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Abstract

This paper studies the convergence properties of the inexact Jordan-Kinderlehrer-Otto
(JKO) scheme and proximal-gradient algorithm in the context of Wasserstein spaces.
The JKO scheme, a widely-used method for approximating solutions to gradient flows in
Wasserstein spaces, typically assumes exact solutions to iterative minimization problems.
However, practical applications often require approximate solutions due to computational
limitations. This work focuses on the convergence of the scheme to minimizers for the un-
derlying functional and addresses these challenges by analyzing two types of inexactness:
errors in Wasserstein distance and errors in energy functional evaluations. The paper pro-
vides rigorous convergence guarantees under controlled error conditions, demonstrating
that weak convergence can still be achieved with inexact steps. The analysis is further
extended to proximal-gradient algorithms, showing that convergence is preserved under
inexact evaluations.

Keywords. JKO scheme; Inexact optimization; Proximal-gradient algorithm; Optimal
transport

1 Introduction

The Proximal Point Algorithm (PPA) in the 2-Wasserstein space, also known as Jordan-
Kinderlehrer-Otto (JKO) scheme [47] or Minimizing Movement scheme [4, 41], is a well-known
variational method for approximating solutions to gradient flows in the Wasserstein space,
and as such it is often used in the study of partial differential equations (PDEs) via optimal
transport. Given a functional G defined over the space of probability measures, the JKO
scheme approximates the gradient flow of G in the Wassertein space by iteratively solving a
sequence of minimization problems of the form

µn+1 = Jτn(µn) := argmin
ν∈P2(Rd)

{
G(ν) + 1

2τn
W 2

2 (ν, µn)

}
, (1.1)

where W2 denotes the 2-Wasserstein distance, {τn}n is a positive sequence of stepsize param-
eters, and P2(Rd) is the space of probability measures with finite second moments.
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While the first use of the JKO scheme was to prove existence results for nonlinear PDEs and
their convergence properties, the importance of studying JKO schemes extends beyond purely
theoretical considerations. In recent years, gradient flows in the space of probability measures
have found applications in machine learning [61, 70], neural networks optimization [25, 53, 57],
and sampling [10, 24, 35, 69]. As an example, Langevin dynamics describe the evolution of
a probability distribution according to a stochastic differential equation that models the be-
havior of particles in a potential field with added Brownian motion. The Langevin equation
can be interpreted as a gradient flow of the Kullback-Leibler (KL) divergence with respect
to the Wasserstein-2 metric [69]. The JKO scheme and the proximal-gradient algorithm in
Wasserstein spaces [63] provide natural ways to discretize Langevin dynamics by iteratively
solving proximal minimization problems related to the KL divergence. Although discretized
Wasserstein gradient flows have been proposed in the literature [4, 11, 21, 47, 56, 69], most of
them have not been studied as minimization algorithms. In [58] weak convergence results for
JKO were established. In [63] estimates for the convergence of a proximal-gradient algorithm
were established and later extended to weak convergence in the convex case in [34] only for
the Bures–Wasserstein space, that is the (closed and geodesically convex) subset of Gaussians
in the Wasserstein space.

Unfortunately, in Wasserstein spaces there are very few cases where the minimization
problem (1.1) can be computed in closed form. A notable example is the case where
G(µ) =

∫
g dµ and g is proper, convex, lower semicontinuous and its proximity operator

can be computed in a closed form1, see [11]. Other cases are when the input and the func-
tional are specific, for example when G is the negative entropy and the input µ is Gaussian,
see [69, Example 8].
For this reason, in the Wasserstein setting it is necessary to devise algorithms to compute
inexact JKOs, where the exact solution to the minimization problem is replaced by an ap-
proximate one. A first option is to regularize problem (1.1), making it possibly easier to solve.
One way is to substitute the Wasserstein distance W2 in (1.1) with its entropic regularized
counterpart W ϵ

2 (see [48, 54]). The resulting JKO scheme is analyzed in [20]. However, the
main focus of the existing literature is about constructing a sequence close to the Wasserstein
Gradient Flow. Other recent strategies rely on regularizing the associated Hamilton-Jacobi
equation, motivated by regularized proximal operators in Euclidean space [45, 59], and ap-
plying Hopf-Cole type transformations to obtain an effective solution strategy, see [51]. An-
other regularization strategy can be found in [52], while modern ways to approximate (1.1),
involving neural networks, are introduced in [50]. In practice, approximate solutions are
unavoidable, since numerical solvers typically achieve a solution only up to a specified toler-
ance. Optimization schemes that tackle directly the original problem usually make use of the
Benamou-Brenier formula [8] to rewrite the 2-Wasserstein distance and solve a saddle point
problem. A well-known method to approximate a solution of (1.1) is the so-called “ALG2”
introduced in [9], which makes use of an ADMM-type algorithm, but other solvers can be
applied to the saddle point problem [23]. In all these cases, the solution to (1.1) is computed
only approximately. Despite their practical relevance, the existing convergence analyses for
JKO-based algorithms predominantly assume that µn+1 = Jτn(µn), that is, each JKO step
is computed exactly. However, as previously discussed, in all existing JKO-based algorithms

1See for example the repository at www.proximity-operator.net.
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it holds instead
µn+1 ≈ Jτn(µn).

For this reason, understanding the behavior of inexact JKO schemes and quantifying their
convergence properties is a crucial step towards broader applicability.

1.1 Inexact JKO

In this work, we address this gap by analyzing two types of errors in the computation of the
JKO scheme. The first type involves an error with respect to the Wasserstein distance, where
the approximate solution µn+1 satisfies

W2(µn+1, Jτn(µn)) ≤ ϵn, (1.2)

with Jτn(µn) being the exact JKO step defined in (1.1) and {ϵn}n a nonnegative sequence.
We refer to this discrepancy as a distance-type error. Our first main result concerns the
convergence behavior under this type of approximation.

Theorem 1.1 (Convergence for distance-type error). Let G : P2(Rd) → R be proper, lower
semicontinuous and convex along generalized geodesics with argminG ̸= ∅. Let {ϵn}n ⊂ R≥0

with
∑∞

n=0 ϵn <∞ and let {τn}n ⊂ R>0 with
∑∞

i=0 τi = ∞. Define σn :=
∑n−1

i=0 τi, for n ∈ N
and suppose

∑∞
n=1

σn
τn
ϵ2n−1 <∞. Let {µn}n satisfying (1.2), then

G(Jτn(µn))− inf G = O

(
1

σn

)
, for n→ ∞,

and Wp(µn, µ
∗) → 0 for all p ∈ [1, 2), where µ∗ ∈ argminG.

This establishes convergence for a first inexact version of the JKO algorithm, under as-
sumptions on the stepsize and error sequences that are analogous to those used in the analysis
within Hilbert spaces. For the sequence {Jτn(µn)}n, we are able to derive convergence rates
in terms of the objective functional G in relation to the sequence of partial sums of stepsizes
{σn}n, mirroring what is known for Hilbert spaces. While this first choice of error seems nat-
ural, a second slightly more restrictive choice can be more expressive. In particular, in the
next theorem we provide convergence rates for the sequence {µn}n which is the real sequence
we have actually access to. Moreover, algorithms that try to solve the minimization problem
in (1.1), have as objective to minimize the energy G(·) + 1

2τn
W 2

2 (·, µn) and can sometimes
provide convergence properties in terms of this fuctional. For this reason, the second type
of error we consider, is thus measured in terms of the energy of the minimization problem in
(1.1) and we refer to it as the variational-type error

G(µn+1) +
1

2τn
W 2

2 (µn+1, µn) ≤ G(Jτn(µn)) +
1

2τn
W 2

2 (Jτn(µn), µn) + ϵ2n. (1.3)

For this error, we will obtain the following result.

Theorem 1.2 (Convergence for variational-type error). Let G : P2(Rd) → R proper, lower
semicontinuous and convex along generalized geodesics with argminG ̸= ∅. Let {ϵn}n ⊂ R≥0
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with
∑∞

n=0 ϵn < ∞, {τn}n ⊂ R>0 with
∑∞

i=0 τi = ∞ and let σn :=
∑n−1

i=0 τi, for n ∈ N and∑∞
n=1

σn
τn
ϵ2n <∞. Let {µn}n satisfying (1.3), then

G(µn)− inf G = O

(
1

σn

)
, for n→ ∞,

and Wp(µn, µ
∗) → 0 for all p ∈ [1, 2), where µ∗ ∈ argminG.

In contrast to the statement of Theorem 1.1, Theorem 1.2 shows that variational-type
errors allow us to establish convergence for the sequence of the values G(µn) directly, rather
than for G(Jτn(µn)). This distinction is practically significant, as Jτn(µn) is not available in
actual computations, whereas µn is the output actually produced by the algorithm.

1.2 Inexact proximal-gradient

In the last part of the paper, we focus on the composite problem

min
µ∈P2(Rd)

G(µ) = EF (µ) +H(µ) (1.4)

with EF (µ) =
∫
F dµ, F : Rd → R. The prototypical example of the functional G is the free

energy functional (a key example also in [63]) and it is intimately related to the Kullback-
Leibler divergence. The free energy is expressed as

µ 7→
∫
F (x) dµ(x) + Ent(µ),

where Ent(µ) =
∫
log(µ(x))dµ(x) if µ is absolutely continuous with respect to the Lebesgue

measure and has density µ, and Ent(µ) = +∞ otherwise. The entropy functional is proper,
lower semicontinuous and convex along generalized geodesics and by definition, its domain
satisfies dom(Ent) ⊂ Pr

2(X ), hypothesis that we will assume on H. As highlighted in [63],
this example is related to the Langevin dynamic and the Fokker-Planck equation.

The proximal gradient algorithm, originally devised in Hilbert spaces to minimize sums of
a smooth and a nonsmooth function similarly to (1.4) has been extended to address problems
on the Wasserstein space. This extension was first introduced in [69] and further explored
in [63]. The method consists in two alternating steps: a gradient-descent (forward) step for
the functional EF and a proximal (backward) step for H, and can be written as µn+1 =
Jτ,H ((I − τ∇F )#(µn)). Clearly this scheme generalizes the proximal point method (JKO
scheme), and the additional assumption we take on the domain of H is the sole reason for
separating the analysis of these two algorithms. However, as we already observed for the
JKO scheme, in practice it is generally not feasible to implement an exact proximal-gradient
algorithm for this functional (see [69, Section 4.1]) . This limitation then strongly motivates
again the introduction of an inexact proximal-gradient scheme.

We consider inexact schemes that perform iterations of the type

µn+1 ≈ Jτn,H ((I − τn∇F )#(µn)) ,

with a positive sequence of stepsizes {τn}n. In this case, the introduction of a variable stepsize
can have practical relevance. In fact, Wibisono notes in [69, Section 2.2.2] that the classical
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unadjusted Langevin algorithm (ULA) can be interpreted as performing a gradient step for
the potential energy and a “flow” step for the entropy functional. Since for small stepsizes
the JKO step closely approximates the flow step [4], the whole ULA iteration can actually
be interpreted as an inexact step of a proximal-gradient algorithm in Wasserstein spaces.
However, it is well-known that the ULA procedure introduces a bias and the algorithm
converges to an incorrect distribution. This drawback motivates the analysis of variable
(vanishing) stepsizes, as they are sometimes used in practice to “adjust” the ULA scheme
and drive convergence towards the correct distribution.

For the convergence analysis of the scheme, we build upon the results of [63], extending
them to the convex (and not necessarily strongly convex) setting and to the inexact setting.
We establish analogues of Theorem 1.1 and Theorem 1.2 also for the inexact proximal-gradient
algorithm, providing convergence guarantees for the resulting sequence {µn}n along with cor-
responding convergence rates.

For both the algorithms we consider in this work, the results we provide have a long history
in Hilbert spaces. In the original works of Martinet [55] and Rockafellar [62], convergence for
proximal point algorithms with summable errors were introduced. The impact of errors on
convergence has been further analyzed in [5, 28, 44, 64–66]. The extension to Banach spaces
and Bregman divergences has also been considered in the works [2, 16, 36] while an analysis
of inexact evaluations for proximal-gradient algorithms can be found in [27, 33, 67]. The
analysis in Wasserstein spaces, however, is more subtle, as we will discuss throughout the
paper. In particular, in Wasserstein spaces it is not possible to rely on the nonexpansivity
propriety of the operator Jτn and thus it is not possible to use directly the correspondent of
classical analysis in Hilbert spaces [26].

1.3 Contributions and structure of the paper

The main contributions of this paper can be summarized as follows:

� We propose an inexact JKO framework, where the minimization problems solved at
each step allow for controlled approximations in either the Wasserstein distance or
energy functional evaluation. We rigorously analyze the convergence of the resulting
schemes and provide sufficient conditions for weak convergence. We also discuss rates
on the objective functional G.

� We extend the analysis to proximal-gradient algorithms in Wasserstein spaces. Based
on the work in [63] we first provide a finer discrete EVI for the proximal-gradient
algorithm. With this, we demostrate how the inexact evaluation of proximal steps can
still guarantee convergence under suitable assumptions on the error sequence. The
results we obtain expand the ones in [63] and [34, Theorem 5.3].

� Both the inexact JKO and proximal-gradient are analyzed with varying stepsizes, which
result in a new and interesting analysis, parallel, but with some key differences, to the
classical one in Hilbert spaces.

Even if the proximal-gradient algorithm in Wasserstein spaces is more general than the JKO
scheme, we decided to keep the contribution separated. The reason lies in the fact that in the
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analysis of the proximal-gradient algorithm we assume an additional regularity assumption
(the same present also in [63]), while we do not need such assumption for the analysis of the
JKO algorithm.

The remainder of this paper is organized as follows. In Section 2, we introduce the
theoretical background on optimal transport, gradient flows in Wasserstein spaces, and the
classical JKO scheme, while also introducing the weak topology we consider in this paper. In
this section, we also provide in Theorem 2.13 generalizations of known results to fit our setting.
Section 3 introduces the inexact JKO framework, detailing the types of errors considered and
presenting the main convergence results. In Section 4, we extend our approach to proximal-
gradient algorithms in Wasserstein spaces and establish convergence guarantees for inexact
proximal-gradient iterations.

2 Preliminaries

We denote by M(Rd) the Banach space of bounded measures defined on B(Rd), the Borel
σ-algebra of Rd. We define M2(Rd) as the subspace of measures with finite second moments,
i.e.,

M2(Rd) =

{
µ ∈ M(Rd)

∣∣∣ ∫
Rd

∥x∥2 d|µ|(x) < +∞
}
,

where |µ| denotes the total variation of µ. We write P(Rd) for the subset of M(Rd) of
probability measures (i.e., positive measures with mass 1) and we define P2(Rd) := P(Rd) ∩
M2(Rd).

For every µ ∈ P2(Rd), L2(µ) denotes the space of functions f : (Rd,B(Rd)) → (Rd,B(Rd))
such that

∫
∥f∥2 dµ < +∞. For every µ ∈ P2(Rd), we denote by ∥ · ∥µ and ⟨·, ·⟩µ respectively

the norm and the inner product of the space L2(µ). For any measures µ, ν, we write µ ≪ ν
if µ is absolutely continuous with respect to ν, and we denote Ld the Lebesgue measure over
Rd. The set of absolutely continuous measures with respect to Lebesgue, within P2(Rd), is
denoted by Pr

2(Rd) := {µ ∈ P2(Rd), µ ≪ Ld}. Throughout the paper we will also refer to
such measures as regular measures.

For every measurable map T : (Rd,B(Rd)) → (Rm,B(Rm)) and for every µ ∈ P2(Rd), we
denote by T#µ ∈ P2(Rm) the pushforward measure of µ by T characterized by the ’transfer
lemma’, i.e.,

∫
Rm φ(y)dT#µ(y) =

∫
Rd φ(T (x))dµ(x), for any measurable and bounded function

φ.
Let p ∈ [1, 2] and consider the p-Wasserstein distance defined for every µ, ν ∈ P2(Rd) by

W p
p (µ, ν) := inf

γ∈Γ(µ,ν)

∫
Rd×Rd

∥x− y∥p dγ(x, y), (2.1)

where Γ(µ, ν) is the set of couplings between µ and ν [68], i.e., the set of nonnegative measures
γ over Rd×Rd such that π1#γ = µ (respectively π2#γ = ν) where π1 : (x, y) 7→ x (respectively

π2 : (x, y) 7→ y) is the projection onto the first (respectively second) component. The set
Γ(µ, ν) is called the set of transport plans between µ and ν and the set of plans that minimize
(2.1) is the set of optimal transport plans and denoted by Γopt(µ, ν). By Jensen inequality,
it is clear that Wp(µ, ν) ≤Wq(µ, ν) for every p ≤ q and µ, ν ∈ Pq(Rd).
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We recall a foundamental theorem, due to Brenier [15] and Knott-Smith [49], see also [3,
Proposition 5.2].

Theorem 2.1 (Brenier, Knott-Smith). Let p = 2, µ ∈ Pr
2(Rd) and ν ∈ P2(Rd). Then

(i) Problem (2.1) has a unique solution γ. In addition, γ is induced by a transport map,
that is, there exists a uniquely determined µ-almost everywhere map T ν

µ : Rd → Rd

such that γ = (I, T ν
µ )#µ where (I, T ν

µ ) : x 7→ (x, T ν
µ (x)). Moreover T ν

µ = ∇ψ, where
ψ : Rn → (−∞,+∞] is a lower semicontinuous convex function differentiable µ-almost
everywhere. The map T ν

µ is called the optimal transport map from µ to ν.

(ii) Conversely, if ψ is convex, lower semicontinuous, and differentiable µ-almost every-
where with |∇ψ| ∈ L2(µ) and (∇ψ)#µ = ν, then T ν

µ := ∇ψ is the optimal transport
map from µ to ν.

(iii) If also ν ∈ Pr
2(Rd), then Tµ

ν ◦ T ν
µ = I µ-almost everywhere and T ν

µ ◦ Tµ
ν = I ν-almost

everywhere.

Corollary 2.2. In the hypothesis of the previous theorem it holds

W 2
2 (µ, ν) = inf

T :T#µ=ν

∫
Rd

∥x− T (x)∥2dµ(x).

In this paper, as it is commonly the case in the literature, we may refer to the space of
probability distributions P2(Rd) equipped with the 2-Wasserstein distance as the Wasserstein
space. In the following we define some weak topologies that can be considered on the space
P2(Rd).

Definition 2.3 (Narrow topology). The narrow topology on P2(Rd) is the weak∗ topology of
(Cb(Rd))′, where

Cb(Rd) :=
{
f : Rd → R

∣∣ f is continuous and bounded
}
,

endowed with the norm ∥f∥Cb(Rd) := supx∈Rd |f(x)|.

This topology is weaker than the strong topology induced by Wp, p ∈ [1, 2]. In particular,
we recall that whenever a sequence converges with respect to the distance Wp it converges
also narrowly, see [4, Lemma 5.1.7]. We introduce next another topology which will allow us
to state more general results throughout the paper. See for example [58, Section 3] and [6,
Section 5] for further comments.

Definition 2.4. Let Cw
2 (Rd) be the space defined by

Cw
2 (Rd) :=

{
f : Rd → R

∣∣ f is continuous and lim
∥x∥→∞

f(x)

1 + ∥x∥2
= 0

}
,

endowed with the norm ∥f∥Cw
2 (Rd) := supx∈Rd

|f(x)|
1+∥x∥2 .
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It is known that M2(Rd) can be seen as the dual of such space when endowed with the
norm ∥µ∥M2(Rd) =

∫
Rd ∥x∥2 d|µ|(x), see for example [6, Section 5] for a proof and further

comments. In this work we consider the weak-∗ topology in this space restricted to the
subset P2(Rd) and we denote it by τw,2. Whenever a sequence {µn}n ⊂ P2(Rd) is converging

to µ ∈ P2(Rd) with respect to this topology, we denote it by µn
w,2
⇀ µ. Clearly, this topology

is finer than the narrow topology. This means that if a sequence {µn}n is converging to µ in
P2(Rd) with respect to the topology τw,2, then µn → µ narrowly. Moreover, the convergence
we obtain is “weak” by name, but it implies convergence in p-Wasserstein distance for any
p ∈ [1, 2), see [4, Remark 7.1.11].

Lemma 2.5. Let {µn}n and {µ̄n}n be two bounded sequences in (P2(Rd),W2) such that

W2(µ̄n, µn) → 0 and µ̄n
w,2
⇀ µ∗, then also µn

w,2
⇀ µ∗.

Proof. Since both {µ̄n}n and {µn}n are bounded sequences in (P2(Rd),W2), there exists c > 0
such that

{µ̄n}n ∪ {µn}n ⊂ Kc :=

{
µ ∈ P2(Rd)

∣∣ ∫
Rd

∥x∥2 dµ(x) ≤ c

}
.

By [58, Corollary 3.6 (c)] the set Kc is relatively sequentially compact in P2(Rd) endowed
with the topology τw,2. From [4, Lemma 5.1.7] we also have that it is sequentially closed,
so that (Kc, τw,2) is sequentially compact. By hypothesis we have W2(µ̄n, µn) → 0, which

implies W1(µ̄n, µn) → 0. Since µ̄n
w,2
⇀ µ∗ then W1(µ̄n, µ

∗) → 0 and from the fact that W1

is induced by a norm, we obtain W1(µn, µ
∗) → 0. Now, from every subsequence of {µn}n

we can extract a further subsequence converging with respect to the topology τw,2 to some
µ∗∗ ∈ Kc, and thus also converging with respect to W1. However, since (Kc,W1) is Hausdorff

and W1(µn, µ
∗) → 0, we can conclude that µ∗∗ = µ∗, so that µn

w,2
⇀ µ∗.

Theorem 2.6 (Opial property,[58, Theorem 5.1]). Let {µn}n such that µn
w,2
⇀ µ in P2(Rd).

Then
W 2

2 (ν, µ) + lim inf
k→∞

W 2
2 (µn, µ) ≤ lim inf

k→∞
W 2

2 (µn, ν) for every ν ∈ P2(Rd).

From [58, Corollary 5.3] we have that such property holds under the weaker condition
µn → µ narrowly in P2(Rd).

Definition 2.7 (Geodesic). A (minimal, constant speed) geodesic (µt)t∈[0,1] in P2(Rd) con-

necting two given measures µ0, µ1 ∈ P2(Rd) is a Lipschitz curve satisfying

W2(µs, µt) = |t− s|W2(µ0, µ1) for every s, t ∈ [0, 1]. (2.2)

Definition 2.8 (Generalized geodesic). A generalized geodesic between µ0, µ1 ∈ P2(Rd) (with
base ν ∈ P2(Rd)) is a curve (µt)t∈[0,1] in P2(Rd) defined by

µt = (π2→3
t )#γ t ∈ [0, 1],

where π2→3
t := (1 − t)π2 + tπ3, γ ∈ Γ(ν, µ0, µ1), π

1,2
# γ ∈ Γopt(ν, µ0) and π1,3# γ ∈ Γopt(ν, µ1),

with π1,2 : (x, y, z) → (x, y) and π1,3 : (x, y, z) → (x, z).
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Definition 2.9 (Convexity). Let G : P2(Rd) → (−∞,+∞] be a proper function. G is
convex along (generalized) geodesics if for every µ0, µ1, ν ∈ P2(Rd) there exists a (generalized)
geodesic (µs)s∈[0,1] between µ0 and µ1 (with base ν), along which

G(µs) ≤ (1− s)G(µ0) + sG(µ1) for every s ∈ [0, 1]. (2.3)

Clearly, convexity along generalized geodesics implies convexity along geodesics. Notice
that in [4, Definition 9.2.4], the authors consider as base points only ν ∈ D(G), this is because
they consider as inputs of Jτ only probabilities in D(G). For our purposes, however, since
the input of Jτ will be an approximation of some element in D(G) and can be strictly outside
of the domain, we have to assume this slightly more restrictive definition. The definition we
provide is actually common in the literature where some times convexity along generalized
geodesics is required for base points ν ∈ Pr

2(Rd) (see for example [63, Section 2.3.2]). The
notion we require coincides with this last one whenever G is supposed lower semicontinuous,
which we will suppose throughout the paper.

Example. A classical example of a functional that is convex along generalized geodesics is
the potential energy

µ 7→
∫
F (x) dµ(x),

where F : Rd → (−∞,+∞] is proper convex and lower semicontinuous. Another classical
example is the interaction energy

µ→
∫∫

W (x, y)dµ(x) dµ(y),

where W : Rd × Rd → (−∞,+∞] is proper convex and lower semicontinuous. A typical
choice is W (x, y) = V (x − y), with V : Rd × Rd → (−∞,+∞] proper convex and lower
semicontinuous. A further relevant example we will refer again later is the entropy functional

µ 7→ Ent(µ) :=

{∫
log(ρ(x)) dρ(x) if µ ∈ Pr

2(Rd) and µ = ρLd,

+∞ otherwise.

See [4, Section 9.3 and 9.4] for further examples and comments about geodesically convex
functionals.

Remark 2.10. The functionalW2(µ
1, ·) is not convex along geodesics (and therefore it is also

not convex along generalized geodesics). However, as noted in [4, Remark 9.2.8], W 2
2 (µ

1, ·)
is convex along all generalized geodesics with base µ1. This property is actually essential for
the well-posedness of the JKO scheme.

Theorem 2.11 ([58, Theorem 4.2]). Every lower semicontinuous and geodesically convex
functional φ : P2(Rd) → (−∞,+∞] is sequentially lower semicontinuous w.r.t. the topology
τw,2 on P2(Rd).

Definition 2.12 (Subdifferential,[4, Section 10.1.1]). Let H be a functional defined on Pr
2(Rd)

and let µ ∈ P2(Rd). A function ξ ∈ L2(µ) belongs to the (Fréchet) subdifferential of H at µ
iff

H(ν)−H(µ) ≥
∫
⟨ξ(x), T ν

µ (x)− x⟩ dµ(x).
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When is not generating confusion, we refer to a specific element of the subdifferential of H
at µ as ∇WH(µ).

Let τ > 0, we define the (in general multivalued) operator Jτ : P2(Rd) → P2(Rd), by

Jτ (µ) = argmin
ν∈P2(Rd)

{
G(ν) + 1

2τ
W 2

2 (ν, µ)

}
. (2.4)

Throughout this paper, we will use a specific property (see equation (2.5) below) of the
operator Jτ that enables to find what is called a discrete EVI for the JKO sequence. Usually,
property (2.5) is stated for any initial point µ ∈ D(G) (see for example [4, Lemma 9.2.7]
and [4, Theorem 4.1.2 (i) and (ii)]). However, in our analysis, the input µ will be only an
approximation of a previous JKO iterate and, as such, may not lie within the domain of G
(or its closure). For this reason, we need to establish a more general result, for which we
provide a proof.

Theorem 2.13. Let G : P2(Rd) → (−∞,+∞] proper, lower semicontinuous and convex
along generalized geodesics with argminG ̸= ∅ and let τ > 0. Then

(i) For all µ ∈ P2(Rd) the minimization problem in (2.4) has a unique solution

(ii) For each µ, ν ∈ P2(Rd), it holds

W 2
2 (Jτ (µ), ν)−W 2

2 (µ, ν) ≤ 2τ (G(ν)− G(Jτ (µ)))−W 2
2 (Jτ (µ), µ) (2.5)

(iii) If µn is converging to µ in (P2(Rd),W2), then W2(Jτ (µn), Jτ (µ))) → 0.

Proof. For the first two points we can refer to [4, Lemma 9.2.7] and [4, Theorem 4.1.2 (i) and
(ii)]. As we mentioned above, in [4] they consider only µ ∈ D(G). For our purposes we need
the properties to hold for every µ so we provide a brief proof here.

(i) Let us consider a minimizing sequence νn for (2.4). Define Gτ (ν) = G(ν) + 1
2τW

2
2 (µ, ν)

and G∗
τ = inf Gτ (note that G∗

τ > −∞ since G∗
τ ≥ inf G). By definition we have Gτ (νn) =

G∗
τ + ϵn, where ϵn ≥ 0 and ϵn → 0. For any n,m ∈ N let us consider νt a generalized

geodesic between νn and νm with base µ along which G is convex. By the convexity
of G and the 1-convexity of W 2

2 (µ, ·) along this generalized geodesic (see [4, Remark
9.2.8]), for every t ∈ (0, 1) we obtain

Gτ (ν
t) ≤ tGτ (νn) + (1− t)Gτ (νm)− t(1− t)

2τ
W 2

2 (νn, νm).

Using that Gτ (ν
1/2) ≥ G∗

τ we get W 2
2 (νn, νm) ≤ 4τ(ϵn + ϵm), and so νn is a Cauchy

sequence in (P2(Rd),W2). Thus there exists ν∗ such that νn → ν∗ in W2. By the
lower semicontinuity of G we conclude that Gτ (ν∗) ≤ lim infn Gτ (νn) = G∗

τ . A similar
calculation shows that the minimizer is unique.

(ii) Let us consider a generalized geodesic νt between Jτ (µ) and ν with base µ. For every
t ∈ (0, 1), we have

Gτ (ν
t) ≤ tGτ (Jτ (µ)) + (1− t)Gτ (ν)−

t(1− t)

2τ
W 2

2 (Jτ (µ), ν);
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using that Gτ (ν
t) ≥ G∗

τ = Gτ (Jτ (µ)) we can write

(1− t)Gτ (Jτ (µ)) ≤ (1− t)Gτ (ν)−
t(1− t)

2τ
W 2

2 (Jτ (µ), ν).

Dividing by (1− t) and then letting t→ 1 we obtain the desired estimate.

(iii) For every µ, we denote by G∗
τ (µ) the value infν∈P2(Rd) Gτ (µ; ν) := G(ν) + 1

2τW
2
2 (µ, ν),

where now we write explicitely the dependence on µ. By [4, Lemma 3.1.2] the functional
G∗
τ is continuous on P2(Rd). We define now νn := Jτ (µn) and ν := Jτ (µn). Then, we

have
lim sup

n
Gτ (µ; νn) = lim sup

n
Gτ (µn; νn) = lim

n
G∗
τ (µn) = G∗

τ (µ).

This implies that for every ϵ > 0 there exists Nϵ such that

Gτ (µ; νn) ≤ G∗
τ (µ) + ϵ = Gτ (µ; ν) + ϵ, (2.6)

for every n ≥ Nϵ. We notice that νn ∈ D(G) for all n ∈ N. By [4, Lemma 9.2.7], there
exists a geodesic νt between νn and ν, with base point µ, such that

Gτ (µ; ν
t) ≤ (1− t)Gτ (µ; νn) + tGτ (µ; ν)−

t(1− t)

2τ
W 2

2 (νn, ν).

From (2.6) we obtain

Gτ (µ; ν
t) ≤ Gτ (µ; ν) + (1− t)ϵ− t(1− t)

2τ
W 2

2 (νn, ν).

Using that Gτ (µ; ν) = G∗
τ (µ) = inf Gτ (µ; ·) we have

t(1− t)W 2
2 (νn, ν) ≤ 2τ(1− t)ϵ.

Dividing by (1− t) and letting t→ 1, we obtain W 2
2 (νn, ν) ≤ 2τϵ and W2(νn, ν) → 0.

3 Inexact JKO

As explained in the introduction, we consider here two different choices of error that we allow
to be committed from an iteration to another of the JKO scheme. We consider a proper,
lower semicontinuous functional G : P2(Rd) → (−∞,+∞] which is convex along generalized
geodesics and that satisfies argminG ≠ ∅.

3.1 Distance-type error

We consider in this section a sequence {µn}n generated computing the output Jτn(µn) with
a certain precision with respect to the Wassertein distance, i.e., a sequence satisfying the
following

W2(µn+1, Jτn(µn)) ≤ ϵn for all n ∈ N,

11



where {ϵn}n ⊂ R≥0 and {τn}n ⊂ R>0. From this, it follows from the triangular inequality
that, for every ν ∈ P2(Rd) and every n ∈ N

W2(µn+1, ν) ≤W2(Jτn(µn), ν) +W2(µn+1, Jτn(µn)),

so that
W2(µn+1, ν) ≤W2(Jτn(µn), ν) + ϵn for all ν ∈ P2(Rd).

Lemma 3.1. Suppose that
∑

n ϵn < +∞. Then for every ν ∈ argminG the sequences
{W2(µn, ν)}n and {W2(Jτn(µn), ν)}n converge and there exists a contant C > 0 such that

W 2
2 (µn+1, ν) ≤W 2

2 (Jτn(µn), ν) + Cϵn. (3.1)

Proof. For every ν ∈ argminG, we have from (2.5)

W2(Jτn(µn), ν) ≤W2(µn, ν),

so that
W2(µn+1, ν) ≤W2(µn, ν) + ϵn,

and the sequence {W2(µn, ν)}n converges. On the other hand, we also have

W2(Jτn(µn+1), ν) ≤W2(µn+1, ν) ≤W2(J(µn), ν) + ϵn,

which shows that {W2(Jτn(µn), ν)}n converges too. It also follows that there exists a c > 0
such that W2(µn, ν) ≤ c for all n ∈ N (and thus also W2(Jτn(µn), ν) ≤ c for all n ∈ N).
Thus, we obtain

W 2
2 (µn+1, ν) =W2(µn+1, ν)W2(µn+1, ν)

≤ (W2(Jτn(µn), ν) + ϵn)(W2(Jτn(µn), ν) + ϵn)

≤W 2
2 (Jτn(µn), ν) + 2cϵn + ϵ2n,

and since ϵn is bounded, this concludes the proof.

The previous lemma implies quasi Fejér monotonicity with respect to argminG (see [7,
Definition 5.32] for the definition in Hilbert spaces). Specifically, it follows that for all ν ∈
argminG there exists a constant C > 0 such that

W 2
2 (µn+1, ν) ≤W 2

2 (µn, ν) + Cϵn. (3.2)

From now on, we will use the notation ϵ̃n := Cϵn, for all n ∈ N.

Lemma 3.2. It holds that W2(Jτn(µn), µn) → 0 as n→ +∞.

Proof. Combining (3.1) with the discrete EVI inequality (2.5), we obtain

W 2
2 (µn+1, ν)−W 2

2 (µn, ν) ≤ 2τn (G(ν)− G(Jτn(µn)))−W 2
2 (Jτn(µn), µn) + ϵ̃n, (3.3)

for all ν ∈ argminG. From this, we derive

W 2
2 (µn+1, ν) ≤W 2

2 (µn, ν)−W 2
2 (Jτn(µn), µn) + ϵ̃n.

Since
∑

n ϵ̃n = C ·
∑

n ϵn < +∞, summing up both sides gives∑
n

W 2
2 (Jτn(µn), µn) < +∞. (3.4)

This implies in particular that W2(Jτn(µn), µn) → 0.
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Theorem 3.3. Let G : P2(Rd) → (−∞,+∞] be proper, lower semicontinuous, and convex
along generalized geodesics, with argminG ≠ ∅. Let {ϵn}n ⊂ R≥0 with

∑∞
n=0 ϵn <∞ and let

{τn}n ⊂ R>0 with
∑∞

i=0 τi = ∞. Define σn :=
∑n−1

i=0 τi, for n ∈ N. Let {µn}n be a sequence
satisfying

W2(µn+1, Jτn(µn)) ≤ ϵn, for all n ∈ N.

1. It holds the rate

G(β̄n)− inf G = O

(
1

σn

)
, as n→ ∞, (3.5)

where β̄n := Jτjn (µjn) with jn = argmini=0,...,n−1{G(Jτi(µi))}, defines the sequence of
the best iterates.

2. If
∑∞

n=1
σn
τn
ϵ2n−1 <∞, then

G(Jτn(µn))− inf G = O

(
1

σn

)
, as n→ ∞,

and {µn}n converges with respect to the topology τw,2 to some µ∗ ∈ argminG. In
particular we have Wp(µk, µ

∗) → 0 for all p ∈ [1, 2).

Proof. We first prove that every weak cluster point of {Jτn(µn)}n is a minimizer of G. We
recall equation (3.3) from which we know it holds

W 2
2 (µn+1, ν)−W 2

2 (µn, ν) ≤ 2τn(G(ν)− G(Jτn(µn)))−W 2
2 (Jτn(µn), µn) + ϵ̃n, (3.6)

for all ν ∈ argminG and n ∈ N. Summing up from 0 to N − 1, we obtain

2
N−1∑
n=0

τnG(Jτn(µn))+W 2
2 (µN , ν) ≤ 2σNG(ν)+W 2

2 (µ
0, ν)+

N−1∑
n=0

(ϵ̃n−W 2
2 (Jτn(µn), µn)). (3.7)

Since β̄N is the best iterate, we have

G(β̄N ) ≤ 1

σN

N−1∑
n=0

τnG(µn+1), (3.8)

and combining this with equation (3.7), we obtain

G(β̄N )− inf G ≤ C

σN
. (3.9)

The first part of the theorem is established. On the other hand, for all n ≥ 1, we have

G(Jτn(µn)) +
1

2τn
W 2

2 (Jτn(µn), µn) ≤ G(Jτn−1(µn−1)) +
1

2τn
W 2

2 (Jτn−1(µn−1), µn)

≤ G(Jτn−1(µn−1)) +
1

2τn
ϵ2n−1,

(3.10)

and thus, multiplying by σn

(σn+1 − τn)G(Jτn(µn))− σnG(Jτn−1(µn−1)) ≤
σn
2τn

ϵ2n−1. (3.11)
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Summing from 1 to N − 1 and recalling that σ1 = τ0, we obtain

σNG(JτN−1(µN−1))−
N−1∑
n=1

σn
2τn

ϵ2n−1 ≤
N−1∑
n=0

τnG(Jτn(µn)). (3.12)

Combining (3.7) and (3.12), we arrive at

2σNG(JτN−1(µN−1))− 2σNG(ν) ≤W 2
2 (µ

0, ν) +

N−1∑
n=0

ϵ̃n +

N−1∑
n=1

σn
τn
ϵ2n−1. (3.13)

Since by hypothesis ϵ̃n and σn
τn
ϵ2n−1 are summable, we get

G(JτN−1(µN−1))− inf G ≤ C

σN
, (3.14)

for some constant C > 0. To conclude we use the Opial property (Theorem 2.6) to prove con-
vergence of the whole sequence. First we notice that {Jτn(µn)}n is bounded in (P2(Rd),W2)
and thus

sup
n∈N

∫
∥x∥2 dJτn(µn)(x) = sup

n∈N
W 2

2 (Jτn(µn), δ0) < +∞.

Using for example [58, Corollary 3.6 (c)] we conclude that {Jτn(µn)}n has at least a cluster
point with respect to the topology τw,2 in P2(Rd). Consider a subsequence {Jτni

(µni)}i of
{Jτn(µn)}n and a cluster point µ ∈ P(X) such that Jτni

(µni)
w,2
⇀ µ, then, by lower semiconti-

nuity of G (also with respect to the topology τw,2 we consider on P2(Rd), see Theorem 2.11),
we obtain

G(µ) ≤ lim inf
i

G(Jτni
(µni)) ≤ lim sup

i
G(Jτni

(µni)) ≤ inf G,

which means that µ ∈ argminG. This proves that every cluster point of the sequence is a
minimizer of G.
Now, in order to prove convergence of the whole sequence, we suppose there exist two sube-

quences {Jτni
(µni)}i and {Jτmi

(µmi)}i of {Jτn(µn)}n with Jτni
(µni)

w,2
⇀ ν∗ ∈ P2(Rd) and

Jτmi
(µmi)

w,2
⇀ ν∗∗ ∈ P2(Rd). We define ℓ(ν) := limnW2(Jτn(µn), ν) for all ν ∈ argminG,

which always exists by Lemma 3.1. Since we have proven ν∗, ν∗∗ ∈ argminG, we can use the
Opial property and obtain whenever ν∗ ̸= ν∗∗

ℓ(ν∗) = lim inf
i

W2(Jτni
(µni), ν

∗) < lim inf
i

W 2
2 (Jτni

(µni), ν
∗∗) = ℓ(ν∗∗)

ℓ(ν∗∗) = lim inf
i

W2(Jτmi
(µmi), ν

∗∗) < lim inf
i

W 2
2 (Jτmi

(µmi), ν
∗) = ℓ(ν∗)

so that it must be ν∗ = ν∗∗. We have proved that there exists µ∗ ∈ argminG such that

Jτn(µn)
w,2
⇀ µ∗. Since both {Jτn(µn)}n and {µn}n are bounded sequences and by Lemma 3.2

we have W2(Jτn(µn), µn) → 0, we can conclude that µn
w,2
⇀ µ∗ using Lemma 2.5.

Remark 3.4. Notice that imposing that G is λG-convex along generalized geodesics [4, Defi-
nition 9.2.4], with λG > 0, an analogue of [4, Theorem 4.1.2 (ii)] combined with (3.6) yields
the inequality

(1 + λGτn)W
2
2 (µn+1, ν) ≤W 2

2 (µn, ν) + ϵ̃n for all ν ∈ argminG.
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From this, strong convergence inW2 can be obtained. However, due to the error ϵn incurred at
each iteration, the convergence rate cannot be improved without further assumptions on {ϵn}n.
This consideration motivates our decision not to treat the strongly convex case separately.

Remark 3.5. The condition
∑∞

n=0
σn
τn
ϵ2n−1 < ∞ is not overly restrictive and it is somehow

what we expect. This condition is satisfied in particular in the following cases:

� ϵn = 0 for all n ∈ N

� {ϵn}n is nonincreasing and 0 < infn τn ≤ supn τn < M for some M > 0.

� {ϵn}n and {τn}n nonincreasing and σnϵn−1/τn is bounded, for example with ϵn = 1
n1+δ

and τn = 1
n , for all n ∈ N, where δ > 0.

� {ϵn}n is nonincreasing and {τn}n nondecreasing.

Remark 3.6 (Ergodic convergence). Supposing that the elements of the sequence {Jτn(µn)}n
belong to Pr

2(Rd) we can apply [1, Proposition 7.6] which states that if a functional is con-
vex along generalized geodesics then it is convex along barycenters (for regular measures).

In particular, this implies that (3.8) holds for β̄n := Bar
(
Jτi(µi),

τi
σn

)
i=0,...,n−1

, the Wasser-

stein barycenter of the first n elements of the sequence {Jτi(µi)}i with parameters { τi
σn

}n−1
0 .

As a result, (3.5) holds for the barycenter sequence {β̄n}n, demonstrating that ergodic-type
convergence rates can be achieved without requiring the additional assumptions in point 2 of
Theorem 3.3. We expect this result to hold under more general assumptions, for example for
functionals for which regular measures are dense in energy. In such cases, one could exploit
the stability of Wasserstein barycenters, see [43, Theorem 3] and [19]. We do not pursue this
direction since Wasserstein barycenters are not as practical to compute as their Hilbertian
counterpart, thereby limiting their practical relevance.

Remark 3.7. When G is LG-Lipschitz continuous in a ball that contains {µn}n and {Jτn(µn)}n,
we can derive a rate on G(µn). In fact, we have G(µn+1) ≤ G(Jτn(µn)) + LGϵn, and if

ϵn = O
(

1
σn

)
, for n→ ∞, then

G(µn+1)− inf G ≤ G(Jτn(µn))− inf G + LGϵn = O

(
1

σn

)
, for n→ ∞.

Notice, however, that in Wasserstein spaces, the connection between convexity and local Lips-
chitz continuity is not obvious. As an example, let G : P2(Rd) → (−∞,+∞] be proper, lower
semicontinuous and convex along geodesics. If G is approximable by discrete measures and
the domain of G is totally convex, then G is locally Lipschitz, see [22, Remark 9]. However,
several functionals are not locally Lipschitz continuous. In particular, if the domain of G is
included in the set of regular measures Pr

2(Rd), then G cannot be locally Lipschitz continuous
since every regular measure can be approximated in (P2(Rd),W2) by discrete measures. A
notable example where locally Lipschitz continuity fails is given by the negative entropy.
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Nonexpansivity of the proximal map In classical analysis in Hilbert spaces, the weak
convergence of the sequence {µn}n is established in a more direct way. However, such an
analysis relies on the nonexpansivity of the proximal map, a property that is not known to
hold in Wasserstein spaces. Indeed, this remains an open problem. Even the projection onto
convex sets can fail to be convex. As a first example, consider the set of two-atomic measures

S = {µ ∈ P2(Rd) | #supp(µ) = 2}.

This set is closed and geodesically convex, but the projection onto this set fails to be Lipschitz,
as also shown in Figure 1.

Figure 1: Projection of two nearby 2D Gaussians onto the set S. Despite having really
similar distributions, the projections differ significantly, showing that the projection map is
not Lipschitz.

Even considering sets which are convex along generalized geodesics, the Lipschitzianity
could fail or remain open, as commented in [32]. Consider the set

S′ :=

{
ρ ∈ L+

1 (R
d) |

∫
ρ(x) dx = 1, ρ ≤ 1

}
∩ P2(Rd)

In [32, Corollary 5.3] it is proven that the projection onto S′ is locally 1
2 -Hölder, but in [32,

Remark 5.1] the authors say that Lipschitzianity is still an open problem.
For positive results, some insights are provided in [18], where a slight modification of the
metric is considered and there are specific cases where the nonexpansivity of Jτ is guaranteed.
A known positive example of the nonexpansivity of the proximal map, is when the functional
G is totally convex, i.e., convex along any coupling, see [22, Definition 2.7]. In this case, it is
possible to introduce a probability space (Ω,B,P), consider the function

g : L2(Ω,P;Rd) → (−∞,+∞] : X → G(X#P),
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and prove that g is proper, convex and lower semicontinuous. By the last part of [22, Propo-
sition 5.2 (1)], whenever µ = X#P, then Jτ (µ) = (proxL

2

τg ◦X)#P. Since g is proper, convex

and lower semicontinuous, then proxL
2

τg : L2(Ω,P;Rd) → L2(Ω,P;Rd) is nonexpansive [REF?].

Thus, given µ, µ′ ∈ P2(Rd), for every X,X ′ such that X#P = µ, X ′
#P = µ′, we have

W 2
2 (Jτ (µ), Jτ (µ

′)) ≤ ∥proxL2

τg (X)− proxL
2

τg (X
′)∥2L2 ≤ ∥X −X ′∥2L2 .

So that
W2(Jτ (µ), Jτ (µ

′)) ≤ inf
X∼µ
X′∼µ′

∥X −X ′∥2L2 =W2(µ, µ
′).

3.2 Variational-type error

Considering the second error choice described in the introduction, we can prove the following
result.

Theorem 3.8. Let G : P2(Rd) → (−∞,+∞] proper, lower semicontinuous and convex along
generalized geodesics and suppose argminG ≠ ∅. Let {ϵn}n ⊂ R≥0 with

∑∞
n=0 ϵn < ∞ and

let {τn}n ⊂ R>0 with
∑∞

i=0 τi = ∞. Define σn :=
∑n−1

i=0 τi, for n ∈ N. Consider {µn}n such
that for all n ∈ N it holds

G(µn+1) +
1

2τn
W 2

2 (µn+1, µn) ≤ G(Jτn(µn)) +
1

2τn
W 2

2 (Jτn(µn), µn) +
ϵ2n
2τn

. (3.15)

1. It holds the rate

G(βn)− inf G = O

(
1

σn

)
, as n→ ∞,

where βn := µjn with jn = argmini=0,...,n−1{G(µi)}, defines the sequence of the best
iterate.

2. If
∑∞

n=0
σn
τn
ϵ2n <∞, then

G(µn)− inf G = O

(
1

σn

)
, as n→ ∞,

and {µn}n converges with respect to the topology τw,2 to some µ∗ ∈ argminG. In
particular we have Wp(µk, µ

∗) → 0 for all p ∈ [1, 2).

Proof. Set Gτn(µ) := G(µ) + 1
2τn

W 2
2 (µ, µn). The assumption (3.15) then reads

Gτn(µn+1) ≤ Gτn(Jτn(µn)) +
ϵ2n
2τn

. (3.16)

By [4, Lemma 9.2.7], there exists a generalized geodesic νt between µn+1 and Jτn(µn), with
base point µn, such that

Gτn(ν
t) ≤ (1− t)Gτn(µn+1) + tGτn(Jτn(µn))−

t(1− t)

2τn
W 2

2 (µn+1, Jτn(µn)).
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From (3.16) we derive

Gτn(ν
t) ≤ Gτn(Jτn(µn)) + (1− t)

2ϵ2n
τn

− t(1− t)

2τn
W 2

2 (µn+1, Jτn(µn))

and

W 2
2 (µn+1, Jτn(µn)) ≤ 2τn

Gτn(Jτn(µn))− Gτn(ν
t) + (1− t) ϵ2n

2τn

t(1− t)
.

Using that Gτn(Jτn(µn)) = infµ Gτn(µ) and letting t→ 1, we obtain

W 2
2 (µn+1, Jτn(µn)) ≤ ϵ2n and W2(µn+1, Jτ (µn)) ≤ ϵn.

We can then apply Theorem 3.3 to obtain convergence of the sequence {µn}n to a minimizer
of G. In order to derive the rate on G(µn), we proceed as follows. We first recall from (3.7)
that

2
N−1∑
n=0

τnG(Jτn(µn))+W 2
2 (µN , ν) ≤ 2σNG(ν)+W 2

2 (µ
0, ν)+

N−1∑
n=0

(ϵ̃n−W 2
2 (Jτn(µn), µn)). (3.17)

and thus, assumption (3.15) implies

2

N−1∑
n=0

τnG(µn+1) +W 2
2 (µN , ν) ≤ 2σNG(ν) +W 2

2 (µ
0, ν) +

N−1∑
n=0

ϵ̃n +

N−1∑
n=0

ϵ2n, (3.18)

and point 1 follows from the same reasoning done in the proof of Theorem 3.3. On the other
hand, (3.15) yields

G(µn+1) ≤ G(Jτn(µn)) +
1

2τn
W 2

2 (Jτn(µn), µn) +
ϵ2n
2τn

≤ G(µn) +
ϵ2n
2τn

.

Reasoning as in the proof of Theorem 3.3, we multiply by σn and obtain

(σn+1 − τn)G(µn+1)− σnG(µn) ≤
σn
2τn

ϵ2n. (3.19)

Summing from 0 to N − 1 and recalling that σ0 = 0, we derive

σNG(µN )−
N−1∑
n=0

σn
2τn

ϵ2n ≤
N−1∑
n=0

τnG(µn+1). (3.20)

Combining, we obtain

2σNG(µN ) ≤ 2σNG(ν) +W 2
2 (µ

0, ν) +

N−1∑
n=0

ϵ̃n +

N−1∑
n=0

ϵ2n +

N−1∑
n=0

σn
τn
ϵ2n. (3.21)

Using the summability conditions, we end up with

G(µN )− inf G ≤ C

σN
. (3.22)
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Obtaining error bounds approximating the solution Optimization schemes that
tackle problem (1.1) usually make use of the Benamou-Brenier formula [8] to rewrite the
2-Wasserstein distance, and solve a saddle point problem. A well-known method to approx-
imate a solution of (1.1) is the so-called “ALG2” introduced in [9]. The algorithm makes
use of an augmented Lagrangian method called alternating direction method of multipliers
(ADMM). The ADMM method has a long history and presents solid guarantees of conver-
gence [38–40, 42, 46, 60]. For example, in the overview of Boyd [12] the convergence of the
“dual” variable is stated in [12, Section 3.2.1]. Using the notations of [9], the “dual” variable
correspond to σ = (µ,m, µ1). In particular, the convergence of σn to the optimal dual vari-
able σ∗ implies the convergence of µ1,n to the solution µ∗1 to problem (1.1) (or [9, Problem
(1.4)]). It is clear that both F and G in [9] are not strongly convex, independently on the
choice of the initial functional to minimize (in our notations G). Thus, it’s not obvious how to
guarantee linear convergence for the “dual” variable σ. Energy convergence is also stated in
[12, Section 3.2.1], but it is not clear how to find a condition of the kind (3.15). It is possible
that results about convergence in energy of the closely related Douglas-Rachford method or
its generalization have to be used [13, 14, 30, 31, 37]. This can be the subject of further
investigation.

Obtaining error bounds modifying the problem As discussed in the introduction,
another common practice is to perturb the original problem (1.1) to find in an easier way
approximated solutions. In [20] a perturbation of the W2-distance coming from entropic
optimal transport [29] is used instead of W2 in (1.1). However, the authors do not quantify
theW2-distance between the output of the entropic proximal step and the output of the classic
proximal step, so it is not clear if it is possible to achieve one of the previous conditions, even
sending the regularization parameter to zero. However, in these cases, it is probably better
to try and prove some sort of convergence result for the scheme itself, without relying on
how close it is to a classical JKO scheme. We do not expand on this in the current work.
Other approximations of the JKO step can be found in [50–52]. Also here the authors do not
provide any estimate about how far the approximated solutions are from the true solution
and investigate the quality of the approximations only empirically.

4 Inexact proximal-gradient algorithm

As anticipated in the introduction, in this section we focus on the problem

min
µ∈P2(Rd)

G(µ) = EF (µ) +H(µ) (4.1)

with EF (µ) =
∫
F dµ. Our analysis is grounded on the following assumptions.

(A1) F : Rd → R is convex and differentiable with L-Lipschitz continuous gradient and λ-
strongly convex (with λ = 0 permitted)

(A2) H : P2(Rd) → R∪ {+∞} is proper, lower semicontinuous and convex along generalized
geodesics

19



(A3) dom(H) ⊂ Pr
2(X ).

Notice that, as an example, the task of minimizing the free energy functional defined by

µ 7→
∫
F (x) dµ(x) + Ent(µ),

can be cast as (4.1) with H = Ent, which satisfies assumption (A2)-(A3) since it is proper,
lower semicontinuous, convex along generalized geodesics and by definition its domain satisfies
dom(Ent) ⊂ Pr

2(X ).
The proximal-gradient algorithm has been studied in [63]. At each iteration makes use of

gradient-descent-type step for the functional EF and of a proximal step for H. The resulting
scheme is a more general algorithm than the proximal point method (JKO scheme), and
the additional assumption (A3) is the reason why we keep separated the analysis of the two
algorithms. In this section, we describe an inexact version of the method. We define the
operator

Sτ := Jτ,H ◦ (I − τ∇F )#
and we start by considering an inexact scheme satisfying

W2(µn+1, Sτn(µn)) ≤ ϵn, for all n ∈ N, (4.2)

with a sequence of positive stepsizes {τn}n.
First, analyzing [63, Proposition 8] and its proof, it is possible to show that, whenever

τ < 1/L, for all µ ∈ Pr
2(Rd) and ν ∈ P2(Rd), it holds

W 2
2 (Sτ (µ), ν) ≤ (1− τλ)W 2

2 (µ, ν)− 2τ(G(Sτ (µ))− G(ν)). (4.3)

It is actually possible to prove a more refined result, which will be crucial.

Lemma 4.1. Let H : P2(Rd) → R and F satisfying (A1)-(A3). Let Sτ := Jτ,H ◦(I−τ∇F )#
with τ < 1/L. Then

W 2
2 (Sτ (µ), ν) ≤ (1− τλ)W 2

2 (µ, ν)− 2τ(G(Sτ (µ))− G(ν))− (1− τL)W 2
2 (µ, Sτ (µ)), (4.4)

for all µ ∈ Pr
2(Rd) and ν ∈ P2(Rd).

Proof. From the proof of [63, Proposition 8], we can see that there exists a strong Fréchet
subgradient of H at Sτ (µ) denoted by ∇WH(Sτ (µ)) such that

W 2
2 (Sτ (µ), ν) ≤ (1− τλ)W 2

2 (µ, ν)− 2τ(G(Sτ (µ))− G(ν))
− (1− τL)∥τ∇F + τ∇WH(Sτ (µ)) ◦X∥2µ,

where X = T µ̄+

η ◦ (I − τ∇F ) and T µ̄+

η is the optimal transport map between η := (I −
τ∇F )#(µ) and µ̄+ := Jτ,H(η) = Sτ (µ). On the other hand, since (I + τ∇WH(Sτ (µ))) is the
optimal transport map between µ̄+ and η (see for example [63, Lemma 3] or [4]), we have

(I + τ∇WH(Sτ (µ))) ◦ T µ̄+

η = I, and

τ∇F + τ∇WH(Sτ (µ)) ◦X

= τ∇F + (I + τ∇WH(Sτ (µ))) ◦ T µ̄+

η ◦ (I − τ∇F )− T µ̄+

η ◦ (I − τ∇F )

= τ∇F + I − τ∇F − T µ̄+

η ◦ (I − τ∇F ) = I − T µ̄+

η ◦ (I − τ∇F ).

(4.5)
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By [63, Lemma 2], (I − τ∇F ) is the optimal transport map between µ and η and thus

T µ̄+

η ◦ (I − τ∇F ) is a transport map between µ and Sτ (µ), which implies ∥I − T µ̄+

η ◦ (I −
τ∇F )∥2µ ≥W 2

2 (µ, Sτ (µ)). Therefore, since 1− τL > 0, we obtain (4.4).

In our analysis, the input µ will be only an approximation of the previous iterate, and
thus, we would like to remove the condition µ ∈ Pr

2(Rd) in the previous lemma. This becomes
crucial while considering optimization schemes used to approximate the output of the JKO
operator, since the approximated output is usually a discrete measure (if not parametrized
otherwise). We thus state and prove now the lemma in its more general form.

Lemma 4.2. Let H : P2(Rd) → R and F satisfying (A1)-(A3). Let Sτ := Jτ,H ◦(I−τ∇F )#
with τ < 1/L. Then

W 2
2 (Sτ (µ), ν) ≤ (1− τλ)W 2

2 (µ, ν)− 2τ(G(Sτ (µ))− G(ν))− (1− τL)W 2
2 (µ, Sτ (µ)), (4.6)

for all µ, ν ∈ P2(Rd).

Proof. Let µ, ν ∈ P2(Rd). We define {µrn}n as a sequence of regular measures such that
W2(µ

r
n, µ) → 0, which always exists (for example smoothing with a convolution). Then, the

continuity of Jτ,H (see Theorem 2.13 (iii)) and the continuity of (I − τ∇F )# (which follows
by the fact that the operator I − τ∇F is Lipschitz) implies that W2(Sτ (µ

r
n), Sτ (µ)) → 0. We

have both
|W2(Sτ (µ

r
n), ν)−W2(Sτ (µ), ν)| ≤W2(Sτ (µ

r
n), Sτ (µ)) → 0,

and
|W2(µ

r
n, Sτ (µ

r
n))−W2(µ, Sτ (µ))| ≤W2(µ

r
n, µ) +W2(Sτ (µ), Sτ (µ

r
n)) → 0.

By Lemma 4.1 we have

W 2
2 (Sτ (µ

r
n), ν) ≤ (1− τλ)W 2

2 (µ
r
n, ν)− 2τ(G(Sτ (µrn))− G(ν))− (1− τL)W 2

2 (µ
r
n, Sτ (µ

r
n)),

and, since G is lower semicontinuous, we can pass to the limit and obtain (4.6).

Remark 4.3 (Discrete EVI). Using the previous lemma, we can prove a new EVI inequality
for the sequence {µn}n generated as described in (4.2). In fact, for all ν ∈ P2(Rd) it holds

W 2
2 (Sτn(µn), ν) ≤ (1− τnλ)W

2
2 (µn, ν)−2τn(G(Sτn(µn))− G(ν))

− (1− τnL)W
2
2 (µn, Sτn(µn)).

(4.7)

This extends the result [63, Proposition 8]. This finer EVI inequality, coming from inequality
(4.6), is the one we need for our analysis.

Lemma 4.4. Suppose that {ϵn}n is a positive summable sequence and the sequence {τn}n ⊂(
0, 1

L

)
satisfies supi τi <

1
L . Then for every ν ∈ argminG the sequences {W2(µn, ν)}n and

{W2(Sτn(µn), ν)}n converge and there exists a constant C > 0 such that

W 2
2 (µn+1, ν) ≤W 2

2 (Sτn(µn), ν) + Cϵn. (4.8)

It also holds W2(Sτn(µn), µn) → 0, as n→ +∞.
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Proof. The first part of the proof is similar to the proof of Lemma 3.1, and therefore omitted.
Combining (4.8) and the discrete EVI inequality (4.7), we obtain

W 2
2 (µn+1, ν)−W 2

2 (µn, ν) ≤ −(1− τnL)W
2
2 (Sτn(µn), µn) + ϵ̃n,

for all ν ∈ argminG, where ϵ̃n := Cϵn, for all n ∈ N, with C the constant in (4.8). Since∑
n ϵ̃n = C ·

∑
n ϵn < +∞ we obtain by summing up∑

n

(1− τnL)W
2
2 (Sτn(µn), µn) < +∞. (4.9)

Since by hypothesis we have supi τi <
1
L , it holds in particular W2(Sτn(µn), µn) → 0.

From now on, we will use the notation ϵ̃n := Cϵn, for all n ∈ N, with C the constant
given by the previous lemma.

Lemma 4.5. Let µ ∈ P2(Rd), η := (I − τ∇F )#µ and µ̄+ := Jτ,H(η), with τ <
1
L . Then, for

every µ̄ ∈ Pr
2(Rd) with W2(µ̄, µ) ≤ ϵ, we have that

G(µ̄+)− G(µ̄) ≤ ϵ

τ
(W2(µ̄, η) +W2(µ̄

+, η) + ϵ) (4.10)

Proof. Let µ̄ ∈ Pr
2(Rd) such thatW2(µ̄, µ) ≤ ϵ. For every η̄ ∈ Pr

2(Rd) such thatW2(η̄, η) ≤ δ,
we have that

H(µ̄+)−H(µ̄) ≤ 1

2τ
W 2

2 (µ̄, η)−
1

2τ
W 2

2 (µ̄
+, η)

≤ 1

2τ
W 2

2 (µ̄, η̄)−
1

2τ
W 2

2 (µ̄
+, η̄) + Cδ

δ

τ

=
1

2τ

∫
∥T µ̄

η̄ (z)− z∥2 − ∥T µ̄+

η̄ (z)− z∥2 dη̄(z) + Cδ
δ

τ

=
1

2τ

∫
∥T µ̄

η̄ (z)∥2 − ∥T µ̄+

η̄ (z)∥2 + 2⟨z, T µ̄+

η̄ (z)− T µ̄
η̄ (z)⟩ dη̄(z) + Cδ

δ

τ
,

where Cδ can be choosen as Cδ =W2(µ̄, η) +W2(µ̄
+, η) + δ. On the other hand

EF (µ̄+)− EF (µ̄) =
∫
F (T µ̄+

η̄ (z))− F (T µ̄
η̄ (z)) dη̄(z)

≤
∫
⟨∇F (T µ̄

η̄ (z)), T
µ̄+

η̄ (z)− T µ̄
η̄ (z)⟩+

L

2
∥T µ̄+

η̄ (z)− T µ̄
η̄ (z)∥2 dη̄(z)

=
1

2τ

∫ (
− 2⟨(I − τ∇F )(T µ̄

η̄ (z)), T
µ̄+

η̄ (z)− T µ̄
η̄ (z)⟩

− 2⟨T µ̄
η̄ (z), T

µ̄
η̄ (z)− T µ̄+

η̄ (z)⟩+ τL∥T µ̄+

η̄ (z)− T µ̄
η̄ (z)∥2

)
dη̄(z).

Putting all together leads to

G(µ̄+)− G(µ̄) ≤ 1

2τ

∫ (
2⟨z − (I − τ∇F )(T µ̄

η̄ (z)), T
µ̄+

η̄ (z)− T µ̄
η̄ (z)⟩

− (1− τL)∥T µ̄+

η̄ (z)− T µ̄
η̄ (z)∥2

)
dη̄(z) + Cδ

δ

τ

(4.11)
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Since η̄ was arbitrary, we can actually choose η̄ = (I − τ∇F )#µ̄. With this choice, using the
fact that the map I − τ∇F is nonexpansive, we have (see for example [17, Proposition 4.2])

W2(η̄, η) =W2((I − τ∇F )#µ̄, (I − τ∇F )#µ) ≤W2(µ̄, µ) ≤ ϵ,

and we can set δ = ϵ. Defining ϕ = 1
2∥ · ∥2 − τF , we have ∇ϕ = I − τ∇F and since ∇F

is L-Lipschitz and τ < 1
L , then ϕ = 1

2∥ · ∥2 − τF is strongly convex. This implies that
(I − τ∇F )−1 is the gradient of a convex function and it is Lipschitz continuous (and thus
also in L2(η̄)). We can therefore apply Theorem 2.1 (ii) and obtain T µ̄

η̄ = (I − τ∇F )−1 and

z − (I − τ∇F )(T µ̄
η̄ (z)) = 0 for η̄-almost every z.

Finally, (4.11) yields

G(µ̄+)− G(µ̄) ≤ 0− 1− τL

2τ

∫
∥T µ̄+

η̄ (z)− T µ̄
η̄ (z)∥2 dη̄(z) + Cϵ

ϵ

τ
≤ Cϵ

ϵ

τ
. (4.12)

Theorem 4.6. Let H : P2(Rd) → R and F satisfying (A1)-(A3) and suppose argminG ≠ ∅.
Let {ϵn}n ⊂ R≥0 with

∑∞
n=0 ϵn < ∞, {τn}n ⊂

(
0, 1

L

)
with

∑∞
i=0 τi = ∞, supi τi <

1
L and let

σn :=
∑n−1

i=0 τi, for n ∈ N. Let {µn}n satisfying

W2(µn+1, Sτn(µn)) ≤ ϵn, for all n ∈ N.

1. Then, we have

G(β̄n)− inf G = O

(
1

σn

)
, as n→ ∞, (4.13)

where β̄n := Sτjn (µjn) with jn = argmini=0,...,n−1{G(Sτi(µi))}, defines the sequence of
the best iterates.

2. If
∑∞

n=0
σn
τn
ϵn−1 <∞, then

G(Sτn(µn))− inf G = O

(
1

σn

)
, for n→ ∞,

and {µn}n converges with respect to the topology τw,2 to some µ∗ ∈ argminG. In
particular we have Wp(µn, µ

∗) → 0 for all p ∈ [1, 2).

Proof. The convergence analysis follows similar steps as the ones depicted in Section 3.1.
Summing the EVI (4.7) and using (4.8), we have the first main ingredient, corresponding to
(3.7)

2

N−1∑
n=0

τnG(Sτn(µn)) +W 2
2 (µN , ν) ≤ 2σNG(ν) +W 2

2 (µ
0, ν)

−
N−1∑
n=0

(1− τnL)W
2
2 (Sτn(µn), µn) +

N−1∑
n=0

ϵ̃n.

(4.14)
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From Lemma 4.5 we obtain the second main ingredient, corresponding to (3.10). In fact, for
all n ∈ N, letting µ = µn, µ̄

+ = Sτn(µn) and µ̄ = Sτn−1(µn−1) we obtain from (4.10) and the
fact that the sequences in play are bounded, that there exists C > 0 such that

G(Sτn(µn)) ≤ G(Sτn−1(µn−1)) + C
ϵn−1

2τn
, for all n ∈ N. (4.15)

With these ingredients, it is possible to conclude similarly to Theorem 3.3.

Remark 4.7. In the case λ > 0, using (4.7) and (4.8), we obtain for all ν ∈ argminG that

W 2
2 (µn+1, ν) ≤ (1− τnλ)W

2
2 (µn, ν) + ϵ̃n.

From this, strong convergence results in W2 can be achieved. However, since at each iteration
the error ϵn is committed, we cannot expect linear convergence rates. This motivates us
not to treat the case λ > 0 separately from the case λ = 0. A similar reasoning applies
when assuming strong convexity along generalized geodesics of the functional H, see also
Remark 3.4.

Remark 4.8 (Ergodic convergence). Similar considerations to those in Remark 3.6 apply
in this setting as well. In particular, under similar conditions to those in Remark 3.6, the
convergence rate in (4.13) can also be obtained for the Wasserstein barycenter sequence {β̄n}n
formed from the first n elements of the sequence {Sτi(µi)}i, with weights { τi

σn
}n−1
0 . This result

can hold without the additional assumptions required in point 2 of Theorem 4.6.

With Theorem 4.6 we can generalize the result by Diao, Balasubramanian, Chewi and
Salim [34, Theorem 5.3]. In their work they prove weak convergence for the proximal-gradient
algorithm but they only work with Gaussians and the so-called Bures-Wasserstein space.

Corollary 4.9. Let H : P2(Rd) → R and F satisfying (A1)-(A3) and suppose argminG ≠ ∅.
Let µ0 ∈ P2(X) and {µn}n satisfying

µn+1 = Jτ,H ◦ (I − τ∇F )#(µn).

Then {µn}n converges with respect to the topology Sw,2 (and thus also narrowly) to some
µ∗ ∈ argminG.

Proof. We can apply the previous result with ϵn = 0 and τn = τ > 0, for all n ∈ N.

Theorem 4.10. Let H : P2(Rd) → R and F satisfying (A1)-(A3) and suppose argminG ̸= ∅.
Let {ϵn}n ⊂ R≥0 with

∑∞
n=0 ϵn < ∞, {τn}n ⊂

(
0, 1

L

)
with

∑∞
i=0 τi = ∞, supi τi <

1
L and let

σn :=
∑n−1

i=0 τi, for n ∈ N. Let {ηn}n and {µn}n satisfying ηn = (I − τ∇F )#(µn) and

H(µn+1) +
1

2τ
W 2

2 (µn+1, ηn) ≤ H(Jτn,H(ηn)) +
1

2τ
W 2

2 (Jτn,H(ηn), ηn) +
ϵ2n
2τn

, (4.16)

1. It holds the rate

G(βn)− inf G = O

(
1

σn

)
, as n→ ∞, (4.17)

where βn := µjn with jn = argmini=0,...,n−1{G(µi)}, defines the sequence of the best
iterate.
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2. If
∑∞

n=0
σn
τn
ϵn <∞, then

G(µn)− inf G = O

(
1

σn

)
, for n→ ∞,

and {µn}n converges with respect to the topology τw,2 to some µ∗ ∈ argminG. In
particular we have Wp(µk, µ

∗) → 0 for all p ∈ [1, 2).

Proof. Following the first part of Theorem 3.8, we obtain similarly from the condition (4.16),
that

W2(Sτn(µn), µn+1) =W2(Jτn,H(ηn), µn+1) ≤ ϵn.

With this, we can already prove all the results of Theorem 4.6. On the other hand, the
inequality (4.16) implies

2τnH(Sτn(µn)) ≥ 2τnH(µn+1) +W 2
2 (µn+1, ηn)−W 2

2 (Sτn(µn), ηn)− ϵ2k

≥ 2τnH(µn+1)− (W2(µn+1, ηn) +W2(Jτ (ηn), ηn))W2(µn+1, Sτn(µn))− ϵ2n

≥ 2τnH(µn+1)− c1ϵn − ϵ2n,

for some c1 > 0. Setting µ̄n+1 := Sτn(µn) we also have

EF (µ̄n+1) =

∫
F (x) dµ̄n+1(x)

≥
∫
F
(
T
µn+1
µ̄n+1

(x)
)
+ ⟨∇F

(
T
µn+1
µ̄n+1

(x)
)
, x− T

µn+1
µ̄n+1

(x)⟩ dµ̄n+1(x)

≥ EF (µn+1)−
(∫ ∥∥∇F (x′)∥∥2 dµn+1(x

′)

) 1
2

W2(µn+1, Sτn(µn)).

By noticing that ∥∇F (x′)∥2 ≤ 2∥∇F (x′) −∇F (0)∥2 + 2∥∇F (0)∥2 ≤ L2∥x′∥2 + 2∥∇F (0)∥2,
and {µn}n ⊂ P2(Rd) is bounded, and τn <

1
L , there exists a constant c2 > 0 such that

2τnEF (µ̄n+1) ≥ 2τnEF (µn+1)− c2ϵn

and thus
2τnG(Sτn(µn)) ≥ 2τnG(µn+1)− c1ϵn − ϵ2n − c2ϵn (4.18)

Combining this with (4.14), we obtain

2

N−1∑
n=0

τnG(µn+1) ≤ 2σNG(ν) +W 2
2 (µ

0, ν) +
N−1∑
n=0

ϵ̃n + (c1 + c2)
N−1∑
n=0

ϵn +
N−1∑
n=0

ϵ2n. (4.19)

Since by (4.16) we also have µn ∈ Pr
2(Rd) for all n ∈ N, we can use Lemma 4.5 with

µ̄+ = Sτn(µn), µ̄ = µn and obtain

G(Sτn(µn)) ≤ G(µn) + c3
ϵn
2τn

(4.20)

for some c3 > 0. Combining this with (4.18), we arrive to

G(µn+1) ≤ G(µn) + (c1 + c2 + c3)
ϵn
2τn

+
ϵ2n
2τn

.
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We denote by C = c1 + c2 + c3 +maxi ϵi, multiply by σn, and obtain

(σn+1 − τn)G(µn+1)− σnG(µn) ≤ C
σn
2τn

ϵn. (4.21)

Summing up from 0 to N − 1 and recalling that σ0 = 0, we have

σNG(µN )− C
N−1∑
n=0

σn
2τn

ϵn ≤
N−1∑
n=0

τnG(µn+1). (4.22)

which combined with (4.19) leads to

G(µN )− G(ν) ≤ 1

2σN

(
W 2

2 (µ
0, ν) +

N−1∑
n=0

(
ϵ̃n + (c1 + c2)ϵn + ϵ2n + C

σn
τn
ϵn

))
,

which concludes the proof.

Conclusions

In this paper, we studied the convergence properties of inexact Jordan-Kinderlehrer-Otto
(JKO) schemes and proximal-gradient algorithms in Wasserstein spaces. We focused on set-
tings where obtaining exact solutions to iterative minimization problems is impractical and
introduced controlled approximations for both the Wasserstein distance and the energy func-
tionals. We provided rigorous convergence guarantees, demonstrating that weak convergence
remains attainable in the presence of inexact computations. Additionally, we extended our
analysis to proximal-gradient algorithms. Our findings lay the groundwork for broader appli-
cability of these schemes in practical settings. We also incorporated the flexibility of varying
stepsizes, leading to new convergence insights. This study also raises several compelling
questions. Notably, it highlights the importance of quantifying the approximation behavior
of existing methods, such as ALG2 in [9], when applied to solve (1.1). Future research may
pursue this direction by analyzing a range of existing algorithms and proposing new ones
for solving (1.1) or the associated saddle point problem derived from the Benamou–Brenier
formulation, with quantitative approximation results. This analysis can be complemented by
estimates concerning approximations coming from regularized formulations as in [20, 50–52].
Further error estimates may also be developed to account for discretization of measures and,
in the Benamou–Brenier case, temporal discretization.

The regularity property (A3) seems essential for the analysis carried out in [63] as well as
for our current analysis, but we conjecture that it might be weakened or removed altogether
by employing the subdifferential in [4, Theorem 10.3.6]. Investigating this possibility is a
promising avenue for future work.
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and Stefano Vigogna. A lipschitz spaces view of infinitely wide shallow neural networks.
arXiv preprint, 2024. arXiv:2410.14591.

[7] Heinz H. Bauschke and Patrick L. Combettes. Convex analysis and monotone operator
theory in Hilbert spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de
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Velichkov. BV estimates in optimal transportation and applications. Archive for Rational
Mechanics and Analysis, 219(2):829–860, 2016.

[33] Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth
convex optimization with inexact oracle. Mathematical Programming, 146(1):37–75, Aug
2014.

[34] Michael Diao, Krishnakumar Balasubramanian, Sinho Chewi, and Adil Salim. Forward-
backward Gaussian variational inference via JKO in the Bures–Wasserstein space, 2023.

[35] Alain Durmus, Szymon Majewski, and Blazej Miasojedow. Analysis of Langevin Monte
Carlo via convex optimization. Journal of Machine Learning Research, 20(73):1–46,
2018.

[36] Jonathan Eckstein. Approximate iterations in bregman-function-based proximal algo-
rithms. Mathematical Programming, 83:113–123, 1998.

[37] Jonathan Eckstein and Dimitri P. Bertsekas. Douglas-Rachford splitting methods in
convex programming. Mathematical Programming, 55(1-3):293–318, 1992.

[38] Michel Fortin and Roland Glowinski. On decomposition-coordination methods using an
augmented lagrangian. In Augmented Lagrangian Methods: Applications to the Solution
of Boundary-Value Problems, pages 97–146. North-Holland, Amsterdam, 1983.

[39] Daniel Gabay. Applications of the method of multipliers to variational inequalities.
In Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value
Problems, pages 299–331. North-Holland, Amsterdam, 1983.

29



[40] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear
variational problems via finite element approximations. Computers & mathematics with
applications, 2(1):17–40, 1976.

[41] E. De Giorgi. New problems on minimizing movements. In Boundary Value Problems
for PDE and Applications, pages 81–98. Masson, 1993.

[42] Roland Glowinski and Patrick Le Tallec. Augmented lagrangian methods for the solution
of variational problems. Mrc technical summary report #2965, Mathematics Research
Center, University of Wisconsin-Madison, Madison, WI, 1987.

[43] Thibaut Le Gouic and Jean-Michel Loubes. Existence and consistency of Wasserstein
barycenters. Probability Theory and Related Fields, 168(3-4):901–917, 2017.
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