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Abstract. Given a unital algebra A of locally Lipschitz functions defined over a metric measure

space (X, d,m), we study two associated notions of function of bounded variation and their

relations: the space BVH(X;A ), obtained by approximating in energy with elements of A , and

the space BVW(X;A ), defined through an integration-by-parts formula that involves derivations

acting in duality with A . Our main result provides a sufficient condition on the algebra A under

which BVH(X;A ) coincides with the standard metric BV space BVH(X), which corresponds

to taking as A the collection of all locally Lipschitz functions. Our result applies to several

cases of interest, for example to Euclidean spaces and Riemannian manifolds equipped with the

algebra of smooth functions, or to Banach and Wasserstein spaces equipped with the algebra

of cylinder functions. Analogous results for metric Sobolev spaces H1,p of exponent p ∈ (1,∞)

were previously obtained by several different authors.
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1. Introduction

1.1. General overview. For more than two decades, functions of bounded variation and sets of

finite perimeter have been studied in the general setting of metric measure spaces, starting from

the paper [32]. Rather refined results are available on those metric measure spaces (often called PI
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spaces) that are doubling and support a weak Poincaré inequality (see e.g. [32, 1, 2, 25, 26, 27]),

and even deeper structural properties have been proven when also a lower synthetic Ricci curvature

bound is imposed, in the class of the so-called RCD(K,N) spaces [3, 13, 12, 11, 8]. However, a

fully consistent theory of BV functions does not require any additional assumptions on the metric

measure space under consideration, and that will be our object of study in the present paper.

The first notion of metric BV space, introduced by Miranda Jr. in [32], is formulated in terms of

an energy approximation by locally Lipschitz functions. However, the algebra of locally Lipschitz

functions depends solely on the metric structure of the ambient space, and as such it is not

capable of detecting some additional features that the underlying metric space may have. Due

to this reason, in several cases of interest – which we shall briefly mention in Section 1.3 – it

is desirable to know that a smaller, specific algebra of approximating functions can be used to

define the BV space. This is exactly the primary goal of the present paper: to give a sufficient

(and effective) condition on some algebra of functions in order that the corresponding BV space

(obtained via approximation) coincides with the original one that was defined in terms of locally

Lipschitz functions.

More than ten years after the BV space via approximation was developed, Ambrosio and Di

Marino introduced in [4] another notion of metric BV space and showed its equivalence with the

former. Their definition is expressed in terms of the behaviour of functions along suitably-selected

curves, where the exceptional curve families are detected using the so-called test plans. A third

approach was then proposed by Di Marino in [17, 16], by means of an integration-by-parts formula

involving an appropriate notion of derivation with divergence. Also the latter approach turned out

to be equivalent to the first two. Generalised versions of the BV space via derivations will have a

key role in this paper, as we shall discuss more in details later. Finally, we mention that a fourth

notion of metric ‘Newtonian-type’ BV space (that we will not employ in this paper) was introduced

more recently by Martio in [30, 31]. His notion is based upon the behaviour of functions along

AM -almost every rectifiable curve, where AM denotes the so-called approximation modulus. The

full equivalence of this latter approach with the other ones we discussed above was proved in [33].

1.2. Contents of the paper. Let (X, d,m) be a metric measure space (as in Definition 2.1 below).

For any locally Lipschitz function f : X → R, we denote by lipa(f) : X → [0,+∞) its asymptotic

slope function (see (2.1)), which assigns to each point x ∈ X the ‘infinitesimal Lipschitz constant’

of f at x. The algebra of test functions we will consider in the various definitions of BV space is

that of bounded locally Lipschitz functions whose asymptotic slope is integrable, which we denote

by LIP⋆(X); see Definition 2.2. Given any unital separating subalgebra A of LIP⋆(X), we define:

• The space BVH(X;A ) of those functions f ∈ L1(m) that can be approximated in energy

by elements of A ; see Definition 3.1. Any given f ∈ BVH(X;A ) is associated with a

quantity ∥Df∥∗,A ∈ [0,+∞), which we call its total variation (see (3.1)). In the distin-

guished case A = LIP⋆(X), where we use the shorter notations BVH(X) and ∥Df∥∗, our
definition is consistent with the one of [32, 4]. Whereas each function f ∈ BVH(X) is also

naturally associated with a total variation measure |Df |∗ satisfying |Df |∗(X) = ∥Df∥∗
(see Definition 3.2), we do not know whether it is possible to define some total variation

measure associated to an arbitrary function f ∈ BVH(X;A ) when A ̸= LIP⋆(X). Indeed,

the fact that the set-valued function |Df |∗ as in Definition 3.2 is actually a σ-additive

measure is due to the fact that LIP⋆(X) consists of a sufficiently vast class of locally

Lipschitz functions, for which the results we will present in Appendix A are satisfied.
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• The space BVW(X;A ) of those functions f ∈ L1(m) that satisfy an integration-by-parts

formula in duality with the space Der∞∞(X;A ) of Lipschitz A -derivations b : A → L1(m)

having divergence div(b) ∈ L∞(m); see Definitions 2.6, 2.7 and 3.10. Any f ∈ BVW(X;A )

comes with a corresponding total A -variation measure |Df |A , as it is shown in Proposition

3.12. In the special case A = LIP⋆(X), we just write BVW(X) and |Df | for the sake of

brevity. The original definition in [17, 16] corresponds to choosing as A the space of all

boundedly-supported Lipschitz functions.

It is worth pointing out that – differently from most of the previous literature on the topic – in

this paper we are not assuming completeness nor separability of the ambient metric space (X, d).

The possible lack of separability does not cause major issues, since we still require the reference

measure m to be Radon (recall Definition 2.1). On the other hand, allowing for non-complete

metric spaces leads to additional difficulties, as we will see in the sequel. We prefer to consider

possibly non-complete spaces in order to include e.g. open domains in a given ambient space.

Non-separable spaces are also interesting e.g. in view of the potential generalisation of the theories

we consider here to the setting of extended metric-topological measure spaces [5, 36]. Let us

also highlight that here we assume m to be a finite measure. This choice was made mostly for

convenience, as it allows us to work with unital subalgebras of LIP⋆(X); this would not be possible

for infinite reference measures, because constant functions are integrable only with respect to a

finite measure. Extending our definitions and results to metric spaces equipped with a (possibly

infinite) boundedly-finite Radon measure would be interesting, but outside the scope of this paper.

The main results of the present paper can be briefly summarised as follows:

• For any metric measure space (X, d,m) and any unital separating subalgebra A ⊆ LIP⋆(X),

we prove in Theorem 4.8 that

BVW(X;A ) ⊆ BVH(X;A ),

as well as the inequality ∥Df∥∗,A ≤ |Df |A (X) for every f ∈ BVW(X;A ). The verification

of this statement is based on a rather general duality argument in Convex Analysis, which

is inspired by the proof of [35, Theorem 5.4] (and [28, Theorem 3.3]), where metric Sobolev

spaces are involved instead.

• Assuming either that (X, d) is complete or that its associated topological space is a Radon

space, we obtain in Theorem 4.9 the identification

BVH(X) = BVW(X)

together with the identity of measures |Df | = |Df |∗ for every f ∈ BVH(X). At this level

of generality, this result seems to be new. In the case where (X, d) is complete, we can also

deduce from the results of [4] that every function f ∈ BVH(X) can be approximated in

energy by a sequence of bounded globally Lipschitz functions; see Proposition 3.5. Here,

the completeness assumption cannot be dropped, as we will showcase in Example 3.6.

• Assuming that (X, d) is complete and A is a good algebra, we prove in Theorem 4.10 that

BVH(X;A ) = BVH(X), (1.1)

with ∥Df∥∗,A = ∥Df∥∗ for every f ∈ BVH(X). In other words, being a good algebra

is a sufficient condition for A to be dense in energy in BVH(X). By a ‘good algebra’

we mean a unital separating subalgebra A of LIP⋆(X) consisting of bounded globally

Lipschitz functions with the property that truncated distance functions from a point can

be ‘approximated well in H1,1’ by elements of A , where the Sobolev space H1,1(X;A )

we consider is the one discussed in Definition 3.7; for details, we refer to Definition 4.1,
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where we will introduce the concept of good algebra. The proof of (1.1) relies on the key

approximation result Proposition 4.4, where the assumption of A being a good algebra is

used in an essential way. Along the way, we also obtain that BVH(X;A ) = BVW(X;A ).

1.3. Motivations and comparison with the previous literature. In studying functions of

bounded variation defined using different algebras of locally Lipschitz functions, we have been

strongly inspired by the works [36, 20], where unital separating subalgebras A of bounded Lipschitz

functions were used to define metric Sobolev spaces H1,p(X;A ) of exponent p ∈ (1,∞). It is shown

in [36] that – in the more general framework of extended metric-topological measure spaces – if

A is a compatible algebra (cf. with Example 4.2), then H1,p(X;A ) coincides with the ‘standard’

Sobolev space H1,p(X) defined via approximation with bounded Lipschitz functions. Later on, a

characterisation of those Lipschitz algebras A for which H1,p(X;A ) = H1,p(X) has been provided

in [20] (in the case where the ambient space is a metric measure space). Our main Theorem 4.10

can be regarded as a version of the above result for metric BV spaces, but with some differences:

• We give only a sufficient condition for the identification BVH(X;A ) = BVH(X), namely

the fact that A is a good algebra. Conversely, one can easily realise (see Proposition 4.11)

that a necessary condition for BVH(X;A ) = BVH(X) to hold is that A is a weakly good

subalgebra, which we define in a similar way as good algebras, but where the approximation

of truncated distance functions is done in BV (as opposed to H1,1). A natural guess is

that A being a weakly good subalgebra is in fact equivalent to BVH(X;A ) = BVH(X).

However, we were not able to prove it, and thus we leave it as an open problem. Another

guess would be that A being a good algebra is equivalent to H1,1(X;A ) = H1,1(X), but this

problem is – arguably – even more difficult, due to the functional-analytic complications

one encounters when studying metric Sobolev spaces of exponent p = 1 (cf. with [7]).

• Our proof strategy for Theorem 4.10 is different from the one of [36, 20]. In the latter

works, the identification results are obtained directly at the level of the spaces H1,p(X;A ),

making use of (generalised) Hopf–Lax flow techniques. In this paper, instead, we first prove

equivalence results for metric BV spaces defined using derivations, and then we show their

equivalence with the BV spaces defined via approximation. As a theory of derivations on

extended metric-topological measure spaces has been recently developed in [35], we expect

that it is possible to extend many of the notions and results of this paper to that setting.

We conclude the introduction by discussing some motivations behind our interest in good algebras.

As we will observe in Example 4.2, the family of good algebras includes all the compatible algebras

considered by Savaré in [36], thus in particular the algebra of smooth functions in the Euclidean

space (or in any Riemannian manifold), as well as the algebra of cylinder functions in a Banach

space or in Wasserstein/Hellinger/Hellinger–Kantorovich spaces. As it is evident e.g. from the

works [18, 36, 20, 37, 15], whenever the ambient space possesses ‘nice’ structural features, in

order to investigate fine analytic properties it is of fundamental importance to detect a family of

regular functions, which are associated with a ‘geometric’ notion of differential. We point out that

Theorem 4.10 was already known to be true in two cases: for X = Rn with the Euclidean norm, m

a Radon measure on Rn and A = C∞
c (Rn) the algebra of compactly-supported smooth functions,

see [21, Theorem 5.7]; for X = B a separable Banach space, m a finite Borel measure on B and

A = Cyl(B) the algebra of smooth cylindrical functions, see [34, Theorem 4.1].

Acknowledgements. The first named author was supported by the Research Council of Finland

grant 362898.
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2. Preliminaries

Let us begin by fixing some terminology and conventions. Throughout this paper, by an algebra

we mean a commutative, associative algebra over the field R of real numbers. We say that an

algebra A is unital if it has a multiplicative unit. Whenever we say that A ′ is a unital subalgebra

of A , we implicitly make the assumption that A and A ′ share the same multiplicative unit.

Given any real number a ∈ R, we denote by a+ := a∨ 0 and a− := a∧ 0 its positive part and

its negative part, respectively. Given a set X, we indicate by 1S the characteristic function

of a subset S of X, i.e. we define 1S(x) := 1 for every x ∈ S and 1S(x) := 0 for every x ∈ X \ S.

For any two Banach spaces B1 and B2, we denote by L(B1;B2) the vector space of all bounded

linear operators between B1 and B2. Recall that L(B1;B2) is a Banach space with respect to the

operator norm, given by ∥T∥L(B1;B2) := sup{∥T (v)∥B2 : v ∈ B1, ∥v∥B1 ≤ 1} for all T ∈ L(B1;B2).

We denote by B′ := L(B;R) the topological dual of a Banach space B.

2.1. Metric/measure spaces. In this section, we discuss several concepts and results concerning

spaces that are equipped with a distance and/or a measure. Given a measure space (X,Σ, µ) and

an exponent p ∈ [1,∞], we denote by (Lp(µ), ∥ · ∥Lp(µ)) the Lebesgue space of exponent p over

(X,Σ, µ). We write Lp(µ)+ to indicate the set of all f ∈ Lp(µ) satisfying f ≥ 0 µ-a.e. on X. We

also recall that Lp(µ) is a Riesz space if endowed with the usual pointwise µ-a.e. order. Under

suitable assumptions (for example, if µ is σ-finite), it holds that Lp(µ) is a Dedekind complete

lattice, which means that every order-bounded subset of Lp(µ) has a supremum and an infimum.

For any set M of non-negative measures on (X,Σ), we denote its supremum measure by
∨

M:∨
M(E) := sup

{∑
n∈N

µn(En)

∣∣∣∣ (µn)n∈N ⊆ M, (En)n∈N ⊆ Σ partition of E

}
for every E ∈ Σ.

We recall that
∨
M is the least measure on (X,Σ) satisfying

∨
M ≥ µ for every µ ∈ M, where the

partial order ≤ on the set of all non-negative measures on (X,Σ) is defined in the following way:

we declare that µ ≤ ν if and only if µ(E) ≤ ν(E) for every E ∈ Σ.

Let (X, d) be a given metric space. We denote by C(X) the unital algebra (with unit 1X) of all

real-valued continuous functions on X. We also consider its unital subalgebra Cb(X) consisting of

all bounded continuous functions. If (µn)n∈N and µ are finite non-negative Borel measures on X,

then we say that µn weakly converges to µ if∫
f dµ = lim

n→∞

∫
f dµn for every f ∈ Cb(X).

We denote by M(X) the vector space of all finite, signed Radon measures on X. Then M(X)

is a Banach space if endowed with the total variation norm. We denote by M+(X) the set of all

those measures µ ∈ M(X) that are non-negative. To any measure µ ∈ M(X), we associate its

total variation measure |µ| ∈ M+(X). The support of a measure µ ∈ M(X) is the closed

subset spt(µ) of X given by

spt(µ) :=
{
x ∈ X

∣∣ |µ|(Br(x)) > 0 for every r > 0
}
,

where Br(x) := {y ∈ X : d(x, y) < r} denotes the open ball in X of center x and radius r. Since the

inner regularity of µ ensures that µ is concentrated on a σ-compact set, it can be readily checked

that spt(µ) is separable and µ is concentrated on spt(µ). With a slight abuse of terminology, we

say that a metric space (X, d) is Radon if its induced topological space is a Radon space, i.e.

every finite Borel measure defined on it is a Radon measure. Since all Souslin spaces are Radon

spaces, we have that every (Borel subset of a) complete and separable metric space is Radon. See
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e.g. [9, Theorem 7.4.3, Section 7.14(vii)] and the references therein for a more detailed discussion.

A distinguished subalgebra of C(X) is the space of all real-valued locally Lipschitz functions

on X, which is given by

LIPloc(X) :=

{
f ∈ C(X)

∣∣∣∣ inf
r>0

Lip(f ;Br(x)) < +∞ for every x ∈ X

}
,

where the Lipschitz constant Lip(f ;E) of the function f on a set E ⊆ X is defined as

Lip(f ;E) := sup

{
|f(x)− f(y)|

d(x, y)

∣∣∣∣ x, y ∈ E, x ̸= y

}
∈ [0,+∞],

where we adopt the convention that sup(∅) := 0. The asymptotic slope lipa(f) : X → [0,+∞)

of a function f ∈ LIPloc(X) is given by

lipa(f)(x) := inf
r>0

Lip(f ;Br(x)) for every x ∈ X. (2.1)

It is easy to check that lipa(f) is upper semicontinuous (thus, Borel measurable). The space of

all (globally) Lipschitz functions, i.e. of those f ∈ LIPloc(X) with Lip(f) := Lip(f ; X) < +∞, is

denoted by LIP(X). Note that LIPb(X) := Cb(X) ∩ LIP(X) is a unital subalgebra of Cb(X).

In this paper, we focus on the following class of metric measure spaces:

Definition 2.1 (Metric measure space). We say that a triple (X, d,m) is a metric measure

space if (X, d) is a metric space and m ∈ M+(X) (i.e. m ≥ 0 is a finite Radon measure on X).

We point out that this notion of metric measure space is different from other approaches con-

sidered in the literature. In this paper, the following subalgebra of Cb(X) will have a key role.

Definition 2.2 (The algebra LIP⋆(X)). Let (X, d,m) be a metric measure space. Then we define

LIP⋆(X) :=
{
f ∈ Cb(X) ∩ LIPloc(X)

∣∣ lipa(f) ∈ L1(m)
}
.

Note that LIP⋆(X) depends both on the distance d and the measure m, even though we do not

indicate it for brevity. Since LIP⋆(X) is a vector subspace of Cb(X) and fg ∈ LIP⋆(X) for every

f, g ∈ LIP⋆(X) (as lipa(fg) ≤ |f |lipa(g) + |g|lipa(f) ∈ L1(m)), we have that LIP⋆(X) is a unital

subalgebra of Cb(X). We will work also with unital separating subalgebras A of LIP⋆(X), i.e.

sup
f∈A

|f(x)− f(y)| > 0 for every x, y ∈ X with x ̸= y.

By the Stone–Weierstrass theorem, if A is a unital separating subalgebra of LIP⋆(X), then

A is dense in Lp(m) for every p ∈ [1,∞), (2.2)

see e.g. [36, Lemma 2.1.27] (notice that, even if there the algebra A is assumed to be compatible,

one can easily check that the simple proof of the mentioned Lemma does not require additional

assumptions on A ). It can be readily checked that LIP⋆(X) itself is a separating algebra.

In the sequel, we will need a partition-of-unity-type result involving functions of a given unital

separating subalgebra of LIP⋆(X), see Lemma 2.4 below. To prove it, we will use the following

simple consequence of Weierstrass’ approximation theorem:

Lemma 2.3. Let a, b ∈ R with a < b and let f ∈ C([a, b]) be such that f(t) > 0 for every t ∈ [a, b].

Then there exists a sequence (pn)n of polynomials such that 0 ≤ pn(t) ≤ f(t) for every t ∈ [a, b]

and every n ∈ N, and pn converges uniformly on [a, b] to f as n→ ∞.
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Proof. Let α := min[a,b] f > 0. For every n ∈ N with n > n0 := ⌈2/α⌉, by the Weierstrass

approximation theorem, there is a polynomial p̃n such that ∥f − p̃n∥Cb([a,b]) < 1/n. It is then

enough to set pn := p̃n0+n − 1
n+n0

for every n ∈ N. □

Lemma 2.4. Let (X, d,m) be a metric measure space, A a unital separating subalgebra of LIP⋆(X)

and E1, . . . , En a Borel partition of X. Fix any ε > 0. Then there exist η1, . . . , ηn ∈ A such that

the following properties hold:

i) 0 ≤ ηi ≤ 1 for every i = 1, . . . , n.

ii)
∑n

i=1 ηi(x) ≤ 1 for every x ∈ X.

iii) ∥ηi − 1Ei∥L1(m) ≤ ε for every i = 1, . . . , n.

Proof. Fix δ > 0. Since A is dense in L1(m), for any i = 1, . . . , k we can find (ψk
i )k ⊆ A such

that 1Ei(x) = limk ψ
k
i (x) for m-a.e. x ∈ X. Thanks to [36, Corollary 2.1.24], we can also assume

that 0 ≤ ψk
i ≤ 1. By Lemma 2.3, there is a polynomial p such that

0 ≤ p(t) ≤ 1

t
,

∣∣∣∣p(t)− 1

t

∣∣∣∣ ≤ δ for every t ∈ [δ, n+ δ].

Since p
(∑n

j=1 ψ
k
j (x)+ δ

)
→ p(1+ δ) as k → ∞ for m-a.e. x ∈ X and p ◦

(∑n
j=1 ψ

k
j + δ

)
≤ 1

δ holds

m-a.e. on X for every k ∈ N, by the dominated convergence theorem we can find k0 ∈ N such that,

letting ψi := ψk0
i , it holds that

∥∥p(∑n
j=1 ψj + δ

)
− p(1 + δ)

∥∥
L1(m)

≤ δ and ∥ψi − 1Ei
∥L1(m) ≤ δ

for every i = 1, . . . , n. Now, let us define

ηi := p

( n∑
j=1

ψj + δ

)
ψi ∈ A for every i = 1, . . . , n.

Notice that ηi ≥ 0 for every i = 1, . . . , n and
∑n

i=1 ηi ≤
(∑n

j=1 ψj + δ
)−1(∑n

i=1 ψi

)
≤ 1, which

proves i) and ii). Finally, for any given i = 1, . . . , n we can estimate

∥ηi − 1Ei
∥L1(m) ≤

∥∥∥∥p( n∑
j=1

ψj + δ

)
ψi − ψi

∥∥∥∥
L1(m)

+ ∥ψi − 1Ei
∥L1(m)

≤
∥∥∥∥p( n∑

j=1

ψj + δ

)
− 1

1 + δ

∥∥∥∥
L1(m)

+

(
1− 1

1 + δ

)
m(X) + δ

≤
∥∥∥∥p( n∑

j=1

ψj + δ

)
− p(1 + δ)

∥∥∥∥
L1(m)

+

∣∣∣∣p(1 + δ)− 1

1 + δ

∣∣∣∣m(X) + (m(X) + 1)δ

≤ 2(m(X) + 1)δ,

which proves the validity of iii) if we choose δ > 0 so that 2(m(X) + 1)δ ≤ ε. □

2.2. Lp-Banach L∞-modules. Let us recall the language of Lp-Banach L∞-modules that was

introduced in [23] (see also [22]). Following [23, Definition 1.2.10] (and with a slight change of

terminology), we give the following definition:

Definition 2.5 (Lp-Banach L∞-module). Let (X,Σ, µ) be a σ-finite measure space and p ∈ [1,∞].

Let M be a module over the commutative ring L∞(µ). Then we say that M is an Lp(µ)-Banach

L∞(µ)-module if it is endowed with a map | · | : M → Lp(µ)+, called pointwise norm, such that

the following conditions are satisfied:

i) Given any v, w ∈ M and f ∈ L∞(µ), it holds that

|v| = 0 =⇒ v = 0,

|v + w| ≤ |v|+ |w|,

|fv| = |f ||v|,
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where all equalities and inequalities involving the pointwise norm are in the µ-a.e. sense.

ii) The glueing property holds, i.e. if (En)n∈N ⊆ Σ is a partition of the set X and a se-

quence (vn)n∈N ⊆ M satisfies
∑

n∈N ∥1En
|vn|∥pLp(µ) < +∞, then there exists a (necessarily

unique) element v =
∑

n∈N 1Envn ∈ M such that 1Env = 1Envn for every n ∈ N.
iii) The norm ∥v∥M := ∥|v|∥Lp(µ) on M is complete.

Observe that each Lp(µ)-Banach L∞(µ)-module is in particular a Banach space. We say that

a subset S of M generates M provided the L∞(µ)-linear span of S is dense in M . An isomor-

phism Φ: M → N between two Lp(µ)-Banach L∞(µ)-modules M and N is an L∞(µ)-linear

bijection satisfying |Φ(v)| = |v| for every v ∈ M .

Since any given L1(µ)-Banach L∞(µ)-module M is a Banach space, we can consider its dual

Banach space M ′. Alternatively, we can consider its dual in the sense of Banach modules: following

[23, Definition 1.2.6], we define M ∗ as the set of all L∞(µ)-linear maps ω : M → L1(µ) for which

there exists a function g ∈ L∞(µ)+ such that

|ω(v)| ≤ g|v| holds µ-a.e. on X for every v ∈ M . (2.3)

Then M ∗ is an L∞(µ)-Banach L∞(µ)-module if endowed with the pointwise operations and with

|ω| :=
∧{

g ∈ L∞(µ)+
∣∣ g satisfies (2.3)

}
∈ L∞(µ)+ for every ω ∈ M ∗.

We say that M ∗ is the module dual of M . The relation between M ′ and M ∗ is clarified by the

following result: letting IntM : M ∗ → M ′ be the operator given by

IntM (ω)(v) :=

∫
ω(v) dm for every ω ∈ M ∗ and v ∈ M ,

we know from [23, Proposition 1.2.13] that

IntM is an isometric isomorphism of Banach spaces. (2.4)

2.3. Lipschitz derivations. In this paper, we consider Lipschitz derivations in the sense of

[17, 16]. Borrowing from [17, Section 1.1] and [7, Section 4.1], we give the ensuing definitions:

Definition 2.6 (Derivation). Let (X, d,m) be a metric measure space. Let A be a unital separating

subalgebra of LIP⋆(X). Then a map b : A → L1(m) is called a Lipschitz A -derivation if:

i) There exists G ∈ L∞(m)+ such that |b(f)| ≤ G lipa(f) holds m-a.e. for every f ∈ A .

ii) The map b is a linear operator that satisfies the Leibniz rule, i.e.

b(fg) = f b(g) + g b(f) for every f, g ∈ A .

We denote by Der∞(X;A ) the space of all Lipschitz A -derivations on (X, d,m).

The space Der∞(X;A ) is a module over the ring L∞(m), thus in particular it is a vector space.

Given any b ∈ Der∞(X;A ), we denote by |b|A ∈ L∞(m)+ the m-a.e. minimal function G as in

Definition 2.6 i), whose existence is guaranteed by the Dedekind completeness of L∞(m). The

space (Der∞(X;A ), | · |A ) is an L∞(m)-Banach L∞(m)-module. When A = LIP⋆(X), we just

write Der∞(X) and |b| for brevity.

Definition 2.7 (Divergence). Let (X, d,m) be a metric measure space. Let A be a unital separating

subalgebra of LIP⋆(X). Then we say that b ∈ Der∞(X;A ) has divergence div(b) ∈ L∞(m) if∫
b(f) dm = −

∫
f div(b) dm for every f ∈ A .

We denote by Der∞∞(X;A ) the space of all derivations b ∈ Der∞(X;A ) having divergence.
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Remark 2.8 (Independence of div(b) from A ). As A is dense in L1(m) by (2.2), we have that

div(b) is uniquely determined. In principle, div(b) may depend on the choice of the algebra A .

However, it is easy to check that if A ⊆ Ã are unital separating subalgebras of LIP⋆(X) and

b ∈ Der∞∞(X; Ã ), then b ∈ Der∞∞(X;A ) and the two notions of divergence (in duality with A and

Ã , respectively) coincide. Thus, with a slight abuse of notation, we will write only div(b) without

stressing the dependence on the chosen algebra, since it will be clear from the context. ■

Note also that the space Der∞∞(X;A ) is a module over the ring A , thus in particular it is a

vector subspace of Der∞(X;A ). We denote by

Der
∞
∞(X;A )

the closure of Der∞∞(X;A ) in Der∞(X;A ). Note that Der
∞
∞(X;A ) is a Banach space with respect

to the norm induced by Der∞(X;A ).

3. Metric BV and H1,1 spaces

3.1. The space BVH. A metric BV space defined in terms of approximating (locally) Lipschitz

functions was introduced in [32] and revisited in [4]. Here, we consider its following variant:

Definition 3.1 (BV space via relaxation). Let (X, d,m) be a metric measure space. Let A be a

unital separating subalgebra of LIP⋆(X). Then we define BVH(X;A ) as the space of all f ∈ L1(m)

for which there exists (fn)n ⊆ A such that fn → f in L1(m) and supn∈N
∫
lipa(fn) dm < +∞.

The total variation of a function f ∈ BVH(X;A ) is given by the quantity

∥Df∥∗,A := inf

{
lim inf
n→∞

∫
lipa(fn) dm

∣∣∣∣ (fn)n ⊆ A , fn → f in L1(m)

}
< +∞. (3.1)

Clearly, there is a sequence (fn)n ⊆ A such that fn → f in L1(m) and
∫
lipa(fn) dm → ∥Df∥∗,A .

The Cheeger A -energy functional EA : L1(m) → [0,+∞] is then defined as

EA (f) :=

{
∥Df∥∗,A
+∞

if f ∈ BVH(X;A ),

otherwise.

It is a direct consequence of the definition that

BVH(X;A ) ⊆ BVH(X; Ã ), EÃ ≤ EA whenever A ⊆ Ã . (3.2)

In the case A = LIP⋆(X), we use the shorthand notations BVH(X) and ∥Df∥∗. To any given

function in BVH(X), one can associate also a total variation measure, as follows:

Definition 3.2 (Total variation measure |Df |∗). Let (X, d,m) be a metric measure space. Let

f ∈ BVH(X) be given. Then for any open set U ⊆ X we define

|Df |∗(U) := inf

{
lim inf
n→∞

∫
U

lipa(fn) dm

∣∣∣∣ LIP⋆(U) ∋ fn → f |U in L1(m|U )
}

∈ [0, ∥Df∥∗].

Observe that |Df |∗(X) = ∥Df∥∗. Furthermore, by arguing as in [4, Lemma 5.2] one can show

that the set-function introduced in Definition 3.2 induces via Carathéodory’s construction a finite

Borel measure, still denoted by |Df |∗. Videlicet, the Borel measure |Df |∗ is characterised by

|Df |∗(E) := inf
{
|Df |∗(U)

∣∣ U ⊆ X open, E ⊆ U
}

for every Borel set E ⊆ X.

This is shown in Appendix A, reporting a detailed version of the arguments in the proofs of [4,

Lemmata 5.2 and 5.4] showing that they do not make use of the completeness nor separability of

the ambient metric space. Moreover, even though in [4, Eq. (5.1)] the approximating sequence in

the definition of |Df |∗(U) is not required to consist of bounded functions, it still coincides with

our definition thanks to a standard truncation argument.



10 ENRICO PASQUALETTO AND GIACOMO ENRICO SODINI

Remark 3.3. Assume f ∈ BVH(X) and (fn)n ⊆ LIP⋆(X) are chosen so that fn → f in L1(m)

and
∫
lipa(fn) dm → ∥Df∥∗. Then it holds that

lipa(fn)m⇀ |Df |∗ weakly.

Indeed, for any U ⊆ X open we have |Df |∗(U) ≤ lim infn
∫
U
lipa(fn) dm = lim infn(lipa(fn)m)(U).

Taking into account also that (lipa(fn)m)(X) → |Df |∗(X), we conclude that lipa(fn)m ⇀ |Df |∗
weakly, thanks to the Portmanteau theorem. ■

Remark 3.4. It follows from Remark 3.3 that

|Df |∗ is concentrated on spt(m) for every f ∈ BVH(X).

Indeed, as X \ spt(m) is open, we have that |Df |∗(X \ spt(m)) ≤ lim infn
∫
X\spt(m)

lipa(fn) dm = 0.

However, even though spt(m) is separable, it could happen that |Df |∗ is not a Radon measure,

but under the additional assumption that (X, d) is complete it holds that |Df |∗ is Radon (since

in this case spt(m) is complete and separable, thus it is a Radon space). ■

It is highly non-trivial to prove that, assuming the ambient metric space is complete, every

function in BVH(X) can be approximated (on the whole X) by a sequence of bounded Lipschitz

functions. The validity of this claim follows from the results of [16], as we are going to see:

Proposition 3.5. Let (X, d,m) be a metric measure space such that (X, d) is complete. Then

BVH(X) = BVH(X; LIPb(X))

and it holds that ∥Df∥∗,LIPb(X) = ∥Df∥∗ for every f ∈ BVH(X).

Proof. Under the additional assumption that (X, d) is separable, the statement is a direct conse-

quence of [16, Theorem 4.5.3]. Let us now show how to drop the separability assumption. For

brevity, let us denote by S the support of m. Defining the so-called weak-BV spaces BVw as it

is done in [16, Section 4.4.3] (or [4, Section 5.3]), by arguing as in [16, Section 4.4] one can check

that

BVH(X; LIPb(X)) ⊆ BVH(X) ⊆ BVw(X),

as well as |Df |w(X) ≤ ∥Df∥∗ ≤ ∥Df∥∗,LIPb(X) for every f ∈ BVH(X; LIPb(X)), where |Df |w
denotes the total variation measure corresponding to the weak-BV space BVw(X). Observe that

BVH(X; LIPb(X)) can be identified with BVH(S; LIPb(S)) (thanks to [19]), and that BVw(X) can

be identified with BVw(S) (since ∞-test plans are concentrated on curves that lie in the support

of m); in both cases, also the total variations coincide. Since BVH(S; LIPb(S)) = BVw(S) and

|Df |w(S) = ∥Df∥∗,LIPb(S) for every f ∈ BVw(S) by [16, Theorem 4.5.3] (together with the fact

that S is complete and separable), we can finally conclude that the statement holds. □

We point out that the completeness assumption in Proposition 3.5 cannot be dropped, as it is

shown by the following example:

Example 3.6. Let us consider the space X ⊆ R, which we define as

X :=

∞⋃
n=1

(n− 2−n, n+ 2−n) \ {n}.

We equip X with the restriction d of the Euclidean distance and the restriction m of the one-

dimensional Lebesgue measure. Note that (X, d,m) is a metric measure space with (X, d) separable

but non-complete. Let us now consider the function

f := 1⋃∞
n=1(n,n+2−n) ∈ LIP⋆(X).
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Since lipa(f) ≡ 0 we see that f ∈ BVH(X) with ∥Df∥∗ = 0. However, we claim that f /∈
BVH(X; LIPb(X)). To prove it, fix an arbitrary sequence (fj)j ⊆ LIPb(X) such that fj → f in

L1(m). Note that each fj can be uniquely extended to a bounded Lipschitz function on
⋃∞

n=1[n−
2−n, n + 2−n], which we still denote by fj . Up to a passing to a non-relabelled subsequence, we

can assume that lim infj
∫
lipa(fj) dm is in fact a limit. Up to a further subsequence, we also have

that fj → f in the pointwise m-a.e. sense. In particular, for any given k ∈ N we can find jk ∈ N
and (tkℓ )

k
ℓ=1, (s

k
ℓ )

k
ℓ=1 ⊆ X, with ℓ − 2−ℓ < tkℓ < ℓ < skℓ < ℓ + 2−ℓ for all ℓ = 1, . . . , k, such that

fj(t
k
ℓ ) ≤ 1

3 and fj(s
k
ℓ ) ≥ 2

3 for every ℓ = 1, . . . , k and j ≥ jk. Then

1

3
≤ fj(s

k
ℓ )− fj(t

k
ℓ ) =

∫ skℓ

tkℓ

f ′j(r) dr ≤
∫ ℓ+2−ℓ

ℓ−2−ℓ

lipa(fj)(r) dr for all ℓ = 1, . . . , k and j ≥ jk.

Summing over ℓ = 1, . . . , k and letting j → ∞, we deduce that

lim
j→∞

∫
lipa(fj) dm ≥ lim sup

j→∞

k∑
ℓ=1

∫ ℓ+2−ℓ

ℓ−2−ℓ

lipa(fj)(r) dr ≥
k

3
.

Due to the arbitrariness of k ∈ N, we conclude that limj

∫
lipa(fj) dm = +∞ and thus accordingly

f /∈ BVH(X; LIPb(X)). ■

3.2. The space H1,1. A metric Sobolev space defined in terms of approximating Lipschitz func-

tions was introduced in [14] and revisited in [6]. Here, we consider its following variant:

Definition 3.7 (The space H1,1). Let (X, d,m) be a metric measure space. Let A be a unital

separating subalgebra of LIP⋆(X). Then we define H1,1(X;A ) as the space of all f ∈ L1(m) for

which there exist a sequence (fn)n ⊆ A and a function G ∈ L1(m)+ such that fn → f strongly in

L1(m) and lipa(fn)⇀ G weakly in L1(m).

Given any f ∈ H1,1(X;A ), we say that G̃ ∈ L1(m)+ is a relaxed A -slope of f if G̃ ≥ G for

some G ∈ L1(m)+ as in Definition 3.7. The set of all relaxed A -slopes of f is a closed convex

sublattice of L1(m), thus it admits a unique minimal element |Df |∗,A , which we call the minimal

relaxed A -slope of f . The space H1,1(X;A ) is a Banach space if endowed with the norm

∥f∥H1,1(X;A ) := ∥f∥L1(m) + ∥|Df |∗,A ∥L1(m) for every f ∈ H1,1(X;A ).

Observe that A ⊆ H1,1(X;A ) and

|Df |∗,A ≤ lipa(f) for every f ∈ A . (3.3)

Minimal relaxed A -slopes satisfy also the following locality property: for any f, g ∈ H1,1(X;A ),

|Df |∗,A = |Dg|∗,A holds m-a.e. on {f = g}. (3.4)

The interested reader can find a proof of the existence of the minimal relaxed A -slope and of

the completeness of H1,p(X;A ) in [7, Section 5.2] for A being the algebra of Lipschitz functions

with bounded support, or in [36, Section 3.1] in case p > 1. The locality property of the relaxed

A -slope can be proven exactly as in [36, Theorem 3.1.12(b)], where it is proven for p > 1.

In the case where A = LIP⋆(X), we use the shorthand notations H1,1(X) and |Df |∗.

Remark 3.8. It holds that H1,1(X;A ) ⊆ BVH(X;A ) and

∥Df∥∗,A ≤
∫

|Df |∗,A dm for every f ∈ H1,1(X;A ).

The proof follows immediately from the definitions of the spaces and the weak lower semicontinuity

of the L1(m)-norm. ■
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In accordance with [23, Definition 2.2.1], the metric Sobolev space H1,1(X;A ) induces a space

of ‘integrable 1-forms’, which is an L1(m)-Banach L∞(m)-module called the cotangent module,

and a differential map that underlies the minimal relaxed slopes. Videlicet:

Theorem 3.9 (Cotangent module). Let (X, d,m) be a metric measure space. Let A be a unital

separating subalgebra of LIP⋆(X). Then there exist an L1(m)-Banach L∞(m)-module L1(T ∗X;A ),

which we call the A -cotangent module, and a linear operator dA : A → L1(T ∗X;A ) such that:

i) |dA f | = |Df |∗,A for every f ∈ A .

ii) {dA f : f ∈ A } generates L1(T ∗X;A ).

The pair (L1(T ∗X;A ),dA ) is unique up to a unique isomorphism: given any pair (M ,d) with the

same properties, there exists a unique isomorphism of L1(m)-Banach L∞(m)-modules Φ: L1(T ∗X;A ) →
M such that d = Φ ◦ dA . Moreover, dA satisfies the Leibniz rule, i.e.

dA (fg) = f dA g + g dA f for every f, g ∈ A . (3.5)

Proof. This kind of construction is due to Gigli [23]; see also [22] or [24]. Technically speaking,

the stated existence and uniqueness are direct consequences of [29, Theorem 3.19]. The Leibniz

rule (3.5) follows from the locality (3.4) of |Df |∗,A , arguing as in [23, Theorem 2.2.6]. □

In analogy with [23, Definition 2.3.1], we then define the Sobolev A -tangent module as

L∞(TX;A ) := L1(T ∗X;A )∗.

Recall that L∞(TX;A ) is an L∞(m)-Banach L∞(m)-module. Recall also that the operator

IntA := IntL1(T∗X;A ) : L
∞(TX;A ) → L1(T ∗X;A )′

is an isometric isomorphism of Banach spaces, see (2.4). To be consistent with [23], we will denote

by ω(v) ∈ L1(m) (instead of v(ω) ∈ L1(m)) the ‘pointwise duality pairing’ between two elements

ω ∈ L1(T ∗X;A ) and v ∈ L∞(TX;A ), even though L∞(TX;A ) is the module dual of L1(T ∗X;A )

(and, in general, not the other way round).

3.3. The space BVW. A notion of metric BV space in terms of an integration-by-parts formula

involving derivations was introduced in [17, Definition 3.1]; see also [16]. We generalise it as

follows:

Definition 3.10 (BV space via derivations). Let (X, d,m) be a metric measure space. Let A be a

unital separating subalgebra of LIP⋆(X). Then we define BVW(X;A ) as the space of all functions

f ∈ L1(m) for which there exists a bounded linear operator Lf : Der∞∞(X;A ) → M(X) such that

Lf (b)(X) = −
∫
f div(b) dm for every b ∈ Der∞∞(X;A ), (3.6a)

Lf (hb) = hLf (b) for every h ∈ A and b ∈ Der∞∞(X;A ), (3.6b)

|Lf (b)|(X \ spt(m)) = 0 for every b ∈ Der∞∞(X;A ). (3.6c)

Remark 3.11. Given any function f ∈ BVW(X;A ), the operator Lf is uniquely determined.

Indeed, if another operator L̃f satisfies the same properties, then (3.6b) and (3.6a) imply that∫
hd(Lf (b)− L̃f (b)) = Lf (hb)(X)− L̃f (hb)(X) = −

∫
f div(hb) dm+

∫
f div(hb) dm = 0

for every h ∈ A and b ∈ Der∞∞(X;A ), whence it follows that Lf = L̃f thanks to (2.2). ■
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By Remark 3.11, it makes sense to define the total A -variation of any f ∈ BVW(X;A ) as

VA (f) := ∥Lf∥L(Der
∞
∞(X;A );M(X)),

where we keep the notation Lf to indicate the unique bounded linear operator from Der
∞
∞(X;A )

to M(X) that extends Lf . One can readily check that BVW(X;A ) is a Banach space if endowed

with the norm

∥f∥BVW(X;A ) := ∥f∥L1(m) +VA (f) for every f ∈ BVW(X;A ).

Proposition 3.12. Let (X, d,m) be a metric measure space. Let A be a unital separating subal-

gebra of LIP⋆(X). For any f ∈ BVW(X;A ), we define its total A -variation measure as

|Df |A :=
∨{

|Lf (b)|
∣∣ b ∈ Der∞∞(X;A ), |b|A ≤ 1

}
.

Then |Df |A is a finite non-negative Borel measure on X such that |Df |A (X) = VA (f).

Remark 3.13. Since Lf (0) is the null measure and Lf (−b) = −Lf (b) for every b ∈ Der∞∞(X;A ),

the definition of |Df |A can be equivalently rewritten as

|Df |A (E) = sup

n∑
i=1

Lf (bi)(Ei) for every Borel set E ⊆ X,

where the supremum is taken among all finite Borel partitions (Ei)
n
i=1 of E and all collections

(bi)
n
i=1 ⊆ Der∞∞(X;A ) such that |bi|A ≤ 1 and Ei is contained in the support of the positive part

of Lf (bi). This is because, given b ∈ Der∞∞(X;A ) and a Borel subset F ⊆ X, we have that

|Lf (b)|(F ) = Lf (b)(F ∩ Pb) + Lf (−b)(F \ Pb),

where Pb is the support of the positive part of Lf (b). Thus one can always replace the partition

(Ei)
n
i=1 with (Ei ∩ Pbi)

n
i=1 ∪ (Ei \ Pbi)

n
i=1, and the collection (bi)

n
i=1 with (bi)

n
i=1 ∪ (−bi)ni=1. ■

Proof of Proposition 3.12. Let λ < |Df |A (X) be fixed. Taking into account Remark 3.13, we can

find a Borel partition E1, . . . , En of X and b1, . . . , bn ∈ Der∞∞(X;A ) such that |bi|A ≤ 1 for all

i = 1, . . . , n and
∑n

i=1 Lf (bi)(Ei) > λ. Letting µ :=
∑n

i=1 |Lf (bi)| and δ :=
∑n

i=1 Lf (bi)(Ei)− λ,

we know from Lemma 2.4 that there exist non-negative functions η1, . . . , ηn ∈ A with
∑n

i=1 ηi ≤ 1

such that ∥ηi − 1Ei∥L1(µ) ≤ δ/n for every i = 1, . . . , n. Letting b :=
∑n

i=1 ηibi ∈ Der∞∞(X;A ), we

have that |b|A ≤
∑n

i=1 ηi|bi|A ≤ 1 and∣∣∣∣ n∑
i=1

Lf (bi)(Ei)− Lf (b)(X)

∣∣∣∣ ≤ n∑
i=1

∫
|1Ei − ηi|d|Lf (bi)| ≤ δ,

whence it follows that

λ =

n∑
i=1

Lf (bi)(Ei)− δ ≤ Lf (b)(X) ≤ |Lf (b)|(X) ≤ VA (f).

Letting λ ↗ |Df |A (X), we deduce that |Df |A (X) ≤ VA (f), thus |Df |A is finite. Finally, we

have |Lf (b)|(X) ≤ |Df |A (X) for all b ∈ Der∞∞(X;A ) with |b|A ≤ 1, thus VA (f) ≤ |Df |A (X). □

Remark 3.14. Assuming in addition that (X, d) is complete, it holds that

|Df |A is a Radon measure for every f ∈ BVW(X;A ).

Indeed, |Df |A is concentrated on spt(m) as a consequence of (3.6c), thus it is a Radon measure

because spt(m) is complete and separable. ■

When A = LIP⋆(X), we just write BVW(X) and |Df | for brevity.
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Lemma 3.15. Let (X, d,m) be a metric measure space. Assume that (X, d) is either complete or

a Radon space. Then it holds that BVH(X) ⊆ BVW(X) and

|Df | ≤ |Df |∗ for every f ∈ BVH(X).

Proof. Let f ∈ BVH(X) be given. Fix any b ∈ Der∞∞(X). Take a sequence (fn)n ⊆ LIP⋆(X) such

that fn → f in L1(m) and
∫
lipa(fn) dm → ∥Df∥∗. Accounting for Remark 3.3, we have that

lipa(fn)m ⇀ |Df |∗ weakly. Since |Df |∗ is a Radon measure by Remark 3.4, we deduce from [9,

Theorem 8.6.4] that (lipa(fn)m)n is a tight sequence. As |b(fn)m| = |b(fn)|m ≤ |b|lipa(fn)m for

every n ∈ N, we deduce that (b(fn)m)n is a tight sequence as well. Since (b(fn)m)n is also bounded

in total variation norm, by [9, Theorem 8.6.7] we deduce that, up to a non-relabelled subsequence,

b(fn)m⇀ Lf (b) weakly for some Lf (b) ∈ M(X). For any h ∈ LIP⋆(X), we can compute∫
hdLf (b) = lim

n→∞

∫
h b(fn) dm = − lim

n→∞

∫
fn(hdiv(b) + b(h)) dm = −

∫
f(hdiv(b) + b(h)) dm.

Therefore, the measure Lf (b) is independent of the approximating sequence and b(fn)m⇀ Lf (b)

holds for the original sequence (fn)n. In particular, we have that Lf (b) is concentrated on spt(m),

proving (3.6c). If b, b̃ ∈ Der∞∞(X) and λ ∈ R, then (λb+ b̃)(fn)m = λ b(fn)m+ b̃(fn)m weakly con-

verges both to Lf (λb+ b̃) and λLf (b)+Lf (b̃), so that Lf is linear. Given h, h̃ ∈ LIP⋆(X), we have

that
∫
h̃dLf (hb) = limn

∫
h̃(hb)(fn) dm = limn

∫
(h̃h)b(fn) dm =

∫
h̃hdLf (b) =

∫
h̃d(hLf (b)),

which yields (3.6b) thanks to (2.2). Moreover, for every b ∈ Der∞∞(X) we can compute

Lf (b)(X) = lim
n→∞

∫
b(fn) dm = − lim

n→∞

∫
fn div(b) dm = −

∫
f div(b) dm,

which gives (3.6a). Next, fix a derivation b ∈ Der∞∞(X) with |b| ≤ 1 and a compact set K ⊆ X.

We claim that

Lf (b)(K) ≤ |Df |∗(K), (3.7)

whence (since |Lf (b)| is a Radon measure) it follows that f ∈ BVW(X) and |Df | ≤ |Df |∗. To

prove the claim, pick a sequence of open sets (Ui)i such that K ⊂ Ui for every i ∈ N and satisfying

Lf (b)(Ui) → Lf (b)(K), |Df |∗(Ui) → |Df |∗(K). Now fix i ∈ N and take a non-decreasing sequence

(ηi,j)j of Lipschitz cut-off functions ηi,j : X → [0, 1] such that ηi,j(x) ↗ 1Ui(x) as j → ∞ for every

x ∈ X. Note that∫
ηi,j dLf (b) = lim

n→∞

∫
ηi,j b(fn) dm ≤ lim inf

n→∞

∫
ηi,j |b| lipa(fn) dm

≤ lim inf
n→∞

∫
ηi,j lipa(fn) dm =

∫
ηi,j d|Df |∗ ≤ |Df |∗(Ui)

for every i, j ∈ N. Applying the dominated convergence theorem, we deduce that

Lf (b)(Ui) = lim
j→∞

∫
ηi,j dLf (b) ≤ |Df |∗(Ui) for every i ∈ N.

Therefore, we can finally conclude that

Lf (b)(K) = lim
i→∞

Lf (b)(Ui) ≤ lim
i→∞

|Df |∗(Ui) = |Df |∗(K),

which gives (3.7). Thus, the proof is complete. □

Remark 3.16. In the case where (X, d) is complete, by slightly adapting the proof of Lemma 3.15

(and taking also Proposition 3.5 into account) one can prove that BVH(X) ⊆ BVW(X; LIPb(X))

and |Df |LIPb(X) ≤ |Df |∗ for every f ∈ BVH(X). ■
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4. Equivalence results

Given a metric space (X, d) and x ∈ X, we define the 1-Lipschitz function dx : X → [0,+∞) as

dx(y) := d(x, y) for every y ∈ X.

Definition 4.1 (Good algebra). Let (X, d,m) be a metric measure space. Let A be a unital

separating subalgebra of LIPb(X). Then we say that A is a good algebra if, given any x ∈ X and

r > 0, there exist (fn)n ⊆ A and ρ ∈ L∞(m) with 0 ≤ ρ ≤ 1 such that ∥fn − dx ∧ r∥L1(m) → 0

and lipa(fn)⇀ ρ weakly in L1(m).

Note that a unital separating subalgebra A of LIPb(X) is a good algebra precisely when

dx ∧ r ∈ H1,1(X;A ), |D(dx ∧ r)|∗,A ≤ 1 for every x ∈ X and r > 0.

Clearly, LIPb(X) itself is a good algebra.

Example 4.2 (Some good algebras). In [36] is introduced a notion of compatible algebra in

the setting of extended metric-topological measure spaces. These are Hausdorff topological spaces

(X, τ) endowed with a (possibly extended) metric d which has good compatibility properties with

τ , together with a finite, non-negative, Radon measure m (on (X, τ)). Whenever τ coincides with

the topology induced by d and d is finite, we recover our setting, i.e. (X, d,m) is a metric measure

space in the sense of Definition 2.1. In this case, an algebra A is said to be compatible if

d(x, y) = sup

{
|f(x)− f(y)|

Lip(f)

∣∣∣∣ f ∈ A , Lip(f) ̸= 0

}
for every x, y ∈ X.

It is not difficult to check that this implies that the functions dx, x ∈ X can be approximated in

the following sense: there exists a sequence (fn)n ⊂ A such that

fn → dx m-a.e., lipa(fn)⇀ ρ in L1(m) for some 0 ≤ ρ ≤ 1.

This is precisely (even if there is considered only for p > 1) the density condition in [20, Theorem

2.13]. In turn this last condition implies that A is a good algebra according to Definition 4.1,

simply using a truncation argument of the distance. Therefore, a variety of algebras in many

metric spaces are good algebras:

(1) Smooth functions in Riemannian manifolds and Euclidean spaces [20, Remark 2.21].

(2) Cylinder functions in Banach and Hilbert spaces [36, Example 2.1.19].

(3) Algebras generated by approximating distances [36, Example 2.1.20].

(4) Cylinder functions in the Wasserstein, Hellinger and Hellinger–Kantorovich metric spaces

of (probability) measures [37, 20, 15]. ■

Remark 4.3. If A is a good algebra, then the approximation (fn)n of dx ∧ r can be also chosen

so that 0 ≤ fn ≤ r for every n ∈ N. Indeed, letting (fn)n be as in Definition 4.1, we have that

un := (fn ∧ r) ∨ 0 → dx ∧ r in L1(m). Thanks to [36, Lemma 2.1.26], we can find a sequence

(g̃n)n ⊆ A such that |g̃n − un| ≤ 1
n and lipa(g̃n) ≤ lipa(un) for all n ∈ N. By the Dunford–Pettis

theorem, we thus have (up to a non-relabelled subsequence) that lipa(g̃n) ⇀ ρ weakly in L1(m),

for some function ρ ∈ L∞(m) with 0 ≤ ρ ≤ 1. Finally, letting gn := r
(
r + 2

n

)−1(
g̃n + 1

n

)
for every

n ∈ N, we obtain a sequence (gn)n ⊆ A with 0 ≤ gn ≤ r such that gn → dx ∧ r strongly in L1(m)

and lipa(gn)⇀ ρ weakly in L1(m), as desired. ■

Proposition 4.4. Let (X, d,m) be a metric measure space and A a good subalgebra of LIPb(X).

Let f ∈ LIPb(X) be given. Then there exists a sequence (fn)n ⊆ A such that the following hold:

i) infX f ≤ fn ≤ supX f for every n ∈ N.
ii) fn → f in L1(m) as n→ ∞.
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iii) (lipa(fn))n is dominated in L1(m), i.e. there exists G ∈ L1(m)+ such that lipa(fn) ≤ G

holds m-a.e. on X for every n ∈ N.
iv) (lipa(fn)− Lip(f))+ → 0 in L1(m) as n→ ∞.

Proof. Without loss of generality, we can assume that Lip(f) > 0. Fix a sequence (xk)k ⊆ X that

is dense in spt(m). Define L := Lip(f), m := infX f , M := supX f and

g̃k := (f(xk)− Ldxk
) ∨m = f(xk)− L

(
dxk

∧ f(xk)−m

L

)
for every k ∈ N.

Notice that g̃k ∈ LIPb(X) and Lip(g̃k) ≤ L. Since A is a good algebra, we can find (f jk)j ⊆ A

such that f jk → g̃k in L1(m) and lipa(f
j
k) ⇀ |Dg̃k|∗,A ≤ L in L1(m) as j → ∞. By Remark 4.3,

we can assume that m ≤ f jk ≤M for every k, j ∈ N. Define

gn := g̃1 ∨ . . . ∨ g̃n ∈ LIPb(X) for every n ∈ N.

Given that m ≤ gn ≤ M for every n ∈ N and gn(x) → f(x) for every x ∈ spt(m), we have that

gn → f in L1(m) by the dominated convergence theorem. Now fix n ∈ N. Since f j1 ∨ . . .∨ f jn → gn

in L1(m) as j → ∞, there exists j(n) ∈ N such that ∥f j(n)1 ∨ . . . ∨ f j(n)n − gn∥L1(m) ≤ 1/n and

∥hkn∥L1(m) ≤
1

n2n
for every k = 1, . . . , n, where hkn :=

∣∣lipa(f j(n)k )− |Dg̃k|∗,A
∣∣.

By [36, Lemma 2.1.26], we can find a function f̃n ∈ A such that supX |f j(n)1 ∨. . .∨f j(n)n −f̃n| ≤ 1/n

and lipa(f̃n) ≤ lipa(f
j(n)
1 )∨ . . .∨ lipa(f

j(n)
n ). In particular, m− 1

n ≤ f̃n ≤M + 1
n for every n ∈ N.

It also follows that ∥f̃n − gn∥L1(m) ≤ (1 +m(X))/n and

lipa(f̃n) ≤ (|Dg̃1|∗,A + h1n) ∨ · · · ∨ (|Dg̃n|∗,A + hnn) ≤ L+ h1n ∨ · · · ∨ hnn ≤ L+ h1n + · · ·+ hnn.

Note that hn := h1n + · · · + hnn satisfies ∥hn∥L1(m) ≤ 2−n, thus h :=
∑∞

n=1 hn belongs to L1(m).

Therefore, f̃n → f in L1(m) as n→ ∞ and lipa(f̃n) ≤ L+ h ∈ L1(m) for every n ∈ N. Moreover,

we have that (lipa(f̃n)− L)+ ≤ hn → 0 in L1(m) as n→ ∞. Finally, defining (fn)n ⊆ A as

fn := cn

(
f̃n −m+

1

n

)
+m, where we set cn :=

M −m

M −m+ 2
n

,

one can then easily check that (fn)n satisfies i), ii), iii) and iv). The statement is achieved. □

Theorem 4.5. Let (X, d,m) be a metric measure space. Let A be a good subalgebra of LIPb(X).

Define the operator ϕA : Der∞∞(X; LIPb(X)) → Der∞∞(X;A ) as

ϕA (b) := b|A ∈ Der∞∞(X;A ) for every b ∈ Der∞∞(X; LIPb(X)).

Then ϕA is an isomorphism of A -modules such that the identity div(ϕA (b)) = div(b) holds for

every b ∈ Der∞∞(X; LIPb(X)). Moreover, it holds that

|ϕA (b)|A = |b| for every b ∈ Der∞∞(X; LIPb(X)).

Proof. Let us write LX := LIPb(X) for brevity. First of all, notice that ϕA (b) ∈ Der∞∞(X;A ) and

|ϕA (b)|A ≤ |b| for every b ∈ Der∞∞(X; LX). Moreover, the operator ϕA is a homomorphism of

A -modules by construction.

To conclude, it remains to show that if b ∈ Der∞∞(X;A ) is given, there exists b̄ ∈ Der∞∞(X; LX)

such that ϕA (b̄) = b and |b̄| ≤ |b|A . To prove it, fix a function f ∈ LX and take a sequence

(fn)n ⊆ A that approximates f in the sense of Proposition 4.4. Since |b(fn)| ≤ |b|A lipa(fn)

for every n ∈ N, we have that (b(fn))n is dominated in L1(m), thus the Dunford–Pettis theorem

ensures that we can extract a subsequence (fnk
)k such that b(fnk

) ⇀ b̄(f) in L1(m), for some
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limit function b̄(f) ∈ L1(m). Note that whenever a sequence (f̃i)i ⊆ A and a function h ∈ L1(m)

satisfy f̃i ⇀ f and b(f̃i)⇀ h weakly in L1(m), for any g ∈ A we have that∫
hg dm = lim

i→∞

∫
g b(f̃i) dm = lim

i→∞

∫
b(gf̃i)− f̃i b(g) dm

= − lim
i→∞

∫
f̃i(g div(b) + b(g)) dm = −

∫
f(g div(b) + b(g)) dm.

(4.1)

This shows that b̄(f) is independent of the chosen subsequence (fnk
)k and that the following holds:

if (f̃i)i ⊆ A satisfies f̃i ⇀ f weakly in L1(m) and (b(f̃i))i is dominated in L1(m), then b(f̃i)⇀ b̄(f)

weakly in L1(m). In particular, we have that b̄|A = b. Let us now check that b̄ ∈ Der∞∞(X; LX):

• Fix f, g ∈ LX and α, β ∈ R. Let (fn)n ⊆ A (resp. (gn)n ⊆ A ) be an approximating

sequence for f (resp. g) as in Proposition 4.4. Letting n→ ∞ in the identity b(αfn+βgn) =

α b(fn) + β b(gn), we obtain that b̄(αf + βg) = α b̄(f) + β b̄(g), proving that b̄ is linear.

• Note that whenever f ∈ LX and (fn)n ⊆ A is an approximating sequence for f as in

Proposition 4.4, we have that∫
b̄(f) dm = lim

n→∞

∫
b(fn) dm = − lim

n→∞

∫
fn div(b) dm = −

∫
f div(b) dm. (4.2)

• We claim that

b̄(fg) = f b(g) + g b̄(f) for every f ∈ LX and g ∈ A . (4.3)

Indeed, letting (fn)n ⊆ A be an approximating sequence for f as in Proposition 4.4, we

have that b(fng) = fn b(g) + g b(fn) for every n ∈ N, which gives b̄(fg) = f b(g) + g b̄(f).

• Next, we claim that b̄ has the following property: if f ∈ LX and (f̃i)i ⊆ LX are such that

f̃i ⇀ f weakly in L1(m) and (b̄(f̃i))i is dominated in L1(m), then b̄(f̃i) ⇀ b̄(f) weakly in

L1(m). To prove it, one can argue as in (4.1), by using (4.2) and (4.3).

• Consequently, we can show that b̄ satisfies the Leibniz rule, i.e.

b̄(fg) = f b̄(g) + g b̄(f) for every f, g ∈ LX. (4.4)

Indeed, letting (gn)n ⊆ A be an approximating sequence for g as in Proposition 4.4, we

know from (4.3) that b̄(fgn) = f b(gn) + gnb̄(f) for every n ∈ N, whence (4.4) follows.

• We also claim that

|b̄(f)| ≤ Lip(f)|b|A for every f ∈ LX. (4.5)

To prove it, take an approximating sequence (fn)n ⊆ A for f as in Proposition 4.4 and set

hn := (lipa(fn)−Lip(f))+. Letting n→ ∞ in b̄(fn) ≤ |b|A lipa(fn) ≤ |b|A (Lip(f)+hn), we

get b̄(f) ≤ Lip(f)|b|A . Doing the same for −f instead, we obtain that −b̄(f) ≤ Lip(f)|b|A ,

proving (4.5).

• Fix an equi-bounded, equi-Lipschitz sequence (fn)n ⊆ LX converging pointwise to f ∈ LX.

Since |b̄(fn)| ≤ Lip(fn)|b|A by (4.5), the sequence (b̄(fn))n is bounded in L∞(m), thus

it is dominated in L1(m). Given that fn → f in L1(m) (by the dominated convergence

theorem), we have that b̄(fn) ⇀ b̄(f) weakly in L1(m) by the fourth point above. Since

L1(m) is separable, by the Banach–Alaoglu theorem we can extract a subsequence (fnk
)k

such that (b̄(fnk
))k has a weak∗ limit G in L∞(m). In particular, b̄(fnk

) ⇀ G weakly in

L1(m), thus G = b̄(f) and accordingly the original sequence b̄(fn) weakly∗ converges to

b̄(f) in L∞(m). This proves that b̄ is weakly∗ continuous (in the sense of [7, Lemma 4.12

i)]). By suitably adapting the proof of [7, Corollary 4.14] (exploiting the fact that spt(m)

is separable), we can conclude that |b̄(f)| ≤ |b|A lipa(f) for every f ∈ LX.

All in all, we showed that b̄ ∈ Der∞∞(X; LX), ϕA (b̄) = b and |b̄| ≤ |b|A . The proof is complete. □
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Corollary 4.6. Let (X, d,m) be a metric measure space. Let A be a good subalgebra of LIPb(X).

Then BVW(X; LIPb(X)) ⊆ BVW(X;A ) and |Df |A ≤ |Df |LIPb(X) for all f ∈ BVW(X; LIPb(X)).

Proof. Let f ∈ BVW(X; LIPb(X)) and let Lf : Der∞∞(X; LIPb(X)) → M(X) be as in Definition

3.10 for f and the algebra LIPb(X). We define the operator L̃f : Der∞∞(X;A ) → M(X) as

L̃f (b) := Lf (ϕ
−1
A (b)) for every b ∈ Der∞∞(X;A ),

where ϕA is as in Theorem 4.5. It is easy to check that L̃f satisfies Definition 3.10 for f and

the algebra A . The inequality between the total variation measures follows immediately from the

properties of ϕA . □

Let us now fix a unital separating subalgebra A of LIP⋆(X). We can regard dA as an unbounded

linear operator dA : L1(m) → L1(T ∗X;A ) whose domain is D(dA ) = A . Given that A is dense

in L1(m), we have that dA is densely defined, thus accordingly its adjoint operator

d∗A : L1(T ∗X;A )′ → L∞(m)

is well defined. Recall that the domain D(d∗A ) of d∗A is a vector subspace of L1(T ∗X;A )′, and

that d∗A is characterised by
∫
f d∗A V dm = V (dA f) for every V ∈ D(d∗A ) and f ∈ A .

Lemma 4.7. Let (X, d,m) be a metric measure space. Let A be a unital separating subalgebra of

LIP⋆(X). Fix any v ∈ L∞(TX;A ) with IntA (v) ∈ D(d∗A ). Let us define bv : A → L1(m) as

bv(f) := dA f(v) ∈ L1(m) for every f ∈ A .

Then bv ∈ Der∞∞(X;A ). Moreover, it holds that |bv|A ≤ |v| and div(bv) = −d∗A (IntA (v)).

Proof. First, observe that dA f(v) ≤ |v||dA f | ≤ |v|lipa(f) for every f ∈ A , so that bv(f) ∈ L1(m)

and bv satisfies Definition 2.6 i) with G = |v|. The linearity of bv follows from the linearity of dA .

For any f, g ∈ A , we deduce from (3.5) that

bv(fg) = dA (fg)(v) = f dA g(v) + g dA f(v) = f bv(g) + g bv(f),

which proves that bv satisfies Definition 2.6 ii), thus accordingly bv ∈ Der∞(X;A ) and |bv|A ≤ |v|.
Finally, recalling the definitions of d∗A and IntA , for any f ∈ A we can compute∫

bv(f) dm =

∫
dA f(v) dm = IntA (v)(dA f) =

∫
f d∗A (IntA (v)) dm,

which gives that bv ∈ Der∞∞(X;A ) and div(bv) = −d∗A (IntA (v)). The proof is thus complete. □

We now define the pre-Cheeger A -energy functional ẼA : L1(m) → [0,+∞] as

ẼA (f) :=

{ ∫
|Df |∗,A dm

+∞
if f ∈ A ,

otherwise.

It can happen that ẼA |A ̸= EA |A , but EA is the L1(m)-lower semicontinuous envelope of ẼA

(thanks to (3.3) and to Remark 3.8). Notice also that the functional ẼA can be expressed as

ẼA = ∥ · ∥L1(T∗X;A ) ◦ dA . (4.6)

We denote by n∗A the Fenchel conjugate of nA := ∥ · ∥L1(T∗X;A ) : L
1(T ∗X;A ) → [0,+∞), i.e.

n∗A (V ) := sup
ω∈L1(T∗X;A )

(
V (ω)− ∥ω∥L1(T∗X;A )

)
for every V ∈ L1(T ∗X;A )′.

Straightforward computations give that

n∗A (V ) =

{
0

+∞
for every V ∈ L1(T ∗X;A )′ with ∥V ∥L1(T∗X;A )′ ≤ 1,

for every V ∈ L1(T ∗X;A )′ with ∥V ∥L1(T∗X;A )′ > 1.
(4.7)
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Theorem 4.8. Let (X, d,m) be a metric measure space. Let A be a unital separating subalgebra

of LIP⋆(X). Then it holds that BVW(X;A ) ⊆ BVH(X;A ) and

∥Df∥∗,A ≤ |Df |A (X) for every f ∈ BVW(X;A ).

Proof. Fix any f ∈ BVW(X;A ). Since EA is convex and L1(m)-lower semicontinuous, it coincides

with the double Fenchel conjugate Ẽ∗∗
A := (Ẽ∗

A )∗ of ẼA . Therefore, using (4.6), [10, Theorem 5.1],

(4.7) and Lemma 4.7, we obtain that

EA (f) = Ẽ∗∗
A (f) = sup

g∈L∞(m)

(∫
fg dm− Ẽ∗

A (g)

)
= sup

g∈L∞(m)

(∫
fg dm− (nA ◦ dA )∗(g)

)
= sup

g∈L∞(m)

(∫
fg dm− inf

V ∈D(d∗
A ):

d∗
A V=g

n∗A (V )

)
= sup

V ∈D(d∗
A )

(∫
f d∗A V dm− n∗A (V )

)

≤ sup
b∈Der∞∞(X;A ):

|b|A ≤1

(
−
∫
f div(b) dm

)
= sup

b∈Der∞∞(X;A ):
|b|A ≤1

Lf (b)(X) = |Df |A (X).

This gives that f ∈ BVH(X;A ) and ∥Df∥∗,A ≤ |Df |A (X), thus proving the statement. □

Theorem 4.9. Let (X, d,m) be a metric measure space. Assume that (X, d) is either complete or

a Radon space. Then it holds that

BVH(X) = BVW(X)

and we have that |Df | = |Df |∗ for every f ∈ BVH(X).

Proof. It follows from Lemma 3.15 and Theorem 4.8. □

Theorem 4.10. Let (X, d,m) be a metric measure space. Assume that (X, d) is complete. Let A

be a good subalgebra of LIPb(X). Then it holds that

BVH(X;A ) = BVH(X) = BVW(X;A ) = BVW(X; LIPb(X)).

Moreover, we have that ∥Df∥∗,A = ∥Df∥∗ = |Df |A (X) = |Df |LIPb(X)(X) and |Df |∗ = |Df |A =

|Df |LIPb(X) for every f ∈ BVH(X).

Proof. First of all, observe that for any unital separating subalgebra A ⊆ LIPb(X) it holds that

BVW(X;A ) ⊆ BVH(X;A ) ⊆ BVH(X) ⊆ BVW(X; LIPb(X)),

|Df |LIPb(X)(X) ≤ ∥Df∥∗ ≤ ∥Df∥∗,A ≤ |Df |A (X) for every f ∈ BVW(X;A ).
(4.8)

The above inclusions (from left to right) and the above inequalities (from right to left) follow from

Theorem 4.8, (3.2) and Remark 3.16. If A is a good subalgebra, we know from Corollary 4.6

that BVW(X; LIPb(X)) ⊆ BVW(X;A ) and |Df |A ≤ |Df |LIPb(X) for every f ∈ BVW(X; LIPb(X)).

Therefore, the above inclusions and inequalities are all equalities. The statement follows. □

We conclude by formulating a partial converse of Theorem 4.10:

Proposition 4.11. Let (X, d,m) be a metric measure space. Let A be a unital separating subal-

gebra of LIP⋆(X). If BVH(X;A ) = BVH(X) and ∥Df∥∗,A = ∥Df∥∗ for every f ∈ BVH(X;A ),

then A is a weakly good subalgebra: for every x ∈ X and for every r > 0, there exist (fn)n ⊆ A

and ρ ∈ L∞(m) with 0 ≤ ρ ≤ 1 such that ∥fn − dx ∧ r∥L1(m) → 0 and lipa(fn)m⇀ ρm weakly.

Proof. Fix any x ∈ X and r > 0. Given that dx ∧ r ∈ LIP⋆(X) ⊆ BVH(X) = BVH(X;A ) and

∥D(dx ∧ r)∥∗,A = |D(dx ∧ r)|∗(X), we can find (fn)n ⊆ A such that fn → dx ∧ r in L1(m) and∫
lipa(fn) dm → |D(dx∧r)|∗(X). It follows from Remark 3.3 that lipa(fn)m⇀ |D(dx∧r)|∗ weakly.

Since |D(dx ∧ r)|∗ ≤ m as a direct consequence of the definition, we proved the statement. □
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Appendix A. The total variation measure

We report here a detailed version of the arguments in the proofs of [4, Lemmata 5.2 and 5.4]

showing that they do not make use of the completeness nor separability of the ambient metric

space, and also that they still work with our notion of asymptotic slope and for the approximating

class being LIP⋆(X) and not LIPloc(X).

Lemma A.1. Let (X, d,m) be a metric measure space and let M,N ⊆ X be open sets such that

η := d(M \N,N \M) > 0. Set

ϕ(x) :=
3

η
min

{(
d(x,N \M)− η/3

)+
,
η

3

}
for every x ∈M ∪N,

and H := ϕ−1((0, 1)). Then H is an open subset of M ∩ N with d(H, (M \ N) ∪ (N \M)) > 0.

Whenever u ∈ LIP⋆(M) and v ∈ LIP⋆(N), setting

w(x) := (1− ϕ(x))u(x) + ϕ(x)v(x) for every x ∈M ∪N,

(where we extended trivially u and v to the whole set M ∪ N), we have that w ∈ LIP⋆(M ∪ N)

and moreover it holds:∫
M∪N

lipa(w) dm ≤
∫
M

lipa(u) dm+

∫
N

lipa(v) dm+
3

η

∫
H

|u− v|dm.

w ≡ u on a neighbourhood of M \N, w ≡ v on a neighbourhood of N \M.∫
M∪N

|w − σ|dm ≤
∫
M

|u− σ|dm+

∫
N

|v − σ|dm for every σ ∈ L1(M ∪N).

Proof. It is clear that ϕ ∈ LIPb(M∪N), that ϕ ≡ 1 on {x ∈M∪N : d(x,N \M) > 2η/3} ⊇M \N ,

that ϕ ≡ 0 on {x ∈M ∪N : d(x,N \M) < η/3} ⊇ N \M , that ϕ(M ∪N) = [0, 1], and that ϕ is

3/η-Lipschitz continuous. The set H := ϕ−1((0, 1)) is therefore an open subset of M ∩ N and it

satisfies d(H, (M \N) ∪ (N \M)) > 0: indeed x ∈ H if and only if η/3 < d(x,N \M) < 2η/3, so

that d(x,N \M) > η/3 and d(x,M/ \N) > η − 2η/3 = η/3. Given u and v as in the statement,

let w = ϕu + (1 − ϕ)v in M ∪N be as above. The convexity inequality for the asymptotic slope

gives that lipa(w) ≤ ϕ lipa(u) + (1 − ϕ)lipa(v) + lipa(ϕ)|u − v|, so that w ∈ LIP⋆(M ∪ N). By

definition, it is clear that w ≡ u in a neighbourhood of M \N and that w ≡ v in a neighbourhood

of N \M . Writing M ∪N = int({ϕ = 0}) ∪ int({ϕ = 1}) ∪H, we have∫
M∪N

lipa(w) dm ≤
∫
M∪N

ϕ lipa(u) dm+

∫
M∪N

(1− ϕ)lipa(v) +

∫
M∪N

lipa(ϕ)|u− v|dm

≤
∫
M

lipa(u) dm+

∫
N

lipa(v) dm+
3

η

∫
H

|u− v|dm,

where we have also used that lipa(ϕ) ≡ 0 in the interior of sets of the form {ϕ = c}, c ∈ {0, 1},
and that ϕ ≤ 1M and 1 − ϕ ≤ 1N . The last inequality in the statement follows from the latter

fact and the triangle inequality, writing σ = ϕσ + (1− ϕ)σ. □

Proposition A.2. Let (X, d,m) be a metric measure space. Let τd be the topology induced by d.

For f ∈ L1(m) we define the function |Df |∗ : τd → [0,+∞] as

|Df |∗(U) := inf

{
lim inf
n→∞

∫
U

lipa(fn) dm

∣∣∣∣ LIP⋆(U) ∋ fn → f |U in L1(m|U )
}

for every U ∈ τd,

with the convention that |Df |∗(∅) := 0. Then |Df |∗ satisfies the following properties:

(1) If A1, A2 ∈ τd and A1 ⊆ A2, then |Df |∗(A1) ≤ |Df |∗(A2).

(2) If A1, A2 ∈ τd, then |Df |∗(A1 ∪A2) ≤ |Df |∗(A1) + |Df |∗(A2), with equality if A1 and A2

are disjoint.



FUNCTIONS OF BOUNDED VARIATION AND LIPSCHITZ ALGEBRAS IN METRIC MEASURE SPACES 21

(3) If (An)n ⊆ τd and An ⊆ An+1 for every n ∈ N, then

lim
n→∞

|Df |∗(An) = |Df |∗

( ∞⋃
n=1

An

)
. (A.1)

In particular the formula

|Df |∗(E) := inf
{
|Df |∗(U)

∣∣ U ⊆ X open, E ⊆ U
}

for every E ⊆ X, (A.2)

provides a σ-subadditive extension of |Df |∗ whose collection of additive sets, in the sense of

Carathéodory, contains B(X). Therefore |Df |∗ : B(X) → [0,+∞] is a Borel measure.

Proof. The monotonicity in (1) and the equality in (2) in case A1 and A2 are disjoint are obvious.

We proceed to prove (3), setting A :=
⋃∞

n=1An.

Preparation to the proof of (3): by the monotonicity in (1), it is enough to show

sup
n

|Df |∗(An) ≥ |Df |∗(A) (A.3)

so that we can assume w.l.o.g. that supn |Df |∗(An) < +∞. We can restrict ourselves to the case

d(An,X \An+1) > 0 for every n ∈ N. (A.4)

To see this, it is enough to set

A′
n :=

{
x ∈ X : d(X,X \An) >

1

n

}
∈ τd, for every n ∈ N,

so that
⋃∞

n=1A
′
n = A, condition (A.4) is satisfied for (A′

n)n and, since A′
n ⊆ An for every n ∈ N,

by the monotonicity in (1), we also have supn |Df |∗(An) ≥ supn |Df |∗(A′
n).

We therefore assume (A.4) to hold for (An)n and we proceed to set

C1 := A1, C2 := A2, Ck := Ak \Ak−2 for k ≥ 3.

It is clear that (Ck)k ⊂ τd, d(C3k+i, C3h+i) > 0 for every k, h ≥ 0, h ̸= k, and every i ∈ {1, 2, 3}.
By construction we also have that

∑n
j=0 C3j+i ⊆ A3n+i for every n ∈ N and i ∈ {1, 2, 3}, so that,

∞∑
k=1

|Df |∗(Ck) =

3∑
i=1

∞∑
j=0

|Df |∗(C3j+i) ≤ 3 sup
n

|Df |∗(An) < +∞,

where we have also used the equality in (2) for disjoint sets. We fix ε > 0 and we find an integer

k̄ ∈ N such that
∑∞

k=k̄ |Df |∗(Ck) ≤ ε. Point (3) will follow if we are able to construct a sequence

(fm)m ⊆ LIP⋆(A) such that

|Df |∗(Ak̄) + 5ε ≥ lim inf
m→∞

∫
A

lipa(fm) dm, fm → f |A in L1(m|A), (A.5)

so that (A.3), and thus (3), follows. Notice that the sequence (fm)m (and many of the objects

defined below) depends also on ε but we do not stress this dependence. Let us set

B−2 := ∅, B−1 := ∅, B0 := Ak̄, D0 := Ak̄, Bh := Ah+k̄, Dh := Ch+k̄ for all h ∈ N.

Let ch > 0 and Hh be the constant and the open set as in Lemma A.1 for the sets Bh and Dh+1,

for every h ≥ 0; we also set c−1 := 0 and H−1 := ∅. Note that d(Dh+1 \ Bh, Bh \Dh+1) > 0 for

every h ≥ 0 by construction. To construct fm as above, we construct, for every m ∈ N, sequences
of functions (ψm

h )h≥0, (f
m
h )h≥0. Starting from those, we define a sequence (f̃m)m ⊂ LIPloc(A)

satisfying (A.5) from which we will define the sought sequence (fm)m ⊂ LIP⋆(A) satisfying (A.5)

by a simple truncation argument.
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Construction of (ψm
h )h: let m ∈ N and h ≥ 0 be fixed and let us set

γmh := min

{
1

m2h
,

ε

2h+1ch
,

ε

2hch−1

}
> 0.

By definition of |Df |∗(Dh), we can find a function ψm
h ∈ LIP⋆(Dh) such that∫

Dh

|ψm
h − f |dm < γmh ,

∫
Dh

lipa(ψ
m
h ) dm < |Df |∗(Dh) + γmh .

It follows that ∫
Dh

lipa(ψ
m
h ) dm ≤ |Df |∗(Dh) +

1

m2h
, (A.6)∫

Dh

|ψm
h − f |dm ≤ 1

m2h
, (A.7)

ch

∫
Hh

|ψm
h − f |dm ≤ ε

2h+1
, (A.8)

ch−1

∫
Hh−1

|ψm
h − f |dm ≤ ε

2h
, (A.9)

where the latter two inequalities follow from the fact that Hh−1 ⊂ Bh−1 ∩ Dh ⊂ Dh and

Hh ⊂ Bh ∩Dh+1 ⊂ Dh.

Construction of (fmh )h: let m ∈ N be fixed; we construct by induction on h a sequence of functions

(fmh )h≥−1 such that fm−1 := 0 , fm0 := ψm
0 and satisfying, for every h ≥ 0, the following conditions:

fmh ≡ fmh−1 on Bh−2, fmh ≡ ψm
h on Bh \Bh−1, fmh ∈ LIP⋆(Bh), (A.10)∫

Bh

|fmh − f |dm ≤ 1

m

(
2− 1

2h

)
, (A.11)∫

Bh

lipa(f
m
h ) dm ≤

∫
Bh−1

lipa(f
m
h−1) dm+

∫
Dh

lipa(ψ
m
h ) dm+

ε

2h−1
. (A.12)

Notice that the above conditions are satisfied for h = 0: the first condition in (A.10) is void, the

second and the third one are true by construction; (A.11) follows by (A.7); (A.12) is trivially true.

We now show that the above three conditions being true for h ≥ 0 implies they are true for h+1.

We apply Lemma A.1 to the open sets M := Bh and N := Dh+1 and to the functions u := fmh
and v := ψm

h+1. We get the existence of a function fmh+1 ∈ LIP⋆(Bh+1) satisfying∫
Bh+1

lipa(f
m
h+1) dm ≤

∫
Bh

lipa(f
m
h ) dm+

∫
Dh+1

lipa(ψ
m
h+1) dm+ ch

∫
Hh

|fmh − ψm
h+1|dm,

(A.13)

fmh+1 ≡ fmh on Bh \Dh+1 ⊇ Bh−1, fmh+1 ≡ ψm
h+1 on Dh+1 \Bh ⊇ Bh+1 \Bh,

(A.14)∫
Bh+1

|fmh+1 − σ|dm ≤
∫
Bh

|fmh − σ|dm+

∫
Dh+1

|ψm
h+1 − σ|dm for every σ ∈ L1(Bh+1).

(A.15)

We see that (A.10) for h+ 1 follows from (A.14); choosing σ := f in (A.15) and using (A.11) and

(A.7) we get (A.11) for h + 1; finally (A.12) for h + 1 follows from (A.13), (A.8) and (A.9) and

the fact that by induction assumption fmh ≡ ψm
h on Bh \Bh−1 ⊇ Hh.
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Construction of (fm)m and proof of (3): for every m ∈ N we set

f̃m(x) := fmh (x) if x ∈ Bh−1, h ≥ 1.

By the first equality in (A.10) each function f̃m is well defined and belongs to LIPloc(A) for every

m ∈ N. Inequality (A.11) and the monotone convergence theorem give that
∫
A
|f̃m− f |dm ≤ 2/m

for every m ∈ N so that f̃m → f |A in L1(m|A). Iterating (A.12) and using (A.6) we have that, for

every h ≥ 1, it holds∫
Bh

lipa(f
m
h ) dm ≤

∫
Bh−1

lipa(f
m
h−1) dm+

∫
Dh

lipa(ψ
m
h ) dm+

ε

2h−1

≤
∫
Bh−1

lipa(f
m
h−1) dm+ |Df |∗(Dh) +

1

2h

(
1

m
+ 2ε

)

≤
h∑

i=0

|Df |∗(Dh) +

(
1

m
+ 2ε

) h∑
i=0

1

2h

≤ |Df |∗(Ak̄) +

h+k̄∑
k=k̄

|Df |∗(Ck) +

(
1

m
+ 2ε

) h∑
i=0

1

2h

≤ |Df |∗(Ak̄) + ε+

(
1

m
+ 2ε

) h∑
i=0

1

2h
.

Therefore, the monotone convergence theorem gives that∫
A

lipa(f̃m) dm = lim
h→∞

∫
Bh

lipa(f
m
h ) dm ≤ |Df |∗(Ak̄) + 5ε+

2

m
,

which shows that (f̃m)m ⊂ LIPloc(A) satisfies (A.5). Finally we set

fm := f̃m ∧m ∈ LIP⋆(A) for every m ∈ N.

We see that fm → f |A in L1(m|A) and, since lipa(fm) ≤ lipa(f̃m) for every m ∈ N, we also see

that (fm)m ⊂ LIP⋆(A) satisfies the first part of (A.5). This concludes the proof of (3).

Proof of (2): it is enough to show

|Df |∗(A′
1 ∪A′

2) ≤ |Df |∗(A1) + |Df |∗(A2) if A′
i ∈ τd is s.t. d(A′

i,X \Ai) > 0, i = 1, 2. (A.16)

Indeed, it is enough to define

An
i := {x ∈ X : d(x,X \Ai) > 1/n} ∈ τd, for everr i = 1, 2, n ∈ N,

so that, if (A.16) is true for A′
i := An

i , i = 1, 2, n ∈ N, then (3) gives that supn |Df |∗(An
1 ∪An

2 ) =

|Df |∗(A1 ∪A2) and we obtain (2). To show (A.16) we take sequences (gih)h ⊂ LIP⋆(Ai) satisfying

lim
h→∞

∫
Ai

lipa(g
i
h) dm = |Df |∗(Ai), gih → f in L1(m|Ai

), i = 1, 2, (A.17)

and we apply Lemma A.1 with M := (A′
1 ∪A′

2)∩A1, N := (A′
1 ∪A′

2)∩A2, and, for every h ∈ N ,

to the functions u := g1h, v := g2h. We obtain the existence of a positive constant c > 0 and, for

every h ∈ N, of a function gh ∈ LIP⋆(A
′
1 ∪A′

2) satisfying∫
A′

1∪A′
2

lipa(gh) dm ≤
∫
A1

lipa(g
1
h) dm+

∫
A2

lipa(g
2
h) dm+ c

∫
A1∩A2

|g1h − g2h|dm.

Passing to the limit as h→ ∞ and using (A.17), we get (A.16).



24 ENRICO PASQUALETTO AND GIACOMO ENRICO SODINI

Finally, the given properties (1), (2), (3) imply that (A.2) defines an extension of |Df |∗ to the

family of all subsets of X which is an outer measure on X [9, Definition 1.11.1]; therefore its

restriction to the σ-algebra of its Carathéodory-measurable subsets A is a σ-additive measure [9,

Theorem 1.11.4(iii)]. Finally, we observe that B(X) ⊆ A as a consequence of [9, Theorem 1.11.10,

Theorem 7.14.29] and (2). □
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[12] E. Brué, E. Pasqualetto, and D. Semola. Constancy of the dimension in codimension one and locality of the

unit normal on RCD(K,N) spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci., XXIV:1765–1816, 2023.
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