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Abstract

We study the vortex trajectories for the two-dimensional complex
parabolic Ginzburg-Landau equation without well-preparedness assump-
tion. We prove that the trajectory set is rectifiable, satisfies a weak
motion law. In the case of degree ±1 vortices, the motion law is satis-
fied in the classical sense. Moreover, dissipation occurs only at a finite
number of times. Away from these times, possible collisions and split-
tings of vortices are constrained by algebraic equations involving their
topological degrees.

Quantization properties of the energy and potential densities play
a central role in the proofs.
2000 Mathematics Subject Classification : 35B40, 35K55, 35Q40.

1 Introduction

This paper is a sequel of our previous paper [3] on the two-dimensional
dissipative Ginzburg-Landau equation

(PGL)ε


∂uε

∂t
−∆uε =

1
ε2

uε(1− |uε|2) on R2 × R+
∗ ,

uε(z, 0) = u0
ε(z) for z = x + iy ≡ (x, y) ∈ R2 .

Of special interest is the asymptotic limit ε → 0. In particular, it has been
recognized that for this asymptotics the energy bound

(H0) Eε(u0
ε) =

∫
RN

eε(u0
ε) =

∫
RN

|∇u0
ε|2

2
+

1
4ε2

(1− |u0
ε|2)2 ≤ M0|log ε|

for the initial datum u0
ε, with some constant M0 > 0 independent of ε, allows

the formation of interesting topological defects, called vortices, which will be
described below. It has also been recognized that in the two-dimensional case
that we study here, accelerating time, e.g. considering the time scale s =

1



t
|log ε| , is appropriate to investigate the dynamics of these vortices. Therefore
we consider the map uε, defined on R2 × R+ by

uε(z, s) = uε(z, s|log ε|).

The first result of [3] (which extended in particular earlier works [11, 12])
stated a compactness and rigidity result for limiting maps of (uε)ε>0.

Theorem 1 ([3]). For a subsequence εn → 0 we have

uεn(z, s) → u∗(z, s) =
`(s)∏
i=1

(
z − ai(s)
|z − ai(s)|

)di(s)

exp[i(〈~c(s), z〉+ b(s)], (1)

where, for i = 1, ..., `(s), ai(s) ∈ R2, di(s) ∈ Z and where b(s) ∈ [0, 2π) and
~c : R+ → R2 is a lipschitz function. The convergence 1 in (1) is uniform on
every compact subset of R2 × R+ \ Σv, where

Σv = ∪s>0 ∪`(s)
i=1 {ai(s)}.

We proved moreover that the numbers `(s) and di(s) are uniformly
bounded, i.e. there exists a constant C(M0) such that

`(s) ≤ C(M0), |di(s)| ≤ C(M0), (2)

and that, except for a finite number of times,

di(s) 6= 0. (3)

We also showed that Σv is closed, and of locally finite two-dimensional
parabolic Hausdorff measure.

Notice that for fixed s > 0, the limiting map u∗ is completely determined
by a finite number of parameters, namely the set of points {ai(s)}1≤i≤`(s),
which are usually referred to as vortices, the integers di(s) ∈ Z, which
are the degrees of the vortices, the number b(s) ∈ R, which is a constant

1In [3] the convergence in (1) was stated a little differently, namely uεn × ∇uεn →

w∗ × ∇w∗ + ~c, and |uεn | → 1. Here w∗(z, s) =
∏`(s)

i=1

(
z−ai(s)
|z−ai(s)|

)di(s)

. Moreover, the

convergence (1) holds in Ck for the space variables, uniformly in the time variable, away
from Σv.
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phase shift, and the vector ~c(s) ∈ R2, reminiscent of a wavenumber.2 This
reduction in the limit to a finite dimensional situation motivated us to use
the term “rigidity” to describe the limiting map.

The set
Σv = ∪s>0Σs

v = ∪s>0 ∪`(s)
i=1 {ai(s)}

represents the trajectories of the vortices: we will therefore refer to it in
some places as the trajectory set. The next important step in order to
understand the limiting dynamics is to describe carefully Σv: this is one of
the main goals of this paper. In [3] we derived a first, rather weak regularity
property of Σv, restated here in Lemma 2.3 and 2.5. Our first result in this
paper is

Theorem 2. The trajectory set Σv is a closed, one-dimensional countably
rectifiable subset of R2 × R+.

Recall that a set Σ ⊂ RN is said to be 1-dimensional countably rectifiable
if it is contained in a countable union of lipschitz curves, except possibly
for a subset of zero 1-dimensional Hausdorff measure. Since Σv describes
the dynamics of vortices, we will actually show that Σv is contained in a
countable union of graphs of Lipschitz functions defined from time intervals
of R+ into R2.

If moreover the one-dimensional Hausdorff measure of Σv were known
to be locally finite, then one would be able to define a (one-dimensional)
tangent space to Σv in a weak sense at almost every point3 (ai(s), s), in
view of general results in geometric measure theory. This would give a
natural meaning to the speed of the vortices. Since we do not have this
information, we adopt the next definition.

Definition 1. Let (ai(s0), s0) ∈ Σv. The vector ~v ∈ R2 is said to be an
approximate speed of the vortex ai(s0) at time s0 if there exists a function
f : R+ → R2 such that f(s0) = ai(s0), f(s) ∈ Σs

v ∀ s > 0 and f has an
approximate derivative 4 at s0 equal to ~v.

2Notice that functions ~c and b depend only on the time variable s, but not on the space
variable z. The function ~c can be directly deduced from the initial value, for instance by
Fourier transform. It accounts for persistence of low frequency oscillations in the phase
over the diverging time period considered, namely t = s|log ε|. The possible presence of
low frequencies is of course related to the fact that the domain R2 is unbounded. In case
of bounded domains, the function ~c would vanish. Whereas we have a good control for ~c,
we do not know if similar properties hold for b. This would require refined estimates for
the time derivative ∂tuε at the ε level.

3with respect to the one-dimensional Hausdorff measure.
4For the notion of approximate derivative, see [9], 3.1.2.
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Notice that, if not empty, the set of approximate speeds might well be
not reduced to a singleton (for instance, in case of branching points of the
trajectories). However, we have

Theorem 3. For almost every s > 0 and for any i = 1, ..., `(s), the vortex
ai(s) has a unique approximate speed denoted ȧi(s) and given by

ȧi(s) =
1

di(s)

~c(s)⊥ + 2
`(s)∑

i6=j=1

dj(s)∇ai(log |ai(s)− aj(s)|)

 . (4)

Theorem 3 shows that the motion law for the vortices is given by an or-
dinary differential equation, at least in a weak sense, outside an exceptional
set of null measure. The next result shows that the ODE governing the
dynamics is satisfied in a classical sense for degree ±1 vortices, and also, for
arbitrary degrees, outside a closed set with empty interior.

Theorem 4. i) There exists an open dense set O in R+ such that for every
subinterval J ⊂ O, the number of vortices `(s) and the degrees di(s), i =
1, ..., `(s), are constant for s ∈ J , and the set Σv ∩ R2 × J is given by a
disjoint union of smooth curves, which are integral curves of the ODE (4).

ii) If s0 ∈ R+
∗ is such that |di(s0)| = 1 for any i = 1, ..., `(s0), then the

maximal interval of existence Is0 = (s0, smax) of the ODE (4) with initial
time s0 is contained in O.

iii) Assume smax in statement ii) is such that di(smax) ∈ {−1, 0,+1}
for any i ∈ 1, ..., `(smax), and consider the the ODE (4) with initial time
smax and with points ai such that di(smax) = 0 dropped. Then its maximal
interval of existence is contained in O.

In other words, statement iii) is a unique continuation principle (gov-
erned by ODE’s) as long as collisions do not lead to multiple degrees.

Statement ii) in Theorem 4 was already proved in [11, 12, 16, 18] in the
case of “well-prepared” initial data, i.e. having l vortices of degree +1 and
−1 and an energy Eε(u0

ε) = πl|log ε| + O(1): this is actually the minimal
energy required for such a vortex configuration. In [17], this well-prepared
assumption was somewhat relaxed to Eε(u0

ε) ≤ πl|log ε| + |log ε|
(log |log ε|)β for

some β > 1. In this case ~c ≡ 0, and the ODE (4) is the gradient flow of the
Kirchhoff function

W (a1, ..., al) = 2
l∑

i6=j=1

didj log |ai − aj |.
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We emphasize that equation (4) was shown there to be verified everywhere,
in the classical sense, but only up to the first collision time smax. Such
collisions are however an unavoidable aspect of the complete dynamics, in
particular when vortices of opposite degrees are present.5

In the general case, when the degrees are not assumed to be equal to
±1, one of the main obstacles that we need to face is the fact that the
total number of vortices is a priori not constant, even not locally constant.
Besides collisions, the possible splitting of vortices of multiple degree (i.e.
|di(s)| > 1) into several vortices of different degrees (of arbitrary sign), and
their possible later recombinations represent both a mathematical and
conceptual difficulty.

The language and tools of geometric measure theory are one way to cir-
cumvent these difficulties. However, we believe that the results in Theorem
2 and 3 might be improved, and in particular that set Σv is a finite union
of smooth disjoint curves with finitely many branching points.

The Radon measures vs
ε defined for s ≥ 0 on R2 × {s} by

vs
ε(x) =

eε(uε(x, s))
|log ε|

dx,

as well as the measures

W s
ε ds ≡ Vε(uε) dx ds =

(1− |uε|2)2

4ε2
dx ds,

are central in the proofs. These quantities possess remarkable properties
inherited from the equation (PGL)ε. It was shown in [3] (Theorem 4 and 5
there) that there exists a subsequence εn → 0 such that, for each s > 0,

vs
εn

⇀ vs
∗ =

`(s)∑
i=1

θi(s)δai(s) as n →∞, (5)

for some non negative densities θi(s). Here we prove that these densities
are actually quantized, and related to the degrees of the vortices. A similar
property holds for the potential Vε as well.

5In particular, if u0
ε has two vortices of degree 1 and −1 located at the points a−1(0) =

−1 and a1(0) = 1, then in view of (4), the limiting map u∗ has two vortices given by
ai(s) = (−1)i

√
1− 2s, i = −1, 1. These two vortices will collide at time s = 1

2
. This is

a special case of collision of vortices with total degree zero. Such a situation is analyzed
in [3], Theorem 3 (see also for bounded domains the more recent paper [17] which gives
in particular a detailed analysis of a single dipole ±1 annihilation). In the example given
above the two vortices disappear after collision time and the map u∗ is then constant.
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Theorem 5. For all but finitely many s > 0 we have

θi(s) = πd2
i (s). (6)

Moreover, as n → +∞,

Vεn(uεn)dxds ⇀ W∗ = W s
∗ds =

π

2

`(s)∑
i=1

d2
i (s)δai(s) ⊗ ds (7)

in the sense of measures on R2 × R+.

In particular, the measures 1
πvs

∗ and 2
πW s

∗ coincide and are equal to sums
of Dirac masses located at the points ai(s), with integer valued weights.
They are therefore quantized.

Notice that (6) and (7) were already derived in the elliptic case in [2] for
minimizers, and in [7] for critical points: as a matter of fact, a substantial
part of our proof of (6) and (7) relies heavily on the method presented in
[7]. This part, mainly relying on elliptic PDE techniques (the focus is put
on the perturbed stationary Ginzburg-Landau equation), is presented in
the Appendix. Independently, the perturbed stationary Ginzburg-Landau
equation is considered in [17] with quite similar results.

At this stage, it is also worthwhile to notice that as a consequence of
Theorem 5 ii) of [3], the quantity A(s) ≡

∑
i di(s)2 is non-increasing: since

it is an integer it is also piecewise constant. More precisely, we have

Lemma 1. There exists a finite set {0 = τ0 < τ1 < · · · < τq < τq+1 = +∞}
such that for every s ∈ (τk, τk+1)

A(s) ≡
`(s)∑
i=1

d2
i (s) = 1

πvs
∗(R2) = 2

πW s
∗ (R2) = nk = Cste,

where nk ∈ N depends only on k and nk+1 < nk.

An important consequence of Lemma 1 is that the dissipation rate |∂tuε|2
vanishes asymptotically on R2 × (τk, τk+1) (see Corollary 3.1), yielding a
flavour of reversibility to the evolution equation. This allows us to establish
the ”straight cone property”, stated in Proposition 4.1 ii), which is a major
ingredient in our proofs of Theorem 2 and Theorem 3.

The following theorem is a substantial extension to the κ-confinement
result presented in [3] Theorem 3.
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Theorem 6. Let s0 ∈ (τk, τk+1), a ∈ R2, r > 0 and 0 < κ ≤ 1
2 be such that

(Hκ(a, r, s0)) ∅ 6= Σs0
v ∩B(a, r) ⊂ B(a, κr).

There exist constants 0 < κ1 ≤ 1
2 and γ1 > 0 ,depending only on M0, such

that if 0 < κ ≤ κ1 and

dist(s0, {τk, τk+1}) ≥ γ1κ
2r2

then,

Γ ≡
∑
i∈J

d2
i (s0)−

(∑
i∈J

di(s0)

)2

= 0, (8)

where we have set J = {i ∈ 1, ..., `(s0) | ai(s0) ∈ B(a, r)}. More precisely,

if Γ > 0 then τk+1 − s0 < γ1κ
2r2 and if Γ < 0 then s0 − τk < γ1κ

2r2.

Relation (8) was already proved in [7] for the stationary equation on
a bounded domain. As a matter of fact, it is one of the key ingredients
for proving quantization of the energy. A cluster of vortices {ai(s0)}i∈J for
which Γ 6= 0 is called an unbalanced cluster in [17]: Theorem 6 shows that
unbalanced confined clusters at small scale may only be found close to the
collision times τk.

In particular, given s0 ∈ (τk, τk+1) and i ∈ {1, ..., `(s0)} , there exists
∆s0 > 0 and r ≡ r(s0) > 0 such that

Σs
v ∩ (B(ai(s0), r) \B(ai(s0), r/2)) = ∅

and

Γ(s) ≡
∑

aj(s)∈B(ai(s0),r)

d2
j (s)−

 ∑
aj(s)∈B(ai(s0),r)

dj(s)

2

= 0 (9)

for every s ∈ (s0 −∆s0, s0 + ∆s0).
An important consequence is that vortex splittings or recombinations

at times different from the τk’s have to satisfy the algebraic equilibrium
equation (9) for the degrees.

Combining Theorem 6 with scaling arguments and results for the per-
turbed elliptic Ginzburg-Landau equation presented in the Appendix, we
may now improve the quantization result stated in (6) by
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Theorem 7. Let Ω ⊂ R2 be a smooth bounded domain and s0 /∈ {τ0, ..., τq}
be such that Σs0

v ∩ ∂Ω = ∅. Then, if n is sufficiently large, we have

|
∫
Ω

eεn(uεn(x, s0))dx− nΩπ| log εn||

≤ C(M0, s0,Ω)(‖∂tuεn(., s0| log εn|)‖2
L2 + 1), (10)

where nΩ =
∑

ai(s0)∈Ω d2
i (s0).

In some sense, Theorem 7 is the parabolic generalization of the main
result in [7]: in particular if ‖∂tuε(., s0|log ε|)‖ = O(1), then Eε(uε(., s0,Ω)
is up to an O(1) error equal to an integer multiple of π|log ε|, as in [7] for
the elliptic case. Notice however that in general this integer is not equal
to the square of the total degree as in [7]. In a forthcoming work, we
will show, under mild compactness assumptions on the initial datum, that
Eε(uε(., s0|log ε|),Ω) is up to an O(1) error equal to an integer multiple of
π|log ε| for any s0 /∈ {τ0, ..., τq}. This kind of result will provide an alternative
proof of the rectifiability of Σv and will moreover show that its H1 measure
is locally finite.

Acknowledgments. We wish to thank Giovanni Alberti, Myriam Comte,
Petru Mironescu and Sylvia Serfaty for fruitful discussions.

2 A brief account on some useful facts

In this section, we recall some formulas and results on (PGL)ε, recast and
complete them in a form suitable for our further analysis. We begin with
the following well-known evolution formula for the localized energy density,
from which the main results in this paper stem: for χ ∈ C∞c (R2), we have

d

ds

∫
R2

χ(x) dµt
ε = −

∫
R2×{t}

χ(x)|∂tuε|2 dx

+
∫

R2×{t}

(
D2χ∇uε · ∇uε −∆χeε(uε)

)
dx, (2.1)

where t = s|log ε|. Using this formula and the PDE analysis of [3], we derive

Lemma 2.1. Let K ⊂ R2 × R+ \ Σv be a compact set. Then

eε(uε) ≤ C(K), on K (2.2)

||uε| − 1| ≤ C(K)ε on K , (2.3)
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and ∫
K
|∂uε

∂t
|2(x, s|log ε|) dxds ≤ C(K)

|log ε|
. (2.4)

Proof. The first statement follows from (5.15) and (5.16) in [3]. For (2.3), we
invoke Theorem 2.1 of [3], inequalities (2.23) and (2.24) there, which asserts
that if |uε| ≥ 1 − σ0 on some parabolic cylinder Λ ≡ B(x, r) × [T − r2, T ],
for some universal constant 0 < σ0 < 1/2, then

||1− |uε| ||L∞(Λ1/2) ≤ C(Λ, σ0)ε2|log ε|,

where Λ 1
2
≡ B(x, r/2) × [T − r2/4, T ]. Therefore Vε(uε) → 0 uniformly on

Λ1/2 and the conclusion follows.
Finally, formula (2.4) follows from identity (2.1) and (2.2).

Next, we have, using the results from Appendix A.

Lemma 2.2. For 0 < s1 < s2 and sufficiently small ε, it holds∫
R2×[s1,s2]

|∂tuε|2 dxds ≤ CM0 (2.5)

and ∫
R2×[s1,s2]

Vε(uε) dxds ≤ CM0(1 + |s2 − s1|). (2.6)

Proof. Inequality (2.5) is a direct consequence of the energy identity (2.1)
for χ ≡ 1,

d

ds

∫
R2

dµt
ε = −

∫
R2×{t}

|∂tuε|2 dx,

and the fact that t = s|log ε|.
For (2.6) we invoke Proposition A.2 of the Appendix, with say β = 1/2.

We write (PGL)ε in the elliptic form

−∆uε =
1
ε2

uε(1− |uε|2) + fε, (2.7)

where
fε = −∂tuε .

In view of (2.5),
∫
[s1,s2]×R2 |fε|2 ≤ CM0, so that ||fε(·, s)||L2(R2) ≤ ε−1/2 for

any s ∈ [s1, s2]\A, where meas(A) ≤ C(M0)ε1/2. It follows from Proposition
A.2 that ∫

R2×{s}
Vε(uε) ≤ C(M0) ∀ s ∈ [s1, s2] \A,
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and therefore integrating, we are led to∫
R2×([s1,s2]\A)

Vε(uε) ≤ C(M0)|s2 − s1|.

On the other hand, ∫
R2×A

Vε(uε) ≤ C(M0)ε1/2|log ε|,

and the conclusion follows.

In view of Lemma 2.2, we may assume, passing possibly to a further
subsequence εn → 0 that

|∂tuεn(x, s|log ε|)|2dxds ⇀ ω∗ (2.8)

and
Vεn(uεn(x, s|log ε|))dxds ⇀ W∗ (2.9)

in the sense of measures. It follows also from Lemma 2.1, that ω∗ and W∗
are supported in Σv.

In another direction, we obtained in [3] the following regularity property6

for Σv.

Lemma 2.3 ([3] Theorem 2). Let s0 > 0 and (ai(s0), s0) ∈ Σv, for
i = 1, ..., `(s0). There exists a neighborhood O of (ai(s0), s0) in R2 × R+

such that
Σv ∩ O ⊆ Σv ∩ C,

where C is the parabolic cone defined by

C = {(a, s) ∈ R2 × R+ such that |s− s0| ≥ α|a− ai(s0)|2},

and where α > 0 is a constant depending only on M0.

In our proofs, we will require in some places a more quantitative version
of Lemma 2.3.

Lemma 2.4. Let s0 > 0 and r > 0 be given. There exist constants σ0, γ0

depending only on M0, such that if

Σs0
v ⊂ ∪n(s0)

i=1 B(xi, r),

6Which is clearly superseded by Theorem 2
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where the points x1, .., xn(s0) ∈ R2 verify

|xi − xj | ≥ σ0r ∀i 6= j = 1, ..., n(s0),

then
Σs

v ⊂ ∪n(s0)
i=1 B(xi,

σ0r

8
)

for every s0 ≤ s ≤ s0 + γ0r
2.

Proof. Let R > 0 such that Σs0
v ⊂ B(0, R). Set

Ωε(t) =

{
x ∈ R2 ,

∫
B(x,rε)

eε(uε(·, t)) ≥
η0

2
|log ε|

}
,

where rε = |log ε|−1/6 and η0 is some constant provided in [3] Theorem 2
(actually a lower bound on the densities θi which appear in (5)). Since by
assumption Σs0

v ⊂ ∪n(s0)
i=1 B(xi, r) it follows that, for ε sufficiently small,

Ωε(s0|log ε|) ∩B(0, R) ⊂ ∪n(s0)
i=1 B(xi, r + rε).

Applying Proposition 4.4 of [3] (also called the cylinders lemma) we obtain

Ωε(s|log ε|) ∩B(0, R) ⊂ ∪n(s0)
i=1 B(xi,

σ0

8
(r + rε))

for every s0 ≤ s ≤ s0 + γr2. On the other hand, if x ∈ Σs
v then for each

neighborhood Ux of x one has∫
Ux

eε(uε(·, s)) ≥
η0

2
|log ε|

for sufficiently small ε, so that Ux ∩ Ωε(s|log ε|) 6= ∅, and the conclusion
follows.

A rather direct consequence of Lemma 2.4 is

Lemma 2.5. Set

r(s0) =
1
4

inf{|ai(s0)− aj(s0)|, 1 ≤ i < j ≤ `(s0)}. (2.10)

We have, for every 0 ≤ r ≤ r(s0)

Σv ∩ R2 × [s0, s0 + αr2] ⊆ ∪`(s0)
j=1 B(aj(s0), r)× [s0, s0 + αr2], (2.11)

where α = γ0

σ2
0
, and σ0, γ0 are as in Lemma 2.4.
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Remark 2.1. Consider, for 0 ≤ r ≤ r(s0) and s0 ≤ s ≤ s0 + αr2, the total
degree

d(ai(s0), s, r) ≡ deg(u∗(·, s), ∂B(ai(s0), r)).

It follows from the continuity properties of the degree and Lemma 2.5 that

d(ai(s0), s, r) = di(s0).

In particular, if di(s) 6= 0, then d(ai(s0), s, r) 6= 0 so that

Σs
v ∩B(ai(s0), r) 6= ∅ (2.12)

for any 0 ≤ r ≤ r(s0) and s0 ≤ s ≤ s0 + αr2.

3 Properties of the limiting measures

3.1 Leading order quantization

This section contains a first step towards the quantization result stated in
Theorem 5 and Lemma 1: we establish that the limiting energy density
and potential are quantized7. The argument is mainly of elliptic nature and
is developed in the Appendix. On the other hand, the precise relation of
the densities with the degrees of the vortices will be a consequence of the
dynamical law discussed in Section 3.2 (see Proposition 4.1). We have first

Proposition 3.1. For all but finitely many s > 0 we have

θi(s) ∈ πN. (3.1)

In particular, there exists a finite set {0 = τ0 < τ1 < ... < τq < τq+1 = +∞}
such that

vs
∗(R2) = πnk for every s ∈ (τk, τk+1) , k = 0, ..., q, (3.2)

where nk ∈ N. Moreover, nk > nk+1 for all k = 0, · · · , q.

Proof. We write again (PGL)ε in the elliptic form (2.7) with perturbation
term fε = −∂tuε. Our aim is to apply Theorem A.2. In order to do so, we
fix first some arbitrary time S > 0 and then choose R > 0, sufficiently large
so that

Σs
v ⊂ BR for every s ∈ [0, S]. (3.3)

7The precise value of the quantization will be established later in Section 4.
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We next check the validity of the bounds (A.5) and (A.6) for some suit-
able constant M0 independent of ε. First notice that (A.5) are standard
consequences of (PGL)ε and assumption (H0) on the initial datum, and are
actually valid for any time s > 0, on the whole of R2.

On the other hand, by (3.3) and Lemma 2.1,

|eε(uε)| ≤ C(M0, S) ∀z ∈ B2R \BR,

so that (A.6) holds (with B1 replaced by BR). Finally, we claim that, for
any given σ > 0 there exists a subset Fε ⊂ [0, S] such that

meas([0, S] \ Fε) ≤ σ,

and ∫
BR

|∂tuε|2(x, s) + Vε(uε(x, s)) ≤ C(σ, S), ∀ s ∈ Fε.

This is an immediate consequence of Lemma 2.2. Consider the set

F =
∞⋂

n=1

⋃
k≥n

Fεk
,

where (εk)k ∈ N is the sequence in Theorem 1. It follows that meas(F ) =
limn→+∞ meas ∪k≥n Fεk

≥ S − σ, so that

meas([0, S] \ F ) ≤ σ.

Next let s0 ∈ F . It follows from the definition of F that s0 belongs to Fεk

for infinitely many k ∈ N, so that for some subsequence (depending possibly
on s0) denoted εn, we have, for all n ∈ N,∫

BR

|∂tuεn(x, s0)|2 + Vεn(uεn(x, s0))dx ≤ C(σ, S).

Let i ∈ {1, ..., `(s0)}, r(s0) be given by (2.10), and χi ∈ C∞c (R2) such that
0 ≤ χi ≤ 1, χi ≡ 1 on B(ai(s0), r(s0)), and χi ≡ 0 outside B(ai(s0), 2r(s0)).
We have, by (5)

vs0
εn

(χi) → θi(s0).

On the other hand, it follows from Theorem A.2 in the Appendix, applied
to uεn(· − ai(s0), s0) with R = r(s0), that there exists n(s0) ∈ N such that

vs
εn

(B(ai(s0), r(s0))) = πn(s0) + o(1) as n → +∞.
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Moreover, since (B(ai(s0), 2r(s0)) \B(ai(s0), r(s0))) ∩ Σs0
v = ∅, we have

vs0
εn

(B(ai(s0), 2r(s0)) \B(ai(s0), r(s0))) = o(1) as n → +∞.

Hence
vs0

εn
(χi) → πn(s0) as n → +∞,

and therefore θi(s0) = πn(s0). Since S and σ were arbitrarily chosen, we
infer that θi(s) ∈ πN for almost all s > 0 and for all i = 1, ..., `(s).

Recall that, by [3], Theorem 5 ii), the function s → ||vs
∗|| is non-increasing.

On the other hand, we just proved that for a.e. s > 0, ||vs
∗|| ∈ πN. There-

fore, there exists a finite number of times τ1 < .. < τq ∈ R+ such that ||vs
∗||

is constant on any interval not containing any of the τi, i = 1, .., q. This
proves the global identity (3.2).

We show next that θi(s) ∈ πN for any s /∈ {τ1, ..., τq}, and i ∈ {1, ..., `(s)}
(so far we proved that fact only for a.e. s), thus proving the local equality
(3.1). Set r(s) as in (2.10) and define χi ∈ C∞c (R2) such that 0 ≤ χi ≤ 1,
χi ≡ 1 on B(ai(s), r(s)), and χi ≡ 0 outside B(ai(s0), 2r(s0)). We have

vs
∗(χi) = θi(s).

On the other hand, by [3], Theorem 5 ii), both of the functions τ 7→ vτ
∗(χi)

and τ 7→ vτ
∗(1−χi) are non-increasing in a right neighborhood of s, whereas

their sum is constant. They are therefore constant on this neighborhood.
Since we already know that vτ

∗(χi) ∈ πN for almost every τ , it follows that
θi(s) ∈ πN and the proof is complete.

As a byproduct of the previous discussion, we deduce the following

Corollary 3.1. We have

ω∗ =
q∑

k=1

`(τk)∑
i=1

βi(τk)δ(ai(τk),τk),

where βi(τk) ∈ πN for k = 1, ..., q and i = 1, ..., `(τk). In particular, for
every k = 0, ..., q,

ω∗
(
R2 × (τk, τk+1)

)
= 0.

The measure W∗ can be directly deduced from the energy density in view
of the following

14



Proposition 3.2. The following identity holds.

W∗ =
1
2
vs
∗ ⊗ ds =

`(s)∑
i=1

θi(s)
2

δai(s)

⊗ ds.

Proof. We first notice that, as an immediate consequence of Lemma 2.1,
supp (W∗) ⊂ Σv. We next divide the proof into two steps.

Step 1. Let s0 > 0 and 0 < r ≤ r(s0), where r(s0) is given by (2.10). Then,
for 0 < δ ≤ αr2/4, where the constant α is defined in Lemma 2.5, and for
i = 1, ..., `(s0),

W∗(B(ai(s0), r)× [s0, s0 + δ]) = δ · θi(s0)
2

. (3.4)

By Lemma 2.5, Σs
v∩B(ai(s0), 3r) ⊂ B(ai(s0), r/2) for every s ∈ [s0, s0 + δ].

It follows from Lemma 2.1 that the energy density eε(uε) is uniformly
bounded on (B(ai(s0), 2r) \ B(ai(s0), r)) × [s0, s0 + δ]. Our aim is to ap-
ply8 Theorem A.1 and Theorem A.2 of the Appendix to uε restricted to
B(ai(s0), 2r)× {s}, for s ∈ [s0, s0 + δ], in order to prove that∫

B(ai(s0),r)×[s0,s0+δ]
Vε(uε) = δ · θi(s0)

2
+ o(1). (3.5)

For that purpose, we split the time interval of integration [s0, s0 + δ] into
three disjoint parts. Let M2 > 0 be given, set

F ε = {s ∈ [s0, s0 + δ], ||∂tuε(·, s)||L2(R2) ≤ M2},

Aε
1 = {s ∈ [s0, s0 + δ], M2 ≤ ||∂tuε(·, s)||L2(R2) ≤ ε−1/2},

Aε
2 = {s ∈ [s0, s0 + δ], ||∂tuε(·, s)||L2(R2) ≥ ε−1/2}.

Since
∫
R2×R+ |∂tuε|2 ≤ M0, we deduce

meas(Aε
1) ≤ C(M0)M−2

2 , meas(Aε
2) ≤ M0ε.

By Theorem A.1,∫
B(ai(s0),2r)×Aε

1

Vε(uε) ≤ C(M0)meas(Aε
1) ≤ C(M0)M−2

2 , (3.6)

8after a suitable scaling
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whereas, by (H0), ∫
B(ai(s0),2r)×Aε

2

Vε(uε) ≤ C(M0)ε|log ε| . (3.7)

We turn finally to Fε. It follows from Theorem A.2 that for s ∈ Fε we have∣∣∣∣∣
∫

B(ai(s0),r)×{s}
Vε(uε)−

eε(uε)
2|log ε|

∣∣∣∣∣ ≤ C(M0,M2)√
|log ε|

.

Collecting the previous estimates we obtain, setting Λ0 = B(ai(s0), r) ×
[s0, s0 + δ],∣∣∣∣∫

Λ0

Vε(uε) − δ · θi(s0)
2

∣∣∣∣
≤
∣∣∣∣∫

Λ0

eε(uε)
2|log ε|

− δ · θi(s0)
2

∣∣∣∣+
∣∣∣∣∣
∫

B(ai(s0),r)×(Fε∪Aε
1∪Aε

2)
Vε(uε)−

eε(uε)
2|log ε|

∣∣∣∣∣
≤
∣∣∣∣∫

Λ0

eε(uε)
2|log ε|

− δ · θi(s0)
2

∣∣∣∣+ C(M0,M2)√
|log ε|

+ C(M0)M−2
2 + C(M0)ε|log ε|.

We conclude by letting first ε → 0, and then M2 → +∞.

Step 2. Proof of Proposition 3.2 completed. Let χ ∈ C∞c (R2 × R+).
We wish to prove that

∫
χdW∗ =

∫
R+

`(s)∑
i=1

θi(s)
2

χ(ai(s))ds. (3.8)

By Step 2, we know that (3.8) holds when χ is the characteristic function
of a cylinder of the form

B(ai(s0), r)× [s0, s0 + δ], (3.9)

for s0 > 0, r < r(s0), i = 1, ..., `(s0) and δ < αr2. The proof of (3.8) in the
general case follows by approximating χ with piecewise constant functions,
(constant on cylinders of the type of (3.9))9, the absolute continuity in time
of W∗ (given by Lemma 2.2) and Step 1.

9A covering of Σv by a disjoint union of such cylinders is given in [3], Lemma 5.3 .
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3.2 Motion law for the limiting energy density

Our purpose is to describe the evolution of the energy integral
∫

χdvs
∗, where

χ is a smooth test function with compact support. We impose moreover
some special property, which was already introduced in [3], namely that
there exists some r > 0 such that

Hr(s)
∂2χ

∂z̄2
= 0 on ∪`(s)

i=1 B(ai(s),
r

8
).

Proposition 3.3. Let 0 < s0 < s1 and assume that χ satisfies Hr(s) for
any s ∈ [s0, s1]. Then, for s ∈ (s0, s1),

d

ds

(∫
R2

χdvs
∗

)
= Fs

core(χ) + Fs
inter(χ) + Fs

drift(χ) + Fs
dissip(χ), (3.10)

where

Fs
core(χ) =

`(s)∑
i=1

[πd2
i (s)− θi(s)]

∆χ

2
(ai(s)) (3.11)

Fs
inter(χ) = 2

`(s)∑
i6=j=1

πdi(s)dj(s)∇ai(log |ai(s)− aj(s)|) · ∇χ(ai(s)) (3.12)

Fs
drift(χ) =

`(s)∑
i=1

πdi(s)~c(s)⊥ · ∇χ(ai(s)) (3.13)

and
Fs

dissip(χ) =
∫

R2×{s}
χ(x)dω∗(x, s). (3.14)

The first term Fs
core(χ) on the r.h.s. of (3.10) stems from the fine core

structure of the vortices at the ε-level, in the same spirit as the analysis
performed in the Appendix (taking fε = −∂tvε). We see for instance that
it vanishes for |di(s)| = 1, whereas its contribution is more delicate to ana-
lyze in the multiple degree case. The second term Fs

inter(χ) represents the
mutual interaction of the vortices, and was already derived in earlier works
on the subject (see [12], [11], [15], [13], [8]). Finally, the third term Fs

drift(χ)
stems from the interaction of the vortices with the field ~c, the residual, low
frequency part of the phase.

Proof of Proposition 3.3. Using Pohozaev’s identity, formula (2.1) may
be rewritten as (see e.g. Lemma 2.3 of [3])

d

ds

∫
R2

χ(x) dvs
ε = −

∫
R2×{s|log ε|}

χ(x)|∂tuε|2 dx + FS(s, χ, uε),
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where

FS(s, χ, uε) =
∫

R2×{s}

(
D2χ∇uε · ∇uε −∆χeε(uε)

)
dx.

A little algebra (see [3] Section 2.1) shows that

FS(s, χ, uε) = −
∫

R2×{s}
∆χdW s

ε + 2Re
∫

R2×{s}
ω(uε)

∂2χ

∂z̄2
,

where the Hopf differential ω(v) is defined by

ω(v) = |vx1 |2 − |vx2 |2 − 2ivx1 · vx2 .

Since convergence in (1) holds in C1 (for space variables) out of the support
of ∂2χ

∂z̄2 , by assumption (Hr(s)) and Theorem 1, we obtain

FS(s, χ, uε) ds →
(
−
∫

R2×{s}
∆χdW s

∗ + 2Re
∫

R2×{s}
ω(u∗)

∂2χ

∂z̄2

)
ds

as ε → 0. An explicit computation shows that

ω(u∗)(z, s) = −
(`(s)∑

i=1

di(s)
z − ai(s)

)2
− 2

`(s)∑
i=1

ic̄(s)
di(s)

z − ai(s)
+ |c(s)|2.

Further explicit computations (see e.g. Proposition 7.1 of [3]) then lead to

− 2Re
∫

R2×{s}

(`(s)∑
i=1

di(s)
z − ai(s)

)2 ∂2χ

∂z̄2
=

`(s)∑
i=1

πd2
i (s)

∆χ

2
(ai(s))

+ 2
`(s)∑

i6=j=1

πdi(s)dj(s)∇ai(log |ai(s)− aj(s)|) · ∇χ(ai(s)).

Similarly,

−4Re
∫

R2×{s}

`(s)∑
i=1

ic̄(s)
di(s)

z − ai(s)
∂2χ

∂z̄2
=

`(s)∑
i=1

πdi(s)~c(s)⊥ · ∇χ(ai(s)),

and

2Re
∫

R2×{s}
|c(s)|2 ∂2χ

∂z̄2
= 0.
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On the other hand, in view of Proposition 3.2 we have

W s
∗ds =

`(s)∑
i=1

θi(s)
2

∆χ(ai(s))⊗ ds,

whereas by (2.8), for any interval I ⊂ R+∫
I

∫
R2

χ(x)|∂tuε|2(x, s|log ε|) dxds →
∫

I×R2
χ(x)dω∗.

The conclusion follows by summation.

Formula (3.10) as well as the energy quantization are the starting points
in order to derive the motion law for the vortices. Before we turn directly
to this issue, we emphasize first in the next section some further regularity
properties of Σv.

3.3 Backward continuity for Σv

In view of Proposition 3.1 and Corollary 3.1 the energy is conserved and
dissipation vanishes asymptotically on the strips R2 × (τk, τk+1). This fact
yields some nice reversibility properties for the limiting equations: in par-
ticular we will derive in this section some backward continuity for Σv.

Lemma 3.1. Let s0 ∈ (τk, τk+1) and r(s0) be given by (2.10). There exists
a constant α0 depending only on M0 such that for every 0 < r ≤ r(s0)

Σv ∩ R2 × (s′, s0] ⊆ ∪`(s0)
j=1 B(aj(s0), r)× (s′, s0], (3.15)

where s′ = max{s0 − α0r
2, τk}.

The proof is based on the forward continuity property expressed in the
Cylinders Lemma 2.4 and Lemma 2.5, as well as the local conservation of
energy, a consequence of Proposition 3.1.

Proof. Let 0 < r ≤ r(s0) be given and define r̃ = (2σ0)−C(M0)−1r, and
α0 = γ0(2σ0)−2C(M0)−2 where C(M0) is defined in (2) and σ0, γ0 in Lemma
2.5. Set s′ = max{s0 − α0r

2, τk} and let s′ < s′′ < s0. Applying Lemma 5.2
of [3] to Σs′′

v = {ai(s′′), i = 1, ..., `(s′′) ≤ `0} with σ = σ0 and r0 = r, we
deduce that

Σs′′
v ⊂ ∪j∈JB(aj(s′′), r̃′),

for some r̃′ such that r̃ ≤ r̃′ ≤ r̃(2σ0)C(M0), and moreover

|aj(s′′)− ak(s′′)| ≥ σ0r̃
′ for any j 6= k ∈ J.
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Hence Lemma 2.4 applies to Σs′′
v , so that

Σs
v ⊂ ∪j∈JB(aj(s′′),

σ0r̃
′

8
) for any s′′ ≤ s ≤ s′′ + γ0(r̃′)2, (3.16)

and in particular, since by definition of α0

γ0(r̃′)2 ≥ γ0(r̃)2 ≥ α0r
2,

we obtain

Σs0
v ⊂ ∪j∈JB(aj(s′′),

σ0r̃
′

8
).

Set

J ′ = {j ∈ J, B(aj(s′′),
σ0r̃

′

8
) ∩ Σs0

v = ∅}.

Assume that J ′ 6= ∅, and let j ∈ J ′. Since s′′ > τk by assumption, we obtain
by (3.16)

vs′′
∗ (B(aj(s′′),

σ0r̃
′

8
)) = vs0

∗ (B(aj(s′′),
σ0r̃

′

8
)) = 0,

a contradiction. Therefore, J ′ = ∅ so that

∪j∈JB(aj(s′′),
σ0r̃

′

8
) ⊆ ∪`(s0)

j=1 B(aj(s0),
σ0r̃

′

4
) ⊆ ∪`(s0)

j=1 B(aj(s0), r), (3.17)

where we have used the inequality r̃′ ≤ (2σ0)C(M0)r̃ and the definition of r̃.
Combining (3.16) and (3.17) the conclusion (3.15) follows.

4 Quantization formula and the cone property

In this section we prove two results which are central in the arguments
of the paper, in particular they will allow us to complete the proofs of
Theorem 5 and Theorem 6. The first one is an explicit formulation of the
quantization, whereas the second deals with the regularity properties of
Σv. More precisely, we have shown so far that near each point ai(s0), for
s0 /∈ {τ1, ..., τq}, the set of the trajectories Σv is included in a two-sided
parabolic cone. Here, we improve that property and prove that we may
actually replace the parabolic cone by a straight cone.

Let s0 > 0 be given such that s0 /∈ {τ1, ..., τq}, and r(s0) given by (2.10).
In view of the continuity properties of Σv stated in Lemma 2.5 and Lemma
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3.1, there exists ∆s0 > 010, such that for every s ∈ [s0 −∆s0, s0 + ∆s0] and
i ∈ 1, ..., `(s0),

Σs
v ∩B(ai(s0), r(s0)) \B(ai(s0), r(s0)/2) = ∅. (4.1)

For i = 1, ..., `(s0), we set Bi ≡ B(ai(s0), r(s0)).

Proposition 4.1. i) For every s /∈ {τ1, ..., τq},

θi(s) = πd2
i (s). (4.2)

In particular, for s /∈ {τ1, ..., τq}, Fs
core(χ) ≡ 0 ∀χ ∈ C∞c (R2).

ii) There exists K(M0, s0) > 0 such that for every s ∈ [s0−∆s0, s0+∆s0]
and every ak(s) ∈ Bi,

|ak(s)− ai(s0)| ≤ K(M0, s0)|s− s0|.

Moreover,

K(M0, s0) = C(M0)[
1

r(s0)
+ ||~c||L∞ ].

Remark. Notice however that the parameters of the cone (as well as the
O.D.E.) obey the parabolic scaling. In particular, this is a major obstacle
on the way to prove the finiteness of the H1 measure of Σv.

The proof of Proposition 4.1 relies on Lemmas 4.1 and 4.2 below, which
are both consequences of the evolution equation for the limiting energy den-
sity. More precisely, we apply formula (3.10) with test functions with com-
pact support near a given vortex ai(s0). Let us emphasize however that
the test functions allowed are strongly constrained by condition Hr(s0).
Therefore, we have essentially to restrict ourselves to two kinds of functions.
First, we consider functions χ that are affine near ai(s0), that is of the form
χ(x) = 〈~v, x〉+b. This will give us information on the local center of mass of
the measure and its drift. Secondly, we consider functions that near ai coin-
cide with the squared distance to ai(s0), i.e. χ(x) = |x−ai(s0)|2. This gives
specific information concerning the core of the vortex (i.e., possible splitting
and recombinations). In particular it allows to relate θi(s0) to d2

i (s0).

Lemma 4.1. With s0 > 0, ai(s0) and ∆s0 as above, for every s ∈ [s0 −
∆s0, s0 + ∆s0] we have for the energy∑

ak(s)∈Bi

θk(s) = θi(s0), (4.3)

10More precisely, ∆s0 = inf{ 1
4
α0r

2(s0), s0 − τk, τk+1 − s0}
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and for the center of mass āi(s) ≡ 1
θi(s0)

∑
ak(s)∈Bi

ak(s) θk(s)

d

ds
āi(s) =

πdi(s0)
θi(s0)

[
~c(s)⊥ +

∑
aj(s)/∈Bi
ak(s)∈Bi

2dj(s)∇ak
(log |ak(s)− aj(s)|)

]
. (4.4)

Proof. Let χ ∈ C∞c (R2) be such that supp χ ⊂ Bi and such that χ is affine
near ai(s0), i.e.

χ(x) = 〈~v, x〉+ b on B(ai(s0), r(s0)/2),

for some ~v ∈ R2 and b ∈ R. Since ∆χ ≡ 0 on B(ai(s0), r(s0)/2), from (3.11)
we deduce that Fs

core(χ) = 0. By conservation of the degree on Bi,∑
ak(s)∈B1

dk(s) = di(s0). (4.5)

Moreover, by antisymmetry,∑
ak(s),aj(s)∈Bi

ak(s) 6=aj(s)

dk(s)dj(s)〈∇ak
(log |ak(s)− aj(s)|), ~v〉 = 0, (4.6)

so that the interaction term reads

Finter(χ) = 2πdi(s0)
∑

ak(s)∈Bi
aj(s)/∈Bi

〈dj(s)∇ak
(log |ak(s)− aj(s)|), ~v〉. (4.7)

By choosing b = 0 we obtain formula (4.4), since the vector ~v is arbitrary,
while choosing b = 1 and ~v = 0 yields (4.3).

Next we consider the second type of test functions. This yields

Lemma 4.2. With s0 > 0, ai(s0) and ∆s0 > 0 as above, for every s ∈
[s0 −∆s0, s0 + ∆s0] and for every b ∈ R2 we have

d

ds

∫
Bi

|x− b|2dvs
∗ = 2(πd2

i (s0)− θi(s0))

+ 4π
∑

ak(s)∈Bi
aj(s)/∈Bi

dk(s)dj(s)〈ak(s)− b,∇ak
log |ak(s)− aj(s)|〉

+ 2π
∑

ak(s)∈Bi

dk(s)〈ak(s)− b,~c(s)⊥〉.

(4.8)
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Proof. We may assume, changing possibly the origin, that b = 0. Let χ ∈
C∞c (R2) be such that suppχ ⊂ Bi and χ(x) = |x|2 on B(ai(s0), r(s0)/2).
We have ∆χ(x) = 4 and ∇χ(x) = 2x on B(ai(s0), r(s0)/2). Inserting these
relations in (3.11), (3.12), (3.13) we have, for any s ∈ [s0 −∆s0, s0 + ∆s0],

Fs
core(χ) = 2

∑
ak(s)∈Bi

πd2
k(s)− θk(s), (4.9)

Fs
inter(χ) = 4π

∑
ak(s)∈Bi

`(s)∑
j=1

dk(s)dj(s)〈∇ak
log |ak(s)− aj(s)|, ak(s)〉, (4.10)

and
Fs

drift(χ) = 2π
∑

ak(s)∈Bi

dk(s)〈ak(s),~c(s)⊥〉. (4.11)

Since
∇ak

log |ak(s)− aj(s)| =
ak(s)− aj(s)
|ak(s)− aj(s)|2

,

we observe that∑
ak(s),aj(s)∈Bi

ak(s) 6=aj(s)

dk(s)dj(s)〈∇ak
log |ak(s)− aj(s)|, ak(s)〉

=
∑
k<j

dk(s)dj(s)〈∇ak
log |ak(s)− aj(s)|, ak(s)− aj(s)〉 =

∑
k<j

dk(s)dj(s)

so that

Fs
inter(χ) = 2π

∑
ak(s),aj(s)∈Bi

ak(s) 6=aj(s)

dk(s)dj(s)

+ 4π
∑

ak(s)∈Bi
aj(s)/∈Bi

dk(s)dj(s)〈ak(s),∇ak
log |ak(s)− aj(s)|〉.

Since ∑
ak(s)∈Bi

d2
k(s) +

∑
ak(s),aj(s)∈Bi

ak(s) 6=aj(s)

dj(s)dk(s) = (
∑

ak(s)∈Bi

dk(s))2 = d2
i (s0),

and
∑

ak(s)∈Bi
θk(s) = θi(s0), the conclusion follows.
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Proof of Proposition 4.1. We begin with i). Choose b = ai(s0) and set

f(s) =
∫

Bi

|x− ai(s0)|2dvs
∗.

By (4.8) we have, for s ∈ [s0 −∆s0, s0 + ∆s0)],

f ′(s) = 2(πd2
i (s0)− θi(s0))

+ 4π
∑

ak(s)∈Bi
aj(s)/∈Bi

dk(s)dj(s)〈ak(s)− ai(s0),∇ak
log |ak(s)− aj(s)|〉

+ 2π
∑

ak(s)∈Bi

dk(s)〈ak(s)− ai(s0),~c(s)⊥〉 .

(4.12)

In view of the continuity properties of Σv, as stated in Lemma 2.3, the r.h.s.
of (4.12) is a continuous function of s. Therefore f ∈ C1([s0−∆s0, s0+∆s0])
and going back to (4.12) we obtain

f ′(s0) = 2(πd2
i (s0)− θi(s0)).

Since f(s0) = 0 and f(s) ≥ 0 ∀ s, f(s0) is a local minimum, and therefore
f ′(s0) = 0, which yields i).

ii) Assume now that θi(s0) = πd2
i (s0). Set

g(s) = max
ak(s)∈Bi

|ak(s)− ai(s0)|2.

Since the measure vs
∗ is a sum of quantized Dirac masses centered at the

points ai(s), we have
C(M0)g(s) ≤ f(s)

for some constant C(M0) depending only on M0. On the other hand, by
(4.12), we have, for s ∈ [s0 −∆s0, s0 + ∆s0],

|f ′(s)| ≤ C(M0)
( 1

inf
ak(s)∈Bi,aj(s)/∈Bi

|ak(s)− aj(s)|
+ ||~c(s)||

)
g(s)

≤ C(M0)
( 1
infk 6=j |ak(s0)− aj(s0)|

+ ||~c(s)||
)
g(s)

≤ K(M0, s0)g(s),

(4.13)

where we have set K(M0, s0) = C(M0)( 1
r(s0) + ||~c||L∞). Integrating (4.13)

we obtain

C(M0)g(s) ≤ f(s) ≤ K(M0, s0)|s− s0|
√

max
t∈[s0,s]

g(t),
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so that √
max

t∈[s0,s]
g(t) ≤ C(M0)(

1
r(s0)

+ ||~c||L∞)|s− s0|,

and the conclusion follows.

Proof of Theorem 5. It follows combining Proposition 4.1 i) with Propo-
sition 3.2.

At this stage we are also able to carry out the proof of Theorem 6, which
is somewhat similar to the proof of Lemma 4.2.
Proof of Theorem 6. If κ1 is chosen sufficiently small and 0 < κ ≤ κ1,
then there exists a constant γ > 0 such that

Σs
v ∩B(a, r) ⊂ B(a,C

√
κr) ∀ s ∈ [s0 − γκr2, s0 + γκr2] ∩ (τk, τk+1),

(4.14)
where C depends only on M0. Indeed, for s ≥ s0, this follows from Lemma
2.4, whereas for s ≤ s0 we argue as in the proof of Lemma 3.1, using forward
continuity and conservation of the degree.

We set I = [s0−γκr2, s0 +γκr2]∩ (τk, τk+1). As a consequence of (4.14),
as well as conservation of the degree and of energy, we obtain

Γ(s) ≡
∑

ai(s)∈B(a,r)

d2
i (s)−

 ∑
ai(s)∈B(a,r)

di(s)

2

= Γ, ∀ s ∈ I. (4.15)

A computation very similar to the one leading to (4.8) yields, for s ∈ I,

d

ds

∫
B(a,r)

|x− a|2dvs
∗ + 2πΓ

= 4π
∑

ak(s)∈B(a,r)

aj(s)/∈B(a,r)

dk(s)dj(s)〈ak(s)− a,∇ak
log |ak(s)− aj(s)|〉

+ 2π
∑

ak(s)∈B(a,r)

dk(s)〈ak(s)− a,~c(s)⊥〉, (4.16)

so that using (4.14) we obtain∣∣∣∣∣ d

ds

∫
B(a,r)

|x− a|2dvs
∗ + 2πΓ

∣∣∣∣∣ ≤ C
√

κ(1 + r) ∀ s ∈ I. (4.17)

Assume that Γ 6= 0. We show that, for some suitable constant γ1 > 0, we
have τk+1−s0 < γ1κ

2r2 if Γ is positive (resp. s0−τk < γ1κ
2r2 if Γ negative).

We consider only the case Γ positive, the other case being handled similarly.
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First, we choose κ1 sufficiently small so that C
√

κ1(1 + r) ≤ π. Inequality
(4.17) yields

d

ds

∫
B(a,r)

|x− a|2dvs
∗ ≤ −π (4.18)

for all s ∈ I. Let γ1 > 0 to be determined later, decreasing κ1 if necessary
we may assume that κ1 ≤ γ/(γ2

1) so that γκ ≥ γ1κ
2 for 0 < κ ≤ κ1.

Assume by contradiction that τk+1 > s0 + γ1κ
2r2. Integrating (4.18)

from s0 to s1, where s1 = s0 + γ1κ
2r2, we obtain

0 ≤
∫

B(a,r)
|x− a|2dvs1

∗ ≤
∫

B(a,r)
|x− a|2dvs0

∗ − πγ1κ
2r2 ≤ (C − πγ1)κ2r2.

(4.19)
The contradiction follows choosing γ1 large enough so that C−πγ1 < 0.

5 Motion law in the classical sense

As stated in Theorem 4, instead of the weak formulation (4), we are able to
recover the classical motion in a number of cases.

We consider next a time s0 /∈ {τ1, ..., τq} and recall that ∆s0 is defined
in Section 4.

Lemma 5.1. Let s0 /∈ {τ1, ..., τq}. Then for every s ∈ [s0 −∆s0, s0 + ∆s0],

`(s) ≥ `(s0).

Proof. This is a consequence of the fact that di(s0) 6= 0 and of the conserva-
tion of the degree, so that for i = 1, ...`(s0) and s ∈ [s0 −∆s0, s0 + ∆s0] we
have Σs

v ∩ B(ai(s0), r(s0)) 6= ∅, and therefore card [Σs
v ∩ B(ai(s0), r(s0)) ] ≥

1.

We introduce, for i = 1, ..., `(s0), the local number of vortices, defined
by

¯̀
i(s) = card [Σs

v ∩B(ai(s0), r(s0)) ].

In view of the argument above,

¯̀
i(s) ≥ ¯̀

i(s0) ≡ 1 for any s ∈ [s−∆s0, s + ∆s0].

If we assume moreover ¯̀
i(s) ≡ 1, then we recover the classical motion law.
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Lemma 5.2. Assume that ¯̀
i(s) = 1 for all s ∈ [s0, s1] for some s0 < s1 <

s0+∆s0. Then for s ∈ [s0, s1] the intersection B(ai(s0), r(s0))∩Σs
v is reduced

to a single point, which we may therefore label {ai(s)}, and

d

ds
ai(s) =

1
di(s0)

~c(s)⊥ + 2
`(s)∑

i6=j=1

dj(s)∇ai(log |ai(s)− aj(s)|)

 (5.1)

for s ∈ (s0, s1).

Proof. The fact that the intersection is reduced to a single point is an as-
sumption. Combining equation (4.4) in Lemma 4.1 with (4.2), we are led
to

d

ds
āi(s) =

1
di(s0)

[
~c(s)⊥ +

∑
aj(s)/∈Bi
ak(s)∈Bi

2dj(s)∇ak
(log |ak(s)− aj(s)|)

]
.

Since in our situation we have to deal with a single point, the center of mass
āi(s) coincides with ai(s); equation (5.1) follows.

In view of possible splittings and recombinations it is of course difficult
to decide when ¯̀

i(s) is locally constant. At this stage we are only able to
handle the case di = ±1. More precisely, we have

Lemma 5.3. Assume that for some i we have

|di(s0)| = 1 .

Then for every s ∈ [s0 −∆s0, s0 + ∆s0],

¯̀
i(s) = 1

and therefore (5.1) holds.

Proof. We have, as a consequence of the quantization result (6),

π = θi(s0) =
∑

ak(s)∈Bi

θk(s) ≥ π ¯̀
i(s),

so that the conclusion follows.

We are now in position to present the proof of Proposition 4.

Proof of Proposition 4. Let s0 /∈ {τ1, ..., τq}. We claim that for each
0 < δ < ∆s0 there exists s0 ≤ s1 ≤ s0 + δ such that `(s) = `(s1) for
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s in a suitably small right hand-side neighborhood of s1. Indeed, if not,
iterating Lemma 5.1 we would be able to construct a sequence s0 < s1 <
s2 < · · · < sn < · · · < s0 + δ verifying `(sn+1) > `(sn) for all n ∈ N, so
that `(sn) → +∞, a contradiction with the bound (2). Proposition 4 i) then
follows from the claim and Lemma 5.2.

In order to prove ii), it suffices to show that if τk < s0 < τk+1 and if s∗ de-
notes the maximal time of existence of the ordinary differential equation (4)
starting at s0, then s∗ ≤ τk+1. If not, then by closedness of Σv, the set Σs∗

v is
included in the union of the `(s0) distinct points ãi(τq+1) = lims↗τq+1 ai(s).
Moreover, since di(s) 6= 0 for all i = 1, ..., `(s0) and the points āi(τk+1) are
separated, we infer, by continuity of the degree, that `(s) ≥ `(s0) in a right
hand-side neighborhood of τk+1, so that lim sups↘τk+1

‖vs
∗‖ ≥ π`(s0). On

the other hand, ‖vs
∗‖ = π`(s0) for s0 ≤ s < τk+1 and the function s 7→ ‖vs

∗‖
is globally non increasing. The definition of τk+1 leads to a contradiction.

Finally, iii) is an easy consequence of ii) and the annihilation result
proved in [3] Theorem 3.

6 Properties of the trajectories in the general case

In this section we prove Theorem 2 and Theorem 3. The main ingredient in
the argument is the cone property stated in Proposition 4.1 ii). This kind
of property has already been used in order to prove rectifiability by slicing
in various contexts (see e.g. [19],[10]). The cone property is of course only
effective if some bound on its width is available. In our case it depends
strongly on the configuration at time s, more precisely the number r(s)
defined in Lemma 2.5. Therefore, for δ > 0, we introduce the “truncated”
sets Σ(δ) defined, for δ > 0 by

Σ(δ) = ∪s>0Σs(δ),

where Σs(δ) = Σs
v if r(s) ≥ 2δ, and Σs(δ) = ∅ otherwise. Moreover, let

k ∈ {1, ..., q}, s ∈ (τk, τk+1) and set

Λs(δ) = Σ(δ) ∩ R2 × [s, s + σ],

where σ(δ) = min{α0δ
2, (s − τk)/2, (τk+1 − s)/2}, and where α0 > 0 has

been defined in Lemma 2.3. The main step in the proof of Theorem 2 is

Proposition 6.1. For every δ > 0 and every s̄ /∈ {τ1, ..., τq}, the set Λs̄(δ)
is contained in a finite union of graphs of Lipschitz maps fi : R → R2,
i = 1, ..., `. Moreover, there exists a constant K = K(δ) depending only on
δ such that ||fi||Lip ≤ K(δ) for any i = 1, ..., `.
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Proof of Theorem 2. Observe that if δ′ > δ then Σ(δ′) ⊂ Σ(δ), and that
Σv = ∪δ>0Σ(δ). Hence we may write

Σv =
q⋃

k=0

Στk
v ∪

⋃
s∈Q∩(τk,τk+1)

⋃
n∈N

Λs(1/n)

 .

In view of Proposition 6.1 Λs(1/n) is rectifiable for every s > 0, n ∈ N,
whereas Στk

v is a finite set. Therefore Σv is a countable union of rectifiable
sets, hence it is rectifiable.

In the proof of Proposition 6.1 we will use the following properties of the
sets Σ(δ).

Lemma 6.1. For any δ > 0, the set Σ(δ) is closed in R2 × R+, and so are
the sets Λs(δ) for any s > 0.

Proof. Fix δ > 0 and let (sn)n∈N be a sequence such that sn → s0 and
Σsn(δ) 6= ∅ for any n ∈ N. We claim that

Σsn(δ) → Σs0
v (6.1)

in the Hausdorff distance. This is a consequence of Lemma 2.5 and Lemma
3.1. Indeed, by (2.11) , (3.15) it follows that if 0 < r ≤ r(s0), then for n
sufficiently large (depending on r)

Σsn
v ⊂ ∪`(s0)

i=1 B(ai(s0), r)

and
B(ai(s0), r) ∩ Σsn

v 6= ∅ for any i = 1, ..., `(s0),

so that
Σs0

v ⊂ ∪`(sn)
i=1 B(ai(sn), 2r),

this proves the claim. In particular, r(s0) ≥ lim inf r(sn) ≥ 2δ so that
Σs0

v = Σs0(δ) and the conclusion follows.

Lemma 6.2. i) For s ∈ (τk, τk+1), we have

Λs(δ) ⊂ ∪`(s0)
i=1 B(ai(s0), δ)× [s, s + σ], (6.2)

where s0 = min{s′ ∈ [s, s + σ] , Σs′(δ) ∩ Λs′(δ) 6= ∅}.
ii) The balls B(ai(s0), δ) are disjoint, and for each s′ ∈ [s, s+σ], B(ai(s0), δ)∩

Σs′(δ) contains at most one element.
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Proof. Let s ∈ (τk, τk+1). In view of Lemma 6.1 the set Λs(δ) is compact
and hence its projection on the time axis

S = {s′ ∈ [s, s + σ] , Σs′(δ) ∩ Λs′(δ) 6= ∅}

is a compact subset of [s, s + σ]. Therefore its infimum s0 is achieved.
Since σ ≤ αδ2 ≤ αr2(s0) and Λs(δ) ⊂ Σv × [s0, s + σ], this implies that
Λs(δ) ⊂ ∪`(s0)

i=1 B(ai(s0), δ) × [s0, s + σ], and since Λs(δ) ∩ R2 × [s, s0] = ∅,
(6.2) follows.
Statement ii) is an immediate consequence of the definition of Σs′(δ), s′ ∈
[s, s + σ].

Proof of Proposition 6.1. Fix s ∈ (τk, τk+1), and let s0 be as defined in
Lemma 6.2. For any i = 1, ...`(s0), by Lemma 6.1, the sets Λs

i ≡ Λs(δ) ∩
B(ai(s0), δ)× [s, s+σ] are closed, as well as their projections Si on the time
axis. Moreover, by Lemma 6.2 ii), for any s′ ∈ Si, the set Λs

i ∩Σs′(δ)×{s′}
consists exactly of one element (ai(s′), s′).

Let fi : Si → B(ai(s0), δ) ⊂ R2 the function uniquely determined by
fi(s) = ai(s). For s1 < s2 ∈ Si, we have, by definition of Si,

s2 − s1 ≤ σ ≤ αδ2 ≤ αr(s1)2,

whereas, by the continuity properties of Σv,

|ai(s2)− ai(s1)| ≤ 2δ ≤ r(s1).

We are now in position to apply Proposition 4.1, ii), obtaining that fi is
a Lipschitz function for any i = 1, ..., `(s0), and ||fi||Lip ≤ C(M0)(δ−1 +
||~c||L∞). MacShane extension Theorem allows to extend fi to a lipschitz
map fi : R+ → R2.

Proof of Theorem 3. As for the proof of Theorem 2, the argument relies
heavily on Proposition 6.1 and the constructions related to the sets Σ(δ).
We first define the set Z of times s > 0 where the statement of Theorem 3
may fail. To that aim, we write

Σv = ∪n∈N∗Σ(
1
n

),

and take advantage of the fact that, by Proposition 6.1, Σ(1/n) is contained
locally in a finite union of lipschitz graphs. Let π be the projection from
R2 × R+ onto the time axis R+, and consider Sn = π(Σ(1/n)).
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Firstly, notice that, by Rademacher Theorem, there exists a set Z0
n of

measure zero such that if s ∈ Sn \Z0
n, then s is a point of differentiability for

all the lipschitz functions fi given in Proposition 6.1, whose graphs contain
locally Σ(1/n). On the other hand, there exists a set Z1

n of measure zero
such that every s ∈ Sn \ Z1

n is of density one for Sn, i.e.

lim
∆s→0

|(s−∆s, s + ∆s) ∩ Sn|
2∆s

= 1.

This is indeed a consequence of the fact that a.e. s in R+ is a Lebesgue
point of 1Sn . We finally set Zn = Z0

n ∪ Z1
n. and

Z = ∪n∈N∗Zn ∪ {τ1, .., τk} ,

so that in particular |Z| = 0.

Next consider s0 /∈ Z, s0 ∈ (τq, τq+1).
Step 1. There exists n0 ∈ N∗, τ > 0 and a set Es0 such that

[s0 − τ, s0 + τ ] = Sn0 ∪ Es0 ,

where s0 is a point of zero density for the set Es0 .

Proof. Since s0 /∈ Z, there exists n0 ∈ N∗ such that s0 is of density 1 for Sn0 .
Choose τ < min{s0 − τq, τq+1 − s0}, and set Es0 = [s0 − τ, s0 + τ ] \ Sn0 .

Next let i ∈ {1, ..., `(s0)}. In view of Lemma 6.2 and the proof of Propo-
sition 6.1, there exists a lipschitz function fi : [s0 − τ, s0 + τ ] → R2 such
that

Σs(1/n0) ∩ (B(ai(s0), r(s0))× [s0 − τ, s0 + τ ]) = graphfi. (6.3)

Since s0 /∈ Zn, fi is differentiable at s0. We may thus construct a function
f : R+ → R2 verifying the assumptions of Definition 1. Indeed, choose
f(s) = fi(s) if s ∈ [s0 − τ, s0 + τ ], and arbitrarily in Σs

v elsewhere. Hence
f ′i(s0) is an approximate speed for ai(s0). We show next that this is the
only possible approximate speed.

Step 2. Let f : [s0− τ, s0 + τ ] → R2 such that f(s) ∈ Σs
v and f(s) → ai(s0)

as s → s0. Then f is approximately differentiable at s0 and its approximate
derivative at s0 coincides with f ′i(s0).

Proof. We have to prove that

ap lim
∆s→0

Q(∆s) = f ′i(s0), where Q(∆s) =
f(s0 + ∆s)− f(s0)

∆s
,

or, by definition11, that for any neighborhood W ⊂ R2 of f ′i(s0), the set
11See [9] 2.9.12.
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R+ \Q−1(W ) has density zero at s0. Remark first that, since f(s) → ai(s0)
as s → s0, in view of (6.3) and Step 1, we deduce that f(s) = fi(s) for
s ∈ Sn0 ∩ [s0 − τ, s0 + τ ], so that in particular

Q(∆s) = Qi(∆s) ≡ fi(s0 + ∆s)− fi(s0)
∆s

(6.4)

for any s0 + ∆s ∈ [s0 − τ, s0 + τ ] \ Es0 . Equation (6.4) implies that R+ \
Q−1(W ) ⊆

(
R+ \Q−1

i (W )
)
∪ Es0 ∪ (R+ \ [s0 − τ, s0 + τ ]), and this last set

has density zero at the point s0. The proof is complete.

7 Quantization revisited

In Section 4, we proved that the energy is asymptotically quantized in the
|log ε| scale. In the present section we estimate the next term in the expan-
sion of the energy as ε → 0, at least locally in space. In contrast to the
results in Section 4, based essentially on elliptic estimates (the perturbed
equation studied in the Appendix), the results in this section use more the
very parabolic nature of the equation, and especially Theorem 6.

We begin with the following ε-version of Theorem 6, which may also be
compared with Proposition A.9 in the Appendix.

Proposition 7.1. Let uε be a solution of (PGL)ε verifying (H0), and κ1,
γ1 the constants provided in Theorem 6. Let 0 < κ ≤ κ1 be given. Assume
that there exist ε1/2 < R1 < R2, b ∈ R2, and l points {b1, ..., bl} ⊂ R2 such
that, for some s0 > R2

2,

1. {|uε(., s0)| ≤
1
2
} ∩B(b, κ−1R2) ⊂ ∪l

i=1B(bi, R1) ⊂ B(b, R2),

2. dist(bi, bj) ≥ κ−1R1 for i 6= j,

3.
∫

B(b,κ−1R2)×[s0−γ1R2
2,s0+γ1R2

2]
|∂tuε(x, s|log ε|)|2 dxds ≤ π

2
.

Then, there exists ε0 > 0, depending only on M0, κ and R2/R1 such that if
ε/R2 ≤ ε0 then

l∑
i=1

d2
i =

(
l∑

i=1

di

)2

, (7.1)

where di = deg(uε(., s0), ∂B(bi, R1)).
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Proof. By scaling 12 and translation invariance, we may assume that R2 = 1
and b = 0. The proof goes then by contradiction : we fix 0 < R1 < 1 and
assume that for a sequence εn → 0 there exist solutions uεn and points
{bn

i }1≤i≤ln which satisfy conditions 1, 2 and 3 but violate equality (7.1). The
points bn

i and their number ln may depend on n, but passing to a subsequence
we may assume that ln ≡ l is constant and that the points bn

i converge: we
therefore argue as if they were equally constant. We apply Theorem 1 to the
sequence {uεn}n∈N. This defines in particular the limiting vortices ai(s0) and
their degrees di(s0), whereas Lemma 1 defines the collision times τk. Passing
to the limit n → +∞ in condition 1, we obtain

∪l(s0)
i=1 {ai(s0} ∩B(a, κ−1R2) ⊂ ∪l

i=1B(bi, R1) ⊂ B(b, R2), (7.2)

and similarly passing to the limit in condition 3 we infer from the quantiza-
tion of dissipation (see Corollary 3.1) that

dist(s0, {τ1, ..., τq}) ≥ γ1R
2
2.

We apply Theorem 6 first with a = bi and r = R1 and then with a = b
and r = R2. This yields first

∑
ai(s0)∈B(bi,R1)

d2
i (s0) =

 ∑
ai(s0)∈B(bi,R1)

di(s0)

2

= d2
i , (7.3)

and then

∑
ai(s0)∈B(b,R2)

d2
i (s0) =

 ∑
ai(s0)∈B(b,R2)

di(s0)

2

=

(
l∑

i=1

di

)2

. (7.4)

Since by (7.2)

l∑
i=1

 ∑
ai(s0)∈B(bi,R1)

d2
i (s0)

 =
∑

ai(s0)∈B(b,R2)

d2
i (s0),

we obtain from (7.3) and (7.4) that equality (7.1) is satisfied, a contradiction
since we assumed it to be violated.

12Under the change of scale x 7→ R2x, t 7→ R2
2t, the new function ũε̃(x, t) = uε(R2x, R2

2t)
satisfies (PGL)ε̃ where ε̃ = ε/R2. Notice in particular that ε ≤ ε̃ ≤ ε1/2 so that
Eε̃(ũε̃(., 0)) = Eε(uε(., 0) ≤ M0|log ε| ≤ 2M0| log ε̃| and (H0) remains valid after dou-
bling M0.
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Proof of Theorem 7 Without loss of generality, we may assume that
Ω = B(1) and that B(2) \ B(1/4) ∩ Σs0

v = ∅, the general case following by
scalings and suitable coverings.

It follows from Lemma 2.1 that eε(uε) is uniformly bounded on (B(1) \
B(1/2))×{s0|log ε|} so that we are in position to apply Theorem A.2 of the
Appendix. Writing fε = ∂

∂tuε(· , s0|log ε|), this yields the estimate∣∣∣∣∣
∫

B(1)×{s0}
eε(uε)dx− πn|log ε|

∣∣∣∣∣ ≤ C(M0)(1 + ‖fε‖2
L2 + log(2 + ||fε||L2

√
|log ε|)),

(7.5)
for some n ∈ N. We first notice that if ‖fε‖2

L2 ≥ C|log ε|, there is noth-
ing to prove since we may choose the constant C(M0) in (10) sufficiently
large. On the other hand, if ‖fε‖2

L2 = o(|log ε|), then it follows from our
first quantization results (Theorem 5 and Lemma 1) that necessarily n =∑

ai(s0)∈B(1) d2
i (s0) = nΩ. Finally, we observe that if ‖fε‖2

L2 ≥ log |log ε| then
(7.5) implies (10) so that it remains to study the case ‖fε‖2

L2 ≤ log |log ε|
which we assume throughout the rest of the proof.

In order to improve estimate (7.5) to (10), we have to recast the machin-
ery of the proof of Theorem A.2 of the Appendix in the parabolic situation
considered here: in particular we will show that Proposition 7.1 allows to
improve the estimates of Proposition A.10. For that purpose, recall first
that by Proposition A.4∣∣∣∣∣

∫
B(1)×{s0}

eε(uε)dx− 1
2

∫
Ωε(1/2)

|∇Ψε|2
∣∣∣∣∣ ≤ C(M0)(1 + ‖fε‖2

L2(Ω)). (7.6)

We show next that∣∣∣∣∣12
∫
Ωε(1/2)

|∇Ψε|2 − nΩ|log ε|
∣∣∣∣∣ ≤ C(M0)(1 + ‖fε‖2

L2(Ω)). (7.7)

The starting point is again the expansion (A.80) of
∫
|∇Ψε|2, using once

more the clustering process of Lemma A.9. The improvement here comes
from the fact that whereas we had to stop the iterations in Proposition
A.10 at the scale Rmax given by (A.92), we may now continue thanks to
Proposition 7.1.

More precisely, from the scale ε to the scale Rmax we proceed with the
clustering process of Lemma A.9, with the constant κ = κ0 given by (A.84).
This leads to an error term of order | log κ0| (see inequality (A.93)). In
contrast, from scale Rmax to scale O(1), we use Lemma A.9 with κ = κ1.
We notice firstly that Rmax ≥ ε1/2, since ‖fε‖2

L2 ≤ log |log ε|. Secondly,
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conditions 1 and 2 in Proposition 7.1 are automatically satisfied for the
clusters obtained. Finally, s0 is not a collision time, so that setting δ to be
half the distance between s0 and the set of collision times we have∫

B(2)×[s0−δ,s0+δ]
|∂tuε|2 ≤ o(1)

and condition 3 of Proposition 7.1 is satisfied for ε small enough. We may
therefore apply this proposition to conclude that∑

i6=j∈Jn

didj = 0,

so that from scale Rmax to scale O(1) we obtain an error term of order O(1).
Combining the two steps, we are led to∣∣∣∣∣12

∫
Ωε(1/2)

|∇Ψε|2 − nΩ|log ε|
∣∣∣∣∣ ≤ C(M0)(1 + | log κ0|),

and we obtain (7.7) from the definition of κ0.

Appendix A : Core analysis for perturbed elliptic
Ginzburg-Landau equations

In this Appendix13, we consider solutions vε of the perturbed elliptic Ginzburg-
Landau equation

−∆vε =
1
ε2

vε(1− |vε|2) + fε on Ω. (A.1)

We assume throughout that the following additional condition is satisfied,
for some constants M0 :

Eε(vε) ≡ Eε(vε,Ω) =
∫
Ω

eε(vε) ≤ M0|log ε|. (A.2)

Our first result is

Theorem A.1. Assume vε satisfies (A.1), (A.2), |vε| ≤ M0 on Ω ≡ B1 and
fε the bound

||fε||L2(B1) ≤ ε−β , (A.3)

for some constant 0 < β < 1. Then, for every 0 < R < 1,∫
BR

|∇|vε||2 +
(1− |vε|2)2

4ε2
≤ C(M0, β,R). (A.4)

13A related analysis of (A.1) is carried out in [17].
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Whereas our first result shows in particular that, under mild assumption
on fε, the potential remains bounded, our second result asserts a quantiza-
tion for the energy and the potential when (A.3) is replaced by a stronger
assumption.

Theorem A.2. i) Assume that vε verifies (A.2) on Ω ≡ B1 and

|vε| ≤ 1 + M0ε, |∇vε| ≤
M0

ε
on Ω, (A.5)

eε(vε) ≤ M0 on B1 \B 1
2
. (A.6)

Then there exists an integer n ∈ N such that

|Eε(vε)− πn|log ε|| ≤ C(M0)(1 + ‖fε‖2
L2(Ω) + log(2 + ||fε||L2(Ω)

√
|log ε|))

(A.7)∣∣∣∣∣
∫
Ω

(1− |vε|2)2

4ε2
− π

2
n

∣∣∣∣∣ ≤ C(M0)
|log ε|

(1 + εα‖fε‖2
L2(Ω)) (A.8)

where the constants C(M0) and α depend only on M0.

ii) Moreover, if n = 1, then we have

|Eε(vε)− π|log ε| | ≤ C(M0)(1 + ‖fε‖2
L2(Ω)). (A.9)

This result is a variant of the main result in [7], where the ball B1 is
replaced by a bounded simply connected domain Ω, fε ≡ 0, and moreover
some smooth boundary value g of modulus 1 was imposed on ∂Ω. In this
case they obtained the remarkable identity

n = d2 = deg (g, ∂Ω)2. (A.10)

This result however does not remain valid if the equation is perturbed, (i.e.
fε 6= 0) even by a term fε of order O( 1√

|log ε|
) in L2. Indeed, take the

parabolic equation with initial data having two vortices of degree +1 and
−1 at distance of order 1, they will not collide before a time s of order 1, so
that one may find some intermediate time such that ||∂tu||L2 ≤ C√

|log ε|
.

A.1 Proof of Theorem A.1

We start with the now classical observation (see e.g. [5], Proposition 1 and
Lemma B.2).
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Proposition A.1. Assume vε satisfies (A.2) and (A.3) on Ω ≡ B1. Then,
for every 0 < R < 1 and 0 < σ0 < 1/2, there exist constants `0 > 0 and
λ > 0 depending only on M0, β, σ0 and R and at most `0 points aε

1, ..., a
ε
`,

(` ≤ `0) such that

|1− |vε|| ≤ σ0 on BR \ ∪`
i=1B(aε

i , λε).

Moreover, for every z ∈ BR and every 0 < β < α < 1,∫
B(z,εα)

(1− |vε|2)2

4ε2
≤ C(M0, α,R). (A.11)

Notice that (A.11) holds for every z ∈ BR, in particular on the vorticity
set. The next result yields an improved estimate when z is far from the
vorticity set, the proof is adapted from [4].

Proposition A.2. Assume vε verifies (A.1) on Ω ≡ B1. There exists a
positive constant σ0 ≤ 1/2 such that if

|1− |vε|| ≤ σ0 on B1, (A.12)

then, for any 0 < R < 1,∫
BR

|∇|vε||2 +
(1− |vε|2)2

4ε2
≤ C(R)εE

1
2
ε (vε)(Eε(vε) + ||fε||2L2(B1)).

Proof of Proposition A.2. By assumption (A.12), we may write vε ≡
ρε exp(iϕε) on B1, and changing ϕε possibly by a constant, we may impose
the additional condition

1
|B1|

∫
B1

ϕε = 0. (A.13)

Vector multiplication of (A.1) by vε leads to the elliptic equation

−div(ρ2
ε∇ϕε) = fε × vε in B1. (A.14)

We will handle (A.14) as a linear equation for the function ϕε, ρε being
considered as a coefficient. In the sequel, we write ϕ = ϕε and ρ = ρε when
this is not misleading. In order to avoid boundary conditions, we consider
the truncated function ϕ̃ defined by ϕ̃ = ϕ χ, where χ ∈ C∞c (B1) is a smooth
cut-off function such that χ ≡ 1 on B 1+R

2
. The function ϕ̃ then verifies the

equation

−div(ρ2∇ϕ̃) = div(ρ2ϕ∇χ) + ρ2∇χ · ∇ϕ + (fε × vε)χ in B1. (A.15)
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Since by assumption ρ is close to 1, it is natural to treat the l.h.s. of (A.15)
as a perturbation of the Laplace operator, and to rewrite (A.15) as follows

−∆ϕ̃ = div((ρ2 − 1)∇ϕ̃) + div(ρ2ϕ∇χ) + ρ2∇χ · ∇ϕ + fε × vεχ in B1.

We introduce the function ϕ0 defined on B1 as the solution of{
−∆ϕ0 = div(ρ2ϕ∇χ) + ρ2∇χ · ∇ϕ + fε × vεχ in B1,

ϕ0 = 0 on ∂B1.
(A.16)

We set ϕ1 = ϕ̃− ϕ0, i.e.
ϕ̃ = ϕ0 + ϕ1.

We will show that ϕ1 is essentially a perturbation term. At this stage, we
divide the estimates into several steps. We start with linear estimates for
ϕ0.

Step 1 : Estimates for ϕ0. We claim that

‖∇ϕ0‖2
Lq(B1) ≤ Cq

[
||eε(vε)||L1(B1) + ||fε||2L2(B1)

]
∀ 2 ≤ q < +∞.

(A.17)

Proof. The estimate follows from the linear theory for the Laplace operator
and (A.13)

Step 2 : The equation for ϕ1. The function ϕ1 verifies the elliptic
problem {

−∆ϕ1 = div((ρ2 − 1)∇ϕ̃) in B1,
ϕ1 = 0 on ∂B1.

(A.18)

It is convenient to rewrite equation (A.18) as

−∆ϕ1 = div((ρ2 − 1)∇ϕ1) + div (g0), (A.19)

where we have set g0 = (ρ2 − 1)∇ϕ0. Since |ρε| ≤ C on B1, we obtain, for
any q ≥ 2 the estimate for g0

‖g0‖Lq(B1) ≤ Cq||∇ϕ0||Lq(B1). (A.20)

We now estimate ϕ1 from (A.19) through a fixed point argument.

Step 3 : The fixed point argument. Equation (A.19) may be rewritten
as

ϕ1 = T (div((ρ2 − 1)∇ϕ1)) + T (div g0),
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which is of the form
(Id−A)ϕ1 = b

where T = ∆−1, A is the linear operator v 7→ T (div((ρ2 − 1)∇v)) and
b = T (div g0). Consider the Banach space Xq = W 1,q

0 (B1). It follows from
the linear theory for T that A : Xq → Xq is linear continuous and that

‖A‖L(Xq) ≤ C(q)‖1− ρ‖L∞(B1).

In particular, we may choose the constant σ0 > 0 such that

Cq‖1− ρ‖L∞(B(1)) ≤ Cqσ0 <
1
2
.

With this choice of σ0, we deduce that I −A is invertible on Xq and

‖ϕ1‖Xq ≤ Cq‖b‖Xq . (A.21)

Finally, by (A.20) we obtain

‖b‖Xq = ‖T (div g0)‖Xq ≤ Cq‖g0‖Lq(B1) ≤ Cq||∇ϕ0||Lq(B1).

Going back to (A.21) we deduce

‖∇ϕ1‖Lq(B1) ≤ Cq||∇ϕ0||Lq(B1). (A.22)

We now combine the estimates for ϕ0 and ϕ1.

Step 4 : Improved integrability of ∇ϕ̃. Combining (A.17) and (A.22),
we obtain

‖∇ϕ̃‖Lq(B1) ≤ Cq(‖eε(vε)‖
1
2

L1(B1) + ||fε||L2(B1)), ∀ q ≥ 2. (A.23)

Step 5 : Estimates for the modulus and potential terms.
Recall that the function ρ satisfies the equation

−∆ρ + ρ|∇ϕ|2 = ρ
(1− ρ2)

ε2
+ fε vε. (A.24)

Let ξ ∈ C∞c (BR′), R′ = (1 + R)/2, be such that ξ ≡ 1 on BR, so that ϕ = ϕ̃
on suppξ. Multiplying (A.24) by (1−ρ2)ξ and integrating by parts we obtain∫

B1

2ρ|∇ρ|2ξ+ρ
(1− ρ2)2

ε2
ξ =

∫
suppξ
∇ρ·∇ξ(1−ρ2)+ρ(1−ρ2)|∇ϕ̃|2ξ−fε vε(1−ρ2)ξ,
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and since |1− ρ| ≤ 1
2 on B1 we obtain

∫
BR

|∇|vε||2 + Vε(vε) ≤ Cε

(∫
B1

Vε(vε)
) 1

2
(∫

B1

|∇|vε||2 + |∇ϕ̃|4 + |fε|2
) 1

2

.

The conclusion follows using (A.23).

Proof of Theorem A.1 completed.

Step1: Global estimates for the potential. Let σ0 ≤ 1/2 be given by
Proposition A.2 and consider the points aε

1, .., a
ε
` provided by Proposition

A.1 for this choice of σ0. Consider a point x0 ∈ BR such that

dist(x0, {aε
1, ..., a

ε
`}) ≥ 10εα,

where α = (1 + β)/2. Consider the rescaled function ṽε(x) = vε(εαx + x0)
which verifies

−∆ṽε =
1
ε̃2

ṽε(1− |ṽε|2) + f̃ε̃ on B1,

where f̃ε̃(x) = ε2αfε(εαx + x0), and ε̃ = ε1−α. In particular,

||f̃ε||2L2(B1) = ε2α||fε||2L2(B(x0,εα)).

Applying Proposition A.2 we are led to∫
BR

|∇|ṽε||2 + Vε̃(ṽε) ≤ C(R)ε̃‖eε̃(ṽε)‖
1
2

L1(B(1))(‖eε̃(ṽε)‖L1(B(1)) + ||f̃ε||2L2),

so that going back to vε we obtain,∫
B(x0,Rεα)

|∇|vε||2 + Vε(vε) ≤ C(R)ε
1−α

2 (‖eε(vε)‖L1(B(x0,εα)) + ε2α||fε||2L2(B(x0,εα)).

By a standard covering argument we obtain∫
BR\∪`

i=1B(aε
i ,10εα)
|∇|vε||2 + Vε(vε) ≤ C(R)ε(1−α)(‖eε(vε)‖L1(B1) + ε2α||fε||2L2(B(1))).

(A.25)
Adding (A.25) and (A.11) for a suitable εα-covering of ∪`

i=1B(ai, 10εα), we
are led to ∫

BR

Vε(vε) ≤ C(M0, β,R).
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Step 2: Global estimates for ∇|vε|. The starting point is the elliptic
equation for the function θ ≡ 1− ρ2

ε ≡ 1− |vε|2, namely

−∆θ + 2
ρ2

ε

ε2
θ = 2|∇vε|2 + 2fε · vε on B1. (A.26)

We proceed as in Step 5 of the proof of Proposition A.2 and multiply (A.26)
by θ ξ. By the same computation we obtain∫

BR

|∇|vε| |2 ≤ C

∫
BR′

|θ|(|∇vε|2 + |fε|) + θ2. (A.27)

In view of Step 1, we deduce from (A.27) that∫
BR

|∇|vε| |2 ≤ Cε
(
ε + ||∇vε||2L4(BR′ )

+ ||fε||L2(BR′ )

)
.

The conclusion follows from the next lemma.

Lemma A.1. Under the assumptions in Theorem A.1 we have∫
BR′

|∇vε|4 ≤ C

(
1 + ||fε||2L2(BR′′ )

+
1
ε2

∫
BR′′

Vε(vε)

)
, (A.28)

where C > 0 is a constant and R′′ = (1 + R′)/2.

Proof. On the ball BR′′ we decompose the function vε as vε ≡ v1
ε +wε, where

wε is a harmonic function and verifies wε = vε on the boundary ∂BR′′ . In
view of the bound on |vε|, wε is uniformly bounded on ∂BR′′ , so that, since
it is also harmonic,

|∇wε| ≤ C on BR′ . (A.29)

Turning to v1
ε , we notice that by construction v1

ε = 0 on ∂BR′′ , and that

|∆v1
ε | =

∣∣∣∣2εVε(vε)1/2 + fε

∣∣∣∣ .
Hence by standard elliptic theory

||v1
ε ||2H2(BR′′ )

≤ C(||fε||2L2(BR′′ )
+ ε−2

∫
BR′′

Vε(vε)). (A.30)

Moreover, since vε and wε are uniformly bounded on BR′′ , the same holds
for v1

ε , i.e.
||v1

ε ||L∞(BR′′ )
≤ C. (A.31)
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We next invoke a classical Gagliardo-Nirenberg type inequality which asserts
that

||∇v1
ε ||2L4(BR′′ )

≤ C||v1
ε ||H2(BR′′ )

||v1
ε ||L∞(BR′′ )

. (A.32)

Combining (A.30), (A.31) and (A.32), we obtain

||∇v1
ε ||4L4(BR′′ )

≤ C

(
||fε||2L2(BR′′ )

+
1
ε2

∫
BR′′

Vε(uε)

)
. (A.33)

Invoking finally (A.29) together with the decomposition vε = v1
ε + wε we

complete the proof.

As a straightforward consequence of the clearing-out property (Lemma
B.4 in [3]) and proposition A.2, we may also consider the case Ω = R2 and
deduce, by a covering argument

Proposition A.3. Assume vε satisfies (A.1) and (A.2) on Ω ≡ R2 and fε

satisfies the bound
||fε||L2(R2) ≤ ε−β

for some 0 < β < 1. Then∫
R2
|∇|uε||2 +

(1− |vε|2)2)
4ε2

≤ C(M0, β).

The rest of this Appendix is devoted to the proof of Theorem A.2

A.2 Confinement of the vorticity set

Our first purpose is to cover the vorticity set by balls of radius r, proportional
to ε, whose mutual distance is larger than κ−1r, with κ arbitrarily small.
We have

Lemma A.2. Let X be a metric space, and consider ` distinct points
a1, ..., a` in X. Let δ0 > 0 and 0 < κ ≤ 1

2 be given. Then there exists
δ > 0 such that

δ0 ≤ δ ≤ (
κ

2
)−`δ0 (A.34)

and a subset {aj}j∈J of {ai}1≤i≤` such that

∪`
i=1B(ai, δ0) ⊂ ∪j∈JB(ai, δ) (A.35)

and
dist(ai, aj) ≥ κ−1δ ∀j 6= k in J. (A.36)
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Proof. The proof is by iteration, in at most ` steps. First, consider the
collection {ai}1≤i≤`. If (A.35), (A.36) is verified with δ = δ0 there is nothing
else to do. Otherwise, take two points, say a1, a2 such that dist(a1, a2) ≤
κ−1δ0, consider the collection a2, a3, ..., al, and set δ = 2κ−1δ0. If (A.35) is
verified, we stop. Otherwise we go on in the same way. If the process does
not stop in ` − 1 steps, at the `th step we are left with one single ball of
radius δ = (κ

2 )−`δ0, and (A.35) is void.

Combining Lemma A.2 and Proposition A.1 we are led to

Lemma A.3. Assume vε satisfies (A.1), (A.2) and (A.3). Then, for 0 <
κ ≤ 1

2 there exists λκ > 0 such that

λ ≤ λκ ≤ (
κ

2
)−`λ

and points {aε
j}j∈Jε,κ ⊂ {aε

i}1≤i≤` such that

|1− |vε(x)|| ≤ σ0 on B1 \ ∪j∈Jε,κB(aε
j , λκε)

and
|aε

j − aε
k| ≥ κ−1λκε for j 6= k in Jε,κ. (A.37)

Here, σ0 is given by Proposition A.2, and the constants `, λ and the points
aε

1, ..., a
ε
l ∈ B 1

2
are obtained by Proposition A.1 with R = 1/2.

A.3 The harmonic potential Ψε

In this section we choose κ = 1
2 , and, for i ∈ Jε,1/2, we set dε

i =deg ( vε
|vε| , ∂B(aε

i , λ 1
2
ε)).

Let
Ψε(x) = −

∑
i∈Jε,1/2

dε
i log |x− aε

i |, (A.38)

so that
−∆Ψε = 2π

∑
i∈Jε,1/2

dε
i δaε

i
, on R2 (A.39)

and therefore
∂

∂x

(
vε

|vε|2
× ∂vε

∂y
+

∂Ψε

∂x

)
− ∂

∂y

(
vε

|vε|2
× ∂vε

∂x
− ∂Ψε

∂y

)
= 0 (A.40)

on Ωε(1/2) ≡ B1\∪j∈Jε,1/2
B(aε

j , λ 1
2
ε). Since by (A.38) the circulation around

each circle ∂B(aε
j , λ 1

2
ε) is zero, it follows from (A.40) that there exists some

real-valued function Φε, defined on Ωε(1/2) such that
vε

|vε|2
×∇vε = ∇⊥Ψε +∇Φε. (A.41)
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Since
div (vε ×∇vε) = fε × vε on B1, (A.42)

we are led to the elliptic equation for Φε

div (|vε|2∇Φε) = fε × vε + div
(
(1− |vε|2)∇⊥Ψε

)
on Ωε(1/2). (A.43)

Since Φε is defined up to an additive constant, we may moreover impose∫
Ωε(1/2)

Φε = 0. (A.44)

We will show that eε(vε) is close in some suitable sense to |∇Ψε|2, more
precisely, we have

Proposition A.4. Assume vε satisfies (A.1), (A.2), (A.5) and (A.6). Then
there exists a constant C(M0), depending only on M0, such that∣∣∣∣∣Eε(vε, B1)−

1
2

∫
Ωε(1/2)

|∇Ψε|2
∣∣∣∣∣ ≤ C(M0)(1 + ‖fε‖2

L2(Ω)).

In order to establish Proposition A.4, we need to show that the contri-
bution to the energy of ∇Φε, ∇|vε| and the potential remain controlled. For
that purpose, we consider the external domains

Ωµ
ε (κ) = B1 \ ∪i∈Jε,κB(aε

i , λκκ−µε),

for 0 ≤ µ < 1. Clearly, Ωµ
ε (κ) ⊂ Ωµ′

ε (κ) if µ ≥ µ′. Moreover, it is possible
to perform the above construction so that the function κ → λκ is non-
increasing. We have

Proposition A.5. The function ∇Φε decomposes as

∇Φε = g1
ε + g2

ε on Ω1/2
ε (κ),

where
||g1

ε ||L4(Ω
1/2
ε (κ))

≤ C(M0)(1 + ‖fε‖L2(Ω))

and
||g2

ε ||L2(Ω
1/2
ε (κ))

≤ C(M0)(| log κ|−1 + ε
1
2 )(1 + ‖fε‖L2(Ω)).

In the same spirit,

Proposition A.6. We have∫
Ω

3/4
ε (κ)

|∇ρ|2 +
(1− ρ2)2

ε2
≤ C(M0)(| log κ|−2 + ε)(1 + ‖fε‖2

L2(Ω)).

44



A.4 Estimates far from the vorticity set

In this section we present the proofs of Propositions A.4, A.5 and A.6. We
begin with

Lemma A.4. There exists a constant C(M0) such that∫
Ωε(1/2)

|∇Φε|2 ≤ C(M0)(1 + ‖fε‖2
L2(Ω)). (A.45)

Proof. We multiply first equation (A.43) by Φε and integrate by parts on
Ωε(1/2). This yields∫

Ωε(1/2)
ρ2|∇Φε|2 = −

∫
Ωε(1/2)

fε × vεΦε +
∫
Ωε(1/2)

(1− ρ2)∇⊥Ψε∇Φε

−
∑

i∈Jε,1/2∪{0}

[∫
∂Bi

(1− ρ2)∇⊥Ψε · ~nΦε −
∫

∂Bi
ρ2 ∂Φε

∂n
Φε

]
,

(A.46)
where Bi = B(aε

i , λ 1
2
ε) for i ∈ Jε,1/2 and B0 = B1. On the other hand,

integrating equation (A.42) on Bi gives, using (A.41)∫
∂Bi

ρ2 ∂Φε

∂n
− (1− ρ2)∇⊥Ψε · ~n = −

∫
Bi

fε × vε

so that ∫
Ωε

ρ2|∇Φε|2 = A1 + A2 + A3 + A4

where

A1 =
∫
Ωε(1/2)

fε × vεΦε

A2 =
∫
Ωε(1/2)

(1− ρ2)∇⊥Ψε∇Φε

A3 =
∑

i∈Jε,1/2∪{0}

∫
∂Bi

[
(1− ρ2)∇⊥Ψε · ~n− ρ2 ∂Φε

∂n

]
(Φε − Φi)

A4 =
∑

i∈Jε,1/2∪{0}

∫
Bi

fε × vεΦi

and where Φi = 1
|∂Bi|

∫
∂Bi

Φε. We estimate each of the terms separately.
Firstly, we have

|A1| ≤ ||fε||L2(B1)||Φε||L2(Ωε(1/2)),
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so that
|A1| ≤ 10‖fε‖2

L2(Ω) +
1
10

∫
Ωε(1/2)

|∇Φε|2. (A.47)

For A2, we write, since |∇Ψε| ≤ C
ε on Ωε(1/2),

|A2| ≤ ||∇Φε||L2(Ωε(1/2))||
1− ρ2

ε
||L2(Ωε(1/2)) ≤ C(M0)||∇Φε||L2(Ωε(1/2)),

(A.48)
where we used Proposition A.1 for the last inequality.

For A3, since |∇⊥Ψε| + |∇Ψε| ≤ C/ε on ∂Bi for i = 1, ..., n, we have
|Φε−Φi| ≤ C on the same set. On the other hand, on ∂B0 all these quantities
are bounded. Therefore

|A3| ≤ C(M0). (A.49)

For A4, we write

|A4| ≤ C
∑

i∈Jε,1/2

||fε||L2(Bi)ε|Φi|+ C(M0)||fε||L2(B1), (A.50)

and since |∇Φε| ≤ C
ε , it follows that |Φi| ≤ C

ε on ∂Bi, and therefore

|A4| ≤ C(M0)||fε||L2(Ω). (A.51)

Combining (A.47), (A.48), (A.49) and (A.51), we derive the conclusion.

Our next purpose is to provide higher integrability of the gradient of the
phase, in order to prove Proposition A.5. To that aim, we consider three
elliptic problems on B1, firstly{

−∆ϕ̃1
ε = 0 on B1

ϕ̃1
ε = Φε on ∂B1,

secondly, {
−∆ϕ̃2

ε = fε × vε on B1

ϕ̃2
ε = 0 on ∂B1,

and finally{
−div(ρ̃2∇ϕ̃3

ε) = div
(
(1− ρ̃2)[∇⊥Ψε +∇ϕ̃1

ε +∇ϕ̃2
ε]
)

on B1

ϕ̃3
ε = 0 on ∂B1.

Here the function ρ̃ is defined as{
ρ̃ = ρ on Ω1/4

ε (κ)
ρ̃ = 1 on ∪i∈Jε,κ B(aε

i , λκκ−1/4ε).
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We set
Φ̃ε = ϕ̃1

ε + ϕ̃2
ε + ϕ̃3

ε on B1,

so that

div(ρ̃2∇Φ̃ε) = fε × vε + div((1− ρ̃2)∇⊥Ψε) on B1 (A.52)

and hence {
div(ρ̃2∇(Φ̃ε − Φε)) = 0 on Ω1/4

ε (κ)
Φ̃ε − Φε = 0 on ∂B1.

(A.53)

We estimate each of the terms ϕ̃i
ε separately on B1, and then the difference

Φ̃ε − Φε on Ω1/2
ε (κ).

Lemma A.5.∫
B1

(
|∇ϕ̃1

ε|4 + |∇ϕ̃2
ε|4
)
≤ C(M0)(1 + ‖fε‖4

L2(Ω)).

Proof. For ϕ̃1
ε by standard estimates for the Laplacian we have

||∇ϕ̃1
ε||L4(B1) ≤ C||Φε||Ẇ 3/4,4(B1) ≤ C||∇Φε||L2(∂B1) ≤ C(M0). (A.54)

Similarly for ϕ̃2
ε we have

||∇ϕ̃2
ε||L4(B1) ≤ C||ϕ̃2

ε||H2(B1) ≤ C||fε||L2(B1).

Lemma A.6. We have

||∇ϕ̃3
ε||L2(B1) ≤ C(M0)(κ1/8 + ε1/2)(1 + ‖fε‖L2(Ω)).

Proof. It suffices to estimate the quantity (1− ρ̃2)(∇⊥Ψε +∇ϕ̃1
ε +∇ϕ̃2

ε,κ) in
L2(B1). Since 1− ρ̃2 = 0 on ∪i∈Jε,κB(aε

i , 2λκκ−1/4ε) we have

||(1− ρ̃2)(∇⊥Ψε +∇ϕ̃1
ε +∇ϕ̃2

ε)||L2(B1)

≤C||1− ρ̃2||L4(B1)

[
||∇Ψε||L4(Ω

1/4
ε (1/4))

+ ||∇ϕ̃1
ε||L4(B1) + ||∇ϕ̃2

ε||L4(B1)

]
≤C(M0)ε1/2

[
||∇Ψε||L4(Ω

1/4
ε (κ))

+ C(M0)
]
.

(A.55)

On the other hand,∫
Ω

1/4
ε (κ)

|∇Ψε|4 ≤ C

∫ 1

λκκ1/4ε

1
r4

rdr ≤ C(λ−2
κ κ1/2ε−2 + 1). (A.56)

The conclusion follows.
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Summarizing Lemma A.5 and A.6 we obtain

∇Φ̃ε = g̃1
ε + g̃2

ε on B1, (A.57)

where
||g̃1

ε ||L4(B1) ≤ C(M0)(1 + ‖fε‖L2(Ω)) (A.58)

and
||g̃2

ε ||L2(B1) ≤ C(M0)(κ1/8 + ε1/2)(1 + ‖fε‖L2(Ω)). (A.59)

Lemma A.7. We have∫
Ω

1/2
ε (κ)

|∇(Φ̃ε − Φε)|2 ≤
C(M0)
| log κ|

(1 + ‖fε‖2
L2(Ω)).

Proof. At this stage, we already know, in view of Lemma A.4, (A.57), (A.58)
and (A.59), that∫

Ω
1/4
ε (κ)

|∇(Φ̃ε − Φε)|2 ≤ C(M0)(1 + ‖fε‖2
L2(Ω)), (A.60)

and that Φ̃ε −Φε is solution of the (outer) boundary value problem (A.53).
In order to add an inner boundary condition, we first claim that for every
λκκ−1/2ε ≥ r > λκκ−1/4ε, we have∫

∂B(aε
i ,r)

ρ2 ∂(Φ̃ε − Φε)
∂n

= 0 for any i ∈ Jε,κ. (A.61)

Indeed, (A.52) yields∫
∂B(aε

i ,r)
ρ2 ∂Φ̃ε

∂n
=
∫

B(aε
i ,r)

fε × vε +
∫

∂B(aε
i ,r)

(1− ρ2)∂τΨε,

whereas (A.43) yields the same estimate for Φε. Next, by an averaging ar-
gument (in logarithmic scale) we may choose some rκ in (λκκ−1/4, λκκ−1/2)
such that

rκ

∫
∂B(aε

i ,rκ)
|∇(Φ̃ε − Φε)|2 ≤

C(M0)
| log κ|

(1 + ‖fε‖2
L2(Ω)). (A.62)

Going back to (A.53) we deduce, multiplying (A.53) by (Φ̃ε −Φε) and inte-
grating by parts,∫

B1\∪i∈Jε,κB(aε
i ,rκ)

ρ2|∇(Φ̃ε −Φε)|2 =
∑

i∈Jε,κ

∫
∂B(aε

i ,rκ)
ρ2 ∂(Φ̃ε − Φε)

∂n
(Φ̃ε −Φε).
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In view of (A.61) and Poincaré inequality we deduce (here mi denotes the
mean-value of Φ̃ε,κ − Φε,κ on ∂B(aε

i , rκ))∣∣∣∣∣
∫

∂B(aε
i ,rκ)

ρ2 ∂(Φ̃ε − Φε)
∂n

(Φ̃ε − Φε)

∣∣∣∣∣
≤||∇(Φ̃ε − Φε)||L2(∂B(aε

i ,rκ))||Φ̃ε − Φε −mi||L2(∂B(aε
i ,rκ))

≤rκ||∇(Φ̃ε − Φε)||2L2(∂B(aε
i ,rκ)).

(A.63)

The conclusion follows from (A.62).

Proof of Proposition A.5. It follows combining Lemma A.7, (A.57),
(A.58) and (A.59).

We now turn to the modulus ρ = |vε|. It satisfies the equation

−∆ρ + ρ−3|vε ×∇vε|2 =
1
ε2

ρ(1− ρ2) + fε ·
vε

|vε|
,

so that in view of (A.41) we have

−∆ρ + ρ(∇⊥Ψε +∇Φε)2 =
1
ε2

ρ(1− ρ2) + fε ·
vε

|vε|
on Ω1/2

ε (κ). (A.64)

Proof of Proposition A.6. For r ∈ (λκκ−1/2ε, λκκ−3/4ε) we have, mul-
tiplying (A.64) by (1 − ρ), integrating by parts, and using the fact that
|ρ| ≥ 1/2 on Ω1/2

ε (κ),∫
B1\∪i∈Jε,κB(aε

i ,r)
|∇ρ|2 +

(1− ρ2)2

ε2
≤ C

∫
B1\∪i∈Jε,κB(aε

i ,r)
(1− ρ2)(|∇Φε|2 + |∇Ψε|2)

+ C

∫
B1\∪i∈Jε,κB(aε

i ,r)
|fε| · |1− ρ|

+
∑

i∈Jε,κ

∫
∂B(aε

i ,r)

∣∣∣∣∂ρ

∂n

∣∣∣∣ · |1− ρ|.

(A.65)
By an averaging argument in logarithmic scale, we choose some radius r =
rκ ∈ (λκκ−1/2ε, λκκ−3/4ε) so that

r

∫
∂B(aε

i ,r)

∣∣∣∣∂ρ

∂n

∣∣∣∣ · |1− ρ| ≤ 1
| log κ|

∫
B1

|∇ρ| · |1− ρ|

≤ 1
| log κ|

(∫
B1

|∇ρ|2
)1/2 (∫

B1

|1− ρ|2
)1/2

≤ C(M0)ε
| log κ|

,

(A.66)
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where we used Theorem A.1 for the last inequality. Since r > λκκ−1/2ε, it
follows that ∫

∂B(aε
i ,r)

∣∣∣∣∂ρ

∂n

∣∣∣∣ · |1− ρ| ≤ C(M0)
κ1/2| log κ|

. (A.67)

For the first term in (A.65), we write, decomposing ∇Φε = g1
ε + g2

ε as in
Proposition A.5,∫

B1\∪i∈Jε,κB(aε
i ,r)

(1− ρ2)|∇Φε,κ|2

≤ C

∫
B1\∪i∈Jε,κB(aε

i ,r)
(1− ρ2)(|f1

ε |2 + |f2
ε |2)

≤ C ||1− ρ2||L2(B1)

(
||f1

ε ||2L4(Ω
1/2
ε (κ))

+ ||f2
ε ||2L2(Ω

1/2
ε (κ))

)
≤ C(M0)(| log κ|−2 + ε)(1 + ‖fε‖2

L2(Ω)).

(A.68)

Finally, arguing as in (A.56),∫
B1\∪i∈Jε,κ

(1− ρ2)|∇Ψε|2 ≤ ||1− ρ2||L2(B1)||∇Ψε||2
L4(Ω

1/2
ε (κ))

≤ C(M0)λ−1
κ κ1/2,

and the conclusion follows.

A.5 Estimates near the vorticity set

The purpose of this section is to show that the integral of the potential is
(almost) quantized near the vortices.

Proposition A.7. Let a ∈ Br, r > λ1/2ε, and 0 < κ < 1/2 be given such
that

B(a, κ−1r/2) \B(a, r) ⊂ Ωε(1/2). (A.69)

Then, we have∣∣∣∣∣
∫

B(a,κ−3/4r)
Vε(vε)−

π

2
d2

ε(a, r)

∣∣∣∣∣
≤ C(M0)((| log κ|−1 + ε1/2)(1 + r2‖fε‖2

L2) + κ−3/4r||fε||L2 |log ε|1/2),

where
dε(a, r) = deg(

vε

|vε|
, ∂B(a, r)) =

∑
i∈Jε,1/2, aε

i∈B(a,r)

dε
i .
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The proof relies on Pohozaev’s identity, which we recall next, and the
decay estimates obtained in the previous section.

Lemma A.8. We have, for any r > 0 and a ∈ B1 such that B(a, r) ⊂ B1,

2
∫

B(a,r)
Vε(vε) +

r

2

∫
∂B(a,r)

∣∣∣∣∂vε

∂r

∣∣∣∣2 dτ =
r

2

∫
∂B(a,r)

∣∣∣∣∂vε

∂τ

∣∣∣∣2 dτ

+
∫

B(a,r)
x · ∇vε fε + r

∫
∂B(a,r)

2Vε(vε).

(A.70)

The proof is standard and follows by multiplication of the equation by
x · ∇vε and then integrating by parts.

Proof of Proposition A.7. We apply Lemma A.8 with some r = r0 ∈
(κ−3/4r, 2κ−3/4r) to be determined later. We handle next each of the terms
on the r.h.s. separately: firstly,∣∣∣∣∣
∫

B(a,r0)
x · ∇vε fε

∣∣∣∣∣ ≤ r||∇vε||L2(B1)||fε||L2(B1) ≤ κ−3/4|log ε|1/2r||fε||L2(B1).

(A.71)
For the boundary terms, denoting by ∂ ≡ ∂e the directional derivative in an
arbitrary direction e, |e| = 1 we first expand

|∂vε|2= |vε|2
∣∣∣∣ vε

|vε|2
× ∂vε

∣∣∣∣2+|∂ρ|2= |vε|2|∂⊥Ψε+∂Φε|2+|∂ρ|2= |∂⊥Ψε|2+Re,

(A.72)
where the remainder term Re is given by

Re = (1− |vε|2)|∂⊥Ψε|2 + |vε|2|∂Φε|2 + 2|vε|2∂⊥Ψε · ∂Φε + |∂ρ|2,

so that |Re| ≤ C·(
|∇ρ|2 +

(1− |vε|2)2

ε2
+ ε2|∇Ψε|4 + |g1

ε |2 + |g2
ε |2 + |∇Ψε|(|g1

ε |+ |g2
ε |)|
)

.

(A.73)
Invoking (A.56) (or similar computations), Proposition A.5 and A.6, we
obtain, by various Hölder inequalities, for every e, |e| = 1,∫

B(a,2κ−3/4r)\B(a,κ−3/4r)
|Re| ≤ C(M0)(| log κ|−1 + ε1/2)(1 + r2‖fε‖2

L2). (A.74)
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In view of (A.74), we are now in position to choose a value of radius r0 ∈
(κ−3/4r, 2κ−3/4r) such that for every e, |e| = 1,

r0

∫
∂B(a,r0)

|Re|+
(1− |vε|2)2

ε2
≤ C(M0)(| log κ|−1 + ε1/2)(1 + r2‖fε‖2

L2). (A.75)

In order to complete the estimates of the boundary terms in (A.70), it
remains, in view of (A.72), to estimate |∂eΨε| on ∂B(a, r0). Recall that
Ψε is explicitly given by formula (A.38). Moreover, in view of (A.69), for
x ∈ ∂B(a, r0) and i ∈ Jε,1/2,

κ−3/4r ≤ |x− aε
i | ≤ 2κ−3/4r for aε

i ∈ B(a, r)

whereas
|x− aε

i | ≥
1
2
κ−1r for aε

i /∈ B(a, r).

Therefore, explicit computations show that on ∂B(a, r0),

|∂Ψε

∂τ
|+ |∂Ψε

∂r
− dε(a, r)

r0
| ≤ C

r0
sup

aε
i∈B(a,r)

|a− aε
i |

r0
+

Cκ

r

≤ Cκ3/4

r0
+

Cκ1/4

r0
≤ Cκ1/4

r0
.

Hence, on ∂B(a, r) we are led to

∣∣∣∂Ψε

∂τ

∣∣∣2 +
∣∣∣|∂Ψε

∂r
|2 − d2

ε(a, r)
r2
0

| ≤ C(M0)
κ1/4

r2
0

. (A.76)

Combining (A.70), (A.71) with e = τ and e = er, (A.72), (A.73), (A.74),
(A.75) and (A.76), we deduce∣∣∣∣∣

∫
B(a,r0)

Vε(vε)−
π

2
dε(a, r)2

∣∣∣∣∣
≤ C(M0)((| log κ|−1 + ε1/2)(1 + r2‖fε‖2

L2) + κ−3/4r|log ε|1/2||fε||L2).

On the other hand∫
B(a,2κ−3/4r)\B(a,κ−3/4r)

(1− |vε|2)2

4ε2
≤ C(M0)(| log κ|−1 + ε1/2)(1 + r2‖fε‖2

L2),

so that the conclusion follows.
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A.6 First global estimates

As a consequence of the results of the two previous sections we have

Proposition A.8. There exists n ∈ N and α > 0 such that∣∣∣∣∣
∫

B1

(1− |vε|2)2

4ε2
− π

2
n

∣∣∣∣∣ ≤ C(M0)|log ε|−1(1 + εα‖fε‖2
L2).

Proof. Let 0 < κ < 1
2 to be determined later, aε

i ∈ Jε,κ and set r = λκε. By
(A.37) and the fact that λκ is non-increasing with κ, we have

B(aε
i , κ

−1r/2) \B(ai, ε, r) ⊂ Ωε(1/2).

Therefore, we may apply Proposition A.7, which yields, for di,κ = d(ai, λκε),∣∣∣∣∣
∫

B(ai,λκκ−3/4ε)
Vε(vε)−

π

2
d2

i,κ

∣∣∣∣∣
≤ C(M0)((| log κ|−1 + ε1/2)(1 + r2‖fε‖2

L2) + κ−3/4λκε|log ε|)
≤ C(M0)((| log κ|−1 + ε1/2)(1 + r2‖fε‖2

L2) + ε1/2κ−c0(M0)).

(A.77)

Here we have used the inequality λκ ≤ Cκ−`/2, so that c0(M0) > 0. Next
choose κ = ετ , with τ = 1

4c0(M0) , so that ε1/2κ−c0(M0) ≤ ε1/4. Therefore,
setting n =

∑
i∈Jε,κ

d2
i,κ we are led to∣∣∣∣∣∣

∑
i∈Jε,κ

∫
B(ai,λκκ−3/4ε)

Vε(vε)−
π

2
d2

i,κ

∣∣∣∣∣∣ ≤ C(M0)|log ε|−1(1 + εα‖fε‖2
L2).

(A.78)
The conclusion then follows using the external estimate given in Proposition
A.6.

Proof of Proposition A.4.
Expanding |∇vε|2 as in (A.72) and (A.73), we may write on Ωε(1/2)

|eε(vε)−
1
2
|∇Ψε|2|

≤ C
(
Vε(vε) + |∇ρ|2 + ε2|∇Ψε|4 + |g1

ε |2 + |g2
ε |2 + |∇Ψε|(|g1

ε |+ |g2
ε |)
)

.

(A.79)

We then argue as in (A.74) to conclude that∫
Ωε(1/2)

|eε(vε)−
1
2
|∇Ψε|2| ≤ C(M0)(1 + ‖fε‖2

L2(Ω)).
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On the other hand, since eε(vε) ≤ C(M0)ε−2 and |B1 \Ωε(1/2)| ≤ C(M0)ε2,
the conclusion follows.

The rest of this Appendix is devoted to the computation of
∫
Ωε
|∇Ψε|2.

In view of its definition, it follows from (A.38) that

∇Ψε =
∑

i∈Jε,1/2

dε
i

x− aε

|x− aε|2
,

and therefore, for every 0 < κ ≤ 1/2, there exists some constant C(M0, κ)
such that∫

Ωε

|∇Ψε|2 = 2π(
∑

i∈Jε,κ

d2
i,κ)|log ε| − 2π

∑
i6=j∈Jε,κ

di,κdj,κ log |ai − aj |+ Rε,κ,

(A.80)
where |Rε,κ| ≤ C(M0, κ). Here di,κ = deg( vε

|vε| , ∂B(aε
i , λκε)), for i ∈ Jε,κ.

The constant κ will be fixed thanks to Proposition A.9. We will then show
that the contribution of 2π

∑
i6=j∈Jε,κ

di,κdj,κ log |ai−aj |+Rε,κ is small com-
pared to | log ε|.

A.7 Confinement and algebraic equilibrium relation

The central idea in this section is borrowed from [7] (see also related result
in [14]). Our first result deals with a “two-scale” confinement.

Proposition A.9. Let a ∈ B1, R2 > R1 ≥ λ1/2ε, and consider ` points
a1, ..., a`, and 0 < κ ≤ 1/2 such that

ai ∈ B(a,R2) for i = 1, ..., ` (A.81)

|ai − aj | ≥ κ−1R1 for i 6= j (A.82)

|1− |vε|| ≤ σ0 on B(a, κ−1R2) \ ∪`
i=1B(ai, R1). (A.83)

There exist constants γ0 > 0 and ε1 > 0 depending only on M0 such that if
0 < ε ≤ ε1,

0 < κ ≤ κ0 ≡ exp(−
1 + R2

2‖fε‖2
L2

γ0
) (A.84)

and
κ−3/4R2|log ε|1/2||fε||L2 ≤ γ0, (A.85)

then

(
∑̀
i=1

di)2 =
∑̀
i=1

d2
i , (A.86)

54



where
di = deg(

vε

|vε|
, ∂B(ai, R1)).

Proof. We apply Proposition A.7 on the two different scales, first with r =
R1 and a = ai, for some i = 1, ..., `, then with r = R2 and a. This yields∣∣∣∣∣
∫

B(ai,κ−3/4R1)
Vε(vε)−

π

2
d2

i

∣∣∣∣∣ ≤
C(M0)((| log κ|−1 + ε1/2)(1 + R2

1‖fε‖2
L2) + κ−3/4R1|log ε|1/2||fε||L2)

and∣∣∣∣∣
∫

B(a,κ−3/4R2)
Vε(vε)−

π

2
(
∑̀
i=1

di)2
∣∣∣∣∣ ≤

C(M0)((| log κ|−1 + ε1/2)(1 + R2
2‖fε‖2

L2) + κ−3/4R2|log ε|1/2||fε||L2),

since

deg(
vε

|vε|
, ∂B(a, κ−1R2)) =

∑̀
i=1

deg(
vε

|vε|
, ∂B(a, κ−1R1)) =

∑̀
i=1

di.

On the other hand, by Proposition A.6 and scaling,∣∣∣∣∣
∫

B(a,κ−3/4R2)\∪`
i=1B(ai,κ−3/4R1)

Vε(vε)

∣∣∣∣∣ ≤ C(M0)(| log κ|−2 + ε)(1 + R2
2‖fε‖2

L2).

Therefore, combining the three inequalities we obtain

∣∣∣∣∣∑̀
i=1

d2
i − (

∑̀
i=1

di)2
∣∣∣∣∣ ≤

C(M0)((| log κ|−1 + ε1/2)(1 + R2
2‖fε‖2

L2) + κ−3/4R2|log ε|1/2||fε||L2).

Since the left-hand side is an integer, it vanishes if in particular

C(M0)((| log κ|−1 + ε1/2)(1 + R2
2‖fε‖2

L2) + κ−3/4R2|log ε|1/2||fε||L2) ≤
1
2
.

The conclusion follows.

Our next result is of purely combinatorial nature
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Lemma A.9. Let X be a normed space, let 0 < κ < 1/2 and 0 < r < Rmax

be given. Consider ` distinct points a1, ..., a` in X such that

|ai − aj | ≥ κ−1r.

Then one of the following two situations holds

i) infi6=j |ai − aj | ≥ Rmax

ii) There exists a partition {1, ..., `} = ∪k
i=1Jk with k < `, and for each

i ∈ {1, ..., k} some bi ∈ ∪j∈Ji{aj} and r < R ≤ (κ
2 )−`/2Rmax such that

∪`
i=1B(ai, r) ⊂ ∪k

i=1B(bi, R) (A.87)

|bi − bj | ≥ κ−1R, for any i 6= j ∈ {1, ..., k}, (A.88)

and, for every d1, ..., d` ∈ R`,∣∣∣∣∣∣
∑̀

i6=j=1

didj log |ai − aj | −
k∑

i6=j=1

DiDj log |bi − bj |

∣∣∣∣∣∣
≤ C(`)(sup

i
|di|2)| log κ|+

k∑
n=1

 ∑
i6=j∈Jn

didj

 log R

(A.89)

where Di =
∑

n∈Ji
dn, and where the constant C depends only on `.

Proof. If i) holds there is nothing left to prove. Otherwise set

δ0 = inf
i6=j

|ai − aj |.

Applying Lemma A.2 we obtain a subset {b1, ..., bk} of {a1, ..., a`} and δ0 ≤
δ ≤ (κ/2)−`δ0 such that

∪`
i=1B(ai, δ0) ⊂ ∪k

i=1B(bi, δ). (A.90)

and
|bi − bj | ≥ κ−1δ ∀i 6= j. (A.91)

We choose R = δ. It follows from the definition of δ0 and (A.91) that
k < `, whereas (A.87) and (A.88) follow directly from (A.90) and (A.91)
respectively. We set, for i = 1, ..., k,

Jk = {i : ai ∈ B(bk, R)}
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and turn finally to (A.89). For i 6= j in {1, ..., `} we distinguish two cases:
- i, j belong to the same Jn, for some n ∈ {1, ..., k}: then

| log |ai − aj | − log R| ≤ c(`)| log κ|

which follows from the fact that δ0 ≤ |ai − aj | ≤ 2R ≤ 2(κ/2)−`δ0.
- i ∈ Jn and j ∈ Jm, n 6= m. Then

| log |ai − aj | − log |bn − bm| | ≤ Cκ.

The proof of (A.89) follows by summation.

We are now in position to state, going back to (A.80),

Proposition A.10. We have, for some constant C(M0) depending only on
M0,∣∣∣ ∑
i6=j∈Jε,κ0

di,κ0dj,κ0 log |ai−aj |
∣∣∣ ≤ C(M0)

(
1+‖fε‖2

L2 +log(2+ ||fε||L2

√
|log ε|)

)
.

Proof. We set

Rmax = min{1,
γ0κ

3/4
0

(2 + ||fε||L2

√
|log ε|)

} (A.92)

where the constants κ0 and γ0 are provided in Proposition A.9 with R2 = 1.
We apply Lemma A.9 with the points aε

i in Jε,κ0 , and r = λκ0ε. If case i)
occurs then for each i 6= j

log |ai − aj | ≥ log(Rmax)

and the conclusion follows. Otherwise, (A.89) holds. Expanding (A.86) in
Proposition A.9, we have, for each n ∈ {1, ..., k},∑

i6=j∈Jn

didj = 0.

Therefore ∣∣∣∣∣∣
∑̀

i6=j=1

didj log |ai − aj | −
k∑

i6=j=1

DiDj log |bi − bj |

∣∣∣∣∣∣
≤ C(M0)| log κ0| ≤ C(M0)(1 + ‖fε‖2

L2).

(A.93)

If infi6=j |bi − bj | ≥ Rmax we have finished. Otherwise we use lemma A.9
with the bi’s instead of the ai’s and r = R, the number provided in Lemma
A.9, ii). We iterate this procedure until i) is met. Since at each step the
number of balls decreases, we are done in at most ` steps.

57



A.8 Proof of Theorem A.2 completed

Proof of i). Combining (A.80) (for κ = κ0) with Proposition A.10 we are
led to∣∣∣∣∣∣
∫
Ωε(1/2)

|∇Ψε|2 − 2π(
∑

i∈Jε,κ0

d2
i,κ0

)|log ε|

∣∣∣∣∣∣
≤ C(M0)

(
1 + ‖fε‖2

L2 + log(2 + ||fε||L2

√
|log ε|)

)
.

On the other hand, by Proposition A.4,∣∣∣∣∫
B1

eε(vε)−
1
2

∫
Ωε

|∇Ψε|2
∣∣∣∣ ≤ C(M0)(1 + ‖fε‖2

L2 + log(2 + ||fε||L2

√
|log ε|))

(A.94)
and (A.7) follows with

n =
∑

i∈Jε,κ0

d2
i,κ0

.

Concerning (A.8), Proposition A.9 shows that∣∣∣∣∣
∫

B1

(1− |vε|2)
4ε2

− π

2
m

∣∣∣∣∣ ≤ C(M0)
|log ε|

(1 + εα‖fε‖2
L2)

for some m ∈ N. The important point is that m = n. This can be checked
by choosing κ = κ0 in the proof of Proposition A.9.

Proof of ii). If n = m = 1, then one checks that there is actually only
one ball at level κ = κ0. In this case, 1

2

∫
|∇Ψε|2 = π|log ε| + O(1) and the

conclusion follows from (A.79).
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Marie Curie, 4 place Jussieu BC 187, 75252 Paris, France & Institut Uni-
versitaire de France.
E-mail : bethuel@ann.jussieu.fr

Giandomenico Orlandi, Dipartimento di Informatica, Università di Ve-
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