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Abstract. We discuss a model for phase transitions in which a double-well potential is singularly
perturbed by possibly several terms involving different, arbitrarily high orders of derivation. We
study by Γ-convergence the asymptotic behaviour as ε → 0 of the functionals

Fε(u) :=

∫
Ω

[1
ε
W (u) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)u|2ℓ

]
dx, u ∈ Hk(Ω),

for fixed k > 1 integer, addressing also to the case in which the coefficients q1, ..., qk−1 are negative
and | · |ℓ is any norm on the space of symmetric ℓ-tensors for each ℓ ∈ {1, ..., k}. The negativity of
the coefficients leads to the lack of a priori bounds on the functionals; such issue is overcome by
proving a nonlinear interpolation inequality. With this inequality at our disposal, a compactness
result is achieved by resorting to the recent paper [10]. A further difficulty is the presence of
general tensor norms which carry anisotropies, making standard slicing arguments not suitable.
We prove that the Γ-limit is finite only on sharp interfaces and that it equals an anisotropic
perimeter, with a surface energy density described by a cell formula.
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1. Introduction

In the recent paper [10], it is studied a model for phase transitions in which a double-well
potential is perturbed by a singular term involving derivatives of high order. In a one-dimensional
setting, this model is described by the family of functionals defined for ε > 0 as

E1
ε (u, I) :=


∫
I

[1
ε
W (u) + ε2k−1|u(k)|2

]
dt if u ∈ Hk(I),

+∞ if u ∈ L2(I) \Hk(I),
(1)

where I is a bounded, open interval, W is a non-negative double-well potential, and k is a fixed
positive integer that can be assumed to be strictly larger than 2, the cases k = 1 and k = 2 being
already studied by Modica and Mortola in [21] (see also [20]) and Fonseca and Mantegazza in [17],
respectively. As customary for phase transition models, the study of the functionals (1) is divided
in two parts: first, compactness properties are investigated as ε tends to 0, here it is proved that a
family of functions having equi-bounded energy has a sharp interface as a cluster point; then, the
asymptotic analysis is performed, in this case, by Γ-convergence. Under some mild assumptions on
the potential W , and, in particular, without requiring any growth condition on W at infinity, it
is proved that (see Theorem 4.1 below for the precise statement) given {uε}ε ⊂ Hk(I) satisfying
supε E

1
ε (uε, I) < +∞, there exists a function u ∈ BV (I; {−1, 1}) such that, upon extracting a

subsequence, uε → u in measure as ε → 0, having set the two wells of W at −1 and 1. Hence, the Γ-
limit as ε → 0 computed with respect to the convergence in measure is finite only on BV (I; {−1, 1})
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and it is proved to be equal to mk#(S(u) ∩ I), where S(u) denotes the set of the discontinuity
points of u and mk is a strictly positive constant determined by the optimal-profile problem

mk := inf
{∫ +∞

−∞

[
W (v) + |v(k)|2

]
dt : v ∈ Hk

loc(R), lim
t→±∞

v(t) = ±1
}
. (2)

Note that such result generalizes the one by Fonseca and Mantegazza for k = 2 to a wider class of
double-well potentials.
The precompactness of a family with equi-bounded energy {uε}ε is obtained by adapting an argu-
ment originally devised by Solci [26] for perturbations giving free-discontinuity functionals, which
relies on local interpolation inequalities on intervals that allow to estimate the L2-norm of an in-
termediate derivative u

(ℓ)
ε , ℓ ∈ {1, ..., k − 1}, in terms of the integral of W (uε), which is related to

the L2-norm of uε − 1 or uε + 1 assuming that W is quadratic close to the bottom of the wells,
and the L2-norm of u(k)

ε . In this way, small transition intervals on which uε ‘passes from a well
to the other’ are detected, with the further condition that, at the endpoints, all the intermediate
derivatives are small. These observations lead to considering the minimum problem

mk(η, T ) := inf
{∫ T

−T

[
W (v) + |v(k)|2

]
dt : v ∈ Hk((−T, T )),

|v(−T ) + 1| < η, |v(T )− 1| < η, |v(ℓ)(±T )| < η for all ℓ ∈ {1, ..., k − 1}
}

that, once optimized in η and T , yields (2). Since, in turn, (2) is proved to be strictly positive, the
equi-boundedness of the energy implies that the number of the aforementioned intervals on which
a transition occurs is equi-bounded as well, and this property, in broad terms, yields compactness.
Having proved that for every ε each transition interval increases the energy E1

ε by the fixed amount
mk, which is independent of ε, the computation of the Γ-limit follows by standard arguments.

The general d-dimensional case deals with the functionals

Eε(u,Ω) :=


∫
Ω

[1
ε
W (u) + ε2k−1∥∇(k)u∥2k

]
dx if u ∈ Hk(Ω),

+∞ if u ∈ L2(Ω) \Hk(Ω),
(3)

where Ω is a bounded, open subset of Rd with Lipschitz boundary, W and k are as above, and ∥ ·∥k
is the operatorial norm of a symmetric k-tensor defined as

∥T∥k := | sup{T ( ξ, ..., ξ︸ ︷︷ ︸
k times

) : |ξ| = 1}|. (4)

In [10], the study of functionals (3) is confined to the computation of the Γ-limit, and it is remarked
that the compactness theorem holds true assuming suitable growth conditions at infinity on W . The
choice of the operatorial norm makes the asymptotic analysis of such functionals a one-dimensional
task since slicing arguments are well suited in this case. Indeed, (4) and the slicing properties of
Sobolev functions imply that

∥∇(k)v(x)∥k ≥
∣∣∣dkvξ,y

dtk
(t)

∣∣∣, for Ld-a.e. x ∈ Ω, (5)

where ξ is a unit vector, y ∈ {z ∈ Rd : z · ξ = 0}, and we set x = y + tξ and vξ,y(t) := v(y + tξ).
Employing the blow-up argument of Fonseca and Müller [18] together with (5) and applying the
Γ-limit result previously obtained in dimension 1, it is proved that the Γ-liminf is estimated by

mkP ({u = 1}; Ω), (6)

where P ({u = 1}; Ω) is the perimeter of the set {u = 1} in the domain Ω, representing the measure
of the interface in higher dimension. Finally, the construction of a recovery sequence, that by
density can be confined to the case of a smooth interface ∂{u = 1} ∩ Ω = ∂E ∩ Ω for some E
smooth, open set, is obtained by composing the signed distance function from ∂E with an (almost)
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optimal-profile for the one-dimensional problem (2) suitably dilated at scale ε. In this way, the
energy of such sequence can be computed by slicing in direction of the normal field to ∂E ∩Ω and,
since for every ε each slice increases the energy by the fixed amount mk, (6) is proved to be the
Γ-limit.

In this paper, we study a more general family of functionals in which possibly several singular
perturbations, and accordingly several order of derivatives, are involved with no restrictions on
the tensor norms. We study the asymptotic behaviour, as the positive parameter ε tends to 0, of
functionals defined as

Fε(u,Ω) :=


∫
Ω

[1
ε
W (u) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)u|2ℓ

]
dx if u ∈ Hk(Ω),

+∞ if u ∈ L2(Ω) \Hk(Ω),

(7)

where Ω is a bounded, open subset of Rd with C1 boundary, W is a non-negative double-well
potential, k is a fixed positive integer larger than 1, the coefficients q1, ..., qk−1 are real constants,
possibly negative, qk = 1, and | · |ℓ is a norm on the space of symmetric ℓ-tensors for every
ℓ ∈ {1, ..., k}. More specifically, we suppose that W : R → [0,+∞) is a continuous function
satisfying the following assumptions:

(H1) W (s) = 0 if and only if s ∈ {−1, 1};
(H2) W (s) ≥ min{(s+ 1)2, (s− 1)2} for every s ∈ R;
(H3) W (s) ≤ W (t) + 1 for every t ∈ R and for every s ∈ R with |s| ≤ |t|.

We remark that, with some minor adaptations in the computations, we could also assume more in
general that, for some positive constants α, β, the following conditions hold:

(H2’) W (s) ≥ αmin{(s+ 1)2, (s− 1)2} for every s ∈ R;
(H3’) W (s) ≤ βW (t) + β for every t ∈ R and for every s ∈ R with |s| ≤ |t|,

having our main results still holding unchanged.
One of the difficulties in dealing with general tensor norms is the arising of possible anisotropies,

which make slicing techniques inadequate. For this reason, we rely on arguments that are not based
on a one-dimensional analysis. But the main issue of our study concerns the presence of negative
terms in the energy. To overcome this difficulty we combine the approaches of Chermisi, Dal Maso,
Fonseca and Leoni in [11], and of Cicalese, Spadaro and Zeppieri in [12], in which, independently,
it is treated the case k = 2: in particular, in the first work, the analysis is performed also in
higher dimension (with the operatorial norms), while the latter gives a detailed description of the
one dimensional case. Our first step is proving a global interpolation inequality at scale ε that
establishes bounds on the square of the L2 norm of ∇(ℓ)u in terms of

∫
Ω
W (u) dx and the square of

the L2 norm of ∇(k)u. This inequality also determines lower bounds for the constants q1, ..., qk−1

for which our asymptotic analysis can be carried out.

Theorem 1.1. Let Ω ⊂ Rd be a bounded, open set with C1 boundary, let k > 1 be an integer, and
assume that (H2) is satisfied. Then, for every ℓ ∈ {1, ..., k − 1}, there exists a positive constant q∗ℓ
independent of Ω such that for every q < q∗ℓ there exists ε0 = ε0(q,Ω) such that it holds

qε2ℓ
∫
Ω

∥∇(ℓ)u∥2ℓ dx ≤
∫
Ω

[
W (u) + ε2k∥∇(k)u∥2k

]
dx (8)

for every ε ∈ (0, ε0) and u ∈ Hk(Ω). Moreover, for every ℓ ∈ {1, ..., k − 1}, there exists a positive
constant q̃∗ℓ independent of Ω such that for every q < q̃∗ℓ there exists ε0 = ε0(q,Ω) such that it holds

qε2ℓ
∫
Ω

|∇(ℓ)u|2ℓ dx ≤
∫
Ω

[
W (u) + ε2k|∇(k)u|2k

]
dx (9)

for every ε ∈ (0, ε0) and u ∈ Hk(Ω). In particular, q̃∗ℓ depends on q∗ℓ , | · |ℓ, and | · |k.
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The above interpolation inequality is proved by, first, adapting the argument in [12], which yields
the result in the case d = 1, and then by applying the slicing method as in [11] to recover the general
case. We remark that assumption (H2), despite not being fully satisfactory in describing the model
as it prescribes the growth rate at infinity of the double-well potential, is needed to apply classical,
global L2-interpolation estimates. Indeed, the presence of negative terms in the energy seems to
prevent the use of the local arguments applied in [10], as it is not evident to us how to estimate
the energy when far from the bottom of the wells.

Having at disposal such interpolation estimate allows us to find a priori bounds on the functionals
(7), provided the coefficients q1, ..., qk−1 are not too small, and this is the key ingredient to get the
main compactness result.

Theorem 1.2. Let Ω ⊂ Rd be a bounded, open set with C1 boundary, let {Fε}ε be defined as in
(7) with k > 1 an integer, let N := {ℓ ∈ {1, ..., k−1} : qℓ ≤ 0}, and let {εn}n be a positive sequence
converging to 0. Assume that (H1) and (H2) are satisfied and that one of the following holds:

(i) N = ∅;
(ii) N ̸= ∅ and qℓ > −qℓ for every ℓ ∈ N for suitable positive constants {qℓ : ℓ ∈ N}.

If {un}n ⊂ Hk(Ω) is a sequence such that

sup
n

Fεn(un,Ω) < +∞,

then there exist a subsequence {unj
}j and a function u ∈ BV (Ω; {−1, 1}) such that unj

→ u in
L2(Ω) as j → +∞. In particular, if N ≠ ∅, letting q̃∗1 , ..., q̃

∗
k−1 denote the same positive constants

appearing in Theorem 1.1 and given {αℓ : ℓ ∈ N} such that αℓ > 0 for all ℓ ∈ N and
∑

ℓ∈N αℓ = 1,
it holds that qℓ = αℓq̃

∗
ℓ for all ℓ ∈ N ; hence, {qℓ : ℓ ∈ N} are independent of Ω.

Clearly, if the coefficients q1, ..., qk−1 are non-negative, the compactness result in [10] suggests
there is no need to resort to Theorem 1.1 since, by the equivalence of the tensor norms, compactness
of the functionals {Fε}ε can be inferred by compactness of the functionals {Eε}ε defined in (3)
through a direct comparison. For this reason, we also prove a compactness result for functionals
{Eε}ε (Proposition 4.4). The first step is enhancing the compactness result for functionals (1)
stated in [10] taking advantage of assumption (H2). Indeed, this assumption implies that W has
quadratic growth at infinity, and this condition, in turn, allows to improve precompactness in
measure into precompactness in L2. Then, we recover the general d-dimensional case by resorting
to a precompactness criterion in L1 by slicing that has been introduced in [2] (see Proposition 4.3
below), which in our case is sufficient to obtain precompactness in L2.

Afterwards, we compute the Γ-limit of the family {Fε}ε with respect to the strong convergence in
L2(Ω). In order to state our result, we introduce some notation. We set Sd−1 := {ξ ∈ Rd : |ξ| = 1}.
For fixed ν ∈ Sd−1 and T > 0, we let the symbol Qν

T denote an open cube of side length T , centred
at the origin, with two faces orthogonal to ν,

Qν
T :=

{
x ∈ Rd : |x · ν| < T

2
, |x · νi| <

T

2
for every i ∈ {1, ..., d− 1}

}
, (10)

where {ν1, ..., νd−1, ν} is an orthonormal basis of Rd that we fix arbitrarily.
We fix a function u ∈ Hk

loc(R) such that u(t) = −1 if t ≤ −1/8, u(t) = 1 if t ≥ 1/8, |u| ≤ 1, and

0 <

∫ +∞

−∞

[
W (u) +

k∑
ℓ=1

|qℓ||u(ℓ)|2
]
dt < +∞,

then, for fixed ν ∈ Sd−1 we define the function

uν(x) := u(x · ν) for all x ∈ Rd,

and for every ε > 0 we further define

uν
ε (x) := uν

(x
ε

)
= u

(x · ν
ε

)
for all x ∈ Rd.
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We introduce a class of admissible functions on unit cubes as

Aν
ε :=

{
v ∈ Hk(Qν

1) : v = uν
ε near ∂Qν

1

}
, (11)

where by ‘near ∂Qν
1 ’, we mean ‘in Qν

1 \Qν
r for some r ∈ (0, 1)’.

Finally, for every ν ∈ Sd−1 we introduce the function

g(ν) := inf
{∫

Qν
1

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx : v ∈ Aν

ε , ε ∈ (0, 1)
}
, (12)

and we state our last main result.

Theorem 1.3. Let Ω ⊂ Rd be a bounded, open set with C1 boundary, let {Fε}ε be defined as in
(7) with k > 1 an integer, and let N := {ℓ ∈ {1, ..., k − 1} : qℓ ≤ 0}. Assume that (H1)-(H3) are
satisfied and that one of the following holds:

(i) N = ∅;
(ii) N ̸= ∅ and qℓ > −qℓ for every ℓ ∈ N with the same positive constants {qℓ : ℓ ∈ N}

independent of Ω appearing in Theorem 1.2.

Then the family of functionals {Fε}ε Γ-converges, with respect to the strong convergence in L2(Ω),
to the functional F0 given by

F0(u,Ω) :=


∫
∂∗A∩Ω

g(νA) dHd−1 if u ∈ BV (Ω; {−1, 1}), with u = 2χA − 1,

+∞ if u ∈ L2(Ω) \BV (Ω; {−1, 1}),
(13)

where A is a set of finite perimeter in Ω, ∂∗A is its reduced boundary, νA is its inner unit normal,
and g is defined as in (12).

In the special case q1 = ... = qk−1 = 0, this result improves the corresponding one in [10] as
it deals with arbitrary norms on the spaces of tensors, upon assuming stronger hypotheses on the
double-well potential.

In order to compute the Γ-limit, we follow the strategy presented in [11]. The lower bound is
proved by using the blow-up argument and relying on a method due to De Giorgi that allows to
vary boundary conditions on converging sequences (Lemma 5.2). The construction of a recovery
sequence is confined to the case of polyhedra, which are seen to be dense in energy for the limit F0,
being the surface energy density g upper semicontinuous (Proposition 2.4).
As stated below in Remark 2.5, the density (12) can be described by the following asymptotic
formula

g(ν) = lim
ε→0

inf
{∫

Qν
1

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx : v ∈ Aν

ε

}
= lim

T→+∞

1

T d−1
inf

{∫
Qν

T

[
W (v) +

k∑
ℓ=1

qℓ|∇(ℓ)v|2ℓ
]
dx : v ∈ Ãν

T

}
,

where
Ãν

T :=
{
v ∈ Hk(Qν

T ) : v = uν near ∂Qν
T

}
,

and the last equality follows by setting T := 1
ε and a change of variables.

The formula appearing in (12) should be compared with the one in [11]. In that work such density
is a constant because of the absence of anisotropies, and it is given by

inf
{∫

Q

[1
ε
W (v)− qε∥∇v∥21 + ε3∥∇2v∥2

]
dx : v ∈ A, ε ∈ (0, 1)

}
,
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with Q = (− 1
2 ,

1
2 )

d, and

A :=
{
v ∈ Hk

loc(Rd) : v = −1 near x · ed = −1

2
, v = 1 near x · ed =

1

2
,

v(x+ ei) = v(x) for all x ∈ Rd, i ∈ {1, ..., d− 1}
}
,

where {e1, ..., ed} is the canonical basis of Rd and by ‘near x·ed = ± 1
2 ’ it is meant ‘in a neighborhood

of the set {x ∈ Rd : x · ed = ± 1
2}’.

In light of this observation, we expect that our density g could be characterized as

inf
{∫

Qν
1

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx : v ∈ Ãν , ε ∈ (0, 1)

}
,

with

Ãν :=
{
v ∈ Hk

loc(Rd) : v = −1 near x · ν = −1

2
, v = 1 near x · ν =

1

2

v(x+ νi) = v(x) for all x ∈ Rd, i ∈ {1, ..., d− 1}
}
,

where {ν1, ..., νd−1, ν} is the orthonormal basis that we fixed in the definitions (10) and (11). To
prove this fact, we would need to impose boundary conditions resorting to Lemma 5.2. In turn, to
do this we would need to improve Theorem 1.1, even just in the case of the operatorial norms, to the
case Ω being an open cube. In [11], this result is obtained by slicing, which is well suited because,
roughly speaking, the operatorial norm of a 1-tensor, the gradient, coincides with its euclidean
norm as a vector of Rd. Because of the higher order of derivatives that our interpolation estimates
involve, such argument seems to be difficult to adapt. As an additional consequence of the lack
of interpolation estimates on cubes, the proofs of Lemma 5.2 (and its statement) and of the lower
bound (Proposition 5.1) present several differences with respect to their counterparts in [11]. In
particular, we will need to apply our interpolation inequalities on a C1 subset of the cube Qν

1 that
coincides with this cube inside the strip {x ∈ Rd : |x · ν| ≤ 1

4} which is close to the interface on
which most of the energy is stored.

We remark that, in the case k = 2, such asymptotic analysis has already been performed for
more general functionals that are bounded from above and from below by positive multiples of the
functionals (7), allowing, for instance, the dependence of the energy densities on the variable x. In
particular, in [6], Baía, Barroso, Chermisi, and Matias studied the case q1 = 1; while, in the recent
paper [15], Donnarumma has addressed the problem of deterministic and stochastic homogenisation
of such functionals. As a consequence of their results, the validity of Theorem 1.3 for generic norms
follows. For a treating of phase transitions models encoding homogenization phenomena we also
refer to [4] and [5].

In the final section, we further discuss the cell problem in (12) in the one-dimensional case, and
we also address to the case in which all the norms | · |ℓ appearing in (7) are ‘compatible with slicing’;
that is, satisfying an estimate like (5), and all the coefficients qℓ, ℓ ∈ {1, ..., k−1} are non-negative.
In both cases, the function g in (12) is constant, and its value is determined by the one-dimensional
optimal-profile problem

m := inf
{∫ +∞

−∞

[
W (u) +

k∑
ℓ=1

qℓ|u(ℓ)|2
]
dt : u ∈ Hk

loc(R), lim
t→±∞

u(t) = ±1
}
.

By a cut-off argument, we are also able to prove, without requiring (H3), that the above infimum
actually is a minimum, determining the existence of optime-profiles for a wide class of phase-
transitions problems on the real line.

We conclude this introductory section by noting that in recent years there has also been a growing
interest in non-local counterparts of the models for phase transitions described above. Starting from
the foundational work of Savin and Valdinoci [24], several works on the subject have been published.
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We mention here the works [14, 22, 23] and the recent paper by Solci [25], in which a non-local
counterpart of the results of [10] is proved. It would be interesting to extend our analysis to that
context.

Near the completion of our work, we learnt that, independently, Brazke, Götzmann, and Knüpfer
performed the same asymptotic analysis in the one-dimensional case without requiring (H3) and
with the further assumption that q1 = ... = qk−2 = 0; that is, taking into account a possibly
negative singular perturbation described by the only derivative of order k − 1 (see [9]) using a
different argument than ours for the liminf inequality.

2. Notation and preliminaries

In this section we collect the main notation and some preliminary results using [3] as main
reference.

Notation. In what follows, we let Ω be a bounded, open subset of Rd with Lipschitz or C1

boundary, for d ≥ 1. We let ⌊t⌋ and ⌈t⌉ denote the lower and upper integer part of a real number
t, respectively. We let {e1, ..., ed} denote the canonical basis of Rd and Id the identity matrix in
Rd×d. Given any x ∈ Rd, we let |x| denote its euclidean norm. We let Ld denote the Lebesgue
measure on Rd and Hd−1 denote the (d− 1)-dimensional Hausdorff measure on Rd. Given a Borel
measure µ on Rd and a Borel subset B of Rd, we let µ B denote the restriction of µ to B, that
is, the measure defined by µ B(A) := µ(A ∩B). For every positive integer ℓ, we let ∥ · ∥ℓ denote
the operatorial norm of a symmetric ℓ-tensor on Rd defined by (4), while a generic norm will be
denoted by | · |ℓ. Given ν ∈ Sd−1, we let the symbol ν⊥ denote the hyperplane {x ∈ Rd : x · ν = 0},
and given T > 0 we let Qν

T (z) denote the open cube of side length T , centred at z, and two faces
orthogonal to ν,

Qν
T (z) :=

{
x ∈ Rd : |(z − x) · ν| < T

2
, |(z − x) · νi| <

T

2
for every i ∈ {1, ..., d− 1}

}
,

where {ν1, ..., νd−1, ν} is a fixed orthonormal basis of Rd. Given r > 0, let Br(z) denote the d-
dimensional open ball of centre z and radius r. We adopt the convention that, both for cubes and
balls, when omitted, the centre is in the origin in accordance with (10).

Functions of bounded variation. Given u ∈ L1(Ω), the variation of u in Ω is defined as

V (u; Ω) := sup
{∫

Ω

u divφdx : φ ∈ C1
c (Ω;Rd), |φ| ≤ 1

}
.

We say that u has bounded variation, and we write u ∈ BV (Ω), if V (u; Ω) < +∞. For such a
function u, the singular set S(u) is defined as the complement in Ω of the set of Lebesgue points;
i.e.,

S(u) := Ω \
{
x ∈ Ω : ∃z ∈ RN such that lim

r→0+

1

Ld(Br(x))

∫
Br(x)

|u(y)− z| dy = 0
}
.

The distributional derivative of u in Ω is the sum of three mutually singular vector measures,
Du = µa + µj + µc, where µa is absolutely continuous with respect to Ld, µj , the jump part, is a
(d−1)-dimensional measure concentrated on S(u) with density given by (u+−u−)νu, where u−, u+

are the bilateral traces of u on S(u) defined in accordance with the unit vector field νu, while µc is
the so-called Cantor part.

Sets of finite perimeter. Given an Ld-measurable set A ⊆ Ω, the perimeter of A in Ω is
defined as

P (A; Ω) := sup
{∫

A

divφdx : φ ∈ C1
c (Ω;Rd), |φ| ≤ 1

}
.

We say that A has finite perimeter in Ω if P (A; Ω) < +∞. Since Ω is assumed to be bounded, the
set A has finite perimeter in Ω if and only if its characterstic function χA is a function of bounded
variation in Ω; i.e., χA ∈ BV (Ω). Therefore, for such a set A, the distributional derivative of χA
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on Ω is a vector measure µA. Denoting by |µA| the total variation of this measure, the reduced
boundary of A is defined as

∂∗A :=
{
x ∈ Rd : there exists νA(x) := lim

r→0

µA(Br(x))

|µA|(Br(x))
, with |νA(x)| = 1

}
,

and the unit vector νA(x) stands for the inner unit normal (in the sense of measure theory) to A
at the point x.

We summarize the main properties we need about sets of finite perimeter in the following state-
ments.

Theorem 2.1. If A is a set of finite perimeter in Ω ⊂ Rd, the distributional derivative of χA in Ω
is

µA = νAHd−1 (∂∗A ∩ Ω),

and P (A; Ω) = |µA|(Rd) = Hd−1(∂∗A∩Ω). Moreover, setting Hν := {y ∈ Rd : y · ν > 0}, for every
point x ∈ ∂∗A ∩ Ω, it holds that

χA−x
r

→ χHνA(x)
in L1

loc(Rd) as r → 0,

Hd−1(∂∗A ∩Q
νA(x)
r (x))

rd−1
→ 1 as r → 0.

We remark that a function u ∈ BV (Ω; {−1, 1}) is of the form u = 2χA − 1 for a certain A set of
finite perimeter in Ω. In particular, it holds that S(u) = ∂∗A ∩ Ω up to Hd−1-negligible sets and
the distributional derivative of u in Ω is the measure 2νAHd−1 (∂∗A ∩ Ω).

We shall also recall a well-known result of approximation of sets of finite perimeter via polyhedral
sets, see [1, Lemma 3.6] and [7, Lemma 3.1].

Theorem 2.2. Let A be a set of finite perimeter in Ω ⊂ Rd, d ≥ 2. There exists a sequence
{An}n∈N of polyhedral sets satisfying

(i) χAn
→ χA in L1(Ω) as n → ∞,

(ii) P (An; Ω) → P (A; Ω) as n → +∞,
(iii) Hd−1(∂∗An ∩ ∂Ω) = 0 for every n ∈ N.
Moreover, for every non-negative continous function g on Sd−1, there holds

lim
n→+∞

∫
∂∗An∩Ω

g(νAn
(x))dHd−1(x) =

∫
∂∗A∩Ω

g(νA(x))dHd−1(x). (14)

Slicing. Given an open set Ω ⊆ Rd, ξ ∈ Sd−1, and y ∈ ξ⊥, we define the slice Ωξ,y as

Ωξ,y := {t ∈ R : y + tξ ∈ Ω},

and we define Ωξ the orthogonal projection of Ω on ξ⊥ as

Ωξ := {y ∈ ξ⊥ : Ωξ,y ̸= ∅}.

For every function u : Ω → R and for every y ∈ Ωξ, we define the function uξ,y : Ωξ,y → R by

uξ,y(t) := u(y + tξ).

It is a known fact that, given a function u ∈ Hk(Ω), for every ξ ∈ Sd−1 and for Hd−1-a.e. y ∈ ξ⊥

it holds that

∇(ℓ)u(y + tξ)( ξ, ..., ξ︸ ︷︷ ︸
ℓ times

) =
dℓuξ,y

dtℓ
(t) for L1-a.e. t ∈ Ωξ,y, and for all ℓ ∈ {1, ..., k − 1}.

We mention a characterization of functions of bounded variation with values in {−1, 1} in terms of
their slices.
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Theorem 2.3. A function u ∈ L1(Ω; {−1, 1}) belongs to BV (Ω; {−1, 1}) if and only if for every
j ∈ {1, ..., d} the one-dimensional slices of the function u given by uej ,y have bounded variation in
the open set Ωej ,y for Hd−1-a.e. y ∈ e⊥j , and∫

Ωej

#(S(uej ,y) ∩ Ωej ,y) dHd−1(y) < +∞.

Γ-convergence. We briefly recall the definition of Γ-convergence in L2(Ω). For a general
introduction to the topic we refer the reader to [8, 13]. Given functionals Gε : L

2(Ω) → [−∞,+∞]
for ε > 0 and G0 : L2(Ω) → [−∞,+∞], we say that G is the Γ-limit of the family {Gε}ε, and we
write G0 = Γ-limε→0 Gε if, for every vanishing sequence {εn}n the following hold:

(i) For every u ∈ L2(Ω) and {un}n such that un → u in L2(Ω) as n → +∞, it holds that

lim inf
n→+∞

Gεn(un) ≥ G0(u);

(ii) For every u ∈ L2(Ω) there exists {un}n such that un → u in L2(Ω) as n → +∞ and

lim sup
n→+∞

Gεn(un) ≤ G0(u).

It is also convenient to recall the following definitions:

Γ- lim inf
ε→0

Gε(u) := inf{lim inf
n→+∞

Gεn(un) : {εn}n vanishing, un → u in L2(Ω)};

Γ- lim sup
ε→0

Gε(u) := inf{lim sup
n→+∞

Gεn(un) : {εn}n vanishing, un → u in L2(Ω)}. (15)

Both functionals above are lower semicontinuous with respect to the strong convergence in L2(Ω),
they coincide if and only if Γ-limε→0 Gε exists, and in this case the Γ-limit coincides with their
common value.

We conclude this section proving a characterization of the density introduced in (12). In view of
the asymptotic analysis, the following proposition makes irrelevant the choice of the orthonormal
basis {ν1, ..., νd−1, ν} fixed in the definitions (10) and (11).

Proposition 2.4. For every ν ∈ Sd−1, and for every R ∈ SO(d) such that Rν = ν it holds

g(ν) = inf
{∫

R(Qν
1 )

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx : v ◦R ∈ Aν

ε , ε ∈ (0, 1)
}

(16)

= inf
{∫

R′(Qν
1 )

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx : v ◦R′ ∈ Aν

ε , ε ∈ (0, 1),

R′ ∈ SO(d) with R′ν = ν
}
. (17)

Moreover, g is upper semicontinuous.

Proof. We first prove (17). Fix ν ∈ Sd−1 and let ε ∈ (0, 1), R ∈ SO(d) satisfying Rν = ν, and
v ◦R ∈ Aν

ε . We claim that for every η ∈ (0, ε), there exists a function wη ∈ Aν
η such that

lim sup
η→0

∫
Qν

1

[1
η
W (wη) +

k∑
ℓ=1

qℓη
2ℓ−1|∇(ℓ)wη|2ℓ

]
dx ≤

∫
R(Qν

1 )

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx. (18)

For the sake of exposition, we set T := 1/ε and ṽ(x) := v( 1
T x) for all x ∈ R(Qν

T ). For S > T ,
we introduce

Z(T, S) := {z = T (z1ν1 + ...+ zd−1νd−1) : z +R(Qν
T ) ⊂ Qν

S , (z1, ..., zd−1) ∈ Zd−1},
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where {ν1, ..., νd−1, ν} is the orthonormal basis that we arbitrarily fixed in the definitions (10) and
(11), and

E(T, S) :=
⋃

z∈Z(T,S)

(
z +R(Qν

T )
)
.

Then, we define the function

w̃S(x) :=

{
ṽ(x− z) if x ∈ z +R(Qν

T ) for some z ∈ Z(T, S),

uν(x) otherwise in Qν
S ,

and we note that w̃ ∈ Hk(Qν
S) with w̃S = uν close to ∂Qν

S . Recalling the notation (7), we have

F1(w̃S , Q
ν
S)

Sd−1
=

F1(w̃S , E(T, S)) + F1(w̃S , Q
ν
S \ E(T, S))

Sd−1

=
( ∑
z∈Z(T,S)

F1(w̃S , z +R(Qν
T ))

Sd−1

)
+

F1(w̃S , Q
ν
S \ E(T, S))

Sd−1

= #Z(T, S)
F1(ṽ, R(Qν

T ))

Sd−1
+

Hd−1(πν(Qν
S \ E(T, S))

Sd−1
c0,

having set c0 :=
∫ +∞
−∞

[
W (u) +

∑k
ℓ=1 qℓ|u

(ℓ)|2
]
dt and letting πν denote the orthogonal projection

on the hyperplane ν⊥. We observe that

lim
S→+∞

#Z(T, S)

(S/T )d−1
= 1,

and
Hd−1(πν(Qν

S \ E(T, S)) = Sd−1 −#Z(T, S)T d−1,

therefore,

lim sup
S→+∞

F1(w̃S , Q
ν
S)

Sd−1
≤ F1(ṽ, R(Qν

T ))

T d−1
;

that is

lim sup
S→+∞

1

Sd−1

∫
Qν

S

[
W (w̃S) +

k∑
ℓ=1

qℓ|∇(ℓ)w̃S |2ℓ
]
dx ≤ 1

T d−1

∫
R(Qν

T )

[
W (ṽ) +

k∑
ℓ=1

qℓ|∇(ℓ)ṽ|2ℓ
]
dx. (19)

Finally, we set

η :=
1

S
, wη(x) := w̃ 1

η

(1
η
x
)

for all x ∈ Qν
1 ,

so that wη ∈ Aν
η . By applying the change of variables y := ηx on the left-hand side and y := εx on

the right-hand side, (19) can be written as

lim sup
η→0

∫
Qν

1

[1
η
W (wη) +

k∑
ℓ=1

qℓη
2ℓ−1|∇(ℓ)wη|2ℓ

]
dy ≤

∫
R(Qν

1 )

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dy,

which is (18). By the arbitrariness of ε,R, and v, inequality (18) and a diagonal argument yield
(17).

As for the proof of (16), consider R1, R2 ∈ SO(d) satisfying R1ν = R2ν = ν and v ◦ R1 ∈ Aν
ε .

With a similar argument to the one employed above, we may prove that for every η ∈ (0, ε), there
exists a function wη such that wη ◦R2 ∈ Aν

η and

lim sup
η→0

∫
R2(Qν

1 )

[1
η
W (wη) +

k∑
ℓ=1

qℓη
2ℓ−1|∇(ℓ)wη|2ℓ

]
dx ≤

∫
R1(Qν

1 )

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx,

which, by the arbitrariness of the rotations R1, R2 and of the function v, proves (16).
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Finally, we prove that g is upper semicontinuous. Let ν ∈ Sd−1 and {νn}n ⊂ Sd−1 such that
νn → ν. We aim to show that

lim sup
n→+∞

g(νn) ≤ g(ν).

Fix η > 0 and let ε ∈ (0, 1) and v ∈ Aν
ε such that

g(ν) + η ≥
∫
Qν

1

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx. (20)

For each n ∈ N we can find Rn =
(
Ri,j

n

)d
i,j=1

∈ SO(d) such that Rnν = νn and Rn → Id. Consider
the cube Rn(Q

ν
1) and, for each n, a rotation Sn ∈ SO(d) such that

Snνn = νn and Rn(Q
ν
1) = Sn(Q

νn
1 ).

Define vn(x) := v(RT
nx) for every x ∈ Rn(Q

ν
1) = Sn(Q

νn
1 ) and note that vn ◦ Sn ∈ Aνn

ε . By (17)
and a change of variables

g(νn) ≤
∫
Sn(Q

νn
1 )

[1
ε
W (vn(x)) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)vn(x)|2ℓ

]
dx

=

∫
Rn(Qν

1 )

[1
ε
W (vn(x)) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)vn(x)|2ℓ

]
dx

=

∫
Qν

1

[1
ε
W (v(x)) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v(Rnx)|2ℓ

]
dx. (21)

We show that, for each ℓ ∈ {1, ..., k} and Ld-a.e. x ∈ Qν
1 , we have ∇(ℓ)vn(Rnx) → ∇(ℓ)v(x) in

the space of ℓ-tensors as n → +∞. By the equivalence of the norms, to prove this it is sufficient to
show that for Ld-a.e. x ∈ Qν

1 it holds

lim
n→+∞

∇(ℓ)vn(Rnx)(ei1 , ..., eiℓ) = ∇(ℓ)v(x)(ei1 , ..., eiℓ) for every (i1, ..., iℓ) ∈ {1, ..., d}ℓ. (22)

Let us fix (i1, ..., iℓ) ∈ {1, ..., d}ℓ. For Ld-a.e. x ∈ Qν
1 we have

lim
n→+∞

∇(ℓ)vn(Rnx)(ei1 , ..., eiℓ) = lim
n→+∞

∂ℓvn
∂xi1 ...∂xiℓ

(Rnx)

= lim
n→+∞

d∑
j1=1

...

d∑
jℓ=1

Ri1,j1
n ... Riℓ,jℓ

n

∂ℓv

∂xj1 ...∂xjℓ

(x)

=

d∑
j1=1

...

d∑
jℓ=1

δi1j1 ...δiℓjℓ
∂ℓv

∂xj1 ...∂xjℓ

(x)

=
∂ℓv

∂xi1 ...∂xiℓ

(x) = ∇(ℓ)v(x)(ei1 , ..., eiℓ),

and this equality proves (22).
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To conclude, we first observe that, since Rn → Id, we may assume that |Ri,j
n | ≤ 2 for all

i, j ∈ {1, ..., d} and n ∈ N so that

|∇(ℓ)vn(Rnx)|ℓ ≤ Cmax
{∣∣ ∂ℓv

∂xi1 ...∂xiℓ

(Rnx)
∣∣ : (i1, ...., iℓ) ∈ {1, ..., d}ℓ

}
= Cmax

{∣∣ d∑
j1=1

...

d∑
jℓ=1

Ri1,j1
n ... Riℓ,jℓ

n

∂ℓv

∂xj1 ...∂xjℓ

(x)
∣∣ : (i1, ...., iℓ) ∈ {1, ..., d}ℓ

}
≤ Cmax

{∣∣ ∂ℓv

∂xi1 ...∂xiℓ

(x)
∣∣ : (i1, ...., iℓ) ∈ {1, ..., d}ℓ

}
≤ C|∇(ℓ)v(x)|ℓ, (23)

where C is a positive constant (that may very from line to line) which only depends on d and ℓ as
it arises by the equivalence of the tensor norms. Finally, combining (22) with (23), we apply the
Dominated Convergence Theorem in (21), so that by (20) we obtain

lim sup
n→+∞

g(νn) ≤ lim
n→+∞

∫
Qν

1

[1
ε
W (v(x)) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)vn(Rnx)|2ℓ

]
dx

=

∫
Qν

1

[1
ε
W (v(x)) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v(x)|2ℓ

]
dx ≤ g(ν) + η.

The arbitrariness of η concludes the proof. □

Remark 2.5. With the previous proof, we also showed that

g(ν) = lim
ε→0

inf
{∫

Qν
1

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx : v ∈ Aν

ε

}
.

This observation will be useful in the last section in order to study the density g in the one-
dimensional case.

3. Interpolation

This section is devoted to the proof of Theorem 1.1. Furthermore, we obtain a useful result
(Corollary 3.7) that we will use in the proof of Theorem 1.2. Throughout this section, we keep
track of the dependence of the constants from the involved parameters with the only exceptions of
d, the dimension of the ambient Euclidean space, and k, the highest order of derivation.

We start by mentioning a classical interpolation estimate on intervals (see Theorem 7.41 in [19]).

Theorem 3.1. Let I ⊂ R be a bounded, open interval and let k be a positive integer. Then there
exists a positive constant c independent of I such that∫

I

|u(k−1)|2 dt ≤ c|I|−2(k−1)

∫
I

u2 dt+ c

∫
I

|u(k)|2 dt (24)

for every u ∈ Hk(I).

We adapt the argument of Lemma 3.1 in [12] to bound the square of the L2-norm of the derivative
of order k−1 by means of the integral of the double-well potential and the square of the L2-norm of
the derivative of order k. Then, we deduce the same kind of estimate for any derivate of intermediate
order ℓ ∈ {1, ..., k − 1}.

Lemma 3.2. Let I ⊂ R be a bounded, open interval, let k > 1 be an integer, and assume that (H2)
is satisfied. Then there exists a positive constant q′k−1 independent of I such that

q

∫
I

|u(k−1)(t)|2 dt ≤ |I|−2(k−1)

∫
I

W (u) dt+ |I|2
∫
I

|u(k)|2 dt

for every q < q′k−1 and u ∈ Hk(I).
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Proof. It is sufficient to prove the statement for I = (0, 1), the general case being obtained by
translating and rescaling. We set

z :=

∫ 1

0

u(k−1) dt,

and by the Fundamental Theorem of Calculus we infer that

|u(k−1)(t)− z| ≤
∫ 1

0

|u(k)| dt for all t ∈ (0, 1). (25)

As a consequence ∫ 1

0

|u(k−1)|2 dt ≤ 2

∫ 1

0

|u(k)|2 dt+ 2z2;

therefore, the proof is complete if we prove that

z2 ≤ C

∫ 1

0

[
W (u) + |u(k)|2

]
dt (26)

for some C > 0. If z2 ≤ 4
∫ 1

0
|u(k)|2 dt, then (26) is immediately satisfied. Otherwise, by Jensen’s

inequality, we have that |z| > 2
∫ 1

0
|u(k)| dt, which together with (25), yields

|u(k−1)(t)| ≥ |z|
2

> 0 for all t ∈ (0, 1). (27)

Consider the intervals ( jk ,
j+1
k ), j ∈ {0, ..., k − 1}. Combining (27) with the iterated application of

Lagrange’s Theorem, by a contradiction argument we infer that u does not vanish on one of these
intervals. We suppose u > 0 in ( j

∗

k , j∗+1
k ), the case u < 0 being analogous. Applying Theorem 3.1

to the function u− 1 on the interval ( j
∗

k , j∗+1
k ) and resorting to (H2), we obtain∫ j∗+1

k

j∗
k

|u(k−1)|2 dt ≤ ck2(k−1)

∫ j∗+1
k

j∗
k

(u− 1)2 dt+ c

∫ j∗+1
k

j∗
k

|u(k)|2 dt

≤ ck2(k−1)

∫ j∗+1
k

j∗
k

W (u) dt+ c

∫ j∗+1
k

j∗
k

|u(k)|2 dt,

therefore, taking into account (27),

z2 ≤ 4k

∫ j∗+1
k

j∗
k

|u(k−1)|2 dt

≤ 4ck2k−1

∫ j∗+1
k

j∗
k

W (u) dt+ 4ck

∫ j∗+1
k

j∗
k

|u(k)|2 dt,

which, by the positivity of W , proves (26) and concludes the proof. □

Corollary 3.3. Let I ⊂ R be a bounded, open interval, let k > 1 be an integer, and assume that
(H2) is satisfied. Then, for every ℓ ∈ {1, ..., k − 1}, there exists a positive constant q′ℓ independent
of I such that

q

∫
I

|u(ℓ)|2 dt ≤ |I|−2ℓ

∫
I

W (u) dt+ |I|2(k−ℓ)

∫
I

|u(k)|2 dt

for every q < q′ℓ and u ∈ Hk(I).

Proof. The thesis follows by applying iteratively Lemma 3.2. □

Now we adapt the interpolation inequality at scale ε, in view of its application to functionals
(7).
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Proposition 3.4. Let I ⊂ R be a bounded, open interval, let k > 1 be an integer, and assume that
(H2) is satisfied. Then, for every ℓ ∈ {1, ..., k − 1}, there exists a positive constant q′′ℓ independent
of I such that, for every ε ∈ (0, |I|/2), it holds

qε2ℓ
∫
I

|u(ℓ)|2 dt ≤
∫
I

[
W (u) + ε2k|u(k)|2

]
dt

for every q < q′′ℓ and u ∈ Hk(I).

Proof. We set v(t) := u(εt) for t ∈ 1
εI so that

ε2ℓ−1

∫
I

|u(ℓ)|2 dt =
∫

I
ε

|v(ℓ)|2 dt.

Then, we set nε := ⌊ |I|
ε ⌋ and we subdivide the rescaled interval 1

εI in nε pairwise disjoint, open
intervals Ijε , j ∈ {1, ..., nε} each of length |I|

εnε
. Then we apply Corollary 3.3 on each subinterval Ijε

with q < q′ℓ and we obtain

ε2ℓ−1

∫
I

|u(ℓ)|2 dt =
nε∑
j=1

∫
Ij
ε

|v(ℓ)|2 dt

≤
nε∑
j=1

1

q

{
|Ijε |−2ℓ

∫
Ij
ε

W (v) dt+ |Ijε |2(k−ℓ)

∫
Ij
ε

|v(k)|2 dt
}

≤ 1

q

{
22ℓ

∫
1
ε I

W (v) dt+
(3
2

)2(k−ℓ)
∫

1
ε I

|v(k)|2 dt
}

≤ max{22ℓ, (3/2)2(k−ℓ)}
q

∫
I

[W (u)

ε
+ ε2k−1|u(k)|2

]
dt,

where the second inequality follows by the fact |Ijε | ∈ ( 12 ,
3
2 ) if ε ∈ (0, |I|/2).

We multiply the above inequality by ε to obtain that

q̃ε2ℓ
∫
I

|u(ℓ)|2 dt ≤
∫
I

[
W (u) + ε2k|u(k)|2

]
dt

for every q̃ < q′′ℓ and ε ∈ (0, |I|/2), where we set

q′′ℓ :=
q′ℓ

max{22ℓ, (3/2)2(k−ℓ)}
;

therefore, the proof is complete. □

The following, immediate corollary, proves Theorem 1.1 in dimension 1.

Corollary 3.5. Let Ω ⊂ R be the union of finitely many bounded, open, disjoint intervals, let k > 1
be an integer, and assume that (H2) is satisfied. Then, denoting by |Io| the length of the shortest
connected component of Ω, for every ℓ ∈ {1, ..., k − 1} and for every ε ∈ (0, |Io|/2) it holds

qε2ℓ
∫
Ω

|u(ℓ)|2 dt ≤
∫
Ω

[
W (u) + ε2k|u(k)|2

]
dt

for every q < q′′ℓ and u ∈ Hk(Ω).

Proof. The proof follows by an immediate application of Proposition 3.4. □

Finally, we prove the main result of this section by using the argument presented in the proof of
Theorem 1.2 in [11]. Below, we will make use of notation about slicing that have been introduced
in Section 2.
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Proof of Theorem 1.1. It suffices to prove the part of the statement concerning the operatorial
norms, since the other case follows by the equivalence of the norms. We follow the proof of Theorem
1.2 in [11]. For r > 0, ξ ∈ Sd−1, and y ∈ Ωξ, we define Ωξ,y

r as the finite union of the connected
components of the slice Ωξ,y having length larger than r. Then we set Ω(ξ, r) := {y+ tξ ∈ Rd : y ∈
Ωξ, t ∈ Ωξ,y

r } and we observe that (Ω(ξ, r))ξ,y = Ωξ,y
r .

Applying Corollary 3.5 we obtain

q̃ε2ℓ
∫
Ωξ,y

r

|(uξ,y)(ℓ)|2 dt ≤
∫
Ωξ,y

r

[
W (uξ,y) + ε2k|(uξ,y)(k)|2

]
dt

for all q̃ < q′′ℓ and ε < r/2. We integrate the above inequality on ξ⊥ to get

q̃ε2ℓ
∫
Ω(ξ,r)

|(∇(ℓ)u)(ξ, ..., ξ)|2 dx ≤
∫
Ω

[
W (u) + ε2k∥∇(k)u∥2k

]
dx,

and setting A(ξ, r) := Ω \ Ω(ξ, r) we obtain

q̃ε2ℓ
∫
Ω

|(∇(ℓ)u)(ξ, ..., ξ)|2 dx− q̃ε2ℓ
∫
A(ξ,r)

∥∇(ℓ)u∥2ℓ dx ≤
∫
Ω

[
W (u) + ε2k∥∇(k)u∥2k

]
dx.

Averaging this inequality on Sd−1 yields

ε2ℓ
q̃

σd−1

∫
Sd−1

∫
Ω

|(∇(ℓ)u)(ξ, ..., ξ)|2 dx dHd−1(ξ)− ε2ℓ
q̃

σd−1

∫
Sd−1

∫
A(ξ,r)

∥∇(ℓ)u∥2 dx dHd−1(ξ)

≤
∫
Ω

[
W (u) + ε2k∥∇(k)u∥2k

]
dx,

where we set σd−1 := Hd−1(Sd−1).
By a simple compactness argument, there exists a positive constant τ(ℓ) such that

1

σd−1

∫
Sd−1

|T (ξ, ..., ξ)|2 dHd−1(ξ) ≥ τ(ℓ)∥T∥2ℓ

for every symmetric ℓ-tensor T . Therefore, by Fubini’s Theorem,
1

σd−1

∫
Sd−1

∫
Ω

|(∇(ℓ)u)(ξ, ..., ξ)|2 dx dHd−1(ξ) ≥ τ(ℓ)

∫
Ω

∥∇(ℓ)u∥2ℓ dx. (28)

Again by Fubini’s Theorem, we have
1

σd−1

∫
Sd−1

∫
A(ξ,r)

∥∇(ℓ)u∥2ℓ dx dHd−1(ξ) =
1

σd−1

∫
Ω

∥∇(ℓ)u∥2ℓHd−1(D(x, r)) dx,

where D(x, r) := {ξ ∈ Sd−1 : x ∈ A(ξ, r)}; hence, to conclude the proof, we have to select r small
enough so that Hd−1(D(x, r)) is small uniformly in x. Given x ∈ ∂Ω, we let CR(x) denote the
cylinder having height 2R and radius R with axis parallel to the normal ν(x) to ∂Ω at x.
Let q < τ(ℓ)q′′ℓ , and fix q̃ such that q

τ(ℓ) < q̃ < q′′ℓ . Fix η = η(q) > 0 such that

q < q̃(τ(ℓ)− η); (29)

since Ω has C1 boundary, there exists R such that, for every x ∈ ∂Ω, it holds CR(x) ∩ ∂Ω is the
graph of a C1 function with respect to the base of the cylinder, and moreover,

Hd−1({ξ ∈ Sd−1 : ξ ∈ T∂Ω(y), y ∈ CR(x) ∩ ∂Ω}) ≤ ησd−1.

Employing the same argument presented in the proof of Theorem 1.2 in [11], it holds that,

D(x, r) ⊆ {ξ ∈ Sd−1 : ξ ∈ T∂Ω(y), y ∈ CR(x) ∩ ∂Ω}
up to choosing r < R/2; as a consequence, Hd−1(D(x, r)) ≤ η for all x ∈ ∂Ω if r < R/2, and then

1

σd−1

∫
Sd−1

∫
A(ξ,r)

∥∇(ℓ)u∥2ℓ dx dHd−1(ξ) ≤ η

∫
Ω

∥∇(ℓ)u∥2ℓ dx, (30)
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for all r < R/2.
Gathering (28) and (30), we obtain that

q̃(τ(ℓ)− η)ε2ℓ
∫
Ω

∥∇(ℓ)u∥2ℓ dx ≤
∫
Ω

[
W (u) + ε2k∥∇(k)u∥2k

]
dx (31)

for all q̃ < q′′ℓ and ε < R/2, where R = R(η,Ω).
Recalling (29), by (31) we get

qε2ℓ
∫
Ω

∥∇(ℓ)u∥2ℓ dx ≤
∫
Ω

[
W (u) + ε2k∥∇(k)u∥2k

]
dx.

The above inequality is valid for all q < τ(ℓ)q′′ℓ and ε < R(η,Ω)/2. Then, the thesis holds with
q∗ℓ := τ(ℓ)q′′ℓ and ε0 := R(η,Ω)/2, which in turn, since η depends on q, only depends on q and
Ω. □

Remark 3.6. We are not able to prove the interpolation inequality on an open cube. The same
slicing arguments employed in [11] cannot be applied in our case because of the high order of the
derivatives that we want to estimate. This complicates our arguments in view of the proof of
Theorem 1.3 since, in what follows, it will be important to apply Theorem 1.1 on a class of C1

sets {Ωρ : ρ ∈ (ρ1, ρ2)} for some ρ1, ρ2 > 0 for which the threshold ε0 = ε0(q,Ωρ) can be chosen
independently of ρ ∈ (ρ1, ρ2). Inspecting the proof of Theorem 1.1, this amounts to prove that for
each properly fixed q, given η > 0 such that

q < q̃(τ(ℓ)− η), (32)

there exists R > 0 such that, for every ρ ∈ (ρ1, ρ2) and for every x ∈ ∂Ωρ, it holds that

CR(x) ∩ ∂Ωρ is the graph of a C1 function (33)

and
Hd−1({ξ ∈ Sd−1 : ξ ∈ T∂Ωρ

(y), y ∈ CR(x) ∩ ∂Ωρ}) ≤ η. (34)
The above conditions are satisfied if we consider Ω a bounded, open set with C1 boundary, and

Ωρ := {x ∈ Ω : dist(x, ∂Ω) < ρ}
for ρ ∈ (ρ∗, ρ∗ + R∗), where ρ∗ > 0 is fixed and R∗ = R∗(ρ∗). In particular, both ρ∗ and R∗ need
to be small enough so that {x ∈ Ω : dist(x, ∂Ω) = ρ} is a (d − 1)-manifold of class C1 for every
ρ < ρ∗ +R∗ and there exists a C1 projection from Ωρ∗ onto ∂Ω.

To see this, fix ρ∗ small and consider R > 0 such that for all x ∈ ∂Ω there exists a C1 function
φ defined on the base of CR(x) such that

CR(x) ∩ ∂Ω = CR(x) ∩ graph φ with ∥∇φ∥L∞(CR(x)) ≤
η

Hd−1(Sd−1)
,

and for all x ∈ ∂Ωρ∗ ∩ Ω there exists a C1 function φρ∗ defined on the base of CR(x) such that

CR(x) ∩ ∂Ωρ∗ = CR(x) ∩ graph φρ∗ with ∥∇φρ∗∥L∞(CR(x)) ≤
η

Hd−1(Sd−1)
.

Now, let x ∈ ∂Ωρ∗ ∩ Ω and 0 < r < R/4. It holds that

{y ∈ CR−r(x) : dist(y, graph φρ∗) = r} = CR−r(x) ∩ ∂Ωρ∗+r,

then, letting xr ∈ ∂Ωρ∗+r denote the unique point such that |x−xr| = r, we have that CR−2r(xr) ⊂
CR−r(x); hence,

{y ∈ CR−2r(xr) : dist(y, graph φρ∗) = r} = CR−2r(xr) ∩ ∂Ωρ∗+r.

We note that

{y ∈ CR−2r(xr) : dist(y, graph φρ∗) = r} = CR−2r(xr) ∩ graph φρ∗+r,

where φρ∗+r is a C1 function such that ∥∇φρ∗+r∥L∞(CR−2r(x)) ≤ ∥∇φρ∗∥L∞(CR−2r(x)).
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As r ranges in (0, R/4), recalling that there exists a C1 projection from Ωρ∗ onto ∂Ω, the above
observations prove that for every ρ ∈ (ρ∗, ρ∗ +R/4) and for every x ∈ ∂Ωρ, it holds that

CR/2(x) ∩ ∂Ωρ = CR/2(x) ∩ graph φρ, (35)

where φρ is a C1 function such that

∥∇φρ∥L∞(CR/2(x)) ≤ ∥∇φ∥L∞(CR/2(x)) ≤
η

Hd−1(Sd−1)
. (36)

At this point, (33) follows by (35), and we are left with proving that (36) implies (34).
Note indeed that, for fixed ρ ∈ (ρ∗, ρ∗ +R/4) and x ∈ ∂Ωρ, (36) implies that

{ξ ∈ Sd−1 : ξ ∈ T∂Ωρ
(y), y ∈ CR/2(x) ∩ ∂Ωρ} ⊆

{
ξ ∈ Sd−1 :

√
ξ21 + ...+ ξ2d−1 ≥ Hd−1(Sd−1)

η
|ξd|

}
⊆

{
ξ ∈ Sd−1 : |ξd| ≤

η

Hd−1(Sd−1)

}
;

therefore
Hd−1({ξ ∈ Sd−1 : ξ ∈ T∂Ωρ

(y), y ∈ CR/2(x) ∩ ∂Ωρ}) ≤ η.

Being the above estimates uniform in ρ and x, (34) is satisfied.

The following corollary will come into play in the forthcoming sections.

Corollary 3.7. Let Ω ⊂ Rd be a bounded, open set with C1 boundary, let k > 1 be an integer, and
let N := {ℓ ∈ {1, ..., k − 1} : qℓ ≤ 0}. Assume that N ̸= ∅ and that (H2) is satisfied. There exist
positive constants {qℓ : ℓ ∈ N} independent of Ω such that if qℓ > −qℓ for every ℓ ∈ N there exist
positive constants ε0 = ε0({qℓ : ℓ ∈ N},Ω) and δ = δ({qℓ : ℓ ∈ N}) such that it holds∫

Ω

[1
ε
W (u) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)u|2ℓ

]
dx ≥ δ

∫
Ω

[1
ε
W (u) +

k∑
ℓ=1

ε2ℓ−1|∇(ℓ)u|2ℓ
]
dx

for every ε ∈ (0, ε0) and u ∈ Hk(Ω). In particular, letting q̃∗1 , ..., q̃
∗
k−1 denote the same positive

constants appearing in Theorem 1.1 and given {αℓ : ℓ ∈ N} such that αℓ > 0 for all ℓ ∈ N and∑
ℓ∈N αℓ = 1, it holds that qℓ = αℓq̃

∗
ℓ for all ℓ ∈ N .

Proof. By Theorem 1.1, for every ℓ ∈ {1, ..., k − 1} there exists a positive constant q̃∗ℓ independent
of Ω such that for every q > −q̃∗ℓ there exists ε0 = ε0(q,Ω) such that it holds∫

Ω

[1
ε
W (u) + ε2k−1|∇(k)u|2k

]
dx+ q

∫
Ω

ε2ℓ−1|∇(ℓ)u|2ℓ dx ≥ 0 (37)

for every ε ∈ (0, ε0) and u ∈ Hk(Ω).
Let N := {ℓ ∈ {1, ..., k − 1} : qℓ ≤ 0} and consider {αℓ : ℓ ∈ N} such that αℓ > 0 for all ℓ ∈ N

and
∑

ℓ∈N αℓ = 1. Suppose that qℓ > −αℓq̃
∗
ℓ for every ℓ ∈ N and let δ be a positive real number

smaller than 1 such that
1

αℓ

qℓ − δ

1− δ
> −q̃∗ℓ (38)

for all ℓ ∈ N . Note that

αℓ
W (u)

ε
+ qℓε

2ℓ−1|∇(ℓ)u|ℓ + αℓε
2k−1|∇(k)u|k

= (1− δ)
(
αℓ

W (u)

ε
+

qℓ − δ

1− δ
ε2ℓ−1|∇(ℓ)u|ℓ + αℓε

2k−1|∇(k)u|k
)

+ δ
(
αℓ

W (u)

ε
+ ε2ℓ−1|∇(ℓ)u|ℓ + αℓε

2k−1|∇(k)u|k
)
.
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We integrate the above equality and, taking into account (38), we apply (37) with q = 1
αℓ

qℓ−δ
1−δ to

obtain ∫
Ω

[
αℓ

W (u)

ε
+ qℓε

2ℓ−1|∇(ℓ)u|ℓ + αℓε
2k−1|∇(k)u|k

]
dx

≥ δ

∫
Ω

[
αℓ

W (u)

ε
+ ε2ℓ−1|∇(ℓ)u|ℓ + αℓε

2k−1|∇(k)u|k
]
dx (39)

for every ℓ ∈ N , ε < ε0(qℓ,Ω).
Clearly, for ℓ /∈ N the coefficient qℓ is strictly positive; hence it holds∫

Ω

qℓε
2ℓ−1|∇(ℓ)u|2ℓ dx ≥ δ

∫
Ω

qℓε
2ℓ−1|∇(ℓ)u|2ℓ dx (40)

since δ < 1. Therefore, summing over ℓ ∈ {1, ..., k−1} and gathering (39) and (40), upon considering
a smaller ε0 depending on {qℓ : ℓ ∈ N} and Ω, we get∫

Ω

[W (u)

ε
+

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)u|2ℓ

]
dx ≥ δ

∫
Ω

[W (u)

ε
+

k∑
ℓ=1

ε2ℓ−1|∇(ℓ)u|2ℓ
]
dx,

for every ε < ε0, completing the proof. □

Remark 3.8. The above statement clearly holds (for every ε) if N ̸= ∅ with δ := min{qℓ : ℓ ∈
{1, ..., k}}, which is strictly positive.

We conclude this section establishing the surface energy density g is strictly positive. This
observation makes the Γ-limit non trivial.

Proposition 3.9. Let g be the function defined in (12) with k > 1 an integer and let N := {ℓ ∈
{1, ..., k − 1} : qℓ ≤ 0}. Assume that (H1) and (H2) are satisfied, and, if N ̸= ∅, further assume
that qℓ > −qℓ for all ℓ ∈ N , where {qℓ : ℓ ∈ N} denote the same positive constants appearing in
Corollary 3.7. Then infSd−1 g > 0.

Proof. By definition, it holds

g(ν) = inf
{∫

Qν
1

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx : v ∈ Aν

ε , ε ∈ (0, 1)
}
.

Fix ν ∈ Sd−1, let v ∈ Aν
ε , ε ∈ (0, 1), and let {ν1, ..., νd−1, ν} be the orthonormal basis of Rd which

describes Qν
1 . We let Rν

1 denote the set

Rν
1 :=

{
x ∈ Rd : |x · ν| < 1

2
, |x · νi| <

1

4
for every i ∈ {1, ..., d− 1}

}
,

and let Uν be an open set with C1 boundary such that Rν
1 ⊂ Uν ⊂ Qν

1 . We apply Corollary 3.7
with Ω = Uν , and by the equivalence of the norms, we obtain that∫

Uν

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx ≥ δ

∫
Uν

[1
ε
W (v) +

k∑
ℓ=1

ε2ℓ−1|∇(ℓ)v|2ℓ
]
dx

≥ δ

∫
Rν

1

[1
ε
W (v) +

k∑
ℓ=1

ε2ℓ−1|∇(ℓ)v|2ℓ
]
dx

≥ δ′
∫
Rν

1

[1
ε
W (v) + ε2k−1∥∇(k)v∥2k

]
dx
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for every ε small enough and some δ′ > 0 which is independent of Uν . Applying Fubini’s Theorem,
(5), and a change of variable, we obtain∫

Rν
1

[1
ε
W (v) + ε2k−1∥∇(k)v∥2k

]
dx ≥

∫
Rν

1∩ν⊥

∫ 1
2

− 1
2

[1
ε
W (vν,y) + ε2k−1|(vν,y)(k)|2

]
dt dHd−1(y)

=

∫
Rν

1∩ν⊥

∫ 1
2ε

− 1
2ε

[
W

(
vν,yε ) + |(vν,yε )(k)|2

]
dtHd−1(y)

≥ 1

2d−1
inf

{∫ 1
2ε

− 1
2ε

[
W (v) + |v(k)|2

]
dt, v ∈ Hk

((
− 1

2ε
,
1

2ε

))
,

v(t) = sgn(t) if |t| > M for some M ∈
(
0,

1

2ε

)}
,

where we set vν,yε (t) := vν,y(εt). As (H1) and (H2) are satisfied, we are in position to apply
Propositions 4.1, 4.2 in [10], deducing that∫

Uν

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx ≥ δ′

2d−1
mk > 0,

mk being as in (2). Recalling that δ′ only depends on the coefficients q1, ..., qk−1 and on the norms
| · |1, ..., | · |k, and not on Uν , by the arbitrariness of Uν and the Dominated Convergence Theorem
we infer ∫

Q1
ν

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx ≥ δ′

2d−1
mk,

and the conclusion follows by the arbitrariness of v and ε. □

4. Compactness

In this section we prove Theorem 1.2. First, we summarize in a single statement the main results
contained in [10].

Theorem 4.1. Let {E1
ε}ε be defined as in (1) on a bounded, open interval I ⊂ R, let {εn}n be a

positive sequence converging to 0, and assume that W : R → [0,+∞) is a continuous function such
that the following are satisfied:

(H1) W (s) = 0 if and only if s ∈ {−1, 1};
(H̃2) W (s) ≥ αW min{(s+ 1)2, (s− 1)2, βW } for every s ∈ R and for some αW , βW positive.

If {un}n ⊂ Hk(I) is a sequence such that supn E
1
εn(un, I) < +∞, then there exist a subsequence

{unj}j and a function u ∈ BV (I; {−1, 1}) such that unj → u in measure as j → +∞. Moreover, the
family of functionals {E1

ε}ε Γ-converges with respect to the convergence in measure to the functional
E1

0 given by

E1
0(u, I) :=

{
mk#(S(u) ∩ I) if u ∈ BV (I; {−1, 1}),
+∞ if u ∈ L2(I) \BV (I; {−1, 1}),

(41)

where mk is given by (2).

By strengthening the assumptions on W , we improve the result concerning compactness stated
above.

Corollary 4.2. Let {E1
ε}ε be defined as in (1) on a bounded, open set I ⊂ R, let {εn}n be a

positive sequence converging to 0, and assume that (H1) and (H2) are satisfied. If {un}n ⊂ Hk(I)
is a sequence such that supn E1

εn(un, I) < +∞, then there exist a subsequence {unj
}j and a function

u ∈ BV (I; {−1, 1}) such that unj
→ u in L2(I) as j → +∞. Moreover, the family of functionals

{E1
ε}ε Γ-converges with respect to the convergence in L2(I) to the functional E1

0 defined in (41).
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Proof. It suffices to prove the statement in the case I being an interval. Let {un}n ⊂ Hk(I) be
a sequence such that supn E

1
εn(un, I) < +∞. Since (H2) implies (H̃2), we apply Theorem 4.1 to

deduce that, up to subsequences, un → u in measure for some u ∈ BV (I; {−1, 1}). Let A ⊂ I be
measurable, by (H2) we have∫

A

|un|2 dt =
∫
A∩{|un|≤1}

|un|2 dt+
∫
A∩{|un|>1}

|un|2 dt ≤ L1(A) + 2

∫
A

[
W (un) + 1

]
dt,

and since supn E
1
εn(un, I) < +∞, it holds that

∫
I
W (un) dt → 0 as n → +∞. Hence, the sequence

{|un|2}n is equi-integrable, which, together with its convergence in measure, implies un → u in
L2(I).

As for the Γ-limit, the lower bound follows again by Theorem 4.1, while a recovery sequence for
the L2(I)-convergence is obtained exactly as in Proposition 5.3 in [10]. □

At this point, we prove an analogous compactness result for functionals (3), replacing I with
Ω ⊂ Rd, d > 1. This is possible by applying a compactness criterion by slicing that appears in [2].
We introduce some notation specific for its statement: here, Ω denotes a 2-dimensional rectangle
which is the product of the bounded, open intervals I, J , and a point x ∈ Ω is denoted by (y, z),
with y ∈ I, z ∈ J . Given a function u defined on Ω, for every y ∈ I we let uy denote the function
uy(z) := u(y, z) for every z ∈ J , and for every z ∈ J we let uz denote the function uz(y) := u(y, z)
for every y ∈ I. We say that two sequences {un}n and {vn}n are δ-close if ∥un − vn∥L1(Ω) ≤ δ.

Proposition 4.3. Assume that a sequence {un}n ⊂ L1(Ω) is equi-integrable, and that for every
δ > 0 there exist sequences {vn}n and {wn}n δ-close to {un}n, and such that {vyn}n is precompact in
L1(J) for a.e. y ∈ I, and {wz

n}n is precompact in L1(I) for a.e. z ∈ J . Then {un}n is precompact
in L1(Ω).

We employ this result exactly as in [17]. For the convenience of the reader, we sketch the proof,
and for simplicity, we consider only the case d = 2 when needed.

Proposition 4.4. Let {Eε}ε be defined as in (3), let {εn}n be a positive sequence converging
to 0, and assume that (H1) and (H2) are satisfied. If {un}n ⊂ Hk(Ω) is a sequence such that
supn Eεn(un,Ω) < +∞, then there exists a subsequence {unj

}j and a function u ∈ BV (Ω; {−1, 1})
such that, unj

→ u in L2(Ω) as j → +∞.

Proof. For simplicity, in the first part of the proof we suppose d = 2 and Ω being the rectangle I×J ,
otherwise, it suffices to cover a general Ω by essentially disjoint rectangles in order to reduce the
proof to our simpler case. Using the notation previously introduced, we recall that {uy

n}n ⊂ Hk(J)
for a.e. y ∈ I, and, analogously, that {uz

n}n ⊂ Hk(I) for a.e. z ∈ J . In particular, it holds

dkuy
n

dzk
(z) =

∂kun

∂zk
(x),

dkuz
n

dyk
(y) =

∂kun

∂yk
(x)

for a.e. x = (y, z) ∈ Ω and for all n. As a consequence, by the definition of the operatorial norm,

we have ∥∇(k)un∥k ≥ max
{∣∣∣dkuy

n

dzk

∣∣∣, ∣∣∣dkuz
n

dyk

∣∣∣}, and then

Eε(un,Ω) ≥
∫
I

E1
ε (u

y
n, J) dy, Eε(un,Ω) ≥

∫
J

E1
ε (u

z
n, I) dz. (42)

Arguing as in the proof of Corollary 4.2, we find that that {un}n and {|un|2}n are equi-intergable
sequences; therefore, we fix δ > 0 and we find δ′ ∈ (0, δ) such that

L2(A) ≤ δ′L1(J) =⇒ sup
n∈N

∫
A

(|un|+ 1) dx ≤ δ. (43)
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Letting S denote supn Eεn(un,Ω), for every n ∈ N we set

vyn(z) :=

{
uy
n(z) if E1

ε (u
y
n, J) ≤ S/δ′,

1 otherwise.

We also put Yn := {y ∈ I : uy
n − vyn is not identically 0}, and we observe that

L1(Yn) ≤ L1({y ∈ I : E1
ε (u

y
n, J) > S/δ′}) ≤ δ′

S

∫
I

E1
ε (u

y
n, J) dy ≤ δ′,

where the last inequality follows by (42). This inequality, combined with (43), implies that

∥un − vn∥L1(Ω) ≤
∫
Yn×J

(|un|+ 1) dx ≤ δ;

that is, {un}n and {vn}n are δ-close. Moreover, by construction and by (H1), we have that for
every y ∈ I the sequence {vyn}n is such that supn E

1
εn(v

y
n, J) ≤ S/δ′. Hence, by Corollary 4.2, this

sequence is precompact in L2(J), and thus in L1(J).
A similar argument allows to find a sequence {wn}n that is δ-close to {un}n and such that, for

a.e. z ∈ J , the sequence {wz
n}n is precompact in L1(I). Therefore, by applying Proposition 4.3 we

deduce that {un}n is precompact in L1(Ω). Finally, since {|un|2}n is equi-integrable, we deduce
the precompactness in L2(Ω).

To conclude, we prove, without further assumptions on d and Ω, that if the subsequence {unj
}j

converges to u in L2(Ω) as j → +∞, then u ∈ BV (Ω; {−1, 1}). At that end, with the notation
introduced in Section 2, we prove that for every m ∈ {1, ..., d}, the one-dimensional slice uem,y has
bounded variation on the open set Ωem,y for Hd−1-a.e. y ∈ Ωem , and∫

Ωem

#(S(uem,y) ∩ Ωem,y) dHd−1(y) < +∞.

Arguing as previously done for (42), we have that

Eε(unj
,Ω) ≥

∫
Ωem

E1
ε (u

em,y
nj

,Ωem,y) dHd−1(y).

Moreover, upon extracting a further subsequence that we do not relabel, it holds that uem,y
nj

→ uem,y

in L2(Ωem,y) for Hd−1-a.e. y ∈ Ωem . Hence, by Fatou’s lemma and Corollary 4.2 applied with
I = Ωem,y and u = uem,y, we get

+∞ > S ≥ lim inf
j→+∞

Eε(unj
,Ω) ≥

∫
Ωem

lim inf
j→+∞

E1
ε (u

em,y
nj

,Ωem,y) dHd−1(y)

≥
∫
Ωem

E1
0(u

em,y,Ωem,y) dHd−1(y).

As a consequence, E1
0(u

em,y,Ωem,y) is finite for Hd−1-a.e. y ∈ Ωem , which implies that

+∞ > S ≥
∫
Ωem

E1
0(u

em,y,Ωem,y) dHd−1(y)

≥ mk

∫
Ωem

#(S(uem,y) ∩ Ωem,y) dHd−1(y).

Then, since mk > 0, for such y it holds that uem,y ∈ BV (Ωem,y; {−1, 1}), hence, the conclusion
follows applying Theorem 2.3. □

Finally, the proof our main result is an immediate consequence.

Proof of Theorem 1.2. Let S denote supn Fεn(un,Ω). If N = ∅, by the equivalence of the norms
there exists c > 0 such that Fεn(un,Ω) ≥ cEεn(un,Ω) for every n so that

S/c ≥ sup
n

Eεn(un,Ω)
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and the conclusion follows by Proposition 4.4.
If N ≠ ∅, again by the equivalence of the norms and by Corollary 3.7, upon restricting to large n,
it holds

S/δ′ ≥ sup
n

Eεn(un,Ω)

for some δ′ > 0; therefore, the conclusion follows by Proposition 4.4. □

5. Lower bound

In this section we prove the liminf inequality of Theorem 1.3. In particular, we prove the
following.

Proposition 5.1. Let Ω ⊂ Rd be a bounded, open set with C1 boundary and let N := {ℓ ∈
{1, ..., k − 1} : qℓ ≤ 0}. Assume that (H1)-(H3) are satisfied and that one of the following holds:

(i) N = ∅;
(ii) N ̸= ∅ and qℓ > −qℓ for every ℓ ∈ N with the same positive constants {qℓ : ℓ ∈ N}

independent of Ω appearing in Theorem 1.2.
Then for every {εn}n positive sequence converging to 0 and {un}n ⊂ Hk(Ω) such that un → u in
L2(Ω) it holds

F0(u) ≤ lim inf
n→+∞

Fεn(un).

In the following, C denotes a generic positive constant that may change from line to line, but
which is independent of the relevant parameters. We recall that u is a function in Hk

loc(R) such
that u(t) = −1 if t ≤ −1/8 and u(t) = 1 if t ≥ 1/8, |u| ≤ 1, and

0 <

∫ +∞

−∞

[
W (u) +

k∑
ℓ=1

|qℓ||u(ℓ)|2
]
dt < +∞. (44)

Moreover, for every ε > 0 we have set uν
ε (x) := u(x·νε ) for all x ∈ Rd. We observe that, thanks to

(44) the definition of uν
εn and Fubini’s Theorem, for every open bounded set V ⊂ Ω there exists a

constant C > 0 such that for every ν ∈ Sd−1 and n ∈ N we have that

Fεn(uεn , V ) ≤ C

∫
πν(V )

∫ +∞

−∞

[
W (u) +

k∑
ℓ=1

|qℓ||u(ℓ)|2
]
dt dHd−1(y)

≤ C

∫ +∞

−∞

[
W (u) +

k∑
ℓ=1

|qℓ||u(ℓ)|2
]
dt ≤ C, (45)

where πν denotes the orthogonal projection onto ν⊥ and where we have also used that (uν
ε )

ν,y(t) =
u( tε ) for every ε > 0, y ∈ ν⊥, and t ∈ R.

We further set
uν
0(x) := sgn(x · ν), (46)

where sgn denotes the sign function and remark that, for every K ⊂ Rd compact, the sequence
{uν

εn}n converges to uν
0 in L2(K) as n → +∞.

We start by proving a lemma which allows to modify boundary conditions on a converging
sequence at the cost of an asymptotically negligible amount of energy.

At that end, for every x ∈ Rn, ν ∈ Sd−1, we introduce Q̃ν(x) an open subset of Qν(x) having C1

boundary and such that

Q̃ν(x) ∩ {y ∈ Rd : |y · ν| ≤ 1
4} = Qν(x) ∩ {y ∈ Rd : |y · ν| ≤ 1

4}.

We also suppose that all the above sets are congruent, namely, that they are obtained starting by
Q̃ed(0) by a translation and a rotation.
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Lemma 5.2. Let {εn}n be a positive sequence converging to 0, ν ∈ Sd−1, and let {vn}n ⊂ Hk(Q̃ν)

be a sequence converging to uν
0 in L2(Q̃ν). Assume that (H1)-(H3) are satisfied and that one of the

two conditions (i) and (ii) of Proposition 5.1 holds. Then there exists a sequence {wn}n ⊂ Hk(Q̃ν)
such that

(i) wn → uν
0 as n → +∞ L2(Q̃ν),

(ii) the support of wn − un is compactly contained in Q̃ν for every n ∈ N,
(iii) it holds

lim inf
n→+∞

Fεn(wn, Q̃
ν) ≤ lim inf

n→+∞
Fεn(vn, Q̃

ν). (47)

Proof. For the sake of exposition, we only consider the case ν = ed, the others being analogous. For
simplicity of notation, throughout the rest of the proof we set un := uν

εn , and we set Q̃ := Q̃ed(0).
It is not restrictive to assume that

∥vn − un∥L2(Q̃) > 0 for every n ∈ N (48)

as, if vn = un for infinitely many n ∈ N, it enough to set wn := un to conclude. An analogous
argument shows that we may also assume that

lim inf
n→+∞

Fεn(vn, Q̃) = lim
n→+∞

Fεn(vn, Q̃) ≤ C < +∞. (49)

By Corollary 3.7, (45), and (49) there exists a constant δ > 0, independent of n and Q̃, such that∫
Q̃

[W (vn)

εn
+

k∑
ℓ=1

ε2ℓ−1
n |∇(ℓ)vn|2ℓ

]
dx ≤ 1

δ
Fεn(vn, Q̃) ≤ C, (50)

∫
Q̃

[W (un)

εn
+

k∑
ℓ=1

ε2ℓ−1
n |∇(ℓ)un|2ℓ

]
dx ≤ 1

δ
Fεn(un, Q̃) ≤ C, (51)

for n ∈ N large enough depending on {qℓ : qℓ ≤ 0} and Q̃. Additionally, as both vn and un converge
to ued

0 in L2(Q̃) as n → +∞, we have that∫
Q̃

|vn − un|2 dx ≤ C (52)

for every n ∈ N.
Since the set Q̃ is C1, there exists ρ0 > 0 such that for every 0 < ρ < ρ0 there is a unique C1

projection from the neighbourhood {x ∈ Q̃ : dist(x, ∂Q̃) < ρ} onto ∂Q̃. In particular, for every
0 < ρ < ρ0 the sets {x ∈ Q̃ : dist(x, ∂Q̃) = ρ} are (d− 1)-dimensional manifolds in Rd of class C1.

Let 0 < ρ < ρ0/2 and 0 < σ < ρ0/2, and let ⌈ε−1
n ⌉ be the smallest integer larger than or equal

to ε−1
n , so that

εn
2 ≤ ⌈ε−1

n ⌉−1 ≤ εn (53)

for εn < 1. In light of the observations above, the set of class C1 given by

{x ∈ Q̃ : dist(x, ∂Q̃) < ρ+ σ}

can be subdivided in ⌈ε−1
n ⌉ open subsets with C1 boundary defined as

Li
n,σ,ρ :=

{
x ∈ Q̃ : (i− 1)

σ

⌈ε−1
n ⌉

+ ρ < dist(x, ∂Q̃) < i
σ

⌈ε−1
n ⌉

+ ρ
}

for i ∈ {1, ..., ⌈ε−1
n ⌉}. (54)

We observe that
Ld(Li

n,σ,ρ) ≤ C
σ

⌈ε−1
n ⌉

. (55)
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From (50)-(52) we deduce that
⌈ε−1

n ⌉∑
i=1

(∫
Li

n,σ,ρ

[W (vn)

εn
+

k∑
ℓ=1

ε2ℓ−1
n |∇(ℓ)vn|2ℓ

]
dx

+

∫
Li

n,σ,ρ

[W (un)

εn
+

k∑
ℓ=1

ε2ℓ−1
n |∇(ℓ)un|2ℓ

]
dx+

∫
Li

n,σ,ρ

|vn − un|2

∥vn − un∥2L2(Q̃)

dx
)
≤ C,

for every n large enough. Hence, by (53) we find i∗ = i∗(n, σ, ρ) ∈ {1, ..., ⌈ε−1
n ⌉} such that(∫

Li∗
n,σ,ρ

[W (vn)

εn
+

k∑
ℓ=1

ε2ℓ−1
n |∇(ℓ)vn|2ℓ

]
dx

+

∫
Li∗

n,σ,ρ

[W (un)

εn
+

k∑
ℓ=1

ε2ℓ−1
n |∇(ℓ)un|2ℓ

]
dx+

∫
Li∗

n,σ,ρ

|vn − un|2

∥vn − un∥2L2(Q̃)

dx
)
≤ Cεn.

In particular, for every ℓ ∈ {1, ..., k} we have

ε2ℓ−1
n ∥|∇(ℓ)vn|ℓ∥2L2(Li∗

n,σ,ρ)
≤ Cεn, (56)

ε2ℓ−1
n ∥|∇(ℓ)un|ℓ∥2L2(Li∗

n,σ,ρ)
≤ Cεn, (57)

1

εn

∫
Li∗

n,σ,ρ

W (vn) dx+
1

εn

∫
Li∗

n,σ,ρ

W (un) dx ≤ Cεn, (58)∫
Li∗

n,σ,ρ

|vn − un|2 dx ≤ Cεn∥vn − un∥2L2(Q̃)
. (59)

We now introduce the sets

An,σ,ρ :=
{
x ∈ Q̃ : dist(x, ∂Q̃) ≤ ρ+ (i∗ − 1) σ

⌈ε−1
n ⌉

}
,

Bn,σ,ρ :=
{
x ∈ Q̃ : dist

(
x, ∂Q̃) > ρ+ i∗ σ

⌈ε−1
n ⌉},

and cut-off functions ϕn,σ,ρ ∈ C∞
c (Q̃; [0, 1]) such that

ϕn,σ,ρ(x) = 0 if x ∈ An,σ,ρ,

ϕn,σ,ρ(x) = 1 if x ∈ Bn,σ,ρ,

∥|∇(ℓ)ϕn,σ,ρ|ℓ∥L∞(Q̃) ≤ C(σεn)
−ℓ for every ℓ ∈ {1, ..., k}.

(60)

For x ∈ Q̃, we define

wn(x) = wσ,ρ
n (x) := ϕn,σ,ρ(x)vn(x) + (1− ϕn,σ,ρ(x))un(x), (61)

and we observe that wn ∈ Hk(Q̃) and that the support of wn − un is compactly supported in Q̃.
Also note that, since both {vn}n and {un}n converge to ued

0 in L2(Q̃), for every choice of σ and ρ

the sequence {wn}n converges in L2(Q̃) to ued
0 as well.

By (60) and (61), we have

Fεn(wn, Q̃) = Fεn(vn, Bn,σ,ρ) + Fεn(wn, L
i∗

n,σ,ρ) + Fεn(un, An,σ,ρ)

≤ Fεn(vn, Bn,σ,ρ) +

∫
Li∗

n,σ,ρ

[W (wn)

εn
+

k∑
ℓ=1

|qℓ|ε2ℓ−1
n |∇(ℓ)wn|2ℓ

]
dx

+

∫
An,σ,ρ

[W (un)

εn
+

k∑
ℓ=1

|qℓ|ε2ℓ−1
n |∇(ℓ)un|2ℓ

]
dx =: I1n + I2n + I3n. (62)

We now study the asymptotic behaviour of these three quantities.
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We claim that

lim sup
n→+∞

I1n = lim sup
n→+∞

Fεn(vn, Bn,σ,ρ) ≤ lim
n→+∞

Fεn(vn, Q̃) (63)

for every fixed σ, ρ small enough. This inequality follows from an application of Remark 3.6 with
Ω = Q̃, ρ∗ = ρ and σ < R∗(ρ). The choice of these parameters is allowed by our construction, since
we will conclude our proof by letting n → +∞, σ → 0, and ρ → 0, in this order.
To prove (63), we set

Q̃τ := {x ∈ Q̃ : dist(x, ∂Q̃) < τ},

for τ ∈ (ρ, ρ+ σ). Then, by Remark 3.6, for every ℓ ∈ {1, ..., k − 1} we find ε0 = ε0(qℓ, Q̃, ρ, σ) > 0
such that ∫

Q̃τ

[ 1

εn
W (vn) + qℓε

2ℓ−1
n |∇(ℓ)vn|2ℓ

]
dx ≥ 0

holds for every n sufficiently large so that εn ≤ ε0 and for every τ ∈ (ρ, ρ+ σ). Arguing as in the
proof of Corollary 3.7, we deduce that there exists a possibly smaller ε0 = ε0({qℓ : qℓ ≤ 0}, Q̃, ρ, σ)
such that ∫

Q̃τ

[ 1

εn
W (vn) + qℓ

k∑
ℓ=1

ε2ℓ−1
n |∇(ℓ)vn|2ℓ

]
dx ≥ 0 (64)

for every n sufficiently large so that εn ≤ ε0 and for every τ ∈ (ρ, ρ+ σ). We now apply (64) with
τ = ρ+ i∗ σ

⌈ε−1
n ⌉ , so that Q̃τ = Q̃ \Bn,σ,ρ, and obtain that

Fεn(vn, Q̃) = Fεn(vn, Q̃ \Bn,σ,ρ) + Fεn(vn, Bn,σ,ρ) ≥ Fεn(vn, Bn,σ,ρ),

which implies (63).
We now study the term I3n. From Fubini’s Theorem, the definition of un, a change of variable,

and (44), it follows that

I3n ≤ CHd−1(An,σ,ρ ∩ ν⊥)
(∫ +∞

−∞
[W (u(t)) dt+

k∑
ℓ=1

|qℓ||u(ℓ)|2] dt
)
≤ C(ρ+ σ),

so that

lim sup
n→+∞

I3n ≤ C(ρ+ σ). (65)

We now show that I2n is asymptotically negligible. We begin by studying the term involving the
double well potential. We remark that the continuity of W and (H3) imply there exists C > 0 such
that

W (s) ≤ W (t) + C (66)

for every s = (1 − θ)t + θt0 with θ ∈ [0, 1) and |t0| ≤ 1. Indeed, if |t| ≤ 1, then |s| ≤ 1, so that
W (s) ≤ supτ∈[−1,1] W (τ) , while if instead |t| > 1 then s ≤ (1 − θ)|t| + θ|t0| ≤ |t|, so that (66)
follows from (H3). Thus, recalling that |un| ≤ 1, from (66), (58), (55), and (53) we deduce that

1

εn

∫
Li∗

n,σ,ρ

W (wn) dx ≤ 1

εn

(∫
Li∗

n,σ,ρ

W (vn) dx+ CLd(Li∗

n,σ,ρ)
)

≤ Cεn +
Cσ

εn⌈ε−1
n ⌉

≤ C(εn + σ). (67)
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We now investigate the remaining terms in I2n. We note that for every ℓ ∈ {1, ..., k} and multi-
index α of order |α| = ℓ we have

∂αwn =
∑
β≤α

(
α

β

)(
∂βϕn,σ,ρ∂

α−βvn + ∂β(1− ϕn,σ,ρ)∂
α−βun

)
= ϕn,σ,ρ∂

αvn + (1− ϕn,σ,ρ)∂
αun +

∑
0<β≤α

(
α

β

)(
∂βϕn,σ,ρ ∂

α−β(vn − un)
)
.

so that, by (60), we deduce that for every ℓ ∈ {1, ..., k} the following inequality holds

|∇(ℓ)wn|2ℓ ≤ C
(
|∇(ℓ)vn|2ℓ + |∇(ℓ)un|2ℓ

+(σεn)
−2ℓ|vn − un|2 +

ℓ−1∑
j=1

(σεn)
−2(ℓ−j)|∇(j)(vn − un)|2j

)
.

Combining this inequality with (56), (57), (59), and (53) we obtain

ε2ℓ−1
n ∥|∇(ℓ)wn|ℓ∥2L2(Li∗

n,σ,ρ)
≤ Cεn + Cσ−2ℓε−1

n

∫
Li∗

n,σ,ρ

|vn − un|2 dx

+ C

ℓ−1∑
j=1

ε2j−1
n

σ2(ℓ−j)
∥|∇(j)(vn − un)|j∥2L2(Li∗

n,σ,ρ)

≤ Cεn + Cσ−2ℓ∥vn − un∥2L2(Q̃)
+ C

( ℓ−1∑
j=1

1

σ2(ℓ−j)

)
εn.

Finally, this last inequality, together with (67), yields

I2n ≤ Cεn + Cσ + C
( k∑
ℓ=1

σ−2ℓ
)
∥vn − un∥2L2(Q̃)

+ C
( k∑
ℓ=1

ℓ−1∑
j=1

1

σ2(ℓ−j)

)
εn. (68)

Since {vn − un}n converges to 0 in L2(Q̃) as n → +∞, by (62), (63), (65), and (68) we infer that

lim sup
ρ→0

lim sup
σ→0

lim sup
n→+∞

Fεn(wn, Q̃) ≤ lim
n→+∞

Fεn(vn, Q̃).

Recalling that for every fixed σ and ρ the sequence {wn}n = {wn,σ,ρ
n }n converges to uν

0 in L2(Q̃)

and is such that the support of wn − un is compactly contained in Q̃ for all n ∈ N, we let σ and ρ
vary in two positive vanishing sequences and a diagonalization argument concludes the proof. □

We are now ready to prove the liminf inequality. The proof is based on the blow-up argument
of Fonseca and Müller [18].

Proof of Proposition (5.1). Let us fix a positive sequence {εn}n converging to 0 as n → +∞.
Without loss of generality, we may assume that

lim inf
n→+∞

Fεn(un,Ω) = lim
n→+∞

Fεn(un,Ω) ≤ C < +∞. (69)

In light of Theorem 1.2, this implies that u ∈ BV (Ω; {−1, 1}) so that u = 2χE − 1 for E a set
of finite perimeter in Ω and S(u) ∩ Ω = ∂∗E ∩ Ω, where we recall that ∂∗E denotes the reduced
boundary of E.

For every n ∈ N, we consider the measure µn defined by

µn(B) := Fεn(un, B) for every B Borel subset of Ω.

Note that by Corollary 3.7 and (69), upon assuming n large enough, the sequence {fn := W (un)
εn

+∑k
ℓ=1 qℓε

2ℓ−1|∇(ℓ)un|2}n is equibounded in L1(Ω). Therefore, letting |M | denote the total variation
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of a measure M , we have supn |µn|(Ω) ≤ C, so that, up to passing to a not relabelled subsequence,
we may assume that {µn}n and {|µn|}n converge weakly* to two finite Radon measures µ and λ,
respectively. We now show that µ ≥ 0. To this aim, we use the Besicovitch Derivation Theorem
(see [16, Theorem 1.153]) to write for |µ|-a.e. x ∈ Ω

dµ

d|µ|
(x) = lim

r→0+

µ(Br(x))

|µ|(Br(x))
,

where dµ/d|µ| is the Radon-Nikodým derivative of µ with respect to its total variation |µ|. Let us
fix a point x such that the previous equality holds. Since the set {r ∈ (0,+∞) : λ(∂Br(x)) > 0}
is at most countable, we may choose a sequence of positive real numbers {rm}m, vanishing as
m → +∞, such that

dµ

d|µ|
(x) = lim

m→+∞
lim

n→+∞

1

|µ|(Brm(x))

∫
Brm (x)

fn(y) dy.

For every m ∈ N fixed, by Corollary 3.7 the integral in the right-hand side of the previous equality
is non-negative for n ∈ N large enough, hence, we conclude that dµ/d|µ| is non-negative |µ|-a.e.,
and then µ ≥ 0.

By the Radon-Nikodým Theorem we write µ = fHd−1 (∂∗E ∩ Ω) + σ, for f a non-negative
function and for σ a non-negative measure which is singular with respect to Hd−1 (∂∗E ∩ Ω).

We now show that the function f can be estimated from below in terms of the function g defined
by (12). At that end, for every x ∈ Rn, ν ∈ Sd−1, we introduce Q̃ν(x) an open subset of Qν(x)
having C1 boundary and such that

Q̃ν(x) ∩ {y ∈ Rd : |y · ν| ≤ 1
4} = Qν(x) ∩ {y ∈ Rd : |y · ν| ≤ 1

4}. (70)

For every x ∈ ∂∗E ∩ Ω we consider ν = νE(x) the inner unit normal to ∂∗E ∩ Ω at x. By (70),
using Theorem 2.1 one can show that for Hd−1-a.e. x ∈ ∂∗E ∩ Ω we have

lim
r→0

Hd−1(Q̃ν
r (x) ∩ ∂∗E)

rd−1
= 1, (71)

where we used the notation Q̃ν
r (x) = {y ∈ Rn : y/r ∈ Q̃ν(x)}. By the Besicovitch Derivation

Theorem, for Hd−1-a.e. x ∈ ∂∗E ∩ Ω we have

f(x) = lim
r→0+

µ(Q̃ν
r (x))

Hd−1(Q̃ν
r (x) ∩ ∂∗E)

, (72)

Additionally, given x ∈ ∂∗E ∩ Ω such that (72) holds, since {µn}n weakly*-converges to µ,
it follows from (71) and a diagonal argument that there exists a vanishing sequence {rn}n, with
εn ≪ rn, such that

f(x) = lim
n→+∞

µn(Q̃
ν
rn(x))

rd−1
n

. (73)

Upon translating the point x, it is not restrictive to assume that x = 0 ∈ ∂∗E ∩ Ω; moreover, for
the sake of notation and simplicity of exposition, we only discuss the case and νE(x) = ed, the
other cases being analogous.

We write Q̃ in place of Q̃ed(0) and Q̃n in place of Q̃ed
rn(0). Then, we set vn(y) := un(rny) for

every y ∈ Q̃ and, by Theorem 2.1, we have that {vn}n converges in L2(Q̃) to the function ued
0

defined by (46). We further set τn := εn/rn and use the change of variables y = x/rn to obtain

µn(Q̃n)

rd−1
n

=
Fεn(un, Q̃n)

rd−1
n

=

∫
Q̃

[ 1

τn
W (vn) +

k∑
ℓ=1

qℓτ
2ℓ−1
n |∇(ℓ)vn|2ℓ

]
dy. (74)

Since {vn}n satisfies all the hypotheses of Lemma 5.2, we can apply such Lemma to obtain a
sequence {wn}n ⊂ Hk(Q̃) which satisfies (i)-(iii) of said Lemma.



28 GIUSEPPE COSMA BRUSCA, DAVIDE DONATI, AND CHIARA TRIFONE

Noting that τn → 0 as n → +∞, by (73), (74) and (iii) of Lemma 5.2, it follows

f(0) ≥ lim inf
n→+∞

∫
Q̃

[ 1

τn
W (wn) +

k∑
ℓ=1

qℓτ
2ℓ−1
n |∇(ℓ)wn|2ℓ

]
dy.

Now we observe that, by (ii) of Lemma 5.2, putting

wn := ued
τn on Qed

1 (0) \ Q̃

for all n ∈ N, we have {wn}n ⊂ Aed
τn . Moreover, since ued(y) = 0 if y ∈ {z : |z · ed| > 1

8}, it follows
that ued

τn(y) = 0 if y ∈ {z : |z · ed| > τn
8 }.

Therefore, by (70), we have

f(0) ≥ lim inf
n→+∞

∫
Qed (0)

[ 1

τn
W (wn) +

k∑
i=1

qℓτ
2ℓ−1
n |∇(ℓ)wn|2ℓ

]
dy,

and by the definition of g in (12), we conclude

f(0) ≥ g(ed).

Since the above argument holds for Hd−1-a.e. x ∈ ∂∗E ∩ Ω and every ν = νE(x), we obtain

f(x) ≥ g(νE(x)). (75)

Finally, by the inequality lim infn µn(Ω) ≥ µ(Ω) we infer that

lim
n→+∞

Fεn(un,Ω) = lim
n→+∞

µn(Ω) ≥ µ(Ω) =

∫
∂∗E∩Ω

f(x) dHd−1(x) + σ(Ω)

and, recalling that σ(Ω) ≥ 0 and exploiting (75), this last inequality leads to

lim
n→+∞

Fεn(un,Ω) ≥
∫
∂∗E∩Ω

f(x) dHd−1(x) ≥
∫
∂∗E∩Ω

g(νE(x))dHd−1(x),

concluding the proof. □

6. Upper bound

In this section we conclude the proof of Theorem 1.3 by proving the limsup inequality. As in
Section 5, C denotes a generic positive constant that may change from line to line, but which is
independent of the relevant parameters. We now state the main result of the section.

Proposition 6.1. Let Ω ⊂ Rd be a bounded, open set with C1 boundary. Let {εn}n be a positive
sequence converging to 0 and let u ∈ BV (Ω; {−1,+1}). Assume that (H1)-(H3) are satisfied. Then
there exists a sequence {un}n ⊂ Hk(Ω) converging to u in L2(Ω) as n → +∞ and such that

lim sup
n→+∞

Fεn(un) ≤ F0(u).

Proof. We subdivide the proof in three parts.
Step 1. First, we consider the case where Ω has Lipschitz boundary (and not necessarily C1)

and u = 2χA − 1, where

A := {x ∈ Ω : (x− x0) · ν > 0}

for some x0 ∈ Ω and ν ∈ Sd−1 such that

νΩ(x) ⊥ ν for every x ∈ ∂Ω with |(x− x0) · ν| small enough, (76)

recalling that νΩ(x) is the inner unit normal to Ω at x. For the sake of exposition, we assume
x0 = 0 and ν = ed, the other cases being analogous, so that for every x ∈ Ω we have u(x) = ued

0 (x),
where by definition ued

0 (x) = sgn(x · ed), and

F0(u) = g(ed)Hd−1 (Ω ∩ {xd = 0}) .
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For every η > 0, there exist 0 < ε0 < 1 and v ∈ Aed
ε0 such that v = ued

ε0 in a neighborhood of
∂Qed

1 , and ∫
Q

ed
1

[ 1

ε0
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1
0 |∇(ℓ)v|2ℓ

]
dx ≤ g(ed) + η. (77)

By Proposition 2.4, upon rotating Qed
1 leaving ed fixed, we may assume that Qed

1 = Q := (− 1
2 ,

1
2 )

d.
We then extend v to a function in Hk

loc(Rd) which is periodic in the first d − 1 variables; that is,
such that

v(x) = v(x+ ei), (78)
for all i ∈ {1, ..., d− 1}. We also set Ωn := {x ∈ Ω : |xd| ≤ εn

2ε0
} for every n ∈ N.

We claim that a recovery sequence for u is given by the sequence of functions {un} ⊂ Hk(Ω)
defined by

un(x) :=

{
v
(
ε0x
εn

)
if x ∈ Ωn,

u(x) if x ∈ Ω \ Ωn.
(79)

To prove the claim, we first show that

∥un − u∥L2(Ω) → 0 as n → +∞. (80)

To this aim, we set Ω′ :=
{
x′ ∈ Rd−1 : (x′, 0) ∈ Ω

}
and observe that by (76), it holds

Ω ∩ Ωn = Ω′ ×
[
− εn
2ε0

,
εn
2ε0

]
for n sufficiently large.
Using the change of variables (x′, xd) → (x′, εn

ε0
xd), by Fubini’s Theorem and (79) we have∫

Ωn

|un|2 dx =

∫
Ω′

∫ εn
2ε0

− εn
2ε0

∣∣v(ε0x′

εn
,
ε0xd

εn

)∣∣2dxddx
′

=
εn
ε0

∫ 1
2

− 1
2

∫
Ω′

∣∣v(ε0x′

εn
, xd

)∣∣2dx′dxd.

We observe that, since v ∈ Hk
loc(Rd), the function f : Rd−1 → R defined by

f(y) =

∫ 1
2

− 1
2

|v(y, xd)|2 dxd for every y ∈ Rd−1

is integrable on Ω′ and that, by definition of v, it is periodic. We may then apply the Riemann-
Lebesgue Lemma to the function f to obtain

lim
n→+∞

∫
Ω′

∫ 1
2

− 1
2

∣∣v(ε0x′

εn
, xd

)∣∣2dxd dx
′ =

∫
Ω′

∫
(− 1

2 ,
1
2 )

d−1

∫ 1
2

− 1
2

|v(y′, xd)|
2
dxd dy

′ dx′

= Ld−1(Ω′)∥v∥2L2(Q), (81)

which implies ∫
Ωn

|un|2 dx ≤ εn
ε0

∥v∥2L2(Q). (82)

From this inequality, (79), and the fact that u takes values only in {±1}, we deduce that

∥un − u∥2L2(Ω) ≤ 2

∫
Ωn

|un|2 dx+ 2Ld(Ωn) ≤ C
εn
ε0

+ 2Ld(Ωn),

which tends to 0 as n → +∞. This inequality proves (80).
We now show that {un}n is a recovery sequence for u. To this aim, we first note that for every

x ∈ Ω \ Ωn we have

un(x) = u(x) ∈ {−1, 1} and ∇(ℓ)un(x) = 0 for every ℓ ∈ {1, ..., k},
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while, if x ∈ Ωn, we have

∇(ℓ)un(x) =
( ε0
εn

)ℓ

∇(ℓ)v
(ε0x
εn

)
for every ℓ ∈ {1, ..., k}.

Then, we use (H1), (79), Fubini’s Theorem, and a change of variable to obtain

Fεn(un) =

∫
Ωn

[ 1

εn
W (un) +

k∑
ℓ=1

qℓε
2ℓ−1
n |∇(ℓ)un|2ℓ

]
dx

=

∫
Ω′

∫ εn
2ε0

− εn
2ε0

[ 1

εn
W

(
v
(ε0x′

εn
,
ε0xd

εn

))
+

k∑
ℓ=1

qℓε
2ℓ
n

∣∣∇(ℓ)v
(ε0x
εn

,
ε0xd

εn

)∣∣2
ℓ

]
dxd dx

′

=

∫
Ω′

∫ 1
2

− 1
2

[ 1

ε0
W

(
v
(ε0x′

εn
, xd

))
+

k∑
ℓ=1

qℓε
2ℓ−1
0

∣∣∇(ℓ)v
(ε0x′

εn
, xd

)∣∣2
ℓ

]
dxddx

′ (83)

for every n ∈ N. Since v satisfies (77), the function h : Rd−1 → Rd defined for y ∈ Rd−1 by

h(y) :=

∫ 1
2

− 1
2

[ 1

ε0
W (v(y′, xd)) +

k∑
ℓ=1

qℓε
2ℓ−1
0 |∇(ℓ)v(y′, xd)|2ℓ

]
dxd

is integrable and, by (78), is also periodic. Therefore, we may apply once again the Riemann-
Lebesgue Lemma to obtain

lim
n→+∞

∫
Ω′

∫ 1
2

− 1
2

[ 1

ε0
W

(
v
(ε0x′

εn
, xd

))
+

k∑
ℓ=1

qℓε
2ℓ−1
0

∣∣∇(ℓ)v
(ε0x′

εn
, xd

)∣∣2
ℓ

]
dxd dx

′

= Ld−1(Ω′)

∫
Q

[ 1

ε0
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1
0 |∇(ℓ)v|2ℓ

]
dx.

Combining this equality with (83) and (77), we conclude that

lim
n→+∞

Fεn(un) = Ld−1(Ω′)

∫
Q

[ 1

ε0
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1
0 |∇(ℓ)v|2ℓ

]
dx ≤ F0(u) + Ld−1(Ω′)η.

Since η was arbitrary, a diagonal argument allows to prove the thesis in this special case.
Step 2. We now assume that u = 2χA − 1, with A = P ∩ Ω and P polyhedral. This means

that ∂P =
⋃M

i=1 Hi ∪ F , where the sets (Hi)
M
i=1 are pairwise disjoint and relatively open convex

polyhedra of dimension d − 1, while F is the union of a finite number of convex polyhedra of
dimension d− 2. In particular, there exists ν1, ..., νM ∈ Sd−1 and x1, ..., xM ∈ Rd such that

Hi ⊆ {x ∈ Rd : (x− xi) · νi = 0},
and each νi is the inner unit normal to ∂P on Hi. For simplicity, we may also assume that ∂Ω∩∂P
is the union of a finite number of C1 manifolds of dimension d− 2.

Let us fix 0 < σ < 1 and let H ′
1, ...,H

′
M relatively open subsets of H1, ...,HM with (d − 2)-

dimensional boundary of class C1, such that{
x ∈ Hi ∩ Ω : dist(x, ∂Ω ∪ F ) ≥ σ

2

}
⊆ H ′

i ⊆ H ′
i ⊆ Hi.

Fix 0 < η < σ
2 and define for each i ∈ {1, ...,M}

Ωi := {x+ tνi : x ∈ H ′
i, t ∈ (−η, η)}.

We can choose η so small that the sets Ω1, ...,ΩM are pairwise disjoint. Since each Ωi, satisfies
(76), by the previous step, we obtain sequences {ui

n}n ⊂ Hk(Ωi) such that

ui
n → u in L2(Ωi), (84)

ui
n(x) = u(x) for every x ∈

{
x ∈ Ωi : dist(x,Hi) ≥ εn

2εi0

}
,
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and
lim sup
n→∞

Fεn(u
i
n,Ωi) ≤ (g(νi) + η)Hd−1(Ωi ∩Hi), (85)

where for every x ∈ Ωi it holds

ui
n(x) :=

 vi
( εi0x

εn

)
if |(x− xi) · νi| ≤ εn

2εi0
,

u(x) if |(x− xi) · νi| > εn
2εi0

,

and, for each i ∈ {1, ...,M}, vi and εi0 are such that∫
Q

νi
1

[ 1

εi0
W (v) +

k∑
ℓ=1

qℓ(ε
i
0)

2ℓ−1|∇(ℓ)v|2ℓ
]
dx ≤ g(νi) + η. (86)

In order to present the candidate recovery sequence, we let (Ψε)ε>0 be a radial smooth convolu-
tion kernel, with suppΨε ⊂ Bε(0) and

∫
Ψε dx = 1 for every ε > 0. We extend u to the whole Rd

by setting u := 2χP − 1 and introduce smooth functions ũn defined for every n ∈ N by

ũn := u ∗Ψεn ,

where ∗ denotes the operation of convolution. Observe that these functions satisfy the following
conditions

ũn(x) = u(x) for every x ∈ {x ∈ Ω : dist(x, ∂P ) ≥ εn}, (87)

∥ũn∥L∞(Rd) ≤ 1 and ∥|∇(ℓ)ũn|ℓ∥L∞(Rd) ≤
C

εℓ
for every ℓ ∈ {1, ..., k}. (88)

For τ ∈ (0, 1) we set
Uτ := {x ∈ Ω : dist(x, F ∪ (∂Ω ∩ ∂P )) ≤ τ}

and choose cut-off functions ϕσ ∈ C∞
c (Rd; [0, 1]) such that

ϕσ(x) = 1 if x ∈ Uσ,

ϕσ(x) = 0 if x ∈ Rd \ U2σ,

∥|∇(ℓ)ϕσ|ℓ∥L∞(Rd) ≤ Cσ−ℓ for every ℓ ∈ {1, ..., k}.
(89)

We claim that the sequence of functions {un}n ⊂ Hk(Ω) defined by

un :=

{
(1− ϕσ)u

i
n + ϕσũn in Ωi for i ∈ {1, ...M},

ũn in Ω′ := Ω \ ∪M
i=1Ωi

is a recovery sequence for u.
The fact that {un}n ⊂ Hk(Ω) follows from the same argument used in [11, Theorem 1.3, Substep

2B]. Also, (84) and the fact that ũn → u in L2(Ω) imply that un → u in L2(Ω) as n → +∞.
We now study the asymptotic behaviour of the energy of {un}. First, we show that Fεn(un,Ω

′)
is negligible. To this aim, for every n ∈ N we set

Rn :=
{
x ∈ Ω : dist(x, ∂P ) ≤ max

{
εn,

εn
2ε10

, ...,
εn
2εM0

}}
. (90)

We observe that Ω′ ∩ Rn ⊂ Uσ for n large enough and that Hd−1(∂P ∩ Uσ) ≤ Cσ. Hence, by the
definition of Ω′, (87), and (88), we have

Fεn(un,Ω
′) =

∫
Ω′∩Rn

[ 1

εn
W (ũn) +

k∑
ℓ=1

|qℓ|ε2ℓ−1
n |∇(ℓ)ũn|2ℓ

]
dx ≤ Cσ. (91)
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We now study the energetic contribution of the remaining terms. We fix i ∈ {1, ...,M} and
compute

Fεn(un,Ωi) = Fεn(u
i
n,Ωi \ U2σ) + Fεn(un,Ωi ∩ (U2σ \ Uσ)) + Fεn(ũn,Ωi ∩ Uσ)

≤ Fεn(u
i
n,Ωi \ U2σ) +

∫
Ωi∩(U2σ\Uσ)

[ 1

εn
W (un) +

k∑
ℓ=1

|qℓ|ε2ℓ−1
n |∇(ℓ)un|2ℓ

]
dx

+

∫
Ωi∩Uσ

[ 1

εn
W (ũn) +

k∑
ℓ=1

|qℓ|ε2ℓ−1
n |∇(ℓ)ũn|2ℓ

]
dx

=: K1
n +K2

n +K3
n.

We separately investigate the three terms K1
n,K2

n, and K3
n, starting from K1

n. Recalling that qk = 1,
we observe that

K1
n =

∫
Ωi\U2σ

[ 1

εn
W (ui

n) + ε2k−1
n |∇(k)ui

n|2k
]
dx+

∫
Ωi\U2σ

[k−1∑
ℓ=1

qℓε
2ℓ−1
n |∇(ℓ)ui

n|2ℓ
]
dx

≤
∫
Ωi

[ 1

εn
W (ui

n) + ε2k−1
n |∇(k)ui

n|2k
]
dx+

∫
Ωi

[k−1∑
ℓ=1

qℓε
2ℓ−1
n |∇(ℓ)ui

n|2ℓ
]
dx

−
∫
Ωi∩U2σ

[k−1∑
ℓ=1

qℓε
2ℓ−1
n |∇(ℓ)ui

n|2ℓ
]
dx

≤ Fεn(u
i
n,Ωi) +

∫
Ωi∩U2σ

[k−1∑
ℓ=1

|qℓ|ε2ℓ−1
n |∇(ℓ)ui

n|2ℓ
]
dx. (92)

By the periodicity of ui
n with respect to the variables tangential to Hi, we may argue as in Step 1,

using Fubini’s Theorem and the Riemann-Lebesgue Lemma to deduce that

lim
n→+∞

∫
Ωi∩U2σ

[k−1∑
ℓ=1

|qℓ|ε2ℓ−1
n |∇(ℓ)ui

n|2ℓ
]
dx ≤ Cσ

∫
Q

νi
1

[ k−1∑
ℓ=1

|∇(ℓ)vi|2ℓ
]
dx ≤ Cσ.

Hence, it follows from (92) and (85) that

lim sup
n→+∞

K1
n ≤ (g(νi) + η)Hd−1(Hi ∩ Ωi) + Cσ. (93)

We now investigate the term K2
n. We begin observing that for every ℓ ∈ {1, ..., k} and multi-index

α of order |α| = ℓ, we have

∂αun =
∑
β≤α

(
α

β

)(
∂β(1− ϕσ)∂

α−βui
n + ∂βϕσ∂

α−β ũn

)
= (1− ϕσ)∂

αui
n + ϕσ∂

αũn +
∑

0<β≤α

(
α

β

)(
∂βϕσ ∂

α−β(ũn − ui
n)
)
,

which by (89) implies

|∇(ℓ)un|2ℓ ≤ C
(
|∇(ℓ)ui

n|2ℓ + |∇(ℓ)ũn|2ℓ

+σ−2ℓ|ũn − ui
n|2 +

ℓ−1∑
j=1

σ−2(ℓ−j)|∇(j)(ũn − ui
n)|2j

)
. (94)

Since by (H3) we have that
W (un) ≤ W (ui

n) + C, (95)
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it follows from (90), (94), and (95) that

K2
n ≤ C

∫
Ωi∩(U2σ\Uσ)∩Rn

[ 1

εn
W (ui

n) +
1

εn
+

k∑
ℓ=1

|qℓ|ε2ℓ−1
n

(
|∇(ℓ)ui

n|2ℓ +
ℓ−1∑
j=1

σ−2(ℓ−j)|∇(j)ui
n|2j

)]
dx

+ C

∫
Ωi∩(U2σ\Uσ)∩Rn

[ k∑
ℓ=1

|qℓ|ε2ℓ−1
n

(
|∇(ℓ)ũn|2ℓ + σ−2ℓ|ui

n − ũn|2 +
ℓ−1∑
j=1

σ−2(ℓ−j)|∇(j)ũn|2j
)]

dx.

Arguing as in (81) and (83), we obtain that

lim
n→+∞

∫
Ωi∩(U2σ\Uσ)∩Rn

[ 1

εn
W (ui

n) +
1

εn
+

k∑
ℓ=1

|qℓ|ε2ℓ−1
n

(
|∇(ℓ)ui

n|2ℓ +
ℓ−1∑
j=1

σ−2(ℓ−j)|∇(j)ui
n|2j

)]
dx

≤ CHd−1(Hi ∩ U2σ) ≤ Cσ. (96)

Then, we observe that using (82), with un replaced by ui
n, v replaced by vi, and Ω replaced by Ωi,

together with (88), we have∫
Ωi∩(U2σ\Uσ)∩Rn

[ k∑
ℓ=1

|qℓ|ε2ℓ−1
n

(
|∇(ℓ)ũn|2ℓ + σ−2ℓ|ũn − ui

n|2 +
ℓ−1∑
j=1

σ−2(ℓ−j)|∇(j)ũn|2j
)]

dx

≤ C

εn

( k∑
ℓ=1

(
1 +

ℓ−1∑
j=1

ε
2(ℓ−j)
n

σ2(ℓ−j)

))
Ld

(
Ωi ∩ (U2σ \ Uσ) ∩Rn

)
+ C

k∑
ℓ=1

( ε2ℓn
σ2ℓ

∥vi∥2L2(Ωi)
+

ε2ℓ−1
n

σ2ℓ
Ld

(
Ωi ∩ (U2σ \ Uσ) ∩Rn

))
≤ C

( k∑
ℓ=1

(
1 +

ℓ−1∑
j=1

ε
2(ℓ−j)
n

σ2(ℓ−j)

))
σ + C

k∑
ℓ=1

( ε2ℓn
σ2ℓ

+
ε2ℓn

σ2ℓ−1

)
. (97)

As
k∑

ℓ=1

ℓ−1∑
j=1

ε
2(ℓ−j)
n

σ2(ℓ−j)
+

k∑
ℓ=1

( ε2ℓn
σ2ℓ

+
ε2ℓn

σ2ℓ−1

)
−→ 0 for n → +∞,

combining (96) with (97), we obtain that

lim sup
n→+∞

K2
n ≤ Cσ. (98)

To conclude, we use (88) to estimate the remaining term K3
n as

Kn
3 ≤

∫
Uσ∩{x:|(x−xi)·νi|≤εn}

[ 1

εn
W (ũn) +

k∑
ℓ=1

|qℓ|ε2ℓ−1
n |∇(ℓ)ũn|2ℓ

]
dx

≤ C

εn
Ld ({x ∈ Uσ : |(x− xi) · νi| ≤ εn}) ≤ CHd−1(Uσ ∩Hi) ≤ Cσ. (99)

Finally, gathering (91), (93),(98), (99), and summing over i ∈ {1, ...,M} we obtain that

lim sup
n→+∞

Fεn(un,Ω) ≤
M∑
i=1

lim sup
n→+∞

Fεn(un,Ωi) + lim sup
n→+∞

Fεn(un,Ω
′)

=

m∑
i=1

(g(νi) + η)Hd−1(Ωi ∩Hi) + Cσ ≤ F0(u) + C(η + σ).

Since η > 0 and σ > 0 were arbitrary, a diagonal arguments allows to conclude.
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Step 3. Finally, we deal with the general case u = 2χA − 1, for A ⊆ Ω a set of relatively
finite perimeter in Ω. By Theorem 2.2, we can find a sequence of polyhedral sets {An}n such that
χAn

→ χA in L1(Ω). By the previous step, setting un := 2χAn
− 1,

Γ- lim sup
ε→0

Fε(un) ≤ F0(un) for every n ∈ N, (100)

where we recall that the Γ-limsup is the functional defined by (15). By the lower semicontinuity of
the Γ-limsup we then infer

Γ- lim sup
ε→0

Fε(u) ≤ lim inf
n→∞

Γ- lim sup
ε→0

Fε(un) ≤ lim inf
n→∞

F0(un). (101)

Since g is upper semicontinous on Sd−1 (see Proposition 2.4 above), by [13, Remark 9.11, Theorem
9.15] there exists a sequence {gm}m of Lipschitz continuous functions such that g ≤ gm+1 ≤ gm ≤
maxSd−1 g and

g(ν) = inf
m∈N

gm(ν) for every ν ∈ Sd−1.

Using again Theorem 2.2 and (14), we obtain for every m ∈ N that

lim
n→+∞

∫
∂∗An∩Ω

gm(νAn
(x))dHd−1(x) =

∫
∂∗A∩Ω

gm(νA(x))dHd−1(x)

so that by monotonicity

lim inf
n→∞

F0(un) = lim inf
n→∞

∫
∂∗An∩Ω

g(νAn
(x))dHd−1(x)

≤ lim
n→∞

∫
∂∗An∩Ω

gm(νAn
(x))dHd−1(x)

=

∫
∂∗A∩Ω

gm(νA(x))dHd−1(x).

Finally, by Monotone Convergence we obtain that

lim inf
n→∞

F0(un) ≤ lim
m→∞

∫
∂∗A∩Ω

gm(νA(x))dHd−1(x)

≤
∫
∂∗A∩Ω

g(νA(x))dHd−1(x) = F0(u),

which concludes the proof. □

7. Analysis of the cell problem in dimension 1

In this final section we analyse the surface energy density g defined in (12) when d = 1. In this
instance, such density clearly is a constant that we prove being determined by an optimal-profile
problem on the real line. It is not restrictive to assume that | · |ℓ coincides with the absolute value
for every ℓ ∈ {1, ..., k} as any norm on R is a multiple of the euclidean one.

By Remark 2.5 and by a change of variable, we find that

g = inf
T> 1

2

inf
{∫ T

−T

[
W (v) +

k∑
ℓ=1

qℓ|v(ℓ)|2
]
dt : v ∈ Hk((−T, T )),

v(t) = sgn(t) if |t| > M for some M ∈ (0, T )
}

= lim
T→+∞

inf
{∫ T

−T

[
W (v) +

k∑
ℓ=1

qℓ|v(ℓ)|2
]
dt : v ∈ Hk((−T, T )),

v(t) = sgn(t) if |t| > M for some M ∈ (0, T )
}
,
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hence, for T > 1/2, we set

m(T ) := inf
{∫ T

−T

[
W (v) +

k∑
ℓ=1

qℓ|v(ℓ)|2
]
dx, v ∈ Hk((−T, T )),

v(t) = sgn(t) if |t| > M for some M ∈ (0, T )
}
,

in such a way that
g = lim

T→+∞
m(T ),

and we put

m := inf
{∫ +∞

−∞

[
W (u) +

k∑
ℓ=1

qℓ|u(ℓ)|2
]
dt : u ∈ Hk

loc(R), lim
t→±∞

u(t) = ±1
}
. (102)

The main result of this section is that, under the by now usual, suitable assumptions on the coef-
ficients q1, ..., qk−1, the equality g = m holds. In order to prove this, we state the one-dimensional
version of Corollary 3.7 at scale ε = 1.

Corollary 7.1. Let I ⊂ R be an open interval of length 1, let k > 1 be an integer, and let
N := {ℓ ∈ {1, ..., k−1} : qℓ ≤ 0}. Assume that (H2) is satisfied, and, if N ̸= ∅, further assume that
qℓ > −q′ℓ for all ℓ ∈ N , where, letting {q′ℓ : ℓ ∈ N} denote the same positive constants appearing in
Corollary 3.3 and given {αℓ : ℓ ∈ N} such that αℓ > 0 for all ℓ ∈ N and

∑
ℓ∈N αℓ = 1, it holds

that q′ℓ = αℓq
′
ℓ for all ℓ ∈ N . Then, there exists a positive constant δ = δ({qℓ : ℓ ∈ N}) such that∫

I

[
W (u) +

k∑
ℓ=1

qℓ|u(ℓ)|2
]
dt ≥ δ

∫
I

[
W (u) +

k∑
ℓ=1

|u(ℓ)|2
]
dt

for every u ∈ Hk(I).

Proof. The proof is obtained by following the same line of the one of Corollary 3.7, with Corollary
3.3 used for every ℓ ∈ {1, ..., k − 1} in place of Theorem 1.1. □

Proposition 7.2. Let k > 1 be an integer, assume that qℓ > −q′ℓ for all ℓ ∈ N , with N and {q′ℓ : ℓ ∈
N} as in Corollary 7.1, and assume that (H1) and (H2) are satisfied. Then m = limT→+∞ m(T ).

Proof. Clearly, m(T ) ≥ m for every T ; hence, limT→+∞ m(T ) ≥ m.
To prove the converse, let u ∈ Hk

loc(R) be such that limt→±∞ u(t) = ±1 and
∫ +∞
−∞ [W (u) +∑k

ℓ=1 qℓ|u(ℓ)|2] dt < +∞, and let To > 0 be such that ||u(t)| − 1| < 1/2 if |t| > To.
Consider a function ϕ ∈ C∞(R; [0, 1]) that is supported in (−∞, 1/2) and such that ϕ(t) = 1 for

every t < 0. For every n ∈ N we set

vn(t) := ϕ(t− n)u(t) + 1− ϕ(t− n),

and we observe that vn coincides with u on (−∞, n) and it is constantly equal to 1 on (n+1/2,+∞).
As a consequence∫ +∞

−∞

[
W (vn) +

k∑
ℓ=1

qℓ|v(ℓ)n |2
]
dt =

∫ n− 1
2

−∞

[
W (u) +

k∑
ℓ=1

qℓ|u(ℓ)|2
]
dt

+

∫ n+ 1
2

n− 1
2

[
W (vn) +

k∑
ℓ=1

qℓ|v(ℓ)n |2
]
dt.

We estimate the energy of the function vn on the interval (n− 1/2, n+ 1/2); that is, we estimate∫ n+ 1
2

n− 1
2

[
W (vn) +

k∑
ℓ=1

qℓ|v(ℓ)n |2
]
dt. (103)
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First, we observe that min{u(t), 1} ≤ vn(t) ≤ max{u(t), 1} for all t ∈ R and n ∈ N; therefore, since
u(t) → 1 as t → +∞, for every ε > 0 there exists Tε > 0 such that |vn(t) − 1| < ε for all t > Tε

and n ∈ N. Hence, the continuity of W and (H1) imply that

lim
n→+∞

∫ n+ 1
2

n− 1
2

W (vn) dt = 0. (104)

As for the derivatives of vn, we observe that for all ℓ ∈ {1, ..., k−1}, there exists a positive constant
C depending on k, ℓ and the function ϕ, such that

|v(ℓ)n (t)|2 ≤ C
{
|u(t)− 1|2 +

ℓ∑
j=1

|u(j)(t)|2
}

for all t ∈ R,

therefore, ∣∣∣∫ n+ 1
2

n− 1
2

[ k∑
ℓ=1

qℓ|v(ℓ)n |2
]
dt
∣∣∣ ≤ q0

k∑
ℓ=1

∫ n+ 1
2

n− 1
2

[
C
{
|u− 1|2 +

ℓ∑
j=1

|u(ℓ)|2
}]

dt

≤ q0Ck

∫ n+ 1
2

n− 1
2

[
W (u) +

k∑
ℓ=1

|u(ℓ)|2
]
dt,

where q0 := max{|q1|, ..., |qk−1|, 1}, and the last inequality follows by (H2) assuming that n−1 > To.
By Corollary 7.1, there exists a positive δ such that∫ n+ 1

2

n− 1
2

[
W (u) +

k∑
ℓ=1

qℓ|u(ℓ)|2
]
dt ≥ δ

∫ n+ 1
2

n− 1
2

[
W (u) +

k∑
ℓ=1

|u(ℓ)|2
]
dt

for every n; therefore∣∣∣∫ n+ 1
2

n− 1
2

[ k∑
ℓ=1

qℓ|v(ℓ)n |2
]
dt
∣∣∣ ≤ q0Ck

δ

∫ n+ 1
2

n− 1
2

[
W (u) +

k∑
ℓ=1

qℓ|u(ℓ)|2
]
dt, (105)

which tends to 0 as n → +∞.
Gathering (104) and (105), we obtain that (103) vanishes as n → +∞. With a similar reasoning,

we obtain functions {wn}n ⊂ Hk
loc(R) which coincide with u on (−n, n), which are equal to the sign

function outside (−n− 1
2 , n+ 1

2 ), and such that∫ +∞

−∞

[
W (wn) +

k∑
ℓ=1

qℓ|w(ℓ)
n |2

]
dt =

∫ n+ 1
2

−n− 1
2

[
W (u) +

k∑
ℓ=1

qℓ|u(ℓ)|2
]
dt+ on(1).

Since each function wn is admissible for the minimum problem m(n + 1), letting n → +∞ the
conclusion follows by the arbitrariness of u. □

Finally, we prove the existence of an optimal-profile. We omit some minor details in the proof
as the arguments involved are similar to those that appear in the proofs of Proposition 4.1, 4.2 in
[10] and Lemma 2.5 in [17].

Proposition 7.3. Let k > 1 be an integer, assume that qℓ > −q′ℓ for all ℓ ∈ N , with N and
{q′ℓ : ℓ ∈ N} as in Corollary 7.1, and assume that (H1) and (H2) are satisfied. Then, the infimum
(102) is a minimum.

Proof. Consider {un}n a minimizing sequence and, by translation invariance, assume that un(0) = 0
for every n ∈ N. Applying Corollary 7.1 on each interval (j, j + 1), j ∈ Z and summing over j, we
have ∫ +∞

−∞

[
W (un) +

k∑
ℓ=1

qℓ|u(ℓ)
n |2

]
dt ≥ δ

∫ +∞

−∞

[
W (un) +

k∑
ℓ=1

|u(ℓ)
n |2

]
dt (106)
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for all n ∈ N, and then

sup
n

∫ +∞

−∞

[
W (un) +

k∑
ℓ=1

|u(ℓ)
n |2

]
dt < +∞. (107)

We apply the Fundamental Theorem of Calculus and Hölder’s inequality to obtain

|un(t)| ≤
∫ t

0

|u′
n(s)| ds ≤

√
t∥u′

n∥L2(R) for all t ∈ R,

which, combined with (107), implies that for every T > 0 there exists a positive constant C(T )
such that

sup
n

∥un∥Hk((−T,T )) ≤ C(T ).

Therefore, there exists u ∈ Hk
loc(R) such that, up to subsequences, {u(ℓ)

n }n converges locally uni-
formly on compact subsets of R to u(ℓ) for all ℓ ∈ {0, ..., k − 1}, with the convention that v(0) = v,
and u

(k)
n ⇀ u(k) weakly in L2(R). Note that, in particular, u(0) = 0.

As for the lower semicontinuity of the energy, we first note that, as a consequence of Corollary 7.1,
we have ∫ −T

−∞

[
W (un) +

k∑
ℓ=1

qℓ|u(ℓ)
n |2

]
dt+

∫ +∞

T

[
W (un) +

k∑
ℓ=1

qℓ|u(ℓ)
n |2

]
dt ≥ 0 (108)

for all n ∈ N and T ∈ N. Then, we observe that Rellich’s Theorem implies that u
(ℓ)
n → u(ℓ) in

L2((−T, T )) as n → +∞ for every ℓ ∈ {1, ..., k − 1} and T > 0, which in turn yields

lim
n→+∞

∫ T

−T

[k−1∑
ℓ=1

qℓ|u(ℓ)
n |2

]
dt =

∫ T

−T

[k−1∑
ℓ=1

qℓ|u(ℓ)|2
]
dt (109)

for every T > 0; moreover, by Fatou’s lemma and the lower semicontinuity of the L2-norm, we have

lim inf
n→+∞

∫ +∞

−∞

[
W (un) + |u(k)

n |2
]
dt ≥

∫ +∞

−∞

[
W (u) + |u(k)|2

]
dt. (110)

Combining (108), (109), and (110), and recalling that qk = 1, we obtain

m = lim inf
n→+∞

∫ +∞

−∞

[
W (un) +

k∑
ℓ=1

qℓ|u(ℓ)
n |2

]
dt ≥ lim inf

n→+∞

∫ T

−T

[
W (un) +

k∑
ℓ=1

qℓ|u(ℓ)
n |2

]
dt

≥
∫ T

−T

[
W (u) +

k∑
ℓ=1

qℓ|u(ℓ)|2
]
dt (111)

for all T ∈ N.
Recall that {un}n is a minimizing sequence, hence, by (106) and Fatou’s Lemma, we infer

m = lim inf
n→+∞

∫ +∞

−∞

[
W (un) +

k∑
ℓ=1

qℓ|u(ℓ)
n |2

]
dt ≥ δ

∫ +∞

−∞

[
W (u) +

k∑
ℓ=1

|u(ℓ)|2
]
dt;

therefore, we can pass to the limit as T → +∞ in (111) by Dominated Convergence Theorem to
obtain

m ≥
∫ +∞

−∞

[
W (u) +

k∑
ℓ=1

qℓ|u(ℓ)|2
]
dt.

If limt→±∞ u(t) = ±1, the proof is completed; while, if limt→±∞ u(t) = ∓1, a minimizer is
u(−t). For this reason, in order to conclude, we prove that both limt→−∞ u(t) and limt→+∞ u(t)
exist, and that {limt→−∞ u(t), limt→+∞ u(t)} = {−1, 1}.
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As a first step we prove the existence of the limit at +∞, the other case being analogous. At
that end, it is useful to observe that u′ ∈ H1(R), which implies

lim
t→±∞

u′(t) = 0. (112)

If limt→+∞ u(t) exists, it equals −1 or 1, otherwise
∫ +∞
−∞ W (u) dt = +∞ which is a contradiction.

We are left with considering the case there exist real numbers a, b, with a < b, and two increasing
sequences {xn}n, {yn}n such that

lim
n→+∞

xn = +∞, lim
n→+∞

yn = +∞, lim
n→+∞

u(xn) = a, lim
n→+∞

u(yn) = b.

Without loss of generality, we can suppose

xn < yn, u(xn) ≤ a+
b− a

8
, u(yn) ≥ b− b− a

8
for all n ∈ N;

moreover, by the continuity of W , we can also assume that both −1 and 1 are not contained in the
interval (a, b).
If there exists {nj}j such that |xnj

− ynj
| ≤ 2 for every j ∈ N, then, by Lagrange’s Theorem, there

exists znj
∈ (xnj

, ynj
) such that

|u′(znj
)| ≥

|u(ynj
)− u(xnj

)|
2

≥ 3

8
(b− a),

hence, lim supt→+∞ |u′(t)| ≥ 3(b− a)/8, which contradicts (112). Otherwise, we may assume that
|xn − yn| ≥ 2 for every n ∈ N. We set

x̃n := max{t ∈ (xn, yn) : u(t) ≤ a+
b− a

4
}

and

ỹn := min{t ∈ (xn, yn) : u(t) ≥ b− b− a

4
}.

If |x̃n − ỹn| ≤ 1 for infinitely many n ∈ N, the conclusion follows by Lagrange’s Theorem as before,
otherwise, it holds that |x̃n − ỹn| ≥ 1 for all n ≥ No with some No ∈ N large enough. Recalling
that the interval (a, b) do not contain the points −1, 1, the above observation and (H1) imply∫ +∞

−∞
W (u) dt ≥

∑
n≥No

∫ ỹn

x̃n

W (u) dt ≥
∑

n≥No

min
{
W (t) : t ∈

(
a+

b− a

4
, b− b− a

4

)}
= +∞,

which is a contradiction, and concludes the proof of the existence of the limits at infinity. We finally
prove that they are different.
By contradiction suppose limt→±∞ u(t) = −1. By Lemma 3.2 in [10] and by the convergence
un → u in Hk

loc(R), we find points {tj}j and a subsequence of indices {nj}j such that

tj → +∞, unj (tj) → −1, u(ℓ)
nj

(tj) → 0 as j → +∞, for all ℓ ∈ {1, ..., k − 1}. (113)

Then we have∫ +∞

−∞

[
W (unj

)+

k∑
ℓ=1

qℓ|u(ℓ)
nj

|2
]
dt =

∫ tj

−∞

[
W (unj

) +

k∑
ℓ=1

qℓ|u(ℓ)
nj

|2
]
dt+

∫ +∞

tj

[
W (unj

)+

k∑
ℓ=1

qℓ|u(ℓ)
nj

|2
]
dt

≥
∫ tj

−∞

[
W (unj

) +

k∑
ℓ=1

qℓ|u(ℓ)
nj

|2
]
dt+m− m̃(unj

(tj), ..., u
(k−1)
nj

(tj)),
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where we set

m̃(u0, ..., uk−1) := inf
{∫ 1

0

[
W (v) +

k∑
ℓ=1

qℓ|v(ℓ)|2
]
dt : v(ℓ)(0) = 0 for all ℓ ∈ {0, ..., k − 1},

v(ℓ)(1) = uℓ for all ℓ ∈ {0, ..., k − 1}
}
,

with the convention that v(0) = v. Since m̃(u0, ..., uk−1) → 0 as (u0, ..., uk−1) → 0, by (113) we
infer that

m = lim inf
j→+∞

∫ +∞

−∞

[
W (unj

) +

k∑
ℓ=1

qℓ|u(ℓ)
nj

|2
]
dt

≥ lim inf
j→+∞

∫ tj

−∞

[
W (unj

) +

k∑
ℓ=1

qℓ|u(ℓ)
nj

|2
]
dt+m− m̃(unj

(tj), ..., u
(k−1)
nj

(tj))

≥ lim inf
j→+∞

∫ tj

−∞

[
W (unj

) +

k∑
ℓ=1

qℓ|u(ℓ)
nj

|2
]
dt+m,

which implies

lim inf
j→+∞

∫ tj

−∞

[
W (unj

) +

k∑
ℓ=1

qℓ|u(ℓ)
nj

|2
]
dt ≤ 0.

But, by Corollary (7.1) and Fatou’s Lemma, it holds that

lim inf
j→+∞

∫ tj

−∞

[
W (unj

) +

k∑
ℓ=1

qℓ|u(ℓ)
nj

|2
]
dt ≥ δ lim inf

j→+∞

∫ tj

−∞

[
W (unj

) +

k∑
ℓ=1

|u(ℓ)
nj

|2
]
dt

≥ δ

∫ +∞

−∞

[
W (u) +

k∑
ℓ=1

|u(ℓ)|2
]
dt ≥ 0;

therefore, we deduce that that u is identically equal to −1. This contradicts u(0) = 0, which
concludes the proof. □

Remark 7.4. Restoring the general dimension d, we may deal with the case of special norms
on tensors that are ‘compatible with slicing’ upon supposing the non-negativity of the coefficients
q1, ..., qk−1. More precisely, we suppose that for every ℓ ∈ {1, ..., k} the norm | · |ℓ satisfies

|T |ℓ ≥ |T (ξ, ..., ξ)| for every ξ ∈ Sd−1, (114)

and we assume that qℓ ≥ 0 for every ℓ ∈ {1, ..., k − 1}. Also in this instance, the density energy g
defined in (12) is the constant m given by (102).

The argument is similar to the one in the proof of Proposition 3.9. For fixed ν ∈ Sd−1 and η > 0,
let v and ε be such that

g(ν) + η ≥
∫
Qν

1

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx.
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Applying Fubini’s Theorem, (114), and the slicing properties of Sobolev functions, we obtain

g(ν) + η ≥
∫
Qν

1

[1
ε
W (v) +

k∑
ℓ=1

qℓε
2ℓ−1|∇(ℓ)v|2ℓ

]
dx

≥
∫
Qν

1∩ν⊥

∫ 1
2

− 1
2

[1
ε
W (vν,y(t)) +

k∑
ℓ=1

qℓε
2ℓ−1|(vν,y)(ℓ)(t)|2

]
dt dHd−1(y)

≥ inf
{∫ 1

2ε

− 1
2ε

[
W (v) +

k∑
ℓ=1

qℓ|v(ℓ)|2
]
dx, v ∈ Hk

((
− 1

2ε
,
1

2ε

))
,

v(t) = sgn(t) if |t| > M for some M ∈
(
0,

1

2ε

)}
= m

( 1

2ε

)
,

where the second inequality also follows by the assumption qℓ ≥ 0 for every ℓ ∈ {1, ..., k−1}. By the
arbitrariness of η and ε, the previous chain of inequalities implies g ≥ m. The converse inequality
is obtained using as a test function for g(ν) the function v(x) := u(x·νε ), with u an (almost) optimal
one-dimensional profile for m(1/(2ε)).
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