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Abstract. This paper deals with the Lipschitz continuity of solutions to variational ob-
stacle problems with nearly linear growth. The main tool used here is a new higher differen-
tiability result which reveals to be crucial because it allows us to perform the linearization
procedure to transform the constrained problem in an unconstrained one and it permits us to
deduce the equivalence between our minimization problem and its corresponding variational
formulation. Our results hold true for a large class of example for which the Lavrentiev phe-
nomenon does not occurr, not necessarily for lagrangians dependent on the modulus of the
gradient. We assume the same Sobolev regularity both for the gradient of the obstacle and
for the coefficients.

1. Introduction

In this paper we study the Lipschitz continuity of the solutions to variational obstacle prob-
lems of the form

min

{∫
Ω

f(x,Dw) : w ∈ Kψ(Ω)

}
, (1.1)

in the case of nearly linear growth condition, where Ω, f and Kψ(Ω) will be specified below;
the aim of our work is to complement the results cointained in the paper [13] where authors
assume that the integrand f(x,Dw) satisfies (p, q)−growth conditions and, as a function of
the x−variable, belongs to a suitable Sobolev class; they then prove the Lipschitz continuity
of the solutions to variational obstacle problems under the above-mentioned conditions.
A model functional that can be considered the following

w 7→
∫

Ω

|Dw| log(1 + |Dw|) + a(x)(1 + |Dw|2)q/2 dx

with q > 1 and a(·) a Lipschitz or bounded Sobolev coefficient.

There are few results in literature dealing with the case of nearly linear growth condition,
see [36], [56] in the case of equations of functionals, see [35], [18] in the case of obstacle
problems, and more in general [2], [6], [21], [40], [41], [45], [47], [55] in the case with the
subquadratic growth.

The key tool we use here is a new higher differentiability result for solutions to obstacle
problems with nearly linear growth obtained in the paper [39] in the spirit of the recent
contributions [26], [27], [37], [38]; this new result allows us to adapt here the linearization
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technique already successfully employed in [4] is order to trasform the constrained problem
in an unconstrained one. Higher differentiability and higher integrability of second order
derivatives has been recently widely investigate both in the context of unconstrained and
constrained problems, see for instance [9], [10], [14], [42], [43], [57], [58], [59].

The main feature of the paper is that we consider the same Sobolev dependence either
for the gradient of the obstacle and for the partial map x 7→ Dξf(x, ξ), which turns to be a
quite natural assumption. The idea of replacing the Lipschitz dependence on the coefficients
in the non autonomous case with a Sobolev one has been intensively used in the last years,
see for instance the survey [53] together with the references therein for a general overview.
To better clarify the main technicalities, we will anyway state and prove first the case with
a Lipschitz dependence.

The relationship between the ellipticity and the growth exponent we impose, namely (1.9),
is the one considered for the first time in the series of papers [22], [23], [24], [25] and it is
sharp (in view of the well known counterexamples, see for instance [49]) also to obtain the
Lipschitz continuity of solutions to elliptic equations and systems and minimizers of related
functionals with p, q−growth; therefore our results can be framed into the research con-
cerning regularity results under non standard growth conditions, that, after the pioneering
papers by Marcellini [50]–[52] has attracted growing attention, see among the others [3], [5],
[15], [16], [19], [46], [53], [54], [60].

More in details, here Ω is a bounded open set of Rn, n ≥ 2, the function ψ : Ω→ [−∞,+∞),
called obstacle, belongs to the Sobolev space W 1,1(Ω) and the classKψ(Ω) is defined as follows

Kψ(Ω) :=
{
w ∈ u0 +W 1,1

0 (Ω) : w ≥ ψ a.e. in Ω
}
, (1.2)

where u0 ∈ W 1,1(Ω) is a fixed boundary value.
To avoid trivialities, in what follows we shall assume that Kψ is not empty. We also assume
that a solution to (1.1) is such that f(x,Du) ∈ L1

loc(Ω). As it has been shown in [28], in
case of non-standard growth condition (at least in the autonomous case), this turns to be
the right class of competitors.

Remark 1.1. Let us notice that, by replacing u0 by ũ0 = max {u0, ψ}, we may assume that
the boundary value function u0 satisfies u0 ≥ ψ in Ω. Indeed ũ0 = (ψ− u0)+ + u0 and since

0 ≤ (ψ − u0)+ ≤ (u− u0)+ ∈ W 1,µ
0 (Ω),

the function (ψ − u0)+, and hence u − ũ0, belongs to W 1,µ
0 (Ω). Moreover assumptions

f(x,Du) ∈ L1
loc(Ω) and f(x,Du0) ∈ L1

loc(Ω) imply f(x,Dũ0) ∈ L1
loc(Ω). Indeed we have∫

Ω

f(x,Dũ0) dx =

∫
Ω∩{u0≥ψ}

f(x,Du0) dx+

∫
Ω∩{u0<ψ}

f(x,Dψ) dx

≤
∫

Ω

[f(x,Du0) + f(x,Dψ)] dx < +∞

where we used that f(x, ξ) ≥ 0, by virtue of the left inequality in (1.5).



LIPSCHITZ REGULARITY FOR OBSTACLE PROBLEMS WITH NEARLY LINEAR GROWTH 3

As we are dealing with non standard growth conditions, the Lavrentiev phenomenon may
occurr (for more details see for instance [61], [29], [30], [7], [8]). On the other hand in
the paper [17] a wide discussion about obstacle problems and a related suitable notion of
relaxation has been introduced, and this setting can be extended to the case of nearly linear
growth in view of Proposition 1.1 of [18]. Therefore we will assume to be in a situation where
the Lavrentiev phenomenon does not appear. In the sequel we will denote with L(u, Ω̃) the
gap functional over the set Ω̃, in the spirit of [1], [29], [48].
As we already remarked, in order to better clarify the details of the techniques employed,
we first state and prove the result with Lipschitz dependence on both the obstacle and the
partial map x 7→ Dξf(x, ξ) and we concentrate in a second step on the Sobolev dependence.
More precisely, we will deal with variational integral

F(u) :=

∫
Ω

f(x,Du) dx, (1.3)

where f : Ω × Rn → [0,+∞) is a Carathéodory function which is convex and of class C2

with respect to the second variable. We consider the exponents q > 1 and µ < 2 such that
the following bound holds

1 ≤ q

2− µ
< 1 +

1

n
. (1.4)

We suppose that there exist two positive constants ν, L and a function F̄ : [0,+∞) →

[0,+∞) such as lim
t→+∞

F̄ (t)

t
= +∞ such that

νF̄ (|ξ|) + ν (1 + |ξ|2)
2−µ
2 ≤ f(x, ξ) ≤ L (1 + |ξ|2)

q
2 , (1.5)

ν (1 + |ξ|2)−
µ
2 |λ|2 ≤

∑
i,j

fξiξj(x, ξ)λiλj ≤ L (1 + |ξ|2)
q−2
2 |λ|2, (1.6)

|fxξ(x, ξ)| ≤ L (1 + |ξ|2)
q−1
2 , (1.7)

for all λ, ξ ∈ Rn, λ = λi, ξ = ξi, i = 1, 2, . . . , n, a.e. in Ω. Our main result with these
hypothesis reads as follows

Theorem 1.2. Let u ∈ Kψ(Ω) be a solution to the obstacle problem (1.1) such that L(u,BR) =

0 for all BR b Ω, under the assumptions (1.5)-(1.7) and (1.4). If ψ ∈ W 2,∞
loc (Ω), then

u ∈ W 1,∞
loc (Ω) and the following estimate

‖Du‖L∞(Bρ) ≤ C

(∫
BR

(1 + f(x,Du)) dx

)β
(1.8)

holds for every 0 < ρ < R and with positive constants C and β depending on n, q, µ, ν, L,R, ρ
and the local bounds for ‖Dψ‖W 1,∞.

In the second part of the paper, we consider instead the exponents q and µ, where again
µ < 2 and q > 1, bounded by

1 ≤ q

2− µ
< 1 +

r − n
rn

= 1 +
1

n
− 1

r
(1.9)
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where r > n, so 1
r
< 1

n
. Moreover, we suppose that there exist two positive constants ν, L, a

function F̄ : [0,+∞)→ [0,+∞) such as lim
t→+∞

F̄ (t)

t
= +∞ and a function h : Ω→ [0,+∞)

such as h(x) ∈ Lrloc(Ω), such that (1.5) and (1.6) keep being valid and (1.7) is modified in

|fxξ(x, ξ)| ≤ h(x) (1 + |ξ|2)
q−1
2 (1.10)

for all λ, ξ ∈ Rn, λ = λi, ξ = ξi, i = 1, 2, . . . , n, a.e. in Ω.

Our main result with these modified hypothesis reads as follows

Theorem 1.3. Let u ∈ Kψ(Ω) be a solution to the obstacle problem (1.1) such that L(u,BR) =

0 for all BR b Ω, under the assumptions (1.5), (1.6), (1.10) and (1.9). If ψ ∈ W 2,r
loc (Ω), then

u ∈ W 1,∞
loc (Ω) and the following estimate

‖Du‖L∞(Bρ) ≤ C

(∫
BR

(1 + f(x,Du)) dx

)β
(1.11)

holds for every 0 < ρ < R and with positive constants C and β depending on n, q, µ, ν, L,R, ρ,
on the local bounds for ‖Dψ‖W 1,r and ‖h‖Lr .

The paper is organized as follows. Section 2 contains the notations and some preliminary
results that will be needed in the sequel. Section 3 is devoted to the proof of Theorem 1.2
and Section 4 is dedicated to the proof of the main result, Theorem 1.3. Finally in Section
5 we provide some comments about the approximation and the conclusion.

2. Notations and preliminary results

Throughout the paper we will denote by Bρ and BR balls of radii respectively ρ and R (with
ρ < R) compactly contained in Ω and with the same center, let us say x0 ∈ Ω. Moreover in
the sequel constants will be denoted by C, regardless their actual value. Only the relevant
dependencies will be highlighted.

First of all we state the following lemma which has important application in the so called
hole-filling method. Its proof can be found for example in [44, Lemma 6.1].

Lemma 2.1. Let h : [ρ0, R0] → R be a non-negative bounded function and 0 < ϑ < 1,
A,B ≥ 0 and β > 0. Assume that

h(s) ≤ ϑh(t) +
A

(t− s)β
+B,

for all ρ0 ≤ s < t ≤ R0. Then

h(r) ≤ cA

(R0 − ρ0)β
+ cB,

where c = c(ϑ, β) > 0.

We now present the higher differentiability result we need in the sequel. The proof can be
found in [39].
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Theorem 2.2. Let u ∈ Kψ(Ω) be a solution to the obstacle problem (1.1), such that
L(u,BR) = 0 for all BR b Ω, under the assumptions (1.5), (1.6), (1.10) and (1.9). Then

Dψ ∈ W 1,r
loc (Ω)⇒ V2−µ(Du) := (1 + |Du|2)−µ/4Du ∈ W 1,2

loc (Ω).

This result allows us to obtain the validity of the variational inequality for our minimization
problem. This is a relevant point, already in the autonomous case, see for instance [11], [12],
[28].

Proposition 2.3. Let u ∈ Kψ(Ω) be a solution to the obstacle problem (1.1), under the

assumptions (1.5), (1.6), (1.10) and (1.9). Then, if Dψ ∈ W 1,r
loc (Ω), then the following

variational inequality holds ∫
Ω

Dξf(x,Du) ·D(ϕ− u) dx ≥ 0 (2.1)

for all ϕ ∈ W 1,q
loc (Ω), ϕ ≥ ψ.

The proof of this result can be achieved arguing as in [13], observing that, by virtue of
Theorem 2.2 and (1.9), we have the right higher integrability to pass to the limit in the
variational inequality, namely the fact that

V2−µ(Du) ∈ L
2n
n−2

loc (Ω)⇒ Du ∈ Lqloc(Ω),

by virtue of (1.9), which yields

q

2− µ
< 1 +

1

r
− 1

n
<

n

n− 2
.

For more details see [39].

3. A priori estimate: the Lipschitz case

3.1. The linearization procedure. The linearization trocedure is a process which goes
back to [31] and later was refined in [20], see also [32], [33], [34]. We will follow the lines of
[4].
We consider a smooth function hε : (0,∞)→ [0, 1] such that h′ε(s) ≤ 0 for all s ∈ (0,∞) and

hε(s) =

{
1 for s ≤ ε

0 for s ≥ 2ε

Consider the function

ϕ = u+ t · η · hε(u− ψ)

with η ∈ C1
0(Ω), η ≥ 0 and 0 < t << 1 as test function, in the variational inequality (2.1).

We have ∫
Ω

Dξf(x,Du) ·D(ηhε(u− ψ)) dx ≥ 0 ∀ η ∈ C1
0(Ω) .

Since

η 7→ L(η) =

∫
Ω

Dξf(x,Du) ·D(ηhε(u− ψ)) dx
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is a bounded positive linear functional, by the Riesz representation theorem there exists a
nonnegative measure λε such that∫

Ω

Dξf(x,Du) ·D(ηhε(u− ψ)) dx =

∫
Ω

ηdλε ∀ η ∈ C1
0(Ω) .

It is not difficult to prove that the measure λε is independent to ε. Therefore we can write∫
Ω

Dξf(x,Du) ·D(ηhε(u− ψ)) dx =

∫
Ω

η dλ ∀ η ∈ C1
0(Ω) .

By Theorem 2.2 we have that

V2−µ(Du) := (1 + |Du|2)−
µ
4Du ∈ W 1,2

loc (Ω), (3.1)

Now, in order to identify the measure λ, we may pass to the limit as ε ↓ 0∫
Ω

−div(Dξf(x,Du))χ[u=ψ]η dx =

∫
Ω

η dλ ∀ η ∈ C1
0(Ω) . (3.2)

By introducing

g := −div(Dξf(x,Du))χ[u=ψ]; (3.3)

and combining our results we obtain∫
Ω

Dξf(x,Du) ·Dη dx =

∫
Ω

gη dx ∀ η ∈ C1
0(Ω) . (3.4)

We are left to obtain an L∞ estimate for g: since Du = Dψ a.e. on the contact set, by (1.6)
and (1.7) and the assumption Dψ ∈ W 1,∞

loc (Ω;Rn), we have

|g| =
∣∣div(Dξf(x,Du))χ[u=ψ]

∣∣ = |div(Dξf(x,Dψ))|

≤
n∑
k=1

|fξkxk(x,Dψ)|+
n∑

k,i=1

|fξkξi(x,Dψ)ψxkxi |

≤ L(1 + |Dψ|2)
q−1
2 + L(1 + |Dψ|2)

q−2
2 |D2ψ|

that is g ∈ L∞loc(Ω).

3.2. A priori estimate and conclusion. Our starting point is now (3.4). We make use
of the supplementary assumption u ∈ W 1,∞

loc (Ω), which is needed in order to let (3.4) to be
satisfied; this assumption will be removed by means of the approximation procedure. By
this further requirement and Theorem 2.2, the “second variation” system holds∫

Ω

(
n∑

i,j=1

fξiξj(x,Du)uxjxsDxiϕ+
n∑
i=1

fξixs(x,Du)Dxiϕ

)
dx =

∫
Ω

g Dxsϕdx, (3.5)

for all s = 1, . . . , n and for all ϕ ∈ W 1,2
0 (Ω). We fix 0 < ρ < R with BR compactly contained

in Ω and we choose η ∈ C1
0(Ω) such that 0 ≤ η ≤ 1, η ≡ 1 on Bρ, η ≡ 0 outside BR and

|Dη| ≤ C
(R−ρ)

. We test (3.5) with ϕ = η2(1 + |Du|2)γuxs , for some γ ≥ 0 so that

Dxiϕ = 2ηηxi(1 + |Du|2)γuxs + 2η2γ(1 + |Du|2)γ−1|Du|Dxi(|Du|)uxs + η2(1 + |Du|2)γuxsxi
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Inserting in (3.5) we get:

0 =

∫
Ω

n∑
i,j=1

fξiξj(x,Du)uxjxs2ηηxi(1 + |Du|2)γuxs dx

+

∫
Ω

n∑
i,j=1

fξiξj(x,Du)uxjxsη
2(1 + |Du|2)γuxsxi dx

+

∫
Ω

n∑
i,j=1

fξiξj(x,Du)uxjxs2η
2γ(1 + |Du|2)γ−1|Du|Dxi(|Du|)uxs dx

+

∫
Ω

n∑
i=1

fξixs(x,Du)2ηηxi(1 + |Du|2)γuxs dx

+

∫
Ω

n∑
i=1

fξixs(x,Du)η2(1 + |Du|2)γuxsxi dx

+

∫
Ω

n∑
i=1

fξixs(x,Du)2η2γ(1 + |Du|2)γ−1|Du|Dxi(|Du|)uxs dx

−
∫

Ω

g2ηηxs (1 + |Du|2)γ uxs dx

−
∫

Ω

g2η2γ (1 + |Du|2)γ−1|Du|Dxs(|Du|)uxs dx

−
∫

Ω

g η2(1 + |Du|2)γuxsxs dx

=: I1,s + I2,s + I3,s + I4,s + I5,s + I6,s + I7,s + I8,s + I9,s.

We sum in the previous equation all terms with respect to s from 1 to n, and we denote by
I1 − I9 the corresponding integrals.
By the Cauchy-Schwarz inequality, the Young inequality and (1.6), we have

|I1| =

∣∣∣∣∣
∫

Ω

2η (1 + |Du|2)γ
n∑

i,j,s=1

fξiξj(x,Du)uxjxsηxiuxs dx

∣∣∣∣∣
≤

∫
Ω

2η (1 + |Du|2)γ

×
n∑
s=1

∣∣∣∣∣
n∑

i,j=1

fξiξj(x,Du) ηxiηxju
2
xs

∣∣∣∣∣
1
2
∣∣∣∣∣

n∑
i,j=1

fξiξj(x,Du)uxsxi uxsxj

∣∣∣∣∣
1
2

dx

≤
∫

Ω

2η (1 + |Du|2)γ

×

∣∣∣∣∣
n∑

i,j,s=1

fξiξj(x,Du) ηxiηxju
2
xs

∣∣∣∣∣
1
2
∣∣∣∣∣

n∑
i,j,s=1

fξiξj(x,Du)uxsxi uxsxj

∣∣∣∣∣
1
2

dx
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≤ C

∫
Ω

(1 + |Du|2)γ

∣∣∣∣∣
n∑

i,j,s=1

fξiξj(x,Du) ηxiηxju
2
xs

∣∣∣∣∣ dx
+

1

4

∫
Ω

η2 (1 + |Du|2)γ
n∑

i,j,s=1

fξiξj(x,Du)uxsxi uxsxj dx

≤ C L

∫
Ω

(1 + |Du|2)
q−2
2

+γ

∣∣∣∣∣
n∑

i,j,s=1

ηxiηxju
2
xs

∣∣∣∣∣ dx
+

1

4

∫
Ω

η2 (1 + |Du|2)γ
n∑

i,j,s=1

fξiξj(x,Du)uxsxi uxsxj dx

≤ C

∫
Ω

|Dη|2 (1 + |Du|2)
q−2
2

+γ

∣∣∣∣∣
n∑
s=1

u2
xs

∣∣∣∣∣ dx
+

1

4

∫
Ω

η2(1 + |Du|2)γ
n∑

i,j,s=1

fξiξj(x,Du)uxsxi uxsxj dx

≤ C

∫
Ω

|Dη|2 (1 + |Du|2)
q
2

+γ dx

+
1

4

∫
Ω

η2 (1 + |Du|2)γ
n∑

i,j,s=1

fξiξj(x,Du)uxjxsuxixs dx

On the other hand, using (1.6) and the fact that Dxj(|Du|)|Du| =
∑n

k=1 uxjxkuxk , we can
estimate the term I3 as follows:

I3 =

∫
Ω

n∑
i,j,s=1

fξiξj(x,Du)uxjxs
[
2η2γ(1 + |Du|2)γ−1Dxi(|Du|)|Du|

]
uxs dx

≥ 2γ

∫
Ω

η2|Du|2γ−1

n∑
i,j,s=1

fξiξj(x,Du)Dxi(|Du|)uxjxsuxs dx

= 2γ

∫
Ω

η2|Du|2γ−1

n∑
i,j=1

fξiξj(x,Du)Dxi(|Du|)

(
n∑
s=1

uxjxsuxs

)
dx

= 2γ

∫
Ω

η2|Du|2γ
n∑

i,j=1

fξiξj(x,Du)Dxi(|Du|)Dxj(|Du|) dx

≥ 2γ ν

∫
Ω

η2|Du|2γ|D(|Du|)|2(1 + |Du|2)−
µ
2 dx

≥ 0
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We can estimate the fourth term by the Cauchy-Schwarz and the Young inequalities, together
with (1.7), as follows

|I4| =

∣∣∣∣∣2
∫

Ω

η(1 + |Du|2)γ
n∑

i,s=1

fξixs(x,Du)ηxiuxs dx

∣∣∣∣∣
(1.7)

≤ 2L

∫
Ω

η (1 + |Du|2)γ+ q−1
2

n∑
i,s=1

|ηxiuxs| dx

≤ C

∫
Ω

η|Dη||Du| (1 + |Du|2)γ+ q−1
2 dx

≤ C

∫
Ω

(η2 + |Dη|2)(1 + |Du|2)γ+ q
2 dx

We can estimate the fifth term observing that

q − 1

2
=

2q − 2

4
=

2q − 2− µ+ µ

4
= −µ

4
+

2q − 2 + µ

4
= −µ

4
+
q

2
− 2− µ

4
(3.6)

and by the Cauchy-Schwarz and the Young inequalities, together with (1.7), as follows

|I5| =

∣∣∣∣∣
∫

Ω

η2(1 + |Du|2)γ
n∑

i,s=1

fξixs(x,Du)uxsxi dx

∣∣∣∣∣
(1.7)

≤ L

∫
Ω

η2(1 + |Du|2)γ+ q−1
2

∣∣∣∣∣
n∑

i,s=1

uxsxi

∣∣∣∣∣ dx
= L

∫
Ω

η2(1 + |Du|2)γ+ q−1
2 |D2u| dx

= L

∫
Ω

[
η2(1 + |Du|2)γ−

µ
2 |D2u|2

] 1
2
[
η2(1 + |Du|2)γ+q− 2−µ

2

] 1
2
dx

≤ L

4

∫
Ω

η2(1 + |Du|2)γ−
µ
2 |D2u|2 dx+ C

∫
Ω

η2(1 + |Du|2)γ+q− 2−µ
2 dx

Finally, by (3.6), |D(|Du|)| ≤ |D2u|, the Cauchy-Schwarz and the Young inequalities and
(1.7) we have that

|I6| =

∣∣∣∣∣2γ
∫

Ω

n∑
i,s=1

fξixs(x,Du)η2(1 + |Du|2)γ−1|Du|Dxi(|Du|)uxs dx

∣∣∣∣∣
=

∣∣∣∣∣2γ
∫

Ω

η2(1 + |Du|2)γ−1|Du|
n∑

i,s=1

fξixs(x,Du)Dxi(|Du|)uxs dx

∣∣∣∣∣
≤ 2 γ

∫
Ω

η2(1 + |Du|2)γ−
1
2

∣∣∣∣∣
n∑

i,s=1

fξixs(x,Du)Dxi(|Du|)uxs

∣∣∣∣∣ dx
≤ 2 γ L

∫
Ω

η2(1 + |Du|2)γ−
1
2

+ q−1
2

∣∣∣∣∣
n∑

i,s=1

Dxi(|Du|)uxs

∣∣∣∣∣ dx
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≤ 2 γ L

∫
Ω

η2(1 + |Du|2)γ−
1
2

+ q−1
2 |D(|Du|)||Du| dx

≤ 2 γ L

∫
Ω

η2(1 + |Du|2)γ+ q−1
2 |D2u| dx

(3.6)
= L

∫
Ω

[
η2(1 + |Du|2)γ−

µ
2 |D2u|2

] 1
2
[
4 γ2 η2(1 + |Du|2)γ+q− 2−µ

2

] 1
2
dx

≤ L

4

∫
Ω

η2|D2u|2(1 + |Du|2)γ−
µ
2 dx+ C γ2

∫
Ω

η2(1 + |Du|2)γ+q− 2−µ
2 dx

where the constant C depends only on q, µ, L but it is independent of γ.
Let us now deal with the terms containing the function g. We use the bound

‖g‖L∞loc(Ω) ≤ C,

established in Section 3.1; even in this case the constant C is independent of γ.
We first have

|I7| =

∣∣∣∣∣
∫

Ω

2 η (1 + |Du|2)γ
n∑
s=1

g ηxs uxs dx

∣∣∣∣∣
≤

∫
Ω

2 η (1 + |Du|2)γ ‖g‖L∞(BR) |Dη| |Du| dx

≤ C ‖g‖L∞(BR)

∫
Ω

|Dη|2 (1 + |Du|2)γ+ 1
2 dx

≤ C ‖g‖L∞(BR)

∫
Ω

|Dη|2 (1 + |Du|2)γ+ q
2 dx

≤ C ‖g‖L∞(BR)

∫
Ω

|Dη|2 (1 + |Du|2)γ+q− 2−µ
2 dx

because we know that
q ≥ 2− µ

2q ≥ q + 2− µ
2q − 2 + µ ≥ q

so we have the inequality

q − 2− µ
2

=
2q − 2 + µ

2
≥ q

2
(3.7)

We know that

|I8| ≤ 2γ‖g‖L∞(BR)

∫
Ω

η2(1 + |Du|2)γ−1 |D(|Du|)| |Du|2 dx

≤ 2γ‖g‖L∞(BR)

∫
Ω

η2(1 + |Du|2)γ−1 |D2u| |Du|2 dx

and that

|I9| ≤ ‖g‖L∞(BR)

∫
Ω

η2 (1 + |Du|2)γ |D2u| dx
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so we can estimate them together and, going on as we did in I6, we have

|I8|+ |I9| ≤ 2γ ‖g‖L∞(BR)

∫
Ω

η2(1 + |Du|2)γ−1 |D2u| |Du|2 dx

+‖g‖L∞(BR)

∫
Ω

η2 (1 + |Du|2)γ |D2u| dx

≤ 2(γ + 1) ‖g‖L∞(BR)

∫
Ω

η2(1 + |Du|2)γ |D2u| dx

≤ L

4

∫
Ω

η2|D2u|2(1 + |Du|2)γ−
µ
2 dx

+C ‖g‖2
L∞(BR) (1 + γ2)

∫
Ω

η2(1 + |Du|2)γ+q− 2−µ
2 dx

Summing up and using (1.6) we obtain∫
Ω

η2 (1 + |Du|2)−
µ
2

+γ |D2u|2 dx ≤ C (1 + γ2)

∫
Ω

(η2 + |Dη|2) (1 + |Du|2)q−
2−µ
2

+γ dx (3.8)

where the constant C depends on ν, L, n, q, µ and on the local bounds on function g but is
independent of γ. By Sobolev embedding theorem, recalling that µ ≤ 2, we have(∫

Ω

η2∗(1 + |Du|2)(γ+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

=

(∫
Ω

η2∗(1 + |Du|2)(
γ
2

+ 2−µ
4 )2∗ dx

) 2
2∗

≤ C

∫
Ω

∣∣∣D [η (1 + |Du|2)
γ
2

+ 2−µ
4

]∣∣∣2 dx
≤ C

∫
Ω

|Dη|2 (1 + |Du|2)γ+ 2−µ
2 dx

+C (1 + γ2)

∫
Ω

η2
[
(1 + |Du|2)

γ
2

+ 2−µ
4
−1 |Du| |D2u|

]2

dx

= C

∫
Ω

|Dη|2 (1 + |Du|2)γ+ 2−µ
2 dx

+C (1 + γ2)

∫
Ω

η2 (1 + |Du|2)γ+ 2−µ
2
−2 |Du|2 |D2u|2 dx

= C

∫
Ω

|Dη|2 (1 + |Du|2)γ+ 2−µ
2 dx

+C (1 + γ2)

∫
Ω

η2 (1 + |Du|2)γ−
µ
2
−1 |Du|2 |D2u|2 dx

≤ C

∫
Ω

|Dη|2 (1 + |Du|2)γ+ 2−µ
2 dx

+C (1 + γ2)

∫
Ω

η2 (1 + |Du|2)γ−
µ
2 |D2u|2 dx,
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where we set

2∗ =


2n

n− 2
if n ≥ 3

any finite exponent if n = 2

and we can observe that 2∗ > 2. Thanks to the left hand side of (1.4), we know that

1 ≤ q

2− µ

2− µ ≤ q

2− µ
2
≤ q − 2− µ

2

which allow us to say that

γ +
2− µ

2
≤ q − 2− µ

2
+ γ,

so we can write(∫
Ω

η2∗(1 + |Du|2)(γ+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C

∫
Ω

|Dη|2 (1 + |Du|2)q−
2−µ
2

+γ dx

+C (1 + γ2)

∫
Ω

η2 (1 + |Du|2)γ−
µ
2 |D2u|2 dx.

Thanks to (3.8), we finally get(∫
Ω

η2∗(1 + |Du|2)(γ+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C(1 + γ2)

∫
Ω

(η2 + |Dη|2)(1 + |Du|2)γ+q− 2−µ
2 dx

from which we deduce(∫
Bρ

(1 + |Du|2)(γ+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C
(1 + γ2)

(R− ρ)2

∫
BR

(1 + |Du|2)γ+q− 2−µ
2 dx

for any 0 < ρ < R.
We introduce now the quantity σ such that

q − 2− µ
2

=
2− µ

2
+ σ; (3.9)

we observe that σ > 0 due to left hand side of assumption (1.4). Therefore(∫
Bρ

(1 + |Du|2)(γ+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C
(1 + γ2)

(R− ρ)2

∫
BR

(1 + |Du|2)γ+q− 2−µ
2 dx

= C
(1 + γ2)

(R− ρ)2

∫
BR

(1 + |Du|2)γ+ 2−µ
2

+σ dx
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which allows us to say that(∫
Bρ

(1 + |Du|2)(γ+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C
(1 + γ2)

(R− ρ)2
‖(1 + |Du|2)‖σL∞(BR)

∫
BR

(1 + |Du|2)γ+ 2−µ
2 dx

(3.10)
At this point we inductively define the exponents

γ1 := 0, γk+1 :=

[(
γk +

2− µ
2

)
2∗

2
− 2− µ

2

]
, αk := γk +

2− µ
2

, (3.11)

for every integer k ≥ 1. It follows that

αk+1 =

(
γk +

2− µ
2

)
2∗

2
= χαk with χ :=

2∗

2

By induction we can prove that

γk :=
2− µ

2

[(
2∗

2

)k−1

− 1

]
Now we consider 0 < ρ0 < R0 and set

Rk = ρ0 +
(R0 − ρ0)

2k
∀k ≥ 1

so that Rk+1 ≤ Rk for all k ≥ 1 and

Rk −Rk+1 =
(R0 − ρ0)

2k+1
.

We rewrite (3.10) with ρ = Rk+1 and R = Rk. We obtain(∫
BRk+1

(1 + |Du|2)(γk+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C
(1 + γ2

k)

(Rk −Rk+1)2
‖(1 + |Du|2)‖σL∞(BRk )

∫
BRk

(1 + |Du|2)γk+ 2−µ
2 dx (3.12)

from which we deduce(∫
BRk+1

(1 + |Du|2)(γk+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C
4k+1 (1 + γ2

k)

(R0 − ρ0)2
‖(1 + |Du|2)‖σL∞(BRk )

∫
BRk

(1 + |Du|2)γk+ 2−µ
2 dx

We set

Ak :=

(∫
BRk

(1 + |Du|2)(γk+ 2−µ
2

) dx

) 1

γk+
2−µ
2
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so that

Ak+1 :=

(∫
BRk+1

(1 + |Du|2)(γk+1+ 2−µ
2

) dx

) 1

γk+1+
2−µ
2

=

(∫
BRk+1

(1 + |Du|2)(γk+ 2−µ
2

) 2∗
2 dx

) 1

(γk+
2−µ
2 ) 2

∗
2

In this way, (3.12) becomes

Ak+1 ≤
[
C

4k+1 (1 + γ2
k)

(R0 − ρ0)2
‖(1 + |Du|2)‖σL∞(BRk )

] 1

γk+
2−µ
2
Ak

which can be also rewritten, in view of (3.11), as

Ak+1 ≤
[
C

4k+1 (1 + γ2
k)

(R0 − ρ0)2
‖(1 + |Du|2)‖σL∞(BRk )

] 1
αk

Ak

≤
k∏
i=1

[
C

4i+1 (1 + γ2
i )

(R0 − ρ0)2
‖(1 + |Du|2)‖σL∞(BRi )

] 1
αi

A1.

We estimate now the term in the right hand side multiplying A1 to show it is finite.
First of all, once more inductively by (3.11), we have

αk+1 =
2− µ

2

(
2∗

2

)k
so we can say that

∞∑
i=1

1

αi
=
∞∑
i=1

2

2− µ

(
2

2∗

)i−1

=
2

2− µ

∞∑
i=1

(
2

2∗

)i−1

We have for n ≥ 3

lim
k→+∞

k∏
i=1

[
‖1 + |Du|2‖σL∞(BRi )

] 1
αi

≤ lim
k→+∞

exp

(
log

(
k∏
i=1

[
‖1 + |Du|2‖σL∞(BR0

)

] 1
αi

))

= lim
k→+∞

exp

(
k∑
i=1

(
σ log ‖1 + |Du|2‖L∞(BR0

)

αi

))

= lim
k→+∞

‖1 + |Du|2‖
σ
∑k
i=1

(
1
αi

)
L∞(BR0

)

= ‖1 + |Du|2‖
σ
∑∞
i=1

(
1
αi

)
L∞(BR0

)

= ‖1 + |Du|2‖
σ 2

2−µ
∑∞
i=1( 2

2∗ )i−1

L∞(BR0
)
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(3.9)
= ‖1 + |Du|2‖

(q−2+µ) 2
2−µ

∑∞
i=1

(
2
2n
n−2

)i−1

L∞(BR0
)

= ‖1 + |Du|2‖
(q−2+µ) 2

2−µ
∑∞
i=1 (n−2

n
)i−1

L∞(BR0
)

= ‖1 + |Du|2‖
(q−2+µ) 2

2−µ
1

1−n−2
n

L∞(BR0
)

= ‖1 + |Du|2‖
q−2+µ
2−µ n

L∞(BR0
)

On the other hand, let us define

Mk =
k∏
i=1

[
C 4i+1 (1 + γ2

i )
] 1
αi = exp

(
k∑
i=1

log(C (1 + γ2
i ) 4i+1)

αi

)
and we have

lim
k→+∞

k∑
i=1

log(C (1 + γ2
i ) 4i+1)

αi

= lim
k→+∞

k∑
i=1

log(C) + (i+ 1) log(4) + log(1 + γ2
i )

αi

=
∞∑
i=1

log(C) + (i+ 1) log(4) + log(1 + γ2
i )

αi

=
2

2− µ

∞∑
i=1

log(C) + (i+ 1) log(4) + log(1 + γ2
i )

χi−1

≤ 2

2− µ

∞∑
i=1

log(C) + (i+ 1) log(4) + 2 log(γi)

χi−1

≤ 2

2− µ

∞∑
i=1

log(C) + (i+ 1) log(4) + 2 log(χ) (i− 1)

χi−1

=
2

2− µ

∞∑
i=1

Ai+B

χi−1

=
2

2− µ

∞∑
i=1

(Ai+B)

(
2

2∗

)i−1

Since χ = 2∗

2
≥ 1 and A, B are constants, we have that

lim
k→+∞

Mk ≤ exp

(
2

2− µ

∞∑
i=1

(Ai+B)

(
2

2∗

)i−1
)

= M <∞.
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Thanks to that and the fact that R0 > R1, together with the fact that A1 < ∞, letting
k → +∞, we can write that

‖1 + |Du|2‖L∞(Bρ0 ) ≤
M

(R0 − ρ0)
2n
2−µ
‖1 + |Du|2‖

q−2+µ
2−µ n

(∫
BR0

(1 + |Du|2)
2−µ
2 dx

) 2
2−µ

Assumption (1.4) implies:

q − 2 + µ

2− µ
n =

(
q

2− µ
− 1

)
n < 1,

so we can use the Young’s inequality with exponents 2−µ
(q−2+µ)n

and 2−µ
(2−µ)−(q−2+µ)n

, to get:

‖1+ |Du|2‖L∞(Bρ0 ) ≤
1

2
‖1+ |Du|2‖L∞(BR0

) +

(
M

(R0 − ρ0)
2n
2−µ

)θ (∫
BR0

(1 + |Du|2)
2−µ
2 dx

) 2θ
2−µ

for an exponent θ = θ (n, r, q, µ) > 0. Since previous estimate holds true for ρ < ρ0 < R0 < R
by Lemma 2.1 we get the desired a priori estimate

‖1 + |Du|2‖L∞(Bρ) ≤

(
M

(R− ρ)
2n
2−µ

)θ (∫
BR

(1 + |Du|2)
2−µ
2 dx

) 2θ
2−µ

The case n = 2 can be treated in an analogous way, only we need to observe that in this
case we would have

k∏
i=1

[
‖1 + |Du|2‖σL∞(BRi )

] 1
αi ≤ ‖1 + |Du|2‖

σ 2
2−µ

2∗
2∗−2

L∞(BR0
)

and passing to the limit in the exponent of the term in the right hand side as 2∗ → ∞ we
would obtain

2σ

2− µ
< 1⇔ q <

3

2
(2− µ),

which is exactly (1.4) in the case n = 2. The rest of the proof follows similarly.

4. A priori estimate: the Sobolev case

By proceeding along the same lines as in Section 3.1 to obtain∫
Ω

Dξf(x,Du) ·Dη dx =

∫
Ω

gη dx ∀ η ∈ C1
0(Ω) . (4.1)

We are left to obtain an Lr estimate for g: since Du = Dψ a.e. on the contact set, by (1.6)
and (1.10) and the assumption Dψ ∈ W 1,r

loc (Ω;Rn), we have

|g| =
∣∣div(Dξf(x,Du))χ[u=ψ]

∣∣ = |div(Dξf(x,Dψ))|

≤
n∑
k=1

|fξkxk(x,Dψ)|+
n∑

k,i=1

|fξkξi(x,Dψ)ψxkxi |

≤ h(x) (1 + |Dψ|2)
q−1
2 + L(1 + |Dψ|2)

q−2
2 |D2ψ|

that is g ∈ Lrloc(Ω).



LIPSCHITZ REGULARITY FOR OBSTACLE PROBLEMS WITH NEARLY LINEAR GROWTH 17

By requiring the same additional a priori assumptions as in Section 3.2, also in this case we
can assume that the “second variation” system holds∫

Ω

(
n∑

i,j=1

fξiξj(x,Du)uxjxsDxiϕ+
n∑
i=1

fξixs(x,Du)Dxiϕ

)
dx =

∫
Ω

g Dxsϕdx, (4.2)

for all s = 1, . . . , n and for all ϕ ∈ W 1,2
0 (Ω). We fix 0 < ρ < R with BR compactly contained

in Ω and we choose η ∈ C1
0(Ω) such that 0 ≤ η ≤ 1, η ≡ 1 on Bρ, η ≡ 0 outside BR and

|Dη| ≤ C
(R−ρ)

. We test (3.5) with ϕ = η2(1 + |Du|2)γuxs , for some γ ≥ 0 so that

Dxiϕ = 2ηηxi(1 + |Du|2)γuxs + 2η2γ(1 + |Du|2)γ−1|Du|Dxi(|Du|)uxs + η2(1 + |Du|2)γuxsxi

Inserting in (4.2) we get:

0 =

∫
Ω

n∑
i,j=1

fξiξj(x,Du)uxjxs2ηηxi(1 + |Du|2)γuxs dx

+

∫
Ω

n∑
i,j=1

fξiξj(x,Du)uxjxsη
2(1 + |Du|2)γuxsxi dx

+

∫
Ω

n∑
i,j=1

fξiξj(x,Du)uxjxs2η
2γ(1 + |Du|2)γ−1|Du|Dxi(|Du|)uxs dx

+

∫
Ω

n∑
i=1

fξixs(x,Du)2ηηxi(1 + |Du|2)γuxs dx

+

∫
Ω

n∑
i=1

fξixs(x,Du)η2(1 + |Du|2)γuxsxi dx

+

∫
Ω

n∑
i=1

fξixs(x,Du)2η2γ(1 + |Du|2)γ−1|Du|Dxi(|Du|)uxs dx

−
∫

Ω

g2ηηxs (1 + |Du|2)γ uxs dx

−
∫

Ω

g2η2γ (1 + |Du|2)γ−1|Du|Dxs(|Du|)uxs dx

−
∫

Ω

g η2(1 + |Du|2)γuxsxs dx

=: I1,s + I2,s + I3,s + I4,s + I5,s + I6,s + I7,s + I8,s + I9,s.

We sum in the previous equation all terms with respect to s from 1 to n, and we denote by
I1 − I9 the corresponding integrals.

By the fact that Dxj(|Du|)|Du| =
∑n

k=1 uxjxkuxk , the Cauchy-Schwarz inequality, the Young
inequality and (1.6), we can estimate the terms I1 and I3 as in Section 3.2.
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We can estimate the fourth term by the Cauchy-Schwarz and the Young inequalities, to-
gether with (1.10), as follows

|I4| =

∣∣∣∣∣2
∫

Ω

η (1 + |Du|2)γ
n∑

i,s=1

fξixs(x,Du) ηxiuxs dx

∣∣∣∣∣
(1.10)

≤ 2

∫
Ω

|h(x)| η (1 + |Du|2)γ+ q−1
2

n∑
i,s=1

|ηxiuxs| dx

≤ C

∫
Ω

|h(x)| η |Dη||Du| (1 + |Du|2)γ+ q−1
2 dx

≤ C

∫
Ω

|h(x)| (η2 + |Dη|2)(1 + |Du|2)γ+ q
2 ,

We can estimate the fifth term by (3.6) and by the Cauchy-Schwarz and the Young inequal-
ities, together with (1.10), as follows

|I5| =

∣∣∣∣∣
∫

Ω

η2(1 + |Du|2)γ
n∑

i,s=1

fξixs(x,Du)uxsxi dx

∣∣∣∣∣
(1.10)

≤
∫

Ω

|h(x)| η2 (1 + |Du|2)γ+ q−1
2

∣∣∣∣∣
n∑

i,s=1

uxsxi

∣∣∣∣∣ dx
=

∫
Ω

|h(x)| η2 (1 + |Du|2)γ+ q−1
2 |D2u| dx

=

∫
Ω

[
η2(1 + |Du|2)γ−

µ
2 |D2u|2

] 1
2
[
h2(x) η2(1 + |Du|2)γ+q− 2−µ

2

] 1
2
dx

≤ 1

4

∫
Ω

η2(1 + |Du|2)γ−
µ
2 |D2u|2 dx+

∫
Ω

h2(x) η2(1 + |Du|2)γ+q− 2−µ
2 dx.

Finally, by (3.6), |D(|Du|)| ≤ |D2u|, the Cauchy-Schwarz and the Young inequalities and
(1.10) we have that

|I6| =

∣∣∣∣∣2γ
∫

Ω

n∑
i,s=1

fξixs(x,Du)η2(1 + |Du|2)γ−1|Du|Dxi(|Du|)uxs dx

∣∣∣∣∣
=

∣∣∣∣∣2γ
∫

Ω

η2(1 + |Du|2)γ−1|Du|
n∑

i,s=1

fξixs(x,Du)Dxi(|Du|)uxs dx

∣∣∣∣∣
≤ 2 γ

∫
Ω

η2(1 + |Du|2)γ−
1
2

∣∣∣∣∣
n∑

i,s=1

fξixs(x,Du)Dxi(|Du|)uxs

∣∣∣∣∣ dx
≤ 2 γ

∫
Ω

η2 |h(x)| (1 + |Du|2)γ−
1
2

+ q−1
2

∣∣∣∣∣
n∑

i,s=1

Dxi(|Du|)uxs

∣∣∣∣∣ dx
≤ 2 γ

∫
Ω

η2 |h(x)| (1 + |Du|2)γ−
1
2

+ q−1
2 |D(|Du|)||Du| dx
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≤ 2 γ

∫
Ω

η2 |h(x)| (1 + |Du|2)γ+ q−1
2 |D2u| dx

(3.6)
=

∫
Ω

[
η2(1 + |Du|2)γ−

µ
2 |D2u|2

] 1
2
[
4 γ2 η2 h2(x) (1 + |Du|2)γ+q− 2−µ

2

] 1
2
dx

≤ 1

4

∫
Ω

η2|D2u|2(1 + |Du|2)γ−
µ
2 dx+ C γ2

∫
Ω

η2 h2(x) (1 + |Du|2)γ+q− 2−µ
2 dx,

where the constant C depends only on q, µ but it is independent of γ.
Let us now deal with the terms containing the function g. We use the bound

‖g‖Lrloc(Ω) ≤ C,

established thanks to the new assumption on the gradient of the obstacle; also in this case
the constant C is independent of γ.
By (3.7), we first have

|I7| =

∣∣∣∣∣
∫

Ω

2 η (1 + |Du|2)γ
n∑
s=1

g ηxs uxs dx

∣∣∣∣∣
≤

∫
Ω

2 η (1 + |Du|2)γ |g| |Dη| |Du| dx

≤ C

∫
Ω

|g| |Dη|2 (1 + |Du|2)γ+ 1
2 dx

≤ C

∫
Ω

|g| |Dη|2 (1 + |Du|2)γ+ q
2 dx

≤ C

∫
Ω

|g| |Dη|2 (1 + |Du|2)γ+q− 2−µ
2 dx

We know that

|I8| ≤ 2γ

∫
Ω

|g| η2(1 + |Du|2)γ−1 |D(|Du|)| |Du|2 dx

≤ 2γ

∫
Ω

|g| η2(1 + |Du|2)γ−1 |D2u| |Du|2 dx

and that

|I9| ≤
∫

Ω

|g| η2 (1 + |Du|2)γ |D2u| dx

so we can estimate them together and, going on as we did in I6, we have

|I8|+ |I9| ≤ 2 γ

∫
Ω

|g| η2 (1 + |Du|2)γ−1 |D2u| |Du|2 dx+

∫
Ω

|g| η2 (1 + |Du|2)γ |D2u| dx

≤ 2 (1 + γ)

∫
Ω

|g| η2(1 + |Du|2)γ |D2u| dx

≤ 1

4

∫
Ω

η2|D2u|2(1 + |Du|2)γ−
µ
2 dx
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+C (1 + γ2)

∫
Ω

|g|2 η2 (1 + |Du|2)γ+q− 2−µ
2 dx

Summing up and using (1.6), we obtain∫
Ω

η2 (1 + |Du|2)−
µ
2

+γ |D2u|2 dx

≤ C Θ (1 + γ2)

[∫
Ω

(η2m + |Dη|2m) (1 + |Du|2)(q−
2−µ
2

+γ)m dx

] 1
m

(4.3)

where the constant C depends on ν, L, q, µ but is independent of γ and where we set

Θ = 1 + ‖g‖2
Lr(Ω) + ‖h‖2

Lr(Ω)

and

m =
r

r − 2
(4.4)

By Sobolev embedding theorem, by the left hand side of (1.9), recalling that µ ≤ 2 and
proceding as we did in Section 3.2 we have(∫

Ω

η2∗(1 + |Du|2)(γ+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C

∫
Ω

|Dη|2 (1 + |Du|2)q−
2−µ
2

+γ dx

+C (1 + γ2)

∫
Ω

η2 (1 + |Du|2)γ−
µ
2 |D2u|2 dx

where we set 2∗ the same way we did before, a part from the case n = 2 for which we assume
2∗ > 2m.
Thanks to (4.3), we finally get(∫

Ω

η2∗(1 + |Du|2)(γ+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C Θ (1 + γ2)

[∫
Ω

(η2m + |Dη|2m)(1 + |Du|2)(q−
2−µ
2

+γ)m dx

] 1
m

from which we deduce(∫
Bρ

(1 + |Du|2)(γ+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C
Θ (1 + γ2)

(R− ρ)2

[∫
BR

(1 + |Du|2)(q−
2−µ
2

+γ)m dx

] 1
m

for any 0 < ρ < R.
At this point we introduce the quantity σ defined as

σ = q − 2− µ
2
− 2− µ

2m

where we observe that σ > 0 due to left hand side inequality of assumption (1.9) and the
fact that m > 1. That allow us to say that

q − 2− µ
2

= σ +
2− µ
2m
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Therefore(∫
Bρ

(1 + |Du|2)(γ+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C
Θ (1 + γ2)

(R− ρ)2

[∫
BR

(1 + |Du|2)(q−
2−µ
2

+γ)m dx

] 1
m

= C
Θ (1 + γ2)

(R− ρ)2

[∫
BR

(1 + |Du|2)(σ+ 2−µ
2m

+γ)m dx

] 1
m

which allow us to say that(∫
Bρ

(1 + |Du|2)(γ+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C
Θ (1 + γ2)

(R− ρ)2
‖(1 + |Du|2)‖σL∞(BR)

[∫
BR

(1 + |Du|2)γm+ 2−µ
2 dx

] 1
m

(4.5)

We now inductively define the exponents

γ1 := 0, γk+1 :=
1

m

[(
γk +

2− µ
2

)
2∗

2
− 2− µ

2

]
, αk := mγk +

2− µ
2

,

for every integer k ≥ 1. It follows that

αk+1 =

(
γk +

2− µ
2

)
2∗

2
= χαk + τ

where we have set

χ :=
2∗

2m
and τ :=

2∗α1

r
=

2∗(2− µ)

2r

By induction we can prove that

αk+1 = α1χ
k + τ

k−1∑
i=0

χi =
2− µ

2
χk + τ

k−1∑
i=0

χi (4.6)

and

γk+1 =
α1

m
(χk − 1) +

τ

m

k−1∑
i=0

χi =
2− µ
2m

(χk − 1) +
τ

m

k−1∑
i=0

χi (4.7)

For a later use, we record the elementary estimate

γk+1 ≤
2α1

χ− 1
χk+1 =

2− µ
χ− 1

χk+1 (4.8)

Now we consider 0 < ρ0 < R0 and set

Rk = ρ0 +
(R0 − ρ0)

2k
∀k ≥ 1
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so that Rk+1 ≤ Rk for all k ≥ 1 and

Rk −Rk+1 =
(R0 − ρ0)

2k+1
.

We rewrite (4.5) with ρ = Rk+1 and R = Rk. We obtain(∫
BRk+1

(1 + |Du|2)(γk+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C
Θ (1 + γ2

k)

(Rk −Rk+1)2
‖(1 + |Du|2)‖σL∞(BRk )

[∫
BRk

(1 + |Du|2)mγk+ 2−µ
2 dx

] 1
m

(4.9)

from which we deduce(∫
BRk+1

(1 + |Du|2)(γk+ 2−µ
2 ) 2∗

2 dx

) 2
2∗

≤ C
4k+1 Θ (1 + γ2

k)

(R0 − ρ0)2
‖(1 + |Du|2)‖σL∞(BRk )

[∫
BRk

(1 + |Du|2)mγk+ 2−µ
2 dx

] 1
m

and we can write∫
BRk+1

(1 + |Du|2)(γk+ 2−µ
2 ) 2∗

2 dx

≤
[
C

4k+1 Θ (1 + γ2
k)

(R0 − ρ0)2

] 2∗
2

‖(1 + |Du|2)‖
2∗σ
2

L∞(BRk )

[∫
BRk

(1 + |Du|2)mγk+ 2−µ
2 dx

]χ
(4.10)

For each k ∈ N, we define:

Ak :=

(∫
BRk

(1 + |Du|2)αkdx

) 1
αk

where αk = mγk + 2−µ
2

and αk+1 =
(
γk + 2−µ

2

)
2∗

2
. So we can rewrite (4.8) as:

Ak+1 ≤
[
C

4k+1 Θ (1 + γ2
k)

(R0 − ρ0)2

] 2∗
2αk+1

(
‖(1 + |Du|2)‖

2∗σ
2

L∞(BRk )

) 1
αk+1

A
αkχ

αk+1

k

Iterating this inequality we obtain:

Ak+1 ≤
k∏
i=1

[
C

4i+1 Θ (1 + γ2
i )

(R0 − ρ0)2

] 2∗χk−i
2αk+1

(
‖(1 + |Du|2)‖

2∗σ
2

L∞(BR)

) 1
αk+1

∑k−1
i=0 χ

i

A
χkα1
αk+1

1 (4.11)

We can notice that

lim
k→+∞

1

αk+1

k−1∑
i=0

χi = lim
k→+∞

∑k−1
i=0 χ

i

α1χk + τ
∑k−1

i=0 χ
i
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= lim
k→+∞

χk − 1

α1(χ− 1)χk + τ(χk − 1)

=
1

α1(χ− 1) + τ

≤ 2

(χ− 1)α1

and that

lim
k→+∞

χkα1

αk+1

=
α1(χ− 1)

α1(χ− 1) + τ
= δ (4.12)

We define:

Mk :=
k∏
i=1

[
C 4i+1 (1 + γ2

i )
] 2∗χk−i

2αk+1 = exp

[
2∗

2αk+1

k∑
i=1

χk−i log
(
C 4i+1(1 + γ2

i )
)]

and we have, thanks to (4.6):

Mk = exp

[
2∗

2αk+1

k∑
i=1

χk−i log(C) + χk−i(i+ 1) log(4) + χk−i log(1 + γ2
i )

]

= exp

[
2∗

2

k∑
i=1

log(C) (χ− 1)

[α1 (χ− 1) + τ ]χi − τ χi−k

]
exp

[
2∗

2

k∑
i=1

(i+ 1) log(4) (χ− 1)

[α1 (χ− 1) + τ ]χi − τ χi−k

]

× exp

[
2∗

2

k∑
i=1

log(1 + γ2
i ) (χ− 1)

[α1 (χ− 1) + τ ]χi − τ χi−k

]
= exp(L1k) + exp(L2k) + exp(L3k)

Now we show that those three quantities are bounded by some constants Ci, i = 1, . . . , 6
depending only on the data n, r, µ, q.
Let us start with the estimate of L1 as follows:

L1 = lim
k→+∞

2∗

2

k∑
i=1

log(C) (χ− 1)

[α1 (χ− 1) + τ ]χi − τ χi−k

= lim
k→+∞

2∗

2

k∑
i=1

log(C)

χi
[

2−µ
2

(χ− 1) + τ − τ
χk

]
≤ lim

k→+∞

2∗

2

k∑
i=1

log(C)

χi (χ− 1) 2−µ
2

=
2∗ log(C)

(2− µ)(χ− 1)

∞∑
i=1

(
1

χ

)i
≤ C1 < +∞
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Then, for L2 we can say that:

L2 = lim
k→+∞

2∗

2

k∑
i=1

(i+ 1) log(4) (χ− 1)

[α1 (χ− 1) + τ ]χi − τ χi−k

= lim
k→+∞

2∗

2

k∑
i=1

(i+ 1) log(C)

χi
[

2−µ
2

(χ− 1) + τ − τ
χk

]
≤ lim

k→+∞

2∗

2

k∑
i=1

(i+ 1) log(C)

χi (χ− 1) 2−µ
2

=
2∗ log(C)

(2− µ)(χ− 1)

∞∑
i=1

i+ 1

χi

=
2∗ log(C)

(2− µ)(χ− 1)

[
∞∑
i=1

i

(
1

χ

)i
+
∞∑
i=1

(
1

χ

)i]
≤ C2 < +∞

And for L3, thanks to (4.7), we can conclude that

L3 = lim
k→+∞

2∗

2

k∑
i=1

log(1 + γ2
i ) (χ− 1)

[α1 (χ− 1) + τ ]χi − τ χi−k

= lim
k→+∞

2∗

2

k∑
i=1

(χ− 1) log(1 + γ2
i )

χi
[

2−µ
2

(χ− 1) + τ − τ
χk

]
= lim

k→+∞

2∗

2

k∑
i=2

(χ− 1) log(1 + γ2
i )

χi
[

2−µ
2

(χ− 1) + τ − τ
χk

]
≤ 2∗

2− µ

∞∑
i=2

log(1 + γ2
i )

χi

≤ 2∗

2− µ

∞∑
i=2

log
(
γ2
i

(
1 + 1

γ2i

))
χi

=
2∗

2− µ

∞∑
i=2

log(γ2
i ) + log

(
1 + 1

γ2i

)
χi

=
2∗

2− µ

∞∑
i=2

log(γ2
i )

χi
+

2∗

2− µ

∞∑
i=2

log
(

1 + 1
γ2i

)
χi

= L4 + L5
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where we can say that

L4 =
2∗

2− µ

∞∑
i=2

log(γ2
i )

χi

=
2 2∗

2− µ

∞∑
i=2

log(γi)

χi

=
2∗

2− µ

∞∑
i=2

log
((

2−µ
2

+ τ
χ−1

)
χi−1−1
m

)
χi

= C3 +
2 2∗

2− µ

∞∑
i=2

log(χi−1 − 1)

χi

≤ C3 +
2 2∗

2− µ

∞∑
i=2

(i− 1) log(χ)

χi

≤ C3 +
2 2∗

2− µ

∞∑
i=2

i− 1

χi

≤ C3 + C4 < +∞

L5 =
2∗

2− µ

∞∑
i=2

log
(

1 + 1
γ2i

)
χi

≤ 2 2∗

2− µ

∞∑
i=2

log
(

1 + 1
γi

)
χi

≤ 2 2∗

2− µ

∞∑
i=2

1

χi γi

=
2 2∗

2− µ

∞∑
i=2

1

χi
(

2−µ
2

+ τ
χ−1

)
χi−1−1
m

= C5

∞∑
i=2

1

χi (χi−1 − 1)

≤ C5

∞∑
i=2

1

χi (χ− 1)

= C5

∞∑
i=2

1

χi

≤ C6 < +∞
So we have that

lim
k→+∞

Mk = lim
k→+∞

exp(L1) + lim
k→+∞

exp(L2) + lim
k→+∞

exp(L3)
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≤ exp(C1) + exp(C2) + exp(C3 + C4 + C6)

≤ M < +∞

Last but not least we have that

X := lim
k→+∞

k∑
i=1

2∗χk−i

2αk+1

= lim
k→+∞

2∗

2

k∑
i=1

χk−i

2−µ
2
χk + τ

∑k−1
i=0 χ

i

= lim
k→+∞

2∗

2

k∑
i=1

χk−i

2−µ
2
χk + τ χ

k−1
χ−1

= lim
k→+∞

2∗ (χ− 1)

2

k∑
i=1

1
2−µ

2
(χ− 1)χi + τχi − τχi−k

= lim
k→+∞

2∗ (χ− 1)

2

k∑
i=1

1

χi
[

2−µ
2

(χ− 1) + τ − τ
χk

]
≤ lim

k→+∞

2∗ (χ− 1)

2

k∑
i=1

1

χi (χ− 1)2−µ
2

=
2∗

2− µ

∞∑
i=1

1

χi
<∞

Thanks to (4.12) and letting k → +∞, noticing that R0 > R1, we can we can rewrite (4.11)
as follows

‖1 + |Du|2‖L∞(Bρ0 ) ≤
M ΘX

(R0 − ρ0)2X
‖1 + |Du|2‖

2∗ σ
2α1 (χ−1)+2τ

(∫
BR0

(1 + |Du|2)
2−µ
2 dx

) 2 δ
2−µ

Now we have that

E :=
2∗ σ

2α1 (χ− 1) + 2τ

=
2∗ σ

2
2−µ

2
(χ− 1) + 2∗ α1

r

=
2∗

2

[
q − (2− µ)

(
1
2

+ 1
2m

)]
2−µ

2

(
2∗

2m
− 1
)

+ 2∗ (2−µ)
2r

=
2∗
[
q − (2− µ)

(
1
2

+ 1
2m

)]
(2− µ)

[
2∗

2m
− 1 + 2∗

r

]
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and once more we have to prove that E < 1. Now, if n ≥ 3 then we are done if and only if
we have that

2∗
[
q − (2− µ)

(
1

2
+

1

2m

)]
< (2− µ)

[
2∗

2m
− 1 +

2∗

r

]

2∗
[
q − (2− µ)

(
1

2
+

1

2m

)]
< 2∗ (2− µ)

[
1

2m
− 1

2∗
+

1

r

]

q < (2− µ)

[
1

2
+

1

2m
+

1

2m
− 1

2∗
+

1

r

]
but using the equality

1

2m
− 1

2∗
=

1

n
− 1

r
(4.13)

we know that

1

2
+

1

2m
+

1

2m
− 1

2∗
+

1

r
=

1

2
+

2

2∗
+

2

n
− 2

r
− 1

2∗
+

1

r

=

[
1

2
+

1

2∗
+

2

n

]
− 1

r

=

[
1

2
+
n− 2

2n
+

2

n

]
− 1

r

=
n+ n− 2 + 4

2n
− 1

r

= 1 +
1

n
− 1

r
,

and the thesis is proved. On the other hand, if n = 2, then passing to the limit as 2∗ →∞
in the expression of E we deduce

σ

(2− µ)
(

1
2m

+ 1
r

) < 1⇔ q < (2− µ)

[
1

2
+

1

m
+

1

r

]
(4.4)
= (2− µ)

[
3

2
− 1

r

]
which is nothing but (1.9) with the choice n = 2. Thus we can use the Young’s inequality

with exponents 2α1 (χ−1)+2τ
2∗ σ

and 2α1 (χ−1)+2τ
[2α1 (χ−1)+2τ ]−2∗ σ

, to get:

‖1 + |Du|2‖L∞(Bρ0 ) ≤
1

2
‖1 + |Du|2‖L∞(BR0

) +

(
M ΘX

(R0 − ρ0)2X

)ϑ (∫
BR0

(1 + |Du|2)
2−µ
2 dx

) 2δϑ
2−µ

for an exponent ϑ = ϑ (n, r, q, µ) > 0. Since previous estimate holds true for ρ < ρ0 < R0 <
R, once more by Lemma 2.1 we finally get

‖1 + |Du|2‖L∞(Bρ) ≤
(

MΘX

(R− ρ)2X

)ϑ (∫
BR

(1 + |Du|2)
2−µ
2 dx

) 2δϑ
2−µ
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5. Conclusion

The Lipschitz regularity results usually are carried out over three steps: approximation, a
priori estimates and passage to the limit. We note that our a priori estimates do not require
any additional assumption on the structure of the Lagrangian f . This means that we can
choose different methods in order to carry out our main results.
As long as we are in the situation where the Lavrentiev phenomenon does not occurr, we
can approximate from above like it has been done in [39], to which we refer for the details
(the only difference is obviously in the a priori estimate, but all the rest can be carried out
in the same way). We remark that, differently from [25], we have enough regularity to pass
to the limit without involving the relaxed functional.
In this respect, the presence of the function F̄ with superlinear growth and the strict con-
vexity of the functional reveal to be crucial in order to perform the passage to the limit.
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