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Abstract

In the one-dimensional setting we consider an Ambrosio-Tortorelli functional Fε(u, v)
which has linear growth with respect to u′. We prove that under suitable conditions on
the fidelity term, minimizers and critical points of Fε are Sobolev regular, and that the
same is true for the Γ-limit F of Fε. As a corollary, we obtain that the functional Aw(u)
computing the length of the generalized graph of a function of bounded variation u, under
the same conditions on the fidelity term, admits a unique minimizer of class C1. This solves
a conjecture by De Giorgi [15] in the one-dimensional case.
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1 Introduction

The Mumford-Shah functional was introduced as a main tool for image segmentation [23, 24],
and after employed for other applications, such as in fracture mechanics [20]; for numerical
implementation it is of utmost importance the work of Ambrosio-Tortorelli [4, 5], where the
authors introduced a phase-field functional that, by mean of Γ-convergence, approximates the
Mumford-Shah one. In its best known version, the Ambrosio-Tortorelli functional has the form

ATε(u, v) =

ˆ
Ω

(
v2|∇u|2 + (v − 1)2

4ε
+ ε|∇v|2

)
dx, (1.1)

valid for (u, v) ∈ H1(Ω) × H1(Ω), with Ω an open bounded subset of Rn. As ε → 0, the
functional ATε(u, v) tends to the Mumford-Shah functional MS(u) in terms of Γ-convergence,
where

MS(u) =

ˆ
Ω
|∇u|2dx+Hn−1(Su),

where now u is a special function of bounded variation, ∇u is its approximate gradient, and
Hn−1(Su) is the (n − 1)-dimensional Hausdorff measure of its jump set Su. As usual in the
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E-mail: giuseppe.scianna@unisi.it

1



Γ-convergence of Ambrosio-Tortorelli type energies, the Γ-limit is +∞ when the phase-field
variable v is not constantly 1, and for this reason we omit the dependence on v.
In the years some attention has been payed to several variants of (1.1), also with different
powers of the gradient of u; for instance, in [2] the growth of the first term in (1.1) with respect
to ∇u is linear. Besides the applications in mechanics, the Ambrosio-Tortorelli approximation
and related ones have been used successfully also in other fields, as the analysis of liquid crystals
[6], Steiner type problems [12], optimal transportation problem [11, 25, 18].
Both from the implementation point of view and for studying the corresponding time-dependent
evolution of critical points, or minima, of the Γ-limit, it is important that such critical points
can be obtained as limits of critical points of the Ambrosio-Tortorelli approximating energies.
For this type of results, see [19, 21] and more recently [9, 26, 10].
In this paper we consider the problem of convergence of critical points of the energy Fε to
critical points of the corresponding Γ-limit. Here Fε is an Ambrosio-Tortorelli type energy
with linear growth in u′, namely

Fε(u, v) =

ˆ b

a
v2f(|u′|) dx+

1

4ε

ˆ b

a
(v − 1)2 dx+ ε

ˆ b

a
(v′)2dx+

ˆ b

a
|u− w|2 dx

for (u, v) ∈ W 1,1((a, b));Rk) ×H1((a, b)). We assume that f : [0,+∞) → R is a non-negative
and increasing convex function of class C1 satisfying f ′(0) = 0 and limt→∞ f(t)/t = 1. Accord-
ing to [2], Fε Γ-converges to

F (u) =

ˆ b

a
f(|u′|) dx+

∑
x∈Su

|u+(x)− u−(x)|
1 + |u+(x)− u−(x)|

+ |Dcu|((a, b)) +
ˆ b

a
|u− w|2 dx.

Notice that, due to the linear growth condition of Fε, existence of minimizers of Fε in
H1((a, b);Rk) × H1((a, b)) is not guaranteed, as well as the domain of F will be the space
of function of bounded variation. The energy of the form F can be seen, for instance, as a
prototype energy for a 1-dimensional mechanical model for cohesive fracture in the framework
of nonlinear elasticity. The presence of the fidelity term is crucial for our purpose, which is
twofold. On the one hand we show regularity of minimizers and critical points of Fε under
the assumption that w is sufficiently small in L2((a, b)), and on the other hand we show the
convergence of these critical points to critical points of F . More precisely, setting Ω := (a, b),
we show the following first main result:

Theorem 1.1. There are constants ε > 0 and β > 0 depending only on Ω such that the
following holds: for all ε ∈ (0, ε) and w ∈ L2(Ω;Rk) with ∥w∥L2 ≤ β, there exist minimizers
(uε, vε) of Fε in W 1,∞(Ω;Rk)×H2(Ω) such that, as ε→ 0, converge to a couple (u, 1), where

u minimizes F , and still belongs to W 1,∞(Ω;Rk). Moreover, if w̃ := 1
b−a

´ b
a w dx, and (uε, vε)

are critical points of Fε such that Fε(uε, vε) ≤ Fε(w̃, 1) for ε < ε0, then uε ∈W 1,∞(Ω;Rk) and
it converges weakly star in W 1,∞(Ω;Rk) to u minimizer of F .

In the second part of the paper we notice that, in the special case f(|y|) =
√
1 + y2, F is related

to the relaxed area functional Aw, and as a byproduct of our main result we obtain regularity
of minimizers of Aw. In general, given a map u ∈ C1(Ω;Rk), the area functional measures the
area of the graph of u; the relaxation of this functional has been attracted attention in the last
years, especially for its application to the Cartesian Plateau problem [15, 1, 13]. Restricting
our attention to the one-dimensional case, the area functional reduces to the length functional
Aw(u), measuring the length of the generalized graph of a given curve u in Rk. Precisely, for
all u ∈ BV ((a, b);Rk), the relaxed length functional is

Aw(u) =

ˆ b

a

√
1 + |u′|2 dx+

∑
x∈Su

|u+(x)− u−(x)|+ |Dcu|((a, b)) +
ˆ
Ω
|u− w|2 dx, (1.2)
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where w ∈ L2((a, b);Rk) is a given map acting as fidelity term, and ensuring that a minimizer
of Aw exists in BV ((a, b);Rk). Due to the strict convexity of Aw such minimizer is unique;
according to De Giorgi [15], its conjecture asserts that this minimizer is of class C1 if the
L∞-norm of w is sufficiently small.
Comparing F with the length functional Aw, we obtain the following:

Theorem 1.2. There is a constant β > 0 depending only on Ω such that the following holds:
for all w ∈ L2(Ω;Rk) with ∥w∥L2 ≤ β the unique minimizer u of Aw is of class C1(Ω;Rk).

The proof of the first part of Theorem 1.1, concerning the regularity of the minimizers of F ,
relies on a regularization approach and a Γ-convergence argument.
As we have already mentioned, due to the linear growth condition of Fε, the existence of
minimizers of Fε in H1((a, b);Rk) × H1((a, b)) is not guaranteed. To address this issue, we
introduce Fε,δ := Fε(u, v) +

δ
2

´
Ω |u′|2 dx, a regularitation of Fε, for which, by employing the

direct method of the calculus of variations, we are able to establish the existence of minimizers
in the desired domain. This is proven in Theorem 4.1. The added term depending on δ allows
us to obtain the crucial bound ∥u′∥2L2 ≤ C, a bound that would not otherwise be achievable.
Indeed, while Fε already contains a term involving u′, namely

´
Ω v

2f(|u′|) dx, in cases where
v = 0, we are unable to deduce any information about u′. Even when v ̸= 0, the best we can
conclude is that u ∈W 1,1 ⊂ BV , which is insufficient for our purposes.
Lemma 4.3 allows us to deduce that, given (uε,δ, vε,δ) as minimizers of Fε,δ, under suitable
conditions on the L2-norm of the fidelity term w, we have vε,δ ≥ 1

4 . The fact that vε,δ stays
away from zero will be a crucial ingredient in the proof of what follows. Moreover, the same
result holds even if δ = 0.
The Γ-convergence Theorem 4.6 ensures that, under the same conditions on the L2-norm of
w, minimizers (uε,δ, vε,δ) of the functional Fε,δ converge in L1(Ω;Rk) × L1(Ω) as δ → 0+ to

minimizers of the functional F̂ε defined in (4.1).
However, in Theorem 4.7, we prove that, up to subsequences, uε,δ ⇀ uε weakly∗ in W 1,∞,
vε,δ ⇀ vε weakly in H1 as δ → 0. Thus, (uε, vε) are minimizers in W 1,∞(Ω;Rk) × H1(Ω) of

F̂ε = Fε. Moreover, we show the existence of a constant C independent of ε and δ, such that
∥uε∥W 1,∞ + ∥vε∥H1 ≤ C.
Finally, by using the Γ-convergence result from Theorem 2.2, which guarantees that the mi-
nimizers (uε, vε) of Fε converge to minimizers (u, v) of F as ε→ 0, and by applying the above
estimate and the semicontinuity of the norm, we conclude that (u, v) are minimizers of F in
W 1,∞(Ω;Rk)×H1(Ω).
The second part of the theorem, concerning the convergence of the critical points of Fε,

is based on the following observations, which are stated in Corollary 4.5 and Corollary 4.8.
The fact that vε ≥ 1/4 and the existence of a constant C > 0, independent of ε, such that
∥uε∥W 1,∞ + ∥vε∥H1 ≤ C also hold when (uε, vε) are critical points of Fε, provided that we as-
sume Fε(uε, vε) remains below a certain threshold. Indeed, this assumption, together with the
use of the Euler-Lagrange equations, is the only essential ingredient. The other key element
is the application of a standard result on maximal monotone operators, which allows us to
conclude that the Euler-Lagrange equation of Fε converges to that of F .

Theorem 1.2 follows from the observation that if u ∈W 1,∞(Ω;Rk) is a minimizer of F , then it
is also a minimizer of Aw. Thus, up to this point, we have shown that the minimizers of Aw

are Sobolev regular. Actually, it is possible to gain regularity C1(Ω;Rk). The idea behind the
proof is as follows. We know that the minimizer u of Aw satisfies the Euler-Lagrange equation
with the boundary conditions as expressed in Theorem 3.1. By integrating this equation we
express the derivative of u in terms of a new function Φ, which turns out to be continuous.
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2 Notation and preliminaries

We consider a one-dimensional setting, where Ω := (a, b) represents the domain of interest. We
use standard notation for Sobolev and Lebesgue spaces. L1 will denote the Lebsegue measure
in R. When µ is a measure on Ω and B is a Borel subset of Ω, we denote by µ⌞B the restriction
of µ to the set B, i.e., the measure given by (µ⌞B)(E) := µ(E ∩B), for every Borel set E ⊂ Ω.
With |µ|(Ω) we denote the total variation on Ω of the measure.

2.1 Functions of bounded variation

Let u ∈ L1(Ω). We say that u is a function of bounded variation in Ω if its distributional
derivative is representable by a finite Radon measure in Ω; i.e., if

ˆ
Ω
uφ′dx = −

ˆ
Ω
φ dDu ∀φ ∈ C∞

c (Ω),

for some Radon measure Du. The space of all functions of bounded variation in Ω will be
denoted by BV (Ω).
Given u ∈ BV (Ω), we define the jump set of u, denoted by Su, as the complement of the set

of Lebesgue points of u. In dimension 1 there is always a precise representative of u, which is
still denoted by u, and it will be continuous expect in its jump set. If x ∈ Su the traces u± of
u at x are defined as

u±(x) = lim
y→x±

u(y).

If u ∈ BV (Ω), we define the three measures Dau, DJu, and Dcu as follows. By the Radon-
Nikodym Theorem we set Du = Dau+Dsu, where Dau≪ L1 and Dsu is the singular part of
Du with respect to L1. Here Dau is the absolutely continuous part of Du with respect to the
Lebesgue measure, while Dsu = DJu+Dcu where DJu = Du⌞Su is the jump part of Du, and
Dcu = Dsu⌞(Ω \ Su) is the Cantor part of Du. We can write then

Du = Dau+DJu+Dcu.

For a detailed study of the properties of BV -functions we refer to [7, 16, 17]. For an intro-
duction to the study of free-discontinuity problems in the BV setting we refer to [7].

2.2 Relaxation and Γ-convergence

Let (X, d) be a metric space. We now recall the concept of a relaxed functional. Given a
function F : X → R ∪ {+∞}, the relaxed functional F of F , or the relaxation of F , is the
greatest d-lower semicontinuous functional less than or equal to F .

We say that a sequence Fj : X → [−∞,+∞] Γ-converges to F : X → [−∞,+∞] (as
j → +∞) if for all u ∈ X we have

(i) (lower limit inequality) for every sequence (uj) converging to u,

F (u) ≤ lim inf
j

Fj(uj); (2.1)

(ii) (existence of a recovery sequence) there exists a sequence (uj) converging to u such that

F (u) ≥ lim sup
j

Fj(uj), (2.2)

or, equivalently by (2.1),
F (u) = lim

j
Fj(uj).
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The function F is called the Γ-limit of (Fj) (with respect to d), and we write F = Γ- limj Fj .
If (Fε) is a family of functionals indexed by ε > 0, then we say that Fε Γ-converges to F as
ε→ 0+ if F = Γ- limj→∞ Fεj for all εj converging to 0 as j → ∞.
The importance of introducing this notion is highlighted by the following fundamental result.

Theorem 2.1. Let F = Γ − limj Fj, and let a compact set K ⊂ X exist such that infX Fj =
infK Fj for all j. Then

∃min
X

F = lim
j

inf
X
Fj .

Moreover, if (uj) is a converging sequence such that limj Fj(uj) = limj infX Fj then its limit is
a minimum point for F .

For an introduction to Γ−convergence we refer to [14].

2.3 A result of Γ-convergence

We recall the following result, proven by Alicandro and Focardi (see [3, Theorem 3.2, Remark
3.4]). As in our case, their framework is vectorial, and generalizes the result of [2, Theorem
5.1], in which the authors consider the particular case k = 1.

Theorem 2.2. Let Ω = (a, b), u ∈ W 1,1(Ω;Rk) and v ∈ W 1,2(Ω); suppose that f : [0,+∞) →
[0,+∞) is a C1 function of |u′|, convex, increasing with limt→+∞

f(t)
t = 1; let W : [0, 1] →

[0,+∞) be a continuous function such that W (1) = 0 and W (t) > 0 if t ∈ [0, 1); let ψ : [0, 1] →
[0, 1] be a lower semicontinuous increasing function with ψ(0) = 0, ψ(1) = 1, and ψ(t) > 0 if
t > 0. Suppose that Fε : L

1(Ω;Rk)× L1(Ω) → [0,+∞] be defined by

Fε(u, v) =


ˆ
Ω

(
ψ(v)f(|u′|) + 1

ε
W (v) + ε|v′|2 + |u− w|2

)
dx if u ∈W 1,1(Ω;Rk), v ∈W 1,2(Ω)

0 ≤ v ≤ 1 a.e.,

+∞ otherwise.

Then there exists the Γ- limε→0+ Fε(u, v) = F (u, v) with respect to the L1(Ω;Rk) × L1(Ω) →
[0,+∞], where

F (u, v) =


ˆ
Ω
f(|u′|) dx+

ˆ
Su

g(|u+ − u−|) dH0 + |Dcu|(Ω) +
ˆ
Ω
|u− w|2 dx

if u ∈ BV (Ω;Rk) and v = 1 a.e,

+∞ otherwise,

and
g(z) := min{ψ(t)z + 2cW (t) : 0 ≤ t ≤ 1},

with

cW (t) := 2

ˆ 1

t

√
W (s) ds.

Notice that under the assumptions of Theorem 2.2 on f it holds that there is a constant C > 0
such that

f(|p|) ≤ C(1 + |p|), ∀p ∈ Rk. (2.3)

2.4 Other preliminary results

Theorem 2.3. [22, Theorem 1.8.1] Let F : Ω × R × Rk → R be a non-negative C1 function
that is convex in the third variable. Then the functional

ˆ
Ω
F (x, v(x), p(x)) dx

5



is sequentially lower semicontinuous in L1(Ω)×L1(Ω;Rk)w. More precisely, if vj → v in L1(Ω)
and pj ⇀ p weakly in L1(Ω;Rk), then

ˆ
Ω
F (x, v(x), p(x)) dx ≤ lim inf

j→∞

ˆ
Ω
F (x, vj(x), pj(x)) dx.

Theorem 2.4 (see [13]). If u ∈ BV (Ω;Rk) and v ∈ H1(Ω), define

I(u, v) =

ˆ
Ω
v2f(|u′|) dx+

ˆ
Ω
v2 d|Dcu|+

∑
x∈Su

v2(x)|u+(x)− u−(x)|

with f as in Theorem 2.2. Then, for all v ∈ H1(Ω), it holds that

I(u, v) ≤ lim inf
k→∞

I(uj , v)

whenever uj → u weakly* in BV (Ω;Rk).

In the theorem above, the variable v ∈ H1(Ω) is held fixed, and the weak* convergence uj → u
in BV (Ω;Rk) is the sole variable under consideration. The result establishes that the functional
I(u, v) is lower semicontinuous with respect to the weak* convergence in BV (Ω;Rk), for a fixed
v.
The following corollary generalizes this result by allowing both variables u and v to vary
simultaneously. Specifically

Corollary 2.5. If vj → v weakly in H1(Ω) and uk → u weakly* in BV (Ω;Rk), then

I(u, v) ≤ lim inf
j→∞

I(uj , vj).

Proof. Since H1(Ω) is compactly embedded in C0(Ω), it follows that

vj → v uniformly. (2.4)

We write
I(uj , vj) = I(uj , v) +

(
I(uj , vj)− I(uj , v)

)
,

and, since the liminf of the sum is greater than or equal to the sum of the liminf values, we
deduce

lim inf
j→+∞

I(uj , vj) ≥ lim inf
j→+∞

I(uj , v) + lim inf
j→+∞

(
I(uj , vj)− I(uj , v)

)
:= I + II.

We begin by proving that II → 0. Indeed,

|I(uj , vj)− I(uj , v)| =
∣∣∣∣ˆ

Ω
(v2j − v2)f(|u′j |) dx+

ˆ
Ω
(v2j − v2) d|Dcuj |

+
∑

x∈Suj

(v2j (x)− v2(x))|u+j (x)− u−j (x)|
∣∣∣∣

≤
ˆ
Ω
|v2j − v2|f(|u′j |) dx+

ˆ
Ω
|v2j − v2| d|Dcuj |

+
∑

x∈Suj

|v2j (x)− v2(x)||u+j (x)− u−j (x)|

≤ ∥v2j − v2∥L∞

(ˆ
Ω
f(|u′j |) dx+ |Dcuj |(Ω) + |DJuj |(Ω)

)
,

(2.5)
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where in the last inequality we used the fact that |v2j − v2| ≤ ∥v2j − v2∥L∞ .
Now, recalling (2.3) we obtain

|I(uj , vj)− I(uj , v)| ≤ ∥v2j − v2∥L∞

(
C(b− a) + C

ˆ
Ω
|u′j | dx+ |Dcuj |(Ω) + |DJuj |(Ω)

)
= ∥v2j − v2∥L∞C

(
(b− a) + ∥uj∥BV

)
,

which tends to zero as j → ∞ due to (2.4).
By invoking Theorem 2.4 for term I, we obtain the desired result.

3 Main results

Recall that, in our setting and throughout the following, we consider Ω = (a, b), u ∈W 1,1(Ω;Rk),

and v ∈ H1(Ω). Moreover, let us refer to Theorem 2.2, taking w ∈ L2(Ω;Rk), W (v) = (1−v)2

4 ,

so that cW (t) = (1−t)2

2 and ψ(v) = v2. With these choices, Fε can be rewritten as

Fε(u, v) =

ˆ
Ω
v2f(|u′|) dx+

1

4ε

ˆ
Ω
(1− v)2 dx+ ε

ˆ
Ω
(v′)2dx+

ˆ
Ω
|u− w|2 dx,

while the Γ-limit F becomes

F (u, v) =


ˆ
Ω
f(|u′|) dx+

ˆ
Su

g(|u+ − u−|) dH0 + |Dcu|(Ω) +
ˆ
Ω
|u− w|2 dx if u ∈ BV (Ω;Rk),

and v ≡ 1;

+∞ otherwise.

The function g(z) can be explicitly computed and is equal to

g(z) =
|z|

1 + |z|
. (3.1)

See also [2, Example 4.6].
Here and below we make the following assumptions on f :

• f : [0,∞) → [0,∞) is of class C1, it is increasing and strictly convex;

• f ′(0) = limt→0+
f(t)−f(0)

t = 0, and limt→+∞
f(t)
t = 1.

Under these hypothesis (2.3) holds. Our first main result reads as follows.

Theorem 3.1. Let Ω = (a, b) ⊂ R and β = min
{√

1
128 ,

1
68(b−a)1/2

}
. Given w ∈ L2(Ω;Rk) such

that ∥w∥L2 ≤ β, there exists a minimizer u of F in W 1,∞(Ω;Rk) with f ′(|u′|) u′

|u′| ∈ H1(Ω;Rk),
and satisfying the equation

− d

dx

(
f ′(|u′|) u

′

|u′|

)
+ 2(u− w) = 0,

with the boundary conditions

f ′(|u′(x)|) u
′(x)

|u′(x)|
= 0 for x ∈ {a, b}.
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We also consider critical points of the functional Fε; namely, we say that (u, v) ∈W 1,1(Ω;Rk)×
H2(Ω) is a critical point for Fε if the following equations are satisfied

2vf(|u′|) + 1

2ε
(v − 1)− 2εv′′ = 0,

− d

dx

(
v2f ′(|u′|) u

′

|u′|

)
+ 2(u− w) = 0,

(3.2)

with boundary conditions{
v′(x) = 0 for x ∈ {a, b},
v2(x)f ′(|u′(x)|) u′(x)

|u′(x)| = 0 for x ∈ {a, b}.

Theorem 3.2. Let Ω = (a, b) ⊂ R, β := min
{√

1
128 ,

1
68(b−a)1/2

}
and let w ∈ L2(Ω;Rk) be such

that ∥w∥L2 ≤ β. Let w̃ = 1
b−a

´ b
a w dx. Then there is a constant ε > 0 such that the following

holds: if (uε, vε) are critical points for Fε satisfying

Fε(uε, vε) ≤ Fε(w̃, 1), (3.3)

for ε ≤ ε, then (uε, vε) ∈ W 1,∞(Ω;Rk) ×H2(Ω), and there is u ∈ W 1,∞(Ω;Rk) minimizer of
F such that

uε ⇀ u weakly* in W 1,∞(Ω;Rk), (3.4)

vε ⇀ 1 weakly in H1(Ω). (3.5)

Theorem 1.1 follows by combining the two theorems stated above.

4 Proof of Theorem 3.1 and Theorem 3.2

The proof of theorems above will be a consequence of the propositions in the rest of the section.
Before entering into the details of the proof, we define a regularization of Fε as follows: for
δ > 0, let

Fε,δ(u, v) = Fε(u, v) +
δ

2

ˆ
Ω
|u′|2 dx.

We also define

F̂ε,δ(u, v) =

{
Fε,δ(u, v) on H1(Ω;Rk)×H1(Ω) and v ≥ 1

4

+∞ otherwise

and

F̂ε(u, v) =


Fε(u, v) +

∑
x∈Su

v(x)2|u+ − u−|+
ˆ
Ω
v(x)2 d|Dcu| if u ∈ BV (Ω;Rk),

v ∈ H1(Ω), v ≥ 1

4
;

+∞ otherwise.

(4.1)

Theorem 4.1. The functional Fε,δ admits minimizers in H1(Ω;Rk)×H2(Ω) for every ε, δ > 0
and w ∈ L2(Ω;Rk). Moreover, if (uε,δ, vε,δ) ∈ H1(Ω;Rk)×H2(Ω) are minimizers of Fε,δ, then

v2ε,δf
′(|u′ε,δ|)

u′
ε,δ

|u′
ε,δ|

+ δu′ε,δ ∈ H1(Ω) and they satisfy the Euler-Lagrange equations

2vε,δf(|u′ε,δ|) +
1

2ε
(vε,δ − 1)− 2εv′′ε,δ = 0,

− d

dx

(
v2ε,δf

′(|u′ε,δ|)
u′ε,δ
|u′ε,δ|

)
+ 2(uε,δ − w)− δu′′ε,δ = 0,

(4.2)
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with boundary conditions2εv′ε,δ(x) = 0 for x ∈ {a, b},
v2ε,δ(x)f

′(|u′ε,δ(x)|)
u′
ε,δ(x)

|u′
ε,δ(x)|

+ δu′ε,δ(x) = 0 for x ∈ {a, b}.

Proof. To prove the first part of the theorem, we employ the direct method in the calculus of
variations. Specifically, we prove the coercivity and lower semicontinuity of Fε,δ.

Coercivity and Compactness. Let m > 0 be such that

Fε,δ(u, v) ≤ m.

In particular, we have
δ

2

ˆ
Ω
|u′|2 dx ≤ m and ∥u− w∥2L2 ≤ m, which implies respectively

∥u′∥2L2 ≤ C (4.3)

and
∥u∥L2 ≤ ∥u− w∥L2 + ∥w∥L2 ≤

√
m+ ∥w∥L2 ≤ C, (4.4)

where in the last inequality we have used the hypothesis w ∈ L2(Ω;Rk). Here and below
C denotes a positive constant, independent of ε and δ, which may change from line to line.
Combining (4.3) and (4.4), we deduce

∥u∥H1 ≤ C.

Similarly, for v, we have ε

ˆ
Ω
|v′|2 dx ≤ m and

1

4ε

ˆ
Ω
(1−v)2 dx ≤ m, which implies respectively

∥v′∥2L2 ≤ C (4.5)

and
∥v∥L2 ≤ ∥1− v∥L2 + ∥1∥L2 ≤

√
m+ (b− a)1/2 ≤ C. (4.6)

Combining (4.5) and (4.6), we deduce

∥v∥H1 ≤ C.

Thus, the desired precompatcness in H1.

Lower Semicontinuity. Let (uj , vj) ∈ H1(Ω;Rk)×H1(Ω). We can assume without loss of
generality that for all j

Fε,δ(uj , vj) ≤ C,

and thus
∥uj∥H1 ≤ C, ∥vj∥H1 ≤ C ∀j.

Therefore, up to a subsequence, uj ⇀ u and vj ⇀ v weakly in H1. Weak convergence in H1

ensures
lim inf
j→+∞

∥u′j∥L2 ≥ ∥u′∥L2 , lim inf
j→+∞

∥v′j∥L2 ≥ ∥v′∥L2 .

Moreover, by the Rellich Theorem, weak convergence in H1 implies strong convergence in L2,
i.e.,

uj → u strongly in L2(Ω;Rk), vj → v strongly in L2(Ω),

9



which in turn implies

1

4ε

ˆ
Ω
(1− v)2dx =

1

4ε
∥1− v∥2L2 = lim

j→+∞
∥1− vj∥2L2 ; (4.7)

ˆ
Ω
|u− w|2dx = ∥u− w∥2L2 = lim

j→+∞
∥uj − w∥2L2 . (4.8)

Furthermore

ε

ˆ
Ω
|v′|2dx = ε∥v′∥2L2 ≤ lim inf

j→+∞
ε∥v′j∥2L2 ; (4.9)

δ

2

ˆ
Ω
|u′|2dx =

δ

2
∥u′∥2L2 ≤ lim inf

j→+∞

δ

2
∥u′j∥2L2 . (4.10)

Finally, by Theorem 2.3, for F (x, v, p) = v2f(|p|) we obtainˆ
Ω
v2f(|u′|)dx ≤ lim inf

j→+∞

ˆ
Ω
v2j f(|u′j |)dx,

where we remarked that the weak convergences in H1 of vj , uj imply vj → v in L1(Ω) and
u′j ⇀ u′ in L1(Ω;Rk).
In conclusion,

Fε,δ(u, v) ≤ lim inf
j→+∞

Fε,δ(uj , vj).

We now proceed to prove the second part of the statement. Let (uε,δ, vε,δ) a couple of
minimizers of the functional. From the computation of the Euler-Lagrange equations, we
obtain the conditions (4.11) and (4.12) stated below (which are the weak forms of (4.2)). By
comparison, the conditionˆ

Ω
2vε,δφf(|u′ε,δ|) dx+

1

2ε

ˆ
Ω
(vε,δ − 1)φ dx+ 2ε

ˆ
Ω
v′ε,δφ

′ dx = 0 (4.11)

valid for all φ ∈ H1(Ω), shows that vε,δ ∈ H2(Ω) and it yields{
2vε,δf(|u′ε,δ|) +

1
2ε(vε,δ − 1)− 2εv′′ε,δ = 0,

2εv′ε,δ(x) = 0 for x ∈ {a, b}.

Similarly, the condition

ˆ
Ω

(
v2ε,δf

′(|u′ε,δ|)
u′ε,δ
|u′ε,δ|

+ δu′ε,δ

)
· ψ′ dx+

ˆ
Ω
2(uε,δ − w) · ψ dx = 0 (4.12)

valid for all ψ ∈ H1(Ω;Rk) implies v2ε,δf
′(|u′ε,δ|)

u′
ε,δ

|u′
ε,δ|

+ δu′ε,δ ∈ H1(Ω) and it yields
− d

dx

(
v2ε,δf

′(|u′ε,δ|)
u′
ε,δ

|u′
ε,δ|

)
+ 2(uε,δ − w)− δu′′ε,δ = 0,

v2ε,δ(x)f
′(|u′ε,δ(x)|)

u′
ε,δ(x)

|u′
ε,δ(x)|

+ δu′ε,δ(x) = 0 for x ∈ {a, b}.

Adapting the results from [19] and [21] to our context, we obtain the following lemma:

Lemma 4.2. Let (uε,δ, vε,δ) ∈ H1(Ω;Rk) ×H2(Ω) be minimizers of Fε,δ. Then the following
properties hold:

0 ≤ vε,δ(x) ≤ 1 for all x ∈ Ω, (4.13)

∥uε,δ∥L2 ≤ ∥w∥L2 . (4.14)

Moreover, if (uε, vε) ∈ H1(Ω;Rk)×H2(Ω) are critical points of Fε, then (4.14) holds for uε.
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Proof. Formulas (4.13) follows straightforwardly by a truncation argument. Let us prove (4.14).
Multiplying (4.2) by uε,δ and integrating between a and b, we obtain

ˆ b

a

[
δu′′ε,δ · uε,δ + uε,δ ·

(
d

dx

(
v2ε,δf

′(|u′ε,δ|)
u′ε,δ
|u′ε,δ|

))]
dx = 2

ˆ b

a
(|uε,δ|2 − uε,δ · w) dx,

hence

−
ˆ b

a

(
δ|u′ε,δ|2 + v2ε,δ|u′ε,δ|f ′(|u′ε,δ|)

)
dx = 2

ˆ b

a
|uε,δ|2 dx− 2

ˆ b

a
uε,δ · w dx,

from which we deduce

2

ˆ b

a
|uε,δ|2 dx ≤ 2

ˆ b

a
uε,δ · w dx ≤ ∥uε,δ∥2L2 + ∥w∥2L2 ,

implying the desired result. For critical points, the same argument holds even if δ = 0.

Lemma 4.3. Let w ∈ L2(Ω;Rk) with ∥w∥L2 ≤ β where β = min
{√

1
128 ,

1
68(b−a)1/2

}
. Then

there exists ε > 0 depending only on Ω and f(0) such that, for all ε ∈ (0, ε) and δ ≥ 0, if
(uε,δ, vε,δ) ∈ H1(Ω;Rk)×H2(Ω) are minimizers of Fε,δ, it holds that vε,δ ≥ 1

4 on Ω.
Furthermore, the following equalities hold:

inf
{
Fε,δ(u, v) : u, v ∈ H1(Ω;Rk)×H2(Ω)

}
= inf

{
Fε,δ(u, v) : u, v ∈ H1(Ω;Rk)×H2(Ω), v ≥ 1/4

}
,

inf
{
Fε(u, v) : u, v ∈ H1(Ω;Rk)×H2(Ω)

}
= inf

{
Fε(u, v) : u, v ∈ H1(Ω;Rk)×H2(Ω), v ≥ 1/4

}
.

(4.15)

Proof. Let w̃ =
1

b− a

ˆ b

a
w dx and v ≡ 1. Then we have

Fε,δ(w̃, 1) = f(0)(b− a) +

ˆ b

a
|w̃ − w|2 dx = f(0)(b− a) +

ˆ b

a
(|w̃|2 − 2w · w̃ + |w|2) dx.

Now,

ˆ b

a
|w̃|2 dx =

ˆ b

a

[ 1

(b− a)2

(∣∣∣ ˆ b

a
w dx

∣∣∣)2]
dx ≤

ˆ b

a

[ 1

(b− a)2
(b− a)

ˆ b

a
|w|2 dx

]
dx =

ˆ b

a
|w|2 dx,

and then

Fε,δ(w̃, 1) ≤ f(0)(b− a) + 4

ˆ b

a
|w|2 dx ≤ f(0)(b− a) + 4β2.

Let (uε,δ, vε,δ) ∈ H1(Ω;Rk)×H2(Ω) be such that

Fε,δ(uε,δ, vε,δ) ≤ Fε,δ(w̃, 1) ≤ f(0)(b− a) + 4β2 =: Cβ.

Notice that (uε,δ, vε,δ) always exists and it may happen that w̃ and 1 are already the global
minimizers of Fε,δ. In that case uε,δ = w̃, vε,δ = 1 and v ≥ 1

4 .
Since vε,δ ∈ H1((a, b)) is continuous and can be extended to a continuous function on [a, b], let
x ∈ argmax vε,δ and y ∈ argmin vε,δ. We estimate:

1

4ε

ˆ b

a
(1− vε,δ)

2 dx ≤ Fε,δ(uε,δ, vε,δ) ≤ Cβ,

which implies

ˆ b

a
(1− vε,δ)

2 dx ≤ 4εCβ. (4.16)
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In particular,

(b− a)(1− vε,δ(x))
2 =

ˆ b

a
(1− vε,δ(x))

2 dx ≤
ˆ b

a
(1− vε,δ)

2 dx ≤ 4εCβ.

Thus,

1− vε,δ(x) ≤
√

4εCβ

b− a
=

√
4ε
(
f(0) + 4

β2

b− a

)
,

vε,δ(x) ≥ 1−
√

4ε
(
f(0) + 4

β2

b− a

)
.

Now, there exists ε0 > 0 such that ∀ε ∈ (0, ε0),

√
4ε
(
f(0) + 4 β2

b−a

)
≤ 1

4 ; it follows that

vε,δ(x) ≥
3

4
.

Next, we will use this inequality to prove, repeating the argument for y ∈ argmin vε, that
vε,δ(y) ≥ 1

4 . We start from the following estimate:

Cβ −
ˆ b

a
v2ε,δf(|u′ε,δ|) dx−

ˆ b

a
|uε,δ − w|2 dx− δ

2

ˆ b

a
|u′ε,δ|2 dx

≥
ˆ b

a

1

4ε
(1− vε,δ)

2 + ε|v′ε,δ|2 dx

≥
ˆ b

a
|v′ε,δ(1− vε,δ)| dx

=

ˆ b

a

∣∣∣∣ ddx 1

2
(1− vε,δ)

2

∣∣∣∣ dx
≥
ˆ y

x

∣∣∣∣ ddx 1

2
(1− vε,δ)

2

∣∣∣∣ dx
≥

∣∣∣∣ ˆ y

x

d

dx

1

2
(1− vε,δ)

2 dx

∣∣∣∣
=

1

2
(1− vε,δ(y))

2 − 1

2
(1− vε,δ(x))

2

≥ 1

2
(1− vε,δ(y))

2 − 1

32
.

We have thus obtained

1

2
(1− vε,δ(y))

2 ≤ Cβ −
ˆ b

a
v2ε,δf(|u′ε,δ|) dx+

1

32
. (4.17)

Now, let us estimate the term

ˆ b

a
v2ε,δf(|u′ε,δ|) dx:

ˆ b

a
v2ε,δf(|u′ε,δ|) dx ≥ f(0)

ˆ b

a
v2ε,δ − 1 + 1 dx

= f(0)

ˆ b

a
(vε,δ − 1)(vε,δ + 1) dx+ f(0)(b− a)

≥ f(0)(b− a)− f(0)

( ˆ b

a
(vε,δ − 1)2 dx

)1/2(ˆ b

a
(vε,δ + 1)2 dx

)1/2

≥f(0)(b− a)− f(0)(4εCβ)
1/2 2(b− a)1/2, (4.18)
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where the last inequality follows from the bound obtained in (4.16). Substituting (4.18) into
(4.17), we find

1

2
(1− vε,δ(y))

2 ≤ Cβ − f(0)(b− a) + 2f(0)(4εCβ)
1/2(b− a)1/2 +

1

32

= 4β2 + 2f(0)
√
4εCβ(b− a) +

1

32

= 4β2 + 2f(0)

√
4ε
(
f(0)(b− a) + 4β2

)
(b− a) +

1

32
=: K.

Thus,
vε,δ(y) ≥ 1−

√
2K.

Let us estimate K: using the fact that β ≤
√

1
128 , we find

4β2 ≤ 1

32
.

Additionally, there exists ε1 > 0 such that for all ε ∈ (0, ε1),

2f(0)

√
4ε
(
f(0)(b− a) + 4β2

)
(b− a) ≤ 7

32
.

Combining these bounds, we obtain

K ≤ 9

32
.

Finally, for ε = min(ε0, ε1), it follows that ∀ε ∈ (0, ε),

vε,δ(y) ≥ 1−
√

9

16
=

1

4
.

The equalities in (4.15) follow from the arbitrariness of (u, v), completing the proof.

Remark 4.4.

(i) Note that Fε,δ(w̃, 1) does not depend on δ and ε.

(ii) For the proof, it is not strictly necessary that (uε,δ, vε,δ) are minimizers of the functional,
but only that they solve the Euler-Lagrange equations and that Fε,δ(uε,δ, vε,δ) ≤ Fε,δ(w̃, 1)
is satisfied. Therefore, the following corollary holds.

Corollary 4.5. Let w ∈ L2(Ω;Rk) with the property ∥w∥L2 ≤ β where β = min
{√

1
128 ,

1
68(b−a)1/2

}
.

Let w̃ := 1
b−a

´ b
a w dx, and assume that (uε, vε) are critical points for Fε satisfying

Fε(uε, vε) ≤ Fε(w̃, 1). (4.19)

Then there exists ε > 0 depending only on (a, b) and f(0) such that, for all ε ∈ (0, ε) and δ ≥ 0,
vε ≥ 1

4 on Ω.

Theorem 4.6. Let ε > 0 be fixed. If there exists a constant C̄ > 0 such that

sup
δ∈(0,1)

F̂ε,δ(uε,δ, vε,δ) < C̄, (4.20)

then there exists C ′ > 0 such that

sup
δ∈(0,1)

∥uε,δ∥BV + sup
δ∈(0,1)

∥vε,δ∥H1 < C ′.

Furthermore, the functional F̂ε,δ Γ-converges with respect to L1(Ω;Rk)×L1(Ω), as δ → 0+, to

the functional F̂ε.
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Proof. Let us prove the first part of the statement. Given that limt→+∞
f(t)
t = 1, there exists

t0 such that, for t ≥ t0, we have f(|t|) ≥ 1
2 |t|. Let us define Ω0 = {x ∈ Ω : |u′ε,δ(x)| ≥ t0}.

By (4.20) we have that vε,δ ≥ 1
4 for every δ, and moreover,

C̄ ≥
ˆ
Ω
v2ε,δf(|u′ε,δ|) dx ≥ 1

16

ˆ
Ω
f(|u′ε,δ|) dx ≥ 1

32

ˆ
Ω0

|u′ε,δ| dx.

Hence
∥u′ε,δ∥L1 ≤ C. (4.21)

Additionally, since
ˆ
Ω
|uε,δ| dx−

ˆ
Ω
|w| dx ≤

ˆ
Ω
|uε,δ − w| dx

≤
( ˆ

Ω
|uε,δ − w|2 dx

) 1
2

(b− a)
1
2

≤ 1

2

(ˆ
Ω
|uε,δ − w|2 dx

)
+ (b− a)

≤ C̄ + (b− a),

it follows that ˆ
Ω
|uε,δ| dx ≤ C̄ +

ˆ
Ω
|w| dx+ (b− a). (4.22)

Combining (4.21) and (4.22), we obtain

∥uε,δ∥BV ≤ C1

for some constant C1 > 0 indipendent of δ. Furthermore,
ˆ
Ω
ε|v′ε,δ|2 dx ≤ C̄, (4.23)

and observe that

1

4ε

ˆ
Ω
(1− vε,δ)

2 dx < C̄,

1

4ε

ˆ
Ω
1− 2vε,δ + v2ε,δ dx < C̄,

1

4ε

ˆ
Ω
v2ε,δ dx < C̄ − b− a

4ε
+

1

4ε

ˆ
Ω
2vε,δ dx.

Applying Young’s inequality 2vε,δ ≤
v2ε,δ
4 + 4, the inequality above becomes

1

4ε

ˆ
Ω
v2ε,δ dx < C̄ − b− a

4ε
+

1

4ε

1

4

ˆ
Ω
v2ε,δ dx+

b− a

ε
,

that is

3

16ε

ˆ
Ω
v2ε,δ dx < C̄ − b− a

4ε
+
b− a

ε
,

from which it follows that
∥vε,δ∥2L2 ≤ C2. (4.24)

Combining (4.23) and (4.24), we deduce

∥vε,δ∥H1 ≤ C3.
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We have thus established the first part of the statement with C ′ = C1 + C3. It remains to
address the Γ-convergence, specifically proving the Γ− lim inf and the Γ− lim sup inequality.
We may assume, without loss of generality, that

sup
j
F̂ε,δ(uδj , vδj ) < C,

which from the first statement implies uδj → u weakly∗ in BV (Ω;Rk) and vδj → v weakly in
H1(Ω) up to subsequences.
For every δ > 0, we have F̂ε(uδj , vδj ) ≤ F̂ε,δ(uδj , vδj ). Thus, the Γ− lim inf inequality will follow
from

F̂ε(u, v) ≤ lim inf
j→∞

F̂ε(uδj , vδj ),

which is the lower semicontinuity of F̂ϵ. Using (4.9), (4.7), and (4.8), it remains to prove the
semicontinuity of

ˆ
Ω
v2f(|u′|) dx+

ˆ
Ω
v2 d|Duc|+

∑
x∈S(u)

v2(x)|u+(x)− u−(x)|,

which is assured by Corollary 2.5.
Thus, we are left with the construction of a recovery sequence (uδj , vδj ) satisfying the Γ−lim sup
inequality.
If u ∈ H1(Ω;Rk), we simply set uδj = u and vδj = v. Conversely, if u ∈ BV (Ω;Rk)\H1(Ω;Rk),
fixing vδj = v, we have to prove that:

lim
j→∞

ˆ
Ω
v2f(|u′δj |) dx = I(u, v), (4.25)

lim
j→∞

ˆ
Ω
|uδj − w|2 dx =

ˆ
Ω
|u− w|2 dx, (4.26)

lim
j→∞

δj
2

ˆ
Ω
|u′δj |

2 dx = 0. (4.27)

We begin by noting that, for v ≥ 1
4 ,

I(u, v) = inf

{
lim inf
n→∞

ˆ
Ω
v2f(|u′n|) dx : un → u in L1(Ω;Rk), un ∈ H1(Ω;Rk)

}
,

i.e., for a fixed v ∈ H1(Ω), I(u, v) is the relaxation of

ˆ
Ω
v2f(|u′n|) dx.

Thus, there exists a sequence un ∈ H1(Ω;Rk), n > 0, such that

lim
n→∞

ˆ
Ω
v2f(|u′n|) dx = I(u, v). (4.28)

For n = 0 set u0 ≡ 0, and for n > 0 consider the sequence un such that (4.28) holds. For each
k, consider the indices in

Jj :=

{
n ∈ N : ∥un∥2H1 ≤ 1√

δj

}
.

Note that Jj ̸= ∅ because u0 ∈ Jj . For each j, choose nj := max{n : n ∈ Jj} and set uδj := unj .
We now prove (4.27): indeed

δj∥u′δj∥
2
L2 ≤ δj∥uδj∥

2
H1 = δj∥unj∥2H1 ≤

√
δj .

Therefore (4.26) follows from uδj → u weakly∗ in BV (Ω;Rk), which implies uδj → u in

L2(Ω;Rk).

15



To establish (4.25), we must show that unj is still a recovery sequence for the relaxation, i.e.,

lim
j→∞

ˆ
Ω
v2f(|u′nj

|) dx = I(u, v).

We note that:
nj → ∞ as j → ∞. (4.29)

Indeed, Jj ⊆ Jj+1 and
⋃

j Jj = N, since as j → ∞, δj → 0 and 1√
δj

→ ∞, meaning that every

n ∈ N belongs to some Jj . Observe that nj is a non-decreasing sequence of natural numbers,
which cannot stabilize; if it did, there would exist a constant C such that |Jj | < C for all j,
contradicting the fact that

⋃
j Jj = N.

Thus, from (4.29), we conclude:

lim
j→∞

ˆ
Ω
v2f(|u′nj

|) dx = lim
h→∞

ˆ
Ω
v2f(|u′h|) dx = I(u, v).

From Lemma 4.3, the following theorem, ensuring that there are regular minimizers of Fε,
follows:

Theorem 4.7. Let Ω = (a, b) and ε > 0 be as in Lemma 4.3 and let ε ∈ (0, ε). Let w ∈
L2(Ω;Rk) such that ∥w∥L2 ≤ β where β = min

{√
1

128 ,
1

68(b−a)1/2

}
. If (uε,δ, vε,δ) ∈ H1(Ω;Rk)×

H2(Ω) are minimizers of Fε,δ, then there exists a constant C, independent of ε and δ, such that

∥uε,δ∥W 1,∞ + ∥vε,δ∥H1 ≤ C, (4.30)

and therefore, up to a subsequence,

uε,δ ⇀ uε weakly* in W 1,∞, vε,δ ⇀ vε weakly in H1 as δ → 0.

Moreover, uε and vε are minimizers of Fε, and

∥uε∥W 1,∞ + ∥vε∥H1 ≤ C, (4.31)

for all ε ∈ (0, ε).

Proof. Set Pε,δ = 2

ˆ x

a
(uε,δ − w) dt. Integrating (4.2) between a and x and multiplying by

u′ε,δ(x), we obtain

v2ε,δf
′(|u′ε,δ|)

u′ε,δ
|u′ε,δ|

· u′ε,δ ≤ v2ε,δf
′(|u′ε,δ|)

u′ε,δ
|u′ε,δ|

· u′ε,δ + δ|u′ε,δ|2 =
[
2

ˆ x

a
(uε,δ − w) dt

]
· u′ε,δ ≤ |Pε,δ||u′ε,δ|.

Since we can estimate Pε,δ as

|Pε,δ| ≤ 2

ˆ b

a
|uε,δ − w| dt ≤ 2∥uε,δ − w∥L2(b− a)1/2 ≤ 4∥w∥L2(b− a)1/2 <

1

17

and vε,δ ≥ 1
4 , we can write

1

16
|u′ε,δ| f ′(|u′ε,δ|) ≤

1

17
|u′ε,δ|.

Hence

f ′(|u′ε,δ|) ≤
16

17
< 1
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from which we deduce that

|u′ε,δ| ∈
{
t : f ′(|t|) ≤ 16

17

}
⊆ [0, C],

and hence we have proved the existence of a constant C > 0 such that

∥u′ε,δ∥L∞ ≤ C.

In particular
∥u′ε,δ∥L2 ≤ C.

Combining this estimate with (4.14), we obtain

∥uε,δ∥H1 ≤ C

with C independent of ε and δ and due to Sobolev immersions

∥uε,δ∥L∞ ≤ C.

Thus
∥uε,δ∥W 1,∞ ≤ C.

We now prove that (uε, vε) are minimizers of Fε. This is equivalent to prove

Fε(uε, vε) ≤ Fε(u, v) ∀(u, v) ∈W 1,∞(Ω;Rk)×H1(Ω). (4.32)

In virtue of (4.15), we can restrict ourselves to the case where v ≥ 1
4 . Then

Fε(u, v) = F̂ε(u, v) (4.33)

and
Fε(uε, vε) = F̂ε(uε, vε) ≤ F̂ε(u, v) ∀u ∈ BV (Ω;Rk), v ∈ H1(Ω). (4.34)

Thus,

Fε(uε, vε)
(4.34)

≤ F̂ε(u, v)
(4.33)
= Fε(u, v).

Corollary 4.8. Let (uε, vε) be critical points for Fε. Under the same assumptions of Corollary
4.5, there exists a constant C > 0, independent of ε, such that

∥uε∥W 1,∞ + ∥vε∥H1 ≤ C. (4.35)

We are now ready to prove our main results.

Proof of Theorem 3.1. Theorem 2.2 tells us that the minimizers (uε, vε) of Fε converge to
minimizers (u, v) of F . Now, from (4.31) and the semicontinuity of the norm, it follows that
the minimizers of F are in W 1,∞(Ω;Rk)×H1(Ω). Moreover, from (4.15), we have v ≥ 1

4 .

Proof of Theorem 3.2. We begin by proving (3.5). From assumption (3.3), it follows that

1

4ε

ˆ b

a
(vε − 1)2 ≤ Fε(w̃, 1),

which implies that vε → 1 uniformly as ε→ 0.
Next, we proceed to (3.4). Since

∥uε∥W 1,∞ ≤ C
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for some constant C independent of ε (see (4.35)), and given the assumptions on the function
f (see Theorem 2.2), we obtain ∣∣∣f ′(|u′ε|) u′ε|u′ε|

∣∣∣ ≤ f ′(|u′ε|) ≤ C.

Define the function H : Rk → R as

H(u′ε) := f(|u′ε|),

and observe that

|∇H(u′ε)| =
∣∣∣f ′(|u′ε|) u′ε|u′ε|

∣∣∣ = f ′(|u′ε|) ≤ C. (4.36)

The Euler-Lagrange equation for Fε, after integration on (a, x), can thus be rewritten as

v2ε(x)∇H(u′ε(x)) =

ˆ x

a
2(uε − w) ds, ∀x ∈ (a, b).

Since vε ≥ 1
4 (by Corollary 4.5), it follows that

∇H(u′ε(x)) =
1

v2ε

ˆ x

a
2(uε − w) ds.

Denoting by ⟨·, ·⟩ the scalar product in L2(Ω;Rk), multiplying both sides by u′ε, we deduce by
(4.36) that there exists some η ∈ L∞(Ω;Rk) such that, passing to the limit as ε→ 0,

⟨∇H(u′ε), u
′
ε⟩ = ⟨ 1

v2ε

ˆ x

a
2(uε − w)ds, u′ε⟩ → ⟨η, u′⟩ = ⟨

ˆ x

a
2(u− w)ds, u′⟩.

The fact that the right-hand side has this form can be seen by observing that
1

v2ε

ˆ x

a
2(uε−w)ds

tends, strongly in L2(Ω;Rk), to

ˆ x

a
2(u− w)ds. If we now prove that

η = ∇H(u′) (4.37)

then the proof is complete, as we have shown that the Euler-Lagrange equation of Fε converges
to that of F .
This follows from a standard result on maximal monotone operators ([8, Lemma 3.57]), whose
assumptions are satisfied because:

(i) The gradient ∇H is a maximal monotone operator.

(ii) The weak convergences hold:

u′ε ⇀ u weakly in L2, ∇H(u′ε)⇀ η weakly in L2.

(iii) The upper limit satisfies

lim sup
ε→0

⟨∇H(u′ε), u
′
ε⟩ = ⟨

ˆ x

a
2(u− w)ds, u′⟩ = ⟨η, u′⟩.

Eventually we observe that the functional F restricted to H1(Ω;Rk) is strictly convex, and thus
has a unique critical point which is the unique minimizer, hence u is the minimizer of F .
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5 Application to the length functional

Let us consider the length functional

Aw(u) =

ˆ
Ω

√
1 + |u′|2 dx+

∑
x∈Su

|u+ − u−|+ |Dcu|(Ω) +
ˆ
Ω
|u− w|2 dx,

defined for u ∈ BV (Ω;Rk). We denote

L(u) :=
ˆ
Ω

√
1 + |u′|2 dx+

∑
x∈Su

|u+ − u−|+ |Dcu|(Ω),

so Aw(u) = L(u) +
´
Ω |u− w|2.

Take f(u′) =
√

1 + |u′|2 and let u ∈ W 1,∞(Ω;Rk) be a minimizer of F . Recalling (3.1), we
have g(z) ≤ |z|. Hence it holds that

F (u) ≤ F (û) ≤ Aw(û) ∀û ∈ BV (Ω;Rk). (5.1)

Moreover, F (u) = Aw(u), and thus from (5.1) we deduce that

Aw(u) ≤ Aw(û) ∀û ∈ BV (Ω;Rk).

Therefore, u is a minimizer of Aw and belongs to W 1,∞(Ω;Rk).
We have thus proven the following theorem:

Theorem 5.1. Let Ω = (a, b) and β = min
{√

1
128 ,

1
68(b−a)1/2

}
. Given w ∈ L2(Ω;Rk) such

that ∥w∥L2 ≤ β, there exist minimizers u of Aw in W 1,∞(Ω;Rk).

We now show that the minimizer as in Theorem 5.1 is indeed of class C1. Precisely, the
minimizer u of Aw solves, thanks to Theorem 3.1, the equation

− d

dx

u′√
1 + (u′)2

+ 2(u− w) = 0.

with

u′(a)√
1 + (u′(a))2

=
u′(b)√

1 + (u′(b))2
= 0.

Integrating on (a, x), for x ∈ (a, b), we infer

u′(x)√
1 + (u′(x))2

= Φ(x), (5.2)

where Φ(x) is a primitive of 2(u − w). Notice that, being the primitive of an L2 function, Φ
belongs to H1 and, consequently, is continuous. Since the left-hand-side of (5.2) is strictly less
than 1, it follows that

Φ(x) < 1.

Hence we can conclude u′(x)2 = Φ(x)2

1−Φ(x)2
, and then

u′(x) =
Φ(x)

|Φ(x)|

√
Φ(x)2

1− Φ(x)2
,

that is a continuous function. We have then proved Theorem 1.2 with

β := min
{√ 1

128
,

1

68(b− a)1/2

}
. (5.3)

19



5.1 An example

We conclude this section with an example showing that in general, if ∥w∥L2 > β, the regularity
of the minimizer of Aw is not true.
Following [15], the function u : (−2, 2) → R given by

u(x) =


−2 if x < −1,

−1−
√
−2x− x2 if − 1 ≤ x < 0,

1 +
√
2x− x2 if 0 ≤ x < 1,

2 if 1 ≤ x,

(5.4)

minimizes the functional L(v, (−2, 2)) +
´ 2
−2 |v − g|dx, where

g(x) =

{
−2 if x < 0,

2 if x ≥ 0.
(5.5)

We want to modify this example for the functional

Aw(v) = L(v, (−2, 2)) +

ˆ 2

−2
|v − w|2dx, (5.6)

where we choose w as

w(x) =

{
−3 if x < 0,

3 if x ≥ 0.

Theorem 5.2. The unique minimizer u of (5.6) is convex on (−2, 0), concave on (0, 2), and
has a jump at x = 0 of amplitude u+(0)− u−(0) ≥ 2.

Proof. The uniqueness of the minimizer is guaranteed by the strict convexity of the functional.
We will now show some properties of u:
Step 1: the function u satisfies −2 ≤ u(x) ≤ 2 for a.e. x and u is non-decreasing. The first
property follows from the fact that, if not, (−2) ∨ u ∧ 2 would have smaller energy than u,
contradicting the minimality. For the second one, assume that 0 ≤ a < b ≤ 2 and u(a) > u(b);
then the function

ũ(x) :=

{
u(x) for x ≤ a,

u(x) ∨ u(a) for x > a,

would have smaller energy than u, again a contradiction. Similarly we can show that u
is non-decreasing in (−2, 0). Observing that the previous argument also works for u(a) =
limx→0− u(x), we deduce that u is non-decreasing in the whole domain.
Step 2: u is convex on (−2, 0) and concave on (0, 2). Let us show the first assertion, and
assume by contradiction that for some Lebesgue points a, b, y with 0 ≤ a < y < b ≤ 2, there
holds

u(y) < u(a) + (y − a)
u(b)− u(a)

b− a
.

Then it is easily seen that

ũ(x) :=

{
u(x) for x /∈ (a, b),

u(x) ∨
(
u(a) + (x− a)u(b)−u(a)

b−a

)
for x ∈ (a, b),

provides a minimizer better than u, absurd.
Step 3: it holds

lim
x→2−

u(x) ≥ 2, lim
x→−2+

u(x) ≤ −2.
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Again, we prove the first inequality by contradiction (the second being similar) and assume
that ℓ := limx→2− u(x) < 2. Then we replace u by

ũ(x) :=

{
u(x) for x < 0,

u(x) + (2− ℓ) for x ∈ [0, 2),

and the energy of ũ will satisfy

Aw(ũ)−Aw(u) = (2− ℓ) +

ˆ 2

0
|u− 3 + 2− ℓ|2 − |u− 3|2dx

= (2− ℓ) +

ˆ 2

0
(2− ℓ)(2u− 4− ℓ)dx

≤ (2− ℓ) +

ˆ 2

0
(2− ℓ)(ℓ− 4)dx

< (2− ℓ)− 4(2− ℓ) < 0,

where in the first inequality we have used that u ≤ ℓ and in the last but one that ℓ < 2. This
is a contradiction with the minimality of u.
Step 4: it holds

lim
x→0+

u(x) ≥ 1, lim
x→0−

u(x) ≤ −1.

Let ℓ := limx→2− u(x) assume that limx→0+ u(x) < 1. This means that there exists y > 0 such
that u(y) < 1; then we define

ũ(x) :=


u(x) for x < 0,

u(x+ y) for x ∈ [0, 2− y),

ℓ for x ∈ [2− y, 2).

We estimate

Aw(ũ)−Aw(u) ≤ y +

ˆ 2

2−y
|ℓ− 3|2dx−

ˆ y

0
|u− 3|2dx

≤ y + y|ℓ− 3|2 − 4y ≤ 2y − 4y < 0,

where in the last but one inequality we have used that ℓ ≥ 2. This leads to a contradiction and
the thesis follows.

Acknowledgements: VL and RS are members of the Gruppo Nazionale per l’Analisi Matem-
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