γ0) ≤ Gr(|κj−1|+ ‖zregj−1‖W 2,r(R\Γ0)) . (4.61)

Together with (4.54) and (4.58)-(4.60) this gives

zj,1 = κj,1ψ + vregj,1 + V zj−1 in R \ Γ0 (4.62)

|κj,1|+ ‖V zj−1 + vregj,1 ‖W 2,r(R\Γ0) ≤ (Br + 1)Grµ
j . (4.63)
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To deal with zj,2 introduced in (4.57) we set

fj−1(x, y) :=

∫ ˆ̀
1−x
γ

0

e−s∂xxzj−1(x+ γs, y)ds− 1

γ
e−

ˆ̀
1−x
γ ∂xzj−1(ˆ̀

1, y) .

We claim that fj−1 ∈ Lr(R \ Γ0). By (4.54) we have that

fj−1(x, y) = κj−1

∫ ˆ̀
1−x
γ

0

e−s∂xxψ0(x+ γs, y)ds+

∫ ˆ̀
1−x
γ

0

e−s∂xxz
reg
j−1(x+ γs, y)ds

− 1

γ
κj−1e

−
ˆ̀
1−x
γ ∂xψ0(ˆ̀

1, y)− 1

γ
e−

ˆ̀
1−x
γ ∂xz

reg
j−1(ˆ̀

1, y) .

(4.64)

From the proof of Lemma 4.6 we know that the function

(x, y) 7→
∫ ˆ̀

1−x
γ

0

e−s∂xxψ0(x+ γs, y)ds

belongs to Lr(R \ Γ0) and its norm is bounded by Fr . By Lemma 3.1 the function

(x, y) 7→
∫ ˆ̀

1−x
γ

0

e−s∂xxz
reg
j−1(x+ γs, y)ds

also belongs to Lr(R \ Γ0) and its norm is bounded by ‖zregj−1‖W 2,r(R\Γ0) . Arguing as in

(4.37) we obtain that the Lr(R \ Γ0)-norm of the function (x, y) 7→ 1
γ e
−

ˆ̀
1−x
γ ∂xψ0(ˆ̀

1, y) is

bounded by Hr . As for the last term in (4.64), using (4.38) with ϕ = zregj−1 we obtain(∫
R\Γ0

| 1
γ
e−

ˆ̀
1−x
γ ∂xz

reg
j−1(ˆ̀

1, y)|rdxdy
)1/r

≤ Kr‖zregj−1‖W 2,r(R\Γ0) .

From (4.64) and from these inequalities we obtain that fj−1 ∈ Lr(R \ Γ0) and

‖fj−1‖Lr(R\Γ0) ≤ (Fr +Hr)|κj−1|+ (1 +Kr)‖zregj−1‖W 2,r(R\Γ0) . (4.65)

We claim that Ψ2zj−1 = −fj−1 in H−1
∂R(R \ Γ0). Recalling that zj−1 = 0 on S \ R the

claim is equivalent to∫
R\Γ0

(∫ ˆ̀
1−x
γ

0

e−s∂xzj−1(x+ γs, y)ds
)
∂xϕ(x, y)dxdy = −

∫
R\Γ0

fj−1(x, y)ϕ(x, y)dxdy (4.66)

for every ϕ ∈ H1
∂R(R \ Γ0). We first want to prove that

∂x

(∫ ˆ̀
1−x
γ

0

e−s∂xzj−1(x+ γs, y)ds
)

= −fj−1(x, y) .

By (4.54) we have∫ ˆ̀
1−x
γ

0

e−s∂xzj−1(x+ γs, y)ds = κj−1

∫ ˆ̀
1−x
γ

0

e−s∂xψ0(x+ γs, y)ds

+

∫ ˆ̀
1−x
γ

0

e−s∂xz
reg
j−1(x+ γs, y)ds .

By Lemma 4.4 the function

(x, y) 7→
∫ ˆ̀

1−x
γ

0

e−s∂xz
reg
j−1(x+ γs, y)ds (4.67)
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belongs to W 1,r(R \ Γ0) and

∂x

(∫ ˆ̀
1−x
γ

0

e−s∂xz
reg
j−1(x+ γs, y)ds

)
=

∫ ˆ̀
1−x
γ

0

e−s∂xxz
reg
j−1(x+ γs, y)ds− 1

γ
e

ˆ̀
1−x
γ ∂xz

reg
j−1(ˆ̀

1, y) . (4.68)

We now apply Lemma 4.4 with p = 1 to the function u = ∂xψ0 obtaining that the
function

(x, y) 7→
∫ ˆ̀

1−x
γ

0

e−s∂xψ0(x+ γs, y)ds (4.69)

belongs to W 1,1(R \ Γ0) and

∂x

(∫ ˆ̀
1−x
γ

0

e−s∂xψ0(x+ γs, y)ds
)

=

∫ ˆ̀
1−x
γ

0

e−s∂xxψ0(x+ γs, y)ds− 1

γ
e

ˆ̀
1−x
γ ∂xψ0(ˆ̀

1, y) . (4.70)

Since the term 1
γ e

ˆ̀
1−x
γ ∂xψ0(ˆ̀

1, y) is bounded and the function

(x, y) 7→
∫ ˆ̀

1−x
γ

0

e−s∂xxψ0(x+ γs, y)ds

belongs to Lr(R\Γ0) (see the proof of Lemma 4.6), the function (4.69) belongs to W 1,r(R\
Γ0).

By (4.54), (4.67) and the previous remarks we deduce that

(x, y) 7→
∫ ˆ̀

1−x
γ

0

e−s∂xzj−1(x+ γs, y)ds (4.71)

belongs to W 1,r(R \ Γ0), while (4.54), (4.68), and (4.70) give

∂x

(∫ ˆ̀
1−x
γ

0

e−s∂xzj−1(x+ γs, y)ds
)

= −fj−1(x, y) . (4.72)

On the other hand, since zj−1 ∈ H1(S \ Γ0), by Lemma 3.1 we have also that the function
(4.71) belongs to L2(R \Γ0). Since by the Sobolev Embedding Theorem, every ϕ ∈ H1(R \
Γ0) belongs to Lq(R \Γ0) for every q < +∞ we can integrate by parts in the left-hand side
of (4.66). Since the x -component of the normal to Γ0 is zero no boundary term appears,
and using (4.72) from the integration by parts we obtain (4.66), concluding the proof of the
claim.

By Theorem 4.1 and by (4.57) there exist κj,2 ∈ R and zregj,2 ∈W 2,r(R \ Γ0) such that

zj,2 = Φ−1
0 Ψ2zj−1 = −Φ−1

0 fj−1 = κj,2ψ + zregj,2 in R \ Γ0 , (4.73)

|κj,2|+ ‖zregj,2 ‖W 2,r(R\Γ0) ≤ Ar‖fj−1‖Lr(R\Γ0) .

By (4.65) this inequality gives

|κj,2|+ ‖zregj,2 ‖W 2,r(R\Γ0) ≤ Ar(Fr +Hr)|κj−1|+Ar(1 +Kr)‖zregj−1‖W 2,r(R\Γ0)

≤ Ar(Fr +Hr + 1 +Kr)µ
j , (4.74)

where in the last inequality we used the inequality in (4.54).
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Therefore, setting κj := κj,1 +γ2κj,2 and zregj := vregj,1 +V zj−1 +γ2zregj,2 , and using again

the monotonicity of c 7→ γ and the inequalities c0 ≤ c ≤ c1 , from (4.55), (4.62), (4.63),
(4.73), and (4.74) we obtain

zj = κjψ + zregj in R \ Γ0 ,

|κj |+ ‖zregj ‖W 2,r(R\Γ0) ≤
(
(Br + 1)Gr + γ2

1Ar(Fr +Hr + 1 +Kr)
)
µj ,

where γ2
1 = c21/(1 − c21). This implies that (4.44) holds for j ≥ 1 provided µ ≥ µr,1 :=

(Br + 1)Gr + γ2
1Ar(Fr +Hr + 1 +Kr), thus concluding the proof of the inductive step.

Therefore (4.44) holds for every j ≥ 0 if µ ≥ µr := max{1, µr,0, µr,1} . This concludes
the proof. �

The following result provides the structure of the solution ζ of (3.21).

Lemma 4.9. Let 4/3 < r < 2 . Assume that 2αµr ≤ 1 − c21 , where µr ≥ 1 is the

constant provided by Lemma 4.8. Let γ = c/
√

1− c2 as in (4.3). Then the unique solution

ζ ∈ H1
∂R(R \ Γ0) of problem (3.21), with â = ˆ̀

1 , can be written in the form

ζ = κψ + ζreg in R \ Γ0 , (4.75)

with −1 < κ < 1 and ζreg ∈W 2,r(R \ Γ0) .

Proof. Since µr ≥ 1, the inequality 2αµr ≤ 1 − c21 ≤ 1 − c2 and the definition of γ imply

α(1 + γ2) < 1. By Theorem 3.6 there is a unique solution ζ of problem (3.21) with â = ˆ̀
1 .

By (4.16) ζ can be written as

ζ =

∞∑
j=0

αj+1zj , (4.76)

where zj are defined in (4.17) and do not depend on α . Choosing µ := µr , by Lemma 4.8
for every j we have

zj = κjψ + zregj in R \ Γ0 and |κj |+ ‖zregj ‖W 2,r(R\Γ0) ≤ µj+1 . (4.77)

Since 0 < αµ < 1/2 the series
∑∞
j=0 α

j+1κj and
∑∞
j=0 α

j+1zregj converge in R and

W 2,r(R \ Γ0), respectively. Therefore, choosing

κ :=

∞∑
j=0

αj+1κj and ζreg :=

∞∑
j=0

αj+1zregj (4.78)

from (4.76) we obtain (4.75). Since

∞∑
j=0

αj+1µj+1 =
αµ

1− αµ
< 1 ,

from (4.77) and (4.78) we get |κ| < 1. �

Proof of Theorem 4.3 (conclusion). Let Mr := 2µr ≥ 2, where µr is the constant
provided by Lemma 4.8. By (4.13) we have v̂ = ψ0 + ζ . By Lemma 4.9 this implies

v̂ = (1 + κ)ψ + ζreg in R \ Γ0 ,

with |κ| < 1, which gives (4.12) with κ0 := 1 + κ > 0 and v̂reg := ζreg . �

The following result provides the structure of the solution v of problem (3.7)-(3.8). Let
ψ̌ : R2 \ Γ0 → R and ψ̌0 : R2 \ Γ0 → R the functions defined by

ψ̌(x, y) := ψ(xλ , y) and ψ̌0(x, y) := ψ0(xλ , y) , (4.79)

where ψ and ψ0 are defined in (4.4) and (4.11), while λ =
√

1− c2 .
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Corollary 4.10. Let 4/3 < r < 2 , let a > 0 , let α1 := (1− c21)/Mr , where Mr > 1 is the
constant provided by Theorem 4.3, and let

ˇ̀ := ˆ̀
1λ = `1

λ

λ 1
= (1 + c1)

√
1− c2√
1− c21

. (4.80)

Assume that α ≤ α1 . Then the unique solution v of problem (3.7)-(3.8) in Rˇ̀\Γ0 (according

to Definition 3.2) with boundary condition v = aψ̌ on ∂Rˇ̀ \ Γ0 and satisfying v = aψ̌0 in
Sˇ̀ \Rˇ̀ can be written in a unique way in the form

v = κψ̌ + vreg in Rˇ̀ \ Γ0 ,

where κ = aκ0 , with κ0 > 0 the constant provided by Theorem 4.3, and vreg ∈W 2,r(Rˇ̀\Γ0) .

Proof. We consider first the case a = 1. Let γ = c/
√

1− c2 as in (4.3). Since the inequality
α ≤ α1 implies that αMr ≤ 1− c21 , by Theorem 4.3 the unique solution v̂ of (3.18)-(3.19)
in R \ Γ0 with boundary condition v̂ = ψ on ∂R , and satisfying v̂ = ψ0 in S \ R , can be
written in a unique way in the form

v̂ = κ0ψ + v̂reg in R \ Γ0 ,

with κ0 > 0 and v̂reg ∈ W 2,r(R \ Γ0). By Lemma 3.5 we have v(x, y) = v̂(xλ , y), hence

v = κ0ψ̌0 + vreg , with vreg(x, y) := v̂reg(xλ , y).
In the general case a > 0 the solution v can be obtained multiplying by a the solution

corresponding to a = 1. �

Remark 4.11. Since ψ̌ ∈ W 2,p(Rˇ̀ \ Γ0) for every 1 < p < 4
3 , Corollary 4.10 implies that

v ∈W 2,p(Rˇ̀ \ Γ0) for every 1 < p < 4
3 .

5. Auxiliary results

The following lemmas will be used in the study of the energy-dissipation balance.
Let H1 be the 1-dimensional Hausdorff measure in R2 . For every ρ > 0 let Bρ be the

open ball of centre (0, 0) and radius ρ .

Lemma 5.1. Assume that u ∈ W 1,r(B1) with 4/3 < r < 2 and let 1 < q < 2 be given by
1
q = 2

r −
1
2 . Then ∫

∂B1

|u|2dH1 < +∞ , (5.1)∫
B1

|u|q|∇u|qdxdy < +∞ , (5.2)∫
∂Bρ

|u|2dH1 ≤ ρ
∫
∂B1

|u|2dH1 + 2Cq(ρ
2 − ρ

q
q−1 )1− 1

q

(∫
B1

|u|q|∇u|qdxdy
) 1
q

(5.3)

for every 0 < ρ < 1 , where Cq := (2π q−1
2−q )1− 1

q . In particular, we have

lim
ρ→0+

∫
∂Bρ

|u|2dH1 → 0 . (5.4)

Proof. Let v := u2 . Using the Sobolev Embedding Theorem we can prove that v ∈W 1,q(B1)
and ∇v = 2u∇u , which gives (5.2). Inequality (5.1) follows from the fact that the trace of
v belongs to L1(∂B1).

For θ ∈ [0, 2π] let e(θ) := (cos θ, sin θ). Assuming that v ∈ C1(B1) for every 0 < ρ < 1
we can write

v(ρe(θ)) = v(e(θ))−
∫ 1

ρ

∇v(te(θ))e(θ)dt .



ENERGY-DISSIPATION BALANCE FOR PROBLEMS WITH MEMORY AND CRACKS 25

Hence

v(ρe(θ)) ≤ v(e(θ)) +

∫ 1

ρ

|∇v(te(θ))|dt

≤ v(e(θ)) +
(∫ 1

ρ

t|∇v(te(θ))|qdt
) 1
q
(∫ 1

ρ

t−
1
q−1 dt

)1− 1
q

= v(e(θ)) +
(∫ 1

ρ

t|∇v(te(θ))|qdt
) 1
q
(
q−1
q−2 (1− ρ

q−2
q−1 )

)1− 1
q

.

Using the equalities ∫
∂Bρ

vdH1 =

∫ 2π

0

ρv(ρe(θ))dθ ,∫
B1

|∇v|qdxdy =

∫ 2π

0

(∫ 1

0

t|∇v(te(θ))|qdt
)
dθ ,

we obtain∫
∂Bρ

vdH1 ≤ ρ
∫ 2π

0

v(e(θ))dθ + ρ(2π)1− 1
q

(∫
B1

|∇v|qdxdy
) 1
q
(
q−1
2−q (ρ

q−2
q−1 − 1)

)1− 1
q

.

By density this inequality holds for every v ∈W 1,q(B1). Recalling that v = u2 , and hence
∇v = 2u∇u , from this formula we obtain (5.3).

Finally, (5.4) is a consequence of (5.1)-(5.3). �

Lemma 5.2. Assume u ∈W 1,r(B1) with 4/3 < r < 2 . Then

1

ρ
1
2

∫
∂Bρ

|u|dH1 ≤ ρ 1
2

∫
∂B1

|u|dH1 + Cr

(∫
B

|∇u|rdxdy
) 1
r (
ρ

3r−4
2(r−1) − ρ

r
2(r−1)

)1− 1
r (5.5)

for every 0 < ρ < 1 , where Cr := (2π r−1
2−r )1− 1

r . In particular,

lim
ρ→0+

1

ρ
1
2

∫
∂Bρ

|u|dH1 = 0 . (5.6)

Proof. For θ ∈ [0, 2π] let e(θ) := (cos θ, sin θ). Assuming that u ∈ C1(B1) we can write

u(ρe(θ)) = u(e(θ))−
∫ 1

ρ

∇u(te(θ))e(θ)dt ,

hence

|u(ρe(θ))| ≤ |u(e(θ))|+
∫ 1

ρ

|∇u(te(θ))|dt

≤ |u(e(θ))|+
(∫ 1

ρ

t|∇u(te(θ))|rdt
) 1
r
(∫ 1

ρ

t−
1
r−1 dt

)1− 1
r

= |u(e(θ))|+
(∫ 1

ρ

t|∇u(te(θ))|rdt
) 1
r
(
r−1
r−2 (1− ρ

r−2
r−1 )

)1− 1
r

.

Using the equalities ∫
∂Bρ

|u|dH1 =

∫ 2π

0

ρ|u(ρe(θ))|dθ ,∫
B1

|∇u|rdxdy =

∫ 2π

0

(∫ 1

0

t|∇u(te(θ))|rdt
)
dθ ,
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we obtain

1

ρ
1
2

∫
∂Bρ

|u|dH1 ≤ ρ 1
2

∫
∂B1

|u|dH1 + ρ
1
2 (2π)1− 1

r

(∫
B1

|∇u|rdxdy
) 1
r
(
r−1
2−r (ρ

r−2
r−1 − 1)

)1− 1
r

.

By density the same inequality holds for every u ∈W 1,r(B1) and this leads to (5.5), which
implies (5.6). �

The following results deal with the behaviour of the singular part of the derivatives of
the solution u to (2.7)-(2.9) of the form (3.1). Let us recall that ψ̌(x, y) = ψ(xλ , y), where

ψ is defined in (4.4) and λ =
√

1− c2 .

Lemma 5.3. Let −1 < t < 1 and 0 < ρ < 1− c|t| . Then

∂t

(1

2

∫
R1\(Γct∪Bρ(ct,0))

|∂xψ̌(x− ct, y)|2dxdy
)

= −c
∫
R1\(Γct∪Bρ(ct,0))

∂xxψ̌(x− ct, y)∂xψ̌(x− ct, y)dxdy + Cλ1 , (5.7)

where

Cλ1 :=
π

8λ

c

1 + λ
. (5.8)

Proof. Let

Rct1 := (−1− ct, 1− ct)× (−1, 1) . (5.9)

By a change of variables we get∫
R1\(Γct∪Bρ(ct,0))

|∂xψ̌(x− ct, y)|2dxdy =

∫
Rct1 \(Γ0∪Bρ(0,0))

|∂xψ̌(x, y)|2dxdy ,

which gives

∂t

(1

2

∫
R1\(Γct∪Bρ(ct,0))

|∂xψ̌(x− ct, y)|2dxdy
)

=
c

2

(∫ 1

−1

|∂xψ̌(−1− ct, y)|2dy −
∫ 1

−1

|∂xψ̌(1− ct, y)|2dy
)
.

On the other hand, by the same change of variables

−c
∫
R1\(Γct∪Bρ(ct,0))

∂xxψ̌(x− ct, y)∂xψ̌(x− ct, y)dxdy = −c
∫
Rct1 \(Γ0∪Bρ(0,0))

∂xxψ̌(x, y)∂xψ̌(x, y)dxdy .

Integrating by parts we obtain that the right-hand side is equal to

c

2

(∫ 1

−1

|∂xψ̌(−1− ct, y)|2dy −
∫ 1

−1

|∂xψ̌(1− ct, y)|2dy
)

+
c

2
ρ

∫ π

−π
|∂xψ̌(ρ cos θ, ρ sin θ)|2 cos θdθ .

Since ∂xψ̌ is homogeneous of degree − 1
2 we obtain that

1
2ρ|∂xψ̌(ρ cos θ, ρ sin θ)|2 cos θ = 1

2 |∂xψ̌(cos θ, sin θ)|2 cos θ .

Therefore (5.7) holds with

Cλ1 = − c
2

∫ π

−π
|∂xψ̌(cos θ, sin θ)|2 cos θdθ . (5.10)

In order to compute this integral it is convenient to introduce the polar coordinates
(ρλ, θλ) = (ρλ(θ), θλ(θ)) of the point ( cos θ

λ , sin θ). Recalling the definitions of ψ and ψ̌ we

have that ∂xψ̌(cos θ, sin θ) = − 1
2λρ
−1/2
λ sin θλ

2 , hence

Cλ1 = − c

16λ2

∫ π

−π

1

ρλ
(1− cos θλ) cos θdθ =

c

16λ2

∫ π

−π

cos θλ cos θ

ρλ
dθ , (5.11)
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where in the last equality we used the symmetry properties of ρλ(θ) and cos θ . Since

ρλ cos θλ = cos θ
λ and ρ2

λ = cos2θ
λ2 + sin2θ , from (5.11) we obtain

Cλ1 :=
c

16λ

∫ π

−π

cos2 θ

cos2 θ + λ2 sin2 θ
dθ , (5.12)

which gives (5.8) by direct computation. �

Corollary 5.4. For every −1 < t1 < t2 < 1 we have

−c lim
ρ→0+

∫ t2

t1

(∫
R1\(Γct∪Bρ(ct,0))

∂xxψ̌(x− ct, y)∂xψ̌(x− ct, y)dxdy
)
dt

=
1

2

∫
R1\Γct2
|∂xψ̌(x− ct2, y)|2dxdy − 1

2

∫
R1\Γct1
|∂xψ̌(x− ct1, y)|2dxdy − (t2 − t1)Cλ1 ,

where Cλ1 is the constant introduced in (5.8).

Proof. Integrating (5.7) between t1 and t2 we obtain

1

2

∫
R1\(Γct2∪Bρ(ct2,0))

|∂xψ̌(x− ct2, y)|2dxdy − 1

2

∫
R1\(Γct1∪Bρ(ct1,0))

|∂xψ̌(x− ct1, y)|2dxdy

= −c
∫ t2

t1

(∫
R1\(Γct∪Bρ(ct,0))

∂xxψ̌(x− ct, y)∂xψ̌(x− ct, y)dxdy
)
dt+ (t2 − t1)Cλ1 .

Since |∂xψ̌|2 is integrable we can pass to the limit as ρ→ 0+ and conclude the proof. �

Lemma 5.5. Let −1 < t < 1 and 0 < ρ < 1− c|t| . Then

∂t

(1

2

∫
R1\(Γct∪Bρ(ct,0))

|∇ψ̌(x− ct, y)|2dxdy
)

= −c
∫
R1\(Γct∪Bρ(ct,0))

∇ψ̌(x− ct, y)∇∂xψ̌(x− ct, y)dxdy + c2 Cλ1 , (5.13)

where Cλ1 is defined in (5.8).

Proof. Let Rct1 be defined as in the proof of Lemma 5.3. By a change of variables we get∫
R1\(Γct∪Bρ(ct,0))

|∇ψ̌(x− ct, y)|2dxdy =

∫
Rct1 \(Γ0∪Bρ(0,0))

|∇ψ̌(x, y)|2dxdy ,

which gives

∂t

(1

2

∫
R1\(Γct∪Bρ(ct,0))

|∇ψ̌(x− ct, y)|2dxdy
)

=
c

2

(∫ 1

−1

|∇ψ̌(−1− ct, y)|2dy −
∫ 1

−1

|∇ψ̌(1− ct, y)|2dy
)
.

On the other hand, by the same change of variables

−c
∫
R1\(Γct∪Bρ(ct,0))

∇ψ̌(x− ct, y)∇∂xψ̌(x− ct, y)dxdy = −c
∫
Rct1 \(Γ0∪Bρ(0,0))

∇ψ̌(x, y)∇∂xψ̌(x, y)dxdy .

Integrating by parts we obtain that the right-hand side is equal to

c

2

(∫ 1

−1

|∇ψ̌(−1− ct, y)|2dy −
∫ 1

−1

|∇ψ̌(1− ct, y)|2dy
)

+
c

2
ρ

∫ π

−π
|∇ψ̌(ρ cos θ, ρ sin θ)|2 cos θdθ .

Since ∇ψ̌ is positively homogeneous of degree − 1
2 we obtain that

1
2ρ|∇ψ̌(ρ cos θ, ρ sin θ)|2 cos θ = 1

2 |∇ψ̌(cos θ, sin θ)|2 cos θ ,
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hence (5.13) holds with c2Cλ1 replaced by

Ĉλ1 = − c
2

∫ π

−π
|∇ψ̌(cos θ, sin θ)|2 cos θdθ . (5.14)

To conclude the proof it is thus enough to show that

Ĉλ1 = c2Cλ1 . (5.15)

From the proof of Lemma 5.3 we deduce that

Ĉλ1 = Cλ1 −
c

2

∫ π

−π
|∂yψ̌(cos θ, sin θ)|2 cos θdθ . (5.16)

Using the notation introduced in that proof, from the definitions of ψ and ψ̌ we obtain that

∂yψ̌(cos θ, sin θ) = 1
2ρ
−1/2
λ cos θλ2 hence

Ĉλ1 = Cλ1 −
c

16

∫ π

−π

1

ρλ
(1 + cos θλ) cos θdθ = Cλ1 −

c

16

∫ π

−π

cos θλ cos θ

ρλ
dθ , (5.17)

where in the last equality we used the symmetry properties of ρλ(θ) and cos θ . By (5.11)
we obtain that

Ĉλ1 = (1− λ2)Cλ1 = c2Cλ1 .

This gives (5.15), thus concluding the proof of the lemma. �

Corollary 5.6. For every −1 < t1 < t2 < 1 we have

−c lim
ρ→0+

∫ t2

t1

(∫
R1\(Γct∪Bρ(ct,0))

∇ψ̌(x− ct, y)∇∂xψ̌(x− ct, y)dxdy
)
dt

=
1

2

∫
R1\Γct2
|∇ψ̌(x− ct2, y)|2dxdy − 1

2

∫
R1\Γct1
|∇ψ̌(x− ct1, y)|2dxdy − (t2 − t1)c2Cλ1 .

Proof. Integrating (5.13) between t1 and t2 we obtain

1

2

∫
R1\(Γct2∪Bρ(ct2,0))

|∇ψ̌(x− ct2, y)|2dxdy − 1

2

∫
R1\(Γct1∪Bρ(ct1,0))

|∇ψ̌(x− ct1, y)|2dxdy

= −c
∫ t2

t1

(∫
R1\(Γct∪Bρ(ct,0))

∇ψ̌(x− ct, y)∇∂xψ̌(x− ct, y)dxdy
)
dt+ (t2 − t1)c2Cλ1 .

Since |∇ψ̌|2 is integrable we can pass to the limit as ρ→ 0+ and conclude the proof. �

The following remark will be used in some steps of the proof of the energy-dissipation
balance.

Remark 5.7. Let I be a bounded open interval in R , let Ω be a bounded open subset of
Rn , let f ∈W 1,1(I × Ω), and let F : I → R be defined by

F (t) =

∫
Ω

f(t, ξ)dξ .

Then F ∈W 1,1(I) and

Ḟ (t) =

∫
Ω

∂tf(t, ξ)dξ

for a.e. t ∈ I . The standard proof can be obtained by using the definition of derivatives in
the sense of distributions and the Fubini Theorem.
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6. Energy-dissipation balance

In this section we prove the following theorem, which is the main result of the paper.

Theorem 6.1. There exists 0 < α1 < 1 with the following property: if 0 < α ≤ α1 and
c0 ≤ c ≤ c1 , then there exist u0 ∈ L∞((−∞,−1);H1(R1 \ Γ−c)) and w ∈ V , satisfying the
regularity assumptions (2.22) and (2.23), such that the unique weak solution u of (2.7)-(2.9)
with Dirichlet boundary condition u = w on ∂R1 (according to Definition 2.2) satisfies the
energy-dissipation balance in the sense of Definition 2.5.

Proof. We fix 4/3 < r0 < 2 and define α1 := (1− c21)/Mr0 , where Mr0 > 1 is the constant
provided by Theorem 4.3. Assume that

0 < α ≤ α1 and c0 ≤ c ≤ c1 . (6.1)

As in Corollary 4.10, let ψ̌(x, y) := ψ(xλ , y) and ψ̌0(x, y) := ψ0(xλ , y), where ψ and ψ0

are defined in (4.4) and (4.11), while λ =
√

1− c2 . We choose

a :=
2√
π

√
β

κ0
, (6.2)

where β is the fracture toughness and κ0 > 0 is the constant provided by Theorem 4.3.
Recalling (3.2), we observe that (4.80) and (6.1) imply that

ˇ̀ := ˆ̀
1λ = `1

λ

λ 1
= `1

√
1− c2√
1− c21

≥ `1 = 1 + c1 ≥ 1 + c = ` . (6.3)

Let v ∈ H1(Sˇ̀ \ Γ0) be the unique solution of problem (3.7)-(3.8) in Rˇ̀ \ Γ0 (according

to Definition 3.2) with boundary condition v = aψ̌ on ∂Rˇ̀ \ Γ0 and satisfying v = aψ̌0

in Sˇ̀ \ Rˇ̀. By Remark 4.11 we have that v ∈ W 2,p(Rˇ̀ \ Γ0) for every 1 < p < 4/3. By
Corollary 4.10 we have

v = κψ̌ + vreg a.e. in Rˇ̀ \ Γ0 , (6.4)

with

κ = aκ0 =
2√
π

√
β and vreg ∈W 2,r0(Rˇ̀ \ Γ0) , (6.5)

where in the second equality we used (6.2). Observing that x − ct > −(1 + c) = −` > −ˇ̀

for −1 < x < 1 and t ≤ 1, we can consider the function u defined by

u(t, x, y) = v(x− ct, y) for t ≤ 1 and (x, y) ∈ R1 \ Γct . (6.6)

By (6.4) u can be written as

u(t, x, y) = κψ̌(x− ct, y) + vreg(x− ct, y) for t ∈ (−1, 1) and (x, y) ∈ R1 \ Γct . (6.7)

We set

u0(t) := u(t) for t ≤ −1 .

Then u0 ∈ L∞((−∞,−1);H1(R1 \Γ−c)). By Lemma 3.3 u is a weak solution of (2.7)-(2.9)
according to Definition 2.1. From the regularity of v and from (6.6) it follows that for every
1 < p < 4/3 we have

u(t) ∈W 2,p(R1 \ Γct) for every t ∈ (−1, 1) , (6.8)

sup
t∈(−1,1)

‖u(t)‖W 2,p(R1\Γct)) < +∞. (6.9)

Using the Sobolev Embedding Theorem we deduce that for every 1 < s < 4

∇u(t) ∈ Ls(R1 \ Γct;R2), (6.10)

sup
t∈(−1,1)

‖∇u(t)‖Ls(R1\Γct) < +∞. (6.11)
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Since u̇(t, x, y) = −c∂xv(x− ct, y) and ü(t, x, y) = c2∂xxv(x− ct, y), it follows also that
for every 1 < p < 4/3 we have

u̇(t) ∈W 1,p(R1 \ Γct) and ü(t) ∈ Lp(R1 \ Γct) , (6.12)

‖u̇(t)‖W 1,p(R1\Γct) + ‖ü(t)‖Lp(R1\Γct) ≤ C , (6.13)

for a.e. t ∈ (−1, 1), where C = c‖∂xv‖W 1,p(R`\Γ0) + c2‖∂xxv‖Lp(R`\Γ0) .
Therefore, for a.e. t ∈ (−1, 1) the duality product 〈ü(t), ϕ〉t considered in [7, Definition

2.15] reduces to

〈ü(t), ϕ〉t =

∫
R1\Γct

ü(t)ϕdxdy

for every ϕ ∈ H1(R1 \ Γct) with ϕ = 0 on ∂R1 . Moreover, by (6.13) we have ü ∈
L∞((−1, 1);Lp(R1)) for every 1 < p < 4/3 and by the definition of the weak derivative we
have

−
∫ 1

−1

(∫
R1\Γct

u̇(t)ϕ̇(t)dxdy
)
dt =

∫ 1

−1

(∫
R1\Γct

ü(t)ϕ(t)dxdy
)
dt

for every ϕ ∈ V0 .
Substituting in the proof of [7, Theorem 2.17] the term (f(t), ϕ(t)) by (Fu(t),∇ϕ(t)),

from (2.13) we deduce that for a.e. t ∈ (−1, 1) we have∫
R1\Γct

ü(t)ϕdxdy +

∫
R1\Γct

∇u(t)∇ϕdxdy =

∫
R1\Γct

Fu(t)∇ϕdxdy (6.14)

for every ϕ ∈ H1(R1 \ Γct) with ϕ = 0 on ∂R1 .
Recalling (2.11), (6.6), and the equality v = ψ̌0 in Sˇ̀\Rˇ̀, for every t ∈ (−1, 1) and a.e.

(x, y) ∈ R1 by the change of variables τ := t− s we obtain

Fu(t, x, y) = α

∫ +∞

0

e−τ∇v(x− ct+ cτ, y)dτ

= α

∫ ˇ̀−x
c +t

0

e−τ∇v(x− ct+ cτ, y)dτ + α

∫ +∞

ˇ̀−x
c +t

e−τ∇ψ̌0(x− ct+ cτ, y)dτ (6.15)

= κF sing(t, x, y) + F regu (t, x, y) ,

where

F sing(t, x, y) := α

∫ ˇ̀−x
c +t

0

e−τ∇ψ̌(x− ct+ cτ, y)dτ , (6.16)

F regu (t, x, y) := α

∫ ˇ̀−x
c +t

0

e−τ∇vreg(x− ct+ cτ, y)dτ + α

∫ +∞

ˇ̀−x
c +t

e−τ∇ψ̌0(x− ct+ cτ, y)dτ. (6.17)

We note that there exists Cλ > 0 such that

|∇ψ̌(x− ct+ cτ, y)| ≤ Cλ
|x− ct+ cτ |1/2 + |y|1/2

.

Using polar coordinates around (ct, 0) we write x− ct = ρ cos θ and y = ρ sin θ . Therefore,
from (6.16) and the last inequality we obtain that

|F sing(t, x, y)| ≤ αCλ
∫ ˇ̀−x

c +t

0

dτ

|ρ cos θ + cτ |1/2 + |ρ sin θ|1/2
, (6.18)

and by the change of variables σ = cτ/ρ we get

|F sing(t, x, y)| ≤ ρ1/2αCλ
c

∫ ˇ̀−(x−ct)
ρ

0

dσ

| cos θ + σ|1/2 + | sin θ|1/2
. (6.19)
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We have ∫ 2

0

dσ

| cos θ + σ|1/2 + | sin θ|1/2
≤
∫ cos θ+2

cos θ

dξ

|ξ|1/2
≤ 2(31/2 + 1) .

Moreover, if
ˇ̀−(x−ct)

ρ > 2 we have also∫ ˇ̀−(x−ct)
ρ

2

dσ

| cos θ + σ|1/2 + | sin θ|1/2
≤
∫ ˇ̀−(x−ct)

ρ

2

dσ

(σ − 1)1/2
≤ 2

(ˇ̀− (x− ct))1/2

ρ1/2
.

From these inequalities we obtain that

F sing(t) ∈ L∞(R1;R2) for every t ∈ (−1, 1) , (6.20)

sup
t∈(−1,1)

‖F sing(t)‖L∞(R1) < +∞ . (6.21)

By (4.5), (6.16), and Lemma 4.5 with a = ˇ̀ + ct > 1, δ = c , applied to z(x, y) =
∂xψ̌(x− ct, y) and z(x, y) = ∂yψ̌(x− ct, y), we obtain that for every 1 < p < 4/3

F sing(t) ∈W 1,p(R1 \ Γct;R2) for every t ∈ (−1, 1) , (6.22)

sup
t∈(−1,1)

‖F sing(t)‖W 1,p(R1\Γct) < +∞ . (6.23)

We claim that

F regu (t) ∈W 1,r0(R1 \ Γct;R2) for every t ∈ (−1, 1) , (6.24)

sup
t∈(−1,1)

‖F regu (t)‖W 1,r0 (R1\Γct) < +∞ . (6.25)

Since ∇vreg ∈ W 1,r0(Rˇ̀ \ Γ0;R2) by (6.5), by Lemma 4.5 with p = r0 , a = ˇ̀+ ct > 1,
and δ = c , applied to z(x, y) = ∂xv

reg(x−ct, y) and z(x, y) = ∂yv
reg(x−ct, y), the function

(x, y) 7→
∫ ˇ̀−x

c +t

0

e−τ∇vreg(x− ct+ cτ, y)dτ

belongs to W 1,r0(Rˇ̀ \ Γct;R2) and its norm is estimated by the norm of ∇vreg . Since the
last term in (6.17) is a smooth function we deduce that (6.24) and (6.25) hold.

From (6.15) and from the estimates on F sing(t) and F regu (t) we obtain that

Fu(t) ∈W 1,p(R1 \ Γct;R2) (6.26)

for every 1 < p < 4/3. Using the Sobolev Embedding Theorem for F regu (t), we deduce from
the L∞ -estimate (6.21) for F sing(t) and from (6.24) and (6.25) that

Fu(t) ∈ Lr
∗
0(R1 \ Γct;R2) for every t ∈ (−1, 1), (6.27)

sup
t∈(−1,1)

‖Fu(t)‖
Lr
∗
0(R1\Γct)

< +∞, (6.28)

where

1/r∗0 = 1/r0 − 1/2. (6.29)

Using the L∞ -estimate of F sing(t) and the trace estimate for F regu (t) (see [13, Theorem
18.24]), we deduce that the traces Fu(t)+ and Fu(t)− of Fu(t) on Γct from above and from
below satisfy

Fu(t)± ∈ Lr0/(2−r0)(Γct ∩R1;R2) for every t ∈ (−1, 1), (6.30)

sup
t∈(−1,1)

‖Fu(t)±‖Lr0/(2−r0)(Γct∩R1) < +∞. (6.31)
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Since for every 1 < p < 4/3 we have ü(t) ∈ Lp(R1 \ Γct) by (6.12), while ∇u(t) and
Fu(t) belong to W 1,p(R1 \ Γct;R2) by (6.8) and (6.26), equation (6.14) is equivalent to{

ü(t)−∆u(t) = −divFu(t) in R1 \ Γct ,

∂±y u(t) = Fu(t)±y on Γct ∩R1 ,
(6.32)

for a.e. t ∈ (−1, 1), where the first line has to be considered as an equality between functions
in Lp(R1 \ Γct), while the second one is to be intended in the sense of traces. Here and
henceforth ∂±y u(t) denote the traces of ∂yu(t) on Γct ∩R1 from above and from below and

Fu(t)±y denote the y -component of the vectors Fu(t)± .
Let us fix t ∈ (−1, 1) such that (6.32) holds. Multiplying the first line in (6.32) by u̇(t)

we obtain

ü(t)u̇(t)−∆u(t)u̇(t) = −divFu(t)u̇(t) a.e. in R1 \ Γct . (6.33)

Let us fix 0 < ρ < 1 − c|t| . Using the regularity of ψ̌ far from (0, 0) and recalling that
u̇(t, x, y) = −c∂xv(x− ct, y), from (6.5) and (6.7) we obtain

u̇(t) ∈W 1,r0(R1 \ (Γct ∪Bρ(ct, 0))) , (6.34)

∇u(t) ∈W 1,r0(R1 \ (Γct ∪Bρ(ct, 0));R2) . (6.35)

By (6.34) and by the Sobolev Embedding Theorem we have

u̇(t) ∈ Lr
∗
0 (R1 \ (Γct ∪Bρ(ct, 0))) with 1/r∗0 = 1/r0 − 1/2. (6.36)

Let p0 be the exponent conjugate to r∗0 , characterised by the equality 1/p0 + 1/r∗0 = 1.
Since r0 > 4/3 we have 1 < p0 < 4/3. By (6.8), (6.12), and (6.26) this implies that the
functions ü(t), ∆u(t), and divFu(t) belong to Lp0(R1 \ Γct), hence all products in (6.33)
are integrable on R1 \ (Γct ∪Bρ(ct, 0)). Therefore we obtain∫

R1\(Γct∪Bρ(ct,0))

ü(t)u̇(t)dxdy −
∫
R1\(Γct∪Bρ(ct,0))

∆u(t)u̇(t)dxdy = −
∫
R1\(Γct∪Bρ(ct,0))

divFu(t)u̇(t)dxdy . (6.37)

Let r̂ > 0 be defined by 1/r̂ = 2/r0 − 1/2. Since r0 > 4/3 we have r̂ > 1. From (6.34)
and (6.35), using the Sobolev Embedding Theorem we obtain that u̇(t)∇u(t) belongs to
W 1,r̂(R1 \ (Γct ∪Bρ(ct, 0));R2).

Since 4/3 < r0 < 2, there exists 1 < p1 < 4/3 such that

3/4 < 1/p1 < 3/2− 1/r0 . (6.38)

Using again the Sobolev Embedding Theorem, from (6.26) (with p = p1 ) and (6.34) we
obtain that u̇(t)Fu(t) ∈ W 1,p̂(R1 \ (Γct ∪ Bρ(ct, 0));R2), with p̂ > 1 characterised by the
equality 1/p̂ = 1/p1 + 1/r0 − 1/2. Therefore we can integrate by parts the last two terms
of (6.37) and we obtain

−
∫
R1\(Γct∪Bρ(ct,0))

∆u(t)u̇(t)dxdy =

∫
R1\(Γct∪Bρ(ct,0))

∇u(t)∇u̇(t)dxdy +

∫
∂Bρ(ct,0)

∂νu(t)u̇(t)dH1 −
∫
∂R1

∂νu(t)u̇(t)dH1

+

∫
Γct∩(R1\Bρ(ct,0))

∂+
y u(t)u̇(t)+dH1 −

∫
Γct∩(R1\Bρ(ct,0))

∂−y u(t)u̇(t)−dH1 ,

−
∫
R1\(Γct∪Bρ(ct,0))

divFu(t)u̇(t)dxdy =

∫
R1\(Γct∪Bρ(ct,0))

Fu(t)∇u̇(t)dxdy +

∫
∂Bρ(ct,0)

Fu(t)νu̇(t)dH1 −
∫
∂R1

Fu(t)νu̇(t)dH1

+

∫
Γct∩(R1\Bρ(ct,0))

Fu(t)+
y u̇(t)+dH1 −

∫
Γct∩(R1\Bρ(ct,0))

Fu(t)−y u̇(t)−dH1 .
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Here and henceforth u̇(t)± denote the traces of u̇(t) on Γct∩R1 from above and from below.
From (6.37) and the previous equalities we obtain∫

R1\(Γct∪Bρ(ct,0))

ü(t)u̇(t)dxdy +

∫
R1\(Γct∪Bρ(ct,0))

∇u(t)∇u̇(t)dxdy +

∫
∂Bρ(ct,0)

∂νu(t)u̇(t)dH1 −
∫
∂R1

∂νu(t)u̇(t)dH1

+

∫
Γct∩(R1\Bρ(ct,0))

∂+
y u(t)u̇(t)+dH1 −

∫
Γct∩(R1\Bρ(ct,0))

∂−y u(t)u̇(t)−dH1 =

∫
R1\(Γct∪Bρ(ct,0))

Fu(t)∇u̇(t)dxdy +

∫
∂Bρ(ct,0)

Fu(t)νu̇(t)dH1

−
∫
∂R1

Fu(t)νu̇(t)dH1 +

∫
Γct∩(R1\Bρ(ct,0))

Fu(t)+
y u̇(t)+dH1 −

∫
Γct∩(R1\Bρ(ct,0))

Fu(t)−y u̇(t)−dH1 . (6.39)

Let ϕ ∈ C∞(R1) with ϕ = 1 in a neighbourhood of ∂R1 and ϕ = 0 in a neighbourhood
of [−c, c]× {0} . For every t ∈ (−1, 1) and a.e. (x, y) ∈ R1 \ Γ−c we set

w(t, x, y) := u(t, x, y)ϕ(x, y) = v(x− ct, y)ϕ(x, y) (6.40)

and we observe that w ∈ V and u(t) = w(t) on ∂R1 in the sense of traces for every
t ∈ (−1, 1).

We study now the energy-dissipation balance for u . Note that by (6.8), (6.9), (6.12), and
(6.13) the function u satisfies (2.15) and (2.17) for every 1 < p < 4/3. Recalling (6.29) and
(6.38), we see that the exponent q1 conjugate to p1 satisfies q1 < r∗0 . By (6.26), (6.27),
and (6.28) this implies that Fu satisfies (2.16), (2.18), (2.20), and (2.21) with p = p1 and
q = q1 , while from the equality u̇(t, x, y) = −c∂xv(x − ct, y) and from (6.4) and (6.5) we
obtain that w satisfies (2.22) and (2.23) for p = p1 and r = r0 . Therefore the viscous
dissipation is given by (2.19) and the work of the external forces acting on ∂R1 is given by
(2.28).

From (2.12), (2.28), and (6.39), for every −1 < t1 < t2 < 1 we obtain∫ t2

t1

(∫
R1\(Γct∪Bρ(ct,0))

ü(t)u̇(t)dxdy
)
dt+

∫ t2

t1

(∫
R1\(Γct∪Bρ(ct,0))

∇u(t)∇u̇(t)dxdy
)
dt

+

∫ t2

t1

(∫
∂Bρ(ct,0)

∂νu(t)u̇(t)dH1
)
dt+

∫ t2

t1

(∫
Γct∩(R1\Bρ(ct,0))

∂+
y u(t)u̇(t)+dH1

)
dt−

∫ t2

t1

(∫
Γct∩(R1\Bρ(ct,0))

∂−y u(t)u̇(t)−dH1
)
dt

=

∫ t2

t1

(∫
R1\(Γct∪Bρ(ct,0))

Fu(t)∇u̇(t)dxdy +

∫
∂Bρ(ct,0)

Fu(t)νu̇(t)dH1
)
dt+W(t1, t2)

+

∫ t2

t1

(∫
Γct∩(R1\Bρ(ct,0))

Fu(t)+
y u̇(t)+dH1

)
dt−

∫ t2

t1

(∫
Γct∩(R1\Bρ(ct,0))

Fu(t)−y u̇(t)−dH1
)
dt . (6.41)

We now study the limit as ρ → 0+ of all terms of (6.41). We begin with the integrals on
R1 \ (Γct ∪Bρ(ct, 0)).

From (6.7) it follows that

u̇(t) = −cκ∂xψ̌(x− ct, y)− c∂xvreg(x− ct, y) , (6.42)

ü(t) = c2κ∂xxψ̌(x− ct, y) + c2∂xxv
reg(x− ct, y) , (6.43)

hence

ü(t)u̇(t) = −c3κ2∂xψ̌(x− ct, y)∂xxψ̌(x− ct, y)− c3κ∂xψ̌(x− ct, y)∂xxv
reg(x− ct, y)

−c3κ∂xvreg(x− ct, y)∂xxψ̌(x− ct, y)− c3∂xvreg(x− ct, y)∂xxv
reg(x− ct, y) . (6.44)

Since r0 > 4/3, using the Sobolev Embedding Theorem we deduce from (4.5) (with p = p1 ),
(6.5), and (6.38) that all terms but the first one are integrable on R1 \ Γct and that their
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integrals are bounded uniformly with respect to t . Therefore

lim
ρ→0+

∫
R1\(Γct∪Bρ(ct,0))

(
− c3κ∂xψ̌(x− ct, y)∂xxv

reg(x− ct, y)

−c3κ∂xvreg(x− ct, y)∂xxψ̌(x− ct, y)− c3∂xvreg(x− ct, y)∂xxv
reg(x− ct, y)

)
dxdy

=

∫
R1\Γct

(
− c3κ∂xψ̌(x− ct, y)∂xxv

reg(x− ct, y)

−c3κ∂xvreg(x− ct, y)∂xxψ̌(x− ct, y)− c3∂xvreg(x− ct, y)∂xxv
reg(x− ct, y)

)
dxdy

= ∂t

(
c2κ

∫
R1\Γ1

∂xψ̌(x− ct, y)∂xv
reg(x− ct, y)dxdy

)
+∂t

(c2
2

∫
R1\Γ1

|∂xvreg(x− ct, y)|2dxdy
)
, (6.45)

where in the last equality we used Remark 5.7. Let −1 < t1 < t2 < 1. Integrating in time
between t1 and t2 and using the Dominated Convergence Theorem, from Corollary 5.4 and
(6.42) we obtain that

lim
ρ→0+

∫ t2

t1

(∫
R1\(Γct∪Bρ(ct,0))

ü(t)u̇(t)dxdy
)
dt

=
1

2

∫
R1\Γct2

|u̇(t2)|2dxdy − 1

2

∫
R1\Γct1

|u̇(t1)|2dxdy − c2κ2(t2 − t1)Cλ1 , (6.46)

where Cλ1 is defined in (5.8).
Similarly, from (6.7) it follows that

∇u(t) = κ∇ψ̌(x− ct, y) +∇vreg(x− ct, y) (6.47)

∇u̇(t) = −cκ∇∂xψ̌(x− ct, y)− c∇∂xvreg(x− ct, y) , (6.48)

hence

∇u(t)∇u̇(t) = −cκ2∇ψ̌(x− ct, y)∇∂xψ̌(x− ct, y)− cκ∇ψ̌(x− ct, y)∇∂xvreg(x− ct, y)

−cκ∇vreg(x− ct, y)∇∂xψ̌(x− ct, y)− c∇vreg(x− ct, y)∇∂xvreg(x− ct, y) . (6.49)

Since r0 > 4/3, using the Sobolev Embedding Theorem we deduce from (4.5) (with p = p1 ),
(6.5), and (6.38) that all terms but the first one are integrable on R1 \ Γct and that their
integrals are bounded uniformly with respect to t . Therefore

lim
ρ→0+

∫
R1\(Γct∪Bρ(ct,0))

(
− cκ∇ψ̌(x− ct, y)∇∂xvreg(x− ct, y)

−cκ∇vreg(x− ct, y)∇∂xψ̌(x− ct, y)− c∇vreg(x− ct, y)∇∂xvreg(x− ct, y)
)
dxdy

=

∫
R1\Γct

(
− cκ∇ψ̌(x− ct, y)∇∂xvreg(x− ct, y)

−cκ∇vreg(x− ct, y)∇∂xψ̌(x− ct, y)− c∇vreg(x− ct, y)∇∂xvreg(x− ct, y)
)
dxdy

= ∂t

(
κ

∫
R1\Γ1

∇ψ̌(x− ct, y)∇vreg(x− ct, y)dxdy
)

+∂t

(1

2

∫
R1\Γ1

|∇vreg(x− ct, y)|2dxdy
)
, (6.50)
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where in the last equality we used Remark 5.7. Integrating in time between t1 and t2 and
using the Dominated Convergence Theorem and Corollary 5.6 we obtain from (6.47) that

lim
ρ→0

∫ t2

t1

(∫
R1\(Γct∪Bρ(ct,0))

∇u(t)∇u̇(t)dxdy
)
dt

=
1

2

∫
R1\Γct2

|∇u(t2)|2dxdy − 1

2

∫
R1\Γct1

|∇u(t1)|2dxdy − c2κ2(t2 − t1)Cλ1 . (6.51)

By (6.48)

Fu(t)∇u̇(t) = −cκFu(t)∇∂xψ̌(x− ct, y)− cFu(t)∇∂xvreg(x− ct, y) .

Since r0 > 4/3, by (4.5) (with p = p1 ), (6.5), (6.27), and (6.38), the right-hand side in the
above equality is integrable on R1 \ Γct , hence

lim
ρ→0+

∫
R1\(Γct∪Bρ(ct,0))

Fu(t)∇u̇(t)dxdy =

∫
R1\Γct

Fu(t)∇u̇(t)dxdy . (6.52)

We now consider the integrals on ∂Bρ(ct, 0) that appear in (6.41). Using again (6.7) we
obtain that

∂νu(t)u̇(t) = (κ∂νψ̌(x− ct) + ∂νv
reg(x− ct, y))(−cκ∂xψ̌(x− ct, y)− c∂xvreg(x− ct, y))

= −cκ2∂νψ̌(x− ct)∂xψ̌(x− ct, y)− cκ∂νψ̌(x− ct)∂xvreg(x− ct, y)

−cκ∂νvreg(x− ct, y)∂xψ̌(x− ct, y)− c∂νvreg(x− ct, y)∂xv
reg(x− ct, y) .

By Lemmas 5.1 and 5.2 the integrals on ∂Bρ(ct, 0) of the last three terms tend to 0 as
ρ→ 0 and are bounded uniformly with respect to t . Hence

lim
ρ→0+

∫
∂Bρ(ct,0)

∂νu(t)u̇(t) dH1 = −cκ2 lim
ρ→0+

∫
∂Bρ(0,0)

∂νψ̌∂xψ̌dH1 = −κ2Cλ2 ,

where, using the fact that ∇ψ̌ is positively homogeneous of degree − 1
2 , we have that

Cλ2 := c

∫ π

−π
∂νψ̌(cos θ, sin θ)∂xψ̌(cos θ, sin θ)dθ .

By the Dominated Convergence Theorem we conclude that

lim
ρ→0+

∫ t2

t1

(∫
∂Bρ(ct,0)

∂νu(t)u̇(t) dH1
)
dt = −κ2(t2 − t1)Cλ2 , (6.53)

for every −1 < t1 < t2 < 1.
We now compute Cλ2 . First of all, we note that ∂νψ̌ = ∂xψ̌ cos θ + ∂yψ̌ sin θ , hence

Cλ2 = c

∫ π

−π
|∂xψ̌(cos θ, sin θ)|2cos θdθ + c

∫ π

−π
∂yψ̌(cos θ, sin θ)∂xψ̌(cos θ, sin θ)sin θdθ. (6.54)

By (5.8) and (5.10) we have that

c

∫ π

−π
|∂xψ̌(cos θ, sin θ)|2 cos θdθ = −2Cλ1 = − π

4λ

c

1 + λ
. (6.55)

To compute the second integral in (6.54) we introduce the polar coordinates (ρλ, θλ) =
(ρλ(θ), θλ(θ)) of ( cos θ

λ , sin θ). Using the definitions of ψ and ψ̌ we have that

∂yψ̌(cos θ, sin θ)∂xψ̌(cos θ, sin θ) = − 1

4λ

1

ρλ
sin

θλ
2

cos
θλ
2

= − 1

8λ

1

ρλ
sin θλ .

Since ρλ sin θλ = sin θ and ρ2
λ = cos2 θ

λ2 + sin2 θ , we obtain

c

∫ π

−π
∂yψ̌(cos θ, sin θ)∂xψ̌(cos θ, sin θ) sin θdθ = −cλ

8

∫ π

−π

sin2 θ

cos2 θ + λ2 sin2 θ
dθ .
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By direct computation we get∫ π

−π

sin2 θ

cos2 θ + λ2 sin2 θ
dθ =

2π

λ

1

1 + λ
,

hence from (6.54) and (6.55) we obtain

Cλ2 = − π

4λ

c

1 + λ
− cλ

8

2π

λ

1

1 + λ
= −πc

4λ
. (6.56)

By (6.15) and (6.42) we have

Fu(t)νu̇(t) = (κF sing(t)ν + F regu (t)ν)(−cκ∂xψ̌(x− ct, y)− c∂xvreg(x− ct, y))

= −cκ2F sing(t)ν∂xψ̌(x− ct, y)− cκF sing(t)ν∂xvreg(x− ct, y)

−cκF regu (t)ν∂xψ̌(x− ct, y)− cF regu (t)ν∂xv
reg(x− ct, y) .

Using Lemmas 5.1 and 5.2 we deduce from (6.20), (6.21), (6.24), and (6.25) that the integrals
on ∂Bρ(ct, 0) of all these terms tend to zero as ρ → 0 and are bounded uniformly with
respect to t . By the Dominated Convergence Theorem we conclude that

lim
ρ→0+

∫ t2

t1

(∫
∂Bρ(ct,0)

Fu(t)νu̇(t) dH1
)
dt = 0 , (6.57)

for every −1 < t1 < t2 < 1.
Finally, we consider all integrals on Γct∩ (R1 \Bρ(ct, 0)) that appear in (6.41). By (6.42)

and (6.47) it follows that

∂+
y u(t)u̇(t)+ = −cκ2∂+

y ψ̌(x− ct, 0)∂+
x ψ̌(x− ct, 0)− cκ∂+

y ψ̌(x− ct, 0)∂+
x v

reg(x− ct, 0)

−cκ∂+
y v

reg(x− ct, 0)∂+
x ψ̌(x− ct, 0)− c∂+

y v
reg(x− ct, 0)∂+

x v
reg(x− ct, 0) ,

where ∂±x denote the traces of the partial derivative ∂x on (part of) Γct from above and
from below.

By (6.5) and by the trace estimate (see [13, Theorem 18.24]) the functions x 7→ ∂+
x v

reg(x−
ct, 0) and x 7→ ∂+

y v
reg(x − ct, 0) belong to Lr0/(2−r0)(Γct ∩ R1). By (4.4) we have x 7→

∂+
y ψ̌(x− ct, 0) = 0 on Γct ∩R1 and x 7→ ∂+

x ψ̌(x− ct, 0) ∈ Lr(Γct ∩R1) for every 1 ≤ r < 2.
Since r0 > 4/3 we have r0/(2−r0) > 2. Therefore, taking r equal to the conjugate exponent
of r0/(2− r0), from the expression for ∂+

y u(t)u̇(t)+ we deduce that this function belongs to

L1(Γ0 ∩R1), hence

lim
ρ→0+

∫
Γct∩(R1\Bρ(ct,0))

∂+
y u(t)u̇(t)+dH1 =

∫
Γct∩R1

∂+
y u(t)u̇(t)+dH1. (6.58)

In the same way we prove that ∂−y u(t)u̇(t)− ∈ L1(Γct ∩R1) and hence

lim
ρ→0+

∫
Γct∩(R1\Bρ(ct,0))

∂−y u(t)u̇(t)−dH1 =

∫
Γct∩R1

∂−y u(t)u̇(t)−dH1. (6.59)

We now consider the integral of Fu(t)+
y u̇(t)+ . We already observed that the function

x 7→ ∂+
x v

reg(x− ct, 0) belongs to Lr0/(2−r0)(Γct ∩R`) and that x 7→ ∂+
x ψ̌(x− ct, 0) belongs

to Lr(Γct ∩R`) for every 1 ≤ r < 2. Therefore (6.42) gives u̇(t)+ ∈ Lr(Γct ∩R1) for every
1 ≤ r < 2. By (6.30) we have Fu(t)+ ∈ Lr0/(2−r0)(Γct ∩ R1;R2). Taking r equal to the
exponent conjugate to r0/(2−r0) we obtain that Fu(t)+

y u̇(t)+ ∈ L1(Γct∩R1), which implies
that

lim
ρ→0+

∫
Γct∩(R1\Bρ(ct,0))

Fu(t)+
y u̇(t)+dH1 =

∫
Γct∩R1

Fu(t)+
y u̇(t)+dH1 . (6.60)

In the same way we prove that

lim
ρ→0+

∫
Γct∩(R1\Bρ(ct,0))

Fu(t)−y u̇(t)−dH1 =

∫
Γct∩R1

Fu(t)−y u̇(t)−dH1. (6.61)



ENERGY-DISSIPATION BALANCE FOR PROBLEMS WITH MEMORY AND CRACKS 37

By (6.41), (6.46), and (6.51)-(6.61) for a.e. −1 < t1 < t2 < 1 we obtain that

1

2

∫
R1\Γct2
|u̇(t2)|2dxdy − 1

2

∫
R1\Γct1
|u̇(t1)|2dxdy +

1

2

∫
R1\Γct2
|∇u(t2)|2dxdy − 1

2

∫
R1\Γct1
|∇u(t1)|2dxdy

− c2κ2(t2 − t1)Cλ1 − c2κ2(t2 − t1)Cλ1 − κ2(t2 − t1)Cλ2

=

∫ t2

t1

(∫
R1\Γct
Fu(t)∇u̇(t)dxdy

)
dt−

∫ t2

t1

(∫
Γct∩R1

∂+
y u(t)u̇(t)+dH1

)
dt+

∫ t2

t1

(∫
Γct∩R1

∂−y u(t)u̇(t)−dH1
)
dt

+W(t1, t2) +

∫ t2

t1

(∫
Γct∩R1

Fu(t)+
y u̇(t)+dH1

)
dt−

∫ t2

t1

(∫
Γct∩R1

Fu(t)−y u̇(t)−dH1
)
dt .

By (6.32) we have ∂+
y u(t) = Fu(t)+

y and ∂−y u(t) = Fu(t)−y H1 -a.e. on Γct ∩ R1 , while by

(5.8), (6.5), and (6.56) we have −2c2κ2Cλ1 − κ2Cλ2 = π
4 cκ

2 = βc . Therefore the previous
equality reduces to

1

2

∫
R1\Γct2
|u̇(t2)|2dxdy − 1

2

∫
R1\Γct1
|u̇(t1)|2dxdy +

1

2

∫
R1\Γct2
|∇u(t2)|2dxdy − 1

2

∫
R1\Γct1
|∇u(t1)|2dxdy

−
∫ t2

t1

(∫
R1\Γct

Fu(t)∇u̇(t)dxdy
)
dt+ βc(t2 − t1) =W(t1, t2) .

Recalling the equality ce + cv = 1 and the definitions of the energy E(t) (see (2.14)), of
the viscous dissipation D(t1, t2) (see (2.19)), and of the energy K(t1, t2) dissipated by the
crack growth (see (2.29)), the previous equality can be written in the form

E(t2)− E(t1) +D(t1, t2) +K(t1, t2) =W(t1, t2) , (6.62)

for a.e. −1 < t1 < t2 < 1, hence u satisfies the energy-dissipation balance according to
Definition 2.5. �
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