
HOMOGENISATION PROBLEMS FOR FREE DISCONTINUITY

FUNCTIONALS WITH BOUNDED COHESIVE SURFACE TERMS

GIANNI DAL MASO AND RODICA TOADER

Abstract. We study stochastic homogenisation problems for free discontinuity function-
als under a new assumption on the surface terms, motivated by cohesive fracture models.

The results are obtained using a characterization of the limit functional by means of

the asymptotic behaviour of suitable minimisation problems on cubes with very simple
boundary conditions. An important role is played by the subadditive ergodic theorem.

Keywords: stochastic homogenisation, free discontinuity problems, Γ-convergence, subadditive
ergodic theorem.

2020 Mathematics Subject Classification: 49J45, 49Q20, 60G60, 74Q05, 74S60.

1. Introduction

Several problems in damage and fracture mechanics lead to the study of free discontinuity
functionals of the form ∫

A

f(x,∇u)dx+

∫
A∩Ju

g(x, [u], νu)dHd−1, (1.1)

where A is a bounded open subset of Rd , u is a function defined on A , ∇u denotes its
approximate gradient, Ju is the jump set of u , with unit normal νu , and [u] is the amplitude
of the jump; the second integral is with respect to the (d−1)-dimensional Hausdorff measure
Hd−1 .

A large part of the results regarding Γ-convergence of sequences of functionals of the form
(1.1) have been obtained under the hypotheses that f(x, ξ) has p -growth with respect to
ξ , for some p > 1, and that g is larger than a positive constant (see, e.g., [3, 4, 10, 13, 19,
24, 25, 26]). Under these conditions the problem is usually studied in the space of special
functions of bounded variation SBV (A), for which we refer to [2].

When f(x, ξ) has linear growth in ξ and g(x, ζ, ν) has a linear behaviour in ζ near 0,
a functional of type (1.1) cannot be lower semicontinuous. The lower semicontinuity results
in [6] and the necessary condition for lower semicontinuity in [7] suggest to consider instead
functionals of the form

Ef,g(u,A) :=

∫
A

f(x,∇u)dx+

∫
A

f∞
(
x,

dDcu

d|Dcu|
)
d|Dcu|+

∫
A∩Ju

g(x, [u], νu)dHd−1, (1.2)

defined for u ∈ BV (A), where f∞(x, ξ) is the recession function of f(x, ξ) with respect
to ξ , the measure Dcu is the Cantor part of the distributional gradient Du of u (see [2,

Definition 3.91]), and dDcu
d|Dcu| is the Radon-Nikodym derivative of Dcu with respect to its

total variation |Dcu| .
In this paper we study homogenisation problems for functionals of the form (1.2). The

new feature is that we consider surface integrands g of bounded cohesive type, i.e., satisfying
an estimate of the form c1(|ζ|∧1) ≤ g(x, ζ, ν) ≤ c3(|ζ|∧1) for suitable constants 0 < c1 < c3 ,
where a ∧ b is the minimum between a and b . This hypothesis on the surface integrand
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is natural in the study of the relaxed version of the Dugdale model for cohesive cracks [18]
(see also [8]).

The upper bound g(x, ζ, ν) ≤ c3(|ζ| ∧ 1) implies that we cannot apply the results of
[12], for which the assumption c1|ζ| ≤ g(x, ζ, ν) was crucial to study the problem in the
space BV (A). The weak inequality c1(|ζ| ∧ 1) ≤ g(x, ζ, ν) forces us to use the larger space
GBV?(A) introduced in [16], in which the measure Dcu can still be defined.

As usual in homogenisation problems for integral functionals (see, e.g., [5, 9, 21, 23]),
given a function f1(x, ξ) with linear growth in ξ and a function g1(x, ζ, ν) of bounded
cohesive type, we consider the rescaled functions

fε(x, ξ) := f1(xε , ξ) and gε(x, ζ, ν) := g1(xε , ζ, ν) for ε > 0 , (1.3)

and we study the asymptotic behaviour of the functionals Efε,gε as ε→ 0+. This is done
by means of Γ-convergence. Since we are mainly interested in stochastic homogenisation
problems, we do not assume any periodicity condition with respect to x for f1 and g1 .

To study the Γ-limit of Efε,gε we use a result obtained in our previous paper [17] concern-
ing sequences Efk,gk of functionals of the form (1.2), not necessarily obtained by rescaling.
Under suitable hypotheses on fk and gk we proved that the Γ-limit can be written in the
form

E(u,A) =

∫
A

f(x,∇u)dx+ Ec(u,A) +

∫
A∩Ju

g(x, [u], νu)dHd−1, (1.4)

with suitable (subsequence dependent) integrands f and g , where Ec(u, ·) is a measure
that is absolutely continuous with respect to |Dcu| . This result was obtained by identifying
suitable properties of the functionals Efk,gk that are inherited by the Γ-limit and by proving
that all functionals with these properties can be represented in the form (1.4).

In [17] we also proved that Ec(u,A) can be represented by an integral involving f∞

under a very strong continuity hypothesis with respect to horizontal translations. The
drawback of this result is that this continuity condition can be easily obtained for the Γ-
limits corresponding to the rescaled integrands in (1.3) only in the periodic case. To deal
with the stochastic homogenisation problem we need a different approach.

The first result of the present paper is a characterization of the integrands f and g in
(1.4) as limits of suitable minimum values of problems for Efk,gk on small cubes with very
simple boundary conditions (see Theorem 3.3). Unfortunately, this result is not enough
to identify the Γ-limit, unless we can prove that Ec(u,A) can be written as an integral
involving f∞ .

An important part of this paper is devoted to the integral representation of Ec(u,A)
under the hypothesis that the function f(x, ξ) in (1.4) does not depend on x . To obtain
this result we have to strengthen the hypotheses on Efk,gk , assuming that they satisfy
further properties, which are analysed in Section 4. Among these properties we mention the
existence of the limit

g0
k(x, ζ, ν) := lim

t→0+

1

t
gk(x, tζ, ν) ,

which will play an important role in the rest of the paper. Moreover, we need some uniform
estimates for ∣∣1

t
fk(x, tξ)− f∞k (x, ξ)

∣∣ and
∣∣1
t
gk(x, tζ, ν)− g0

k(x, ζ, ν)
∣∣ (1.5)

(see Remarks 4.3 and 4.5).
We show (see Theorem 5.1) that, if a functional E is the Γ-limit of a sequence Efk,gk ,

with fk and gk satisfying these properties, and if (1.4) holds with f independent of x , then
Ec(u,A) can be represented as the second integral in (1.2); consequently, E satisfies the
complete integral representation (1.2). This allows us to prove that the Γ-limit is uniquely
determined by the behaviour of the minimum values of suitable minimisation problems for
Efk,gk on small cubes with very simple boundary conditions (see Theorem 5.4).
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These results are then applied to homogenisation problems, where we fix a sequence
εk → 0+ and study the Γ-limit of the functionals Efεk ,gεk , with fεk and gεk defined
by (1.3). Using the natural change of variables y = x/εk and the uniform estimates in
(1.5), the auxiliary minimisation problems on small cubes for Efεk ,gεk are transformed into

minimisation problems on large cubes for the functionals Ef1,g
0
1 and Ef

∞
1 ,g1 (see Lemmas

6.1 and 6.2). Therefore, the previous results imply that the Γ-limit of Efεk ,gεk exists and
can be represented as in (1.2), provided the limits of these minimum values, as the size of the
cubes tends to +∞ , exist and are independent of the centres of the cubes (see Theorem 6.3).

In the case of stochastic homogenisation, f1 and g1 are random functions satisfying
suitable stochastic periodicity conditions (see Definitions 6.5 and 6.6), and the almost sure
existence of the above mentioned limits on large cubes can be obtained by means of the
Subadditive Ergodic Theorem [1, Theorem 2.7], arguing as in [11, 12] (see Propositions 6.10
and 6.11). This leads to the almost sure Γ-convergence result for the sequence Efεk ,gεk (see
Theorem 6.12). Finally, we observe that the deterministic periodic case can be obtained as
a corollary of our results (see Remark 6.15).

2. Notation and preliminaries

We begin by recalling the notation used in [17].

(a) Throughout this paper d ≥ 1 is a fixed integer. The Euclidean norm in Rd is

denoted by | · | . We set Sd−1 := {ν ∈ Rd : |ν| = 1} and Sd−1
± := {ν ∈ Sd−1 :

±νi(ν) > 0} , where i(ν) is the largest i ∈ {1, . . . , d} such that νi 6= 0. Note that

Sd−1 = Sd−1
+ ∪ Sd−1

− .

(b) Given an open set A ⊂ Rd , let A(A) be the collection of all open subsets of A and
let Ac(A) := {A′ ∈ A(A) : A′ ⊂⊂ A} , where A′ ⊂⊂ A means that A′ is relatively
compact in A . Given a Borel set B ⊂ Rd , B(B) denotes the σ -algebra of all Borel
measurable subsets of B .

(c) For every x ∈ Rd and ρ > 0 let Q(x, ρ) := {y ∈ Rd : |(y−x)·ei| < ρ/2, for every i =
1, . . . , d} , where (ei)i=1,...,d is the canonical basis in Rd , and · denotes the Euclidean
scalar product.

(d) For every ν ∈ Sd−1 we fix a rotation Rν : Rd → Rd such that Rν(ed) = ν . We
assume that Red is the identity, that the restrictions of the function ν 7→ Rν to the

sets Sd−1
± are continuous, and that Rν(Q(0, ρ)) = R−ν(Q(0, ρ)) for every ν ∈ Sd−1

and every ρ > 0.
(e) For every λ > 0, ν ∈ Sd−1 , x ∈ Rd , and ρ > 0 let Qλν (x, ρ) be the rectangle defined

by
Qλν (x, ρ) := x+Rν((−λρ2 ,

λρ
2 )d−1 × (−ρ2 ,

ρ
2 )) . (2.1)

(f) For every x ∈ Rd , ξ ∈ Rd , ζ ∈ R , ν ∈ Sd−1 we define the functions `ξ : Rd → R
and ux,ζ,ν : Rd → R by

`ξ(y) := ξ · y ,

ux,ζ,ν(y) :=

{
ζ if (y − x) · ν ≥ 0 ,

0 if (y − x) · ν < 0 ;

moreover, we set Πν
x = {y ∈ Rd : (y − x) · ν = 0} .

(g) Given A ∈ A(Rd) and an Ld -measurable function u : A → R , we say that a ∈ R
is the approximate limit of u as y → x ∈ A if for every neighbourhood U of a we
have

lim
ρ→0+

Ld({y ∈ A ∩Q(x, ρ) : u(y) /∈ U})
ρd

= 0 ;

the same definition is meaningful also if x ∈ ∂A provided limρ→0+
Ld(A∩Q(x,ρ))

ρd
> 0 ;

moreover, the set of points x ∈ A where the approximate limit ũ(x) exists and is
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finite is a Borel subset of A , and the function x 7→ ũ(x) is a Borel function defined
on it; we say that ξ ∈ Rd is the approximate gradient of u at x if the approximate

limit of u(y)−u(x)−ξ·(y−x)
|y−x| as y → x is equal to 0.

(h) Given A ∈ A(Rd) and an Ld -measurable function u : A → R , the jump set Ju
of u is the set of all points x ∈ A for which there exist u+(x), u−(x) ∈ R , with
u+(x) 6= u−(x), and νu(x) ∈ Sd−1 such that u±(x) is the approximate limit as
y → x of the restriction of u to the set {y ∈ A : ±(y − x) · νu(x) > 0} . It is
easy to see that the triple (u+(x), u−(x), νu(x)) is uniquely defined up to a swap
of the first two terms and a change of sign in the third one. For every x ∈ Ju
we set [u](x) := u+(x) − u−(x). It can be proved that Ju is a Borel set and

that, if we choose νu so that νu(x) ∈ Sd−1
+ for every x ∈ Ju , then the functions

u+, u−, [u] : Ju → R and νu : Ju → Sd−1 are Borel functions.
(i) For every A ∈ A(Rd) and u ∈ BV (A) let Du be the distributional gradient of u ,

which can be decomposed as the sum of three Rd -valued measures:

Du = Dau+Dcu+Dju ,

where Dau is absolutely continuous with respect to the Lebesgue measure Ld , Dcu
is singular with respect to the Lebesgue measure and vanishes on all B ∈ B(A)
with Hd−1(B) < +∞ , and Dju is concentrated on the jump set Ju of u . The
approximate gradient of u at x exists for Ld -a.e. x ∈ A and is denoted by ∇u(x);
it is known that the function ∇u coincides Ld -a.e. in A with the density of Dau
with respect to Ld . Moreover, it is known that Dju = [u]νuHd−1 Ju , where for
every measure µ the measure µ E is defined by µ E(B) := µ(E ∩B). For these
and related fine properties of BV functions we refer to [2].

(j) For every A ∈ A(Rd) let L0(A) be the set of Ld -measurable functions u : A → R
endowed with the metrisable topology of convergence in Ld -measure.

Given B ∈ B(Rd), u : B → R = R∪{+∞,−∞} , and m > 0 the truncation u(m) of u is
defined as

u(m)(x) := (u(x) ∧m) ∨ (−m) ,

where a∧b and a∨b denote the minimum and the maximum between a and b , respectively.
We now recall the definition of the space GBV?(A) introduced in [16, Definition 3.1].

Definition 2.1. For every A ∈ Ac(Rd) let GBV?(A) be the space of functions u : A → R
such that u(m) ∈ BV (A) for every m > 0 and

sup
m>0

(∫
A

|∇u(m)|dx+ |Dcu(m)|(A) +

∫
J
u(m)

|[u(m)]| ∧ 1dHd−1
)
< +∞ .

The main properties of these functions are summarized in [17, Theorem 2.2] and the main
properties of the space GBV?(A) are presented in [17, Theorem 2.3] .

We now introduce a functional that is strictly related to the definition of GBV? and will
play an important role in this paper.

Definition 2.2. The functional V : L0(Rd) × B(Rd) → [0,+∞] is defined in the following
way. For every A ∈ Ac(Rd) we set

V (u,A) :=

∫
A

|∇u|dx+ |Dcu|(A) +

∫
A∩Ju

|[u]| ∧ 1dHd−1 if u|A ∈ GBV?(A) , (2.2)

and V (u,A) := +∞ otherwise; the definition is then extended to A(Rd) by setting

V (u,A) := sup{V (u,A′) : A′ ∈ Ac(Rd) ∩ A(A)} for A ∈ A(Rd) , (2.3)

and to B(Rd) by setting

V (u,B) := inf{V (u,A) : A ∈ A(Rd), B ⊂ A} for B ∈ B(Rd) . (2.4)
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Throughout the paper we fix five constants c1, . . . , c5 ≥ 0 and a bounded continuous
function σ : [0,+∞)→ [0,+∞), such that

0 < c1 ≤ 1 ≤ c3 ≤ c5 , (2.5)

σ(0) = 0 and σ(t) ≥ c3(t ∧ 1) for every t ≥ 0 . (2.6)

We recall the definition of the class of free discontinuity functionals introduced in [17, Defi-
nition 3.1].

Definition 2.3. Let E denote the class of functionals E : L0(Rd)× B(Rd)→ [0,+∞] that
satisfy the following properties:

(a) E is local on A(Rd), i.e., E(u,A) = E(v,A) if A ∈ A(Rd), u, v ∈ L0(Rd), and
u = v Ld -a.e. in A ;

(b) for every u ∈ L0(Rd) the function E(u, ·) : B(Rd)→ [0,+∞] is a nonnegative Borel
measure and

E(u,B) = inf{E(u,A) : A ∈ A(Rd), B ⊂ A} (2.7)

for every B ∈ B(Rd);
(c1) for every u ∈ L0(Rd) and B ∈ B(Rd) we have

c1V (u,B)− c2Ld(B) ≤ E(u,B) ; (2.8)

(c2) for every u ∈ L0(Rd) and B ∈ B(Rd) we have

E(u,B) ≤ c3V (u,B) + c4Ld(B) ; (2.9)

(d) for every u ∈ L0(Rd), B ∈ B(Rd), and a ∈ R we have

E(u+ a,B) = E(u,B) ; (2.10)

(e) for every u ∈ L0(Rd), B ∈ B(Rd), and ξ ∈ Rd we have

E(u+ `ξ, B) ≤ E(u,B) + c5|ξ|Ld(B) ; (2.11)

(f) for every u ∈ L0(Rd), B ∈ B(Rd), x ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 we have

E(u+ ux,ζ,ν , B) ≤ E(u,B) + σ(|ζ|)Hd−1(B ∩Πν
x) ; (2.12)

(g) for every u ∈ L0(Rd), B ∈ B(Rd), and w1, w2 ∈ W 1,1
loc (Rd), with w1 ≤ w2 Ld -a.e.

in Rd , we have

E((u ∨ w1) ∧ w2, B) ≤ E(u,B) + c3

∫
Bu12

|∇w1| ∨ |∇w2|dx+ c4Ld(Bu12) , (2.13)

where Bu12 = {x ∈ B : u(x) /∈ [w1(x), w2(x)]} .

Finally, let Esc denote the class of functionals E in E that satisfy the following property:

(h) for every A ∈ Ac(Rd) the functional E(·, A) is lower semicontinuous in L0(Rd).

A first example of functional belonging to Esc is given by V (see [17, Remark 3.15]).

Remark 2.4. Let E ∈ E , A ∈ A(Rd), and u ∈ L0(A). For every B ∈ B(A) we can define
E(u,B) by extending u to a function v ∈ L0(Rd) and setting E(u,B) := E(v,B). The
value E(u,B) does not depend on the extension (see [17, Remark 3.2]).

We now recall the definitions of the classes of functions F and G introduced in [17].

Definition 2.5. Let F be the set of functions

f : Rd × Rd → [0,+∞)

that satisfy the following conditions:

(f1) f is Borel measurable;
(f2) c1|ξ| − c2 ≤ f(x, ξ) for every x ∈ Rd and every ξ ∈ Rd ;
(f3) f(x, ξ) ≤ c3|ξ|+ c4 for every x ∈ Rd and every ξ ∈ Rd ;
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(f4) |f(x, ξ1)− f(x, ξ2)| ≤ c5|ξ1 − ξ2| for every x ∈ Rd and every ξ1, ξ2 ∈ Rd .

Definition 2.6. Let G be the set of functions

g : Rd × R× Sd−1 → [0,+∞)

that satisfy the following conditions:

(g1) g is Borel measurable;
(g2) c1(|ζ| ∧ 1) ≤ g(x, ζ, ν) for every x ∈ Rd , ζ ∈ R , ν ∈ Sd−1 ;
(g3) g(x, ζ, ν) ≤ c3(|ζ| ∧ 1) for every x ∈ Rd , ζ ∈ R , ν ∈ Sd−1 ;
(g4) |g(x, ζ1, ν)− g(x, ζ2, ν)| ≤ σ(|ζ1 − ζ2|) for every x ∈ Rd , ζ1, ζ2 ∈ R , ν ∈ Sd−1 ;
(g5) g(x,−ζ,−ν) = g(x, ζ, ν) for every x ∈ Rd , ζ ∈ R , ν ∈ Sd−1 ;
(g6) for every x ∈ Rd and ν ∈ Sd−1 the function ζ 7→ g(x, ζ, ν) is non-decreasing on

[0,+∞) and non-increasing on (−∞, 0].

We recall the definition of the recession function.

Definition 2.7. For every f : Rd × Rd → [0,+∞) the recession function f∞ : Rd × Rd →
[0,+∞] (with respect to ξ ) is defined by

f∞(x, ξ) := lim sup
t→+∞

f(x, tξ)

t
(2.14)

for every x ∈ Rd and every ξ ∈ Rd .

We are now in a position to introduce the integral functionals associated with the inte-
grands f and g . We note that in Section 6 this definition is used also for the function g0 ,
which does not belong to G .

Definition 2.8. Given f ∈ F and a Borel function g : Rd×R× Sd−1 → [0,+∞) we define
the functional Ef,g : L0(Rd) × B(Rd) → [0,+∞] in the following way: if A ∈ Ac(Rd) and
u|A ∈ GBV?(A) we set

Ef,g(u,A) :=

∫
A

f(x,∇u)dx+

∫
A

f∞
(
x,

dDcu

d|Dcu|
)
d|Dcu|+

∫
A∩Ju

g(x, [u], νu)dHd−1, (2.15)

while we set Ef,g(u,A) := +∞ if u|A /∈ GBV?(A). The definition is then extended to
A(Rd) by setting

Ef,g(u,A) := sup{Ef,g(u,A′) : A′ ∈ Ac(Rd) ∩ A(A)} for A ∈ A(Rd) , (2.16)

and to B(Rd) by setting

Ef,g(u,B) := inf{Ef,g(u,A) : A ∈ A(Rd), B ⊂ A} for B ∈ B(Rd) . (2.17)

The definition is extended to functions u ∈ L0(A) with A ∈ A(Rd) according to Remark
2.4.

Remark 2.9. For every f ∈ F and g ∈ G the functionals Ef,g belong to E (see [17,
Proposition 3.11]). Moreover, if A ∈ Ac(Rd) and u ∈ GBV?(A), then

Ef,g(u,B) :=

∫
B

f(x,∇u)dx+

∫
B

f∞
(
x,

dDcu

d|Dcu|
)
d|Dcu|+

∫
B∩Ju

g(x, [u], νu)dHd−1 (2.18)

for every B ∈ B(A).

The following compactness result is proved in [17, Theorem 3.16].

Theorem 2.10. Let (Ek) be a sequence in E . Then there exist a subsequence, not relabelled,
and a functional E ∈ Esc such that for every A ∈ Ac(Rd) the sequence Ek(·, A) Γ-converges
to E(·, A) with respect to the topology of L0(Rd) .

In view of the integral representation of a functional E in Esc it is useful to consider the
measures introduced in the following definition.
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Definition 2.11. Let E : L0(Rd) × B(Rd) → [0,+∞] be a functional satisfying properties
(b) and (c2) in Definition 2.3. Let u ∈ L0(Rd) and A ∈ Ac(Rd) with u|A ∈ GBV?(A).
The measures Ea(u, ·), Es(u, ·), Ec(u, ·), and Ej(u, ·) on B(A) are defined in the following
way:

Ea(u, ·) is the absolutely continuous part of E(u, ·) with respect to Ld , (2.19)

Es(u, ·) is the singular part of E(u, ·) with respect to Ld , (2.20)

Ec(u,B) := Es(u,B \ Ju) for every B ∈ B(A) , (2.21)

Ej(u,B) := Es(u,B ∩ Ju) = E(u,B ∩ Ju) for every B ∈ B(A) . (2.22)

Remark 2.12. The following properties hold (see [17, Remark 4.2]):

E(u, ·) = Ea(u, ·) + Ec(u, ·) + Ej(u, ·) in B(A) , (2.23)

Ec(u, ·) is the absolutely continuous part of E(u, ·) with respect to |Dcu| , (2.24)

Ej(u, ·) is the absolutely continuous part of E(u, ·) with respect to Hd−1 Ju . (2.25)

We now introduce the minimisation problems that are used to define the integrands for
the integral representation results proved in [17].

Definition 2.13. Let A ∈ Ac(Rd) with Lipschitz boundary and w ∈ BV (A). Given an
arbitrary functional E(·, A) : BV (A)→ [0,+∞] , we define (see [7])

mE(w,A) := inf{E(u,A) : u ∈ BV (A) , trAu = trAw Hd−1-a.e. on ∂A} , (2.26)

where trAv denotes the trace on ∂A of a function v ∈ BV (A).

We are now in a position to define the integrands used in the integral representation
results for functionals in Esc .

Definition 2.14. Given E ∈ E we define the integrands f : Rd × Rd → [0,+∞), and
g : Rd × R× Sd−1 → [0,+∞) by setting

f(x, ξ) := lim sup
ρ→0+

mE(`ξ, Q(x, ρ))

ρd
, (2.27)

g(x, ζ, ν) := lim sup
ρ→0+

mE(ux,ζ,ν , Qν(x, ρ))

ρd−1
. (2.28)

Remark 2.15. In [17, Theorem 5.1] it is proved that for every E ∈ E we have f ∈ F and
g ∈ G .

The following integral representation result for Ea and Ej on GBV?(A) is proved in [17,
Theorem 6.3].

Theorem 2.16. Let E ∈ Esc , let f and g be defined by (2.27) and (2.28), respectively,
and let A ∈ Ac(Rd) . Then

Ea(u,B) =

∫
B

f(x,∇u)dx , (2.29)

Ej(u,B) =

∫
B∩Ju

g(x, [u], νu)dHd−1 , (2.30)

for every u ∈ GBV?(A) and every B ∈ B(A) .

We shall use frequently the following technical lemma, proved in [17, Lemma 4.16], taking
(2.29) into account. For every ξ ∈ Rd we set

cξ :=
c2 + c4 + 1

c1
d1/2 + |ξ|d1/2 . (2.31)
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Lemma 2.17. Let E ∈ Esc . Then there exists N ∈ B(Rd) , with Ld(N) = 0 , such that
for every x ∈ Rd \ N , λ ≥ 1 , ν ∈ Sd−1 , and η > 0 there exists ρλν,η(x) > 0 with

the following property: for every 0 < ρ < ρλν,η(x) and every ξ ∈ Rd there exists u ∈
BV (Qλν (x, ρ))∩L∞(Qλν (x, ρ)) satisfying ‖u−`ξ‖L∞(Qλν (x,ρ)) ≤ cξλρ , trQλν (x,ρ)u = trQλν (x,ρ)`ξ
Hd−1 -a.e. on ∂Qλν (x, ρ) , and

E(u,Qλν (x, ρ)) ≤ mE(`ξ, Q
λ
ν (x, ρ)) + ηλd−1ρd . (2.32)

If, in addition, f is continuous in Rd × Rd , then N = Ø . Finally, if there exists

f̂ : Rd → [0,+∞) such that

f(x, ξ) = f̂(ξ) for Ld -a.e. x ∈ Rd and every ξ ∈ Rd ,
then ρλν,η(x) = +∞ .

3. The integrands of the Γ-limit

Let (Efk,gk) be a sequence of integral functionals, with fk ∈ F and gk ∈ G , and let
E ∈ Esc . Assume that for every A ∈ Ac(Rd) the sequence Efk,gk(·, A) Γ-converges to
E(·, A) with respect to the L0 -topology. From Section 2 we know that Ea and Ej can
be represented in an integral form (see (2.29) and (2.30)) using two integrands f ∈ F and
g ∈ G . The aim of this section is to prove Theorem 3.3, which provides a connection
between the integrands f and g and the minimum values of some auxiliary problems for
the functionals Efk,gk on small cubes.

We begin by showing a relation between mE(w,A) and the sequence mEfk,gk (w,A′) for
A′ ⊂⊂ A , provided w ∈W 1,1(A).

Proposition 3.1. Let (fk) ⊂ F , (gk) ⊂ G , let Ek := Efk,gk , and let E ∈ Esc . Assume
that for every A ∈ Ac(Rd) the sequence Ek(·, A) Γ-converges to E(·, A) with respect to the
topology of L0(Rd) . Let A′, A ∈ Ac(Rd) , with A′ ⊂⊂ A , have Lipschitz boundaries , and
let w ∈W 1,1(A) . Then

mE(w,A) ≤ lim inf
k→∞

mEk(w,A′) +

∫
A\A′

(
c3|∇w|+ c4

)
dx . (3.1)

Proof. By the definition of mEk there exists uk ∈ BV (A′), with trA′uk = trA′w Hd−1 -a.e.
on ∂A′ , such that

Ek(uk, A
′) ≤ mEk(w,A′) + 1

k .

Let vk ∈ BV (A) be defined by vk = uk in A′ and vk = w in A \ A′ . Since w ∈ W 1,1(A)
and trA′uk = trA′w Hd−1 -a.e. on ∂A′ , we have Hd−1(Jvk ∩ ∂A′) = 0, which implies that
Ek(vk, ∂A

′) = 0. Therefore, by (f3) we have

Ek(vk, A) = Ek(uk, A
′) + Ek(w,A \A′) ≤ mEk(w,A′) + 1

k +

∫
A\A′

(c3|∇w|+ c4)dx

≤ Ek(w,A′) + 1
k +

∫
A\A′

(c3|∇w|+ c4)dx ≤
∫
A

(c3|∇w|+ c4)dx+ 1
k .

Recalling (c1) in Definition 2.3, we deduce that V (vk, A) is bounded. Therefore we
can apply [17, Theorem 7.13] which provides a subsequence of (Ek), not relabelled, and a
sequence (yk) ⊂ GBV?(A) such that yk = w Ld -a.e. in A \A′ ,

Ek(yk, A) ≤ Ek(vk, A) + 1
k ≤ m

Ek(w,A′) + 2
k +

∫
A\A′

(c3|∇w|+ c4)dx ,

and yk converge in L0(A) to a function y ∈ GBV?(A) with y = w Ld -a.e. in A \A′ .
By Γ-convergence

E(y,A) ≤ lim inf
k→∞

Ek(yk, A) ≤ lim inf
k→∞

mEk(w,A′) +

∫
A\A′

(c3|∇w|+ c4)dx .
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Since trAy = trAw Hd−1 -a.e. on ∂A , we have mE(w,A) ≤ E(y,A), which, together with
the previous inequalities, gives (3.1). �

The following proposition shows an inequality connecting mE(w,A) with the sequence
mEk(w,A).

Proposition 3.2. Let (Ek) ⊂ E and E ∈ Esc . Assume that for every A ∈ Ac(Rd)
the sequence Ek(·, A) Γ-converges to E(·, A) with respect to the topology of L0(Rd) . Let
A ∈ Ac(Rd) has Lipschitz boundary and let w ∈ BV (A) ∩ L∞(A) . Then

lim sup
k→∞

mEk(w,A) ≤ mE(w,A) . (3.2)

Proof. Let us fix η > 0. By the definition of mE there exists u ∈ BV (A), with trAu = trAw
Hd−1 -a.e. on ∂A , such that

E(u,A) < mE(w,A) + η .

Recalling [17, Proposition 4.3], by a truncation argument based on (g) in Definition 2.3 we
see that we may assume u ∈ BV (A) ∩ L∞(A). We may regard u as the restriction to
A of a function u ∈ L∞(Rd). By the definition of Γ-convergence there exists a sequence
(vk) ⊂ L0(Rd) converging to u in L0(Rd) as k →∞ such that

lim
k→∞

Ek(vk, A) = E(u,A) < mE(w,A) + η < +∞ . (3.3)

By [17, Remark 3.5] we may assume that vk|A ∈ GBV?(A) for every k ∈ N . Replacing

vk with v
(m)
k for m > ‖u‖L∞(Rd) , we may also assume that ‖vk‖L∞(Rd) ≤ m , since (3.3)

continues to hold by [17, Remark 3.4]. Moreover vk|A ∈ BV (A) and vk → u in L1
loc(Rd).

We now fix a compact set K such that K ⊂ A and

c3V (u,A \K) + c4Ld(A \K) < η , (3.4)

and we set B := A \ K and wk = u for every k ∈ N . We also fix two open sets A′ and
A′′ , with K ⊂ A′ ⊂⊂ A′′ ⊂⊂ A . We apply [17, Lemma 3.19] and we obtain a sequence
(uk) ⊂ L1

loc(Rd), with uk|A ∈ BV (A), converging to u in L1
loc(Rd) as k → +∞ , such that

uk = vk Ld-a.e. in A′ and uk = u Ld-a.e. in A \A′′ , (3.5)

lim sup
k→∞

Ek(uk, A) ≤ (1 + η) lim sup
k→∞

(
Ek(vk, A) + Ek(u,A \K)

)
+ η , (3.6)

where we used the equality A = A′ ∪ (A \K). By (c2) in Definition 2.3 and (3.4) we have
Ek(u,A \K) < η . Hence (3.6) together with (3.3) gives

lim sup
k→∞

Ek(uk, A) ≤ (1 + η)
(
mE(w,A) + 2η

)
+ η .

Since trAuk = trAu Hd−1 -a.e. on ∂A by (3.5), and trAu = trAw Hd−1 -a.e. on ∂A , we
have mEk(w,A) ≤ Ek(uk, A) for every k . Therefore

lim sup
k→∞

mEk(w,A) ≤ (1 + η)
(
mE(w,A) + 2η

)
+ η .

Passing to the limit as η → 0+ we obtain (3.2). �

We are now in a position to state and prove the main result of this section.

Theorem 3.3. Let (fk) ⊂ F and (gk) ⊂ G , let Ek := Efk,gk , let E ∈ Esc , and let f
and g be as in Definition 2.14. Assume that for every A ∈ Ac(Rd) the sequence Ek(·, A)
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Γ-converges to E(·, A) with respect to the topology of L0(Rd) . Then for every x ∈ Rd ,
ξ ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 we have

f(x, ξ) = lim sup
ρ→0+

lim inf
k→∞

mEk(`ξ, Q(x, ρ))

ρd
= lim sup

ρ→0+
lim sup
k→∞

mEk(`ξ, Q(x, ρ))

ρd
,

g(x, ζ, ν) = lim sup
ρ→0+

lim inf
k→∞

mEk(ux,ζ,ν , Qν(x, ρ))

ρd−1
= lim sup

ρ→0+
lim sup
k→∞

mEk(ux,ζ,ν , Qν(x, ρ))

ρd−1
.

Proof. Let us fix x ∈ Rd and ξ ∈ Rd . By Propositions 3.1 and 3.2 for every ρ > 0, setting
r := ρ+ ρ2 we have

mE(`ξ, Q(x, r))− (c3|ξ|+ c4)
(
rd − ρd) ≤ lim inf

k→∞
mEk(`ξ, Q(x, ρ))

≤ lim sup
k→∞

mEk(`ξ, Q(x, ρ)) ≤ mE(`ξ, Q(x, ρ)) .

Since r/ρ→ 1 as ρ→ 0+, from the previous inequalities we obtain

lim sup
ρ→0+

mE(`ξ, Q(x, ρ))

ρd
≤ lim sup

ρ→0+
lim inf
k→∞

mEk(`ξ, Q(x, ρ))

ρd

≤ lim sup
ρ→0+

lim sup
k→∞

mEk(`ξ, Q(x, ρ))

ρd
≤ lim sup

ρ→0+

mE(`ξ, Q(x, ρ))

ρd
.

The equalities for f in the statement of the theorem follow from (2.27).
To prove the statement for g we introduce a function w ∈ W 1,1(Q(0, 1)) ∩ L∞(Q(0, 1))

such that trQ(0,1)w = trQ(0,1)u0,1,ed Hd−1 -a.e. on ∂Q(0, 1) (it can be constructed by

elementary arguments or by applying Gagliardo’s Theorem, see [20]). We fix x ∈ Rd ,
ζ ∈ R , and ν ∈ Sd−1 ; for every ρ > 0 we set

wx,ζ,ν,ρ(y) := ζw
(R−1

ν (y − x)

ρ

)
,

where Rν is the rotation used in the definition of the cube Qν(x, ρ). Since trQν(x,ρ)wx,ζ,ν,ρ =

trQ(x,ρ)ux,ζ,ν Hd−1 -a.e. on ∂Qν(x, ρ) we have

mF (wx,ζ,ν,ρ, Qν(x, ρ)) = mF (ux,ζ,ν , Qν(x, ρ)) ,

for every F ∈ E and every ρ > 0. Hence, by Propositions 3.1 and 3.2 for every ρ > 0
setting r := ρ+ ρ2 we have

mE(ux,ζ,ν , Qν(x, r))− c3
∫
Qν(x,r)\Qν(x,ρ)

|∇wx,ζ,ν,r|dy − c4(rd − ρd)

≤ lim inf
k→∞

mEk(ux,ζ,ν , Qν(x, ρ)) ≤ lim sup
k→∞

mEk(ux,ζ,ν , Qν(x, ρ))

≤ mE(ux,ζ,ν , Qν(x, ρ)) . (3.7)

By a rotation and a translation we obtain∫
Qν(x,r)\Qν(x,ρ)

|∇wx,ζ,ν,r|dy =

∫
Q(0,r)\Q(0,ρ)

|∇w0,ζ,ed,r|dy .

Since |∇w0,ζ,ed,r(y)| = |ζ|
r |∇w(yr )| by a further change of variables we obtain∫

Qν(x,r)\Qν(x,ρ)

|∇wx,ζ,ν,r|dy = |ζ|rd−1

∫
Q(0,1)\Q(0,ρ/r)

|∇w|dy .
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Dividing (3.7) by ρd−1 we obtain

rd−1

ρd−1

mE(ux,ζ,ν , Qν(x, r))

rd−1
− c3|ζ|

rd−1

ρd−1

∫
Q(0,1)\Q(0,ρ/r)

|∇w|dy − c4
rd − ρd

ρd−1

≤ lim inf
k→∞

mEk(ux,ζ,ν , Qν(x, ρ))

ρd−1
≤ lim sup

k→∞

mEk(ux,ζ,ν , Qν(x, ρ))

ρd−1

≤ mE(ux,ζ,ν , Qν(x, ρ))

ρd−1
.

Since r/ρ → 1 as ρ → 0+, from the previous inequalities we obtain the equalities for g in
the statement. �

For technical reasons, in the characterisation of the volume integrand f(x, ξ) it is con-
venient to replace mEk(`ξ, Q(x, ρ)) by the minimum value of a different problem, where we
impose a constraint on the L∞ -norm of u− `ξ . This leads to the following definition.

Definition 3.4. Let A ∈ Ac(Rd), w ∈ BV (A), and t > 0. Given an arbitrary functional
E : BV (A)× B(A)→ [0,+∞), we set

mE
t (w,A) = inf

u∈BV (A)
‖u−w‖L∞(A)≤t

trAu=trAw Hd−1-a.e. on ∂A

E(u,A) . (3.8)

The following result provides the analogue of Proposition 3.2 in the case of mE
t .

Proposition 3.5. Let (Ek) ⊂ E , E ∈ Esc , A ∈ Ac(Rd) , let w ∈ W 1,1(A) , and let
0 < t1 < t2 . Assume that Ek(·, A) Γ-converges to E(·, A) with respect to the topology of
L0(Rd) . Then

lim sup
k→∞

mEk
t2 (w,A) ≤ mE

t1(w,A) . (3.9)

Proof. Let us fix η > 0. By (3.8) there exists u ∈ BV (A), such that ‖u − w‖L∞(A) ≤ t1 ,

trAu = trAw Hd−1 -a.e. on ∂A , and

E(u,A) ≤ mE
t1(w,A) + η < +∞ . (3.10)

By the definition of Γ-convergence there exists (zk) ⊂ L0(A) converging to u in L0(A) as
k →∞ such that

lim
k→∞

Ek(zk, A) = E(u,A) < +∞ . (3.11)

By [17, Remark 3.5] we may assume that zk ∈ GBV?(A) for every k ∈ N . We set vk :=
(zk ∨ (w − t2)) ∧ (w + t2) = w + (zk − w)(t2) and observe that ‖vk − w‖L∞(A) ≤ t2 and

vk → u in L1(A). Since GBV?(A) is a vector space we have zk − w ∈ GBV?(A), hence
(zk − w)(t2) ∈ BV (A), which implies that vk ∈ BV (A). Moreover, by (g) in Definition 2.3
we have

Ek(vk, A) ≤ Ek(zk, A) + εk , (3.12)

where εk := c3
∫
{|zk−w|>t2} |∇w|dx + c4Ld({|zk − w| > t2}). Since zk → u in L0(Rd) and

‖u− w‖L∞(A) ≤ t1 < t2 , we conclude that εk → 0. By (3.10), (3.11), and (3.12) we have

lim sup
k→∞

Ek(vk, A) ≤ mE
t1(w,A) + η . (3.13)

To conclude the proof we argue as in the second part of the proof of Proposition 3.2,
observing that, since ‖vk−w‖L∞(A) ≤ t2 and ‖u−w‖L∞(A) ≤ t1 , the function uk introduced
in that proof by applying [17, Lemma 3.19] satisfies also the estimate ‖uk − w‖L∞(A) ≤
t2 . �
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The following result shows that in the definition of f(x, ξ) we can replace mE(`ξ, Q(x, ρ))
by mE

cξρ
(`ξ, Q(x, ρ)), where

cξ :=
c2 + c4 + 1

c1
d1/2 + |ξ|d1/2.

Lemma 3.6. Let E ∈ Esc and let f be as in Definition 2.14. Then there exists N ∈ B(Rd) ,
with Ld(N) = 0 , such that for every x ∈ Rd \N and for every ξ ∈ Rd we have

f(x, ξ) = lim sup
ρ→0+

mE
cξρ

(`ξ, Q(x, ρ))

ρd
. (3.14)

If, in addition, there exists f̂ : Rd → [0,+∞) such that

f(x, ξ) = f̂(ξ) for Ld -a.e. x ∈ Rd and every ξ ∈ Rd , (3.15)

then (3.14) holds for every x ∈ Rd and every ξ ∈ Rd .

Proof. Since mE ≤ mE
cξρ

, we have only to prove that

lim sup
ρ→0+

mE
cξρ

(`ξ, Q(x, ρ))

ρd
≤ lim sup

ρ→0+

mE(`ξ, Q(x, ρ))

ρd
. (3.16)

By Lemma 2.17 there exists N ∈ B(Rd), with Ld(N) = 0, with the following property:
for every x ∈ Rd \ N , ξ ∈ Rd , and η > 0 there exists ρη(x) > 0 such that for every
0 < ρ < ρη(x) there exists u ∈ BV (Q(x, ρ)) ∩ L∞(Q(x, ρ)), with ‖u − `ξ‖L∞(Q(x,ρ)) ≤ cξρ

and trQ(x,ρ)u = trQ(x,ρ)`ξ Hd−1 -a.e. on ∂Q(x, ρ), satisfying

mE
cξρ

(`ξ, Q(x, ρ) ≤ E(u,Q(x, ρ)) ≤ mE(`ξ, Q(x, ρ)) + ηρd . (3.17)

This implies

lim sup
ρ→0+

mE
cξρ

(`ξ, Q(x, ρ))

ρd
≤ lim sup

ρ→0+

mE(`ξ, Q(x, ρ))

ρd
+ η .

Letting η → 0 we obtain (3.16), which gives (3.14).
If, in addition, (3.15) holds, then the conclusion follows from the last sentence of Lemma

2.17. �

We conclude this section by a result which shows that in Theorem 3.3 we can replace
mEk(`ξ, Q(x, ρ)) by mEk

κξρ
(`ξ, Q(x, ρ)), where

κξ := cξ + 1 =
c2 + c4 + 1

c1
d1/2 + |ξ|d1/2 + 1. (3.18)

We shall see in Section 6 that this formulation of the result is more convenient in the study
of homogenisation problems.

Theorem 3.7. Let (fk) ⊂ F and (gk) ⊂ G , let Ek := Efk,gk , let E ∈ Esc , and let f
be as in Definition 2.14. Assume that for every A ∈ Ac(Rd) the sequence Ek(·, A) Γ-
converges to E(·, A) with respect to the topology of L0(Rd) . Then there exists N ∈ B(Rd)
with Ld(N) = 0 such that for every x ∈ Rd \N and ξ ∈ Rdwe have

f(x, ξ) = lim sup
ρ→0+

lim inf
k→∞

mEk
κξρ

(`ξ, Q(x, ρ))

ρd
= lim sup

ρ→0+
lim sup
k→∞

mEk
κξρ

(`ξ, Q(x, ρ))

ρd
. (3.19)

If, in addition, there exists f̂ : Rd → [0,+∞) such that

f(x, ξ) = f̂(ξ) for Ld -a.e. x ∈ Rd and every ξ ∈ Rd , (3.20)

then (3.19) holds for every x ∈ Rd and ξ ∈ Rd .
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Proof. Let N be the set given by Lemma 3.6. Let us fix x ∈ Rd \ N and ξ ∈ Rd . By
Propositions 3.1 and 3.5 for every ρ > 0 we have

mE(`ξ, Q(x, ρ+ ρ2))− (c3|ξ|+ c4)
(
(ρ+ ρ2)d − ρd) ≤ lim inf

k→∞
mEk(`ξ, Q(x, ρ))

≤ lim sup
k→∞

mEk
κξρ

(`ξ, Q(x, ρ)) ≤ mE
cξρ

(`ξ, Q(x, ρ)) .

Since (ρ+ ρ2)d/ρd → 1 as ρ→ 0+, from the previous inequality we obtain

lim sup
ρ→0+

mE(`ξ, Q(x, ρ))

ρd
≤ lim sup

ρ→0+
lim inf
k→∞

mEk(`ξ, Q(x, ρ))

ρd

≤ lim sup
ρ→0+

lim sup
k→∞

mEk
κξρ

(`ξ, Q(x, ρ))

ρd
≤ lim sup

ρ→0+

mE
cξρ

(`ξ, Q(x, ρ))

ρd
.

The conclusion follows from the definition of f and Lemma 3.6.
If, in addition, (3.20) holds we can take N = Ø in Lemma 3.6. �

4. A smaller class of local functionals

In the next section we shall prove an integral representation result for the Cantor part of
a functional E ∈ Esc without assuming the continuity with respect to translations requested
in [17, Theorem 6.7]. Instead we shall assume that E is the Γ-limit of a sequence of integral
functionals (Efk,gk), with fk ∈ F and gk ∈ G , and we shall use the characterization of
the integrands f and g of E given by Theorem 3.3. To obtain this result we need slightly
stronger hypotheses on the integrands fk and gk , which are studied in the present section.

Throughout the rest of the paper we fix two constants c6 > 0 and 0 < α < 1, and a
continuous non-decreasing function ϑ : [0,+∞)→ [0,+∞), with ϑ(0) = 0 and

ϑ(τ) ≥ c1
c3
τ − 1 for every τ ≥ 0 . (4.1)

We introduce a new class of functionals which plays an important role in our approach to
homogenisation problems.

Definition 4.1. Let Eα,ϑ be the class of functionals E ∈ E that satisfy the following
inequality:∣∣∣E(su,A)

s
− E(tu,A)

t

∣∣∣ ≤ c6
s
Ld(A)αE(su,A)1−α + ϑ(smA)

E(su,A)

s
+
c6
s
Ld(A)

+
c6
t
Ld(A)αE(tu,A)1−α + ϑ(tmA)

E(tu,A)

t
+
c6
t
Ld(A) (4.2)

for every s, t > 0, A ∈ Ac(Rd), and u ∈ BV (A)∩L∞(A), where mA := osc
A
u := ess supAu−

ess infAu . We also set Eα,ϑsc := Eα,ϑ ∩ Esc .

We now provide an example of integral functionals which belong to Eα,ϑ . To this end
we introduce two new classes of integrands, which are closely related to those considered in
[12, Definition 3.1].

Definition 4.2. Let Fα be the set of functions f ∈ F such that∣∣1
s
f(x, sξ)− 1

t
f(x, tξ)

∣∣ ≤ c6
s
f(x, sξ)1−α +

c6
s

+
c6
t
f(x, tξ)1−α +

c6
t

(4.3)

for Ld -a.e. x ∈ Rd and every s, t > 0 and ξ ∈ Rd .

Remark 4.3. Inequality (4.3) and (f3) imply that for Ld -a.e. x ∈ Rd and every ξ ∈ Rd the
function t 7→ 1

t f(x, tξ) satisfies the Cauchy condition as t → +∞ . Therefore, if f ∈ Fα ,
then

f∞(x, ξ) = lim
t→+∞

1

t
f(x, tξ) (4.4)
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and ∣∣1
t
f(x, tξ)− f∞(x, ξ)

∣∣ ≤ c6
t

+
c6
t
f(x, tξ)1−α (4.5)

for Ld -a.e. x ∈ Rd and every t > 0 and ξ ∈ Rd . Conversely, if the limit in (4.4) exists and
(4.5) holds, then f satisfies (4.3)

Definition 4.4. Let Gϑ be the set of functions g ∈ G such that

|1
s
g(x, s ζ, ν)− 1

t
g(x, t ζ, ν)| ≤ ϑ(s|ζ|)1

s
g(x, s ζ, ν) + ϑ(t|ζ|)1

t
g(x, t ζ, ν) (4.6)

for every s, t > 0, x ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 .

Remark 4.5. If (4.6) holds, then using (g3) we obtain

|1
s
g(x, s ζ, ν)− 1

t
g(x, t ζ, ν)| ≤ c3ϑ(s|ζ|)|ζ|+ c3ϑ(t|ζ|)|ζ| . (4.7)

This implies that for every x ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 the function t 7→ 1
t g(x, t ζ, ν)

satisfies the Cauchy condition as t→ 0+. Therefore, if g ∈ Gϑ , then the limit

g0(x, ζ, ν) := lim
t→0+

1

t
g(x, t ζ, ν) (4.8)

exists and ∣∣1
t
g(x, t ζ, ν)− g0(x, ζ, ν)

∣∣ ≤ ϑ(t|ζ|)1

t
g(x, t ζ, ν) ≤ c3ϑ(t|ζ|)|ζ| (4.9)

for every t > 0, x ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 . Conversely, if the limit in (4.8) exists and
(4.9) holds, then g satisfies (4.6).

Remark 4.6. For every g ∈ Gϑ , using (4.8), (g2), and (g3) we obtain that

c1|ζ| ≤ g0(x, ζ, ν) ≤ c3|ζ| . (4.10)

Moreover, using (g1) and (g4) we obtain also that g0 is a Borel function.

Remark 4.7. Inequality (4.1) is equivalent to Gϑ 6= Ø. Indeed, if (4.1) holds then the
function (x, ζ, ν) 7→ (c1|ζ|)∧ c3 belongs to Gϑ . Conversely, if g ∈ Gϑ then, by (4.9), (4.10),
and (g3), for every x ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 we have

c1|ζ| − c3 ≤ g0(x, ζ, ν)− g(x, ζ, ν) ≤ ϑ(|ζ|)g(x, ζ, ν) ≤ ϑ(|ζ|)c3 ,

which implies (4.1).

Remark 4.8. Given g ∈ G , assume that the limit in (4.8) exists and is uniform with

respect to x ∈ Rd and ν ∈ Sd−1 . Then g ∈ Gϑ̂ for a suitable continuous non-decreasing

function ϑ̂ : [0,+∞) → [0,+∞) satisfying ϑ̂(0) = 0 and (4.1). Indeed, since the limit in
(4.8) exists and is uniform with respect to x ∈ Rd and ν ∈ Sd−1 , considering just the two
valuea ζ = −1 and ζ = 1 we obtain that there exists a continuous non-decreasing function
ω : [0,+∞)→ [0,+∞), with ω(0) = 0, such that∣∣1

t
g(x, t ζ, ν)− g0(x, ζ, ν)

∣∣ ≤ ω(t) (4.11)

for every x ∈ Rd , ζ ∈ {1,−1} , and ν ∈ Sd−1 . This implies that for every x ∈ Rd ,
ζ ∈ R \ {0} , and ν ∈ Sd−1 we have∣∣1

t
g(x, t ζ, ν)− g0(x, ζ, ν)

∣∣ = |ζ|
∣∣∣ 1

t|ζ|
g(x, t|ζ| ζ

|ζ|
, ν)− g0(x,

ζ

|ζ|
, ν)
∣∣∣ ≤ |ζ|ω(t|ζ|) .

If t|ζ| ≤ 1, by (g2) we have

|ζ|ω(t|ζ|) ≤ ω(t|ζ|)
c1

1

t
g(x, t ζ, ν)
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and if t|ζ| ≥ 1, by (g2) we have

|ζ|ω(t|ζ|) = t|ζ|ω(t|ζ|)
c1t

c1 ≤ t|ζ|
ω(t|ζ|)
c1

g(x, t ζ, ν)

t
.

From these inequalities, setting

ϑ̂(τ) := (τ ∨ 1)
ω(τ)

c1
for every τ ≥ 0 , (4.12)

we obtain that (4.9) holds with ϑ replaced by ϑ̂ , hence g ∈ Gϑ̂ by the final sentence of

Remark 4.5. Inequality (4.1) for ϑ̂ can be obtained from Remark 4.6, or more directly using
the lower estimates for ω which follow from (4.11), recalling (4.10), (g2), and (g3).

The following result provides the main examples of functionals in the class Eα,ϑ .

Proposition 4.9. Let f ∈ Fα , let g ∈ Gϑ , and let Ef,g be the functional introduced in
Definition 2.8. Then Ef,g ∈ Eα,ϑ .

Proof. To simplify the notation we set E := Ef,g . By Remark 2.9 we already know that
E ∈ E . It remains to prove that E satisfies (4.2). Let us fix s , t , A , and u as in Definition
4.1. Since ξ 7→ f∞(x, ξ) is positively homogeneous of degree one, by (2.15) we have

E(su,A)

s
=

∫
A

f(x, s∇u)

s
dx+

∫
A

f∞
(
x,

dDcu

d|Dcu|
)
d|Dcu|+

∫
A∩Ju

g(x, s[u], νu)

s
dHd−1 ,

E(tu,A)

t
=

∫
A

f(x, t∇u)

t
dx+

∫
A

f∞
(
x,

dDcu

d|Dcu|
)
d|Dcu|+

∫
A∩Ju

g(x, t[u], νu)

t
dHd−1 ,

hence ∣∣∣E(su,A)

s
− E(tu,A)

t

∣∣∣ ≤ ∫
A

∣∣∣f(x, s∇u)

s
− f(x, t∇u)

t

∣∣∣dx
+

∫
A∩Ju

∣∣∣g(x, s[u], νu)

s
− g(x, t[u], νu)

t

∣∣∣dHd−1 . (4.13)

By (4.3) we have∫
A

∣∣∣f(x, s∇u)

s
− f(x, t∇u)

t

∣∣∣dx ≤ c6
s

∫
A

f(x, s∇u)1−αdx+
c6
s
Ld(A)

+
c6
t

∫
A

f(x, t∇u)1−αdx+
c6
t
Ld(A) . (4.14)

Since by Hölder’s inequality for every r > 0 we have∫
A

f(x, r∇u)1−αdx ≤ Ld(A)α
(∫

A

f(x, r∇u)dx
)1−α

≤ Ld(A)αE(ru,A)1−α,

from (4.14) we obtain∫
A

∣∣∣f(x, s∇u)

s
− f(x, t∇u)

t

∣∣∣dx ≤ c6
s
Ld(A)αE(su,A)1−α +

c6
s
Ld(A)

+
c6
t
Ld(A)αE(tu,A)1−α +

c6
t
Ld(A) . (4.15)

By (4.6) we have ∫
A∩Ju

∣∣∣g(x, s[u], νu)

s
− g(x, t[u], νu)

t

∣∣∣dHd−1

≤ ϑ(smA)

∫
A∩Ju

g(x, s[u], νu)

s
dHd−1 + ϑ(tmA)

∫
A∩Ju

g(x, t[u], νu)

t
dHd−1

≤ ϑ(smA)
E(su,A)

s
+ ϑ(tmA)

E(tu,A)

t
. (4.16)

From (4.13), (4.15), and (4.16) we obtain (4.2). �



16 GIANNI DAL MASO AND RODICA TOADER

We now prove that Eα,ϑ is closed with respect to Γ-convergence.

Theorem 4.10. Let (Ek) be a sequence of functionals in Eα,ϑ and let E ∈ E . Assume
that for every A ∈ Ac(Rd) the sequence Ek(·, A) Γ-converges to E(·, A) with respect to the
topology of L0(Rd) . Then E ∈ Eα,ϑsc .

Proof. We begin by observing that since E is a Γ-limit we have E ∈ Esc . To prove that
E ∈ Eα,ϑ let us fix s , t , A , u , and mA as in Definition 4.1 and let m′ > mA .

Using the continuity of ϑ , and exchanging the roles of s and t , to prove (4.2) it is enough
to show that (

1− ϑ(sm′)
)E(su,A)

s
− c6

s
Ld(A)αE(su,A)1−α − c6

s
Ld(A)

≤
(
1 + ϑ(tm′)

)E(tu,A)

t
+
c6
t
Ld(A)αE(tu,A)1−α +

c6
t
Ld(A). (4.17)

If the left-hand side is less than or equal to zero, then the inequality is trivial. We may
therefore assume that it is positive.

By the basic property of Γ-convergence and arguing as in the proof of Proposition 3.5
we deduce that there exists a sequence (uk) in BV (A)∩L∞(A) converging to u in L0(Rd)
such that oscA uk ≤ m′ for every k ∈ N and

E(tu,A) = lim
k→∞

Ek(tuk, A) , (4.18)

E(su,A) ≤ lim inf
k→∞

Ek(suk, A) . (4.19)

Since Ek ∈ Eα,ϑ we have(
1− ϑ(sm′)

)Ek(suk, A)

s
− c6

s
Ld(A)αEk(suk, A)1−α − c6

s
Ld(A)

≤
(
1 + ϑ(tm′)

)Ek(tuk, A)

t
+
c6
t
Ld(A)αEk(tuk, A)1−α +

c6
t
Ld(A). (4.20)

By (4.18) we have(
1 + ϑ(tm′)

)E(tu,A)

t
+
c6
t
Ld(A)αE(tu,A)1−α +

c6
t
Ld(A)

= lim
k→∞

((
1 + ϑ(tm′)

)Ek(tuk, A)

t
+
c6
t
Ld(A)αEk(tuk, A)1−α +

c6
t
Ld(A)

)
. (4.21)

The left-hand side of (4.17) can be expressed as Ψ
(
E(su,A)

)
, where for every z ∈ [0,+∞)

we set

Ψ(z) :=
(
1− ϑ(sm′)

)z
s
− c6

s
Ld(A)αz1−α − c6

s
Ld(A) .

Hence, in order to prove (4.17) it is enough to show that

Ψ
(
E(su,A)

)
≤ lim inf

k→∞
Ψ
(
Ek(suk, A)

)
, (4.22)

when

Ψ
(
E(su,A)

)
> 0 and hence

(
1− ϑ(sm′)

)
> 0 . (4.23)

Note that if Ψ(z) > 0 then (1 − ϑ(sm′)
)
z > c6Ld(A)αz1−α , hence z > z0 := c

1/α
6

(
1 −

ϑ(sm′)
)−1/αLd(A). Moreover, the function Ψ is increasing in (z0,+∞), hence (4.19) and

(4.23) give (4.22), which together with (4.21) gives (4.17) and concludes the proof of the
theorem. �

We conclude this section with two results that can be considered as a partial converse of
Proposition 4.9.

Proposition 4.11. Let E ∈ Eα,ϑsc and let f be as in Definition 2.14. Then f ∈ Fα .
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Proof. By Remark 2.15 we have f ∈ F and by Theorem 2.16 for every A ∈ Ac(Rd) and
u ∈ GBV?(A) we have

Ea(u,B) =

∫
B

f(x,∇u)dx

for every B ∈ B(A).
It remains to prove that f satisfies (4.3) for Ld -a.e. x ∈ Rd . We now fix ξ ∈ Rd ,

s > 0, and t > 0 and we set c := c2+c4+1
c1t

d1/2 + |ξ|d1/2 . By Lemma 2.17 there exists

N ∈ B(Rd), with Ld(N) = 0, such that for every x ∈ Rd \ N and η > 0 there exists
ρη(x) > 0 such that for every 0 < ρ < ρη(x) there exists u ∈ BV (Q(x, ρ)) ∩ L∞(Q(x, ρ))
satisfying ‖u− `ξ‖L∞(Q(x,ρ)) ≤ cρ , trQ(x,ρ)u = trQ(x,ρ)`ξ Hd−1 -a.e. on ∂Q(x, ρ), and

E(tu,Q(x, ρ)) ≤ mE(t`ξ, Q(x, ρ)) + ηρd . (4.24)

Then oscQ(x,ρ) u ≤ Cρ , where C := 2c+ |ξ|d1/2 . By (4.2) we have(
1− ϑ(sCρ)

)E(su,Q(x, ρ))

s
− c6

s
ραdE(su,Q(x, ρ))1−α − c6

s
ρd

≤ E(tu,Q(x, ρ))

t
+
c6
t
ραdE(tu,Q(x, ρ))1−α + ϑ(tCρ)

E(tu,Q(x, ρ))

t
+
c6
t
ρd (4.25)

for every 0 < ρ < ρη(x). Let X be the right-hand side of (4.25).
We want to prove that (4.25) implies(

1− ϑ(sCρ)
)mE(s`ξ, Q(x, ρ))

s
− c6

s
ραdmE(s`ξ, Q(x, ρ))1−α − c6

s
ρd ≤ X

which is equivalent to

Ψρ

(
mE(s`ξ, Q(x, ρ))

)
≤ X , (4.26)

where for every z ∈ [0,+∞) we set

Ψρ(z) :=
(
1− ϑ(sCρ)

)z
s
− c6

s
ραdz1−α − c6

s
ρd.

If the left-hand side of (4.26) is negative we have nothing to prove. Hence it is enough to
prove (4.26) when

Ψρ

(
mE(s`ξ, Q(x, ρ))

)
> 0 and hence 1− ϑ(sCρ) > 0 .

Arguing as in the proof of Theorem 4.10 we obtain that Ψρ is strictly increasing in the
half-line [mE(s`ξ, Q(x, ρ)),+∞). Since trQ(x,ρ)(s) = trQ(x,ρ)(s`ξ) Hd−1 -a.e. on ∂Q(x, ρ),

we have mE(s`ξ, Q(x, ρ)) ≤ E(su,Q(x, ρ)) which implies that

Ψρ

(
mE(s`ξ, Q(x, ρ))

)
≤ Ψρ

(
E(su,Q(x, ρ))

)
≤ X ,

where in the last inequality we used (4.25) and the definition of Ψρ . This concludes the
proof of (4.26), which, by (4.24) implies

mE(s`ξ, Q(x, ρ))

s
≤ c6

s
ραdmE(s`ξ, Q(x, ρ))1−α + ϑ(sCρ)

mE(s`ξ, Q(x, ρ))

s
+
c6
s
ρd

+
mE(t`ξ, Q(x, ρ)) + ηρd

t
+
c6
t
ραd(mE(t`ξ, Q(x, ρ)) + ηρd)1−α

+ϑ(tCρ)
mE(t`ξ, Q(x, ρ)) + ηρd

t
+
c6
t
ρd (4.27)

for every 0 < ρ < ρη(x). Dividing by ρd and passing to the limsup as ρ→ 0+ we obtain

f(x, sξ)

s
≤ c6

s
f(x, sξ)1−α +

c6
s

+
f(x, tξ) + η

t
+
c6
t

(f(x, tξ) + η)1−α +
c6
t
. (4.28)

Taking the limit as η → 0+ and exchanging the roles of s and t we obtain (4.3) for every
x ∈ Rd \N and every ξ ∈ Rd and s, t > 0. �
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Proposition 4.12. Let E ∈ Eα,ϑ and let g be as in Definition 2.14. Then g ∈ Gϑ .

Proof. By Remark 2.15 we have g ∈ G and it remains to prove (4.6). We fix s, t > 0,
x ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 . We give the proof only for ζ ≥ 0 since the case ζ < 0 can
be obtained with obvious changes.

For every ρ > 0 there exists uρ ∈ BV (Qν(x, ρ)) with trQν(x,ρ)uρ = trQν(x,ρ)ux,ζ,ν Hd−1 -
a.e. on ∂Qν(x, ρ) such that

E(tuρ, Qν(x, ρ)) ≤ mE(tux,ζ,ν , Qν(x, ρ)) + ρd .

Let vρ := (uρ∨0)∧ζ . Then vρ ∈ BV (Qν(x, ρ))∩L∞(Qν(x, ρ)), trQν(x,ρ)vρ = trQν(x,ρ)ux,ζ,ν
Hd−1 -a.e. on ∂Qν(x, ρ), and, by (g) in Definition 2.3, we have

E(tvρ, Qν(x, ρ)) ≤ E(tuρ, Qν(x, ρ)) + c4ρ
d ≤ mE(tux,ζ,ν , Qν(x, ρ)) + (1 + c4)ρd . (4.29)

By (4.2) we have(
1− ϑ(s|ζ|)

)E(svρ, Qν(x, ρ))

s
− c6

s
ραdE(svρ, Qν(x, ρ))1−α − c6

s
ρd

≤ E(tvρ, Qν(x, ρ))

t
+
c6
t
ραdE(tvρ, Qν(x, ρ))1−α + ϑ(t|ζ|)E(tvρ, Qν(x, ρ))

t
+
c6
t
ρd (4.30)

for every ρ > 0. Let X be the right-hand side of (4.30).
We want to prove that (4.30) implies

(
1− ϑ(s|ζ|)

)mE(sux,ζ,ν , Qν(x, ρ))

s
− c6

s
ραdmE(sux,ζ,ν , Qν(x, ρ))1−α − c6

s
ρd ≤ X ,

which is equivalent to

Ψρ

(
mE(sux,ζ,ν , Qν(x, ρ))

)
≤ X , (4.31)

where for every z ∈ [0,+∞) we set

Ψρ(z) :=
(
1− ϑ(s|ζ|)

)z
s
− c6

s
ραdz1−α − c6

s
ρd .

If the left-hand side of (4.31) is negative we have nothing to prove. Hence it is enough to
prove (4.31) when

Ψρ

(
mE(sux,ζ,ν , Qν(x, ρ))

)
> 0 and hence 1− ϑ(s|ζ|) > 0 .

Arguing as in the proof of Theorem 4.10 we obtain that Ψρ is strictly increasing in the
half-line [mE(sux,ζ,ν , Qν(x, ρ)),+∞). Since trQν(x,ρ)(svρ) = trQν(x,ρ)(sux,ζ,ν) Hd−1 -a.e.

on ∂Qν(x, ρ), we have mE(sux,ζ,ν , Qν(x, ρ)) ≤ E(svρ, Qν(x, ρ)) which implies that

Ψρ

(
mE(sux,ζ,ν , Qν(x, ρ))

)
≤ Ψρ

(
E(svρ, Qν(x, ρ))

)
≤ X ,

where in the last inequality we used (4.30) and the definition of Ψρ . This concludes the
proof of (4.31), which, by (4.29) implies

mE(sux,ζ,ν , Qν(x, ρ))

s
≤ c6

s
ραdmE(sux,ζ,ν , Qν(x, ρ))1−α + ϑ(s|ζ|)m

E(sux,ζ,ν , Qν(x, ρ))

s

+
c6
s
ρd +

mE(tux,ζ,ν , Qν(x, ρ)) + ρd

t
+
c6
t
ραd(mE(tux,ζ,ν , Qν(x, ρ)) + ρd)1−α

+ϑ(t|ζ|)m
E(tux,ζ,ν , Qν(x, ρ)) + ρd

t
+
c6
t
ρd
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for every ρ > 0. Since mE(sux,ζ,ν , Qν(x, ρ)) ≤ E(sux,ζ,ν , Qν(x, ρ)) ≤ c3ρd−1 +c4ρ
d by (c2),

and a similar inequality holds for t , we have

mE(sux,ζ,ν , Qν(x, ρ))

s
≤ c6

s
(c3 + c4ρ)1−αρd−1+α + ϑ(s|ζ|)m

E(sux,ζ,ν , Qν(x, ρ))

s

+
c6
s
ρd +

mE(tux,ζ,ν , Qν(x, ρ)) + ρd

t
+
c6
t

(c3 + c4ρ+ ρ)1−αρd−1+α

+ϑ(t|ζ|)m
E(tux,ζ,ν , Qν(x, ρ)) + ρd

t
+
c6
t
ρd.

Dividing by ρd−1 and passing to the limsup as ρ→ 0+ we obtain

1

s
g(x, s ζ, ν) ≤ ϑ(s|ζ|)1

s
g(x, s ζ, ν) +

1

t
g(x, t ζ, ν) + ϑ(t|ζ|)1

t
g(x, t ζ, ν) .

Exchanging the roles of s and t we obtain (4.6) for every s, t ∈ (0,+∞), x ∈ Rd , ζ ∈ R ,
and ν ∈ Sd−1 . �

5. Integral representation for functionals in Eα,θsc

The following theorem provides us with a complete integral representation for a functional
in the class Eα,θsc , without assuming the continuity condition with respect to translations
required in [17, Theorem 6.7] to deal with the Cantor part. Instead, we assume only that
the integrand f introduced in Definition 2.14 does not depend on x , a condition which is
satisfied by the functionals obtained in the limit of homogenisation problems considered in
Section 6.

Theorem 5.1. Let E ∈ Eα,ϑsc and let f and g be the functions introduced in Definition 2.14.

Assume that there exists a function f̂ : Rd → [0,+∞) such that

f(x, ξ) = f̂(ξ) for every x ∈ Rd and ξ ∈ Rd . (5.1)

Then f ∈ Fα , g ∈ Gϑ , and E = Ef,g .

Note that, even if both f and g do not depend on x , for a functional E in the wider
class Esc we do not know a proof of the continuity of E with respect to translations, which
is needed to apply [17, Theorem 6.7]. Indeed, while the independence of x of the integrands
f and g guarantees the translation invariance of Ea and Ej by Theorem 2.16, the same
property cannot be obtained for Ec , for which no integral representation is available. We
underline that Theorem 5.1 provides an integral representation for Ec , but only when E
belongs to the narrower class Eα,ϑsc introduced in this paper.

To prove this result, given a functional E ∈ Esc , we express the Radon-Nikodym deriv-
ative of Ec with respect to Dcu by means of the functions mE , introduced in Definition
2.13, computed in rectangles of the form Qλν (x, ρ).

Lemma 5.2. Let E ∈ Esc , let A ∈ Ac(Rd) , and let u ∈ BV (A) . Assume that there exists a

function f̂ : Rd → [0,+∞) satisfying (5.1), where f is the function introduced in Definition
2.14. For |Dcu|-a.e. x ∈ A , for every λ ≥ 1 , and for every ρ > 0 we set

νu(x) :=
dDcu

d|Dcu|
(x) , sλρ(x) :=

|Dcu|(Qλνu(x)(x, ρ))

λd−1ρd
, ξλρ (x) := sλρ(x)νu(x) . (5.2)

Then

lim
ρ→0+

sλρ(x) = +∞ and lim
ρ→0+

ρsλρ(x) = 0 for every λ ≥ 1 , (5.3)

dEc(u, ·)
d|Dcu|

(x) = lim
λ→+∞

lim sup
ρ→0+

mE(`ξλρ (x), Q
λ
νu(x)(x, ρ))

λd−1ρdsλρ(x)
(5.4)

for |Dcu|-a.e. x ∈ A .
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Proof. Let Ea be as in Definition 2.11. By Theorem 2.16 we have

Ea(u,A) =

∫
A

f̂(∇u)dx (5.5)

for every A ∈ Ac(Rd) and every u ∈ BV (A). For every ε > 0 we consider the functional
E(ε)(u,A) := E(u,A) + ε|Du|(A), introduced in [17, Definition 4.7] and defined for every

A ∈ Ac(Rd) and every u ∈ BV (A). Applying [7, Lemma 3.9] to Ec(ε) := Ec + ε|Dcu| , for

|Dcu| -a.e. x ∈ A we obtain

dEc(u, ·)
d|Dcu|

(x) + ε =
dEc(ε)(u, ·)
d|Dcu|

(x) = lim
λ→+∞

lim sup
ρ→0+

mE(ε)(`ξλρ (x), Q
λ
νu(x)(x, ρ))

λd−1ρdsλρ(x)
. (5.6)

In the same lemma it is shown that (5.3) is satisfied for |Dcu| -a.e. x ∈ A .
We now show that (5.3) and (5.6) imply (5.4). Since E ≤ E(ε) , from (5.6) for |Dcu| -a.e.

x ∈ A we obtain

dEc(u, ·)
d|Dcu|

(x) + ε ≥ lim
λ→+∞

lim sup
ρ→0+

mE(`ξλρ (x), Q
λ
νu(x)(x, ρ))

λd−1ρdsλρ(x)
. (5.7)

Letting ε→ 0+ we obtain the inequality ≥ in (5.4).
To prove the opposite inequality it is enough to show that for every λ ≥ 1, for every

ε > 0, and for |Dcu| -a.e. x ∈ A we have

lim sup
ρ→0+

mE(ε)(`ξλρ (x), Q
λ
νu(x)(x, ρ))

λd−1ρdsλρ(x)
≤
(
1 +

ε

c1

)
lim sup
ρ→0+

mE(`ξλρ (x), Q
λ
νu(x)(x, ρ))

λd−1ρdsλρ(x)
. (5.8)

Let us fix η > 0, λ ≥ 1, and x ∈ A for which (5.2) are defined and (5.3) holds. We set
aλ := λd1/2 and bλ := c2+c4+1

c1
d1/2λ . For every ρ > 0 let wxρ(y) := ξλρ (x) ·(y−x). Recalling

that E is invariant under the addition of constants (see Definition 2.3(d)), we can disregard
the term ξλρ (x) · x and by the last sentence in Lemma 2.17 for every ρ > 0 there exists

uxρ ∈ BV (Qλνu(x)(x, ρ))∩L∞(Qλνu(x)(x, ρ)), with ‖uxρ−wxρ‖L∞(Qλ
νu(x)

(x,ρ)) ≤ bλρ+aλρs
λ
ρ(x),

and truxρ = trwxρ Hd−1 -a.e. on ∂Qλνu(x)(x, ρ), such that

E(uxρ , Q
λ
νu(x)(x, ρ)) ≤ mE(`ξλρ (x), Q

λ
νu(x)(x, ρ)) + ηλd−1ρd . (5.9)

The L∞ -estimate for uxρ − wxρ implies that |[uxρ ]| = |[uxρ − wxρ ]| ≤ 2(bλρ + aλρs
λ
ρ(x))

Hd−1 -a.e. in Juxρ ∩Q
λ
νu(x)(x, ρ). Hence, setting J1

uxρ
:= {y ∈ Juxρ : |[uxρ ](y)| ≥ 1} we have

∫
Juxρ∩Q

λ
νu(x)

(x,ρ)

|[uxρ ]|dHd−1 ≤
∫

(Juxρ \J
1
uxρ

)∩Qλ
νu(x)

(x,ρ)

|[uxρ ]|dHd−1

+(2bλρ+ 2aλρs
λ
ρ(x))Hd−1(J1

uxρ
∩Qλνu(x)(x, ρ))

≤
(
1 + 2aλρs

λ
ρ(x) + 2bλρ

) ∫
Juxρ∩Q

λ
νu(x)

(x,ρ)

|[uxρ ]| ∧ 1dHd−1 .
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By the definition of E(ε) this implies that for every ε > 0

E(ε)(u
x
ρ , Q

λ
νu(x)(x, ρ)) = E(uxρ , Q

λ
νu(x)(x, ρ)) + ε

∫
Qλ
νu(x)

(x,ρ)

|∇uxρ |dy

+ε|Dcuxρ |(Qλνu(x)(x, ρ)) + ε

∫
Juxρ∩Q

λ
νu(x)

(x,ρ)

|[uxρ ]|dHd−1

≤ E(uxρ , Q
λ
νu(x)(x, ρ)) + ε

∫
Qλ
νu(x)

(x,ρ)

|∇uxρ |dy + ε|Dcuxρ |(Qλνu(x)(x, ρ))

+ε
(
1 + 2aλρs

λ
ρ(x) + 2bλρ

) ∫
Juxρ∩Q

λ
νu(x)

(x,ρ)

|[uxρ ]| ∧ 1dHd−1

≤
(
1 + ε

1 + 2aλρs
λ
ρ(x) + 2bλρ

c1

)
E(uxρ , Q

λ
νu(x)(x, ρ)) + ε

c2
c1

(
1 + 2aλρs

λ
ρ(x) + 2bλρ

)
λd−1ρd,

where in the last inequality we used (c1) of Definition 2.3. Recalling again that E is invariant
under the addition of constants (property (d)), by (2.26) and (5.9) we get

mE(ε)(`ξλρ (x), Q
λ
νu(x)(x, ρ))

λd−1ρdsλρ(x)
≤
E(ε)(u

x
ρ , Q

λ
νu(x)(x, ρ))

λd−1ρdsλρ(x)

≤
(
1 + ε

1 + 2aλρs
λ
ρ(x) + 2bλρ

c1

)E(uxρ , Q
λ
νu(x)(x, ρ))

λd−1ρdsλρ(x)

+ε
c2
c1

( 1

sλρ(x)
+ 2aλρ+ 2bλ

ρ

sλρ(x)

)
≤
(
1 + ε

1 + 2aλρs
λ
ρ(x) + 2bλρ

c1

)(mE(`ξλρ (x), Q
λ
νu(x)(x, ρ))

λd−1ρdsλρ(x)
+

η

sλρ(x)

)
+ε

c2
c1

( 1

sλρ(x)
+ 2aλρ+ 2bλ

ρ

sλρ(x)

)
.

Passing to the limsup as ρ → 0+ and using (5.3) we obtain (5.8), which concludes the
proof. �

To prove Theorem 5.1 we need also the following result which will allow us to obtain the
representation of the Cantor part using cubes instead of rectangles.

Lemma 5.3. Let E ∈ E , ξ ∈ Rd , λ ≥ 1 , ν ∈ Sd−1 , κ > 0 , and µ ∈ [0,+∞) . Assume
that for every x ∈ Rd and ρ > 0 we have

mE
κρ(`ξ, Q(x, ρ)) ≤ µρd . (5.10)

Then
mE
κλρ(`ξ, Q

λ
ν (x, ρ)) ≤ µλd−1ρd (5.11)

for every x ∈ Rd and ρ > 0 . If, in addition, for some x0 ∈ Rd we have

lim sup
ρ→0+

mE
κρ(`ξ, Q(x0, ρ))

ρd
= µ , (5.12)

then

lim sup
ρ→0+

mE
κλρ(`ξ, Q

λ
ν (x0, ρ))

λd−1ρd
= µ . (5.13)

Proof. Let us fix x ∈ Rd and ρ > 0. We cover Ld -almost all of Qλν (x, ρ) with a countable
union of pairwise disjoint cubes Q(xi, ρi) contained in Qλν (x, ρ). For every j ∈ N we set

Rj = Qλν (x, ρ) \
j⋃
i=1

Q(xi, ρi) .
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We observe that Ld(Rj)→ 0 as j →∞ .
Given η > 0, for every i ∈ N let ui ∈ BV (Q(xi, ρi))∩L∞(Q(xi, ρi)), with trQ(xi,ρi)ui =

trQ(xi,ρi)`ξ Hd−1 -a.e. on ∂Q(xi, ρi) and ‖ui − `ξ‖L∞(Q(xi,ρi)) ≤ κρi , such that

E(ui, Q(xi, ρi)) ≤ mE
κρi(`ξ, Q(xi, ρi)) +

η

2i
.

Let vj ∈ BV (Qλν (x, ρ)) ∩ L∞(Qλν (x, ρ)) be defined by vj := ui in Q(xi, ρi) for i ≤ j ,
and by vj := `ξ in Rj . Then trQλν (x,ρ)vj = trQλν (x,ρ)`ξ Hd−1 -a.e. on ∂Qλν (x, ρ) and

‖vj − `ξ‖L∞(Qλν (x,ρ)) ≤ κλρ , since ρi ≤ λρ .

By (a), (b), and (c2) in Definition 2.3 we have

mE
κλρ(`ξ, Q

λ
ν (x, ρ)) ≤ E(vj , Q

λ
ν (x, ρ)) ≤

j∑
i=1

E(ui, Q(xi, ρi)) + E(vj , Rj)

≤
j∑
i=1

mE
κρi(`ξ, Q(xi, ρi)) + η + (c3|ξ|+ c4)Ld(Rj) .

Passing now to the limit as j →∞ and η → 0+, from (5.10) we obtain

mE
κλρ(`ξ, Q

λ
ν (x, ρ)) ≤

∞∑
i=1

mE
κρi(`ξ, Q(xi, ρi)) ≤ µ

∞∑
i=1

ρdi = µλd−1ρd ,

where in the last equality we used the fact that the cubes are pairwise disjoint and cover
almost all of the rectangle Qλν (x, ρ). This concludes the proof of (5.11).

Assume now (5.12). Then there exists σd : (0,+∞)→ (0,+∞) with

lim inf
ρ→0+

σd(ρ)/ρd = 0

such that

mE
κρ(`ξ, Q(x0, ρ)) ≥ µρd − σd(ρ) for every ρ > 0. (5.14)

Given ρ > 0 we set R := d1/2λρ , so that Qλν (x0, ρ) ⊂ Q(x0, R). We cover Ld -almost all
of Q(x0, R) with a countable union of pairwise disjoint rectangles Qλν (yi, ri) with y1 = x0 ,
r1 = ρ , and λri ≤ R for every i ∈ N . For every j ∈ N we set

Sj = Q(x0, R) \
j⋃
i=1

Qλν (yi, ri) .

We observe that Ld(Sj)→ 0 as j →∞ .
Given η > 0, for every i ∈ N let wi ∈ BV (Qλν (yi, ri)) ∩ L∞(Qλν (yi, ri)) be such that

trQλν (yi,ri)wi = trQλν (yi,ri)`ξ Hd−1 -a.e. on ∂Qλν (yi, ri), ‖wi − `ξ‖L∞(Qλν (yi,ri)) ≤ κλri , and

E(wi, Q
λ
ν (yi, ri)) ≤ mE

κλri(`ξ, Q
λ
ν (yi, ri)) +

η

2i
.

Let zj ∈ BV (Q(x0, R)) ∩ L∞(Q(x0, R)) be defined by zj := wi in Qλν (yi, ri) for i ≤ j ,
and by zj := `ξ in Sj . Then trQ(x0,R)zj = trQ(x0,R)`ξ Hd−1 -a.e. on ∂Q(x0, R) and
‖zj − `ξ‖L∞(Q(x0,R)) ≤ κR , since λri ≤ R .

By (a), (b), and (c2) in Definition 2.3 we have

mE
κR(`ξ, Q(x0, R)) ≤ E(zj , Q(x0, R)) ≤

j∑
i=1

E(wi, Q
λ
ν (yi, ri)) + E(zj , Sj)

≤ mE
κλρ(`ξ, Q

λ
ν (x0, ρ)) +

j∑
i=2

mE
κλri(`ξ, Q

λ
ν (yi, ri)) + η + (c3|ξ|+ c4)Ld(Sj) .
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Passing now to the limit as j →∞ and η → 0+, from (5.14) we obtain

µRd − σd(R) ≤ mE
κλρ(`ξ, Q

λ
ν (x0, ρ)) +

∞∑
i=2

mE
κλri(`ξ, Q

λ
ν (yi, ri)) . (5.15)

We claim that

mE
κλρ(`ξ, Q

λ
ν (x0, ρ)) ≥ µλd−1ρd − σd(d1/2λρ) . (5.16)

We argue by contradiction. If (5.16) is not satisfied, since Rd =
∑∞
i=1 λ

d−1rdi = λd−1ρd +∑∞
i=2 λ

d−1rdi , from (5.15) and (5.11), applied with x = yi and ρ = ri , we obtain

µRd − σd(R) < µλd−1ρd − σd(d1/2λρ) + µ

∞∑
i=2

λd−1rdi = µRd − σd(R) .

This contradiction proves (5.16), which, together with (5.11), implies (5.13). �

Proof of Theorem 5.1. Let Ea, Ec, Ej be the functionals introduced in Definition 2.11. By

Propositions 4.11 and 4.12 we have f̂ ∈ Fα and g ∈ Gϑ . By Theorem 2.16 for every
A ∈ Ac(Rd) we have

Ea(u,B) =

∫
B

f̂(∇u)dx , (5.17)

Ej(u,B) =

∫
B∩Ju

g(x, [u], νu)dHd−1 , (5.18)

for every u ∈ GBV?(A) and every B ∈ B(A).
Let us fix A ∈ Ac(Rd). We now want to prove that

Ec(u,B) =

∫
B

f̂∞
( dDcu

d|Dcu|

)
d|Dcu| (5.19)

for every u ∈ GBV?(A) and every B ∈ B(A).
Taking `ξ in the minimisation problem which defines mE(`ξ, Q(x, ρ)) and using (5.17),

for every ξ ∈ Rd we obtain

mE(`ξ, Q(x, ρ)) ≤ f̂(ξ)ρd for every x ∈ Rd and ρ > 0. (5.20)

Since by (5.1) we have

lim sup
ρ→0+

mE(`ξ, Q(x, ρ))

ρd
= f̂(ξ) for every x ∈ Rd ,

we can apply Lemma 5.3 and for every x ∈ Rd , ξ ∈ Rd , λ ≥ 1, and ν ∈ Sd−1 we obtain

lim sup
ρ→0+

mE(`ξ, Q
λ
ν (x, ρ))

λd−1ρd
= f̂(ξ) .

In particular, for ξ = sν we have

lim sup
ρ→0+

mE(s`ν , Q
λ
ν (x, ρ))

λd−1ρds
=
f̂(sν)

s
. (5.21)

for every s > 0, ν ∈ Sd−1 , λ ≥ 1, x ∈ Rd .
Let us fix ν ∈ Sd−1 , λ ≥ 1, and x ∈ Rd . We claim that

lim sup
ρ→0+

mE(sρ`ν , Q
λ
ν (x, ρ))

λd−1ρdsρ
= f̂∞(ν) (5.22)

when sρ → +∞ and ρsρ → 0+ as ρ→ 0+.
We observe that by taking sρ`ν in the minimisation problem defining mE(sρ`ν , Q

λ
ν (x, ρ))

we obtain that

mE(sρ`ν , Q
λ
ν (x, ρ)) ≤ f̂(sρν)λd−1ρd ,
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hence

lim sup
ρ→0+

mE(sρ`ν , Q
λ
ν (x, ρ))

λd−1ρdsρ
≤ lim sup

ρ→0+

f̂(sρν)

sρ
≤ f̂∞(ν) . (5.23)

Therefore, in order to prove (5.22) it is enough to show that

f̂∞(ν) ≤ lim sup
ρ→0+

mE(sρ`ν , Q
λ
ν (x, ρ))

λd−1ρdsρ
(5.24)

when sρ → +∞ and ρsρ → 0+ as ρ→ 0+.

We set aλ := 2 c2+c4+1
c1

d1/2λ + 2d1/2λ . For every s ≥ 1, by (5.1) we can apply the

last statement of Lemma 2.17, which implies that mE(s`ν , Q
λ
ν (x, ρ)) = inf E(su,Qλν (x, ρ))

among all u ∈ BV (Qλν (x, ρ)) ∩ L∞(Qλν (x, ρ)) with ‖u − `ν‖L∞(Qλν (x,ρ)) ≤ aλρ/2 and

trQλν (x,ρ)u = trQλν (x,ρ)`ν Hd−1 -a.e. on ∂Qλν (x, ρ).

Since E ∈ Eα,θ for every such u and for every s, t ≥ 1 we have∣∣∣E(su,Qλν (x, ρ))

λd−1ρds
− E(tu,Qλν (x, ρ))

λd−1ρdt

∣∣∣ ≤ ϑ(aλρs)
E(su,Qλν (x, ρ))

λd−1ρds
+
c6
sα

(E(su,Qλν (x, ρ))

λd−1ρds

)1−α

+
c6
s

+ ϑ(aλρt)
E(tu,Qλν (x, ρ))

λd−1ρdt
+
c6
tα

(E(tu,Qλν (x, ρ))

λd−1ρdt

)1−α
+
c6
t
.

Arguing as in the proof of Theorem 4.10 we obtain∣∣∣mE(s`ν , Q
λ
ν (x, ρ))

λd−1ρds
− mE(t`ν , Q

λ
ν (x, ρ))

λd−1ρdt

∣∣∣ ≤ c6
s

+
c6
t

+ ϑ(aλρs)
mE(s`ν , Q

λ
ν (x, ρ))

λd−1ρds

+
c6
sα

(mE(s`ν , Q
λ
ν (x, ρ))

λd−1ρds

)1−α
+ ϑ(aλρt)

mE(t`ν , Q
λ
ν (x, ρ))

λd−1ρdt
+
c6
tα

(mE(t`ν , Q
λ
ν (x, ρ))

λd−1ρdt

)1−α
.

Taking t = sρ in the previous inequality, we obtain∣∣∣mE(s`ν , Q
λ
ν (x, ρ))

λd−1ρds
− mE(sρ`ν , Q

λ
ν (x, ρ))

λd−1ρdsρ

∣∣∣ ≤ c6
s

+
c6
sρ

+ ϑ(aλρs)
mE(s`ν , Q

λ
ν (x, ρ))

λd−1ρds

+
c6
sα

(mE(s`ν , Q
λ
ν (x, ρ))

λd−1ρds

)1−α
+ ϑ(aλρsρ)

mE(sρ`ν , Q
λ
ν (x, ρ))

λd−1ρdsρ
+
c6
sαρ

(mE(sρ`ν , Q
λ
ν (x, ρ))

λd−1ρdsρ

)1−α
.

(5.25)

Let ε > 0. By the definition of f̂∞ there exists s ≥ 1 such that

| f̂(sν)

s
− f̂∞(ν)| < ε and

c6
s

+
c6
sα

(
f̂∞(ν) + ε

)1−α
< ε . (5.26)

By (5.21) and the first inequality in (5.26) we get

f̂∞(ν)− ε ≤ lim sup
ρ→0+

mE(s`ν , Q
λ
ν (x, ρ))

λd−1ρds
≤ f̂∞(ν) + ε , (5.27)

which by (5.25) gives

f̂∞(ν)− ε ≤ lim sup
ρ→0+

[mE(sρ`ν , Q
λ
ν (x, ρ))

λd−1ρdsρ
+
c6
s

+
c6
sρ

+ ϑ(aλρs)
mE(s`ν , Q

λ
ν (x, ρ))

λd−1ρds

+
c6
sα

(mE(s`ν , Q
λ
ν (x, ρ))

λd−1ρds

)1−α
+ ϑ(aλρsρ)

mE(sρ`ν , Q
λ
ν (x, ρ))

λd−1ρdsρ
+
c6
sαρ

(mE(sρ`ν , Q
λ
ν (x, ρ))

λd−1ρdsρ

)1−α]
.

By the second inequality in (5.26) and (5.27) we have

lim sup
ρ→0+

[c6
s

+ ϑ(aλρs)
mE(s`ν , Q

λ
ν (x, ρ))

λd−1ρds
+
c6
sα

(mE(s`ν , Q
λ
ν (x, ρ))

λd−1ρds

)1−α]
≤ ε+ lim

ρ→0+
ϑ(aλρs)(f̂

∞(ν) + ε) = ε .
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Since sρ → +∞ and ρsρ → 0+, by (5.23) we deduce that

lim
ρ→0+

[ c6
sρ

+
c6
sαρ

(mE(sρ`ν , Q
λ
ν (x, ρ))

λd−1ρdsρ

)1−α
+ ϑ(aλρsρ)

mE(sρ`ν , Q
λ
ν (x, ρ))

λd−1ρdsρ

]
= 0 .

Combining the last three displayed formulas we obtain

f̂∞(ν)− 2ε ≤ lim sup
ρ→0+

mE(sρ`ν , Q
λ
ν (x, ρ))

λd−1ρdsρ
,

which implies (5.24) by the arbitrariness of ε > 0. This concludes the proof of (5.22).
Let us fix u ∈ BV (A). By (5.3) and (5.22) for every λ ≥ 1 for |Dcu| -a.e. x ∈ A we have

lim sup
ρ→0+

mE(`ξλρ (x), Q
λ
νu(x)(x, ρ))

λd−1ρdsλρ(x)
= f̂∞(νu(x)) ,

where

ξλρ (x) := sλρ(x)νu(x) and νu(x) :=
dDcu

d|Dcu|
(x) .

By (5.4) this gives
dEc(u, ·)
d|Dcu|

(x) = f̂∞
( dDcu

d|Dcu|
(x)
)
.

Since the measure Ec(u, ·) is absolutely continuous with respect to |Dcu| , we conclude that

Ec(u,B) =

∫
B

f̂∞
( dDcu

d|Dcu|

)
d|Dcu| (5.28)

for every u ∈ BV (A) and every B ∈ B(A).
To prove that (5.28) holds also for every u ∈ GBV?(A) we approximate u by truncations

and we pass to the limit repeating the arguments of the last part of the proof of [17,
Theorem 6.7]. This concludes the proof of (5.19). Together with (5.17) and (5.18) this gives
E(u,B) = Ef,g(u,B) for every u ∈ GBV?(A) and every B ∈ B(A). This implies that
E = Ef,g on L0(Rd)× B(Rd). �

The following result shows that, for integrands in Fα and Gϑ , the Γ-convergence of
a sequence of integral functionals can be deduced from the asymptotic behaviour of the
minimum values of some auxiliary minimisation problems on small cubes.

Theorem 5.4. Let (fk)k ⊂ Fα , let (gk)k ⊂ Gϑ , and let Ek := Efk,gk be as in Definition

2.8. Assume there exist two functions f̂ : Rd → [0,+∞) and ĝ : Rd × R × Sd−1 → [0,+∞)
such that

f̂(ξ) = lim sup
ρ→0+

lim inf
k→∞

mEk
κξρ

(`ξ, Q(x, ρ))

ρd
= lim sup

ρ→0+
lim sup
k→∞

mEk
κξρ

(`ξ, Q(x, ρ))

ρd
,

ĝ(x, ζ, ν) = lim sup
ρ→0+

lim inf
k→∞

mEk(ux,ζ,ν , Qν(x, ρ))

ρd−1
= lim sup

ρ→0+
lim sup
k→∞

mEk(ux,ζ,ν , Qν(x, ρ))

ρd−1
,

for every x ∈ Rd , ξ ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 , where κξ is the constant defined in (3.18).

Then f̂ ∈ Fα , ĝ ∈ Gϑ , and for every A ∈ Ac(Rd) the sequence Ek(·, A) Γ-converges to

Ef̂ ,ĝ with respect to the topology of L0(Rd) .

Proof. By Theorem 2.10 there exist a subsequence (not relabelled) and a functional E ∈ Esc ,
such that Ek(·, A) Γ-converges to E(·, A) with respect to the topology of L0(Rd) for every
A ∈ Ac(Rd). By Theorem 4.10 we have E ∈ Eα,ϑsc . Let Ea, Ec, Ej be the functionals
introduced in Definition 2.11 and let f, g be the functions introduced in Definition 2.14.

By our hypotheses and Theorems 3.3 and 3.7 we have that f(x, ξ) = f̂(ξ) and g(x, ζ, ν) =
ĝ(x, ζ, ν) for every x ∈ Rd , ξ ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 . Moreover, by Propositions

4.11 and 4.12 we have f̂ ∈ Fα and ĝ ∈ Gϑ . Therefore, by Theorem 5.1 we conclude
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that E = Ef̂ ,ĝ on L0(Rd) × B(Rd). By the Urysohn property of Γ-convergence, see [14,
Proposition 8.3], we deduce that for every A ∈ Ac(Rd) the whole sequence Ek(·, A) Γ-

converges to Ef̂ ,ĝ(·, A). �

6. Stochastic homogenisation

In this section we apply the results obtained in the previous sections to study homogenisa-
tion problems for integral functionals with integrands in Fα and Gϑ . We first study integral
functionals obtained by rescaling and after a natural change of variables we reformulate the
results of Theorem 5.4 in terms of limits of minimisation problems on large cubes. This
characterization is then used to study stochastic homogenisation problems by means of the
Subadditive Ergodic Theorem.

6.1. Functionals defined by rescaling. In this subsection we fix f ∈ Fα and g ∈ Gϑ ;
for every ε > 0 we define fε(x, ξ) := f(x/ε, ξ), gε(x, ζ, ν) := g(x/ε, ζ, ν), and Eε := Efε,gε ,
see Definition 2.8. We also consider the function g0 : Rd × R × Sd−1 → R introduced in

(4.8) and the functionals Ef,g
0

and Ef
∞,g . By Remark 4.6 the functional Ef,g

0

is well-
defined. Finally, for every ξ ∈ Rd let κξ be the constant introduced in (3.18). Our aim is
to prove a condition which implies the Γ-convergence of the sequence Eεk when εk → 0+
(see Theorem 6.3 below).

We begin with two lemmas related to the change of variables z = y/ε .

Lemma 6.1. Let 0 < ε < 1 , x ∈ Rd , ξ ∈ Rd , and ρ > 0 . Then∣∣mEε
κξρ

(`ξ, Q(x, ρ))− εdmEf,g
0

κξ
ρ
ε

(`ξ, Q(xε ,
ρ
ε ))
∣∣ ≤ Cξϑ(2κξρ)ρd , (6.1)

where Cξ := (c3|ξ|+ c4)c3/c1 .

Proof. Let u ∈ BV (Q(x, ρ)) ∩ L∞(Q(x, ρ)) with

trQ(x,ρ)u = trQ(x,ρ)`ξ Hd−1-a.e. on ∂Q(x, ρ) and |u− `ξ| ≤ κξρ in Q(x, ρ) , (6.2)

and let v ∈ BV (Q(xε ,
ρ
ε )) ∩ L∞(Q(xε ,

ρ
ε )) be the function defined by v(z) := 1

εu(εz). Note
that (6.2) is equivalent to

tr
Q(

x
ε ,
ρ
ε )
v = tr

Q(
x
ε ,
ρ
ε )
`ξ Hd−1-a.e. on ∂Q(xε ,

ρ
ε ) and |v − `ξ| ≤ κξ ρε in Q(xε ,

ρ
ε ) . (6.3)

By a change of variables we obtain∫
Q(x,ρ)

fε(y,∇u)dy = εd
∫
Q(

x
ε ,
ρ
ε )

f(z,∇v)dz , (6.4)∫
Q(x,ρ)

f∞ε (y,
dDcu

d|Dcu|
)d|Dcu| = εd

∫
Q(

x
ε ,
ρ
ε )

f∞(z,
dDcv

d|Dcv|
)d|Dcv| , (6.5)∫

Q(x,ρ)∩Ju
gε(y, [u], νu)dHd−1 = εd

∫
Q( xε ,

ρ
ε )∩Jv

1
εg(z, ε[v], νv)dHd−1 . (6.6)

Hence by (4.9), and (4.10) we have

| 1εg(z, ε[v], νv)− g0(z, [v], νv)| ≤ ϑ(2κξρ) 1
εg(z, ε[v], νv) ,

| 1εg(z, ε[v], νv)− g0(z, [v], νv)| ≤ c3
c1
ϑ(2κξρ)g0(z, [v], νv) .

This implies that

g0(z, [v], νv) ≤ (1 + ϑ(2κξρ)) 1
εg(z, ε[v], νv) ,

1
εg(z, ε[v], νv) ≤ (1 + c3

c1
ϑ(2κξρ))g0(z, [v], νv) .
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Integrating we obtain

εd
∫
Q( xε ,

ρ
ε )∩Jv

g0(z, [v], νv)dHd−1 ≤ (1 + ϑ(2κξρ))εd
∫
Q( xε ,

ρ
ε )∩Jv

1
εg(z, ε[v], νv)dHd−1,

εd
∫
Q( xε ,

ρ
ε )∩Jv

1
εg(z, ε[v], νv)dHd−1 ≤ (1 + c3

c1
ϑ(2κξρ))εd

∫
Q( xε ,

ρ
ε )∩Jv

g0(z, [v], νv)dHd−1 .

Adding the absolutely continuous and the Cantor part, and recalling (6.4)-(6.6), leads to

εdEf,g
0

(v,Q(xε ,
ρ
ε )) ≤ (1 + ϑ(2κξρ))Eε(u,Q(x, ρ)) ,

Eε(u,Q(x, ρ)) ≤ (1 + c3
c1
ϑ(2κξρ))εdEf,g

0

(v,Q(xε ,
ρ
ε )) .

By the equivalence between (6.2) and (6.3) we obtain

εdmEf,g
0

κξ
ρ
ε

(`ξ, Q(xε ,
ρ
ε )) ≤ (1 + ϑ(2κξρ))mEε

κξρ
(`ξ, Q(x, ρ)) ,

mEε
κξρ

(`ξ, Q(x, ρ)) ≤ (1 + c3
c1
ϑ(2κξρ))εdmEf,g

0

κξ
ρ
ε

(`ξ, Q(xε ,
ρ
ε )) .

Using `ξ in the minimisation problems defining mEε
κξρ

(`ξ, Q(x, ρ)) and mEf,g
0

κξ
ρ
ε

(`ξ, Q(xε ,
ρ
ε ))

we obtain mEε
κξρ

(`ξ, Q(x, ρ)) ≤ (c3|ξ| + c4)ρd and εdmEf,g
0

κξ
ρ
ε

(`ξ, Q(xε ,
ρ
ε )) ≤ (c3|ξ| + c4)ρd ,

which together with the previous inequalities give

εdmEf,g
0

κξ
ρ
ε

(`ξ, Q(xε ,
ρ
ε )) ≤ mEε

κξρ
(`ξ, Q(x, ρ)) + ϑ(2κξρ)(c3|ξ|+ c4)ρd ,

mEε
κξρ

(`ξ, Q(x, ρ)) ≤ εdmEf,g
0

κξ
ρ
ε

(`ξ, Q(xε ,
ρ
ε )) + c3

c1
ϑ(2κξρ)(c3|ξ|+ c4)ρd ,

which prove (6.1). �

Lemma 6.2. Let 0 < ε < 1/(2c6) , x ∈ Rd , ζ ∈ R , ν ∈ Sd−1 , and 0 < ρ < 1 . Then∣∣∣mEε(ux,ζ,ν , Qν(x, ρ))− εd−1mEf
∞,g

(u x
ε ,ζ,ν

, Qν(xε ,
ρ
ε ))
∣∣∣ ≤ Cζρd−1+α , (6.7)

where Cζ is a constant depending only on ζ and on the structural constants α , c3 , and c6 ,
but independent of ε , x , and ρ .

Proof. Let u ∈ BV (Qν(x, ρ)) and let v ∈ BV (Qν(xε ,
ρ
ε )) be defined by v(z) := u(εz). By

a change of variables we see that∫
Qν(x,ρ)

fε(y,∇u)dy = εd
∫
Qν( xε ,

ρ
ε )

f(z, 1
ε∇v)dz , (6.8)∫

Qν(x,ρ)

f∞ε (y,
dDcu

d|Dcu|
)d|Dcu| = εd−1

∫
Qν( xε ,

ρ
ε )

f∞(z,
dDcv

d|Dcv|
)d|Dcv| , (6.9)∫

Qν(x,ρ)∩Ju
gε(y, [u], νu)dHd−1 = εd−1

∫
Qν( xε ,

ρ
ε )∩Jv

g(z, [v], νv)dHd−1 . (6.10)

By Remark 4.3 for Ld -a.e. z ∈ Qν(xε ,
ρ
ε ) we have∣∣εf(z, 1

ε∇v)− f∞(z,∇v)
∣∣ ≤ c6ε+ c6εf(z, 1

ε∇v)1−α . (6.11)

This implies that

f∞(z,∇v) ≤ εf(z, 1
ε∇v) + c6ε+ c6εf(z, 1

ε∇v)1−α (6.12)

and

f∞(z,∇v) ≥ εf(z, 1
ε∇v)− c6ε− c6εf(z, 1

ε∇v)1−α ≥ ε
2f(z, 1

ε∇v)− c6ε− c6ε(2c6(1−α))
1−α
α ,

where we used the inequality τ1−α ≤ 1
2c6
τ + (2c6(1 − α))

1−α
α for τ ≥ 0 together with

0 < ε < 1/(2c6). This implies that

εf(z, 1
ε∇v) ≤ 2f∞(z,∇v) + Cε ,
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where C := 2c6 + 2c6(2c6(1− α))
1−α
α . This inequality together with (6.11) gives

εf(z, 1
ε∇v) ≤ f∞(z,∇v) + c6ε+ c6εf(z, 1

ε∇v)1−α

≤ f∞(z,∇v) + c6ε+ c6ε
α
(
2f∞(z,∇v) + Cε

)1−α
. (6.13)

Integrating on Qν(xε ,
ρ
ε ) and using the Hölder inequality, from (6.12) we obtain

εd−1

∫
Qν( xε ,

ρ
ε )

f∞(z,∇v)dz ≤ εd
∫
Qν( xε ,

ρ
ε )

f(z, 1
ε∇v)dz + c6ρ

d

+c6

(
εd
∫
Qν( xε ,

ρ
ε )

f(z, ∇vε )dz
)1−α

ραd , (6.14)

and from (6.13) we get

εd
∫
Qν( xε ,

ρ
ε )

f(z, 1
ε∇v)dz ≤ εd−1

∫
Qν( xε ,

ρ
ε )

f∞(z,∇v)dz + c6ρ
d

+c6

(
2εd−1

∫
Qν( xε ,

ρ
ε )

f∞(z,∇v)dz + Cρd
)1−α

ραd . (6.15)

Adding the jump and the Cantor part to (6.14) and recalling (6.8)-(6.10), it follows that

εd−1Ef
∞,g(v,Qν(xε ,

ρ
ε )) ≤ Eε(u,Qν(x, ρ)) + c6ρ

d + c6Eε(u,Qν(x, ρ))1−αραd ,

while from (6.15) we obtain

Eε(u,Qν(x, ρ)) ≤ εd−1Ef
∞,g(v,Qν(xε ,

ρ
ε )) + c6ρ

d

+c6

(
2εd−1Ef

∞,g(v,Qν(xε ,
ρ
ε )) + Cρd

)1−α
ραd .

Since trQν(x,ρ)u = trQν(x,ρ)ux,ζ,ν Hd−1 -a.e. on ∂Qν(x, ρ) if and only if trQν( xε ,
ρ
ε )v =

trQν( xε ,
ρ
ε )u xε ,ζ,ν H

d−1 -a.e. on ∂Qν(xε ,
ρ
ε ), from the last two inequalities we deduce that

εd−1mEf
∞,g

(u x
ε ,ζ,ν

, Qν(xε ,
ρ
ε )) ≤ mEε(ux,ζ,ν , Qν(x, ρ)) + c6ρ

d

+c6
(
mEε(ux,ζ,ν , Qν(x, ρ))

)1−α
ραd , (6.16)

mEε(ux,ζ,ν , Qν(x, ρ) ≤ εd−1mEf
∞,g

(u x
ε ,ζ,ν

, Qν(xε ,
ρ
ε )) + c6ρ

d

+c6

(
2εd−1mEf

∞,g
(u x

ε ,ζ,ν
, Qν(xε ,

ρ
ε )) + Cρd

)1−α
ραd . (6.17)

Taking ux,ζ,ν in the minimisation problem that defines mEε(ux,ζ,ν , Qν(x, ρ)) and using the
estimate (g3) we obtain mEε(ux,ζ,ν , Qν(x, ρ)) ≤ c3(|ζ| ∧ 1)ρd−1 . Similarly we prove that

mEf
∞,g

(ux/ε,ζ,ν , Qν(xε ,
ρ
ε )) ≤ c3(|ζ| ∧ 1)ρd−1/εd−1 . Hence from (6.16) and (6.17) we obtain

εd−1mEf
∞,g

(ux/ε,ζ,ν , Qν(xε ,
ρ
ε )) ≤ mEε(ux,ζ,ν , Qν(x, ρ)) + c6ρ

d + c6(c3(|ζ| ∧ 1))1−αρd−1+α ,

mEε(ux,ζ,ν , Qν(x, ρ)) ≤ εd−1mEf
∞,g

(u x
ε ,ζ,ν

, Qν(xε ,
ρ
ε )) + c6ρ

d

+c6(2c3(|ζ| ∧ 1)) + C
)1−α

ρd−1+α.

From these inequalities we deduce (6.7). �

Thanks to the following result, the Γ-convergence of functionals defined by rescaling can
be deduced from the convergence of the minimum values of some auxiliary minimisation
problems on large cubes.
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Theorem 6.3. Assume that there exist two functions f̂ : Rd → [0,+∞) and ĝ : R× Sd−1×
(0,+∞)→ [0,+∞) such that for every x ∈ Rd , ξ ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 we have

lim
r→+∞

mEf,g
0

κξr
(`ξ, Q(rx, r))

rd
= f̂(ξ) , (6.18)

lim
r→+∞

mEf
∞,g

(urx,ζ,ν , Qν(rx, r))

rd−1
= ĝ(ζ, ν) , (6.19)

where κξ is defined in (3.18).

Then f̂ ∈ Fα , ĝ ∈ Gϑ , and for every εk → 0+ and A ∈ Ac(Rd) the sequence Eεk(·, A)

Γ-converges to Ef̂ ,ĝ(·, A) with respect to the topology of L0(Rd) .

Proof. Given εk → 0+, let us check that the hypotheses of Theorem 5.4 are satisfied by
fk := fεk and gk := gεk . For a given ρ > 0 we take rk := ρ/εk . By (6.18), applied with x
replaced by x/ρ , and Lemma 6.1 we have

f̂(ξ)ρd − Cξϑ(2κξρ)ρd = lim
k→∞

(ρ/rk)dmEf,g
0

κξrk
(`ξ, Q(rkx/ρ, rk))− Cξϑ(2κξρ)ρd

≤ lim inf
k→∞

mEk
κξρ

(`ξ, Q(x, ρ)) ≤ lim sup
k→∞

mEk
κξρ

(`ξ, Q(x, ρ))

≤ lim
k→∞

(ρ/rk)dmEf,g
0

κξrk
(`ξ, Q(rkx/ρ, rk)) + Cξϑ(2κξρ)ρd = f̂(ξ)ρd + Cξϑ(2κξρ)ρd.

This shows that the hypothesis of Theorem 5.4 concerning mEk
κξρ

(`ξ, Q(x, ρ)) is satisfied.

By (6.19), applied with x replaced by x/ρ , and Lemma 6.2 we have

ĝ(ζ, ν)ρd−1 − Cζρd−1+α = lim
k→∞

(ρ/rk)d−1mEf
∞,g

(urkx/ρ,ζ,ν , Qν(rkx/ρ, rk))− Cζρd−1+α

= lim inf
k→∞

mEk(ux,ζ,ν , Qν(x, ρ)) ≤ lim sup
k→∞

mEk(ux,ζ,ν , Qν(x, ρ))

≤ lim
k→∞

(ρ/rk)d−1mEf
∞,g

(urkx/ρ,ζ,ν , Qν(rkx/ρ, rk)) + Cζρ
d−1+α = ĝ(ζ, ν)ρd−1 + Cζρ

d−1+α .

Since α > 0, this shows that the hypothesis of Theorem 5.4 concerning mEk(ux,ζ,ν , Qν(x, ρ))
is satisfied with ĝ independent of x .

Therefore, all hypotheses of Theorem 5.4 are satisfied and the conclusion follows. �

The following lemma shows that in order to apply Theorem 6.3 it is enough to check that
(6.18) holds when ξ is rational.

Lemma 6.4. Assume that for every x ∈ Rd and ξ ∈ Qd the limit

lim
r→+∞

mEf,g
0

κξr
(`ξ, Q(rx, r))

rd
(6.20)

exists and does not depend on x , where κξ is defined in (3.18). Then there exists a contin-

uous function f̂ : Rd → [0,+∞) such that

lim
r→+∞

mEf,g
0

κξr
(`ξ, Q(rx, r))

rd
= f̂(ξ) (6.21)

for every x ∈ Rd and ξ ∈ Rd .

Proof. Given r > 0, x ∈ Rd , and ξ1, ξ2 ∈ Rd , we set a := 1 + d1/2|ξ1 − ξ2| and we claim
that

mEf,g
0

κξ1ar
(`ξ1 , Q(rx, ar)) ≤ mEf,g

0

κξ2r
(`ξ2 , Q(rx, r))+c5|ξ1−ξ2|rd+(c3|ξ1|+c4)(ad−1)rd . (6.22)
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Given η > 0, let u2 ∈ BV (Q(rx, r))∩L∞(Q(rx, r)) be such that trQ(rx,r)u2 = trQ(rx,r)`ξ2
Hd−1 -a.e. on ∂Q(rx, r), ‖u2 − `ξ2‖L∞(Q(rx,r)) ≤ κξ2r , and

Ef,g
0

(u2, Q(rx, r)) ≤ mEf,g
0

κξ2r
(`ξ2 , Q(rx, r)) + η ,

and extend it as `ξ2 to Q(rx, ar). Then u1 := u2 − `ξ2 + `ξ1 satisfies trQ(rx,ar)u1 =

trQ(rx,ar)`ξ1 Hd−1 -a.e. on ∂Q(rx, ar),

|u1 − `ξ1 | ≤ κξ2r = κξ1r + (|ξ2| − |ξ1|)d1/2r ≤ κξ1r + |ξ1 − ξ2|d1/2r ≤ κξ1ar ,

where we used κξ1 > 1. By (a), (b), (c2), and (e) in Definition 2.3 we have

mEf,g
0

κξ1ar
(`ξ1 , Q(rx, ar)) ≤ Ef,g

0

(u1, Q(rx, ar)) ≤ Ef,g
0

(u2, Q(rx, r))

+c5|ξ1 − ξ2|rd + (c3|ξ1|+ c4)(ad − 1)rd

≤ mEf,g
0

κξ2r
(`ξ2 , Q(rx, r)) + η + c5|ξ1 − ξ2|rd + (c3|ξ1|+ c4)(ad − 1)rd , (6.23)

which, by the arbitrariness of η gives (6.22).

Let us now fix x ∈ Rd and ξ ∈ Rd . To prove the existence of f̂(ξ) such that (6.21) holds

it is enough to show that the function r 7→
mE

f,g0

κξr
(`ξ,Q(rx,r))

rd
satisfies the Cauchy condition

for r → +∞ .
Let r, s > 0, let δ > 0, and ξδ ∈ Qd with |ξδ − ξ| < δ . We set aδ := 1 + |ξδ − ξ|d1/2

and observe that aδ → 1 as δ → 0+. We also set rδ := aδr , sδ := s/aδ , xδ := aδx , and
x̂δ := x/aδ . By (6.22) applied with ξ1 = ξ , ξ2 = ξδ , x = xδ , and r = sδ , we have

mEf,g
0

κξs
(`ξ, Q(sx, s)) ≤ mEf,g

0

κξδ sδ
(`ξδ , Q(sδxδ, sδ)) + c5δs

d
δ + (c3|ξ|+ c4)(adδ − 1)sdδ .

By (6.22) applied with ξ1 = ξδ and ξ2 = ξ we have

mEf,g
0

κξδ rδ
(`ξδ , Q(rδx̂δ, rδ)) ≤ mEf,g

0

κξr
(`ξ, Q(rx, r)) + c5δr

d + (c3|ξδ|+ c4)(adδ − 1)rd .

Recalling that aδ ≥ 1, these inequalities give

mEf,g
0

κξs
(`ξ, Q(sx, s))

sd
≤
mEf,g

0

κξδ sδ
(`ξδ , Q(sδxδ, sδ))

sdδ
+ c5δ + (c3|ξ|+ c4)(adδ − 1) (6.24)

mEf,g
0

κξδ rδ
(`ξδ , Q(rδx̂δ, rδ))

rdδ
≤
mEf,g

0

κξr
(`ξ, Q(rx, r))

rd
+ c5δ + (c3|ξδ|+ c4)(adδ − 1) . (6.25)

Let us fix ε > 0 and choose δ > 0 such that c5δ + (c3(|ξ| + δ) + c4)(adδ − 1) < ε . By
(6.20) there exists Mδ > 0 such that

∣∣∣mEf,g
0

κξδ sδ
(`ξδ , Q(sδxδ, sδ))

sdδ
−
mEf,g

0

κξδ rδ
(`ξδ , Q(rδx̂δ, rδ))

rdδ

∣∣∣ < ε , (6.26)

provided rδ, sδ > Mδ . Therefore, if r, s > aδMδ , by (6.24)-(6.26) we obtain

mEf,g
0

κξs
(`ξ, Q(sx, s))

sd
≤
mEf,g

0

κξr
(`ξ, Q(rx, r))

rd
+ 3ε . (6.27)

Exchanging the roles of r and s we obtain that the Cauchy condition is satisfied and the
proof of the existence of the limit in (6.21) is concluded.

To prove the continuity of f̂ , using the inequality a ≥ 1 we deduce from (6.22) that

mEf,g
0

κξ1ar
(`ξ1 , Q(rx, ar))

adrd
≤
mEf,g

0

κξ2r
(`ξ2 , Q(rx, r))

rd
+ c5|ξ1 − ξ2|+ (c3|ξ1|+ c4)(ad − 1) .
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Passing to the limit as r → +∞ we obtain

f̂(ξ1) ≤ f̂(ξ2) + c5|ξ1 − ξ2|+ (c3|ξ1|+ c4)(ad − 1)

with a := 1+d1/2|ξ1−ξ2| . Exchanging the roles of ξ1 and ξ2 we obtain an inequality which

together with the previous one entails the continuity of f̂ . �

6.2. Stochastic homogenisation. To study stochastic homogenisation problems we fix
a probability space (Ω, T , P ) and a group (τz)z∈Zd of P -preserving transformations on
(Ω, T , P ), i.e., a family (τz)z∈Zd of maps τz : Ω→ Ω with the following properties

(a) (measurability) τz is T -measurable for every z ∈ Zd ;
(b) (bijectivity) τz is bijective for every z ∈ Zd ;
(c) (invariance) P (τz(E)) = P (E) for every E ∈ T and every z ∈ Zd ;
(d) (group property) τ0 = idΩ (the identity map on Ω) and τz+z′ = τz ◦ τz′ for every

z, z′ ∈ Zd .

We recall that the group is called ergodic if every set E ∈ T with τz(E) = E for every
z ∈ Zd has probability 0 or 1.

We introduce now the classes of random integrands we are going to consider.

Definition 6.5 (Stochastically periodic random volume integrands). Let SFα be the col-
lection of functions f : Ω× Rd × Rd → [0,+∞) satisfying the following properties

(a) f is measurable for the product of T and the Borel σ -algebra of Rd × Rd ;
(b) setting f(ω) := f(ω, ·, ·), we have f(ω) ∈ Fα for every ω ∈ Ω;
(c) f is stochastically periodic with respect to (τz)z∈Zd , i.e.,

f(ω, x+ z, ξ) = f(τz(ω), x, ξ) (6.28)

for every ω ∈ Ω, x ∈ Rd , z ∈ Zd , and ξ ∈ Rd .

Definition 6.6 (Stochastically periodic random surface integrands). Let SGϑ be the col-
lection of functions g : Ω× Rd × R× Sd−1 → [0,+∞) satisfying the following properties

(a) g is measurable for the product of T and the Borel σ -algebra of Rd × R× Sd−1 ;
(b) setting g(ω) := g(ω, ·, ·, ·), we have g(ω) ∈ Gϑ for every ω ∈ Ω;
(c) g is stochastically periodic with respect to (τz)z∈Zd , i.e.,

g(ω, x+ z, ζ, ν) = g(τz(ω), x, ζ, ν) (6.29)

for every ω ∈ Ω, x ∈ Rd , z ∈ Zd , ζ ∈ R , and ν ∈ Sd−1 .

Let (Ω, T̂ , P̂ ) be the completion of (Ω, T , P ). It is obvious that for every z ∈ Zd the

function τz : Ω → Ω is also T̂ -measurable. We now introduce the notion of subadditive
process. Let R be the collection of all rectangles of the form

[a, b) := {x ∈ Rd : ai ≤ xi < bi for i = 1, · · · , d} with a, b ∈ Rd .

Definition 6.7 (Subadditive process). A subadditive process with respect to (τz)z∈Zd is a
function µ : Ω×R → R with the following properties:

(a) (measurability) the function µ(·, R) is T̂ -measurable for every R ∈ R ;
(b) (covariance) µ(ω,R+ z) = µ(τz(ω), R) for every ω ∈ Ω, R ∈ R , and z ∈ Zd ;
(c) (subadditivity) if R ∈ R and (Ri)i∈I ⊂ R is a finite partition of R then

µ(ω,R) ≤
∑
i∈I

µ(ω,Ri) for every ω ∈ Ω ;

(d) (boundedness) there exists c > 0 such that 0 ≤ µ(ω,R) ≤ cLd(R) for every ω ∈ Ω
and R ∈ R .

We shall use the following variant of the Subadditive Ergodic Theorem [1, Theorem 2.7],
see also [15] and [22].
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Theorem 6.8. Let µ be a subadditive process with respect to (τz)z∈Zd . Then there exist a
set Ω′ ∈ T with P (Ω′) = 1 and a T -measurable function ϕ : Ω′ → [0,+∞) such that

lim
r→+∞

µ(ω,Q(rx, r))

rd
= ϕ(ω) (6.30)

for every x ∈ Rd and every ω ∈ Ω′ . If, in addition, (τz)z∈Zd is ergodic, then ϕ is constant
P -a.e.

Given f ∈ SFα , g ∈ SGϑ , and ω ∈ Ω let f∞(ω) and g0(ω) be the functions defined by

f∞(ω)(x, ξ) := lim
r→+∞

f(ω, x, rξ)

r
and g0(ω, x, rζ, ν) := lim

r→0+

1

r
g(ω, x, rζ, ν)

for every x ∈ Rd , ξ ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 .

Lemma 6.9. Let f ∈ SFα , g ∈ SGϑ , and let ξ ∈ Rd . For every R ∈ R let ρ(R) be the
maximum length of its sides. Then the function Φξ : Ω×R → [0,+∞) defined by

Φξ(ω,R) := mEf(ω),g0(ω)

κξρ(R) (`ξ, R
◦
)

is a subadditive process.

Proof. The T̂ -measurability of Φξ(·, R) can be obtained by adapting the proof in [12, Ap-
pendix].

To prove the covariance property, we fix z ∈ Zd , R ∈ R , and ω ∈ Ω. By (6.28) and
(6.29) we have

Ef(τz(ω)),g0(τz(ω))(u,R
◦
) = Ef(ω),g0(ω)(τzu,R

◦
+ z) .

Since τz`ξ = `ξ − `ξ(z), by the invariance property (d) in Definition 2.3, we deduce that
Φ(τz(ω), R) = Φ(ω,R+ z) .

We now prove subadditivity. Let us fix ω ∈ Ω, R ∈ R , a finite partition (Ri)
n
i=1 of R ,

and η > 0. For every i = 1, . . . , n there exists ui ∈ BV (R
◦
i)∩L∞(Ri) with trRiui = trRi`ξ

Hd−1 -a.e. on ∂Ri and ‖ui − `ξ‖L∞(Ri) ≤ κξρ(Ri) such that

Ef(ω),g0(ω)(ui, R
◦
i) ≤ mEf(ω),g0(ω)

κξρ(Ri)
(`ξ, R

◦
i) + η

n .

Let u be the function defined Ld -a.e. in R
◦

by u = ui on R
◦
i . Then u ∈ BV (R

◦
) and

trRu = trR`ξ Hd−1 -a.e. on ∂R .
Since ρ(Ri) ≤ ρ(R) for every i = 1, · · · , n we have also that ‖u − `ξ‖L∞(R) ≤ κξρ(R).

This implies that

Φ(ω,R) = mEf(ω),g0(ω)

κξρ(R) (`ξ, R
◦
) ≤ Ef(ω),g0(ω)(u,R

◦
)

≤
n∑
i=1

Ef(ω),g0(ω)(ui, R
◦
i) ≤

n∑
i=1

mEf(ω),g0(ω)

κξρ(Ri)
(`ξ, R

◦
i) + η =

n∑
i=1

Φ(ω,Ri) + η , (6.31)

and passing to the limit as η → 0+ we obtain the subadditivity of Φ.

Moreover, taking `ξ in the minimisation problem defining mEf(ω),g0(ω)

κξρ(R) (`ξ, R
◦
) we obtain

Φ(ω,R) ≤ (c4|ξ|+ c5)Ld(R) ,

which concludes the proof. �

Proposition 6.10. Let f ∈ SFα and g ∈ SGϑ . Then there exist Ω′ ∈ T with P (Ω′) = 1

and a function f̂ : Ω′ × Rd → [0,+∞) , with f̂(·, ξ) T -measurable for every ξ ∈ Rd and

f̂(ω, ·) continuous for every ω ∈ Ω′ , such that

lim
r→+∞

mEf(ω),g0(ω)

κξr
(`ξ, Q(rx, r))

rd
= f̂(ω, ξ) (6.32)
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for every ω ∈ Ω′ , x ∈ Rd , and ξ ∈ Rd . If, in addition, (τz)z∈Zd is ergodic, then f̂ is
independent of ω and

f̂(ξ) = lim
r→+∞

1

rd

∫
Ω

mEf(ω),g0(ω)

κξr
(`ξ, Q(0, r)) dP (ω) . (6.33)

Proof. By Lemma 6.9, for every ξ ∈ Qd the map

(ω,R) 7→ mEf(ω),g0(ω)

κξρ(R) (`ξ, R
◦
)

is a subadditive process on (Ω, T̂ , P̂ ). By the Subadditive Ergodic Theorem 6.8 there exist

Ω′ ∈ T with P (Ω′) = 1 and a function f̂ : Ω′ ×Qd → [0,+∞), with f̂(·, ξ) T -measurable
for every ξ ∈ Qd , such that

lim
r→+∞

mEf(ω),g0(ω)

κξr
(`ξ, Q(rx, r))

rd
= f̂(ω, ξ) (6.34)

for every ω ∈ Ω′ , x ∈ Rd , and ξ ∈ Qd . By Lemma 6.4 we can extend f̂ to a function

f̂ : Ω′ × Rd → [0,+∞), with f̂(·, ξ) T -measurable for every ξ ∈ Rd and f̂(ω, ·) continuous
for every ω ∈ Ω′ , such that (6.32) holds for every ω ∈ Ω′ , x ∈ Rd , and ξ ∈ Rd .

If, in addition, (τz)z∈Zd is ergodic, then the function f̂(ω, ξ) for ξ ∈ Qd does not depend
on ω and consequently the same property holds for its extension to ξ ∈ Rd . �

Proposition 6.11. Let f ∈ SFα and g ∈ SGϑ . Then there exist Ω′ ∈ T with P (Ω′) = 1
and a measurable function ĝ : Ω′ ×R× Sd−1 → [0,+∞) for the product of T and the Borel
σ -algebra of R× Sd−1 , such that

lim
r→+∞

mEf
∞(ω),g(ω)

(urx,ζ,ν , Qν(rx, r))

rd−1
= ĝ(ω, ζ, ν) (6.35)

for every ω ∈ Ω′ , x ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 . If, in addition, (τz)z∈Zd is ergodic, then
ĝ is independent of ω and

ĝ(ζ, ν) = lim
r→+∞

1

rd−1

∫
Ω

mEf
∞(ω),g(ω)

(u0,ζ,ν , Qν(0, r))dP (ω) . (6.36)

Proof. The result can be obtained by adapting all arguments of the proofs of [12, Proposi-
tions 9.3, 9.4, and 9.5] and of [11, Theorem 6.1]. �

The following theorem summarizes the results of this section.

Theorem 6.12. Let f ∈ SFα and g ∈ SGϑ . For every ε > 0 and ω ∈ Ω let fε(ω) ∈ Fα
and gε(ω) ∈ Gϑ be defined by

fε(ω, x, ξ) := f(ω, x/ε, ξ) and gε(ω, x, ζ, ν) := g(ω, x/ε, ζ, ν) (6.37)

for every x ∈ Rd , ξ ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 . Finally, let Eε(ω) := Efε(ω),gε(ω) ∈ Eα,ϑ .

Then there exist a set Ω′ ∈ T , with P (Ω′) = 1 , and two functions f̂ : Ω′ × Rd → [0,+∞)
and ĝ : Ω′ × R× Sd−1 → [0,+∞) such that

(a) f̂ is measurable for the product of T and the Borel σ -algebra of Rd , and f̂(ω, ·) ∈
Fα for every ω ∈ Ω′ ;

(b) ĝ is measurable for the product of T and the Borel σ -algebra of R × Sd−1 , and
ĝ(ω, ·, ·) ∈ Gϑ for every ω ∈ Ω′ ;

(c) for every ω ∈ Ω′ , εk → 0+ , and A ∈ Ac(Rd) the sequence Eεk(ω)(·, A) Γ-converges

to Ef̂(ω),ĝ(ω)(·, A) with respect to the topology of L0(Rd) .

If, in addition, (τz)z∈Zd is ergodic, then f̂ and ĝ are independent of ω .

Proof. The result follows from Theorem 6.3 and Propositions 6.10 and 6.11. �
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Remark 6.13. Thanks to Theorem 6.12 the convergence results for minimum values and
quasi-minimisers considered in [17, Theorems 7.1 and 7.14, Corollary 7.15] can be obtained
for the functionals Eε(ω) for P -a.e. ω ∈ Ω indexed in Rd .

Remark 6.14. The notions of stationarity and ergodicity can be defined also with respect
of a group (τz)z∈Rd . Arguing as in [11] we can obtain the results of Theorem 6.12 also in
the case (τz)z∈Rd . Our preference for (τz)z∈Zd is due to the following remark, which deals
with the deterministic periodic case.

Remark 6.15. If Ω consists of a single point, and consequently τz = idΩ for every z ∈ Zd ,
then stochastic periodicity (see Definitions 6.5 and 6.6) reduces to periodicity of period 1
in each coordinate. Therefore all results of this subsection are valid in the deterministic
periodic case.
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