ENERGY-DISSIPATION BALANCE
FOR DYNAMIC VISCOELASTIC PROBLEMS WITH MEMORY
IN DOMAINS WITH GROWING CRACKS

GIANNI DAL MASO AND RODICA TOADER

ABSTRACT. We consider a dynamic viscoelastic problem with memory in a domain with
a crack growing with constant velocity. Through a careful analysis of the singularity
of the solutions around the crack tip we show that for suitable values of the material
constants there exist solutions that satisfy the energy-dissipation balance. It is known
that this is not possible for the Kelvin-Voigt model.
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1. INTRODUCTION

We study a dynamic viscoelastic problem with memory in the isothermal antiplane case
in a domain with a prescribed time-dependent crack growing along the z-axis.

Let Q be a bounded open set in R? with Lipschitz boundary. We assume that (0,0) € €.
For every a € R let

Ty = (—o0,a] x {0}. (1.1)

In our problem the crack at time t is given by Iy N €, where £(t) is a prescribed non-
decreasing function of time. Given a time-dependent Dirichlet boundary condition w(t), in
our viscoelastic model with memory the boundary value problem for the displacement w(t)
is formally written as

i(t) —divo(t) =0 in Q\Tpyy, o(t)ea =0 onTyy NQ, wu(t)=w(t) ondQ. (1.2)

Here and henceforth dots denote time derivatives, div is the space divergence, and o(t)
denotes the stress, which is the sum of the elastic stress o.(t) and the viscous stress o,(t),
while ey is the second vector of the canonical basis in R?, which is normal to gy The
constitutive relations for these components of the stress are

oe(t) = c.Vu(t),

ou(t) = e, Vu(t) — cv/ s~ Vu(s)ds,

—0o0
for suitable constants ¢, > 0 and ¢, > 0, where V denotes the space gradient. By a
convenient choice of the units of © and ¢ we can assume that c. + ¢, = 1, so that

t

o(t) = oe(t) + ou(t) = Vu(t) — cv/ e*'Vu(s)ds.

—00
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Therefore the boundary value problem for u(t) can be formally written in the more explicit
form

i(t) — Au(t) = —CU[ st Au(s)ds in Q\ Ty, (1.3)
Oyu(t) = CU[ e* ' Oyu(s)ds on L'y N, (1.4)
u(t) = w(t) on 09, (1.5)

where A is the space Laplacian and 9, denotes the partial derivative with respect to y.
In the model of crack growth we are considering, the functions ¢(¢) and u(t) are related by

the dynamic energy-dissipation balance (see, e.g., [10] for the case without viscosity). This

condition, introduced by Mott [15], extends to the dynamic regime the classical Griffith’s

criterion for the quasistatic problem (see [11]). In our case the relevant energy terms are:

e the sum of the kinetic and the elastic energies

1 e
E(t) = f/ la(t)|2dzdy + << |Vu(t)2dzdy ;
2 Oty 2 O\TLy)

e the energy dissipated by viscosity in the time interval [¢1, 3], which can be written as

t2
Dty ts) = %/ Vu(ts)2dzdy — % Vu(ty)dzdy — / / dacdy)dt
O\L(ey) 1AV I \qu)
where .
F.(t) = cv/ e* 'Vu(s)ds; (1.6)

e the work of the forces acting on 0f2 in the time interval [t1, 2]

Wilty,ts) := /:2 (/89 o(t)uu')(t)d’}-[l)dt,

1
where v is the outer unit normal to 0€);
e the energy dissipated by the crack growth in the time interval [t1,¢2], which, according
to Griffith’s theory, is assumed to be proportional to the added length, i.e.,

K(t1,t2) := B(L(t2) — £(t1))
for some constant 8 > 0 that represents the fracture toughness of the material.
The energy-dissipation balance is given by

E(ta) — E(t1) + D(t1, ta) + K(t1,t2) = W(t1,1t2) (1.7)

for almost every t1 < ts.
In the Kelvin-Voigt model, where the viscous stress is given by o,(t) = ¢, Vu(t) and the
energy dissipated by viscosity is given by

D(ty,t2) —cv/ / |Vau(t \da:dy)d
Ty

E(ta) — E(t) + D(t1,t2) = W(t1,t2)
for every t1 < tq, see [6]. This implies that the energy-dissipation balance (1.7) is satisfied if
and only if K(t1,t2) = 0, hence £(t1) = £(t2) for every t; < to. Therefore the crack cannot
grow in the Kelvin-Voigt model when the energy-dissipation balance is satisfied. This is
known as the viscoelastic paradox for crack growth, see, e.g., [17].
In this paper, when ¢, is sufficiently small and S > 0 is arbitrary, we provide an example
of solution to (1.3)-(1.5), with £(t) = ct for some constant 0 < ¢ < 1 and a suitable Dirichlet

we can prove that
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boundary condition w(t), such that the energy-dissipation balance (1.7) is satisfied (see
Theorem 6.1). Hence the viscoelastic paradox does not occur in this model with memory.

In particular, this shows that the model considered in [3], based on the energy-dissipation
balance and on a maximal dissipation condition, leads to a growing crack for suitable values
of the data.

Our result is obtained as a consequence of the precise form of the singular behaviour of the
gradient of the solution u(t) near the crack tip (see Section 6). We analyse this singularity
only when the solution has the special form u(¢, z,y) = v(x — ct,y), which requires a special
form of the boundary datum w(t). By (1.3) the function v must satisfy an elliptic equation
with a non-local term in a domain with the fixed crack T'y (see Section 3). The singularity
of the gradient of the solution of a local elliptic equation in these domains has been studied
in detail by Grisvard. The main difficulty in our analysis is to extend these results to our
non-local equation (see Section 4). Our approach is perturbative, therefore it requires a
restriction on the viscosity constant ¢, and the crack tip velocity c.

2. PRELIMINARIES

2.1. Basic notation. In this paper we study an evolutionary boundary value problem in a
suitable time interval and in a domain contained in the plane R? with coordinates = and y.
Given a time-dependent function 1 defined on a subset of R?, its time derivative is denoted
by ij, the partial derivatives with respect to the spatial coordinates x and y are denoted
by 0, and 0y, respectively, while V, div, and A denote the gradient, the divergence, and
the Laplacian with respect to (z,y).

2.2. A model of viscoelastic material with memory. We shall consider a specific
model for a viscoelastic material with fading memory in the isothermal antiplane case, with
reference configuration 2 C R?. In detail, the evolution of the (scalar) displacement u(t) is
governed by the partial differential equation

i(t) — divo(t) = 0, (2.1)

where the stress o(t) € R? is decomposed as o(t) := 0.(t) + 0,(t), with the elastic stress
o. and the viscous stress o, given by the constitutive equations
t
oc(t) == c.Vu(t) and o,(t) =, Vu(t) — cv/ e*"Vu(s)ds. (2.2)

Here and henceforth ¢, > 0 is the elasticity constant and ¢, > 0 is the viscosity constant.

The study of models for viscoelastic materials with memory goes back to Maxwell [14],
Boltzmann [2], and Volterra [20]-[22]. There is now a huge literature on these models for
which we refer to the books [18, 8, 19, 9, 1] and the references therein. We refer to Dafermos
[5] for the precise formulation of (2.1) and (2.2) in suitable function spaces and for the proof
of an existence result with prescribed time dependent Dirichlet boundary conditions.

For this problem the following energy-dissipation balance holds:

g(tQ) — g(tl) + D(tl,tg) = W(tl,tQ) s for t1 < to s (23)
where

1 e
E(t) = 5/9|u(t)|2d;vdy—|—%/Q|Vu(t)\2dxdy

is the sum of the kinetic and elastic energies, W(t1,t2) is the work, in the time interval
[t1,t2], of the external forces due to the imposed time-dependent Dirichlet boundary condi-
tion, while

12
Dty ts) = % Q|Vu(t2)|2dxdyf %/Q|Vu(t1)|2do:dyf/ (/Q Fu(t)Vzl(t)da:dy)dt (2.4)
t1
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with F,(t) defined in (1.6). In view of (2.3) D(t1,t2) has to be interpreted as the energy
dissipated by viscosity in the interval [t1,ts] (see, e.g., [17, Chapter 7]).

2.3. The evolution problem with a prescribed growing crack. We now introduce a
model for the dynamic evolution of a viscoelastic material with memory in a domain with
a prescribed growing crack. The reference configuration is a bounded open domain Q C R?
with Lipschitz boundary. For simplicity we assume that (0,0) € £ and that the crack
grows along the z-axis. More precisely, we fix Ty < 77 and a non decreasing function
£ [To, Th] — R. The crack at time t € [Ty, T1] is given by I'yy N Q, where I' is defined in
(1.1).
In this case equation (2.1) is replaced by

i(t) —dive(t) =0 in Q\ Ty, o(t)ea =0 on Ty NQ, (2.5)

where o(t) = 0.(t) +0,(t) and the constitutive equations for the elastic and viscous stresses
are still given by (2.2), while es is the second vector of the canonical basis in R?, which is
normal to I'ys). Of course, in this non-local in time formulation the usual initial conditions
at t = Ty are replaced by the condition u(t) = ug(t) for a.e. t € (—o0,Tp), where ug is a
prescribed function.

By a suitable choice of the units of v and ¢ we can assume that c. + ¢, = 1, so that,
setting a := ¢, € (0,1), we have

t

o(t) = Vu(t) — a/ e* ! Vu(s)ds (2.6)
and the boundary value problem can be formally written in the more explicit form:
t
i(t) — Au(t) = —a/ e* ' Au(s)ds in Q\ Ty forae. te (Ty,T1), (2.7)
; — 00
Oyu(t) = a/ e*to,u(s)ds on I'yyy NQ for ae. t € (Ty,T1), (2.8)
u(t) = up(t) for a.e. t € (—o0,Tp). (2.9)

We assume that ug € L>((—00,Tp); H (Q\Lyr))) - Let us introduce the function spaces
which are used to study (2.7)-(2.8) in the time interval (Tp,T1). For every t € [Ty, Th] let
Vi = HY(Q\Ty), let H := L*(Q), let

Vi={ue L®(Ty,T1); Vr,) N H ((To, T1); H) : u(t) € Vi for ae. t € (T, T1)},
and let
Vo :={ueV:u(t)=0on N for a.e. t € (Tp,T1)}.
Given
u € L=((To, Ty); H (2 \ To(ry))), (2.10)

to write in a precise way the weak form of (2.7)-(2.9) it is convenient to introduce, for every
t € (Tp, T1), the function

To t
F.(t) := a/ e =)V ug(s)ds + a/ e~ =9IV u(s)ds, (2.11)

—00 To

defined as a Bochner integral in the space L?(£;R?). Of course, if u is extended to (—oo, Tp)
by setting u(t) = uo(t) for ¢t € (—o0,Tp), the function F, satisfies (1.6). Note that F, €
L>((Ty, T1); L*(£;R?)). To fulfill the formal requirement (2.6) we set

o(t) := Vu(t) — Fy(t) (2.12)

for a.e. t € (Tp, T1).
The following definition is inspired by [7, Definition 2.7].



ENERGY-DISSIPATION BALANCE FOR PROBLEMS WITH MEMORY AND CRACKS 5

Definition 2.1. A weak solution of (2.7)-(2.9) is a function u € V satisfying (2.9) and the

equality
—/ / d:rdy dt—l—/ / Vu(t)Vgo(t)dxdy)dt
To Q\Fz(t) O\t

_ /T T ( /Q - Fu(t)Vp(t)drdy ) di (2.13)

for every ¢ € Vy with ¢(Tp) = ¢(T1) =0 a.e. in Q.

Definition 2.2. Given w € V we say that u is a weak solution of (2.7)-(2.9) with Dirichlet
boundary condition u = w on 0f if it is a weak solution in the sense of Definition 2.1 and
u(t) = w(t) on 99, in the sense of traces, for a.e. t € (Ty,T1).

Remark 2.3. The following uniqueness result is proved in [4]: for every w € V there exists
at most one weak solution of (2.7)-(2.9) in (7p,T1) with Dirichlet boundary condition u = w
on 0f).

Remark 2.4. So far the existence result has been proved in [16] under stronger assumptions
on the Dirichlet boundary data: w € H?((Tp, T1); L*(2)) N H*((To, T1); H (2 \ Ty(z))) -

2.4. Energy-dissipation balance in the presence of cracks. We now analyse the ener-
getic terms associated to a weak solution w of (2.7)-(2.9) in (Tp, T3) in the sense of Definition
2.1. For a.e. t € (Ty,T1) let E(t) be the sum of the kinetic and elastic energy at time ¢,
that is

1 e
@) == | |a)Pdedy + S [ |Vu(t)Pdedy. (2.14)
O\ ey 2 AV 7
To write the viscous dissipation we assume in addition that
u(t) € W»P(Q\Typy) and a(t) € WP(Q\Tyy) for ae. t € (Tp,T1), (2.15)
for some 1 < p < 4/3, and
Fyu(t) € LYQ\Dyp); R?)  for ace. t € (T, T1), (2.16)
where ¢ is the exponent conjugate to p. Moreover, we assume that
ess sup (”U(t)”WZp(Q\Fe(t)) + ||u(t)||Wl,p(Q\1"e(t))) < 400, (2.17)
te(To,T1)
esssup [|Fy(t)||Lao\r,,,) < +o0- (2.18)
te(To,Th)

According to (2.4) for a.e. Ty < t; < ta < Ty the viscous dissipation between ¢; and to
is given by

to
D(ty,ts) ;:%” |vu(t2)|2dxdy—%“ Vu(ty)[2dzdy —/t (/QFu(t)Vu(t)dxdy>dt. (2.19)

O\Ly(ry) Q\Leeeqy \Tg(e)
We now analyse the work done to produce the boundary displacement u(t) = w(t).
Besides (2.15) and (2.17) we assume that
F,(t) € WHP(Q\ Ty R?)  for ace. t € (T, T1), (2.20)
esssup | Fu(t)llwir\r,,,) < +00, (2.21)
te(To,T1)
for the same 1 < p < 4/3. About w we assume that
w(t) € H'(Q\Tyr,)) and w(t) € W (Q\ Tyry,) for ae. t € (Ty,T1), (2.22)
esssup (Jw(0)]1 11 (1) + 1608 [ @) < +00 (2.23)
te(To,T1)
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for some 1 < r < 2 with 1/r 4+ 1/p < 3/2. The force acting on the boundary of Q has
density o(t)v, where o is given in (2.12) and v is the outer unit normal to 9. Then (2.15)
and (2.20) give
o(t) € WHP(Q\ Ty)) for ae. t € (Tp,Tt), (2.24)

while (2.17) and (2.21) give

ess sup Ha(t)||W1,p(Q\pz(t)) < +00.

te(To,T1)
Therefore the trace of o(t) on 9 is well defined, it belongs to LP/(~P)(9Q) (see [13,
Theorem 18.24]), and

esssup [|o(t)|| Lr/c-» 90y < +00. (2.25)
tE(To,Tl)

On the other hand by (2.22) and [13, Theorem 18.24] the trace of w(t) on 09 belongs to
L= (09) and by (2.23)

esssup [[w(t)]r/e-n o) < +o0. (2.26)
te(To,Tl)

Since our assumption 1/r 4+ 1/p < 3/2 implies that (2 —r)/r + (2 —p)/p < 1, the integral

/BQ o ()i (t)dH? (2.27)

is well defined for a.e. t € (Tp,T1). It represents the power at time ¢ of the force acting on
0. Therefore the work done by this force in the time interval [¢1,%3] C (Tp, T1) is given by

ta
Wity ts) = / (/ a(t)uw(t)dH1>dt. (2.28)
t1 o0
Note that the integral in time is well defined thanks to (2.25) and (2.26).

Finally, according to Griffith’s theory, the energy dissipated by the crack growth in the
time interval [t1,?2] is assumed to be proportional to the added length, i.e.,

K(t1,t2) = B(l(t2) — £(t1)), (2.29)
for some constant > 0 that represents the fracture toughness of the material.

Definition 2.5. Let w be a function satisfying (2.22) and (2.23) and let u be a weak solution
of (2.7)-(2.9) in the sense of Definition 2.1 with Dirichlet boundary condition u = w on 992.
Assume that (2.15)-(2.18), (2.20), and (2.21) hold. We say that u satisfies the energy-
dissipation balance if

5(752) — E(h) + D(tl, ta) + /C(t1,t2) = W(tl,tg)
for a.e. t1 < t9 in (Tp,T1)-

3. A PARTICULAR SOLUTION

In the rest of the paper, under suitable assumptions on the crack tip velocity and on
the viscosity constant a > 0, for an arbitrary fracture toughness 8 > 0 we construct a
particular Dirichlet boundary condition w such that the corresponding solution u satisfies
the energy-dissipation balance.

For every a > 0 let R, := (—a,a) x (—1,1) and S, := (—a,+00) x (—1,1). Throughout
the rest of the paper we choose Ty = —1 and T7 = 1. Moreover, we fix a constant 0 < ¢ < 1,
which represents the constant velocity of the crack tip and we consider only the function
L(t) = ct for t € (—1,1). We study our evolutionary problem in the time interval (—1,1)
with reference configuration Q@ = R;. We want to find a solution u to (2.7)-(2.9) of the
form

u(t7x7y) = ’U(J? - Ct7y)’ —oo <t < 17 (xay) € Rl \Fcta (31)
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for some function v: Sy \ I'y — R, with
l:=1+c, (3.2)
taking
uo(t,z,y) == v(xr —ct,y) forevery t < —1 and (z,y) € Ry \I'_.. (3.3)
By (2.7) and (2.8) for —1 <t <1 the formal boundary value problem that v must satisfy
for (z,y) € Ri\I'¢ is
t
(1 —c*)02v(z —ct,y) + 831}(56 —ct,y) = a/ e TAv(z — cs,y)ds,
t _
Oyv(z —ct,0) = a/ e* "O,v(z — c5,0)ds for —1 <z <ct.
This happens in particular if v is a solution of the formal boundary value problem
t

(1—cA0%v(z,y) + 3;7)(1‘, y) = a/ e* ' Av(x + et — s),y)ds in R, \ T,
t
Oyv(z,0) = a/ e*toyu(x + c(t — 8),0)ds for — €<z <0,

— 00

which can be written in the form

+oo
(1 —c*)02v(z,y) + 8§v(x,y) = a/ e *Av(x + cs,y)ds in Ry \ T, (3.4)
0

“+o0
Oyv(z,0) = a/ e *0yv(x +c¢s,0)ds for —£ <z <0. (3.5)
0

The arguments used so far are only formal. We shall introduce a weak formulation of the
boundary value problem (3.4)-(3.5) and we shall prove, in a rigorous way, that for every weak
solution v of this problem the function w given by (3.1) is a weak solution of (2.7)-(2.9)
according to Definition 2.1 with ug given by (3.3).

We begin with a lemma that allows us to give a precise meaning to the integrals from 0
to +o0o which appear in the weak formulation.

Lemma 3.1. Let 1 <p<+o00, a>0, v>0, and z € LP(S, \Ty). Then
1 +o0 +oo P 1 +00
/ (/ (/ 678|z(x+’ys,y)|ds) d:c)dyg/ (/ \z(z,y)\pd:c)dy. (3.6)
—1 —a 0 -1 —a
Proof. Let us fix y € (—1,1). By a change of variables for every « > —a we have
+oo +oo
| et slas= [ f@)gte oo,
0 —o00
where f(o) := %67% for 0 >0 and f(o):=0 for o <0, while g(z) = |z(z,y)| for x > —a
and g(xz) =0 for z < —a. Since fR f(o)do = 1, by the Young Inequality for convolutions

we have
—+o0 —+oo P —+oo
[ (] erarasmis) i< [ laypds.
—a 0 —a
Integrating with respect to y we get (3.6). O

Definition 3.2. Given a > 0 we say that v is a weak solution of the boundary value
problem

+oo
(1 —cA%v(z,y) + 8§v(x,y) = a/ e *Av(r + cs,y)ds in R, \ Ty, (3.7
0

+oo
Oyv(x,0) = a/ e *Oyv(z +¢s,0)ds for —a <z <0. (3.8)
0
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if v e H'(S, \ Ty) and the equality

(1-e) /R o Bev(e )l )y + /R o)y

+oo
= a/ (/ e *Vou(z + cs, y)ds) V(z,y)dzdy (3.9)
Ro\To /0

holds for every ¢ € H' (R, \ T'y) with ¢ =0 on dR,.

We now prove in a rigorous way that a weak solution of (3.4)-(3.5) generates a weak
solution of (2.7)-(2.9) with ug given by (3.3).

Lemma 3.3. Let v € H'(S;\To) be a weak solution of (3.4)-(3.5) according to Definition
3.2 and let ug be defined by (3.3). Then u defined by (3.1) is a weak solution of (2.7)-(2.9)
in Q = Ry according to Definition 2.1.

Proof. Let us check that uy € L®((—oo0,—1); H'(R; \T_.)) and u € V. It follows im-
mediately from the definitions that ug(s) € HY(Ry \ T'_.) for ae. s € (—oo,—1) and
u(t) € HY(Ry \ T) for a.e. t € (—1,1). Moreover,

/R (oo [Vt 2.0y < / (Jo(z, 9)|? + |Vo(z,y)[?) dzdy

Se\lo

[t + 1Vutt )P )ody < [ (ot )l + (9ot )dedy,
Rl\Fct SZ\FO

for a.e. s € (—oo,—1) and a.e. t € (—1,1). Hence ug € L>((—o00, —1); H'(R; \T_.)) and
u € L*®((—1,1); V7). Using the equality u(t, z,y) = —cOv(x —ct,y), it can be easily shown
that w € H*((—1,1); H).

Let ¢ € Vo with ¢(=1) = ¢(1) =0 on R;. Then for a.e. t € (—=1,1) we have ¢(t) €
HY(R;\T¢) and ¢(t) = 0 on OR;, hence we can extend it to a function ¢(t) € H'(R?\T'.;)
by setting ¢ =0 on R?\ Ry. For a.e. t € (—1,1) and for every (z,y) € R, \ I'g we set

pc(t, m,y) ==tz +cty). (3.10)
Let R := (=1 —ct,1 —ct) x (—1,1). Since
@e(t,,) =0 onR?\ RS (3.11)

and R§' C Ry, for a.e. t € (—1,1) we have ¢.(t,-,-) € HY(R;\ Tp) and @.(t,-,-) = 0 on
ORy;. Using ¢.(t) as test function in (3.9) for a.e. t € (—1,1) we obtain

(1—02)/Rd\F 8zv(m,y)3x<pc(t,x,y)dxdy+/Rct\r Oyv(z,y)0ypc(t, z,y)dzdy
1 0 1 0

“+o00
= a/ (/ e *Vu(x + cs, y)ds) Vo(t, z, y)dudy . (3.12)
R{*\T'o 0
Taking into account (3.1), by a change of variable for every (x,y) € R\ Ty we obtain

+o0 t
/ e *Vu(x + cs,y)ds = / e TIVu(a + et — 5), y)ds
0

— 00

¢
= / e~ IVu(s, z + ct,y)ds, (3.13)

— 00
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hence (3.12) can be written as
(1—c%) / Ou(t,x + ct,y)0z0(t, x + ct,y)dxdy
R{"\T'o
—|—/ Oyu(t,z + ct,y)0yp(t,  + ct, y)dzdy
R{*\T'o
t
= a/ (/ e~ IV u(s, z + ct, y)ds) Vo(t,z + ct,y)dzdy .
R$*\I'g —00
By a change of variables we obtain
=) [ dultn)dup(tpdudy
Rqi\l'et
Rl\rct

¢
= a/ (/ e—(t—S)Vu(s,m,y)ds)Vgp(t,x,y)dwdy.
Rl\Fct —00

This equality can be written in the form

e / Bpult, 2, 9)dup(t, . y)dudy + / Vult,z, y)V(t, 7, y)dedy
Rl\Fct Rl\rct

¢
= a/ (/ e—(t—S)Vu(s,m,y)ds)Vgo(t,x,y)dwdy.
Rl\Fct —0o0

(3.14)

(3.15)

(3.16)

Recalling the definition (2.11) of F,(t) and the definition (3.3) of ug, to conclude the proof

of (2.13) it remains to show that

1 1
/ (/ u(t,x,y)gb(t,x,y)dxdy)dt:02/ ( Ba:u(t,m,y)@ww(t,m,y)dwdy)dt.
R 1

-1 1\Let - R\l

By (3.1) and (3.10) we have

(3.17)

W(t,x,y) = —coyv(x —ct,y) and @t x,y) = dc(t, @ — ct,y) — cOppe(t,x — ct,y),

hence

/ u(t,x,y)cp(t,x,y)dxdy = 76/ (%v(x - Ctay)¢c(tax - Cta y)dl’dy
R\t R\t

+c? / 0v(x — ct, y)0rpc(t, v — ct,y)dzdy .
Ri\Tet

Therefore, to prove (3.17) it is enough to show that

1
/ (/ Ov(x — ct,y)e(t, x — ct, y)da:dy) dt =0.
1 NJR\T

Changing variables again, by (3.11) the left-hand side can be written as

/_11(/1% Ozv(z,y)Pc(t, x, y)dxdy)dt = Ozv(z,y) (e (1,2,y) — we(—1,2,y))dzdy ,

¢\T'o Re\To

and the last integral is equal to 0 because p.(—1) = ¢.(1) =0 as a consequence of the fact

that ¢(—1) = (1) = 0. This concludes the proof.

O
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It is convenient to consider a change of variables which transforms (3.7) and (3.8) into
the problem

+oo +oo
Ad(z,y) = a/ e *AY(x + vs,y)ds + a’yQ/ e *0%(x +vs,y)ds in Rz \To, (3.18)
0 0
+oo
0y0(z,0) = a/ e *0,0(x + 7vs,0)ds for —a<x<0, (3.19)
0

for suitable constants v > 0 and a > 0.
Definition 3.4. Given v > 0 and & > 0, we say that ¢ is a weak solution of (3.18)-(3.19)
if € H'(Sa\To) and

/ Vo(x,y)V(r,y)drdy = a/
Ra\FQ

+oo
(/ e *Vo(x + s, y)ds) Vo(z,y)dzdy
Ra\To “J0

+oo
+ary? / (/ e 0, 0(x + s, y)ds) Opp(z,y)dxdy (3.20)
Ra\To “Jo

for every ¢ € H(R; \ T'g) with ¢ =0 on OR;.
We now show the equivalence between (3.7)-(3.8) and (3.18)-(3.19).

Lemma 3.5. Let a > 0 and let a:= a/X\, with X\ := /1 —c2. Let v € H'(S,\To) and let
0 € HY(Sz \To) be defined by o(x,y) := v(Ax,y) for every (x,y) € Sa \To. Then v is a
weak solution of (3.7)-(3.8) according to Definition 3.2 if and only if ¥ is a weak solution
of (3.18)-(3.19), with v := ¢/V/1 — 2, in the sense of Definition 3.4.
Proof. Let ¢ € H*(Rs \T) with ¢ =0 on OR; and ¢ € H (R, \Tg) with ¢ =0 on OR,
be such that @(z,y) = o(5,y) for every (z,y) € Ry \To.

Since A = v/1 — 2, using the relations between v and ¥ and ¢ and ¢, respectively, we
see that

(1762)/R . 3xv(x7y)3z¢(x,y)dfvdy+/3 " Oyv(z,y)0y o (2, y)drdy

—+oo
= a/ (/ e *Vu(x + cs, y)ds) Vo(x,y)dzdy
Ro\To *J0

is equivalent to

~ L X L X
/ 0x0(<,9)0z0(~, y)dxdy +/ Oy0(<,y)0y (5, y)dxdy
R.\To A A Ru\To A A

e —s 1 ., T+ cCs T
= a/Ra\FO (‘/0 e Faajv< A 7y)d3)am@(x7y)dmdy

“+o0
—i—a/ </ e_sayﬁ(m+Cs,y)ds)8yg0(§,y)dxdy,
Ra\I'o \Jo A A

which in turn, by a change of variables, is equivalent to

/ 020(2,y) 0 ip(x, y)drdy + / 0y0(x,y)9yp(x, y)dzdy
R@\Fo Ré\FO

«

+oo
== e 0. 0(x 4+ vs,y)ds )| 0z o(x,y)dxdy
vl (& + 7, y)ds ) Dusp(, )

+oo
+a/ (/ e *0y0(x + ’ys,y)ds)ﬁygp(x,y)dxdy.
Ra\Tp *Jo

Hence (3.9) is equivalent to (3.20), which concludes the proof. O
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We conclude this section by proving the existence and uniqueness of a solution 9 of (3.18)-
(3.19), which in view of the previous lemma provides the existence of a unique solution v
of (3.7)-(3.8).

Theorem 3.6. Let v >0, a >0, and w € H'(S;\Tg). Assume that a(1+~2) < 1. Then
there exists a unique solution v of (3.18)-(3.19), according to Definition 3.4, with © = w
on OR; in the sense of traces and O = w a.e. on S; \ Ra.

Proof. We consider the space Hjp (Ra \To) := {z € H'(Ra\To) : 2 = 0 on R \ To}.
When needed every z € Hjp (Ra\To) is extended to a function z € H'(S;\Tg) by setting
z=0on S;\ Rs. '

Let © € H'(S;\T) with ® = w on OR; in the sense of traces and © = w a.e. on S;\ Rg .
It is convenient to write o = w + ¢, with ¢ € HéRa (Ra \To). By (3.20) the function ¥ is a
solution of our problem if and only if { satisfies

/ V{(z,y)Vo(z,y)dzdy + / Vw(z,y)V(z,y)dedy
R@\Fo R&\FO

+oo
=a/ (/ e’s((l+72)%((96+757y),3y4(af+757y))d8)vw(w,y)dxdy (3.21)
Ra\I'o “Jo

—+oo
+a/ (/ 675((1 —|—72)8xw(x+'ys,y),3yw(a: +75,y))ds)V<p(z,y)dxdy
R@\F(} 0

for every ¢ € H} r, (Ra \To). Thanks to Lemma 3.1 the above integrals are well-defined.
On HéRa (Ra \Ty) we consider the norm

ellas . (ra\re) = IV@llL2(Ra\D) - (3.22)

Let Hyp (Ra\Lo) be the dual space of Hj, (Rz\Io) and let ®: H'(Ra\T'o) = Hyp (Ra\
T'y) be the linear operator defined by

(@2, ) = /R 1 Tele ) Vit o)y (3.23)

for every z € H'(Rs \To) and ¢ € Hjp (Ra\To). The restriction of ® to Hjp (Ra\To)
is denoted by ®¢. It is well-known that ®q is a bijective isometry.
Let W: H'(S: \To) = Hyp (Ra \To) be the operator defined by

+oo
(@)= [ W | e (00t 4 95.9).0, 500+ 75))ds) Vil g)dady (324

for every z € H'(S; \ To) and every ¢ € Hjp (Rs \To). By Lemma 3.1 we have that
1] <1442
With this notation problem (3.21) becomes: find ¢ € Hjp_ (Ra \ To) such that

Oo¢ = a¥( + a¥%w — dw, (3.25)
which is equivalent to
¢ =a®, ' U¢ + ady ' Vw — &' dw. (3.26)

By hypothesis a(1 ++2) < 1, hence the function ¢ + aCID(;l\II( + a<I>51\Ilw — <I>0_1<I>w is a
contraction in Hjp (Ra\To). Since ¢ is a solution of problem (3.21) if and only if ¢ is a
fixed point of this function, we have existence and uniqueness of the solution ¢ of problem
(3.21). This concludes the proof. ]
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4. SINGULARITY AT THE ORIGIN

The aim of this section is to show that, for a suitable Dirichlet boundary condition on
ORy, the gradient of the solution v of (3.4)-(3.5) according to Definition 3.2 is singular, at
least when « is sufficiently small. The detailed study of this singularity will be crucial for
the developments of the next section.

Since we want the smallness condition for « to be independent of ¢, at least for ¢
sufficiently far from 0 and 1, we fix two constants 0 < ¢y < ¢; < 1 and in the rest of the
paper we always assume

co<c<e. (4.1)

We set
51 Z:].+Cl, )\1 Z:\/l—C%, and gl Z:£1/A1:(1+C1)/ ].—C% (42)

To simplify the notation, in this section R denotes the rectangle Rlpl and S denotes the
strip S; . We consider the space Hjgp(R\To) = {z € H'(R\Ty) : z = 0 on 9R \ T}.
When needed every z € Hj,(R\Ty) is extended to a function z € H'(S\ I'y) by setting
z =0 on S\ R. Hence the space H}5(R\I'y) can be considered as a subspace of H'(S\T'p).

In view of Lemma 3.5, we shall first describe the behaviour near the origin of the weak

solution ¢ of (3.18)-(3.19) with
vi=c¢/V1-=2c2. (4.3)
To this end we introduce the function 1: R? \ 'y — R defined by
0
U(e.y) = Vol g sin "0 for every (2.4) B2\ Ty, (4.4)

where p(z,y) := /2?2 +y? and 0(z,y) € (—m,7) is the oriented angle between the positive
x axis and the vector (z,y), so that x = pcosf and y = psinf. We observe that

€ WH(R\To) NW*P(R\Ty) forevery 1 <s<4andeveryl<p<4/3. (4.5)

Since 1 is harmonic in R? \ T’y and 9y = 0 on Ty, we have

Vi(x,y)Ve(x,y)drdy =0 for every ¢ € HAp(R\ To). (4.6)
R\T'o

We shall prove in Theorem 4.3 that, given 4/3 < r < 1, under suitable assumptions on
a depending on r, the weak solution ¢ of (3.18)-(3.19) in the sense of Definition 3.4 with
the Dirichlet boundary condition o =1 on JR can be written as
O=rktp+ 0" in R\ Ty,

with k£ > 0 and 9"¢9 € W27 (R\Ig). This result is based on the following classical estimates,
due to Grisvard, concerning the weak solutions of the boundary value problems

—Az=f in R\ Ty,

0yz=0 on RNIYy, (4.7)

z=0 on OR.
The main difficulty of this section is to extend these estimates to the case of (3.18)-(3.19)

where non-local terms are present.
The structure of the solution of (4.7) near the origin is described by the following result.

Theorem 4.1. Let 4/3 <r <2, let f € L"(R\Ty), and let z € Hy,(R\To) be the unique

solution of the problem

/\Vz(x,y)Vgp(x,y)dmdy = \f(:c,y)go(sc,y)dmdy for every ¢ € HéR(R \To), (4.8)
R Fo R 1—‘0
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which is the weak formulation of (4.7). Then z can be written in a unique way as
z=rkp+2"9 in R\ Ty, (4.9)

with k € R and 279 € W27 (R\I'g). Moreover, there exists a constant A, > 0, independent
of f, such that the estimate

5] + 12" Nlwezr (r\ro) < Arllfllr(rR\ro) (4.10)
holds.

Proof. Using the results in [12, Theorem 4.4.3.7] we obtain that there exist x € R and 2" €
W27 (R\ Tg) such that (4.9) holds. Since the function ¢ does not belong to W27 (R \ T)
we deduce that x and z"°9 are uniquely determined.

Let us now prove (4.10). Let X be the closed linear subspace of Y := Rx W27 (R\g; R?)
defined by

X ={(k,v) €Y :kp+ 2" =0 on OR and 9yz"*Y =0 on RNTo},
and let A: X — L"(R\T() be the continuous linear operator defined by
A(k,2"9) = =A™ .

Given f € L"(R\TI'y) we consider the unique solution z of (4.8), which can be represented as
in (4.9) for some k € R and 2" € W"(R\T'p), uniquely determined by z. Since 9,z =0
and 9y =0 on RNTy, we deduce that 0,29 =0 on RNIT'y. Moreover, since z =0 on
OR we have ki) + 279 = 0 on OR. Finally, since —Az = f and —Ayp =0 in R\ Ty, we
have also —Az™9 = f in R\T. This implies that there exists a unique (x,2"%9) € X such
that A(k,2"%9) = f, proving that A: X — L"(R\ T'g) is bijective. Since A is continuous,
by the Closed Graph Theorem its inverse is continuous, which implies (4.10). O

We consider now the case in which the homogeneous condition z =0 on OR is replaced
by the non-homogeneous boundary condition z = w on JR.

Corollary 4.2. Let 4/3 < r < 2, f € L"(R\Ty), w € W2"(R\ Ty), and let z €
H}p(R\To)+w be the unique weak solution of problem (4.8) in this space. Then z can be
written in a unique way as

z=krp+2"9 in R\ Ty,
with k € R and 27°9 € W27 (R\I'g). Moreover, there exists a constant B, > 0, independent
of [ and w, such that the estimate
&l + 12" lw2rmro) < Br(llfllr(mre) + lwllwzr o)
holds.
Proof. Since 4/3 < r < 2 and hence 1 —1/r < 1/r, by [12, Theorem 1.5.2.8 and Remark
1.7.4] there exists a function ¢ € W2"(R\ I'g) such that
0,(=0 on RNIy, d,(=0,w ondR,
(=w ondRUTy.

We observe that ¢ is not uniquely determined. However, we can choose ( so that

[Cllwzr(myry) < erllwllwzr )

for a suitable constant ¢, > 0 independent of w. To prove this estimate, it is enough to
consider the surjective continuous linear map A introduced in [12, Theorem 1.5.2.8] and
to apply the Closed Graph Theorem to its quotient defined on the Banach space W2" (R \
Ty)/KerA.

The conclusion now follows by applying the previous theorem to the function z — (. 0O
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Since 1 ¢ H'(S\Ty), we fix a cut-off function w € C°(R?) with w = 1 in R and we

set
Yo = wih, (4.11)

observing that 19 = ¢ in R\ T and ¢g € H*(S\ Tg) N W2P(S\ Ty) for 1 < p < 4/3.
Moreover, we have g € C*°(S\ R).

We are now ready to state the main result of this section. It concerns the structure of the
weak solution ¢ of (3.18)-(3.19) in R\ I'y with boundary condition © =ty on OR, whose
existence and uniqueness are guaranteed by Theorem 3.6.

Theorem 4.3. Given 4/3 < r < 2, there exists a constant M, > 1 such that, if aM, <
1—c? and v = ¢/V/1—c2, then the unique solution © of (3.18)-(3.19) in R\ Ty with
boundary condition v =1 on OR, satisfying 0 = ¢y in S\ R, can be written in a unique
way in the form

O =rot +0"% in R\ Ty, (4.12)
with kg € R, ko >0, and 979 € W2"(R\ Ty).

Proof. Assume that a < 1 — 2. Recalling the definition of 7 and the inequalities ¢y < ¢ <
c1, this implies that a(1++2) < 1. Hence Theorem 3.6 with d = ¢y and w = 1y guarantees
existence and uniqueness of the solution ¢ mentioned in the statement. Let ®, &y, and ¥
be the operators defined in the proof of that theorem. Therefore we can write

b =10 +C, (4.13)

where ¢ € H)p(R\ I'p) is the unique fixed point of the map ¢ — a®y ¢+ ady Wy —
Oyl dyYy = a®y ' UC¢ + ad®y Wiy, where the equality is due to the fact that ®yy = 0 in
R\Tq by (4.6). Since this map is a contraction in the space H}z(R\T) with norm (3.22),
its fixed point ¢ can be obtained as limit of the sequence ((,) defined inductively in the
following way: (o =0 and (41 = a@glq/gn + azy for n > 0, where

20 1= By ' Wehg € Hip(R\ Ty). (4.14)
Let U: H'(S\To) = Hiz(R\To) C H'(S\Ty) be the operator defined by
U:=d,'V. (4.15)

By construction we have (,4+1 = aU(, + azy. Therefore we can write (,4+1 as
n
(g1 = Z PARTIE P
§=0

and consequently the fixed point { satisfies

o0 oo

(:Zaj"'lszO:ZaJsz, (4.16)

§=0 j=0

where the series converges strongly in H}n(R\ Tg) and

zj=Ulz. (4.17)

In order to prove (4.12) we study the singularity of the gradients of the functions z;.
Given 1 < p < 400, it is convenient to introduce the operators V': LP(S\I'g) — LP(S\T)
defined by

+o0o
(Vz)(z,y) := / e z(x + vs,y)ds for every z € LP(S\Ty) (4.18)
0

and Vi: LP(R\Ty) — LP(R\Ty) defined by

(Vr2)(x,y) := (Vzgr)(z,y) = /0 i e *z(x+ys,y)ds for every z € LP(R\Ty), (4.19)
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where /1 is defined in (4.2) and zg is the extension of z obtained by setting zg := 0 in
S\ R. The fact that V maps LP(S\Ty) into LP(S\Ty) follows from Lemma 3.1. Moreover,
we observe that V' maps W1P(S\ I'g) into W1P(S\ Ty) and that

0:(Vz) =V (0zz) and 0y(Vz)=V(0yz). (4.20)
The analogous result for Vx is given by the following lemma.

Lemma 4.4. Let 1 <p < +oo and let z € WHP(R\Ty). Then Vgz € WHP(R\ Ty) and

i—a

1 oty -~
0:(Vrz)(x,y) = / ! e *0yz(x +vs,y)ds — ;eiz(él,y) ,
0
i1 —x

8y(VRz)(m,y)=/ ’ e *Oyz(x +s,y)ds,
0

where z({1,-) denotes the trace of z on the segment {{1} x (—1,1). Moreover, there exists
a constant D, > 0, independent of z and of ¢ € [co, 1], such that
[Vrzllwrr(rre) < Dypllzllwrr(ryro) - (4.21)

Proof. The proof is standard if z is of class C! in a suitable neighbourhood of dR \ Ty.
The general case can be obtained by approximation. Estimate (4.21) follows from the trace
inequality and from Lemma 3.1 applied to the extensions of z, 0,2, and 9yz obtained by
setting them equal to 0 in S\ R, taking into account the fact that 1/v is bounded from
above due to (4.1). O

For future use we state also a more general version of the previous result.

Lemma 4.5. Let 1 <p < +oo, a>1/2, § >0, and 2 € WHP(R,\Tg). Then the function
Za,s: Ro \To — R defined by

a—x

Za,5(2,Y) ::/ ’ e z(x + ds,y)ds
0

belongs to WHP(R, \ T) and

a—x

Oucaseg) = [ e Ol Bs,u)ds — 5T 2,
0

a—zx

5

By7as (@, ) = / =20, 2(z + bs,y)ds
0

where z(a,-) denotes the trace of z on the segment {a} x (—1,1). Moreover, there exists a
constant £, > 0, independent of z, a, and §, such that

1
[za.6lwir(ro\Te) < Ep(1+ g)”zHWl«P(Ra\Fo) . (4.22)

Proof. As in the previous lemma the proof is standard if z is of class C' in a suitable
neighbourhood of dR, \ Ty, and the general case can be obtained by approximation. For all
terms appearing in ||z4,s/|w1.r(r,\1y), €xcept for the LP-norm of %e% z(a,y), the estimate
(4.22) follows from Lemma 3.1 applied to the extensions of z, J,z, and 0,z obtained by
setting them equal to 0 in S, \ R,. To estimate the LP-norm of %e% z(a,-) we use the
continuity of the trace operator from W1P((a — 1,a) x (=1,1)) into LP({a} x (—1,1)),
observing that the norm of this operator does not depend on a and that the rectangle
(a—1,a) x (—=1,1) is contained in R, . O

We shall use the following integrability result. Note that, while V1) depends on ¢
through +, the final estimate of its norm is independent of ¢ € [cg, ¢1].
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Lemma 4.6. Let 1 < r < 2. Then the function Vi belongs to W™ (R\ ') and there
exists a constant F,. > 0, independent of c € [co,c1], such that ||[Vipollw2r(r\ry) < Fr .

Proof. Since ¢y € H'(S\Ty), by Lemma 3.1 applied to v, 0.%0, and 9,1 we deduce
from (4.20) that Vg € WH(R\ T'g) and that

IVollwrrrro) < Fro (4.23)

for a suitable positive constant F,. o independent of ¢ € [cg, ¢1].

Since, by (4.20), 0ze(Viho) = V(0zat0), Opy(Viho) = V(Opytbo), and 0y, (Vipg) =
V(0yyto), to deal with the second derivatives of Vg we consider the functions

+oo

(2,9) > / e |Ouatho( + 75, 3)|ds, (4.24)
0
“+o0

(2,y) / €*|uy o + 75, y)Ids (4.25)
0
—+oo

() / €10y b0l + 75, )|ds. (4.26)
0

We claim that they belong to L"(R\ T'g) for every 1 <r < 2 and that their L"-norms are
bounded by a constant depending only on r.
We prove the claim only for (4.24), the proof for the other ones being analogous. By
direct computation we see that there exists a constant A > 0 such that
A

A
1/2 s -
)l < (2l + D2 N0t w)] < sz Patb(@ )| < o

for every (z,y) € R?\ Tg. Since 0,100 = Oppthw + 20,9 Opw + 1 Oppw , there exists a
constant B > 0 such that for every (x,y) € R? \ Ty we have

|Ozatbo(z, y)| < )3/2x(m,y) T ax(@,y) + Bllz| + [y)"?x(x,y) |

B
(lz] + y] || + [yl)
where x € C°(R?), 0 < x <1 on R? and x =1 on suppw.
Then for every (z,y) € R?\ Ty we have

“+o0
/0 678'6%?611[)0(1‘ +’757y)|d5 S Bfl(zvy) + BfQ(Ivy) + Bfg(ﬂ?,y) )

+o0 1
filo) = [ e ds,
0 (| + ys| + y|)3/?

—+oo
s X(@+7s,y)
fQ(:E7y) ::/ € d37
0 (lz + sl + [y[)*/2

where

+o0
falw) = [ € (ot ]+ o) s,
0

By Lemma 3.1 for every r < 4 we have

dxdy 1/r
el < ([ ) = R
e < (|$|+|y,w2)

Since
+oo
Fs(,y) < (2| + [y HW/ e=5s1/2ds,
0

the function f5 belongs to L°(R\T). Recalling that the function ¢ — « is increasing and
that ¢y < ¢ < ¢, we deduce that

Il f3ller(rro) < Fr3
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for a suitable positive constant F) 3 independent of c.
As for fi, in order to integrate by parts we notice that
d 1 1 ysign(z + vs)
ds (|z+vs[+ w72 2 (Jz +ys[+ [y)?/2
Hence for x > 0 we have
2 e’
M) == s T 1)

To estimate f; for x < 0 we write

f ( ) /I/"/ efsds + /+OO 678d5
1\, Y) =
o (z+asl+1y)32 Sy (Jx+s| + [yl)3/2

s=+o00 2 +oo e s 2
- 7/ /208 < 12
5=0 vJo  (lz+vs[+yl) vzl + |yl)

2 e * s=—wz/vy —/7 9 e %ds

~ oy (lz+ s+ w2 =0 /0 v (Jz +s| + [y]) /2

2 e s s=feo /+°° 2 e %ds < C
v (x4 sl + [y V2 ls=—a/y Sy v (o + 8| + [y))1/2 ~ yly[t/?

for a suitable constant C' > 0 independent of z and y. Recalling that the function ¢ +— ~
is increasing and that c¢g < ¢ < ¢1, we obtain that f; € L"(R\ Ty) for every r < 2 and

/1]

for some positive constant F;.; independent of c. Together with the results for f, and f3
this concludes the proof of the claim for (4.24).

The conclusion of the lemma follows from (4.23) and from the estimates obtained in the
claim. O

Lr(R\T'o) < Fr1

In the following lemma the estimates for the first derivatives proved in Lemma 4.4 are
extended, under more restrictive assumptions, to second order derivatives.

Lemma 4.7. Let 1 <r < 2 and let z € H'(R\Tg) with z({1,y) = 0 in the sense of traces

on the segment {{1} x (=1,1). Assume that there exist k € R and 29 € W2"(R\ T)
such that

z=rp+2"9 in R\Ty. (4.27)
Then Vgz € W2T(R\Ty) and there exists a constant G, > 0, independent of z, K, 279,
and ¢ € [cg, ¢1], such that
IVrzllw2r(r\ro) < Grlla] + 127 [w2r(r\rg)) - (4.28)
Proof. By Lemma 4.4 applied to z we have that Vgz € H!(R\ Ty) and that for a.e.
(z,y) € R\ T

b —a

0:(Vr2)(x,y) :/ k e %0y z(x 4+ vs,y)ds, (4.29)
0
0,(Var) ) = [ €020+ s, )ds, (4.30)
0
which implies
0. (Vgz) = Vg(9zz) and 0,(Vrz) = Vr(0y2). (4.31)

By applying Lemma 3.1 to suitable extensions of Vzz, 0,(Vrz), and 0,(Vrz), we obtain
that

||VRZ||W1>T(R\FO) < ||Z||W1>T(R\Fo)- (4.32)

To prove that Vgz € W27 (R\Ty) we fix 1 < 7 < 4/3 with # < r, and begin by proving

that Vpz € W27(R\Ty). By (4.5) and (4.27) we have that z € W27 (R \ Ty). Recalling
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(4.31), by Lemma 4.4 applied to 0,z and 0yz, with p = 7, we obtain that Vzz € W2 (R\Ig)
and for a.e. (z,y) € R\ Ty

i
O Vedo) = [ 0o b asds = 2T 0ualbn) (439
b=
Oy (Vr2)(2,y) 2/ i e Opyz(x + vs,y)ds, (4.34)
Ches
Oyy (Vr2) (2, y) :/0 ! e *0yyz(x + s, y)ds, (4.35)

where in the last equalities we used the fact that the trace of z on the segment {/;} x (—1,1)
satisfies z(f1,y) = 0 for a.e. y € (—1,1), and hence 8yz(g1,y) =0 for a.e. ye (—1,1).

These equalities allow us to improve the regularity of Vzz and to obtain that Viz €
W2 (R\Ty). Indeed, by (4.27) we obtain

i-=

0ua(Va)ag) = [ 0l + 15 9)ds = ST 0,000,
0
= 1 ;
= z—i A
+/ € 002" (x + 73, y)ds — §€Taxzreg(f1’ y)- (4.36)
0

From the proof of Lemma 4.6 we know that the function

it
(z,y) — / T (T + s, y)ds
0
belongs to L"(R\ T'y) and that its L"-norm is bounded by F,.. Moreover, the function
1 =—45 A
(z,y) — ;6 709 (0, y) (4.37)

belongs to L"(R\ T) because 1 is of class C* in a neighbourhood of the segment {/;} x
[-1,1]. Recalling that the function ¢+ ~ is increasing and that ¢y < ¢ < ¢1, we deduce
that the L™-norm of (4.37) is bounded by some positive constant H, .

By Lemma 3.1 the function

i —a

(x,y)b—>/ ! € 02" (x 4 s, y)ds
0

belongs to L"(R\ T'g) and its norm is bounded by ||2"*9||y2.»(g\r,). Moreover, using the
monotonicity of ¢ — -y, the inequalities ¢y < ¢ < ¢; and the continuity of the trace operator
imply that there exists a constant K, > 0 such that

1 _4-e - . r
([ e ™o grdny) " < Klelwarmr,. (438)
R\, 7V

for every ¢ € W27"(R\ Ty). Applying this inequality to ¢ = 2"%9, from (4.36) and the
previous inequalities we conclude that

”amz(VRZ)”LT(R\Fo) <k(F+H,)+ (1 + KT)”ZTEQHWZ’T(R\FO)' (4.39)

Similarly, we estimate the other two terms 0y(Vgz) and 0y, (Vrz) in L"(R\ Ty). To-
gether with the estimate (4.32) of the W1 -norm, this concludes the proof. O
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Proof of Theorem 4.3 (continuation). We now introduce two operators ¥; and ¥s from
H'(S\Ty) into Hyp(R\Ty) defined by

+oo
(U2, ) = / (/ e *Vz(x +fys,y)ds) V(z,y)dzdy, (4.40)
R\To, *Jo

+oo
Wazio)i= [ ([ e 0unt+ s,)ds) ol ey, (4.41)
R\I', *Jo
for every z € H'(S\T'g) and every ¢ € H}5(R\T'p), where v = ¢/v/1 — ¢? as in (4.3).
Recalling the definition (3.24) of ¥ we have
U =", +920y in H'(S\Ty). (4.42)
We also note that by (4.20) we have
R\T'o
for every z € H'(S\Ty) and every ¢ € H} (R \ T'p), hence
U, =®V in H'(S\Ty), (4.43)

where @ is defined in (3.23).
In the following lemma we use these operators to describe in detail the structure of the
functions z; introduced in (4.17).

Lemma 4.8. Let 4/3 < r < 2. Then there exists a constant wu, > 1, independent of «,
such that for every pu > p, and every j > 0 there exist k; € R and z;eg € W2r(R\Ty)
satisfying

Zj = Iij’lb + Z;E'q m R \ FO and |:‘<&J| + ||Z;egHW2"'(R\FO) S ,LLj+1 . (444)
Proof. We proceed by induction. Taking into account (4.14), (4.42), and (4.43) we have
29 = By 1 Wepg = OOV g + 2Py 1 Watly (4.45)
Let us consider the term zg 1 := <I>51<I>Vwo. We have zo1 € Hjz(R\I'g) and ®zp 1 = ®V1)y.
Hence 20,1 = Vg + 0,1 with V0,1 € Hl(R\Fo) satisfying (I)’UOJ =0, i.e.,
/ Vo1 (z,y)Ve(z,y)dedy =0
R\T'o
for every ¢ € H}z(R\Ty). Since 291 =0 on OR we deduce that vo,; = —V)y on OR. By
Corollary 4.2 there exist ko1 € R and v, € W2"(R\ Tg) such that
vo,1 = KoY + o7 in R\To, (4.46)
ko,1] + loo 7 w2 (rare) < BellVibollwzr(r\rg) < BrFy, (4.47)

where in the last inequality we used Lemma 4.6.
To study the term zp o := <I>0_1\I/21/)0, we set

—+oo
folwy) = /0 e Dato(x + 5, y)ds = (VOsstho) (2,7).

By Lemma 4.6 we have f() S LT(R \ Fo) and HfOHL’I‘(R\FO) < F,.
We claim that Uatpg = —fj in Hgé (R\Tp), which means that

—+oo
/ (/ efsﬁxwo(z+78,y)d8)3x<p(x7y)dzdy: —/ fo(z,y)p(z, y)dady
R\T 0 R\T
for every ¢ € H}p(R\ Tp). This can be written in the form

/ (Vaso) (. ) Buip(e, y)dady = — / fole, y)p(w,y)dudy.  (4.48)
R\Tg R\Ty
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By (4.20) we have 0,(V0y%0) = VOzzto = fo, and 0y(VOz0) = VOrytbo. By Lemma 4.6
the functions V8,0 and V1 belong to L"(R\ I'g), hence Vg € WHT(R\ Ty).
Since ¢ € Hip(R\Ty), and hence ¢ € LY(R\ I'y) by the Sobolev Embedding Theorem
for every 1 < ¢ < 400, we can integrate by parts in the left-hand side of (4.48). Since the
x-component of the normal to I’y is zero, no boundary term appears and, using the equality
0:(VOzo) = fo, from the integration by parts we obtain (4.48), concluding the proof of
the claim.
By Theorem 4.1 there exist o2 € R and 255 € W?>"(R\T) such that

202 = Oy ' Warhg = — By ' fo = ko2t + 205 in R\Tg, (4.49)
ko,2| + 1205 w2 (r\rg) < Arll follLr(r\re) < ArFir (4.50)

Therefore (4.45)-(4.47), together with the monotonicity of ¢ — v and the inequalities ¢g <
c < c1, imply that
20 = ZO,l —|— ’}/22,’072 = (Ii071 —+ ’}/21*60,2)1/) —|— Uaelg + V¢o + 72267629 iIl R \ FO (451)
ko1 + VKo 2| + 065 + Vibo + 7205 llwer(mre) < (Br + 1+177 A, Fy (4.52)
where v, := ¢1/4/1 — ¢2. This implies that (4.44) is satisfied for j = 0 with kg := ko1 +
YKoz and 25" := v + Vo + 42205 provided
w> o= (Br+1+ V%AT.)F,.. (4.53)
Let now j > 1 and assume that (4.44) holds for j — 1, that is to say

reg

Zj—1 = Kj—1¥ + 2;1 in R\Ty and |/€j_1| + HzgingWQ‘T(R\FO) < ,uj (4.54)

for suitable r; 1 € R, 2% € W?"(R\Ty), and p > 0. By (4.15) and (4.17) we have
zj = &y ' Wz;_1. Therefore (4.42) gives

zi = zj1+ 722, (4.55)

where, taking (4.43) into account, we set
zj = 00 Wz = 05OV 2y, (4.56)
Zj2 = <I>O_1\Ilgzj_1 . (4.57)

Let us consider first the term z;;. We have z;; € Hél,R(R \Ty) and ®z;1 = ®Vz;_1.
Hence
Zj1 = VZj,1 +vj1, (458)
where v;1 € H'(R\Ty) satisfies ®v;;, =0, i.e.,
Voji(z,y)Ve(z,y)dedy =0
R\To
for every ¢ € H}z(R\T). Since z;; =0 on R, we deduce that v;; = —Vz;_1 on dR.
By Corollary 4.2 there exist ;1 € R and v;%’ € W»"(R\ Tg) such that
Vi1 = H/j,lw + U;ig in R \ FO s (459)
[£.1] + 1155 w2 (mare) < BrllVzj-allwzr(rvro) - (4.60)
Since zj_1 € Hip(R\To), we have Vz;_; = Vgzj_1. By Lemma 4.7 and (4.54) we have
VRZj_l S WQ’T(R\F()) and

IVzj-allwer o) = IVezj-1llwzrmrg) < Gr(lkj-al + 1255 w2 (rirg) - (4.61)
Together with (4.54) and (4.58)-(4.60) this gives
Zj1 = Iij’ﬂ/i + U;,elg + VZj_l in R \ Ty (462)

kil + V2o 4+ 0P lwer g < (Br + )G (4.63)
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To deal with z; 5 introduced in (4.57) we set
i1~z

7 —s 1 4= ~
fi—i(z,y) = / € *Opzzj—1(x +vs,y)ds — ;e T O0pzj—1(1,y) -
0

We claim that f;_; € L"(R\Ty). By (4.54) we have that

Loz -
v v re
fi—1(z,y) = Kj1 / e *Opatho(x + vs,y)ds + / e "0ppz; ™ (x + 8, y)ds
0 0 (4.64)
1 ~hze ) 1 _4-= reg ()
7;’€j_1e -’qujo(glay) - ;6 v arzj—l(élay)'

From the proof of Lemma 4.6 we know that the function

b-a
(w,y)H/ L e Dt (x + s, y)ds
0

belongs to L"(R\ Ty) and its norm is bounded by F,.. By Lemma 3.1 the function
4

(w,y)ﬂ/ T a2y (T + 78, y)ds
0

also belongs to L"(R\ I'g) and its norm is bounded by |27 [lw2r(r\ry)- Arguing as in
4

(4.37) we obtain that the L"(R \ I'g)-norm of the function (z,y) — %6_% L o(ly,y) is
bounded by H,. As for the last term in (4.64), using (4.38) with ¢ = 27} we obtain

1 4w reg /) r 1r re
</R\F |;6 T 0.2 (0, y)] dxdy) < K [|255 lwer (r\ro) -
0

From (4.64) and from these inequalities we obtain that f;_; € L"(R\Ty) and
I fi-1llrmvro) < (Fr + He)lkj1] + (1 + K)[|25 w2 (r\ry) - (4.65)

We claim that Waz;j_1 = —fj_1 in Hyg(R\To). Recalling that z;_; =0 on S\ R the
claim is equivalent to
h-e

/ (/ ’ e’samzj_l(:v+vs,y)ds)3z<p(w,y)d:vdy:f fi—1(z,y)e(z,y)dedy  (4.66)
R\To"JO R\To

for every ¢ € Hyp(R\ To). We first want to prove that

i—a

az(/ g e *0pzj_1(x + *ys,y)ds) =—fi—1(z,y).
0

By (4.54) we have

v ¥
e 0zzj—1(x +7s,y)ds = Kkj_1 / e Oy bo(x 4+ vs,y)ds
0 0
b=
¥
Jr/ e 0,27 (v + s, y)ds .
0

By Lemma 4.4 the function
i

(x,y)l—>/ ! e 0,2, (x + s, y)ds (4.67)
0
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belongs to W1 (R\ T'g) and
i —a

513(/0 i efsazz;igl(er’ys,y)ds)

b —a

v re 1 4= reg (§
:/ e " 0pe 2 (v + s, y)ds — ;e K 0025 (01, y) - (4.68)
0

We now apply Lemma 4.4 with p = 1 to the function v = 9,1y obtaining that the
function

(x,y)H/ T e 00 (x + s, y)ds (4.69)
0

belongs to WH1(R\ Ty) and
0.( [ 7 ettt s.0)ds)
0

ly—x

% 1 "17—7 ~
_ / ¢ Drtho(w +y5,0)ds = ~¢ T D,un(r.). (4.70)
0

é —x ~
Since the term %elT 0:%0(l1,y) is bounded and the function

i
(z,y) — / e Opxtho(z + vs,y)ds
0

belongs to L"(R\T) (see the proof of Lemma 4.6), the function (4.69) belongs to W1 (R\
Ty).
By (4.54), (4.67) and the previous remarks we deduce that

b=
(x,y)»—>/ ! e *0pzj—1(x +vs,y)ds (4.71)
0

belongs to W1 (R\ Ty), while (4.54), (4.68), and (4.70) give

b—a

8:,3(/0 ! e *0zzj_1(x + 'ys,y)ds> =—fi—1(z,y). (4.72)

On the other hand, since z;_1 € H*(S\ T'p), by Lemma 3.1 we have also that the function

(4.71) belongs to L?*(R\Ty). Since by the Sobolev Embedding Theorem, every ¢ € H*(R\

Ty) belongs to LL(R\Ty) for every g < +00 we can integrate by parts in the left-hand side

of (4.66). Since the x-component of the normal to Ty is zero no boundary term appears,

and using (4.72) from the integration by parts we obtain (4.66), concluding the proof of the

claim.

By Theorem 4.1 and by (4.57) there exist #;2 € R and 2% € W»"(R\Ty) such that
Zj2 = (I)al\I/QZj,I = —(I)alfj71 = K}j72'(/} + Z;gg in R \ FO 5 (473)
kg2l + 1255 lwer(mare) < Arllfi-1llrr\ro) -
By (4.65) this inequality gives

kg2l + 1255 lwer(mare) < Ar(Fy + Hyp)|kj—1] + Ar(1 4+ Kp)||2; 5 [lwezr (r\T)
<A (F 4+ H, + 1+ K, (4.74)

where in the last inequality we used the inequality in (4.54).
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. L . 2., reg .__ _reg . 2 _reg . .
Therefore, setting ; := k1 +v°k;,2 and z; 0 =1 +Vzj_1+77%; 5 , and using again

the monotonicity of ¢ +— v and the inequalities ¢y < ¢ < ¢, from (4.55), (4.62), (4.63),
(4.73), and (4.74) we obtain

zj = kjh+2;% in R\Ty,
|’{j| + ||Z;eg||W2fT(R\Fo) < ((BT + 1)Gr + 'Y%AT(FT +H, +1+ KT))Nj s

where 7% = ¢?/(1 — ¢3). This implies that (4.44) holds for j > 1 provided pu > p,1 :=

(B, +1)G, ++2A,(F, + H. + 1+ K,), thus concluding the proof of the inductive step.
Therefore (4.44) holds for every j > 0 if u > p, := max{1, o, 4r1}. This concludes

the proof. O

The following result provides the structure of the solution ¢ of (3.21).

Lemma 4.9. Let 4/3 < r < 2. Assume that 2au, < 1 — c%, where . > 1 1is the
constant provided by Lemma 4.8. Let v = c¢/v/1—c? as in (4.3). Then the unique solution
¢ € HYz(R\Tg) of problem (3.21), with a = {1, can be written in the form

C=rYp+¢% inR\Ty, (4.75)
with —1 < Kk <1 and ("9 € W27 (R\Ty).

Proof. Since p, > 1, the inequality 2au, < 1—c2 <1 — ¢? and the definition of v imply
a(1+4++?) < 1. By Theorem 3.6 there is a unique solution ¢ of problem (3.21) with a = /; .
By (4.16) ¢ can be written as

(=) altly, (4.76)
§=0

where z; are defined in (4.17) and do not depend on «. Choosing p := p,, by Lemma 4.8
for every j we have

zj =k +2;% in R\To and |w;| + [|2; lw2.r(r\ry) < TARE (4.77)
Since 0 < ap < 1/2 the series 3% a/*'k; and Y77, a/T120% converge in R and
W2 (R\Ty), respectively. Therefore, choosing
K= Z AR and ¢red = Z aj+1z;eg (4.78)
j=0 7=0
from (4.76) we obtain (4.75). Since

oo

Zaﬂluﬂl - At oy,
= 1—ap
from (4.77) and (4.78) we get |x| < 1. O

Proof of Theorem 4.8 (conclusion). Let M, := 2u, > 2, where p, is the constant
provided by Lemma 4.8. By (4.13) we have © = 19 + . By Lemma 4.9 this implies

0=(14+r)Y+¢ in R\Ty,
with |k| < 1, which gives (4.12) with ko :=14 x> 0 and 0" := ("9 O

The following result provides the structure of the solution v of problem (3.7)-(3.8). Let
P: R?\ Ty — R and p: R?\ Ty — R the functions defined by

1[)($7y) = w(%;y) and QZJO(xay) = 7/)0(§7y)ﬂ (479)
where ¢ and 1)y are defined in (4.4) and (4.11), while A = /1 — ¢2.



24 GIANNI DAL MASO AND RODICA TOADER

Corollary 4.10. Let 4/3 <r <2, let a >0, let oy := (1 — c2)/M,., where M, > 1 is the
constant provided by Theorem 4.3, and let

Z::fl)\:ﬁlé :(1+Cl)

v (4.80)

Assume that o < ay . Then the unique solution v of problem (3.7)-(3.8) in R;\I'g (according
to Definition 3.2) with boundary condition v = ay) on OR; \ Ty and satisfying v = ahy in
Sy \ R; can be written in a unique way in the form

v=rk)+0" in R\ Ty,
where K = akg, with ko > 0 the constant provided by Theorem 4.3, and v"*9 € W™ (R;\I'y).

Proof. We consider first the case a = 1. Let v = ¢/v/1 — ¢? as in (4.3). Since the inequality
a < «; implies that aM, < 1 —¢?, by Theorem 4.3 the unique solution 9 of (3.18)-(3.19)
in R\ Ty with boundary condition & = ¢ on OR, and satisfying ¢ = 1y in S\ R, can be
written in a unique way in the form

’lA):I{()'I/J-l-lA]TEg inR\Fo,
with kg > 0 and 0"%9 € W2"(R\ I'g). By Lemma 3.5 we have v(z,y) = 9(%,y), hence
v = Koto + v, with V"9 (z,y) := 979(%, ).
In the general case a > 0 the solution v can be obtained multiplying by a the solution
corresponding to a = 1. O

Remark 4.11. Since ¢ € WP(R; \ Ty) for every 1 < p < 2, Corollary 4.10 implies that
v € W*P(R;\Ty) for every 1 <p< 3.

5. AUXILIARY RESULTS

The following lemmas will be used in the study of the energy-dissipation balance.
Let ' be the 1-dimensional Hausdorff measure in R?. For every p > 0 let B, be the
open ball of centre (0,0) and radius p.

Lemma 5.1. Assume that u € WV (By) with 4/3 <7 <2 and let 1 < q¢ < 2 be given by

L_—2_1 Thep
q T 2

/ lulPdH' < +oo, (5.1)
OBy

/ || Vu|?dzdy < 400, (5.2)

1

/ lu2dH! < p/ u2dH + 20, (5 — pT)~ 4 (/ ulf|Vulidrdy)* (53)
0B, oB; By
for every 0 < p <1, where Cy := (27rg%(11)1_% . In particular, we have

lim lu2dH' — 0. (5.4)
p—0+ dB,
Proof. Let v := u?. Using the Sobolev Embedding Theorem we can prove that v € W14(By)
and Vv = 2uVu, which gives (5.2). Inequality (5.1) follows from the fact that the trace of
v belongs to L'(0By).
For 0 € [0,27] let e(f) := (cosf,sinf). Assuming that v € C1(B;) for every 0 < p < 1
we can write

w(pe(8)) = v(e(8)) / Volte(6))e(0)dt
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Hence
1

o(pe(6)) < v(e(6)) + / [Vo(te(9))dt

p

<o)+ ( ivuite@)rar) / )

P
1—1

= v(e(9)) + (/plt|Vv(te(0))|th>;(g:§(1 _pz%?)) .

Using the equalities

2m
/ vdH* =/ pu(pe(6))dd ,
o8, 0

/Bl [Veldndy = /0% ( /01 HV(te(0))|"dt) .

we obtain

q=2 -5

/aBp vdH' < p/o% 0(6(9))d9+p(2ﬂ')1_% (/Bl |Vv\qudy)%(%(pﬁ - 1)) ‘.

By density this inequality holds for every v € W14(By). Recalling that v = u?, and hence
Vv = 2uVu, from this formula we obtain (5.3).
Finally, (5.4) is a consequence of (5.1)-(5.3). O

Lemma 5.2. Assume w € WY (By) with 4/3 <r < 2. Then

1 X % r— T 1
— [ |uldH' < p? luldH* + CT</|Vu|7d:Edy) (,02%":1% - p2<"*1>)1 v (5.5)
B

p2JoB, 8B,
for every 0 < p <1, where C, := (27rgj)1_% . In particular,
. 1 1
lim — luldH" =0. (5.6)
p—0+ p2 dB,

Proof. For 6 € [0,27] let e(f) := (cos®,sinf). Assuming that v € C1(B;) we can write

1
u(pe(9)) = u(e(h)) — / Vu(te(0))e(0)dt
hence

1
u(pe(0))] < |u(e(8))] +/ [Vu(te(8))|dt

< Ju(e(0))| + (/1t|Vu(te(9))|Tdt)i(/;Tlldt>1—i

p

= |u(e(9))| + (/pl t|vu(t€(9))|rdt)%(::;(1 B p%)>1_%’

Using the equalities
2m
| tulart = [ plutpetopias.
dB, 0

27 1
|Vu|rd:cdy:/ (/ {{Vu(te(0))"dt ) do
By 0 0
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we obtain
1 -
— | |uldH' < p? \u|d’H1 +p2(2m) / [Vul|" dxdy) (2 T(pT T 1)) .
pz Jom,
By density the same inequality holds for every u € W (B;) and this leads to (5.5), which
implies (5.6). O

The following results deal with the behaviour of the singular part of the derivatives of
the solution u to (2.7)-(2.9) of the form (3.1). Let us recall that (z,y) = ¥(§,y), where

1 is defined in (4.4) and A = V1 — 2.
Lemma 5.3. Let —1 <t <1 and 0< p<1—c|t|]. Then

1 .
o3 | 0z — ct,y)Pdrdy
2 JR\(TetUB, (ct,0))

= —c/ Duath(z — ct,y)0utb(z — ct,y)dzdy + C7 (5.7)
Ri\(T'ctUB,(ct, 0))

where e
CP = — : 5.8
PTURALHA (5:8)
Proof. Let
R{":= (=1 —ct,1 —ct) x (=1,1). (5.9)
By a change of variables we get
|0ut)(z — ct, y)Pdady = [ |00 (x, y)|*dady
Ri\(TetUB,(ct,0)) RS\ (ToUB,(0,0))

which gives
1 c 1 .
o5 [ 10u3(a — ct,y)Pdedy) = & ( / o.0(-1~ ety ~ [ (0,001~ ct.)dy).
R\(TotUB, (ct,0) 1
On the other hand, by the same change of variables
e / Orsth(a — ct, )0, 0w — cty)dady = —c [ Oueid(a, )00, y)dudy .
Ri\(TetUB,(ct,0)) REt\(ToUB,,(0,0))

Integrating by partb we obtain that the right-hand side is equal to

C

2(/11 1023)(—1 — ct,y)[*dy — /11 |0,0(1 — Ct’y)|2dy)

+gp/ |0, (p cos B, psin )] cos Od6 .

Since 9,1 is homogeneous of degree —% we obtain that
29|02 (pcos b, psind)|® cos O = [0,1)(cos 6, sin 0)|? cos 0.
Therefore (5.7) holds with
) = —g / 0,10 (cos B, 5in 0) |* cos 0d6 . (5.10)

In order to compute this integral it is convenient to introduce the polar coordinates

(px, 0x) = (px(0),01(0)) of the pomt (COSG sin#). Recalling the definitions of 1 and ¥ we

have that 9,1 (cos6,sin @) = — 5Py % sin & hence

Cf‘:—i/ i(1—(:050>\)0089al(9 ¢ / COSH}\COSGdev (5.11)

162 7 PX - 162 P
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where in the last equality we used the symmetry properties of py(f) and cosf. Since

P cos by = Cosa and p3 = %Y 20 4 sin 29, from (5.11) we obtain

c 4 cos? 6
o = — do 5.12
! 16X J_ cos? 0 + N2 sin’ 0 (5.12)
which gives (5.8) by direct computation. O

Corollary 5.4. For every —1 < t; < ta <1 we have

to .
—c lim / Dpath(z — ct,y)0ptb(z — chy)dmdy)dt
p—0+ Ri\(Tet UB,,(ct 0)

1 ) 1
= */ |00 (x — ctz,y)|2dwdy -5 / 0,0 (x — ct1,y)Pdady — (t2 — t1)CY,
R R

2 1\Tety 1\Tetq
where C7 is the constant introduced in (5.8).
Proof. Integrating (5.7) between ¢; and ty we obtain

1 - 1 .
! / 020z — cto, y)Pdady — / 10,0(e — ctr, y)Pdady
Ri\( 2 Jr

2 Ter, UB, (ct2.0)) 21 \(Ter, UB, (ct1,0))
to . -
= fc/ ( OzaV(x — ct,y)0pth(x — ct, y)dxdy) dt + (to — tl)Cf‘ .
t1 Rl\(FCtUBp(Ct,O))

Since |d,1)|? is integrable we can pass to the limit as p — 0+ and conclude the proof. [

Lemma 5.5. Let —1<t<1 and 0 <p<1—c|t|]. Then

1 .
o (5 IV (x — ct, y)Idedy)
Ri\(T'ctUB,(ct,0))

= —c | Vi(x — ct,y)Vouh(x — ct,y)dady + 2 O}, (5.13)
Ri\(T'ctUB,(ct,0))
where CF is defined in (5.8).

Proof. Let R$' be defined as in the proof of Lemma 5.3. By a change of variables we get
|V’(ZJ(.’E —Ct,y)|2dl'dy = |V1L(£L',y)|2d1'dy,
Ri\(T'ctUB,(ct,0)) R$*\(T'0UB,(0,0))
which gives
1 c 2 fo 2
o(5 [ 1V = ct,y)Pdady) = 2 ( |vw< L=t y)lPdy — [ V(1 = ct,y)dy).
Ri\(PetUB (e, 0)) -1
On the other hand, by the same change of variables
—c/ Vip(z — ct,y) Vo, (x — ct,y)dady = —c | Vi(2,y)Vouih(x,y)dudy .
Ri\(TetUB,,(ct,0)) RS\ (ToUB,(0,0))

Integrating by parts we obtain that the right-hand side is equal to

;(/11 Vab(=1 = ct,y)*dy — /11 V(1 — et y)|2dy)

+§p/ |V (pcos B, psin 0)]% cos 0d6 .

Since V1) is positively homogeneous of degree f% we obtain that

19|V (pcos, psin0)|? cos O = 1|Vij(cos ,sin6)|* cos b,
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hence (5.13) holds with ¢>C} replaced by

e = —g / |V4)(cos 0, sin 0)|? cos 0d6 . (5.14)
To conclude the proof it is thus enough to show that
Y =y, (5.15)
From the proof of Lemma 5.3 we deduce that
cr=c) - g/ |0, (cos 0, sin 0)|* cos 06 . (5.16)

Using the notation introduced in that proof, from the definitions of ¢ and v we obtain that
Dy (cos 0, sin ) = %p;1/2 Ccos % hence

=0 - =

™ ™ cos 0y cos
16/ —(1+cos9,\)cosﬁd9:Of‘—£/ COSUNCOST g (5.17)

. PA 16 P

where in the last equality we used the symmetry properties of pyx(f) and cos@. By (5.11)
we obtain that

Cr =1 -N)0) =320,
This gives (5.15), thus concluding the proof of the lemma. O

Corollary 5.6. For every —1 < t; <t <1 we have

to
—c lim (/ Vip(x — ct,y) Vo )(x — ct, y)dxdy) dt
R

p=0+ Jy 1\(TetUB, (ct,0))

1 . 1 .
- / [Vip(z — ctg,y)|2dxdy - = / |Vip(z — ctl,y)|2dxdy — (tg — tl)c2C’1}‘ .
2 JR\Ter,y 2 JR\T.r,

Proof. Integrating (5.13) between ¢; and ¢y we obtain

1 . 1 .
5 [ (Vi cta)Pdsdy — 5 [ 90— ctr,)Pdody
2 JR\\(Tery UB, (ct2,0)) 2 JR\\(Ter, UB, (ct1,0))

to . .
= —c/ ( Vip(x — ct,y) Voo (x — ct, y)d:ﬁdy) dt 4 (ty — t1)c*CY .
1 R1\(I'ctUB,(ct,0))

Since |V1i)|? is integrable we can pass to the limit as p — 04 and conclude the proof. [

The following remark will be used in some steps of the proof of the energy-dissipation
balance.

Remark 5.7. Let I be a bounded open interval in R, let 2 be a bounded open subset of
R", let f€ WHI(I xQ), and let F: I — R be defined by

F(t) = /Q £t €)de
Then F € WH(I) and
i) = /Q O (1,€)de

for a.e. t € I. The standard proof can be obtained by using the definition of derivatives in
the sense of distributions and the Fubini Theorem.
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6. ENERGY-DISSIPATION BALANCE
In this section we prove the following theorem, which is the main result of the paper.

Theorem 6.1. There exists 0 < a; < 1 with the following property: if 0 < a < a1 and
co < ¢ < ey, then there exist ug € L>((—oo,—1); H*(R1 \T'_.)) and w € V, satisfying the
reqularity assumptions (2.22) and (2.23), such that the unique weak solution u of (2.7)-(2.9)
with Dirichlet boundary condition w=w on ORy (according to Definition 2.2) satisfies the
energy-dissipation balance in the sense of Definition 2.5.

Proof. We fix 4/3 < rog < 2 and define oy := (1 — ¢})/M,, , where M, > 1 is the constant
provided by Theorem 4.3. Assume that

O<a<a; and c¢g<c<gc. (6.1)

As in Corollary 4.10, let 9 (z,y) = Y(%,y) and o(z,y) = Yo(%,y), where ¢ and g
are defined in (4.4) and (4.11), while A = v/1 — ¢2. We choose
2
a:= 2 VB ) (6.2)
VT Ko
where 3 is the fracture toughness and k¢ > 0 is the constant provided by Theorem 4.3.
Recalling (3.2), we observe that (4.80) and (6.1) imply that

s A VI 2

l=br=062 = —=

Al v 1—cf

Let v € H'(S;\ Tp) be the unique solution of problem (3.7)-(3.8) in R; \ I'y (according
to Definition 3.2) with boundary condition v = ay on OR; \ Ty and satisfying v = atdy

in S;\ R;. By Remark 4.11 we have that v € W2P(R; \ Tg) for every 1 < p < 4/3. By
Corollary 4.10 we have

241:1+0121+C:£. (63)

v=rp+0" ae. in R;\Ty, (6.4)
with
K= akKg = %\/B and 0" € W™ (R; \ Ty), (6.5)
where in the second equality we used (6.2). Observing that o —ct > —(1 +¢) = —£ > —f
for —1 <x <1 and t <1, we can consider the function v defined by
u(t,z,y) = v(r —ct,y) fort <1and (r,y) € Ry \ T . (6.6)
By (6.4) u can be written as
u(t, z,y) = k(x — ct,y) +v"9(x — ct,y) fort € (—1,1) and (z,y) € Ry \Ter.  (6.7)
We set
uo(t) :=u(t) fort < —1.

Then ug € L>®((—00, —1); H'(R;\T'_.)). By Lemma 3.3 u is a weak solution of (2.7)-(2.9)
according to Definition 2.1. From the regularity of v and from (6.6) it follows that for every
1 < p<4/3 we have

u(t) € W»P(Ry \Te) for every t € (—1,1), (6.8)
sup |[u(t)[[w2r(ri\r.)) < 00
te(—1,1)

Using the Sobolev Embedding Theorem we deduce that for every 1 < s < 4
Vu(t) € L¥(Ry \ Tet; R?), (6.10)

sup [|Vu(t)]
te(—1,1)

Ls(Ry\Dgy) < 100. (6.11)
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Since 1u(t,r,y) = —cOpv(z — ct,y) and ii(t,x,y) = c?dpv(x — ct,y), it follows also that
for every 1 < p < 4/3 we have

a(t) € WHP(Ry\Tw) and ii(t) € LP(Ry \ Tet), (6.12)
[a(®)lwrrri\re) + @@ | Le(roAP) < O (6.13)
for a.e. t € (—1,1), where C = ¢||0,v||wrr(r\To) + 10220 L (RoATY) -

Therefore, for a.e. t € (—1,1) the duality product (i(t), ): considered in [7, Definition
2.15] reduces to

<u<w,¢>t::jg i drdy

for every ¢ € H*(Ry \ Twt) with ¢ = 0 on OR;. Moreover, by (6.13) we have ii €
L>((—1,1); LP(Ry)) for every 1 < p < 4/3 and by the definition of the weak derivative we

have
- / 11 ( /R . a(t)p(t)dedy) dt = / 11 ( /R . (1) p(t)dady ) dt

for every ¢ € V.
Substituting in the proof of [7, Theorem 2.17] the term (f(t),»(t)) by (Fu(t),Ve(t)),
from (2.13) we deduce that for a.e. t € (—1,1) we have

/ i(t)pdzdy +/ Vu(t)Vedrdy :/ F,(t)Vedzdy (6.14)
Ry\Tet Ry\Tet Ri\Tey

for every ¢ € H'(R; \ ;) with ¢ =0 on OR;.
Recalling (2.11), (6.6), and the equality v =y in S;\ Ry, for every ¢t € (—1,1) and a.e.
(z,y) € Ry by the change of variables 7:=t — s we obtain

+oo
F,(t,z,y) = a/ e "Vu(x —ct + cT,y)dr
0

ZCL +t 400 3
= a/ e "Vu(x —ct + cr,y)dT + a/ e "Vio(x —ct + et y)dr (6.15)
0

St
= KF (L, y) + Fr(t o, y),

where

c

F5m9(t a0, y) := a/ e TVY(x — ct + er,y)dr, (6.16)
0

Lw iy +00 3

Fi9(t,z,y) = a/ e TV (x — ct + e, y)dT + a/ e TVio(x — ct + er,y)dr. (6.17)
0 24t

‘We note that there exists C'y > 0 such that

Ci

Vip(x —ct + er,y)| < )
| 77&(-17 C CcT y)| = |Z‘—Ct+CT|1/2+‘y|1/2

Using polar coordinates around (ct,0) we write  — ¢t = pcos@ and y = psinf. Therefore,
from (6.16) and the last inequality we obtain that

X S dr

P9tz y)| < al - , 6.18

Py <ol | o (6.13)
and by the change of variables o = ¢7/p we get
{—(z—ct)
i C)\ 4 do

Foma(t, z y)| < pt/22 / . 6.19

| (3$y)|7p c 0 |COS€+O’|1/2+|Sin0|1/2 ( )
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We have

2 cos 0+2
do d§ 1/2
< <2(3Y2 4+ 1).
/o [cos 6+ o L/2 + [sin 6]1/2 —/Cosa R

Moreover, if @ > 2 we have also

{—(xz—ct) {—(z—ct)

/ z do / 7 do (0 — (z — ct))'/?
- < <2 :
5 |cosO+o|t/2 + |sing|t/2 s (o—1)1/2 pl/2

From these inequalities we obtain that

F9(t) € L°°(Ry;R?)  for every t € (—1,1), (6.20)
sup ||Fsmg(t)||L°°(Rl) < +o00. (6.21)
te(—1,1)

By (4.5), (6.16), and Lemma 4.5 with a = ¢ + ¢t > 1, § = ¢, applied to z(z,y) =

O 0(x — ct,y) and z(z,y) = 5'y1[)(x —ct,y), we obtain that for every 1 < p < 4/3

Fsm9(t) € WHP(Ry \ Ter; R?)  for every t € (—1,1), (6.22)
sup (|9 (8) [ (ro\r.,) < 00 (6.23)
te(—1,1)
We claim that
Frea(t) € Who(Ry \ T'w; R?)  for every t € (—1,1), (6.24)
sup HF'IIEQ(t)HWLTU (R1\T'¢t) < +00. (625)
te(—1,1)

Since Vv € WhT0(R; \ To; R?) by (6.5), by Lemma 4.5 with p =g, a = +ct > 1,
and § = ¢, applied to z(x,y) = 0,v"(x—ct,y) and z(x,y) = Oyv"*(x—ct,y), the function

(x,y) — / e TV (x — ct + cT,y)dT
0

belongs to W10 (R; \ I'et; R?) and its norm is estimated by the norm of Vo™ . Since the
last term in (6.17) is a smooth function we deduce that (6.24) and (6.25) hold.
From (6.15) and from the estimates on F*"9(¢) and F'°(t) we obtain that

F.(t) € WHP(Ry \ Ty R?) (6.26)

for every 1 < p < 4/3. Using the Sobolev Embedding Theorem for F[¢9(t), we deduce from
the L -estimate (6.21) for F*™9(¢) and from (6.24) and (6.25) that

F,(t) € L"(Ry \ Tt;R?)  for every t € (—1,1), (6.27)
sup || Fu(®)||;rx < 400, 6.28
LN LI PEPRYS (6.28)
where
1/ry =1/rg —1/2. (6.29)

Using the L -estimate of F*"9(t) and the trace estimate for F°9(t) (see [13, Theorem
18.24]), we deduce that the traces F,(t)" and F,(t)~ of F,(t) on I'r; from above and from
below satisfy

F,(t)* € L/C=70)(P,, N Ry;R?)  for every t € (—1,1), (6.30)
sup ||Fu(t)iHUO/@?TO)(FCMRI) < +o00. (6.31)
te(—1,1)
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Since for every 1 < p < 4/3 we have i(t) € LP(R; \ T'ct) by (6.12), while Vu(t) and
F,(t) belong to WP(R; \ T'wt; R?) by (6.8) and (6.26), equation (6.14) is equivalent to
A = — F i F
SE) u(t) divF,(t) in Ry \Te, (6.32)
Ofu(t) =F,(t)f onTyNRy,

for a.e. t € (—1,1), where the first line has to be considered as an equality between functions
in LP(Ry \ T'st), while the second one is to be intended in the sense of traces. Here and
henceforth 9 u(t) denote the traces of dyu(t) on I'ey N Ry from above and from below and
Fu(t);t denote the y-component of the vectors F,(t)*.

Let us fix t € (—1,1) such that (6.32) holds. Multiplying the first line in (6.32) by «(t)
we obtain

i(t)alt) — Au(t)a(t) = —divF, (H)a(t) ae. in Ry \ o (6.33)

Let us fix 0 < p < 1 — c|t|. Using the regularity of ¢ far from (0,0) and recalling that
u(t,z,y) = —cOyv(x — ct,y), from (6.5) and (6.7) we obtain

u(t) € Wh™(Ry \ (Tt UB,(ct,0))), (6.34)
Vu(t) € W (R \ (T U B,(ct,0)); R?). (6.35)

By (6.34) and by the Sobolev Embedding Theorem we have
a(t) € L0 (Ry \ (Tes U B, (ct,0))) with 1/ = 1/rg — 1/2. (6.36)

Let po be the exponent conjugate to rj, characterised by the equality 1/py + 1/rf = 1.
Since 19 > 4/3 we have 1 < py < 4/3. By (6.8), (6.12), and (6.26) this implies that the
functions i(t), Au(t), and divF,(t) belong to LP°(R; \ I'st), hence all products in (6.33)
are integrable on Ry \ (Tt U B,(ct,0)). Therefore we obtain

/ i(t)u(t)drdy — [ Au(t)i(t)dzdy = —/divFu(Qa(t)dxdy. (6.37)
R\ (T'ctUB,(ct,0)) Ri\(TctUB,(ct,0)) R\ (T'ctUB,(ct,0))

Let # > 0 be defined by 1/# = 2/rqg — 1/2. Since rg > 4/3 we have # > 1. From (6.34)
and (6.35), using the Sobolev Embedding Theorem we obtain that w(¢)Vu(t) belongs to
W (Ry \ (Ter U B, (ct, 0)); R?).

Since 4/3 < rg < 2, there exists 1 < p; < 4/3 such that

3/4<1/p; <3/2—1/rg. (6.38)

Using again the Sobolev Embedding Theorem, from (6.26) (with p = p;) and (6.34) we
obtain that (t)F,(t) € WYP(Ry \ (Der U By(ct,0)); R?), with p > 1 characterised by the
equality 1/p = 1/p1 4+ 1/r9 — 1/2. Therefore we can integrate by parts the last two terms
of (6.37) and we obtain

- / Au(t)a(t)dedy = / Vu(t)Vat)dedy + | dyu(t)au(t)dH' — [ d,u(t)u(t)dH?
Ri\(TetUB,(ct,0)) Ri\(T'ctUB,(ct,0)) B, (ct,0) ARy

Oy u(t)u(t) dH' — | Oy u(t)a(t) dH',

Poi(R\B, (ct0)) TotN(R1\B,(ct,0))
divE, ()u(t)dedy = | F,(t)Va(t)dedy + [ F,(t)vi(t)dH — Fy(t)va(t)dH"
Ri\(TerUB, (ct,0)) Ri\(T'etUB,, (ct,0)) 8B, (ct,0) OR,
+ [ Fu(t)fa(t)TdH - a(t)"dH*.

r,n(RKB (et,0)) r,m R11<Bp(ct 0))
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Here and henceforth (t)* denote the traces of (t) on I';sN R, from above and from below.
From (6.37) and the previous equalities we obtain

/ i) dedy + | Va@)Vi(t)dedy + [ dpuya@)dHt — [ ou(e)i(t)dn
RI\(TwiUB(ct,0)) o Ri\(Ter UB(ct,0)) 8B, (ct,0) OR:

Ofu(t)a(t)tan' — | o u(tyi(t) dH' = /Fu(t)Vu(t)da;dy+/Fu(t)ml(t)dHl
R o

Ctﬁ(Rl\Bp(ct 0)) Ctﬂ(Rl\B (ct,0)) 1\ (Tt UB,(ct,0)) B,(ct,0)

_ 1 + 1 1
| Fatwioa’ + [ Ryt = [ Rogao oc. 63

Let ¢ € C*°(R;) with ¢ =1 in a neighbourhood of 9R; and ¢ = 0 in a neighbourhood
of [—¢,c] x {0}. For every ¢t € (—1,1) and a.e. (z,y) € Ry \T'_. we set

w(t,z,y) = u(t, v, y)p(z,y) = v(r — ct,y)p(r,y) (6.40)

and we observe that w € V and wu(t) = w(t) on OR; in the sense of traces for every
te(-1,1).

We study now the energy-dissipation balance for u. Note that by (6.8), (6.9), (6.12), and
(6.13) the function u satisfies (2.15) and (2.17) for every 1 < p < 4/3. Recalling (6.29) and
(6.38), we see that the exponent ¢; conjugate to py satisfies ¢; < r§. By (6.26), (6.27),
and (6.28) this implies that F,, satisfies (2.16), (2.18), (2.20), and (2.21) with p = p; and
q = q1, while from the equality u(t,x,y) = —cOyv(z — ct,y) and from (6.4) and (6.5) we
obtain that w satisfies (2.22) and (2.23) for p = p; and r = ry. Therefore the viscous
dissipation is given by (2.19) and the work of the external forces acting on OR; is given by
(2.28).

From (2.12), (2.28), and (6.39), for every —1 < t; < t3 < 1 we obtain

t2 t2
/ ( / i(£)i(t)dady ) dt + / ([ Vu)vict)dedy)ad
t Ri\(T'ctUB,(ct,0)) 131 R1\(TetUB,(ct,0))

1

+/tt2(/ 3yu(t)u(t)d7{1)dt+/tt2( 6;u(t)u(t)+d7-[1)dt—/t2( 0, ultyilt)~dH" ) dt

1 B, (ct,0) 1 Te:N(R1\B,(ct,0)) t1 ﬂ(Rl\B (ct,0))

tz
/ / dxdy+/ Fu(t)yu(t)dHl)dt+W(tl,tg)
t1 Ri\( CtuB (ct, 0)) OB, (ct,0)

+/t1 (/ch(Fu(t)y " )ﬂml)dt - /tltz</rcm<Fu(%u(t)dHl)dt' (6.41)

Ri\B,(ct,0)) Ri\B)(ct,0))

We now study the limit as p — 0+ of all terms of (6.41). We begin with the integrals on
R\ Tt UB,(ct,0)).
From (6.7) it follows that

a(t) = —crdptb(z — ct,y) — cOv" (z — ct,y), (6.42)
ii(t) = rOpath(x — ct,y) + 20y (x — ct,y), (6.43)
hence
i(tya(t) = —R* 0, (x — ct,y)dua (@ — ct,y) — CROP(x — b, y)0ppv" (z — et y)
—C KO (x — ct,y)Ouath(x — ct,y) — O™ (x — ct,y)Dprv" (x — ct,y) . (6.44)

Since ro > 4/3, using the Sobolev Embedding Theorem we deduce from (4.5) (with p = p;),
(6.5), and (6.38) that all terms but the first one are integrable on R; \ 'y and that their
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integrals are bounded uniformly with respect to ¢. Therefore

lim ( — RO (x — ct,y) Dyt (z — ct, y)
P20+ JRI\ (Pt UB,, (ct,0))

—ERO,V™ (x — ct,y)Opath(z — ct,y) — 00" (x — ct,y)Dpav" % (2 — ct, y))dxdy
= / ( — BRrO(x — ct,y)Dpv" (z — ct,y)
Ri\Tey
—3K0,0™ (x — ct,y)Opath(z — ct,y) — O (x — ct,y)Dpav" (x — ct, y))dxdy

=0 (CQK/R . Duth(z — ct,y)dpv™ (z — ct, y)dxdy)

2

+5‘t( / |0, (z — ct, y)|2dxdy) , (6.45)
2 Jrr,

where in the last equality we used Remark 5.7. Let —1 < ¢; < t5 < 1. Integrating in time
between ¢; and ¢ and using the Dominated Convergence Theorem, from Corollary 5.4 and
(6.42) we obtain that

ta
lim ( / u(t)u(t)d:pdy>dt
p=0+ Jy, Ri\(TetUB, (ct,0))
1 1
5 [Pty -5 [Py - AR - n)e), 6)
2 JR\T.r, 2 JrR\Ter,

where C} is defined in (5.8).
Similarly, from (6.7) it follows that

Vu(t) = kVY(x — ct,y) + Vo' (z — ct,y) (6.47)
Vi(t) = —ckVoup(z — ct,y) — V" (x — ct,y), (6.48)
hence
Vu(t)Vi(t) = —ck?Vh(x — ct,y) Vo (x — ct,y) — ckVi(x — ct,y) Voo™ (z — ct,y)
—ckV" (x — ct,y)Vuh(z — ct,y) — V™ (x — ct, y) Vv (z — ct,y) . (6.49)

Since 79 > 4/3, using the Sobolev Embedding Theorem we deduce from (4.5) (with p = p1 ),
(6.5), and (6.38) that all terms but the first one are integrable on R; \ T';; and that their
integrals are bounded uniformly with respect to t. Therefore

lim ( — ckV(x — ct,y)VO,u" (x — ct,y)
P04 R\ (Tt UB, (ct,0))

—ckVU" (x — ct,y) VI (x — ct,y) — Vv (x — ct,y) Vv (z — ct, y))d:vdy
= / ( — ckV(z — ct,y) Vv " (x — ct,y)
Ri\let
—ckVU Y (z — ct, y)Vouh(x — ct,y) — Vv (z — ct, y)VOu"% (x — ct, y))d:z?dy
=0, (/—1/ Vip(z — ct,y) Vo' (x — ct, y)dmdy)
Ri\T'1

1
+0: (f / Vo™ (z — ct, y)|2dxdy) , (6.50)
2 Jr\my



ENERGY-DISSIPATION BALANCE FOR PROBLEMS WITH MEMORY AND CRACKS 35

where in the last equality we used Remark 5.7. Integrating in time between ¢; and to and
using the Dominated Convergence Theorem and Corollary 5.6 we obtain from (6.47) that

ta
lim ( / Vu(t)Vu(t)d:cdy)dt
RA\(T

P=0J4, ctUB,,(ct,0))
1 1
=3 / |Vu(te)|*dedy — 5/ |Vu(ty)|2dedy — 2k2(ty — t1)Cy . (6.51)
Rl\Fth Ry \Fctl
By (6.48)

F,()Va(t) = —ckFy (t)VO)(x — ct,y) — cFyu 1)V (z — ct,y) .
Since rg > 4/3, by (4.5) (with p = py), (6.5), (6.27), and (6.38), the right-hand side in the
above equality is integrable on R; \ I's¢, hence
lim Fo(t)Vi(t)dady — / FOVia(t)dedy.  (6.52)
P=0+ J R\ (Dot UB , (ct,0)) Ri\le

We now consider the integrals on 9B,(ct,0) that appear in (6.41). Using again (6.7) we
obtain that

Dyu(t)i(t) = (kDy(x — ct) + D™ (x — ct, y))(—ckdptb(x — ct,y) — O™ (x — ct,y))
= —ck20,0(x — ct) 00 (z — ct,y) — ckdy(z — ct) D v (z — ct,y)
—ck0,v"™ (x — ct,y)0u(x — ct,y) — cO,v" (x — ct,y) D" (x — ct,y).

By Lemmas 5.1 and 5.2 the integrals on 0B,(ct,0) of the last three terms tend to 0 as
p — 0 and are bounded uniformly with respect to ¢t. Hence

lim dyu(t)u(t) dH' = —ck? lim Dy PO bdHY = —K2Cy
=0+ JaB,(ct,0) =0+ J5B,(0,0)
where, using the fact that V4 is positively homogeneous of degree —%, we have that

Cy = c/ D, (cos 0, sin 0)9,4)(cos 0, sin 0)d6 .

By the Dominated Convergence Theorem we conclude that
ta

lim ( / Byu(t)a(t) dHl)dt = k2 (ts — 11)C), (6.53)
OB, (ct,0)

p—0+ t

for every —1 <1 <ty <1. 3 3 3
We now compute C3 . First of all, we note that 9,1 = 9,1 cos§ + d,2hsin 0, hence

C3 =c[ |0s9(cos 8, sin0)|*cos0dO + c[ ,1(cos b, sin 0)d,1)(cos 0, sin O)sin Odh.  (6.54)

—T —T

By (5.8) and (5.10) we have that

c/ 0,10 (cos B, 5in 0) |* cos Adh = —2C7 = _%14—% . (6.55)
To compute the second integral in (6.54) we introduce the polar coordinates (px,6y) =
(p2(0),05(0)) of (% sin@). Using the definitions of 1 and ¢ we have that

—T

. . 11 0 0 11
Oyp(cos b, sin §)9,1(cos 6, sin 0) = —ap—)\ sin ?/\ cos ?’\ = _87)\,07 sin @) .
Since pysinfy = sinf and p3 = Co;# + sin? §, we obtain

T . . . ) e [T sin? 6
c/ﬂT 0y(cos B, sin 0)0,1p(cos 6, sin 8) sin 6df = B T I vy edﬂ
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By direct computation we get

/7r sin” 0 d0_21 1
. cos26 4+ A2sin?0 A 14N
hence from (6.54) and (6.55) we obtain
AT _cAw 1 7
G2 = ANTHA 8 A 14+X 4\ (6:56)

By (6.15) and (6.42) we have
F.(t)vi(t) = (kF5™ () + FT°9(t)v)(—ckdptb(x — ct,y) — cOpv™ (x — ct, y))
= —crRZF* M ()i (z — ct,y) — ckFSM (1) vd,u" (x — ct,y)
—ckFT9 () wd,ab(x — ct,y) — cFr9(t)vd, v (x — ct,y) .
Using Lemmas 5.1 and 5.2 we deduce from (6.20), (6.21), (6.24), and (6.25) that the integrals

on 0B,(ct,0) of all these terms tend to zero as p — 0 and are bounded uniformly with
respect to ¢t. By the Dominated Convergence Theorem we conclude that

ta
lim ( / Fo(tyva(t) d’Hl)dt =0, (6.57)
L OB, (ct,0)

p—0+ Jy

for every —1 <t; <to < 1. -
Finally, we consider all integrals on I'.; N (R1 \ B,(ct,0)) that appear in (6.41). By (6.42)
and (6.47) it follows that

+ S(H) T — 2 9+, +.7) +.7) +,,re
Oy u(t)iu(t)” = —ck“0y (z — ct,0)0; Y (x — ct,0) — ckdy P(z — ct,0)0; v" (x — ct,0)
—cn@ivreg(x —ct, 09 ) (x — ct,0) — c@zjrvreg(x —ct, 000 v (z — ct,0),
where 9F denote the traces of the partial derivative 0, on (part of) T'.; from above and
from below.

By (6.5) and by the trace estimate (see [13, Theorem 18.24]) the functions x — 9 v"9 (x—
ct,0) and x — 9fv"I(x — ct,0) belong to L7o/Z=m)(T,, N Ry). By (4.4) we have z
8;}'1/3(3: —ct,0)=0 on Ty NRy and 2 — 9 )(x —ct,0) € L' (Tey N Ry) for every 1 <7 < 2.
Since ro > 4/3 we have rq/(2—r¢) > 2. Therefore, taking r equal to the conjugate exponent

of r9/(2 —70), from the expression for d; u(t)u(t)" we deduce that this function belongs to
LY(Ty N Ry), hence

lim a+ (t)a(t)HdH! = / O ultya(t)dH. (6.58)
p—0+
ﬁ(Rl\B (et,0)) T'etNRy

In the same way we prove that 9, u(t)u(t)” € L' (T N R1) and hence

lim a u(t)i(t)"dH' = / Oy u(tyi(t)~dH'. (6.59)
pm0F ﬂ(Rl\B (ct 0)) Py

We now consider the 1ntegra1 of Fyu(t)fu(t)". We already observed that the function
x+— O v (x — ct,0) belongs to L7/~ ’"0)( «t N Ry) and that = — 9F¢)(x — ct,0) belongs
to L"(Te N Ry) for every 1 <1 < 2. Therefore (6.42) gives u(t)* € L"(T N Ry) for every
1 <r < 2. By (6.30) we have F,(t)* € L7/C=m)(T',; N Ry;R?). Taking r equal to the
exponent conjugate to 79/(2—79) we obtain that F,(t);u(t)" € L'(TetNRy), which implies
that

Jim / oy raytant = [ Fu)Taw)tdut . (6.60)
p—0+ L 4
TetN(R1\B,(ct,0)) N
In the same way we prove that
. — . — 1 _ — . — 1
pl_1>1(1)1+ Fy(t), a(t)"dH = /F f§<t)y w(t)"dH . (6.61)
Lo N(B1\B,(ct,0)) ctNE
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By (6.41), (6.46), and (6.51)-(6.61) for a.e. —1 < ¢; < t2 < 1 we obtain that

1 1 1 1
3 [ lite)Pdsdy 5 [ atePdsdy+ 5 [ [Vute)Pdody— 5 [ [Vu(en)Pdady
2 R 2 R 2 R 2 R

1\Let, 1\Tetq 1\t 1\Tetq

- 62I€2(t2 - tl)Cl)\ - C2I€2(t2 - tl)Cf\ - :‘iz(tg - tl)CQA

:/t2(Al\FCE )WValt )dxdy)dt /t /a:R +d7—l1)dt+/tl /8m:1 ~dH )
+W(t1,t2)+/t2( Fu ()} ()+dH1)dt / (/Cle a(t)_d’;’-t1>dt.
)y

t1 TetNRy

By (6.32) we have 0, u(t) = F,(t)} and 9, u(t) = ( H'-a.e. on Ty N Ry, while by
(5.8), (6.5), and (6.56) we have —2¢?k?C} — k2C3 = Zck? = Be. Therefore the previous
equality reduces to

1 1 1 1
f/ |i¢(t2)|2dxdy—f/ \u(t1)|2da:dy+f/ |Vu(t2)|2dxdy—f/ Vu(ty)|2dzdy
2 R 2 R 2 R 2 R

1\Let, 1\Lety 1\Tety 1\Lety
ta
- / ( / Fu(t)Vi(t)dady)dt + Belts — t1) = W(t1,12).
t1 R\l

Recalling the equality c. + ¢, = 1 and the definitions of the energy E£(t) (see (2.14)), of
the viscous dissipation D(t1,t2) (see (2.19)), and of the energy K(t;,t2) dissipated by the
crack growth (see (2.29)), the previous equality can be written in the form

E(ta) — E(t1) + D(t1,t2) + K(t1,t2) = W(t1,t2), (6.62)
for a.e. —1 < t; < t3 < 1, hence u satisfies the energy-dissipation balance according to

Definition 2.5. O
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