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1 Introduction

We consider large spin systems with short-range ferromagnetic interactions and long-range antiferromagnetic
interactions subjected to periodic boundary conditions. Such systems are modeled by an energy of the form

EN (σ) :=

Efer
N (σ)︷ ︸︸ ︷

−J
N∑
i=1

σiσi+1 +

Eaf
N (σ)︷ ︸︸ ︷

N∑
i=1

∑
j∈Z,j 6=i

σiσj
|i− j|p

,
(1)

with p > 1 and J > 0, with a ferromagnetic part Efer
N interacting with an antiferromagnetic part Eaf

N ,
depending on a N -periodic spin state σ : Z→ {−1, 1} such that σi+N = σi. It has been shown by Giuliani,
Lebowitz and Lieb [7] that, under suitable conditions on J and p, as the size of the system N diverges,
minimizers of the system tend to alternate groups of 1 and −1 of the same length h? (or, in some exceptional
cases of lengths either h? or h?+1) for some unique h? determined by p and J . Hence, if we let e(h?) denote
the energy per site of this periodic state when N = 2h?, then we have that

minEN = Ne(h?) +O(1), (2)

the remainder being 0 when N is a multiple of h?.
In this paper we give an asymptotic description of the states σ such that EN (σ) − Ne(h?) = O(1), by

computing the Γ-limit of these normalized energies

FN (σ) = EN (σ)−Ne(h?). (3)

To that end, we first prove that if FN (σN ) is equibounded then the domain of σN can be decomposed
into alternate arrays where σN take the value 1 and −1 all of length h? except for a number of indices
equibounded with N . Hence, locally such σN will be a translation of the 2h?-periodic function σ? with
σ?i = −1 if i ∈ {1, . . . , h?} and σ?i = 1 if i ∈ {h? + 1, . . . , 2h?}.

In order to describe the asymptotics of such systems, it is convenient to scale the domain Z by 1
N , so

that each σN is identified as a 1-periodic spin function defined on 1
NZ. Up to considering subsequences, we

can find a finite set of points x1, . . . , xK ∈ (0, 1] and integers r1, . . . , rK+1 ∈ {1, . . . , 2h?} with rk 6= rk+1,
such that, setting xK+1 = x1 + 1, if i

N lies in a compact interval of (xk, xk+1) we have σNi = σ?i+rk . In

this case, we define the limit of σN as the 1-periodic piecewise-constant function r such that r(x) = rk
if x ∈ (xk, xk+1). This description highlights that a finite number of modulated phases obtained as a
translation of the ‘absolute’ ground state σ? can coexists with a bounded extra energy from the minimal
one. The energy transition between two neighbouring modulated phases can actually be computed in terms
of the difference of the corresponding translations so that we may characterize a function φ such that the
energies FN Γ-converge to the functional

F∞(r) =
∑

x∈J(r)∩(0,1]

φ(r(x+)− r(x−)), (4)
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defined on 1-periodic functions r that are piecewise constant on bounded intervals, where J(r) denotes the
set of discontinuity points of r. The function φ(j) is the minimal energy density of a defect of size j (modulo
2h?), and is simply defined as the limit for N → +∞ and N = j modulo 2h? of the renormalized minimal
energies minEN −Ne(h?).

For an analogous variational justification of modulated phases for antiferromagnetic systems with long,
but not infinite, range we refer to [2, Chapter 7]. In analogy with that analysis, for lattice systems in
dimension d higher than one we expect a limit description with 2dh? parameters and a limit partition of
the reference set into sets of finite perimeter; e.g. in dimension 2 we expect a limit description with 4h?

parameters, with 2h? parameters for vertical and 2h? parameters for horizontal stripes. The boundaries
between two sets parameterized by two variants of horizontal (or two variants of vertical) stripes correspond
to the one-dimensional anti-phase boundaries, while boundaries between two sets parameterized by stripes
of different directions correspond to phase boundaries between different textures. We note that energies on
partitions into sets of finite perimeter are much more complex than perimeter functionals since they need to
satisfy BV -ellipticity conditions [3]. We refer to [1] for a direct computation of a partition energy derived
from next-to-nearest neighbour antiferromagnetic interactions. In this perspective, it may be interesting to
extend our study to higher-dimensional versions of [7], such as in [8], or continuum approximations as in
[6], where the number of parameters may reduce to only d, corresponding to the different orientation of
stripes. For a study of one-dimensional systems of nonlinear elastic lattice interactions exhibiting antiphase
boundaries we refer to [4] (see also [5])

2 Preliminaries: properties of ground states

Let p > 1 and J > 0 be fixed. We will consider the Hamiltonian EN in (1) as defined on spin states on some
finite lattice ΛN = Z/NZ, that is on σ ∈ {±1}ΛN . In this case, we may write

EN (σ) :=

Efer
N (σ)︷ ︸︸ ︷

−J
∑
i∈ΛN

σiσi+1 +

Eaf
N (σ)︷ ︸︸ ︷∑

i,j∈ΛN ,i6=j

∑
n∈Z

σiσj
|i− j + nN |p

+
2

Np−1

∞∑
n=1

1

np
.

The last term is the part of the energy deriving from the sum of the interactions of each site i ∈ {1, . . . , N}
with the sites j with j − i ∈ NZ \ {0}, which is independent of i since σiσj = 1 if j − i ∈ NZ independently
of the sign of σi. Since this part is independent of σ it does not influence the minimization of EN ; however,
it is convenient to maintain it for the asymptotic analysis of EN . Indeed, if σ ∈ {±1}ΛN and M ∈ N, then
by definition we have

EMN (σ) = MEN (σ), (5)

where in the first term σ (or more precisely, its N -periodic extension) is considered as an element of {±1}ΛMN .
Note however that the difference between the definitions of the energies with or without the last term vanishes
uniformly as N → +∞.

In this section we gather some results of Giuliani, Lebowitz and Lieb [7] on minimizers for EN .

2.1 Representation in terms of arrays of equal sign

Each spin state σ can be identified, up to a discrete translation τ ∈ Z/NZ, with a minimal array of lengths
of its sets of consecutive equal spins (taking into account periodicity); e.g. if N = 8 and

σ : (1, 2, . . . , 8) 7→ (1, 1,−1,−1, 1,−1,−1, 1)

then σ is equivalent, in terms of the energy, to

σ0 : (1, 2, . . . , 8) 7→ (1, 1, 1,−1,−1, 1,−1,−1),

after a translation of τ (that is, σi = σ0
i+τ ) with τ = 1, and hence is described by four sets of size 3, 2, 1, 2

respectively and by the translation 1. The original subdivision of σ in sets of sizes 2, 2, 1, 2, 1 is made of
five sets (and not four) and hence is not minimal. Since translations do not affect the energy, we can then
rewrite EN as a Hamiltonian on such arrays instead of spins; with an abuse of notation, we write

EN (h) = EN (σ)
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if h = (h1, . . . , hM ) is such that h1 + . . .+hM = N and σ is any spin state with h as the corresponding array
(up to translations). We note that if M > 1, then M is even.

Given h ∈ N we can consider the configuration with an array of 1s of length h one of −1s of equal length
with energy E2h(h, h). We define the h-periodic energy per site as

e(h) :=
E2h(h, h)

2h
(6)

If we consider the (periodic) configuration with arrays of 1s and −1s of equal length h for all even M the
energy EMh(h . . . , h) is proportional to M by (5), so that

e(h) =
EMh(h, . . . , h)

Mh
(7)

for all (even) M .
The following lemma describes the optimal h for the h-periodic energy per site. If p > 2 we set

Jp :=
1

Γ(p)

∫ +∞

0

αp−1e−α

(1− e−α)2
dα (8)

Lemma 2.1. If 1 < p ≤ 2 and J is arbitrary or if p > 2 and J < Jp, then e attains its minimum on N at
most two different points h?, h? + 1. If p > 2 and J > Jp then e is always decreasing.

2.2 Asymptotic description of ground states

The following theorem describes the behaviour of ground states for parameters for which e has a unique
minimizer. A slightly more complex statement holds when e has two minimizers.

Theorem 2.2 (Ground state energy asymptotics, energy gap and ground states). Let p > 1 and J > 0 be
fixed with either 1 < p ≤ 2 and J is arbitrary or p > 2 and J < Jp, and assume that e in (6) has a unique
minimizer h?. Let

E?N = min{EN (σ) : σ ∈ {±1}ΛN }

be the ground state energy on ΛN . Then the following statements hold.

(a) (General lower bound) There exists a constant c such that

EN (σ) ≥
∑
µ

hµe(hµ)− cN−p

for every N and for every state σ with corresponding array {hµ}.
(b) (Asymptotics)

lim
N→∞

E?N
N

= e(h?).

(c) (Ground states are piecewise periodic) There exists a K0 > 0 such that for a ground state σ ≡ h∑
hµ 6=h?

hµ ≤ K0.

(d) (Energy gap) If N is a multiple of 2h? then the unique ground state σ has h? as the corresponding
array, and for every other state

EN (σ)− E?N = EN (σ)−Ne(h?) > ∆, (9)

for a ∆ > 0 independent of N .
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3 Behaviour of renormalized energies

In this section we consider the regimes when e has only one minimizer as in Theorem 2.2.
We define the renormalized functionals

FN (σ) = EN (σ)−Ne(h?) (10)

for σ ∈ ΛN . By Theorem 2.2(d) FN is non-negative, and strictly positive if N is not a multiple of 2h?.
A sequence (σN )N with σN ∈ ΛN is equibounded in energy if FN (σN ) ≤ C for a constant C independent

of N . Theorem 2.2(c) guarantees that for every such sequence there exists K0 such that∑
hNµ 6=h?

hNµ ≤ K0, (11)

and in particular that only a finite number of hNµ , uniformly bounded in N , can be different from h?.
If N is a multiple of 2h?, then FN is always nonnegative and is actually zero only when all blocks have

length h?. We now show that if N is not a multiple of 2h? then FN is strictly positive, uniformly in N .

Lemma 3.1. If σ is not equal to a state corresponding to (h?, . . . , h?) then

FN (σ) ≥ ∆̃

with ∆̃ = ∆/2h? and ∆ provided in Theorem 2.2(d). In particular, if N is not a multiple of 2h? this lower
bound is satisfied by all σ.

Proof. Let σ ∈ {±1}ΛN , which we extend by periodicity so as to regard it as an element of {±1}Λ2h?N . Then
we have

2h?FN (σ) = 2h?(EN (σ)−Ne(h?))
= E2h?N (σ)− 2h?Ne(h?) ≥ ∆,

(12)

where we have used (5) in the second inequality and Theorem 2.2(d) with 2h?N in the place of N .

In order to describe the behaviour of sequences of states with equibounded energy we identify ΛN with
(0, 1] ∩ 1

NZ by scaling and define a convergence of spin states to piecewise-continuous 1-periodic functions
taking values in a set parameterized by the ground states themselves; that is, Z/2h?Z, or {1, . . . , 2h?}.

Definition 3.2 (convergence of spin states to piecewise-continuous functions). Let σ ∈ {±1}ΛN . In this
section we first parameterize ΛN as {1, . . . , N}. The state σ is then determined by a translation τ ∈ ΛN and
an array (D1, G1, . . . , DS , GS), where Gi is a maximal sequences of consecutive pairs of blocks of length h?

starting with the plus sign, the arrays Di, which we call defects, are arbitrary. For each Gi we let Ri ∈ ΛN
denote its first element. After this decomposition to such σ we can associate a function r̂ : : (0, N ]→ Z/2h?Z
in the following way. If x ∈ (0, N ] and bxc − τ ∈ Gi then r̂(x) is the element in Z/2h?Z corresponding to
Ri mod 2h?. Finally, the function r : T = R/Z → Z/2h?Z is defined by r(x) = r̂(Nx) in (0, 1], identified as
R/Z. Note that r is a piecewise-constant function with at most S discontinuity points in (0, 1].

Let σN ∈ {±1}ΛN be a sequence with equibounded number of defects in the terminology above, and let
rN : T→ Z/2h?Z be the corresponding functions. Then we say that σN converge to r : T = R/Z→ Z/2h?Z
if there are a finite number of points x1, . . . , xS ∈ (0, 1] such that rN (x) = r(x) definitely on any compact
interval of (xk−1, xk) and we have set x0 = xS − 1. Note that this convergence is compact by the Bolzano–
Weierstrass Theorem and it can be seen as an Lp(0, 1)-convergence for any finite p > 1 if we identify Z/2h?Z
with {1, . . . , 2h?}. Note moreover that xk may not be a discontinuity point for r because we may have
Rk = Rk−1 in the notation above.

We now prove the key technical lemma stating that, in a configuration which is almost periodic in the
sense that it is composed of all arrays of a common length h except for a finite number of defects, the
interaction between distant defects is negligible. The lemma holds for any period h, but we will apply it
only in the case of period h?.
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Lemma 3.3 (Decoupling of defects). Let D0 be fixed. For any N let σ ∈ {±1}ΛN be a state with S defects
alternated with h-periodic parts, say

σ ∼ (D1, P 1, . . . , DS , PS),

where P i = (

Mi times︷ ︸︸ ︷
h, . . . , h), with Mi even, we also suppose with no loss of generality that all periodic parts begin

with the same sign.
We define M =

∑
iMi, D =

∑
iDi, where Di is the total length of the defect Di. Thus, for the total

number of sites N we have N = Mh+D. We suppose that D ≤ D0; apart from this restriction the Di are
arbitrary.

We consider a state σ′ obtained by removing a defect and substituting it by a h-periodic part:

σ′ ∼ (D1, P 1, . . . , DS−1, P
′
S−1),

with P ′S−1 containing M ′S−1 = MS−1 +MS + 2bDS/2hc h-blocks. Note that the total number of sites in σ′

is N ′ = (M + 2bDS/2hc)h+D −DS.
Then there exists a constant C depending only on D0 and not on N , such that the energy difference

between σ, σ′ can be estimated as∣∣EN (σ)− EN ′(σ′)−
(
ENS (δS)− EM ′′Sh(h, . . . , h)

)∣∣ ≤ C min
i
{Mi}1−p, (13)

where
δS ∼ (DS , P

′
S)

is a state where only the defect DS is present and the period part P ′S contains M ′S = M + 2b(D −DS)/2hc
h-blocks; thus δS has NS = M ′Sh+DS sites in total. The last energy is the energy of a completely periodic
state with M ′′S = M + 2bDS/2hc + 2b(D − DS)/2hc h-periodic blocks; that by definition is also equal to
M ′′She(h).

Proof. We note that the ferromagnetic parts of the left-hand side and of the right-hand side of (13) concide,
so that we only have to check the equality for the antiferroagnetic parts.

We first focus on the antiferromagnetic part of the left-hand side. If µ, ν are any two distinct blocks of
the state σ, we denote by dµ,ν = hµ+1 + · · ·+ hν−1, dν,µ = 2N − dµ,ν − hµ − hν = hν+1 + · · ·+ hµ−1 their
distances along the two orientations of the torus. We denote by Eaf

µ,ν;N (σ) the anti-ferromagnetic energy
among the two blocks of indices µ, ν.

Along the same lines of Giuliani, Lebowitz and Lieb [7] it is possible to obtain a closed form expression
for Eaf

µ,ν;N (σ) by using the equality

Γ(p)

xp
=

∫ +∞

0

αp−1e−αxdα, (14)

where Γ is the Euler Gamma function, for each antiferromagnetic interaction term and using multiple
geometric sums:

Eaf
µ,ν;N (σ) := (−1)µ+ν

∑
1≤i≤hµ
1≤j≤hν

∑
n∈Z

1

|j + i+ dµ,ν − 1 + nN |p

= (−1)µ+ν

∫ +∞

0

αp−1
∑

1≤i≤hµ
1≤j≤hν

∑
n≥0

(
e−α(j+i+dµ,ν−1+nN) + e−α(j+i+dν,µ−1+nN)

) dα

Γ(p)

= (−1)µ+ν

∫ +∞

0

αp−1

( ∑
1≤i≤hµ
1≤j≤hν

e−α(j+i)

)
e−α(dµ,ν−1) + e−α(dν,µ−1)

1− e−αN
dα

Γ(p)

= (−1)µ+ν

∫ +∞

0

e−ααp−1

(1− e−α)2

(1− e−αhν )(1− e−αhµ)
(
e−αdµ,ν + e−αdν,µ

)
1− e−αN

dα

Γ(p)
.

(15)

Analogous expressions hold for σ′ with N ′ in place of N and the correct block lengths and inter-block
distances (which we will denote with a prime), as well as for δS and the completely periodic state. Thus,
the expressions for Eaf

µ,ν;N (σ) and Eaf
µ,ν;N ′(σ

′) is the same except for

e−αdµ,ν + e−αdν,µ

1− e−αN

5



which becomes
e−αdµ,ν + e−αd

′
ν,µ

1− e−αN ′
,

since one of the block lengths dµ,ν , dν,µ must stay the same both in σ and in σ′, without loss of generality
we suppose dµ,ν = d′µ,ν . We also remark that σ and σ′ have the same block length except possibly for those
blocks in DS and the corresponding h-blocks that subistitute them in σ′. Similarly, σ and δS have the same
block lengths except for the blocks of D1, . . . , DS−1 and the h-blocks that substitute them in δS .

This last remark is helpful in view of the fact that equation (13) can be written as

EN (σ)− ENS (δS) = EN ′(σ
′)− EM ′′Sh(h, . . . , h) + O(min{MS ,MS−1,M −MS−1 −MS}1−p), (16)

and indeed we will compare some terms in EN (σ) with the corresponding terms in EN ′(σ
′), and some others

with the corresponding terms in ENS (δS).
In any case, we can sum geometrically over blocks in a periodic part P i: for a fixed block ν outside P i∑

µ∈P i

(−1)µ+ν

∫ +∞

0

e−ααp−1

(1− e−α)2

(1− e−αhν )(1− e−αh)

1− e−αN
e−αdµ,ν

dα

Γ(p)

=

Mi−1∑
i=0

(−1)i+ν
∫ +∞

0

e−ααp−1

(1− e−α)2

(1− e−αhν )(1− e−αh)

1− e−αN
e−α(d(i)ν+ih) dα

Γ(p)

= (−1)ν
∫ +∞

0

e−ααp−1

(1− e−α)2

(1− e−αhν )(1− e−αh)

1− e−αN
1− e−αMih

1 + e−αh
e−αd(i)ν

dα

Γ(p)
,

(17)

where d(i)ν = minµ∈P i{dµ,ν}; analogous expressions hold mutatis mutandis for the other three states. Then,
we can sum over blocks belonging to some other P j , with j 6= i:

∑
µ∈P i,ν∈P j

Eaf
µ,ν;N (σ) =

∫ +∞

0

e−ααp−1

(1− e−α)2

(1− e−αh)2(e−αd(i,j) + e−αd(j,i))

1− e−αN
1− e−αMih

1 + e−αh
1− e−αMjh

1 + e−αh
dα

Γ(p)
,

(18)

where d(i, j) = minµ∈P i,ν∈P j{dµ,ν}. A corresponding expression holds for σ′.

In order to estimate the differences Eaf
µ,ν(σ)− Eaf

µ,ν(σ′) we note that, since N > N ′, we have∣∣∣∣ 1

1− e−αN
− 1

1− e−αN ′

∣∣∣∣ =

∣∣∣∣ e−αN − e−αN
′

(1− e−αN )(1− e−αN ′)

∣∣∣∣
= e−αN

′ 1− e−α(N−N ′)

(1− e−αN )(1− e−αN ′)

≤ e−αN
′

1− e−αN ′
,

(19)

with analogous estimates holding for the other couples of states. Then, for i 6= j, if i and j are not exactly
S − 1, S and S ≥ 3, we estimate∣∣∣∣ ∑
µ∈P i,ν∈P j

Eaf
µ,ν;N (σ)− Eaf

µ,ν;N ′(σ
′)

∣∣∣∣
≤
∣∣∣∣ ∫ +∞

0

e−ααp−1

(1− e−α)2

(1− e−αh)2(e−α(N ′+d(i,j)) + e−α(N ′+d(j,i)) + e−αd(j,i) − e−αd
′(j,i))

1− e−αN ′

· 1− e−αMih

1 + e−αh
1− e−αMjh

1 + e−αh
dα

Γ(p)

∣∣∣∣
≤ h2

∫ +∞

0

e−ααp−1(e−α(N ′+d(i,j)) + e−α(N ′+d(j,i)) + e−αd(j,i) + e−αd
′(j,i))

dα

Γ(p)
,

(20)

and conclude noting that in this case d(j, i), d′(j, i) ≥ min{MS ,MS−1}h. Analogously one estimates the
corresponding differences in the contributions of δS and the totally periodic state.
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If i, j are S − 1, S we compare instead∣∣∣∣ ∑
µ∈PS−1,ν∈PS

Eaf
µ,ν;N (σ)− Eaf

µ,ν;NS (δS)

∣∣∣∣
≤
∣∣∣∣ ∫ +∞

0

e−ααp−1

(1− e−α)2

(1− e−αh)2(e−α(NS+d(S−1,S)) + e−α(NS+d(S,S−1)) + e−αd(S,S−1) − e−αdS(S,S−1))

1− e−αNS

· 1− e−αMih

1 + e−αh
1− e−αMjh

1 + e−αh
dα

Γ(p)

∣∣∣∣
≤ h2

∫ +∞

0

e−ααp−1(e−α(N ′+d(S−1,S)) + e−α(NS+d(S,S−1)) + e−αd(S,S−1) + e−αdS(S,S−1))
dα

Γ(p)
,

(21)

since for σ and δS is the distance d(S − 1, S) which is the same for the two of them, and also in this
case we conclude. If S = 2 the reasoning is very similar, the only difference being that one must split∑
µ∈PS−1,ν∈PS ,µ 6=ν

into contributions with d(2, 1) and those with d(1, 2), the former must be compared with

corresponding contributions in σ′ (which in this case could be called δ1), the latter with δ2.
In the end we are left with contribution relative a µ, ν belonging to the same periodic part: as for

contributions where one block belongs to a defect or to an h-block substituting it we estimate them by (17)
and by comparison between couple of states where the block in question is the same.

For µ, ν ∈ P i, ν 6= µ we obtain a formula a little different than before:∑
µ,ν∈P i,µ6=ν

Eaf
µ,ν;N (σ)

=

Mi−1∑
i=0

Mi−1∑
j=i+1

(−1)i+j
∫ +∞

0

e−ααp−1

(1− e−α)2

(1− e−αh)2e−α(j−1)h

1− e−αN
(1 + e−α(N−Mih)))

dα

Γ(p)

= −
Mi−1∑
i=0

∫ +∞

0

e−ααp−1

(1− e−α)2

(1− e−αh)2

1− e−αN
e−αih

1− (−1)Mi−ie−α(Mi−i)h

1 + e−αh
(1 + e−α(N−Mih)))

dα

Γ(p)

= −
Mi−1∑
i=0

∫ +∞

0

e−ααp−1

(1− e−α)2

(1− e−αh)2

1− e−αN
e−αih

1 + e−αh
(1 + e−α(N−Mih)))

dα

Γ(p)

= −
∫ +∞

0

e−ααp−1

(1− e−α)2

(1− e−αh)2

1− e−αN
1− e−αMih

(1 + e−αh)(1− e−αh)
(1 + e−α(N−Mih)))

dα

Γ(p)
.

(22)

We can then estimate∣∣∣∣ ∑
µ,ν∈P i,µ 6=ν

Eaf
µ,ν;N (σ)− Eaf

µ,ν;N ′(σ
′)

∣∣∣∣
≤Mih

2

∫ +∞

0

e−ααp−1

∣∣∣∣1 + e−α(N−Mih)

1− e−αN
− 1 + e−α(N ′−Mih)

1− e−αN ′

∣∣∣∣ dα

Γ(p)
,

(23)

and conclude by observing that∫ +∞

0

e−ααp−1

∣∣∣∣e−α(N−Mih)

1− e−αN
− e−α(N ′−Mih)

1− e−αN ′

∣∣∣∣ dα

Γ(p)

=

∫ +∞

0

e−ααp−1

(
e−α(N ′−Mih)

1− e−αN ′
− e−α(N−Mih)

1− e−αN

)
dα

Γ(p)

≤
∫ +∞

0

e−ααp−1e−α(N ′−Mih)

(
1

1− e−αN ′
− 1

1− e−αN

)
dα

Γ(p)

≤
∫ +∞

0

e−ααp−1

(
1

1− e−αN ′
− 1

1− e−αN

)
dα

Γ(p)

(24)
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and that ∫ +∞

0

e−ααp−1e−α(N−N ′)
∣∣∣ 1

1− e−αN
− 1

1− e−αN ′

∣∣∣ dα

Γ(p)

≤
∫ +∞

0

e−ααp−1 e−αN
′

1− e−αN ′
dα

Γ(p)

= (N ′)−p
1

Γ(p)

∫ +∞

0

e−t/N
′
tp−1 e−t

1− e−t
dt,

(25)

since both integrals in t tend to convergent integrals: in (24) to

∫ +∞

0

e−t

1− e−t
tp−1dt while in (25) to∫ +∞

0

e−t

1− e−t
tp−1dt.

We are now left with the very last case: µ = ν.

Eaf
µ,µ;N (σ) =

=:Ẽaf (h)︷ ︸︸ ︷∑
1≤k<hµ

h− k
kp

+
∑
n>0

1≤i,j≤h

1

(j + i− 1− h+ nN)p

= Ẽaf(h) +

∫ +∞

0

e−ααp−1

(1− e−α)2

(1− e−αh)2

1− e−αN
e−α(N−h) dα

Γ(p)
.

(26)

The first summand also admits an integral representation, but this is irrelevant to this lemma since it only
matters that it is independent of N . The second summand can instead be treated by reasoning as before,
thus getting ∣∣Eaf

µ,µ;N (σ)− Eaf
µ,µ;N ′(σ

′)
∣∣ ≤ CN−p. (27)

Summing over all µ we get a factor O(N), and thus the final estimate is O(N1−p).

Remark 3.4. Applying Lemma 3.3 iteratively S − 1 times to defects DS , DS−1, . . . , D2, in order to decouple
all of them, one gets

EN (σ) =

S∑
i=1

ENi(δi)−
S∑
i=2

EM ′′i h(h, . . . , h) + O(min
i
Mi)

1−p (28)

where

Ni = Mh+ 2h

S∑
j=i+1

bDj/2hc+Di + 2h

⌊ i−1∑
j=1

Dj/2h

⌋
,

M ′′i = Mh+ 2h

S∑
j=i

bDj/2hc+ 2h

⌊ i−1∑
j=1

Dj/2h

⌋
.

(29)

If now we specialize to the case of h = h?, subtracting Ne(h?) to both sides we get

FN (σ) =

S∑
i=1

FNi(δi) + O(min
i
Mi)

1−p.

Indeed, for i = 2, . . . , S

ENi(δi)− EM ′′i h(h, . . . , h) = ENi(δi)−M ′′i e(h)

= ENi(δi)−M ′′i e(h?)±Nie(h?)
= FNi(δi) +

(
Di − 2h?bDi/2hc

)
e(h?),

(30)

EN1(δi) = FN1(δi) +N1e(h
?)

= FN1
(δi) +

(
Mh? + 2h?

∑
j≥2

bDj/2h
?c+D1

)
e(h?). (31)
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Thus, recalling that N = Mh? +D = Mh? +
∑
iDi, the sum of (30) and (31) is exactly

S∑
i=1

FNi(δi) +Ne(h?). (32)

Lemma 3.5 (Localization). Given an array D of length D, let δ be a state of the form (D,P ) with P made
of M h-blocks and let δ′ be a state of the form (D,P ′) with the same D but P ′ made of M ′ > M h-blocks.
Then, ∣∣EN (δ)− EN ′(δ′)−

(
EMh(h, . . . , h)− EM ′h(h, . . . , h)

)∣∣ ≤ CM−pM ′, (33)

where N = Mh + D, N ′ = M ′h + D and the constant C is independent of N . Specializing to h = h? and
adding and subtracting De(h?) the previous equation becomes∣∣FN (δ)− FN ′(δ′)

∣∣ ≤ CM−pM ′. (34)

Proof. As in the previous lemma, both sides have the same ferromagnetic energy. As for the antiferromagnetic
energy, recalling (22), we can estimate∣∣∣∣ ∑

µ,ν∈P,µ6=ν

Eaf
µ,ν;N (δ)−

∑
µ,ν∈P ′,µ6=ν

Eaf
µ,ν;N ′(δ

′)

∣∣∣∣
≤ h2

∫ +∞

0

e−ααp−1
∣∣∣1− e−αMh

1− e−αh
1 + e−αD

1− e−α(D+Mh)
− 1− e−αM

′h

1− e−αh
1 + e−αD

1− e−α(D+M ′h)

∣∣∣ dα

Γ(p)

≤ 2h2

∫ +∞

0

e−ααp−1
∣∣∣e−αM ′h − e−αMh + e−α(D+Mh) − e−α(D+M ′h)

(1− e−αh)(1− e−α(D+Mh))(1− e−α(D+M ′h))

∣∣∣ dα

Γ(p)

= 2h2

∫ +∞

0

e−ααp−1
∣∣∣ (e−αM

′h − e−αMh)(1− e−αD)

(1− e−αh)(1− e−α(D+Mh))(1− e−α(D+M ′h))

∣∣∣ dα

Γ(p)

≤ 2Dh2

∫ +∞

0

e−ααp−1 e−αMh − e−αM
′h

(1− e−α(D+Mh))(1− e−α(D+M ′h))

dα

Γ(p)

= 2Dh2

∫ +∞

0

e−ααp−1e−αMh 1− e−α(M ′−M)h

(1− e−α(D+Mh))(1− e−α(D+M ′h))

dα

Γ(p)

≤ 2Dh2

∫ +∞

0

e−ααp−1 e−αMh

1− e−α(D+Mh)

dα

Γ(p)

= 2Dh2M−p
∫ +∞

0

e−t/M tp−1 e−th

1− e−t(D+Mh)/M

dt

Γ(p)

≤ cM−p.

(35)

When µ = ν we recall Equation (26) and then we proceed as above. The right-hand side is treated analo-
gously.

We now introduce a function φ which has the meaning of a minimal interaction energy between two
ground states with a relative translation of j. It will appear as an energy density for the Γ-limit.

Definition 3.6 (anti-phase energy density). For any j ∈ {1, . . . , 2h?}, which we identify also with Z/2h?Z,
we define

φ(j) = lim
N→+∞

N≡jmod. 2h?

(E?N −Ne(h?)),

which exists thanks to Remark 3.7.

Remark 3.7. (i) The limit the definition of φ exists. To check this, let σK be a minimizer for E2Kh?+j . We
note that, by Theorem 2.2(c), σK is equivalent to an array of the form

(D1, P 1 . . . , DS , PS),
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with P i arrays composed of an even number MK of h?-blocks, while the Di can be anything and both S
and the their total length D are equibounded in K. With fixed K, let K ′ > K and let

σ ∼ (D1, P 1 . . . , DS , P
′
S)

be the test state for E2K′h?+j constructed by adding h?-blocks to PS till the desired length. We can apply
Lemma 3.5 to σ and σK considering δ := (D1, P 1 . . . , DS), obtaining

minF2K′h?+j ≤ F2K′h?+j(σ) ≤ minF2Kh?+j + o(1)

as K ′ → +∞ and K → +∞. It then suffices to take the limsup as K ′ → +∞ first, and then the liminf as
K → +∞.

(ii) We have φ(0) = 0 and φ(j) > 0 if j 6≡ 0 modulo 2h?. This is again a consequence of Theorem 2.2(c).
(iii) The function φ is subadditive; that is, φ(j + k) ≤ φ(j) + φ(k) for all j, k. To check this, for all K

let σjK and σkK be minimizers for E2Kh?+j and E2Kh?+k, respectively. Then, we can construct a test state

σ = σK,K′ ∼ (σjK , P , σ
k
K , P ) for E4(K+K′)h?+j+k by inserting two equal sequences P of 2K ′ h?-blocks. By

Lemma 3.3, we then have

φ(j + k) ≤ lim inf
K′→+∞

F4(K+K′)h?+j+k(σK,K′)

≤ lim inf
M→+∞

(F2Mh?+j(σ
j
K , P

′) + F2Mh?+k(σkK , P
′′))

= φ(j) + φ(k) + oK(1),

where, with a small abuse of notation, we denoted by σjK , P
′ a state obtained by adding to σjK the correct

number of h?-block required by the lemma, and analogously for σkK . The last equality follows by (i).

Theorem 3.8. Let j ∈ {1, . . . , 2h?}; then there exists the Γ-limit

Γ- lim
N→+∞

N≡jmod. 2h?

FN = F j∞,

where F j∞ is defined on piecewise-constant functions r : T→ Z/2h?Z by

F j∞(r) =


∑

x∈J(r)

φ(∆r(x)
)

if
∑

x∈J(r)

∆r(x) ≡ j modulo 2h?

+∞ otherwise,

J(r) is the set of discontinuity points of r and ∆r(x) = r(x+)− r(x−) is the jump size at x.

Proof. Let j ∈ {1, . . . , 2h?} be fixed, and consider N ≡ j modulo 2h?. Given (σN )N equibounded and
converging to some r, we can write, up to possibly passing to a subsequence in order to have S independent
of N ,

σN = (D1;N , H1;N , . . . , DS;N , HS;N ),

with the total length DN of the defects uniformly bounded, say by D0, while the total length of Hi;N , say
Mi;Nh

?, goes to infinity for every i (note indeed that if some Mi;N stays bounded we can simply include it
into an adjacent defect). Since Mi;N are taken even, we have that DN ≡ j modulo 2h?, which implies that∑

x∈J(r)

∆r(x) ≡ j modulo 2h?. (36)

Using the notation of Lemma 3.3, by Remark 3.4, we have

FN (σN ) ≥
S∑
i=1

FNi(Di, H
′
i;N ) + O(min

i
Mi;N )1−p.

We can suppose, up to subsequences, that the length of Di,N is converging to some ji modulo 2h?, and,

using (Di,N , H
′
i;N ) as a test state for E?Ni we have

lim inf
N→+∞

FN (σN ) ≥
S∑
i=1

φ(ji).
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The desired lower bound now follows by the subadditivity of φ, noting that, by the hypothesis of convergence
to r, for all x ∈ J(r) we have that the sum of all ji corresponding to x is equal to ∆r(x) modulo 2h?.

To prove the upper bound for the Γ-limit, we consider r : T → Z/2h?Z, with a finite number S of
discontinuities, say at points x1, . . . , xS and of jump size ∆r(xk), k ∈ {1, . . . , S}, and satisfying (36). We fix
η > 0 and for each k we take a state σk and Nk ≡ ∆r(xk) modulo 2h? such that

FNk(σk) = ENk(σk)−Nke(h?) ≤ φ(∆r(xi)) + η

In the notation above, we identify σk with a defect Dk, and for N ≡ j modulo 2h? we can construct σN
equivalent to (D1, HN,1, . . . , DS , HN,S) and such that σN converges to r, with each HN,k equal to an even
number of 2h?. This is possible thanks to condition (36). Note that we can assume that the length of each
HN,k tends to +∞, so that again by Remark 3.4 we have

lim sup
N→+∞

FN (σN ) ≤
S∑
k=1

lim sup
N→+∞

FN ′k(Dk, HN,k) ≤
S∑
k=1

φ(∆r(xi)) + Sη

of length equivalent to ∆r(xk) modulo 2h?. By the arbitrariness of η > 0 this concludes the proof.
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