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Abstract. The mechanical process of progressively debonding an adhesive membrane from
a substrate is described as a quasistatic variational evolution of sets and herein investigated.
Existence of energetic solutions, based on global minimisers of a suitable functional together with
an energy balance, is obtained within the natural class of open sets, improving and simplifying
previous results known in literature. The proposed approach relies on an equivalent reformulation
of the model in terms of the celebrated one-phase Bernoulli free boundary problem. This point
of view allows performing the Minimizing Movements scheme in spaces of functions instead of
the more complicated framework of sets. Nevertheless, in order to encompass irreversibility
of the phenomenon, it remains crucial to keep track of the debonded region at each discrete
time-step, thus actually resulting in a coupled algorithm.
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Introduction

Since the pioneeristic work of De Giorgi [17], the tool of Minimizing Movements has been
widely employed in the analysis of variational evolutions, especially due to its application to
problems with no linear structure. In particular, it provides a robust technique which allows
dealing with geometric flows or more generally with evolutions of sets. Among the extensive
pertaining literature, we mention the groundbreaking work of Almgren, Taylor, and Wang [1]
on the mean curvature flow, and a recent paper [12] which analyses its anisotropic version. We
also refer to [8, 11] for set evolutions in shape optimization, and to [34] for an application to
the Hele–Shaw flow. The great flexibility of Minimizing Movements makes them suitable to
tackle also quasistatic (sometimes called rate-independent) problems, namely when the system
under consideration evolves through states of equilibrium. We quote the manuscript [27], where
a precise and thorough presentation on rate-independent systems is provided, and we refer to [13,
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33] for an investigation on quasistatic evolutions of sets driven by the perimeter functional, and
to [3, 16] for an application to fracture mechanics.

In this paper, we are interested in quasistatic evolutions of shapes modelling the mechanical
phenomenon of debonding, often also called peeling. Although the formulation of the problem
is quite understood and rather old in time (see [9, 23]), a complete mathematical treatment of
debonding processes is still missing, due to their underlying geometric complexity. Up to our
knowledge, only partial results are available in literature: we mention for instance [7] where
a relaxed version of the problem in terms of measures is investigated, or [30] for the simple
one-dimensional setting. The interested Reader may also see [25] for the formulation of dynamic
debonding models, namely when also inertial effects are taken into account, and [15, 26, 29, 31]
where dynamic problems are solved and analysed in dimension one or assuming a priori radial
symmetry.

We now formally describe the quasistatic problem we intend to analyse, postponing the rigorous
formulation to Section 2. Consider a fixed open set Ω in Rd which represents the reference
configuration of an adhesive elastic membrane stuck to a substrate; the physical dimension of the
model is clearly d = 2 (or d = 1), but from the mathematical viewpoint the problem can be stated
(and solved) in an arbitrary dimension d ∈ N. Let t 7→ w(t) be a given time-dependent prescribed
vertical displacement acting on a portion Γ of the boundary of Ω. As the time advances, the map
w(t) forces the film to debond from the substrate, thus creating a debonded region A(t) ⊆ Ω. In
the quasistatic framework, the rules governing this phenomenon can be stated by introducing
two ingredients: a time-dependent driving energy

E(t, A) = min

{
1

2

∫
Ω
|∇v|2 dx : v ∈ H1(Ω), v = w(t) on Γ, and v = 0 on Ω \A

}
, (I.1)

modelling the (linearized) elastic energy possessed by the membrane, which is not glued and
hence free to move on A, at time t, and a dissipation distance

D(B,A) =

∫
B\A

κ dx+ χA⊆B (I.2)

between two possible debonded states A and B. Above, the function κ represents the toughness
of adhesion between the membrane and the substrate, while

χA⊆B :=

{
0, if A ⊆ B,

+∞, otherwise.

Hence, the dissipation distance (I.2) encodes the quantity of energy that the membrane needs to
spend in order for the debonded region to grow from A to B, while enforcing a crucial property
of the debonding process, namely irreversibility.

Following the by now consolidated energetic formulation [28], we aim at finding an evolution
of sets t 7→ A(t) fulfilling at every time a global stability condition and an energy(-dissipation)
balance:  E(t, A(t)) ≤ E(t, B) +D(B,A(t)), for all B ⊆ Ω,

E(t, A(t)) + DissD(A; [0, t]) = E(0, A(0)) +
∫ t

0
P (τ) dτ.

(I.3)

The stability condition in the first line is saying that the solution wants to minimize the elastic
energy of the membrane (i.e. the debonded region wants to grow), but dissipating as little energy
as possible. At the same time, the energy-balance ensures that t 7→ A(t) is non-decreasing with
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respect to inclusion and that the sum between free energy and dissipated energy

DissD(A; [0, t]) := sup
finite partitions

of [0,T ]

N∑
k=1

D(A(tk), A(tk−1)) =

∫
A(t)\A(0)

κ dx

is conserved, up to an integral term representing the work of the prescribed displacement w. The
integrand P represents the power of w; in smooth situations there usually holds P (t) = ∂tE(t, A(t)),
but in our setting a more involved expression is needed. We refer to Definition 2.2, in particular
(2.4), for a rigorous formula.

Analogous quasistatic debonding problems have been studied in [7] (see also [5]), looking
for solutions t 7→ A(t) living within the family of quasi-open sets, a natural class for shape
minimization problems [10] but whose definition intrinsically needs the theory of capacity. Their
argument is based on a proper relaxation of (I.3) to the space of capacitary measures, i.e.
measures vanishing on sets of null capacity, in order to gain the necessary compactness needed
for the use of Minimizing Movements. In this way the authors prove existence of an energetic
solution of (irreversible) capacitary measures. However, although very general and suitable to
deal with different dissipation distances than (I.2), the theory developed in [7] does not provide
complete results in terms of shapes: in [7, Section 5] it is indeed shown how to build an evolution
of quasi-open sets fulfilling the global stability condition, but it is also pointed out that no
information on the energy balance are available, unless strong geometric assumptions are in force
(see [7, Remarks 3–4]).

In this paper, we propose an alternative approach which allows solving problem (I.3) even
within the simple family of open sets, thus making the arguments more accessible and less
technical as possible. It is based on the observation, often used in shape optimization [4, 6]
(see also the monograph [24], specifically Chapter 3), that the energy (I.1) is actually defined
by minimizing the Dirichlet energy among scalar functions (the possible displacements of the
membrane). From this point of view, the debonded region can be formally identified with
the positivity set of the minimiser (actually, this identification is not completely true since
irreversibility may be violated, see the correct formula (I.5) below). This leads to an equivalent
reformulation of problem (I.3) in terms of displacements: we now look for an evolution of functions
t 7→ u(t) satisfying for all times

1

2

∫
Ω
|∇u(t)|2dx ≤ 1

2

∫
Ω
|∇v|2dx+

∫
{v>0}\Au(t)

κ dx, ∀ v ∈ H1(Ω), v = w(t) on Γ,

1

2

∫
Ω
|∇u(t)|2dx+

∫
Au(t)\Au(0)

κ dx =
1

2

∫
Ω
|∇u(0)|2dx+

∫ t

0
P (τ) dτ,

(I.4)

where in this setting the debonded region takes the form

Au(t) =
⋃

s∈[0,t]

{u(s) > 0}, (I.5)

namely, it is the union of all the positivity sets of the solution u at previous times. Notice that
formula (I.5) defines an open set provided the functions u(t) are continuous, as it will be the
case.

Besides the clear simplification yielded by working with functions instead of sets, the main
advantage of the displacement reformulation (I.4) relies on its structure: indeed, it can be seen
as the quasistatic version of a free boundary problem of Alt–Caffarelli type [2], also known as
one-phase Bernoulli problem. We quote the recent monograph [35] for an exhaustive introduction
on the topic. This interpretation allows us to employ existing results well-known in the literature
in order to make the machinery of Minimizing Movements fully work. Our approach thus provides
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existence of displacement energetic solutions to (I.4), whence existence of energetic evolutions of
open sets to the original debonding problem (I.3) is obtained via the formula (I.5).

We finally mention that similar quasistatic free boundary problems have been recently studied
in [14, 19, 20] in the context of droplet evolution in capillarity models. In this framework, u
represents the graph of the free boundary surrounding the droplet while its positivity set describes
the wetted area. Although related, such model presents crucial differences with respect to the
debonding formulation (I.4), which directly affect the techniques adopted in the Minimizing
Movements scheme. Firstly, droplet evolution is reversible, whence the whole information is
carried out by the positivity set of u in place of (I.5). This feature is encoded in the mathematical
formulation by considering a term of the form∫

A\B
κ̃ dx

in place of the constraint χA⊆B in the dissipation distance (I.2). Reversibility also simplifies the
Minimizing Movements algorithm since there is no need to “separate variables”, as we instead
do in (4.1a)–(4.1b) (creating additional difficulties in the limit passage as the time-step vanishes)
in order to keep track of the monotonicity of the debonded region. A second difference consists
in the choice of the free energy. In our debonding model (I.4) it is simply given by the Dirichlet
energy, while for describing droplet evolution it needs to be augmented with the measure of
the positivity set itself. As it is shown in [20], this structure yields uniform bounds on the
perimeter of the positivity sets, implying good compactness properties that we lack in our setting
(in the terminology of [35], solutions to (I.4) are just outward minimisers of the Alt–Caffarelli
functional, while droplets evolve throughout inward minimisers). We overcome this lack of
(strong) compactness by exploiting irreversibility and relying on an appropriate version of Helly’s
Theorem, see Proposition 4.4 and Definition (4.2).

Plan of the paper. In Section 1 we fix the notations we adopt throughout the whole paper,
and we list some properties possessed by minimisers of constrained Dirichlet energies and of the
one-phase Bernoulli free boundary problem. Section 2 is devoted to the rigorous formulation
of the debonding problem (I.3) and to its equivalent rewriting in terms of displacements (I.4).
We also state our main existence result in Theorem 2.7 (see also Theorem 2.9). For the sake of
completeness, the simple one-dimensional framework is described. Section 3 contains some useful
properties of (displacement) energetic solutions to the debonding problem which we exploit for
the proof of our main result, developed in Section 4.

1. Notations and preliminaries

Given a set Ω ⊆ Rd, d ∈ N, we denote by M(Ω) the family of Lebesgue-measurable subsets of
Ω. The Lebesgue measure of A ∈ M(Ω) is denoted by |A|. For A,B ∈ M(Ω), with a slight abuse
of notation we write A ⊆ B if the inclusion is true up to sets of null measure, i.e. |A \B| = 0.
Analogously, we write A = B if |A \B| = |B \A| = 0. If a property holds almost everywhere in
Ω with respect to the Lebesgue measure, we often adopt the customary shortcut “a.e. in Ω”.

For any family of scalar functions X(Ω), its subset of non-negative elements is indicated by
X(Ω)+. We adopt standard notations for Lebesgue, Sobolev and Bochner spaces.

If Ω is open with Lipschitz boundary, and Γ ⊆ ∂Ω has positive Hausdorff measure Hd−1(Γ) > 0,
given η ∈ H1(Ω) and A ∈ M(Ω) we introduce the expressions

H1
Γ,η(Ω) := {φ ∈ H1(Ω) : φ = η on Γ},

H1
Γ,η(Ω, A) := {φ ∈ H1

Γ,η(Ω) : φ = 0 a.e. on Ω \A}.
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Observe that H1
Γ,η(Ω, A) is a closed convex subset of H1(Ω) and that H1

Γ,η(Ω, A) = H1
Γ,η(Ω)

whenever |Ω \A| = 0.
In view of the applications to debonding models, it will be useful to define the classes of

admissible measurable and open sets with respect to the boundary value η on Γ. This is done as
follows:

MΓ,η := {A ∈ M(Ω) : H1
Γ,η(Ω, A) is nonempty},

OΓ,η := {A ∈ MΓ,η : A is open}.

Finally, for any A ∈ M(Ω) we denote by A+
Γ,η the union of all the connected components of A

whose boundary contains a subset of Γ of positive Hausdorff measure on which η > 0.

1.1. minimisers of one-phase free boundary functionals. We collect here some useful
results regarding the main properties of minimisers of Dirichlet-type energies, including some
well-known fact about the celebrated one-phase Bernoulli free boundary problem first analysed
from a variational viewpoint by Alt and Caffarelli [2]. We also provide some additional notation
which will be needed in the next section to rigorously introduce the quasistatic formulation of
the debonding model under consideration.

This first elementary lemma deals with minimisers of the standard Dirichlet energy among
functions vanishing outside a given set A. Here and henceforth, we tacitly require that Ω is open,
connected, bounded, with Lipschitz boundary and that Γ ⊆ ∂Ω has positive Hausdorff measure.

Lemma 1.1. Let η ∈ H1(Ω) and A ∈ MΓ,η. There exists a unique minimiser, denoted by hA,η,
of the Dirichlet functional

D(v) =
1

2

∫
Ω
|∇v|2 dx

over the set H1
Γ,η(Ω, A). The minimiser hA,η is equivalently characterized by the Euler-Lagrange

equation ∫
Ω
∇hA,η · ∇ϕdx = 0 for all ϕ ∈ H1

Γ,0(Ω, A) . (1.1)

If in addition A is open, i.e. A ∈ OΓ,η, then hA,η is harmonic in A; furthermore, if η ∈ H1(Ω)+,

then 0 ≤ hA,η ≤ ess supΓ η a.e. in Ω and there holds {hA,η > 0} = A+
Γ,η.

Proof. Since H1
Γ,η(Ω, A) is non-empty by assumption, the existence of the minimum can be

proved via the Direct Method of the Calculus of Variations. Uniqueness follows from the strict
convexity of D and the convexity of H1

Γ,η(Ω, A). For any ε > 0 and ϕ ∈ H1
Γ,0(Ω, A), by using

hA,η + εϕ as a competitor, one easily deduces the validity of the Euler-Lagrange equation (1.1),
which thus characterizes the minimiser hA,η by convexity.

If A is open, it immediately follows by (1.1) that hA,η is harmonic in A. If η is non-negative,
the Maximum Principle now yields 0 ≤ hA,η ≤ ess supΓ η a.e. in Ω, and additionally the Strong

Maximum Principle implies that {hA,η > 0} = A+
Γ,η. □

Since the boundary of A may be very wild, global regularity of hA,η is not available in general.
However, better properties can be obtained for minimisers of the following functional, which
can be seen as a regularization of the constraint u = 0 outside A since it penalises therein the
measure of the positivity set of u. In particular, a free boundary is expected to appear.

Given κ ∈ L∞(Ω)+, we consider the Alt–Caffarelli functional AC : H1(Ω)×M(Ω) → [0,+∞)
defined as:

AC(u,A) := D(u) +

∫
{u>0}\A

κ dx =
1

2

∫
Ω
|∇u|2 dx+

∫
{u>0}\A

κ dx . (1.2)
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Setting QA =
√
2κ(1− χA), we observe that

2AC(u,A) =
∫
Ω
|∇u|2 dx+

∫
{u>0}

Q2
A dx ,

hence the functional can be seen as a (one-phase) Bernoulli free boundary problem, in the
notation of [2]. Since Q2

A is bounded from above, we may exploit some of the results contained
in [2] (see also the monograph [35]), deducing the following properties.

Lemma 1.2. Let η ∈ H1(Ω)+ and let A ∈ M(Ω). Then the functional v 7→ AC(v,A) admits a
minimum in the class H1

Γ,η(Ω). Moreover, any minimiser u is locally Lipschitz continuous in Ω

and for all Ω′ well contained in Ω there exists a constant C ′ > 0, independent of A, such that:

∥u∥C0,1(Ω′) ≤ C ′(1 + ess sup
Γ

η).

Furthermore, u is harmonic in the open set {u > 0} and there holds 0 ≤ u ≤ ess supΓ η in Ω.
Finally, one has (intA)+Γ,η ⊆ {u > 0}, where intA denotes the interior of A.

Proof. The only property not proved in [2] is the fact that (intA)+Γ,η ⊆ {u > 0}. To show it, let

us define the open set B := (intA)+Γ,η ∪{u > 0}. By definition, one has u ∈ H1
Γ,η(Ω, B) and hence

B ∈ OΓ,η. Since the function hB,η belongs to H1
Γ,η(Ω), we know that AC(u,A) ≤ AC(hB,η, A).

Moreover, by Lemma 1.1 and by the definition of B we have

{hB,η > 0} \A ⊆ B \A ⊆ {u > 0} \A .

Thus, it follows that
D(u) ≤ D(hB,η).

By the uniqueness of the minimiser proved in Lemma 1.1, we finally infer that u coincides with
hB,η, and so {u > 0} = {hB,η > 0} = B+

Γ,η ⊇ (intA)+Γ,η . □

Remark 1.3. Note that Q2
A vanishes on A, hence QA is not bounded below by a positive

constant and so not all the results of [2] apply. For instance, the positivity set {u > 0} may not
be of (locally) finite perimeter.

Next lemma lists some simple, but useful for the rest of the paper, properties which are
equivalent for a function u to be a minimiser of AC(·, A), knowing a priori that u vanishes outside
A. Notice that condition (4) below just implies the outward minimality property in the sense
of [35], see for instance Chapter 3.

Lemma 1.4. Let η ∈ H1(Ω)+ and let A ∈ MΓ,η. For u ∈ H1
Γ,η(Ω, A) the following are equivalent:

(1) AC(u,A) ≤ AC(v,A), for all v ∈ H1
Γ,η(Ω);

(2) AC(u,A) ≤ AC(v,A), for all v ∈ H1
Γ,η(Ω) ∩ C0(Ω);

(3)
1

2

∫
Ω
|∇u|2 dx ≤ 1

2

∫
Ω
|∇v|2 dx+

∫
{v>0}\A

κ dx, for all v ∈ H1
Γ,η(Ω);

(4)
1

2

∫
Ω
|∇u|2 dx ≤ 1

2

∫
Ω
|∇v|2 dx+

∫
{v>0}\A

κ dx, for all v ∈ H1
Γ,η(Ω)

+ ∩ C0(Ω) satis-

fying A ⊆ {v > 0}.
If one of the above holds, then u = hA,η and furthermore it possesses all the properties stated in
Lemma 1.2.

Proof. Lemma 1.2 yields the equivalence between (1) and (2). Since u belongs to H1
Γ,η(Ω, A) by

assumption, the set {u > 0} is contained in A; this implies

AC(u,A) = 1

2

∫
Ω
|∇u|2 dx,
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and so (1) is also equivalent to (3).
Trivially (3) implies (4), so we just need to prove the reverse implication; equivalently, we will

actually show that (4) implies (2).
To this aim, let us fix v ∈ H1

Γ,η(Ω) ∩ C0(Ω). By outer regularity of the Lebesgue measure,

for any ε > 0 there exists an open set Aε ⊆ Ω containing A and satisfying |Aε \ A| ≤ ε. We
now consider the 1-Lipschitz function φε(x) := dist(x; Ω \ Aε), which in particular satisfies
{φε > 0} = Aε, and we set vε := v+ + εφε. Observing that vε ∈ H1

Γ,η(Ω)
+ ∩ C0(Ω) and that

A ⊆ Aε ⊆ Aε ∪ {v > 0} = {vε > 0}, by means of (4) we obtain

AC(u,A) = 1

2

∫
Ω
|∇u|2dx ≤ 1

2

∫
Ω
|∇vε|2dx+

∫
{vε>0}\A

κ dx

=
1

2

∫
Ω
|∇v+|2dx+

ε2

2

∫
Ω
|∇φε|2dx+ ε

∫
Ω
∇v+ · ∇φεdx+

∫
({v>0}∪Aε)\A

κ dx

≤ 1

2

∫
Ω
|∇v|2dx+

∫
{v>0}\A

κ dx+
ε2

2
|Ω|+ ε|Ω|1/2∥∇v∥L2(Ω) + ε∥κ∥L∞(Ω).

By sending ε → 0 we deduce AC(u,A) ≤ AC(v,A), namely (2) holds true and equivalence
between (1), (2), (3) and (4) is proved.

Moreover, we notice that choosing v = hA,η in (3), since {hA,η > 0} ⊆ A we obtain

1

2

∫
Ω
|∇u|2 dx ≤ 1

2

∫
Ω
|∇hA,η|2 dx ,

whence u = hA,η by uniqueness of the minimiser. Finally, due to (1), Lemma 1.2 applies to the
function u. □

2. Setting and main results

In this section we rigorously formulate the debonding problem under study as a quasistatic
evolution of open sets. We also introduce the more manageable free boundary reformulation
in terms of displacements, and we prove their equivalence. We then state our main results,
regarding existence of this latter notion of solution. Finally, the simpler one-dimensional case,
which provides explicit examples, is presented.

Let Ω ⊆ Rd be an open, connected, bounded, and Lipschitz set representing the reference
configuration of a linearly elastic adhesive film, and let Γ ⊆ ∂Ω with Hd−1(Γ) > 0 be the portion
of the boundary where a time-dependent vertical displacement w(t), which drives the evolution
of the system, is prescribed. As customary, we require that w is the trace over Γ of a function,
still denoted by w, of class AC([0, T ];H1(Ω)), where T > 0 is an arbitrary horizon time, and we
assume that it satisfies

0 ≤ w(t) ≤ M a.e. in Ω, for all t ∈ [0, T ]. (2.1)

For t ∈ [0, T ], the free energy of a set A ∈ MΓ,w(t), which will represent the debonded part
of the film at time t, is the minimal Dirichlet energy of functions supported in A attaining the
correct boundary value w(t) on Γ, namely

E(t, A) := min
v∈H1

Γ,w(t)
(Ω,A)

1

2

∫
Ω
|∇v|2 dx.

We recall that by Lemma 1.1 one has

E(t, A) = 1

2

∫
Ω
|∇hA,w(t)|2 dx. (2.2)
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We also consider an initial debonded region A0 ∈ OΓ,w(0), and a function κ ∈ L∞(Ω \ A0)
+

representing the toughness of adhesion of the film to the substrate. The energy dissipated during
the debonding process growing from a debonded configuration A to B is thus modelled by the
integral term ∫

B\A
κ dx.

Since the portion of film initially debonded is already encoded in the model through A0,
without loss of generality we may assume that the toughness κ is positive on Ω \ A0. For the
same reason, when needed, we will consider κ as a function defined on the whole of Ω, simply
setting κ := 0 on A0.

In view of the notion of energetic solution we are going to introduce (see [27] for a general
dissertation), it is convenient to require the initial set A0 to be globally stable with respect to
the energy E and the previously introduced dissipation, meaning that

E(0, A0) ≤ E(0, B) +

∫
B\A0

κ dx, for any B ∈ MΓ,w(0) such that A0 ⊆ B. (2.3)

Remark 2.1. If w(0) = 0 on Γ, we may even consider A0 to be the empty set, namely at the
initial time the film is completely glued to the substrate. Indeed, the identically 0 function
belongs to H1

Γ,0(Ω, ∅).
Moreover, we observe that in the case w(0) = 0 on Γ, any set A0 ∈ M(Ω) is stable in the

sense of (2.3), since E(0, A0) = 0.

The following notion of solution for the debonding model is based on three crucial considerations:
the evolution of the sets is irreversible, indeed the debonded region can only increase; the process
happens through minima of the total energy of the system, namely the state is globally stable
at every time; along the evolution a balance between the free energy, the energy dissipated by
debonding, and the energy inserted in the system via the work of the prescribed displacement w
is preserved.

Definition 2.2. Under the previous assumptions, we say that a set-valued map [0, T ] ∋ t 7→ A(t)
is a shape energetic solution (SES) of the debonding model if:

(CO)S A(t) ∈ OΓ,w(t) for all t ∈ [0, T ];
(ID)S A(0) = A0;
(IR)S A(s) ⊆ A(t) for all 0 ≤ s ≤ t ≤ T ;
(GS)S for all t ∈ [0, T ] there holds

E(t, A(t)) ≤ E(t, B) +

∫
B\A(t)

κ dx, for all B ∈ MΓ,w(t) such that A(t) ⊆ B;

(EB)S A(t) ∈ OΓ,ẇ(t) for a.e. t ∈ [0, T ], the map t 7→
∫
Ω
∇hA(t),ẇ(t) · ∇hA(t),w(t) dx belongs to

L1(0, T ) and for all t ∈ [0, T ] there holds

E(t, A(t)) +
∫
A(t)\A0

κ dx = E(0, A0) +

∫ t

0

∫
Ω
∇hA(τ),ẇ(τ) · ∇hA(τ),w(τ) dx dτ. (2.4)

Remark 2.3. The last integral term in the energy balance (2.4) represents the work done by
the external displacement w. Indeed, in the classical framework, it is given by the expression∫ t

0

∫
Γ
ẇ(τ)∂nhA(τ),w(τ) dHd−1 dτ,

which by integration by parts formally coincides to the integral in (2.4) (exploiting the fact that
the normal derivative ∂nhA(τ),w(τ) necessarily vanishes in ∂Ω \ Γ).
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We also stress that the more common expression∫ t

0

∫
Ω
∇ẇ(τ) · ∇hA(τ),w(τ) dx dτ , (2.5)

widely used for instance in fracture mechanics [16], is clearly not always correct in our moving
domain context. Indeed, consider w(t) = t and A0 = ∅, and let t 7→ A(t) be an evolution
satisfying the energy balance (2.4) with (2.5) as external work. Then it must hold

E(t, A(t)) +
∫
A(t)

κ dx = 0 for all t ∈ [0, T ],

namely both terms above vanish. This yields that A(t) = ∅ and so that hA(t),t is identically 0,
which of course contradicts the boundary conditions hA(t),t = t on Γ. On the other hand, if one
knew that ẇ(t) = 0 outside A(t) (see for instance (2.10)), then the Euler-Lagrange equation (1.1)
would grant the equivalence between (2.5) and the last term of (2.4).

Motivated by the expression (2.2), we now reformulate the model in terms of displacements
rather than sets, obtaining an evolutive version of the one-phase Bernoulli free boundary problem.
We will focus on this formulation in the rest of the paper.

Definition 2.4. Under the previous assumptions, we say that a map [0, T ] ∋ t 7→ u(t) is a
displacement energetic solution (DES) of the debonding model if, setting

Au(t) := A0 ∪
⋃

s∈[0,t]

{u(s) > 0}, (2.6)

the following conditions hold:

(CO) u(t) ∈ H1
Γ,w(t)(Ω) ∩ C0(Ω) for all t ∈ [0, T ];

(ID) u(0) = hA0,w(0);
(GS) for all t ∈ [0, T ] there holds

1

2

∫
Ω
|∇u(t)|2dx ≤ 1

2

∫
Ω
|∇v|2dx+

∫
{v>0}\Au(t)

κ dx, for all v ∈ H1
Γ,w(t)(Ω);

(EB) Au(t) ∈ OΓ,ẇ(t) for a.e. t ∈ [0, T ], the map t 7→
∫
Ω
∇hAu(t),ẇ(t) · ∇u(t) dx belongs to

L1(0, T ) and for all t ∈ [0, T ] there holds

1

2

∫
Ω
|∇u(t)|2dx+

∫
Au(t)\A0

κ dx =
1

2

∫
Ω
|∇u(0)|2dx+

∫ t

0

∫
Ω
∇hAu(τ),ẇ(τ) · ∇u(τ) dx dτ. (2.7)

We now show that the two previous definitions of solution are somehow equivalent (see also
Lemma 2.6). Anyway, as stated in the next proposition, notice that the notion of displacement
energetic solution, which we will prove existence of, is always stronger than the notion of shape
energetic solution.

Proposition 2.5. Definitions 2.2 and 2.4 are almost equivalent, in the following sense:

(a) if t 7→ u(t) is a DES, then t 7→ Au(t) is a SES;
(b) if t 7→ A(t) is a SES, then t 7→ hA(t),w(t) fulfils (CO), (ID) and (GS). If in addition the

inclusion

A(t) \A0 ⊆
⋃

s∈[0,t]

{hA(s),w(s) > 0} \A0, (2.8)

is in force, then also (EB) holds true, hence t 7→ hA(t),w(t) is a DES.
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Proof. Assume that t 7→ u(t) is a DES and set A(t) := Au(t). The irreversibility condition (IR)S
is directly satisfied by the explicit form (2.6) of Au(t). Moreover, since by Lemma 1.1 we know
that {hA0,w(0) > 0} ⊆ A0, we easily deduce (ID)S.

By combining (GS) and Lemma 1.2 we observe that u(t) ∈ H1
Γ,w(t)(Ω, A(t)), and so also (CO)S

is satisfied. By combining (GS) and Lemma 1.4 instead, we now deduce that u(t) = hA(t),w(t).
Thus, by (2.2), the energy balance (EB)S is just a rewriting of (EB).

We just need to show the validity of (GS)S. Let us fix B ∈ MΓ,w(t) such that A(t) ⊆ B and
set v := hB,w(t), so that in particular {v > 0} ⊆ B. By (GS) we then infer

E(t, A(t)) = 1

2

∫
Ω
|∇u(t)|2 dx ≤ 1

2

∫
Ω
|∇v|2 dx+

∫
{v>0}\A(t)

κ dx ≤ E(t, B) +

∫
B\A(t)

κ dx,

and so (a) is proved.
Let the map t 7→ A(t) be a SES and set u(t) := hA(t),w(t), so that (ID) is automatically satisfied.

Also observe that by (IR)S one has

Au(t) = A0 ∪
⋃

s∈[0,t]

{hA(s),w(s) > 0} ⊆ A0 ∪
⋃

s∈[0,t]

A(s) = A(t), for all t ∈ [0, T ]. (2.9)

We now prove (GS), which by Lemma 1.4 directly yields also (CO). Let v ∈ H1
Γ,w(t)(Ω) and set

B := A(t)∪ {v > 0}, which belongs to MΓ,w(t) since by construction v+ ∈ H1
Γ,w(t)(Ω, B). Noting

that A(t) ⊆ B, by using (GS)S and (2.9) we deduce

1

2

∫
Ω
|∇u(t)|2 dx = E(t, A(t)) ≤ E(t, B) +

∫
B\A(t)

κ dx ≤ 1

2

∫
Ω
|∇v+|2 dx+

∫
{v>0}\A(t)

κ dx

≤ 1

2

∫
Ω
|∇v|2 dx+

∫
{v>0}\Au(t)

κ dx,

whence (GS) holds true.
Assume now (2.8), so that we actually infer equality in (2.9). Thus, the energy balance (EB)

is just a rewriting of (EB)S, and we conclude. □

Although we believe condition (2.8) should be always true (whence DES and SES are actually
equivalent) due to (GS)S and (EB)S, we are not able to prove it in the general situation. A
sufficient condition which provides its validity (see Lemma 2.6 below) is given by the following
assumption, which will play an important role also for the existence of DES:

there exists w ∈ AC([0, T ];H1(Ω)) satisfying w(t) ∈ H1
Γ,w(t)(Ω, A0)

+ for all t ∈ [0, T ]. (2.10)

Observe that if the initial debonded region A0 contains a neighbourhood of Γ, then (2.10) is
fulfilled by w(t, x) := Φ(x)w(t, x), where Φ ∈ C1(Ω) is a suitable cut-off function satisfying
0 ≤ Φ ≤ 1 in Ω, Φ = 1 in Γ, and Φ = 0 outside the neighbourhood of Γ.

For technical reasons, the proof of the following lemma is postponed to Section 3, just after
Proposition 3.3.

Lemma 2.6. Assuming (2.10), any SES t 7→ A(t) satisfies the inclusion (2.8). In particular,
the two notions of SES and DES are equivalent.

We are now in a position to state the main results of the paper, regarding existence of
displacement energetic solutions of the debonding model, and so in particular existence of
shape energetic solutions. We stress that uniqueness and time-regularity are not expected to
hold in general, see the one-dimensional examples of Section 2.1. The first theorem needs
assumption (2.10).
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Theorem 2.7. Assume that w ∈ AC([0, T ];H1(Ω)) satisfies (2.1), and that the initial debonded
region A0 ∈ OΓ,w(0) fulfils (2.3). If (2.10) is in force, there exists a DES of the debonding model
in the sense of Definition 2.4. In this case, the work of the prescribed displacement in the energy
balance (2.7) takes the simpler form∫ t

0

∫
Ω
∇ẇ(τ) · ∇u(τ) dx dτ.

Remark 2.8. If the stability at the initial time (2.3) is dropped, the very same proof performed
in Section 4 still yields the existence of a map t 7→ u(t) fulfilling (ID), (CO) and (GS) just for
t ∈ (0, T ], and the following energy inequality

1

2

∫
Ω
|∇u(t)|2dx+

∫
Au(t)\A0

κ dx ≤ 1

2

∫
Ω
|∇u(0)|2dx+

∫ t

0

∫
Ω
∇ẇ(τ) · ∇u(τ) dx dτ

for all t ∈ [0, T ].

The second result gets rid of assumption (2.10), thus for instance it may include the situation
A0 = ∅, but in general it just ensures existence of an evolution of globally stable states, without
any information on the energy balance (2.4).

Theorem 2.9. Assume that w ∈ AC([0, T ];H1(Ω)) satisfies (2.1), and that the initial debonded
region A0 ∈ OΓ,w(0) fulfils (2.3). Then there exists a function t 7→ u(t) satisfying (CO), (ID) and
(GS).

The proof will be performed by approximating the initial debonded region fattening the set
A0. For ε > 0 we consider the tubular neighbourhood Γε := {x ∈ Ω : dist(x; Γ) < ε}, and we set
Aε

0 := A0 ∪Γε. Since Γε is open, we may construct a function wε satisfying (2.10) by multiplying
w with a suitable cut-off function. Relying on Theorem 2.7, we thus construct solutions uε with
boundary values wε and initial debonded region Aε

0, and we then show that as ε → 0 we recover
an evolution fulfilling the statement of Theorem 2.9. In addition, whenever a uniform global
Lipschitz bound of the sequence uε holds true, and under further regularity of the boundary
datum, in the limit we actually retrieve a DES, as stated in the following proposition.

Proposition 2.10. Assume that w ∈ AC([0, T ];W 2,p(Ω)) with p > d satisfies (2.1), and that
the initial debonded region A0 ∈ OΓ,w(0) fulfils (2.3). Moreover, suppose that min

Γ
w(t) > 0 for

a.e. t ∈ [0, T ]. If the following uniform bound holds true

ess sup
t∈[0,T ]

∥uε(t)∥C0,1(Ω) ≤ C, (2.11)

then there exists a DES of the debonding model in the sense of Definition 2.4.

Remark 2.11. Although it seems natural that the global Lipschitz estimate (2.11) should be
a byproduct of the stability condition (if the boundary ∂Ω and the boundary datum w are
regular enough), we are not aware of results of this type for outer minimisers of the Alt–Caffarelli
functional. Up to our knowledge, the closest available global regularity result is proved in [21]
(see also [18, Appendix B]), but it just provides global Hölder bounds. Unfortunately, as it is
clear in the proof of Proposition 4.9, these are not enough to pass to the limit the work of the
prescribed displacement.

2.1. One-dimensional framework. We write here the formulation of the debonding problem
in one dimension, providing a simple framework where explicit examples are available.

Let Ω be the interval (0, L) and set Γ = {0}. The case Γ = {0, L} may be treated similarly.
Consider the prescribed displacement w ∈ AC([0, T ])+ acting on x = 0 and let A0 ∈ OΓ,w(0).
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The toughness of adhesion is a function κ ∈ L∞(0, L)+, positive outside A0 and vanishing in A0.
We also define ℓ0 := sup{λ ∈ [0, L] : (0, λ) ⊆ A0}.

Proposition 2.12. The map t 7→ u(t) is a DES of the debonding model if and only if it has the
form

u(t, x) =


0 if ℓ(t) = 0,

w(t)
(
1− x

ℓ(t)

)+
if ℓ(t) ∈ (0, L),

w(t) if ℓ(t) = L,

(2.12)

for some non-decreasing function ℓ : [0, T ] → [ℓ0, L], representing the debonding front, which
satisfies:

(CO)ℓ if ℓ(t) = 0, then w(t) = 0;
(ID)ℓ ℓ(0) = ℓ0;
(GS)ℓ if ℓ(t) ∈ (0, L), then

1

2

w(t)2

ℓ(t)
≤ 1

2

w(t)2

ρ
+

∫ ρ

ℓ(t)
κ dx for all ρ ∈ (ℓ(t), L),

1

2

w(t)2

ℓ(t)
≤
∫ L

ℓ(t)
κ dx;

(EB)ℓ the function

P (t) :=

{
0 if ℓ(t) = 0 or ℓ(t) = L,

ẇ(t)w(t)
ℓ(t) if ℓ(t) ∈ (0, L),

belongs to L1(0, T ) and for all t ∈ [0, T ] there holds

F (t, ℓ(t)) +

∫ ℓ(t)

ℓ0

κ dx = F (0, ℓ0) +

∫ t

0
P (τ) dτ,

where the energy F : [0, T ]× [0, L] → [0,+∞) is defined as

F (t, ℓ) :=

{
0 if ℓ = 0 or ℓ = L,
1
2
w(t)2

ℓ if ℓ ∈ (0, L).

Moreover, one has

Au(t) = A0 ∪ (0, ℓ(t)), for all t ∈ [0, T ]. (2.13)

Proof. Let first t 7→ u(t) be a DES, and for all t ∈ [0, T ] set ℓ(t) := sup{λ ∈ [0, L] : (0, λ) ⊆ Au(t)}.
Clearly ℓ is non-decreasing and (ID)ℓ holds true.

We now observe that if ℓ(t) < L, then necessarily one has u(t, ℓ(t)) = 0. Otherwise, since
H1(0, L) embeds in C0([0, L]), by continuity u(t) would be positive in a right neighbourhood
of ℓ(t), thus contradicting the definition of ℓ(t). In particular, this argument shows that (CO)ℓ
holds true.

Let us now prove the validity of (2.12). If ℓ(t) = 0, by (CO)ℓ we know that w(t) = 0 as well,
and so we can take v = 0 as a competitor in (GS): this implies that u(t) is constant, and so equal
to 0, in [0, L]. If ℓ(t) = L, we can argue similarly: in this case Au(t) coincides with (0, L), and
so picking v = w(t) in (GS) yields that u(t, x) = w(t). Finally, if ℓ(t) ∈ (0, L), we choose as a
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competitor v = w(t)
(
1− x

ℓ(t)

)+
: noting that {v > 0} ⊆ (0, ℓ(t)) ⊆ Au(t) we deduce

1

2

∫ ℓ(t)

0
|∂xu(t)|2 dx ≤ 1

2

∫ L

0
|∂xu(t)|2 dx ≤ 1

2

∫ L

0
|∂xv|2 dx+

∫
{v>0}\Au(t)

κ dx =
1

2

∫ ℓ(t)

0
|∂xv|2 dx

≤ 1

2

∫ ℓ(t)

0
|∂xu(t)|2 dx,

where in the last inequality we exploited the fact that v minimizes the Dirichlet energy among
functions f ∈ H1(0, ℓ(t)) with f(0) = w(t) and f(ℓ(t)) = 0. As a byproduct, we obtain that
u(t) = v in (0, ℓ(t)) and that u(t) is constant in [ℓ(t), L], whence u(t) = v in the whole (0, L) and
so (2.12) is proved. In particular, we observe that (2.13) holds true.

We now focus on (GS)ℓ. Assume ℓ(t) ∈ (0, L) and without loss of generality let w(t) > 0. For

an arbitrary ρ ∈ (ℓ(t), L) pick as a competitor in (GS) the function v = w(t)
(
1− x

ρ

)+
. Since

{v > 0} = (0, ρ) and recalling that κ vanishes in A0, by using (2.13) we obtain

1

2

w(t)2

ℓ(t)
=

1

2

∫ L

0
|∂xu(t)|2 dx ≤ 1

2

∫ L

0
|∂xv|2 dx+

∫
{v>0}\Au(t)

κ dx

=
1

2

w(t)2

ρ
+

∫
(0,ρ)\(A0∪(0,ℓ(t)))

κ dx =
1

2

w(t)2

ρ
+

∫ ρ

ℓ(t)
κ dx.

Taking as a competitor v = w(t), we instead deduce

1

2

w(t)2

ℓ(t)
≤
∫
(0,L)\Au(t)

κ dx =

∫ L

ℓ(t)
κ dx,

namely (GS)ℓ is proved.
In order to prove (EB)ℓ we first claim that for any differentiability point t of w we have

hAu(t),ẇ(t) =


0 if ℓ(t) = 0,

ẇ(t)
(
1− x

ℓ(t)

)+
if ℓ(t) ∈ (0, L),

ẇ(t) if ℓ(t) = L.

(2.14)

If the claim is true, then by (2.12) and (2.13) we readily deduce that

P (t) =

∫ L

0
∂xhAu(t),ẇ(t) ∂xu(t) dx for a.e. t ∈ [0, T ],

F (t, ℓ(t)) =
1

2

∫ L

0
∂xu(t)

2 dx for all t ∈ [0, T ],∫ ℓ(t)

ℓ0

κ dx =

∫
Au(t)\A0

κ dx for all t ∈ [0, T ],

whence (EB)ℓ is just a simple rewriting of (EB). In order to prove the claim, we first observe that
if ℓ(t) = 0 then (CO)ℓ yields w(t) = 0 and so also ẇ(t) = 0 since w is non-negative. Thus, the
right-hand side of (2.14), for the moment denoted by u, is really a function in H1

0,ẇ(t)((0, L), Au(t)).

We now show that u fulfils (1.1), so we fix ϕ ∈ H1(0, L) with ϕ(0) = 0 and vanishing outside
Au(t) = A0 ∪ (0, ℓ(t)), and we compute∫ L

0
∂xu∂xϕdx =

{
0 if ℓ(t) = 0 or ℓ(t) = L,

− ẇ(t)
ℓ(t) ϕ(ℓ(t)) if ℓ(t) ∈ (0, L).
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If ℓ(t) = 0 or ℓ(t) = L or ẇ(t) = 0 we conclude, so assume that ℓ(t) ∈ (0, L) and ẇ(t) ̸= 0, which
in particular implies w(t) > 0, and let us prove that in this case there holds ϕ(ℓ(t)) = 0. If not,
by continuity there exists a right neighbourhood of ℓ(t) in which ϕ is different from 0, and so
necessarily A0 contains such neighbourhood. By choosing ρ ∈ (ℓ(t), L) in this neighbourhood, by
using (GS)ℓ and recalling that κ vanishes in A0 we thus infer

1

2

w(t)2

ℓ(t)
≤ 1

2

w(t)2

ρ
+

∫ ρ

ℓ(t)
κ dx =

1

2

w(t)2

ρ
<

1

2

w(t)2

ℓ(t)
,

and we reach a contradiction. Hence, (2.14) holds true.
We now prove the opposite implication. Properties (CO) and (ID) directly follow from (2.12)

and (CO)ℓ and (ID)ℓ, respectively.
We also claim that (2.13) holds true. If ℓ(t) = 0, the identity is trivial, so assume ℓ(t) > 0. If

w(t) > 0, it easily follows noting that

Au(t) = A0 ∪
⋃

s∈[0,t]

{u(s) > 0} = A0 ∪
⋃

s∈[0,t]
s.t. w(s)>0

(0, ℓ(s)) = A0 ∪ (0, ℓ(t)).

If w(t) = 0 instead, set t̄ := min{s ∈ [0, t] : w(s) = 0}. If t̄ = 0, then w = 0 in [0, t], whence
Au(t) = A0 and ∫ ℓ(t)

ℓ0

κ dx = 0

by (EB)ℓ. This implies ℓ(t) = ℓ0, and so (2.13) holds true. If t̄ > 0, then consider a sequence tk
converging to t̄ from the left satisfying w(tk) > 0 (whence also ℓ(tk) > 0). So, we have

Au(t) = A0 ∪
⋃

s∈[0,t]
s.t. w(s)>0

(0, ℓ(s)) = A0 ∪
⋃
k∈N

(0, ℓ(tk)) = A0 ∪ (0, ℓ−(t̄ )).

Moreover, from (EB)ℓ we deduce∫ ℓ(t)

ℓ−(t̄ )
κ dx = lim

k→+∞

∫ ℓ(t)

ℓ(tk)
κ dx = lim

k→+∞

(
F (tk, ℓ(tk))− F (t, ℓ(t)) +

∫ t

tk

P (τ) dτ

)
= −F (t, ℓ(t)) +

∫ t

t̄
P (τ) dτ + lim

k→+∞
F (tk, ℓ(tk)) = lim

k→+∞
F (tk, ℓ(tk)).

If this last limit vanishes we conclude. Indeed, it would imply that the interval (ℓ−(t̄ ), ℓ(t)) is
contained in A0. To show it, we first observe that if ℓ(tk) = L for some k ∈ N, then F (tk, ℓ(tk)) = 0
definitively. If instead ℓ(tk) < L for all k ∈ N, by (GS)ℓ we deduce

lim
k→+∞

F (tk, ℓ(tk)) = lim
k→+∞

1

2

w(tk)
2

ℓ(tk)
≤ lim

k→+∞

(
1

2

w(tk)
2

ℓ−(t̄ )
+

∫ ℓ−(t̄ )

ℓ(tk)
κ dx

)
= 0,

whence (2.13) is proved.
We now focus on (GS). Fix t ∈ [0, T ] and without loss of generality we may assume that

ℓ(t) ∈ (0, L) and w(t) > 0. We then pick v ∈ H1(0, L) with v(0) = w(t), and we consider
ρ := sup{λ ∈ (0, L] : (0, λ) ⊆ {v > 0}}. If ρ < L, then v(ρ) = 0 and there holds

1

2

w(t)2

ℓ(t)
≤ 1

2

w(t)2

ρ
+

∫
(0,ρ)\(0,ℓ(t))

κ dx.
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Indeed, the above inequality is trivial in case ρ ∈ (0, ℓ(t)], while it follows by (GS)ℓ if ρ ∈ (ℓ(t), L).
Exploiting the fact that κ vanishes on A0 we thus obtain

1

2

∫ L

0
|∂xu(t)|2 dx =

1

2

w(t)2

ℓ(t)
≤ 1

2

w(t)2

ρ
+

∫
(0,ρ)\(0,ℓ(t))

κ dx ≤ 1

2

∫ ρ

0
|∂xv|2 dx+

∫
{v>0}\(0,ℓ(t))

κ dx

≤ 1

2

∫ L

0
|∂xv|2 dx+

∫
{v>0}\(A0∪(0,ℓ(t)))

κ dx

=
1

2

∫ L

0
|∂xv|2 dx+

∫
{v>0}\Au(t)

κ dx.

If ρ = L instead, then {v > 0} = (0, L) and hence we deduce

1

2

∫ L

0
|∂xu(t)|2 dx =

1

2

w(t)2

ℓ(t)
≤
∫ L

ℓ(t)
κ dx ≤ 1

2

∫ L

0
|∂xv|2 dx+

∫
{v>0}\Au(t)

κ dx,

so (GS) is proved.
We are just left to show the validity of (EB). By exploiting (2.13), (CO)ℓ and (GS)ℓ, arguing

exactly as in the proof of the reverse implication, one deduces that Au(t) ∈ O0,ẇ(t) and that
formula (2.14) holds true for all differentiability points of w. By using (2.15), we directly infer
that the map

t 7→
∫ L

0
∂xhAu(t),ẇ(t) ∂xu(t) dx

belongs to L1(0, T ) and finally (EB) can be directly obtained from (EB)ℓ. □

We finally present two examples which show how uniqueness and time-regularity of DES of
the debonding model are in general not expected. Compare also with [30, Section 2].

First, consider a constant prescribed displacement w(t) = w > 0 and let A0 = (0, ℓ0) with
ℓ0 ∈

(
0, L2

)
. For an arbitrary α ∈

(
ℓ0,

L
2

]
consider the toughness

κ(x) =


w2

2x2
if x ∈ [ℓ0, α],

w2

2α2
if x ∈ (α,L].

In this setting, we claim that any non-decreasing function ℓ : [0, T ] → [ℓ0, α) with ℓ(0) = ℓ0 gives
rise to a DES via formula (2.12), whence nor uniqueness nor continuity holds.

We just need to show that (GS)ℓ and (EB)ℓ are automatically satisfied. In the current situation,
notice that the global stability condition is equivalent to the system of inequalities

1

ℓ(t)
≤ 1

ρ
+

∫ ρ

ℓ(t)

1

x2
dx for all ρ ∈ (ℓ(t), α],

1

ℓ(t)
≤ 1

ρ
+

∫ α

ℓ(t)

1

x2
dx+

∫ ρ

α

1

α2
dx for all ρ ∈ (α,L),

1

ℓ(t)
≤
∫ α

ℓ(t)

1

x2
dx+

∫ L

α

1

α2
dx.
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The first inequality is always verified, while the second one and the third one can be equivalently
rewritten as 

0 ≤ (ρ− α)2

ρα2
for all ρ ∈ (α,L),

0 ≤ L− 2α

α2
,

thus (GS)ℓ is always true.
Observing that P (t) ≡ 0 since w is constant, we also have

F (t, ℓ(t))− F (0, ℓ0) +

∫ ℓ(t)

ℓ0

κ dx =
w2

2

(
1

ℓ(t)
− 1

ℓ0
+

∫ ℓ(t)

ℓ0

1

x2
dx

)
= 0,

whence also (EB)ℓ is fulfilled.
A less pathological situation in which time-continuity fails is given by the following example.

Let w(t) = t, A0 = (0, ℓ0) with ℓ0 ∈ (0, L), and consider a constant toughness κ > 0 in [ℓ0, L].
For T >

√
2κL/2, we claim that the functions

ℓ(t) :=


ℓ0 if t ∈ [0,

√
2κℓ0),

t√
2κ

if t ∈ [
√
2κℓ0,

√
2κL/2),

L if t ∈ [
√
2κL/2, T ],

if ℓ0 <
L

2
, (2.16a)

ℓ(t) :=

{
ℓ0 if t ∈ [0,

√
2κℓ0(L− ℓ0)),

L if t ∈ [
√

2κℓ0(L− ℓ0), T ],
if ℓ0 ≥

L

2
, (2.16b)

give rise to a DES. Indeed, notice that in this setting the global stability condition is equivalent
to the inequality

t ≤
√
2κℓ(t)min{ℓ(t), L− ℓ(t)} whenever ℓ(t) < L, (2.17)

while the energy balance is equivalent to the system
t2

2ℓ(t)
+ κ(ℓ(t)− ℓ0) =

∫ t

0

τ

ℓ(τ)
dτ if ℓ(t) < L,

κ(L− ℓ0) =

∫ tℓ

0

τ

ℓ(τ)
dτ if ℓ(t) = L,

(2.18)

where tℓ := sup{s ∈ [0, T ] : ℓ(s) < L}.
It is now immediate to check that the debonding fronts defined in (2.16a) and (2.16b) fulfil

both (2.17) and (2.18).

3. Properties of displacement energetic solutions

This section is devoted to collect some properties that displacement energetic solutions
automatically possess in view of the global stability condition. We begin by showing some
uniform bounds any DES satisfies.

Proposition 3.1. Assume the map t 7→ u(t) satisfies (CO) and (GS). Then u(t) is non-negative,
bounded, locally Lipschitz continuous in Ω, and harmonic in {u(t) > 0} for all t ∈ [0, T ].
Moreover, the following uniform-in-time bounds hold true:

• sup
t∈[0,T ]

∥u(t)∥L∞(Ω) ≤ M ;

• sup
t∈[0,T ]

∥u(t)∥H1(Ω) ≤ C;

• for all Ω′ well contained in Ω, there exists C ′ > 0 such that sup
t∈[0,T ]

∥u(t)∥C0,1(Ω′) ≤ C ′.
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Proof. By combining (GS) and Lemma 1.2 we deduce that u(t) is non-negative, bounded, locally
Lipschitz continuous in Ω, and harmonic in {u(t) > 0} for all t ∈ [0, T ]. Moreover, by (2.1) the
following bounds hold:

∥u(t)∥L∞(Ω) ≤ ess sup
Γ

w(t) ≤ M,

∥u(t)∥C0,1(Ω′) ≤ C ′
(
1 + ess sup

Γ
w(t)

)
≤ C ′(1 +M).

Above, Ω′ is a well contained subset of Ω.
To obtain the uniform bound in H1(Ω) we first use w(t) as a competitor in (GS), deducing

1

2

∫
Ω
|∇u(t)|2 dx ≤ 1

2

∫
Ω
|∇w(t)|2 dx+ ∥κ∥L∞(Ω)|Ω| ≤ max

t∈[0,T ]
∥w(t)∥2H1(Ω) + ∥κ∥L∞(Ω)|Ω| ≤ C.

We then conclude by means of Poincaré inequality. □

Remark 3.2. The local Lipschitz continuity of u(t) is essentially due to the fact that global
stability (GS) implies that u(t) is an outward minimiser of the Alt–Caffarelli functional, in the
terminology of [35]. On the contrary, since the inward minimality condition is not granted by
(GS), we can not ensure that the positivity set {u(t) > 0} is of (locally) finite perimeter, unlike
in [19].

We now show how the global stability condition implies an upper energy inequality, at least
assuming a condition similar to (2.10). This result will be used later on to prove Lemma 2.6.

Proposition 3.3. Let the map t 7→ u(t) satisfy (CO) and (GS). Moreover, assume that there
exists w̃ ∈ AC([0, T ];H1(Ω)) satisfying w̃(t) ∈ H1

Γ,w(t)(Ω, Au(t))
+ for all t ∈ [0, T ]. If the map

t 7→
∫
Ω
∇hAu(t),ẇ(t) · ∇u(t) dx

is measurable, then the following inequality holds true

1

2

∫
Ω
|∇u(t)|2dx+

∫
Au(t)\A0

κ dx ≥ 1

2

∫
Ω
|∇u(0)|2dx+

∫ t

0

∫
Ω
∇hAu(τ),ẇ(τ) · ∇u(τ) dx dτ (3.1)

for all t ∈ [0, T ].

Proof. We first observe that by (GS) and Lemma 1.4 we know that u(t) = hAu(t),w(t) for all

t ∈ [0, T ]. Moreover, by the assumptions on w̃ it is easy to infer that ˙̃w(t) ∈ H1
Γ,ẇ(t)(Ω, Au(t)),

whence Au(t) ∈ OΓ,ẇ(t), for a.e. t ∈ [0, T ]. By using (1.1), we now obtain that∫
Ω
∇ ˙̃w(t) · ∇u(t) dx =

∫
Ω
∇hAu(t),ẇ(t) · ∇u(t) dx for a.e. t ∈ [0, T ]. (3.2)

In particular, since the right-hand side above is measurable by assumption, we infer that both
terms actually belong to L1(0, T ): indeed, due to the uniform bound of u(t) in H1(Ω) stated

in Proposition 3.1, the left hand-side can be bounded by ∥∇ ˙̃w(t)∥L2(Ω), up to a multiplicative
constant.
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Let us now focus on the proof of (3.1). If t = 0, the inequality is true, so we fix t ∈ (0, T ], and
we consider a sequence of partitions 0 = sn0 < sn1 < · · · < snk(n) = t satisfying

lim
n→+∞

sup
k=1,...,k(n)

(snk − snk−1) = 0,

lim
n→+∞

k(n)∑
k=1

(snk − snk−1)

∫
Ω
∇ ˙̃w(snk) · ∇u(snk) dx =

∫ t

0

∫
Ω
∇ ˙̃w(τ) · ∇u(τ) dx dτ, (3.3)

lim
n→+∞

k(n)∑
k=1

∥∥∥∥∥(snk − snk−1)∇ ˙̃w(snk)−
∫ snk

snk−1

∇ ˙̃w(τ) dτ

∥∥∥∥∥
L2(Ω)

= 0. (3.4)

Such a sequence of partitions exists by [22, Lemma 4.5] since ˙̃w ∈ L1(0, T ;H1(Ω)) by assumption,
and since

t 7→
∫
Ω
∇ ˙̃w(t) · ∇u(t) dx ∈ L1(0, T )

as we previously noticed. In particular, by the absolute continuity of the integral, we observe
that

lim
n→+∞

sup
k=1,...,k(n)

∫ snk

snk−1

∥∇ ˙̃w(τ)∥L2(Ω) dτ = 0. (3.5)

For k = 1, . . . , k(n) we now take as a competitor for u(snk−1) in (GS) the function vnk−1 :=
u(snk)− w̃(snk) + w̃(snk−1), deducing

1

2

∫
Ω
|∇u(snk−1)|2dx ≤ 1

2

∫
Ω
|∇u(snk)−∇(w̃(snk)− w̃(snk−1))|2dx+

∫
{vnk−1>0}\Au(sn

k−1
)

κ dx.

Observing that {vnk−1 > 0}\Au(snk−1)
⊆ Au(snk )

\Au(snk−1)
since by assumption w̃(snk−1) = 0 outside

Au(snk−1)
, by summing the above inequality from k = 1 to k(n) we deduce

1

2

∫
Ω
|∇u(t)|2dx− 1

2

∫
Ω
|∇u(0)|2dx+

∫
Au(t)\A0

κ dx

≥
k(n)∑
k=1

1

2

∫
Ω
|∇u(snk)|2dx− 1

2

∫
Ω
|∇u(snk)−∇(w̃(snk)− w̃(snk−1))|2dx

=

k(n)∑
k=1

∫ snk

snk−1

d

dτ

1

2

∫
Ω
|∇u(snk)− (w̃(snk)− w̃(τ))|2dx dτ

=

k(n)∑
k=1

∫ snk

snk−1

∫
Ω
(∇u(snk)−∇w̃(τ))

)
· ∇ ˙̃w(τ)dx dτ

=

k(n)∑
k=1

(snk−snk−1)

∫
Ω
∇ ˙̃w(snk) · ∇u(snk) dx

+

k(n)∑
k=1

∫
Ω
∇u(snk) ·

[∫ snk

snk−1

∇ ˙̃w(τ)dτ−(snk−snk−1)∇ ˙̃w(snk)

]
dx︸ ︷︷ ︸

=:Jn
1
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+

k(n)∑
k=1

∫ snk

snk−1

∫
Ω
∇ ˙̃w(τ) · ∇(w(τ)− w(snk)) dx dτ︸ ︷︷ ︸

=:Jn
2

.

By using (3.3), the first term above converges to∫ t

0

∫
Ω
∇ ˙̃w(τ) · ∇u(τ) dx dτ

as n → +∞, while we now show that both Jn
1 and Jn

2 vanish. To this aim we first estimate

|Jn
1 | ≤

k(n)∑
k=1

∥∇u(snk)∥L2(Ω)

∥∥∥∥∥(snk − snk−1)∇ ˙̃w(snk)−
∫ snk

snk−1

∇ ˙̃w(τ) dτ

∥∥∥∥∥
L2(Ω)

,

which goes to zero by (3.4) since we recall that Proposition 3.1 yields the uniform bound
∥∇u(snk)∥L2(Ω) ≤ C.

Regarding Jn
2 , we argue as follows:

|Jn
2 | ≤

k(n)∑
k=1

∫ snk

snk−1

∥∇ ˙̃w(τ)∥L2(Ω)

∫ snk

τ
∥∇ ˙̃w(r)∥L2(Ω) dr dτ ≤

k(n)∑
k=1

(∫ snk

snk−1

∥∇ ˙̃w(τ)∥L2(Ω) dτ

)2

≤ sup
k=1,...,k(n)

(∫ snk

snk−1

∥∇ ˙̃w(τ)∥L2(Ω) dτ

)∫ t

0
∥∇ ˙̃w(τ)∥L2(Ω) dτ,

which vanishes by (3.5).
Thus, we have proved that

1

2

∫
Ω
|∇u(t)|2dx+

∫
Au(t)\A0

κ dx ≥ 1

2

∫
Ω
|∇u(0)|2dx+

∫ t

0

∫
Ω
∇ ˙̃w(τ) · ∇u(τ) dx dτ,

and so we conclude by (3.2). □

Observe that, given a DES t 7→ u(t), the map t 7→ ∇hAu(t),ẇ(t) does not necessarily belong to

L1(0, T ;L2(Ω)), although

t 7→
∫
Ω
∇hAu(t),ẇ(t) · ∇u(t) dx

is in L1(0, T ) and ∇u belongs to L∞(0, T ;L2(Ω)) by Proposition 3.1. This is the reason why in the
previous proposition we needed the existence of the function w̃ in order to complete the argument
(to be precise, we needed ∇ ˙̃w to be in L1(0, T ;L2(Ω))). We present here a counterexample even
in dimension one, in the framework of Section 2.1.

Let Ω = (0, L), Γ = {0} and let A0 = ∅ (i.e. ℓ0 = 0) and κ > 0 be a positive constant. We
consider w ∈ AC([0, T ])+ such that w(0) = 0 and supt∈[0,T ]w(t) ≤

√
2κL/2 to be chosen later.

It may be checked (see also [30, Section 2]) that the unique DES of the debonding model is given
by (2.12) with

ℓ(t) =
w∗(t)√

2κ
,
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a1

a2

a3

a4
a5

t1t2t3t4t5

w(t)

w∗(t)

Figure 1. The graphs of w(t) and w∗(t).

where w∗(t) := sup
s∈[0,t]

w(s) is the smallest non-decreasing function above w. Without loss of

generality we may assume that w∗(t) > 0 for positive times, and so in this setting we have∫ T

0

(∫ L

0
∂xh

2
Au(τ),ẇ(τ) dx

) 1
2

dτ =

∫ T

0

(∫ L

0
∂xh

2
(0,ℓ(τ)),ẇ(τ) dx

) 1
2

dτ

=

∫ T

0

(∫ ℓ(τ)

0

(
ẇ(τ)

ℓ(τ)

)2

dx

) 1
2

dτ

=

∫ T

0

|ẇ(τ)|√
ℓ(τ)

dτ = (2κ)
1
4

∫ T

0

|ẇ(τ)|√
w∗(τ)

dτ.

We now choose a suitable function w. Consider a vanishing and strictly decreasing sequence of
positive times {tj}j∈N such that t1 = T and consider another vanishing and strictly decreasing

sequence {aj}j∈N satisfying a1 ≤
√
2κL/2,

∞∑
j=1

aj < +∞, and
∞∑
j=1

√
aj = +∞.

We then define w as follows (see also Figure 1)

w(t) :=


2aj

tj−tj+1
(t− tj+1) if t ∈

(
tj+1,

tj+1+tj
2

]
for some j ∈ N,

2aj
tj−tj+1

(tj − t) if t ∈
(
tj+1+tj

2 , tj

]
for some j ∈ N,

0 if t = 0.

It is then immediate to check that∫ T

0
|ẇ(τ)| dτ =

∞∑
j=1

∫ tj

tj+1

2aj
tj − tj+1

dτ = 2
∞∑
j=1

aj < +∞,
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whence w is absolutely continuous, but∫ T

0

|ẇ(τ)|√
w∗(τ)

dτ =

∞∑
j=1

2aj
tj − tj+1

∫ tj

tj+1

1√
w∗(τ)

dτ ≥
∞∑
j=1

2aj
tj − tj+1

∫ tj

tj+1

1
√
aj

dτ

= 2

∞∑
j=1

√
aj = +∞,

and so t 7→ ∂xhAu(t),ẇ(t) does not belong to L1(0, T ;L2(0, L)).

Remark 3.4. In the previous example, the underlying issue is given by the fact that at the
initial time the film is completely glued to the substrate, while the regularity of w does not play
any role. Indeed, by properly tuning the sequence {tj}j∈N, the function w may be constructed
to be Lipschitz continuous (or even smooth after a suitable regularization).

We now make use of Proposition 3.3 in order to show the validity of Lemma 2.6.

Proof of Lemma 2.6. We already know by Proposition 2.5 that, given a SES t 7→ A(t), the map
u(t) := hA(t),w(t) satisfies (CO), (ID), and (GS). Moreover, inclusion (2.9) is true and Au(0) = A0.
In particular, we deduce that A0 ⊆ Au(t) for all t ∈ [0, T ].

Assumption (2.10) now ensures that w ∈ AC([0, T ];H1(Ω)) satisfies w(t) ∈ H1
Γ,w(t)(Ω, Au(t))

+

for all t ∈ [0, T ]. Furthermore, notice that ẇ(t) ∈ H1
Γ,ẇ(t)(Ω, Au(t)), and so that Au(t) ∈ OΓ,ẇ(t),

for all common differentiability points of w and w. By (2.9) and (1.1) we thus infer that∫
Ω
∇hA(t),ẇ(t) · ∇hA(t),w(t) dx =

∫
Ω
∇hAu(t),ẇ(t) · ∇u(t) dx, for a.e. t ∈ [0, T ]. (3.6)

In particular, by (EB)S, the right-hand side above belongs to L1(0, T ). We are now in a position
to exploit Proposition 3.3: by combining it with (EB)S, (2.9), and (3.6) we indeed deduce

1

2

∫
Ω
|∇u(t)|2 dx+

∫
Au(t)\A0

κ dx ≥ 1

2

∫
Ω
|∇u(0)|2 dx+

∫ t

0

∫
Ω
∇hAu(τ),ẇ(τ) · ∇u(τ) dxdτ

= E(0, A0) +

∫ t

0

∫
Ω
∇hA(τ),ẇ(τ) · ∇hA(τ),w(τ) dxdτ

= E(t, A(t)) +
∫
A(t)\A0

κ dx =
1

2

∫
Ω
|∇u(t)|2 dx+

∫
A(t)\A0

κ dx

≥ 1

2

∫
Ω
|∇u(t)|2 dx+

∫
Au(t)\A0

κ dx.

In particular, we have proved that∫
Au(t)\A0

κ dx =

∫
A(t)\A0

κ dx, for all t ∈ [0, T ].

Since κ is positive outside A0, this yields that Au(t) \ A0 = A(t) \ A0, whence (2.8) holds true
and we conclude. □

4. Construction of displacement energetic solutions

In this section we prove Theorem 2.7 by constructing a DES in the sense of Definition 2.4,
requiring assumption (2.10). To do so, we follow the classical approach of the Minimizing
Movement scheme. For j ∈ N we consider the step-size τj :=

T
j and for i = 0, . . . , j we define the

discrete times tji := iτj .
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Starting from the initial pair

uj0 := hA0,w(0) and Aj
0 := A0,

for i = 1, ..., j we construct recursively the functions uji and the sets Aj
i via the following

algorithm: 
uji ∈ arg min

v∈H1

Γ,w(t
j
i
)
(Ω)

AC(v,Aj
i−1), (4.1a)

Aj
i := {uji > 0} ∪Aj

i−1, (4.1b)

where the Alt–Caffarelli functional AC has been introduced in (1.2). The existence of the

minimisers uji is granted by Lemma 1.2, which also implies that the sets Aj
i are open.

We now introduce the piecewise-constant interpolant uj as

uj(t) :=

{
uji if t ∈ (tji , t

j
i+1] for some i ∈ {1, ..., j} ,

hA0,w(0) if t = 0.

In the same way we also define Aj(t), and we set

wj(t) :=

{
w(tji ) if t ∈ (tji , t

j
i+1] for some i ∈ {1, ..., j} ,

w(0) if t = 0.

Observe that, by construction, the set-valued function t 7→ Aj(t) is non-decreasing with respect
to set inclusion.

Remark 4.1. Since w ∈ AC([0, T ];H1(Ω)) by assumption, for any sequence tn → t we have
w(tn) → w(t) strongly in H1(Ω). In particular, wj(t) → w(t) strongly in H1(Ω) uniformly in
[0, T ].

Similarly to Proposition 3.1, the piecewise constant displacement fulfils the following properties
and uniform bounds.

Proposition 4.2. For all t ∈ [0, T ] the functions uj(t) are non-negative, bounded and locally
Lipschitz continuous in Ω. Moreover, uj(t) is harmonic in {uj(t) > 0}. Finally, the following
uniform bounds hold true

(i) sup
t∈[0,T ]

∥uj(t)∥L∞(Ω) ≤ M ;

(ii) sup
t∈[0,T ]

∥uj(t)∥H1(Ω) ≤ C;

(iii) for all Ω well contained in Ω, there exists C ′ > 0 such that sup
t∈[0,T ]

∥uj(t)∥C0,1(Ω′) ≤ C ′.

Proof. By construction, uj(t) minimizes AC(·, Aj(t − τj)) in H1
Γ,wj(t)

(Ω), so the proof can be

carried out analogously to Proposition 3.1. □

We will now make use of the following compactness result of Helly’s type, stated and proved
in [32, Lemma 6.1], in order to extract convergent subsequences of t 7→ χAj(t).

Lemma 4.3. Let X,Y be Banach spaces such that X is reflexive and separable and X continuously
and densely embeds in Y . Then, given a sequence of functions fn : [a, b] → X such that for a
positive constant C > 0 independent of n it holds

sup
t∈[a,b]

∥fn(t)∥X ≤ C and VarY (fn; a, b) ≤ C,
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there exist a function f : [a, b] → X, bounded in X and with bounded variation in Y , and a
(non-relabelled) subsequence such that

fn(t) −−−−−⇀
n→+∞

f(t), weakly in X for every t ∈ [a, b].

Proposition 4.4. There exists a (non-relabelled) subsequence and a map ρ : [0, T ]×Ω → R such
that

χAj(t) −−−−⇀
j→+∞

ρ(t) weakly∗ in L∞(Ω) for all t ∈ [0, T ] .

In particular, ρ is non-decreasing, 0 ≤ ρ(t) ≤ 1 for all t ∈ [0, T ] and ρ(0) = χA0 .

Proof. The functions χAj(t) are clearly bounded in L2(Ω), as they take values in [0, 1]. Moreover,

since t 7→ χAj(t) is monotone, it is also bounded in BV([0, T ];L1(Ω)). Using Lemma 4.3, together
with a diagonal argument, we conclude that, along a non-relabelled subsequence,

χAj(t) −−−−⇀
j→+∞

ρ(t) weakly in L2(Ω) for all t ∈ [0, T ] .

For any t ∈ [0, T ], χAj(t) is also bounded in L∞(Ω). Thus, from any subsequence we can extract

a further subsequence that weakly∗ converges in L∞(Ω). Since the limit is uniquely identified
and coincides with ρ(t), the desired convergence holds without a further extraction. □

Remark 4.5. Since ρ(t) satisfies 1 ≥ ρ(t) ≥ ρ(0) = χA0 , it follows that ρ(t) = 1 a.e. in A0 for
all t ∈ [0, T ].

The subsequence given in Proposition 4.4 now identifies a set-valued map t 7→ A(t), defined as

A(t) := Ω \ ess supp(1− ρ(t)) =
⋃

{B ⊆ Ω: B is open and ρ(t) = 1 a.e. in B} . (4.2)

Note that, by construction, A(t) is open, A(0) = A0, ρ(t) = 1 a.e. on A(t) and t 7→ A(t) is
non-decreasing with respect to set inclusion.

We now show that the discrete displacements uj converge along the same subsequence to the
function hA(·),w(·). This will be done by proving that the limit function is globally stable, and
exploiting Lemma 1.4.

Proposition 4.6. There exists a map u : [0, T ] → H1(Ω) such that, for all t ∈ [0, T ], there holds

uj(t) −−−−→
j→+∞

u(t) strongly in H1(Ω), weakly∗ in L∞(Ω) and locally uniformly in Ω, (4.3)

for the same subsequence given by Proposition 4.4. Moreover, u satisfies (GS) and

u(t) = hA(t),w(t) for all t ∈ [0, T ], (4.4)

where A(t) is the set introduced in (4.2). In particular, (CO) and (ID) are fulfilled and u(t)

belongs to H1
Γ,w(t)(Ω, A(t))

+ ∩ L∞(Ω) ∩ C0,1
loc (Ω) for all t ∈ [0, T ].

Proof. Fix t ∈ [0, T ]. By Proposition 4.2 we deduce that, up to taking a further subsequence
jn (possibly depending on t), the convergence stated in (4.3) holds true for a function u(t) ∈
H1

Γ,w(t)(Ω)
+ ∩L∞(Ω)∩C0,1

loc (Ω), except that the convergence in H1(Ω) is just weak. We now aim

at showing the characterization (4.4), which would yield (ID) and the validity of (4.3) without
taking any subsequence.

Let us first prove that

{u(t) > 0} ⊆ A(t). (4.5)
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Fix x̄ ∈ {u(t) > 0}, so that by continuity of u(t) and by the locally uniform convergence of ujn(t)
to u(t) there exists a radius r > 0 such that for sufficiently large n one has ujn(t, x) ≥ u(t, x̄)/2
for all x ∈ Br(x̄), whence Br(x̄) ⊆ {ujn(t) > 0} ⊆ Ajn(t). This implies that∫

Br(x̄)
ρ(t) dx = lim

n→+∞

∫
Ω
χBr(x̄)χAjn (t) dx = lim

n→+∞

∫
Ω
χBr(x̄) dx = |Br(x̄)|,

and so ρ(t) = 1 a.e. in Br(x̄). By definition (4.2) of A(t) we thus obtain that Br(x̄) ⊆ A(t) and
so (4.5) is proved. In particular, we deduce that u(t) ∈ H1

Γ,w(t)(Ω, A(t))
+, and that

Au(t) = A0 ∪
⋃

s∈[0,t]

{u(s) > 0} ⊆ A0 ∪
⋃

s∈[0,t]

A(s) = A(t). (4.6)

In order to prove (GS), we now fix v ∈ H1
Γ,w(t)(Ω)

+ ∩C0(Ω) such that A(t) ⊆ {v > 0}, and we

consider the competitor vn(t) := v −w(t) +wjn(t) ∈ H1
Γ,wjn (t)

(Ω). We recall that by Remark 4.1

we have

vn(t) → v, strongly in H1(Ω). (4.7)

By minimality of uji in (4.1a) and by definition (4.1b) of Aj
i we thus infer

1

2

∫
Ω
|∇ujn(t)|2 dx+

∫
Ajn (t)\Ajn (t−τjn )

κ dx

=
1

2

∫
Ω
|∇ujn(t)|2 dx+

∫
{ujn (t)>0}\Ajn (t−τjn )

κ dx

≤ 1

2

∫
Ω
|∇vn(t)|2 dx+

∫
{vn(t)>0}\Ajn (t−τjn )

κ dx =
1

2

∫
Ω
|∇vn(t)|2 dx+

∫
{v>0}\Ajn (t−τjn )

κ dx,

where in the last equality we exploited the identity

{vn(t) > 0} \Ajn(t− τjn) = {v > 0} \Ajn(t− τjn)

which follows from (2.10), since vn(t) = v outside A0, ando so in particular outside Ajn(t− τjn).
By adding the term ∫

Ajn (t−τjn )
κ dx

to both sides above and using the trivial identity (A \B) ∪B = (B \A) ∪A = A ∪B we finally
obtain

1

2

∫
Ω
|∇ujn(t)|2 dx+

∫
Ajn (t)

κ dx ≤ 1

2

∫
Ω
|∇vn(t)|2 dx+

∫
{v>0}

κ dx+

∫
Ajn (t−τjn )\{v>0}

κ dx

≤ 1

2

∫
Ω
|∇vn(t)|2 dx+

∫
{v>0}

κ dx+

∫
Ajn (t)\A(t)

κ dx,

where in the last inequality we exploited the inclusions Ajn(t− τjn) ⊆ Ajn(t) and A(t) ⊆ {v > 0}.
Sending n → +∞, by weak lower semicontinuity of the Dirichlet functional and exploiting

(4.7) and Proposition 4.4 we now infer

1

2

∫
Ω
|∇u(t)|2 dx+

∫
Ω
κρ(t) dx ≤ 1

2

∫
Ω
|∇v|2 dx+

∫
{v>0}

κ dx+

∫
Ω
κρ(t)(1− χA(t)) dx

=
1

2

∫
Ω
|∇v|2 dx+

∫
{v>0}\A(t)

κ dx+

∫
Ω
κρ(t) dx,

where we used the equality ρ(t) = 1 a.e. on A(t). We have thus proved the validity of (4) in
Lemma 1.4, which in particular yields (4.4) and also (GS) recalling (4.6).
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We are just left to prove that uj → u(t) strongly in H1(Ω). Arguing similarly as before, but

taking as a competitor for uji the function vj(t) = u(t)− w(t) + wj(t) ∈ H1
Γ,wj(t)

(Ω), we deduce

1

2

∫
Ω
|∇uj(t)|2 dx+

∫
Aj(t)

κ dx ≤ 1

2

∫
Ω
|∇vj(t)|2 dx+

∫
{u(t)>0}

κ dx+

∫
Aj(t)\{u(t)>0}

κ dx.

Sending j → +∞, exploiting (4.5) together with the fact that ρ(t) = 1 a.e. in A(t) we thus
obtain

lim sup
j→+∞

1

2

∫
Ω
|∇uj(t)|2 dx+

∫
Ω
κρ(t) dx

≤ 1

2

∫
Ω
|∇u(t)|2 dx+

∫
{u(t)>0}

κ dx+

∫
Ω
κρ(t)(1− χ{u(t)>0}) dx

=
1

2

∫
Ω
|∇u(t)|2 dx+

∫
Ω
κρ(t) dx,

and so we conclude. □

Due to Proposition 3.3, in order to conclude the proof of Theorem 2.7 we just need to show
that u satisfies the opposite inequality of (3.1). This will be done in the following proposition.
Indeed, notice that assumption (2.10) automatically yields that Au(t) ∈ OΓ,ẇ(t) for a.e. t ∈ [0, T ]
and that ∫

Ω
∇ẇ(t) · ∇u(t) dx =

∫
Ω
∇hAu(t),ẇ(t) · ∇u(t) dx for a.e. t ∈ [0, T ].

Also, observe that the left-hand side above is measurable since it is the pointwise countable limit
of measurable functions.

Proposition 4.7. The limit function u obtained in Proposition 4.6 satisfies the inequality

1

2

∫
Ω
|∇u(t)|2dx+

∫
Au(t)\A0

κ dx ≤ 1

2

∫
Ω
|∇u(0)|2dx+

∫ t

0

∫
Ω
∇ẇ(τ) · ∇u(τ) dx dτ

for all t ∈ [0, T ].

Proof. If t = 0, the inequality is trivial since Au(0) = A0. So fix t ∈ (0, T ] and for j ∈ N let

Ijt ∈ {1, . . . , j} satisfy uj(t) = uj
Ijt
. For all i ∈ {1, . . . , Ijt }, by taking as a competitor for uji the

function v = uji−1 + w(tji )− w(tji−1) ∈ H1
Γ,w(tji )

(Ω) we deduce

1

2

∫
Ω
|∇uji |

2 dx+

∫
Aj

i\A
j
i−1

κ dx =
1

2

∫
Ω
|∇uji |

2 dx+

∫
{uj

i>0}\Aj
i−1

κ dx

≤ 1

2

∫
Ω
|∇uji−1 +∇(w(tji )− w(tji−1))|

2 dx+

∫
{uj

i−1>0}\Aj
i−1

κ dx︸ ︷︷ ︸
=0

,

where in the last inequality we exploited the assumption w(t) = 0 outside A0.
Subtracting

1

2

∫
Ω
|∇uji−1|

2 dx
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from both sides and summing from i = 1, . . . , Ijt we thus obtain

1

2

∫
Ω
|∇uj(t)|2dx− 1

2

∫
Ω
|∇u(0)|2dx+

∫
Aj(t)\A0

κ dx

≤
∫ tj

I
j
t

0

∫
Ω
(∇uj(τ) +∇(w(τ)− wj(τ))) · ∇ẇ(τ)dxdτ

=

∫ t

0

∫
Ω
∇uj(τ) · ∇ẇ(τ) dxdτ −

∫ t

tj
I
j
t

∫
Ω
∇uj(τ) · ∇ẇ(τ) dxdτ

︸ ︷︷ ︸
=:Rj

1

+

∫ tj
I
j
t

0

∫
Ω
∇(w(τ)− wj(τ)) · ∇ẇ(τ)dxdτ︸ ︷︷ ︸

=:Rj
2

.

Let us first show that both Rj
1 and Rj

2 vanish as j → +∞. It is a byproduct of the following

estimates, recalling Remark 4.1, the bounds of Proposition 4.2 and that lim
j→+∞

tj
Ijt

= t.

|Rj
1| ≤

∫ t

tj
I
j
t

∥∇uj(τ)∥L2(Ω)∥∇ẇ(τ)∥L2(Ω) dτ ≤ sup
s∈[0,T ]

∥uj(s)∥H1(Ω)

∫ t

tj
I
j
t

∥ẇ(τ)∥H1(Ω) dτ ;

|Rj
2| ≤

∫ t

0
∥∇(w(τ)−wj(τ))∥L2(Ω)∥∇ẇ(τ)∥L2(Ω) dτ ≤ sup

s∈[0,T ]
∥w(s)−wj(s)∥H1(Ω)

∫ t

0
∥ẇ(τ)∥H1(Ω) dτ.

Sending j → +∞ we thus obtain

1

2

∫
Ω
|∇u(t)|2dx− 1

2

∫
Ω
|∇u(0)|2dx+

∫
Ω
κρ(t)(1− χA0) dx ≤

∫ t

0

∫
Ω
∇ẇ(τ) · ∇u(τ) dxdτ.

Observing that, using (4.6), we have∫
Ω
κρ(t)(1− χA0) dx ≥

∫
A(t)

κρ(t)(1− χA0) dx =

∫
A(t)\A0

κ dx ≥
∫
Au(t)\A0

κ dx,

we finally conclude. □

4.1. Proof of Theorem 2.9. For ε > 0, define the tubular neighbourhood

Γε := {x ∈ Ω : dist(x; Γ) < ε}
and set Aε

0 := A0 ∪ Γε. Since Γε is open, there exists a cut-off function Φε ∈ C1(Ω) such that
0 ≤ Φε ≤ 1 in Ω, Φε = 1 in Γ, Φε = 0 in Ω \ Γε and

|∇Φε(x)| ≤ C

ε
for all x ∈ Ω. (4.8)

Thus, the function wε(t, x) := Φε(x)w(t, x) satisfies (2.10) with Aε
0 in place of A0, and so by

Theorem 2.7 and Remark 2.8 (indeed, Aε
0 may be not stable) there exists a map t 7→ uε(t) which

satisfies:

(CO)ε uε(t) ∈ H1
Γ,w(t)(Ω) ∩ C0(Ω) for all t ∈ (0, T ];

(ID)ε uε(0) = hAε
0,w(0);

(GS)ε for all t ∈ (0, T ] there holds

1

2

∫
Ω
|∇uε(t)|2dx ≤ 1

2

∫
Ω
|∇v|2dx+

∫
{v>0}\Auε(t)

κ dx, for all v ∈ H1
Γ,w(t)(Ω);
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(EI)ε for all t ∈ [0, T ] there holds

1

2

∫
Ω
|∇uε(t)|2dx+

∫
Auε(t)\Aε

0

κ dx ≤ 1

2

∫
Ω
|∇uε(0)|2dx+

∫ t

0

∫
Ω
∇ẇε(τ) · ∇uε(τ) dx dτ.

From Lemma 1.4, we also recall that uε(t) = hAuε(t),w(t) for all t ∈ [0, T ].

By exploiting again Lemma 4.3, as already done in Proposition 4.4, we directly infer the
existence of a (non relabelled) subsequence and a map σ : [0, T ]× Ω → R such that

χAuε(t)
−−−⇀
ε→0

σ(t) weakly∗ in L∞(Ω) for all t ∈ [0, T ] . (4.9)

In particular, σ is non-decreasing, 0 ≤ σ(t) ≤ 1 for all t ∈ [0, T ] and σ(0) = χA0 . Analogously to
(4.2), we now introduce the set

A(t) := Ω \ ess supp(1− σ(t)), (4.10)

so that t 7→ A(t) is non-decreasing, A(0) = A0 and for all t ∈ [0, T ] the set A(t) is open and
σ(t) = 1 a.e. in A(t). The following proposition concludes the proof of Theorem 2.9.

Proposition 4.8. There exists a map u : [0, T ] → H1(Ω) such that for t = 0 there holds

uε(0) −−−→
ε→0

u(0) strongly in H1(Ω) and weakly∗ in L∞(Ω), (4.11)

while for t ∈ (0, T ] one has

uε(t) −−−→
ε→0

u(t) strongly in H1(Ω), weakly∗ in L∞(Ω) and locally uniformly in Ω, (4.12)

for the same subsequence satisfying (4.9). Moreover, u satisfies (GS) and

u(t) = hA(t),w(t) for all t ∈ [0, T ], (4.13)

where A(t) is the set introduced in (4.10). In particular, (CO) and (ID) are fulfilled and u(t)

belongs to H1
Γ,w(t)(Ω, A(t))

+ ∩ L∞(Ω) ∩ C0,1
loc (Ω) for all t ∈ [0, T ].

Proof. If t = 0, by (ID)ε and recalling that H1
Γ,w(0)(Ω, A0) ⊆ H1

Γ,w(0)(Ω, A
ε
0) we deduce

1

2

∫
Ω
|∇uε(0)|2 dx ≤ 1

2

∫
Ω
|∇hA0,w(0)|2 dx, (4.14)

whence by Lemma 1.1 we infer the uniform bounds

∥uε(0)∥L∞(Ω) + ∥uε(0)∥H1(Ω) ≤ C.

Up to a subsequence, we thus obtain that (4.11) holds true for a function u(0) ∈ H1
Γ,w(0)(Ω)

+ ∩
L∞(Ω), but the convergence in H1(Ω) is just weak at the moment. Since uε(0) vanishes outside
Aε

0, one easily deduces that u(0) ∈ H1
Γ,w(0)(Ω, A0), and so by (4.14) we can characterize it as

u(0) = hA0,w(0). In particular, (ID) and both (CO) and (GS) at time t = 0 hold true, since A0 is
stable by assumption, and (4.11) is true without passing to a subsequence. Moreover, exploiting
(4.14), we infer

lim sup
ε→0

1

2

∫
Ω
|∇uε(0)|2 dx ≤ 1

2

∫
Ω
|∇hA0,w(0)|2 dx,

whence the convergence is actually strong in H1(Ω).
We now focus on the positive times t ∈ (0, T ]. Arguing as in Proposition 3.1, by means of

(GS)ε we deduce:

(i) sup
t∈(0,T ]

∥uε(t)∥L∞(Ω) ≤ M ;

(ii) sup
t∈(0,T ]

∥uε(t)∥H1(Ω) ≤ C;
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(iii) for all Ω′ well contained in Ω, there exists C ′ > 0 such that sup
t∈(0,T ]

∥uε(t)∥C0,1(Ω′) ≤ C ′.

We fix t ∈ (0, T ] and, up to taking a further subsequence εn possibly depending on t, we infer

that (4.12) holds true for a function u(t) ∈ H1
Γ,w(t)(Ω)

+ ∩ L∞(Ω) ∩ C0,1
loc (Ω), except that the

convergence in H1(Ω) is just weak. In particular, (CO) is satisfied. By arguing exactly as in the
proof of (4.5), one can show that

{u(t) > 0} ⊆ A(t),

whence also (4.6) holds true.
In order to prove (GS), we fix v ∈ H1

Γ,w(t)(Ω) and by passing to the limit in (GS)ε we obtain

1

2

∫
Ω
|∇u(t)|2 dx ≤ lim inf

n→+∞

1

2

∫
Ω
|∇uεn(t)|2 dx ≤ 1

2

∫
Ω
|∇v|2 dx+ lim

n→+∞

∫
Ω
κχ{v>0}(1−χAuεn(t)

)dx

=
1

2

∫
Ω
|∇v|2 dx+

∫
Ω
κχ{v>0}(1− σ(t))dx.

Exploiting the inequalities σ(t) ≥ χA(t) ≥ χAu(t)
, by means of Lemma 1.4 we finally deduce (4.13),

(GS), and the fact that the stated convergence of uε(t) to u(t) holds for the whole sequence.
We just need to prove that such convergence is also strong in H1(Ω). To this aim, we exploit

(GS)ε which yields

lim sup
ε→0

1

2

∫
Ω
|∇uε(t)|2 ≤ 1

2

∫
Ω
|∇u(t)|2 dx+ lim sup

ε→0

∫
{u(t)>0}\Auε(t)

κ dx

=
1

2

∫
Ω
|∇u(t)|2 dx+

∫
{u(t)>0}

κ(1− σ(t)) dx

≤ 1

2

∫
Ω
|∇u(t)|2 dx+

∫
{u(t)>0}\Au(t)

κ dx =
1

2

∫
Ω
|∇u(t)|2 dx,

and we conclude. □

4.2. Proof of Proposition 2.10. We conclude the section by proving Proposition 2.10, which
provides a DES of the debonding model. We start by showing that, under uniform global
Lipschitz bounds, it is possible to pass to the limit in the energy inequality (EI)ε, in particular
in the work of the prescribed displacement.

Proposition 4.9. Assume that w ∈ AC([0, T ];W 2,p(Ω)) for some p > d and that it satisfies
minΓw(t) > 0 for a.e. t ∈ [0, T ]. If the following uniform bound holds true

ess supt∈[0,T ] ∥uε(t)∥C0,1(Ω) ≤ C, (4.15)

then the limit function u obtained in Proposition 4.8 satisfies the following properties:

(i) Au(t) ∈ OΓ,ẇ(t) for a.e. t ∈ [0, T ];
(ii) the map

t 7→
∫
Ω
∇hAu(t),ẇ(t) · ∇u(t) dx

belongs to L1(0, T );
(iii) the inequality

1

2

∫
Ω
|∇u(t)|2dx+

∫
Au(t)\A0

κ dx ≤ 1

2

∫
Ω
|∇u(0)|2dx+

∫ t

0

∫
Ω
∇hAu(τ),ẇ(τ) · ∇u(τ) dx dτ (4.16)

holds true for all t ∈ [0, T ].
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Proof. Passing to the limit (EI)ε and recalling that σ(t) ≥ χAu(t), for all t ∈ [0, T ] we know that

1

2

∫
Ω
|∇u(t)|2dx+

∫
Au(t)\A0

κ dx ≤ 1

2

∫
Ω
|∇u(0)|2dx+lim inf

ε→0

∫ t

0

∫
Ω
∇ẇε(τ) ·∇uε(τ) dx dτ. (4.17)

In order to deal with the above liminf, we first observe that (4.15) implies that for a.e. t ∈ [0, T ]
the functions uε(t) uniformly converge in the whole of Ω to u(t), which in particular belongs to
C0,1(Ω). Then, for a.e. t ∈ [0, T ], by using (4.8) we estimate∣∣∣∣∫

Ω
∇ẇε(t) · ∇uε(t) dx

∣∣∣∣ ≤ ∫
Γε

|∇uε(t)| (|Φε||∇ẇ(t)|+|∇Φε||ẇ(t)|) dx

≤ C

∫
Γε

(
|∇ẇ(t)|+ 1

ε
|ẇ(t)|

)
dx

≤ C
(
ε∥∇ẇ(t)∥L∞(Ω)+∥ẇ(t)∥L∞(Ω)

)
≤ C∥ẇ(t)∥W 1,∞(Ω) ≤ C∥ẇ(t)∥W 2,p(Ω),

(4.18)

where in the last inequality we exploited the Sobolev Embedding Theorem. Since

t 7→ ∥ẇ(t)∥W 2,p(Ω) ∈ L1(0, T ),

by means of the Reverse Fatou’s Lemma we infer

lim sup
ε→0

∫ t

0

∫
Ω
∇ẇε(τ) · ∇uε(τ) dx dτ ≤

∫ t

0
lim sup

ε→0

∫
Ω
∇ẇε(τ) · ∇uε(τ) dx dτ ≤ C. (4.19)

We now claim that for a.e. t ∈ [0, T ] there exists εt > 0 such that

{u(t) > δt} ⊆ Auε(t) for all ε ≤ εt, (4.20)

where δt :=
1
2 min

Γ
w(t). Indeed, by choosing εt in such a way that ∥uε(t)− u(t)∥C0(Ω) ≤ δt/2 for

ε ≤ εt, one easily deduces that

uε(t, x) ≥ u(t, x)− δt
2

for all x ∈ Ω and ε ≤ εt,

whence

{u(t) > δt} ⊆
{
u(t) >

δt
2

}
⊆ {uε(t) > 0} ⊆ Auε(t) for all ε ≤ εt.

Since u(t) = w(t) ≥ 2δt on Γ and since u(t) is continuous up to the boundary of Ω, we infer
that {u(t) > δt} contains an open neighborhood of Γ, and so in particular it belongs to OΓ,ẇ(t).
From (4.20) we hence obtain that for a.e. t ∈ (0, T ) the function h{u(t)>δt},ẇ(t) belongs to

H1
Γ,ẇ(t)(Ω, Auε(t)) for ε ≤ εt. Recalling that uε(t) = hAuε(t),w(t), by exploiting (1.1) we finally

deduce

lim
ε→0

∫
Ω
∇ẇε(t) · ∇uε(t) dx = lim

ε→0

∫
Ω
∇h{u(t)>δt},ẇ(t) · ∇uε(t) dx =

∫
Ω
∇h{u(t)>δt},ẇ(t) · ∇u(t) dx.

Observing that {u(t) > δt} ⊆ {u(t) > 0} ⊆ Au(t), for a.e. t ∈ [0, T ] we have Au(t) ∈ OΓ,ẇ(t), and
so we can continue the previous chain of identities obtaining

lim
ε→0

∫
Ω
∇ẇε(t) · ∇uε(t) dx =

∫
Ω
∇hAu(t),ẇ(t) · ∇u(t) dx. (4.21)

Also notice that the last integral above is in L1(0, T ) since it is the pointwise countable limit
of terms bounded in L1(0, T ), see (4.18). Putting together (4.17), (4.19), and (4.21) we finally
conclude. □

We now conclude the proof of Proposition 2.10 showing (EB).
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Proposition 4.10. Under the assumptions of Proposition 4.9, the limit function u obtained in
Proposition 4.8 satisfies (EB).

Proof. We just need to show that u fulfils the opposite inequality of (4.16). First, recall that by
(4.15) we know that u(t) is continuous up to the boundary for a.e. t ∈ Ω, hence by the positivity
of w we get that Au(s) contains a neighbourhood of Γ for all s ∈ (0, T ]. In particular, it is possible
to construct a function ws satisfying (2.10) in [s, T ] with Au(s) in place of A0. Setting

P (t) :=

∫
Ω
∇hAu(t),ẇ(t) · ∇u(t) dx,

by means of Proposition 3.3, we know that

1

2

∫
Ω
|∇u(t)|2dx+

∫
Au(t)\Au(s)

κ dx ≥ 1

2

∫
Ω
|∇u(s)|2dx+

∫ t

s
P (τ) dτ for all 0 < s ≤ t ≤ T.

For all t ∈ (0, T ], recalling that κ = 0 on A0 we thus deduce

1

2

∫
Ω
|∇u(t)|2dx+

∫
Au(t)\A0

κ dx−
∫ t

0
P (τ) dτ

≥ lim sup
s→0

(
1

2

∫
Ω
|∇u(s)|2dx+

∫
Au(s)

κ dx

)
.

(4.22)

By exploiting (GS), we know that u(s) is uniformly bounded in H1(Ω), so there exists a
subsequence u(sn) weakly converging to a function u ∈ H1

Γ,w(0)(Ω)
+ as n → +∞. In particular,

since u(sn) vanishes outside Au(sn), we observe that

u = 0 outside A :=
⋂
n∈N

Au(sn).

Since u(0) is stable we now infer

1

2

∫
Ω
|∇u(0)|2dx ≤ 1

2

∫
Ω
|∇u|2dx+

∫
{u>0}

κ dx ≤ 1

2

∫
Ω
|∇u|2dx+

∫
A
κ dx

≤ lim inf
n→+∞

(
1

2

∫
Ω
|∇u(sn)|2dx+

∫
Au(sn)

κ dx

)

≤ lim sup
s→0

(
1

2

∫
Ω
|∇u(s)|2dx+

∫
Au(s)

κ dx

)
.

Combining the above inequality with (4.22) we conclude. □
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