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ABSTRACT. We study stochastic homogenisation problems for free discontinuity function-
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the asymptotic behaviour of suitable minimisation problems on cubes with very simple
boundary conditions. An important role is played by the subadditive ergodic theorem.
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1. INTRODUCTION

Several problems in damage and fracture mechanics lead to the study of free discontinuity
functionals of the form

/ f(m,Vu)dw—i—/ g(a:,[u]yu)d’l-ld_l, (1.1)
A ANJ,

where A is a bounded open subset of R?, u is a function defined on A, Vu denotes its
approximate gradient, J,, is the jump set of u, with unit normal v, , and [u] is the amplitude
of the jump; the second integral is with respect to the (d—1)-dimensional Hausdorff measure
HAL,

A large part of the results regarding I"-convergence of sequences of functionals of the form
(1.1) have been obtained under the hypotheses that f(z,£) has p-growth with respect to
&, for some p > 1, and that g is larger than a positive constant (see, e.g., [3, 4, 10, 13, 19,
24, 25, 26]). Under these conditions the problem is usually studied in the space of special
functions of bounded variation SBV(A), for which we refer to [2].

When f(z,€) has linear growth in £ and g(z,(,v) has a linear behaviour in ¢ near 0,
a functional of type (1.1) cannot be lower semicontinuous. The lower semicontinuity results
in [6] and the necessary condition for lower semicontinuity in [7] suggest to consider instead
functionals of the form

1.9 — o] dDu c d—1

E)9(u,A) = / f(z, Vu)dzx —|—/ (2, ———)d| Dl +/ gz, [u], v, ) dH™, (1.2)
A A d| D¢l ANJ,
defined for u € BV(A), where f*(x,&) is the recession function of f(z,€) with respect
to &, the measure D is the Cantor part of the distributional gradient Du of u (see [2,
Definition 3.91]), and dcfgizzl is the Radon-Nikodym derivative of D¢u with respect to its
total variation |DCu|.

In this paper we study homogenisation problems for functionals of the form (1.2). The
new feature is that we consider surface integrands g of bounded cohesive type, i.e., satisfying
an estimate of the form ¢ (|¢|A1) < g(z, {,v) < ¢3(|¢|A1) for suitable constants 0 < ¢; < cg3,
where a A b is the minimum between a and b. This hypothesis on the surface integrand
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is natural in the study of the relaxed version of the Dugdale model for cohesive cracks [18]
(see also [8]).

The upper bound g(z,(,v) < c3(|¢| A1) implies that we cannot apply the results of
[12], for which the assumption ¢1|¢] < g(z,(,v) was crucial to study the problem in the
space BV (A). The weak inequality ¢1 (|| A1) < g(=,(,v) forces us to use the larger space
GBV,(A) introduced in [16], in which the measure D can still be defined.

As usual in homogenisation problems for integral functionals (see, e.g., [5, 9, 21, 23]),
given a function fi(z,£) with linear growth in £ and a function g¢;(z,(,v) of bounded
cohesive type, we consider the rescaled functions

fs(xvg) = fl(%af) and gs(xaC,V) = gl(g,ga V) for > 03 (13)

and we study the asymptotic behaviour of the functionals Ef=9¢ as ¢ — 04. This is done
by means of I'-convergence. Since we are mainly interested in stochastic homogenisation
problems, we do not assume any periodicity condition with respect to = for f; and g¢;.

To study the T'-limit of E/<+9= we use a result obtained in our previous paper [17] concern-
ing sequences E/%9% of functionals of the form (1.2), not necessarily obtained by rescaling.
Under suitable hypotheses on f; and gx we proved that the I'-limit can be written in the
form

E(u,A) = / f(z,Vu)dz + E(u, A) +/ g(x, [u], v,)dH, (1.4)
A ANJ,
with suitable (subsequence dependent) integrands f and g, where E¢(u,-) is a measure
that is absolutely continuous with respect to |Du|. This result was obtained by identifying
suitable properties of the functionals E7#:9% that are inherited by the I'-limit and by proving
that all functionals with these properties can be represented in the form (1.4).

In [17] we also proved that E¢(u, A) can be represented by an integral involving f*°
under a very strong continuity hypothesis with respect to horizontal translations. The
drawback of this result is that this continuity condition can be easily obtained for the I'-
limits corresponding to the rescaled integrands in (1.3) only in the periodic case. To deal
with the stochastic homogenisation problem we need a different approach.

The first result of the present paper is a characterization of the integrands f and g in
(1.4) as limits of suitable minimum values of problems for E/*9* on small cubes with very
simple boundary conditions (see Theorem 3.3). Unfortunately, this result is not enough
to identify the T'-limit, unless we can prove that E°(u, A) can be written as an integral
involving f*°.

An important part of this paper is devoted to the integral representation of E€(u, A)
under the hypothesis that the function f(z,£) in (1.4) does not depend on z. To obtain
this result we have to strengthen the hypotheses on Ef#9%  assuming that they satisfy
further properties, which are analysed in Section 4. Among these properties we mention the
existence of the limit

1
0 e 1: -
gk(@, G v) = lim —gi(e,tC,v),

which will play an important role in the rest of the paper. Moreover, we need some uniform
estimates for

’%fk(xatg) - fl?o($7§)’ and }%gk(‘%tgﬂ V) _gl(c)(x7<7y)’ (1'5)

(see Remarks 4.3 and 4.5).

We show (see Theorem 5.1) that, if a functional E is the I'-limit of a sequence E/#9%
with fr and gp satisfying these properties, and if (1.4) holds with f independent of x, then
E<(u, A) can be represented as the second integral in (1.2); consequently, E satisfies the
complete integral representation (1.2). This allows us to prove that the I'-limit is uniquely
determined by the behaviour of the minimum values of suitable minimisation problems for
EJ%9% on small cubes with very simple boundary conditions (see Theorem 5.4).
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These results are then applied to homogenisation problems, where we fix a sequence
er — 0+ and study the T-limit of the functionals Efex9x | with f., and g., defined
by (1.3). Using the natural change of variables y = x/¢; and the uniform estimates in
(1.5), the auxiliary minimisation problems on small cubes for Ef<x'9<+ are transformed into
minimisation problems on large cubes for the functionals E/297 and E/T9' (see Lemmas
6.1 and 6.2). Therefore, the previous results imply that the I'-limit of Efe:9e1 exists and
can be represented as in (1.2), provided the limits of these minimum values, as the size of the
cubes tends to 400, exist and are independent of the centres of the cubes (see Theorem 6.3).

In the case of stochastic homogenisation, f; and g; are random functions satisfying
suitable stochastic periodicity conditions (see Definitions 6.5 and 6.6), and the almost sure
existence of the above mentioned limits on large cubes can be obtained by means of the
Subadditive Ergodic Theorem [1, Theorem 2.7], arguing as in [11, 12] (see Propositions 6.10
and 6.11). This leads to the almost sure T'-convergence result for the sequence E/=r%x (see
Theorem 6.12). Finally, we observe that the deterministic periodic case can be obtained as
a corollary of our results (see Remark 6.15).

2. NOTATION AND PRELIMINARIES

We begin by recalling the notation used in [17].

(a) Throughout this paper d > 1 is a fixed integer. The Euclidean norm in RY is
denoted by |-|. We set S := {v € R? : |[v| = 1} and ST ! := {v € S :
+v;,) > 0}, where i(v) is the largest ¢ € {1,...,d} such that v; # 0. Note that
St =sttustt.

(b) Given an open set A C R?, let A(A) be the collection of all open subsets of A and
let A.(A) :={A" € A(A): A’ cC A}, where A’ CC A means that A’ is relatively
compact in A. Given a Borel set B C R?, B(B) denotes the o-algebra of all Borel
measurable subsets of B.

(c) Forevery x € RY and p > 0 let Q(x, p) := {y € R? : |(y—x)-¢;| < p/2, for every i =
1,...,d}, where (e;)i=1,.. a is the canonical basis in R?, and - denotes the Euclidean
scalar product.

(d) For every v € S%~! we fix a rotation R,: R? — R? such that R,(eq) = v. We
assume that R., is the identity, that the restrictions of the function v — R, to the
sets S41 are continuous, and that R, (Q(0,p)) = R_,(Q(0, p)) for every v € S9!
and every p > 0.

(e) Forevery A >0, v € ST ! z € R? and p > 0 let Q)(x,p) be the rectangle defined
by

Qp(@,p) =2+ R (=3, )" x (=5, %)) (2.1)

(f) For every x € R?, ¢ € R?, ( € R, v € S* ! we define the functions ¢¢: R — R

and Uy ¢, R - R by

le(y) =€y,

() < 1f(y*x)VZOa
Ug e (y) ==
<Y 0 if(y—=z)-v<o0;

moreover, we set 1Y = {y € R?: (y — x) - v = 0}. - -
(g) Given A € A(R?) and an L£?-measurable function u: A — R, we say that a € R
is the approximate limit of u as y — x € A if for every neighbourhood U of a we

have
i £y € AN QG p) s uly) £ UY)
p—0+ p?

d
the same definition is meaningful also if © € 9A provided lim,_, 4 W >0;
moreover, the set of points © € A where the approximate limit @(z) exists and is
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finite is a Borel subset of A, and the function z — @(x) is a Borel function defined

on it; we say that ¢ € R? is the approximate gradient of u at z if the approximate

% as y — x is equal to 0.

(h) Given A € A(R?) and an LZ?-measurable function u: A — R, the jump set J,
of u is the set of all points € A for which there exist u*(z),u”(z) € R, with
ut(z) # u(x), and v,(z) € S¥! such that u*(x) is the approximate limit as
y — x of the restriction of u to the set {y € A : £(y — x) - vy (x) > 0}. Tt is
easy to see that the triple (u*(z),u™ (z),vy(x)) is uniquely defined up to a swap
of the first two terms and a change of sign in the third one. For every z € J,
we set [u](z) = uw'(z) — u(x). It can be proved that J, is a Borel set and
that, if we choose v, so that v,(z) € Si‘l for every x € J,, then the functions
ut,u™, [u]: J, — R and v,: J, — S%! are Borel functions.

(i) For every A € A(R?) and u € BV (A) let Du be the distributional gradient of u,
which can be decomposed as the sum of three R?-valued measures:

Du = D% + Du+ D',

limit of

where D®u is absolutely continuous with respect to the Lebesgue measure £, D%u
is singular with respect to the Lebesgue measure and vanishes on all B € B(A)
with H?"1(B) < 400, and DJu is concentrated on the jump set .J, of u. The
approximate gradient of u at x exists for £L?-a.e. © € A and is denoted by Vu(z);
it is known that the function Vu coincides £%-a.e. in A with the density of D%
with respect to £¢. Moreover, it is known that D'u = [u]v, H? 'L J,, where for
every measure u the measure pl F is defined by pL E(B) := p(E N B). For these
and related fine properties of BV functions we refer to [2].
(j) For every A € A(R?) let L°(A) be the set of £¢-measurable functions u: A — R
endowed with the metrisable topology of convergence in £?-measure.
Given B € B(R?), u: B — R =RU{+00, —oc}, and m > 0 the truncation u(™ of u is
defined as
ut™ (z) = (u() Am) V (=m),
where aAb and aVb denote the minimum and the maximum between a and b, respectively.
We now recall the definition of the space GBV,(A) introduced in [16, Definition 3.1].

Definition 2.1. For every A € A.(R?) let GBV,(A) be the space of functions u: A — R
such that u(™ € BV (A) for every m > 0 and

sup (/A (Vu(™|dz + | Du™)]|(A) +/ [u™]] A lde_1> < +oo.
J

m>0

w(m)

The main properties of these functions are summarized in [17, Theorem 2.2] and the main
properties of the space GBV,(A) are presented in [17, Theorem 2.3] .

We now introduce a functional that is strictly related to the definition of GBV, and will
play an important role in this paper.

Definition 2.2. The functional V: LY(R%) x B(R?) — [0, +00] is defined in the following
way. For every A € A.(R?) we set

V(u, A) ::/A|Vu|dm+|D“u\(A)+/A [l A 1dHE i ula € GBVL(A),  (22)

NJy

and V(u, A) := +o00 otherwise; the definition is then extended to A(RY) by setting
V(u, A) :=sup{V(u, A") : A" € A (RY) N A(A)} for A€ A(RY), (2.3)
and to B(R?) by setting
V(u, B) := inf{V(u,A) : A€ AR?), BC A} for B € B(R?Y). (2.4)
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Throughout the paper we fix five constants c¢q,...,c5 > 0 and a bounded continuous
function o: [0,+00) — [0, +00), such that

0<cp <1<c¢3<cs, (2.5)

c(0)=0 and o(t) >c3(t A1) foreveryt>0. (2.6)

We recall the definition of the class of free discontinuity functionals introduced in [17, Defi-
nition 3.1].
Definition 2.3. Let & denote the class of functionals E: LO(R?) x B(R?) — [0, 4+oc0c] that
satisfy the following properties:
(a) E is local on A(R?), i.e., E(u,A) = E(v,A) if A € AR?), u,v € L°(R?), and
u=uv L%ae in A;
(b) for every u € LY(RY) the function E(u,-): B(RY) — [0, +00] is a nonnegative Borel
measure and
E(u,B) = inf{E(u,A) : A€ AR?), B c A} (2.7)

for every B € B(R?);
(c1) for every u € L°(RY) and B € B(R?) we have

c1V(u, B) — 2L B) < E(u, B) ; (2.8)
(c2) for every u € L°(R?) and B € B(RY) we have
E(u, B) < 3V (u, B) + c4L%(B) ; (2.9)
(d) for every u € L°(RY), B € B(R?), and a € R we have
E(u+a,B) = E(u,B); (2.10)
(e) for every u € L°(R?), B € B(R?), and ¢ € R? we have
E(u+ e, B) < E(u, B) + c5|¢|L4(B); (2.11)
(f) for every u € L°(RY), B € B(R?), z € R?, ( € R, and v € S*~! we have
E(u+uz ¢, B) < E(u,B) +o(|¢)H" (BNTTY); (2.12)

(g) for every u € LO(RY), B € B(R?), and wy,wy € Wllo’cl(]Rd), with w; < wy L%-a.e.
in R%, we have

E((uVw) Awg,B) < E(u,B)+03/ \Vw:| V |Vws|dz + ¢4 L4 By) (2.13)
Biy
where By = {z € B : u(x) ¢ [wi(x),ws(z)]}.
Finally, let &,. denote the class of functionals £ in & that satisfy the following property:
(h) for every A € A.(R?) the functional E(-, A) is lower semicontinuous in L°(R%).
A first example of functional belonging to €. is given by V (see [17, Remark 3.15]).

Remark 2.4. Let E€ ¢, A€ ARY), and u € L°(A). For every B € B(A) we can define
E(u, B) by extending u to a function v € L°(R?) and setting E(u, B) := E(v,B). The
value E(u, B) does not depend on the extension (see [17, Remark 3.2]).

We now recall the definitions of the classes of functions F and G introduced in [17].

Definition 2.5. Let F be the set of functions
f:RTxRY = [0, +00)
that satisfy the following conditions:

(f1) f is Borel measurable;
(f2) c1]é] — ca < f(2,€) for every x € R? and every ¢ € RY;
(3) f(z,€) < c3lé| + ¢y for every z € R? and every & € RY;
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(f4) |f(x, &) — f(z,£2)] < cs5lé1 — &) for every o € R? and every &;,& € RY.
Definition 2.6. Let G be the set of functions
g: RYX R x ST — [0, 400)
that satisfy the following conditions:

(gl) g is Borel measurable;

(22) c1(|¢|A1) < g(x,¢,v)  forevery z €R?, (€R, v e S,

(23) g(z,¢,v) <es(|C|A1)  foreveryz € R, CeR, vesSit;

(2) 19(z, C1,v) — 900, Goo0) S 0(1G — Gal)  for every w € R, (1,6 €R, v €S9,
(g5) g(x,—C,—v) =g(z,C,v) forevery zx € R, (€R, ve S,

(g6) for every x € R% and v € S9! the function ¢ — g(z,(,v) is non-decreasing on
[0,4+00) and non-increasing on (—oo, 0].

We recall the definition of the recession function.

Definition 2.7. For every f: R? x R? — [0, +00) the recession function f>:R% x R? —
[0,4+00] (with respect to &) is defined by

f°°(z, &) := limsup

t——+oo

S, %) (xt’ ) (2.14)

for every x € R? and every & € RY.

We are now in a position to introduce the integral functionals associated with the inte-
grands f and g. We note that in Section 6 this definition is used also for the function ¢°,
which does not belong to G.

Definition 2.8. Given f € F and a Borel function g: R? x R x S¥~! — [0, +00) we define
the functional E9: LO(R?) x B(R?) — [0, +0oc] in the following way: if A € A.(R?) and
u|a € GBV,(A) we set

dD¢
E19(u, A) ::/ f(a:,Vu)dm+/ foo(x,iu)d|DCu|+/ gz, [u], v,)dHL, (2.15)
A A d| Deul AnJ,

while we set E/9(u, A) := 400 if ula ¢ GBV,(A). The definition is then extended to
A(R?) by setting

E59(u, A) := sup{E/9(u, A') : A’ € A.(RY)NA(A)} for A e ARY), (2.16)
and to B(RY) by setting
ET9(u, B) := inf{E/9(u, A) : A€ AR?), Bc A} for B € B(R?). (2.17)

The definition is extended to functions u € L°(A) with A € A(R?) according to Remark
2.4.

Remark 2.9. For every f € F and g € G the functionals Ef9 belong to & (see [17,
Proposition 3.11]). Moreover, if A € A.(R?) and u € GBV,(A), then

dD¢ ,
E19(u, B) ::/ f(x,Vu)dat—&—/ foo(x,iu)d|D°u|+/ gz, [u], v, )dH! (2.18)
B B d|Deul BNJ,
for every B € B(A).
The following compactness result is proved in [17, Theorem 3.16].

Theorem 2.10. Let (Ey) be a sequence in €. Then there exist a subsequence, not relabelled,
and a functional E € €, such that for every A € A.(R?) the sequence Ey(-, A) T -converges
to E(-, A) with respect to the topology of L°(R?).

In view of the integral representation of a functional E in &, it is useful to consider the
measures introduced in the following definition.
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Definition 2.11. Let E: L°(R?) x B(R%) — [0, +oc] be a functional satisfying properties
(b) and (c2) in Definition 2.3. Let u € L°(R?) and A € A.(R?) with u|s € GBV,(A).
The measures E%(u,-), E*(u,-), E(u,-), and E(u,-) on B(A) are defined in the following
way:

E%(u,-) is the absolutely continuous part of E(u,-) with respect to £¢, (2.19)
E*(u,-) is the singular part of E(u,-) with respect to £¢, (2.20)
E¢(u, B) := E*(u, B\ J,) for every B € B(A), (2.21)
Ei(u,B) := E*(u,BNJ,) = E(u, BN J,) for every B € B(A). (2.22)
Remark 2.12. The following properties hold (see [17, Remark 4.2]):
E(u,-) = E*(u,-) + E°(u,-) + E’(u,-) in B(A), (2.23)
E€(u,-) is the absolutely continuous part of E(u,-) with respect to |Du, (2.24)

EJ(u,-) is the absolutely continuous part of E(u,-) with respect to H4 1L J,. (2.25)

We now introduce the minimisation problems that are used to define the integrands for
the integral representation results proved in [17].

Definition 2.13. Let A € A.(R?) with Lipschitz boundary and w € BV(A). Given an
arbitrary functional E(-, A): BV (A) — [0, +oo], we define (see [7])

mP(w, A) := inf{E(u, A) : u € BV(A), trau = traw H? -a.e. on JA}, (2.26)
where trqv denotes the trace on 9A of a function v € BV (A).

We are now in a position to define the integrands used in the integral representation
results for functionals in €.

Definition 2.14. Given E € ¢ we define the integrands f: R? x R? — [0, 4+00), and
g: RYx R x S¥1 — [0, +00) by setting

f(@,8) = lipni%ip o ; (2.27)
. mE(Um vy QV(va))
g(z,¢,v) = hprri%ip ’Cp’d_l . (2.28)

Remark 2.15. In [17, Theorem 5.1] it is proved that for every E € € we have f € F and
geqg.

The following integral representation result for E* and E? on GBV,(A) is proved in [17,
Theorem 6.3].

Theorem 2.16. Let E € €., let f and g be defined by (2.27) and (2.28), respectively,
and let A € A.(R?). Then

Ea(u,B):/Bf(a:,Vu)dm, (2.29)

Ej(u,B):/Bm o [ul, v )M~ (2.30)

for every uw € GBV,(A) and every B € B(A).

We shall use frequently the following technical lemma, proved in [17, Lemma 4.16], taking
(2.29) into account. For every & € R? we set

1
ce 1= wdl/2 + |¢|dY/? . (2.31)

C1



8 GIANNI DAL MASO AND RODICA TOADER

Lemma 2.17. Let E € &,.. Then there exists N € B(R?), with L4(N) = 0, such that
for every x € RE\ N, X > 1, v € S¥ ', and n > 0 there ewists pi‘m(x) > 0 with
the following property: for every 0 < p < pf,‘m(sc) and every & € R? there evists u €
BV(Ql),‘(l',p))ﬂLoo(Ql))($,p)) Satisfying ||u7€§HL°°(Q3(:c,p)) < C§>\p) ter)(z,p)u = ter)(m,p)gﬁ
HI L a.e. on 0Q)(z,p), and

E(u,Q)(x,p)) <mP(le, Q) (x, p)) +nA" p?. (2.32)
R If, in addition, f is continuous in R? x R?, then N = @. Finally, if there exists
f:RY—[0,4+00) such that

flz, &) = f({) for £L%-a.e. z € R and every & € R?,
then p}, (x) = +00.

3. THE INTEGRANDS OF THE I'-LIMIT

Let (E/+9%) be a sequence of integral functionals, with fx € F and gx € G, and let
E € &,.. Assume that for every A € A.(R%) the sequence E/+9% (., A) T'-converges to
E(-, A) with respect to the L°-topology. From Section 2 we know that E* and E? can
be represented in an integral form (see (2.29) and (2.30)) using two integrands f € F and
g € G. The aim of this section is to prove Theorem 3.3, which provides a connection
between the integrands f and ¢ and the minimum values of some auxiliary problems for
the functionals Ef*9 on small cubes.

We begin by showing a relation between m® (w, A) and the sequence mE (w, A") for
A’ cc A, provided w € WHi(A).

Proposition 3.1. Let (fi) C F, (gr) C G, let By := E/*9 and let E € &,.. Assume
that for every A € A.(R?) the sequence Ey(-, A) T -converges to E(-, A) with respect to the
topology of L°(R?). Let A’, A € A.(RY), with A" CC A, have Lipschitz boundaries , and
let we WHL(A). Then

k— o0

m¥(w, A) < liminf m®* (w, A") +/ (es|Vw| + ¢q)da. (3.1)
A\A/

Proof. By the definition of m®* there exists uy € BV (A’), with trauy, = traw H -ae.
on OA’, such that

Ek(uk, A/) < mE’“ (w,A’) + % .
Let vy € BV(A) be defined by vy = uy in A’ and v, = w in A\ A’. Since w € WH1(A)
and traug = traw H¥ l-ae. on 9A’, we have HI1(J,, NJA") = 0, which implies that
Ex(vg,0A’) = 0. Therefore, by (f3) we have

Ey(vi, A) = Ey(uy, A') + Ex(w, A\ A') < mP (w, A') + % —|—/ (e3|Vw| + ¢q)dz:
A\AY

< Bu(w, A') + 1 +/ (es| V| + ea)da < / (cs| Vo] + ea)da + L
A\A A

Recalling (cl) in Definition 2.3, we deduce that V(vg, A) is bounded. Therefore we
can apply [17, Theorem 7.13] which provides a subsequence of (E}), not relabelled, and a
sequence (yx) C GBV,(A) such that y;, = w L%-ae. in A\ A,

Ey(yr, A) < E(vg, A) + £ <mPr(w, A') + 2 +/ (ca|Vw| + c4)dz,
A\AY

and y;, converge in L°(A) to a function y € GBV,(A) with y =w L%-a.e. in A\ A’.
By TI'-convergence

E(y, A) <liminf By (yg, A) < liminf m®* (w, A") +/ (e3|Vw| + cq)da .
k—oo k A\A

— 00
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Since tray = traw H% '-ae. on JA, we have m¥(w, A) < E(y, A), which, together with
the previous inequalities, gives (3.1). O

The following proposition shows an inequality connecting m® (w, A) with the sequence
mPEr(w, A).

Proposition 3.2. Let (Ey) C € and E € €. Assume that for every A € A.(R?)
the sequence Ey(-,A) T'-converges to E(-,A) with respect to the topology of L°(R?). Let
A € A.(RY) has Lipschitz boundary and let w € BV (A) N L>®(A). Then

lim sup m® (w, A) < m¥(w, A). (3.2)
k—o0

Proof. Let us fix n > 0. By the definition of m® there exists u € BV (A), with trqu = traw
Hé 1 a.e. on DA, such that

E(u, A) < mP(w, A) + 1.

Recalling [17, Proposition 4.3], by a truncation argument based on (g) in Definition 2.3 we
see that we may assume u € BV(A) N L>®°(A). We may regard u as the restriction to
A of a function u € L>(R?). By the definition of I'-convergence there exists a sequence
(v) C L°(RY) converging to u in L°(R?) as k — oo such that

klim Ei(vg, A) = E(u, A) < mP(w, A) + 1 < +o0. (3.3)
—o0

By [17, Remark 3.5] we may assume that vg|4 € GBV,(A) for every k € N. Replacing
v with v,(cm) for m > [|ul| oo (ray, we may also assume that [|vg| e ga) < m, since (3.3)
continues to hold by [17, Remark 3.4]. Moreover vx|a € BV(A) and vy — u in L} (R?).

loc
We now fix a compact set K such that K ¢ A and
esV(u, A\ K) + s LYA\K) <7, (3.4)

and we set B := A\ K and wy = u for every k € N. We also fix two open sets A’ and
A", with K ¢ A’ cc A” cC A. We apply [17, Lemma 3.19] and we obtain a sequence
(ur) C L} (RY), with ug|4 € BV(A), converging to u in L, (RY) as k — 400, such that

loc

up =vp L%ae in A and wup=u L%ae in A\ A", (3.5)
lim sup Ex(ug, A) < (1 4 n) limsup (Ek(vk, A) + Ep(u, A\ K)) +n, (3.6)
k—o0 k—oo

where we used the equality A = A" U (A\ K). By (c2) in Definition 2.3 and (3.4) we have
Ei(u, A\ K) < n. Hence (3.6) together with (3.3) gives

limsup Ey(ug, A) < (1+ n)(mE(w,A) + 21]) +n.

k—o0

Since trauy = trau H t-a.e. on A by (3.5), and trau = traw H% -a.e. on OA, we
have m Pk (w, A) < Ep(uy, A) for every k. Therefore

lim sup m (w, A) < (1 + n)(mE(w,A) +2n) + 1.

k—o0

Passing to the limit as n — 04 we obtain (3.2). O

We are now in a position to state and prove the main result of this section.

Theorem 3.3. Let (fy) C F and (gr) C G, let By, == Efo9 et E € &,., and let f
and g be as in Definition 2.14. Assume that for every A € A.(R?) the sequence Ej(-, A)
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I -converges to E(-, A) with respect to the topology of L°(R?). Then for every x € RY,
EeR?, CeR, and v € ST we have

m (L, Q(z. p) m (L, Q(z, p)
d

= lim sup lim sup = ,

f(z,&) = limsup lim inf

p—0+ k—oo 14 p—0+  k—oo P
Ey Ey
g(x,¢,v) = limsup lim inf m (uz,c,;,_,?l,(xm)) = lim sup lim sup mn (um’@;_,lQl,(x, p))
p—0+ k—oo P p—0+  k—oo P

Proof. Let us fix z € R? and ¢ € R?. By Propositions 3.1 and 3.2 for every p > 0, setting
r:=p+ p? we have

(£, Q1)) — (eslé] + e0) (14 — p%) < lim inf P (¢, Q(x, )

< limsupm® (£, Q(a, p)) < m” (fe, Q. ).

k—o0

Since r/p — 1 as p — 0+, from the previous inequalities we obtain

m” (e, Qx,p)) m (b, Q(z, p))

lim sup v < limsup liminf v
p—0+ P p—0+ k—oo P
Er (g By
< limsup lim sup W YT P)) ( 5,52(36,,0)) < lim sup m Ve % 0)) (e, Cj(m,p)).
p—0+  k—oo P p—0+ P

The equalities for f in the statement of the theorem follow from (2.27).

To prove the statement for g we introduce a function w € WH1(Q(0,1)) N L>=(Q(0,1))
such that trgonw = trg,1)%0,1,e, He-ae. on 0Q(0,1) (it can be constructed by
elementary arguments or by applying Gagliardo’s Theorem, see [20]). We fix € R,

C €R, and v € S¥1; for every p > 0 we set

Wy ¢v,p(Y) 1= Cw(

where R, is the rotation used in the definition of the cube @, (x, p). Since Q. (2,p) Wz, C,vp =
tTQ (2, p) Uz ¢ v He1-a.e. on 0Q,(z,p) we have

mF(wZ‘,C,V,[)v QI/(I7 p)) = mF(u-’ﬂ,(,Va QV(:C’ p)) ’

for every F' € € and every p > 0. Hence, by Propositions 3.1 and 3.2 for every p > 0
setting r := p + p? we have

mE(uai,C7V7 Qu($7 ’I“)) —C3 / vaw,C,u,r|dy - C4(rd - pd)
Qu(z,7)\Qu (z,p)
< liminf m™ (uy ¢ v, Qu(, p)) < limsup m® (ug,¢,., Qu(x, p))
k—oc0 k— o0
S mE(UIE,C,IMQV(va))' (37)

By a rotation and a translation we obtain

/ |vwm,c,u,r|dy = / |vw0,c,ed,r dy.
Qu(z,r)\Qu (z,p) Q(0,M)\Q(0,p)
Since |Vwoc.e,.r(y)| = %\Vw(%)\ by a further change of variables we obtain
/ Vit ldy = el [ Vuldy.
Qv (z,r)\Qu(z,p) Q(0,1)\Q(0,p/7)
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Dividing (3.7) by p?~! we obtain

Td_l mE(Um’C’y,Qy(fﬂ,'f‘)) _ ‘C|7’d_1 |v |d _ rd —p?
a1 d—1 1N v wiey = Ca—31
p r p Q(0,D\Q(0,p/7) P
< hm lnf mEk (U’w,C,V) Ql/(xﬁ p)) < hm Sup mEk (u$7C7V7 QV(J"7 p))
= d—1 = d—1
k—oo p k—oo P
< mE(uw,C,ua Qu(z,p))
= pi—1
Since r/p — 1 as p — 0+, from the previous inequalities we obtain the equalities for g in
the statement. O

For technical reasons, in the characterisation of the volume integrand f(x,&) it is con-
venient to replace mZ* (¢, Q(x, p)) by the minimum value of a different problem, where we
impose a constraint on the L®-norm of u — f¢. This leads to the following definition.

Definition 3.4. Let A € A.(R%), w € BV(A), and t > 0. Given an arbitrary functional
E: BV(A) x B(A) = [0, +00), we set
E .
A) = f E(u,A). 3.8
my (w, A) L (u, A) (3:8)
lu—wllpoo cay<t
trau=traw HP 1 a.e. on A

The following result provides the analogue of Proposition 3.2 in the case of m¥.

Proposition 3.5. Let (Ex) C €, E € €,., A € A(R?), let w € WHL(A), and let
0 < t; < to. Assume that Eg(-, A) T -converges to E(-, A) with respect to the topology of
LO(RY). Then
lim sup mi" (w,A) <m (w, A). (3.9)
k—o0
Proof. Let us fix n > 0. By (3.8) there exists u € BV (A), such that [u — wl|pea) < t1,
trau = traw H¢ '-ae. on 9A, and

E(u, A) <mf (w, A) +n < +oo. (3.10)

By the definition of I'-convergence there exists (z;) C LY(A) converging to u in L(A) as
k — oo such that

lim FE(z, A) = E(u, A) < +00. (3.11)

k—o0
By [17, Remark 3.5] we may assume that z, € GBV,(A) for every k € N. We set vy :=
(21 V(0 — t2)) A (w+t2) = w+ (2, — w)*2) and observe that [[vx — w||z=(a) < t2 and
v — u in L'(A). Since GBV,(A) is a vector space we have z;, —w € GBV,(A), hence
(zx — w)*2) € BV(A), which implies that v, € BV(A). Moreover, by (g) in Definition 2.3
we have

Ek(’l}k,A) S Ek(Zk,A) + €k, (312)

where g, 1= ¢3 f{‘Zk_w|>t2} |Vw|dz + c4L({|z1, — w| > t2}). Since 2z, — u in L°(R?) and
lu — w| o (ay < t1 < tz, we conclude that £, — 0. By (3.10), (3.11), and (3.12) we have

limsup By, (vg, A) < m; (w, A) + 1. (3.13)

k—o0
To conclude the proof we argue as in the second part of the proof of Proposition 3.2,
observing that, since ||[vg —w| g4y < t2 and ||u—w|| g (ay < t1, the function uy introduced
in that proof by applying [17, Lemma 3.19] satisfies also the estimate ||up — w|p~(a) <
ta. U
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The following result shows that in the definition of f(z,£) we can replace m* (¢¢, Q(z, p))

by mf ,(le, Q(z, p)), where

62+C4+1d1/2
C1

Lemma 3.6. Let E € &,. and let f be as in Definition 2.14. Then there evists N € B(R?),
with LYN) =0, such that for every x € RE\ N and for every £ € R? we have

my,,(le, Q(z, p))
y .

ce 1= + |€|dr/?.

f(x, &) = limsup

3.14
s ; (3.14)

If, in addition, there exists f: R — [0, +00) such that

f(z,&) = f(&) for L -a.e. 2 € R? and every € € RY, (3.15)
then (3.14) holds for every x € R? and every ¢ € R%.

E

: E
Proof. Since m* < Meeps

we have only to prove that

mi (L, Q(a, E(y

lim sup fp( < 52( P) < lim sup m R\ P)) ( g,(;Q(:E,p)) .
p—0+ P p—0+ 4

By Lemma 2.17 there exists N € B(R?), with £L4(N) = 0, with the following property:

for every z € RT\ N, £ € R?, and n > 0 there exists p,(x) > 0 such that for every

0 < p < py(z) there exists u € BV(Q(z,p)) N L>®(Q(x, p)), with |[u — Le|| oo (Q(a,p)) < Ccep

and trQz,p) U = trQa,p)le HI1-ae. on OQ(x, p), satisfying

me,(le, Q(z, p) < E(u, Q(x, p)) < mP(le, Q(x, p)) + np. (3.17)

(3.16)

This implies

m(leQep))

mE (L, Q(x,
lim sup gp( < dQ( P) < lim sup
p—0+ P p—0+ p
Letting 7 — 0 we obtain (3.16), which gives (3.14).
If, in addition, (3.15) holds, then the conclusion follows from the last sentence of Lemma
2.17. O

We conclude this section by a result which shows that in Theorem 3.3 we can replace
mP(le, Q(z, p)) by mk, (b, Q(x, p)), where

ke i=ce+1= + |¢]dY? 4+ 1. (3.18)

co+cg+1 d1/2
C1

We shall see in Section 6 that this formulation of the result is more convenient in the study

of homogenisation problems.

Theorem 3.7. Let (fi) C F and (gr) C G, let Ey, := ET09 et E € €., and let f
be as in Definition 2.14. Assume that for every A € A.(RY) the sequence Ex(-,A) T-
converges to E(-, A) with respect to the topology of L°(R%). Then there exists N € B(R?)
with LYN) =0 such that for every x € R?\ N and ¢ € R we have

reo(le, Q(x,p)) mict,(Le; Q(x, p))

x,&) = limsup lim inf = lim sup lim sup
d d
p—04+ k—oo P p—0+  k—oo P

m

. (3.19)

If, in addition, there exists f: R — [0, +00) such that

f(z,6) = f(&) for L%-a.e. x € R? and every € € R?, (3.20)
then (3.19) holds for every x € R? and ¢ € RY.
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Proof. Let N be the set given by Lemma 3.6. Let us fix x € R?\ N and ¢ € R?. By
Propositions 3.1 and 3.5 for every p > 0 we have

m" (le, Q(@, p+ p*)) = (eslé] + ca) ((p + p*)* = p) < Timinf m™ (e, Q(x, p))
< hin sup mfgkp(éf’ Q(z,p)) < mcEEp(gfv Q(z,p))-

ede el
Since (p + p?)?/p? — 1 as p — 0+, from the previous inequality we obtain

E(p Ex(p

lim sup m_ (e, Q. p)) g,g(l‘,p)) < lim sup lim inf m7 (e, Q. p)) 5’?(%[)))
p—0+ P p—04 k—oo P

Eﬁkp(f&Q(x,p)) pmip(gva(xap))

< lim sup lim sup ] < lim su v
p—=0+  k—oo P p—0+ P

m

The conclusion follows from the definition of f and Lemma 3.6.
If, in addition, (3.20) holds we can take N = () in Lemma 3.6. O

4. A SMALLER CLASS OF LOCAL FUNCTIONALS

In the next section we shall prove an integral representation result for the Cantor part of
a functional E € &, without assuming the continuity with respect to translations requested
in [17, Theorem 6.7]. Instead we shall assume that E is the I'-limit of a sequence of integral
functionals (Ef#9%) with f, € F and gp € G, and we shall use the characterization of
the integrands f and g of F given by Theorem 3.3. To obtain this result we need slightly
stronger hypotheses on the integrands f; and g, which are studied in the present section.
Throughout the rest of the paper we fix two constants ¢g > 0 and 0 < a < 1, and a
continuous non-decreasing function ¥: [0, +00) — [0, 4+00), with ¥(0) = 0 and
I(r) > 2—17 —1 forevery T >0. (4.1)
3
We introduce a new class of functionals which plays an important role in our approach to
homogenisation problems.

Definition 4.1. Let ¢*? be the class of functionals E € & that satisfy the following
inequality:

E(S’:,A) . E(t?:,A) < C—;ﬂd(A)aE(su, A)l—a + ﬂ(smA)E(SZ’A) + C;G[,d<A)
+Ct—6£d(A)aE(tu, Al 4 19(th)% + %%d(A) (4.2)

for every s,t >0, A € A.(R?), and u € BV(A)NL>(A), where m 4 := O8CU 1= eSS SUP 4U—
essinf qu. We also set €%V := ¢4V N ¢,,.

We now provide an example of integral functionals which belong to &*¥. To this end
we introduce two new classes of integrands, which are closely related to those considered in
[12, Definition 3.1].

Definition 4.2. Let F“ be the set of functions f € F such that

1 1 Cg —a Cg Cg —a Cg

’;f(xa s§) — ;f(x,tf)’ < ;f(x,sf)l t5 7t 7f(337t§)1 3 (4.3)
for £%-a.e. x € R? and every s,t >0 and & € R?.

Remark 4.3. Inequality (4.3) and (£3) imply that for £%-a.e. € R? and every & € R the
function ¢t — %f(x,tg) satisfies the Cauchy condition as ¢ — 4o00. Therefore, if f € F,
then

2,6 = Jim_ (1) (44)
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and

|71~ £ 0] < © 4 © pa, 1) (45)

for £L%-a.e. 2 € R? and every t > 0 and ¢ € R?. Conversely, if the limit in (4.4) exists and
(4.5) holds, then f satisfies (4.3)

Definition 4.4. Let GY be the set of functions g € G such that
[0 5G,0) = 390t < D(IC) o 5G,) + 00D Lot Cr) (46)
for every s,t >0, € R?, (€ R, and v € S41.
Remark 4.5. If (4.6) holds, then using (g3) we obtain
9,5 Cv) = 190,60 < esd(6ICDIC] + esdtCDIC] (47)

This implies that for every 2 € R%, ¢ € R, and v € S%! the function ¢ %g(m,t{,u)
satisfies the Cauchy condition as ¢ — 0+. Therefore, if g € GV, then the limit

P Cv) = Jim gl 1C,v) (438)
exists and . )
’;g(.’L‘, t C) V) - go(xv C? V)’ < 19(“0);9(1‘) tC’ V) < C3ﬁ(t|d)|g| (49)

for every t > 0, x € R, ( € R, and v € S¥~1. Conversely, if the limit in (4.8) exists and
(4.9) holds, then g satisfies (4.6).

Remark 4.6. For every g € G, using (4.8), (g2), and (g3) we obtain that
C1|C| Sgo(;c’<71/) §C3|q (410)

Moreover, using (g1) and (g4) we obtain also that ¢° is a Borel function.

Remark 4.7. Inequality (4.1) is equivalent to G¥ # (. Indeed, if (4.1) holds then the
function (z,¢,v) + (c1/¢]) A cs belongs to G7. Conversely, if g € G then, by (4.9), (4.10),
and (g3), for every x € R, ( € R, and v € S*"! we have

ClK‘ —c3 < go('x’gy) - g(l‘,(,ll) < 19(|C|)g($,<,l/) < 19(|<|)03,
which implies (4.1).

Remark 4.8. Given g € G, assume that the limit in (4.8) exists and is uniform with
respect to © € R? and v € S1. Then g € G” for a suitable continuous non-decreasing
function J: [0, +00) — [0,400) satisfying 9(0) = 0 and (4.1). Indeed, since the limit in
(4.8) exists and is uniform with respect to z € R? and v € S, considering just the two
valuea ( = —1 and ¢ =1 we obtain that there exists a continuous non-decreasing function
w: [0,400) — [0,+00), with w(0) = 0, such that

(90,1 60) = (V)] < () (411)

for every * € R4, ¢ € {1,—1}, and v € S?!. This implies that for every z € R,
¢ €R\ {0}, and v € S¥! we have

00 t6) = 4t €| = | i o el ) = 9P 5,00 < €T(lSD
If t|¢| <1, by (g2) we have
1
cloich < LD 2000, 1.0)
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and if ¢|¢| > 1, by (g2) we have

o) ) gt ),

[Cla(t[¢]) = tI¢|————c1 < t[C] "
From these inequalities, setting
I(r):=(rV 1)w(7) for every 7 >0, (4.12)
C1

we obtain that (4.9) holds with ¢ replaced by 15, hence g € gﬁ by the final sentence of
Remark 4.5. Inequality (4.1) for ¥ can be obtained from Remark 4.6, or more directly using
the lower estimates for w which follow from (4.11), recalling (4.10), (g2), and (g3).

The following result provides the main examples of functionals in the class &*?.

Proposition 4.9. Let f € F*, let g € G”, and let E/9 be the functional introduced in
Definition 2.8. Then Ef9 ¢ 7,

Proof. To simplify the notation we set E := E79. By Remark 2.9 we already know that
E € ¢. It remains to prove that F satisfies (4.2). Let us fix s, ¢, A, and u as in Definition
4.1. Since & — f(x,£) is positively homogeneous of degree one, by (2.15) we have

suA /fa: sVu) d —|—/f°° c ) |Dcu|—|—/ g(z, s[ul, v u)ded—l,
d|D ul AN,

s
E(tu, A) / flz,tVu) tVu / dDu / gz, tlul,vn) - aeq
>( d|Du| + = S dHY T,
/ d|DCU|) (D% AnJ, t
hence
‘E(su,A) 3 E(tu,A)‘ </ ‘f(a:,sVu) B f(x,tVu)‘dx
s t - t
P [t gt )
ANJ, s t
By (4.3) we have
/ ‘f z,sVu) _ @, tv“ ‘d <% / F(z, sVu)dz + %“N(A)
A
+7/ [z, tVu)'~dx + %cd(A). (4.14)
A
Since by Hélder’s inequality for every r > 0 we have
-«
/ fz, rVu) ~%dz < Ed(A)a(/ f(x,rVu)dx) < LYUA)E(ru, A)re,
A
from (4.14) we obtain
/ ’f z,5Vw) _ Sz, N“ ’d < L) B(su, 4) + L ()
+7£d(A)“E(tu,A)1*°‘ + 7ﬁd(A) ) (4.15)
By (4.6) we have
[ [t _godn)
ANJ, $ t
Sﬁ(smA)/ g(m S[ ] )de 1 ’19(th)/ g(xvt[u]vyu)dde—l
ANJ, s ANJ. t
< 9(sma) EE%A) | ﬂ(m@@ . (4.16)

From (4.13), (4.15), and (4.16) we obtain (4.2). O
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We now prove that &> is closed with respect to I'-convergence.

Theorem 4.10. Let (Ei) be a sequence of functionals in €%V and let E € €. Assume
that for every A € A.(R?) the sequence Ey(-, A) T -converges to E(-, A) with respect to the
topology of L°(R?). Then E € €27,

Proof. We begin by observing that since E is a I'-limit we have E € €,.. To prove that
Eec eV letus fix s, t, A, u, and ma as in Definition 4.1 and let m’ > m4.

Using the continuity of ¥, and exchanging the roles of s and ¢, to prove (4.2) it is enough
to show that

(1- ﬂ(sm’))w - %Ed(A)aE(su, A)l=e — %ﬁ,cd(A)
<(1+ ﬂ(tm’))w + %Ed(A)aE(tu,A)l_a + Cfﬁd(A). (4.17)

If the left-hand side is less than or equal to zero, then the inequality is trivial. We may
therefore assume that it is positive.

By the basic property of I'-convergence and arguing as in the proof of Proposition 3.5
we deduce that there exists a sequence (uy) in BV (A) N L>(A) converging to u in L°(R?)
such that osca uy < m’ for every k € N and

E(tu, A) = lim Ej(tug, A), (4.18)
k—o00

E(su, A) < liminf Ey(sug, A). (4.19)
k—o0

Since Ej, € €Y we have
Ey(sug, A) ¢

(1= d(sm') === LA B(sur, A)'" - %‘”’cd(A)
<(1+ 19(tm’))M + %ad(A)aEk(tuk, Ao 4 %zd(A). (4.20)
By (4.18) we have
E(tu, A)

(1 +9(tm"))
By (tug, A)

+ cfﬁd(A)aE(tu,A)l"" + %ch(A)

= lim (14 9(tm)))

k—o0

+ %Gﬁd(A)aEk(tuk, A)le 4 Cfcd(A)) . (4.21)

The left-hand side of (4.17) can be expressed as W(E(su, A)), where for every z € [0, +00)
we set

U(z) = (1 - ﬁ(sm/))z - Cfﬁd(A)azl"" - %%d(A) .
Hence, in order to prove (4.17) it is enough to show that
U (E(su,A)) < liminf ¥ (Ey(sug, A)) , (4.22)
k—o0
when
¥ (E(su,A)) >0 and hence (1—9(sm’))>0. (4.23)

Note that if ¥(z) > 0 then (1 —d(sm’))z > L4 (A)*2'~*, hence z > zp = cé/a (1-

ﬁ(sm’))fl/aﬁd(A). Moreover, the function ¥ is increasing in (zp, +00), hence (4.19) and
(4.23) give (4.22), which together with (4.21) gives (4.17) and concludes the proof of the
theorem. 0

We conclude this section with two results that can be considered as a partial converse of
Proposition 4.9.

Proposition 4.11. Let E € ¢%” and let f be as in Definition 2.14. Then f € F<.
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Proof. By Remark 2.15 we have f € F and by Theorem 2.16 for every A € A.(R?) and
u € GBV,(A) we have

Ea(u,B):/Bf(x,Vu)dx

for every B € B(A).

It remains to prove that f satisfies (4.3) for L£%-a.e. x € RY. We now fix ¢ € RY,
s >0, and ¢t > 0 and we set ¢ := %dlﬂ + |€|dY/?. By Lemma 2.17 there exists
N € B(R%), with £(N) = 0, such that for every z € R\ N and 1 > 0 there exists
pn(z) > 0 such that for every 0 < p < py(x) there exists u € BV (Q(z, p)) N L=(Q(z, p))
satisfying [[u — Le|| Lo (Q(a,p)) < €Ps tTQ(2,p)U = tTQ (2, ) le He1-a.e. on OQ(x,p), and

E(tu, Q(x, p)) < m” (tle, Q(=, p)) + np” . (4.24)
Then 0scq(y, ) u < Cp, where C = 2c + |¢|d}/2. By (4.2) we have

(1= 0(sCp) ZE QL) 5 prapy a, py)1-e - Ot

< BOQ@ ) | 0 oy, ()= 4 0(10p) EL D | oty )

for every 0 < p < p,(z). Let X be the right-hand side of (4.25).
We want to prove that (4.25) implies

(1 . 19(80[))) mE(ng,Q(a;‘,p)) _ %pade(ng,Q(l‘,p))l_a _ %p <X

s
which is equivalent to

U, (m" (sle, Q(z,p))) < X, (4.26)
where for every z € [0, +00) we set

z C6 o —a Cg
W,(z) = (1-9(sCp))= — =p dplza _ 254,
s s S
If the left-hand side of (4.26) is negative we have nothing to prove. Hence it is enough to
prove (4.26) when

W, (m"(ste,Q(x,p))) >0 and hence 1—19(sCp) >0.

Arguing as in the proof of Theorem 4.10 we obtain that ¥, is strictly increasing in the
half-line [m* (sle, Q(z, p)), +00). Since tro(z,p) () = trgm,p)(sle) H¥ -ae. on 9Q(z,p),
we have m¥ (slg, Q(z, p)) < E(su, Q(x, p)) which implies that

Uy (m"(ste, Q(,p))) < Wy (E(su, Q. p))) < X,
where in the last inequality we used (4.25) and the definition of ¥,. This concludes the
proof of (4.26), which, by (4.24) implies

m (ol Qo)) < € iy sge, (a, )= + (sCp) T L) GO

m¥ (tle, Q(x, p)) + np*
¢

+0(tCp

+

+ 2 (m® (the, Q. p) + mp")'

)mE(tfaQ(gz,p)) +up? C?Gpd (4.27)

for every 0 < p < p,(z). Dividing by p? and passing to the limsup as p — 0+ we obtain
T3 € iy gy 0y I 1D oy

Taking the limit as 7 — 0+ and exchanging the roles of s and ¢ we obtain (4.3) for every
r € R\ N and every ¢ € R? and s,t > 0. O

z,tE) + )+ %6 . (4.28)
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Proposition 4.12. Let E € €Y and let g be as in Definition 2.14. Then g € G .

Proof. By Remark 2.15 we have ¢ € G and it remains to prove (4.6). We fix s,¢ > 0,
r€RY, ¢ €R,and v € ST1. We give the proof only for ¢ > 0 since the case ¢ < 0 can
be obtained with obvious changes.

For every p > 0 there exists u, € BV (Q,(z, p)) with trg, (2 p)Up = trqQ, (z,p)Us,cr HI 71 -
a.e. on 0Q,(z,p) such that

E(tuy, Qu(z, p)) < mP (tug.c o, Qulz, p)) + p?.

Let v, := (u,VO)AC. Then v, € BV(Q.(x, p)) NL>(Qu (7, p)), tTQ, (2,0)Vp = tTQ, (2,0) Uz C,v
He1-a.e. on 0Q,(z,p), and, by (g) in Definition 2.3, we have

E(tvpv Qu(z,p)) < E(tup» Qu(z,p)) + C4pd < mE(tum,C,w Qu(w,p)) + (1 + C4)pd . (4.29)
By (4.2) we have

(1 (51 Em QAT 6 o, @, pyyi=e — 2

< PO QA0 | 6 iy, (e, py) = + o) P2 DBy €00y )

for every p > 0. Let X be the right-hand side of (4.30).
We want to prove that (4.30) implies

m¥ (sug, ¢, Qu(z,p 6 g a €
(1~ sl M QAB) 6 oy, Q)= Cpt < X

which is equivalent to
@p(mE(Sur,C,anu(map))) <X, (4'31)
where for every z € [0, +00) we set

z C o —a C
Wy(2) = (1= 0(sIC))) = — Lprdsize — Ot

If the left-hand side of (4.31) is negative we have nothing to prove. Hence it is enough to
prove (4.31) when

\Ilp(mE(suz,C’l,,Ql,(x,p))) >0 and hence 1-—19(s|C])>0.

Arguing as in the proof of Theorem 4.10 we obtain that ¥, is strictly increasing in the
half-line [m”(sug.¢,, Qu(z,p)), +00). Since trq, (x,)(svp) = tro, (z,p) (Stzc,) HO ' -ace.
on 9Q,(z, p), we have m¥ (suy ¢ ., Qu(z,p)) < E(sv,, Qu(z,p)) which implies that

\I/p(mE(su$7¢7V,QV(x,p))) <v, (E(svp,Ql,(a:,p))) <X,

where in the last inequality we used (4.30) and the definition of ¥,. This concludes the
proof of (4.31), which, by (4.29) implies

mE(Su$7C7VvQV(x7p)) < C6 ad E(suxygl,,Qy(x,p))l*a—|—19(5|C|)mE(suz’<’”’Q”(x’p))

< = p%m
S S S
E d
c6 m* (tug,¢c.v, Qu(z, p)) + p*  co _
+;pd | (e ; ( + Tpad(mE(tugg,g,mQu(m,p)) + ph)tme

+O(¢C]

mE (tum,(,ua Qu (:L’, p)) + pd C6 4
) ; + 57
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for every p > 0. Since m(suy ¢, Qu (2, p)) < E(sus,cp, Qu(z,p)) < c3p?™t+cap? by (c2),
and a similar inequality holds for ¢, we have
mE(SU’x,(,Vv Ql/(xa ,0))

)mE(Sux7C7y7 Ql/(x7p))
S

S

c —a d—1+a
< les+eap)' Tt 1 05[]
mP(tug ¢ v, Qu(z, p)) + p¢ ¢ o de
(tua,c, t( p))+p +?6(03+C4p+p)1 apd=l+a
m® (s cv, Qu(, ) + 0 6 4
) + —p%.
t t
Dividing by p?~! and passing to the limsup as p — 04+ we obtain
1 1 1 1
;g('anCay) < 79(8|<D;g($,8<,1/) + ;g(xat<7y) + 19(t|<.|)¥g(xat<7y) .

Exchanging the roles of s and t we obtain (4.6) for every s,t € (0,4+00), z € R, ( € R,
and v € S 1. O

C
+—2pd 4
S

+O(t[C]

5. INTEGRAL REPRESENTATION FOR FUNCTIONALS IN €%

The following theorem provides us with a complete integral representation for a functional
in the class €%, without assuming the continuity condition with respect to translations
required in [17, Theorem 6.7] to deal with the Cantor part. Instead, we assume only that
the integrand f introduced in Definition 2.14 does not depend on x, a condition which is
satisfied by the functionals obtained in the limit of homogenisation problems considered in

Section 6.

Theorem 5.1. Let E € €47 and let f and g be the functions introduced in Definition 2.14.
Assume that there exists a function f: R? — [0, +00) such that

f(x, €)= f(&) for every x € RY and € € R?. (5.1)
Then f € F*, g€ GY, and E = E/9.

Note that, even if both f and g do not depend on =z, for a functional E in the wider
class €,. we do not know a proof of the continuity of E with respect to translations, which
is needed to apply [17, Theorem 6.7]. Indeed, while the independence of z of the integrands
f and g guarantees the translation invariance of E® and E’ by Theorem 2.16, the same
property cannot be obtained for E€, for which no integral representation is available. We
underline that Theorem 5.1 provides an integral representation for E¢, but only when E
belongs to the narrower class €2;” introduced in this paper.

To prove this result, given a functional E € &,., we express the Radon-Nikodym deriv-
ative of E¢ with respect to D°u by means of the functions m¥, introduced in Definition
2.13, computed in rectangles of the form Q) (z, p).

Lemma 5.2. Let E € &, let A€ A.(R?), and let u € BV(A). Assume that there exists a
function f: R? — [0, +00) satisfying (5.1), where f is the function introduced in Definition
2.14. For |D¢u|-a.e. x € A, for every A > 1, and for every p >0 we set

chU A |DCU‘(Q£\u($)(IL‘7p)) A A

vy () == 7d|Dcu\ (x), sp(z):= N1y , () = sy (@)vu(z) . (5.2)
Then
pl—i>%l+ s;\(x) =400 and pl—i>%l+ ps;‘ () =0 for every A > 1, (5.3)
E A

dE*(u, -) o m” (lex(2)s Qp, (2 (@, 0))
—— ()= 1 1 £ > 5.4
d|Deul (@) Moo lpni%ip A= pd s () (5.4)

for |Dul-a.e. x € A.
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Proof. Let E* be as in Definition 2.11. By Theorem 2.16 we have
E%(u, A) = / f(Vu)da (5.5)
A

for every A € A.(R%) and every u € BV (A). For every ¢ > 0 we consider the functional
Ey(u, A) := E(u, A) 4 ¢|Du|(A), introduced in [17, Definition 4.7] and defined for every
A € A.(RY) and every u € BV(A). Applying [7, Lemma 3.9] to Ef,) = E° 4 ¢|D¢ul, for
|Dul-a.e. x € A we obtain

dEC(”) ) dE(CE) (u’ ) . . mE(E) (£§A(m)a Q:} (x) (LU, p))
@y~ tim 1 , u . (56
dDeu] &) 8= gDy @) = lim limsup N1 ol () (56)

In the same lemma it is shown that (5.3) is satisfied for |D¢ul-a.e. z € A.
We now show that (5.3) and (5.6) imply (5.4). Since E < E(.y, from (5.6) for [Du|-a.e.
x € A we obtain

E A
dEc(u, ) . . m (65*(:6)»69;/ (z) (xvp))
———(x)+¢e> lim limsu £ < . 5.7
d|Deu| (z) e p_>0+P )\d—lpdsl))\(x) (5.7)
Letting ¢ — 0+ we obtain the inequality > in (5.4).

To prove the opposite inequality it is enough to show that for every A > 1, for every
e >0, and for |Du|-a.e. © € A we have

mE(s)ékQO)\ z,p mEEAI;Q)‘ z,p
lsnsup S ;u(”( ) (14 <) limsup ( G} du«;\(z)( )
p—0+ A 1Y Sp(ﬂf) C1 p—0+ A p sp(x)

(5.8)

Let us fix n > 0, A > 1, and « € A for which (5.2) are defined and (5.3) holds. We set
ax := Ad'/? and by := %dl/%\. For every p > 0 let wy(y) = ff;(a:)-(y—x). Recalling
that E is invariant under the addition of constants (see Definition 2.3(d)), we can disregard
the term 5;);(:5) -z and by the last sentence in Lemma 2.17 for every p > 0 there exists
uE € BY(Q2, ) (@ 0)) NL=(Q2, (1 (.p)) . with 02— 02| e @3 ooy < bap+arps(a),
and tru’ = trw? H%'-ae. on 8Q;\u(z)(:17,p), such that

E(ul, Q) (@, p)) < m® (Ley (). Q. (@, p)) + A1 (5.9)

The L>-estimate for uf — w? implies that [[uZ]| = |[uf — wZ]| < 2(bap + arps)(x))

H*leae. in Jue N Q) (2, p). Hence, setting Ji. := {y € Juz : [[uZ](y)| > 1} we have
P K P

Vu(x)

aglian < [ fuplian?
(Juﬁ \J/,i% )mQ:\u(m) (a?,p)

+(2bxp + 2axpsy (@) H T (e N QD () (2, 1))

/‘]uii NQY, ) (@)

< (1+ 2a>\p5;\(x) + 2bp) / [fug]| A IE A
Ju% ﬂQiu(z) (z,p)
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By the definition of FE(.) this implies that for every ¢ > 0

By 05 @l :0)) = B, Qo) +e [ vurlay
v () 0P

4l DUEN(Q, o))+ < gl
Jug nQiu(m)(wap)

< B Qo) te [Vl D@ o)
vu (@) TP

+e(1+ 2008} (0) + 20ap) [ [g)] A 1dH
Julgg ﬂQ:\u(m)($1P)
1+ 2a,\ps;‘(x) + 2byp
€

< (14 p
1

c _
) E(ug, 3u(w)(x,p))—l—gﬁ(l—&—Qa,\ps;\(x)+2b>\p))\d Lpd,

where in the last inequality we used (c1) of Definition 2.3. Recalling again that E is invariant
under the addition of constants (property (d)), by (2.26) and (5.9) we get
mE(s)(EEg‘(r)v Qi\u(m) (.’E, p)) E(E) (uiv i\u(gj) ($, ,0))
)\d—lpdsé(x) = )\d—lpdsé(x)

61 + 2axps)(z) + 2bxp, E(uy, Q) () (@)

< (1
,( + o ) /\d_lpdsg‘(x)
Co 1 p
— (= +2 20\ —~—
o G Tt )
< (1 n 6]. + 2&,\@92‘(%) + Qb)\p) (mE(EEQ(x)v Qi\u('r)(x’ P)) n n )
- c1 A=t pdsd () sp(z)
Co 1 p
— 2 206 —~—~) -
o G T )
Passing to the limsup as p — 0+ and using (5.3) we obtain (5.8), which concludes the
proof. O

To prove Theorem 5.1 we need also the following result which will allow us to obtain the
representation of the Cantor part using cubes instead of rectangles.

Lemma 5.3. Let E€ ¢, ¢ €RY, A >1, v €S k>0, and pu € [0,+00). Assume
that for every x € R and p > 0 we have

Moy (le, Q(, p)) < pp. (5.10)
Then
M (le, @ (@, p)) < pA =t pt (5.11)
for every x € R? and p > 0. If, in addition, for some xo € R? we have

mgp(gfa Q(‘r07 p))

lim sup =pu, 5.12
p—0+ pe ( )
then . ( )\( )
. mex éE? Qu Zo, P
lim su P =U. 5.13
m sup Ly [ (5.13)

Proof. Let us fix € R? and p > 0. We cover L£%-almost all of Q) (z,p) with a countable
union of pairwise disjoint cubes Q(x;, p;) contained in Q(x,p). For every j € N we set

R; = Q;\(%P) \ U Q(xi, pi) -

i=1



22 GIANNI DAL MASO AND RODICA TOADER

We observe that £4(R;) — 0 as j — oc.

Given n > 0, for every i € N let u; € BV(Q(w4, p;)) N L= (Q(xi, pi)), With trga, iyt =
trQ(zs, o le H -ae. on OQ(w;,p;) and [lu; — K&HLOC(Q(Ii’pi)) < Kp;, such that
Let v; € BV(Q)(z,p)) N L®(Q)(z,p)) be defined by v; := u; in Q(z,p;) for i < j,
and by v; := l¢ in Rj. Then troy )i = trQx(a,p)le H¥l-ae. on AQ)(x,p) and
[[vj = LellLo (@2 (x.p)) < KAP, since p; < Ap.

By (a), (b), and (c2) in Definition 2.3 we have

J
Mo, (le, @ (2, ) < E(v;, Q) Z (uis Qi pi)) + E(vj, Rj)

J
< Z mr, (be, Q(wi, pi) +n + (csl€] + ca) LY(Ry) .
i=1
Passing now to the limit as j — co and n — 0+, from (5.10) we obtain

mf,\p(fg, (x,p) <Zm 65 Q(xi, p;) <szl _M)\d 1 d

i=1

where in the last equality we used the fact that the cubes are pairwise disjoint and cover
almost all of the rectangle Q2 (x, p). This concludes the proof of (5.11).
Assume now (5.12). Then there exists o4: (0,4+00) — (0, +00) with

1. . f d _
im inf oa(p)/p" =0

such that
mfp(fg, Q(z0, p)) > pp® — oa(p) for every p > 0. (5.14)

Given p > 0 we set R := d'/?\p, so that Q) (zo,p) C Q(zo, R). We cover L£%-almost all
of Q(xo, R) with a countable union of pairwise disjoint rectangles Q2 (y;,r;) with y; = zo,
ry = p, and Ar; < R for every ¢ € N. For every j € N we set
J
Si = Qxo, R)\ | J @) (wir i) -

i=1

We observe that £4(S;) — 0 as j — oco.
Given n > 0, for every i € N let w; € BV(Q)(yi,7:)) N L>®(Q)(yi,7:)) be such that
ter,‘(y,:,m)wi = ter,\(yiﬂ"i)gg ’del—a.e. on 8Q;\(yi,m), ||'LUZ — £E||L00(Q;\(yi77.i)) < H)\TZ', and
n
E(wlaQi\(ylarl)) < mfc)\r (gfﬂQi\(yZ’rl)) + E

Let z; € BV(Q(zo, R)) N L=(Q(z0, R)) be defined by z; := w; in Qp(yi,r;) for i < j,
and by zj := ¢ in S;. Then trg, r)2j = tTQe,r)le H' '-ae. on 0Q(zo,R) and
llz; — Lell Lo (Q(ao,R)) < KR, since Ay < R.

By (a), (b), and (c2) in Definition 2.3 we have

J
mZa(le, Q0. R)) < B(z;, Qao, R) < 3 Elwy, Q) (yi, ) + (25, 5))
=1

j
< migh (be, @2 (o, 0)) + Y mihy, (be, Q) (yi,m0)) + 1+ (eal€] + ea) £9(S)).

=2
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Passing now to the limit as j — oo and n — 0+, from (5.14) we obtain

p“Rd - O'd(R) < mgx\p(ef’Q Lo, P + Zmn)\u Ef Q (yu L)) . (515)

i=2
We claim that
mE)\p(gﬁv Qf/\(ajoﬂ P)) > uAdilpd - gd(dl/Q)‘p) . (516)
We argue by contradiction. If (5.16) is not satisfied, since R? = Y72 Ad=1pd = \d=1pd 4
Yoo o AT rd | from (5.15) and (5.11), applied with « = y; and p = r;, we obtain

pRY — 04(R) < pAp? — og(d/?Np) + uz Ad — iR — 64(R).
i=2
This contradiction proves (5.16), which, together with (5.11), implies (5.13). O

Proof of Theorem 5.1. Let E® E°, EJ be the functionals introduced in Definition 2.11. By
Propositions 4.11 and 4.12 we have f € F* and g € G”. By Theorem 2.16 for every
A€ A(RY) we have

E%(u,B) = /Bf(Vu)dx, (5.17)

FEi(u,B) = /BmJ g(x, [u], v, )dHIT, (5.18)

for every u € GBV,(A) and every B € B(A).
Let us fix A € A.(R?). We now want to prove that

dDu
B) e ch 5.19
“w.B) = [ P (f5e) D (5.19)

for every uw € GBV,(A) and every B € B(A).
Taking /¢ in the minimisation problem which defines m¥ (¢¢, Q(x, p)) and using (5.17),
for every &€ € R% we obtain

mP(le, Q(x, p)) < f(€)p?  for every z € R and p > 0. (5.20)
Since by (5.1) we have
E ~
lim sup M = f(&) for every z € R?,
p—0+ p

we can apply Lemma 5.3 and for every € R4, ¢ € R, A > 1, and v € S* ! we obtain

. m? (e, Q3 (z,p) _ &
fimsup =G = (9

In particular, for £ = sv we have

lim sup m” (sty, @y (x,p)) = f(sv) . (5.21)

p—0+ Ad=1pds S

for every s >0, v€S¥1, A>1, 2 € R,
Let us fix v € S¥1, A > 1, and z € R?. We claim that

m¥(spby, Q) (x,p)) _ ) (5.22)

lim sup
o0+ AT pds
when s, — +oo and ps, — 0+ as p — 0+.
We observe that by taking s,f, in the minimisation problem defining m® (s ., Q) (z, p))
we obtain that

mE(Spew Qi\(l‘, P)) S f(SPV))‘d_lpdv
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hence .

E ¢ A

lim sup m (Spd ViQdV (33, P)) S lim sup f(SPV)
p—0+4 Ad= P”Sp p—0+ Sp

Therefore, in order to prove (5.22) it is enough to show that

R E Y A

foo (l/) S hm sup m (Spdi/ile/ ('T7 p))

p—0+ A ipts,

< o). (5.23)

(5.24)

when s, — 400 and ps, = 0+ as p — 0+.

We set ay = 2%“’1‘1“&/2)\ + 2d'/2)\. For every s > 1, by (5.1) we can apply the
last statement of Lemma 2.17, which implies that m® (s, Q) (z, p)) = inf E(su, Q) (z, p))
among all u € BV(Q)(z,p)) N L=(Q)(z,p)) with [lu — €yllp @iz, < axp/2 and
tTQA (2,0) U = QA (,p) v HI 1 ae. on Q) (z,p).

Since E € &*Y for every such u and for every s, > 1 we have

[Blon @) BUn @Y g, ) P Bl)) | o Blots @ty

)\d_lpds )\d—lpdt )\d—lpds P )\d_lpds
‘6 E(tani\(LP)) Cg (E(tu,Qi‘(gU”o)))lfa o
= Bl @y (T, p) | o (Eltu, @y, p)) c
+ s + 19(@)\/0 ) )\dflpdt to )\dflpdt + n

Arguing as in the proof of Theorem 4.10 we obtain

‘mE(5£V7QlA/(‘T7p)) mE(tZV,Qi‘(x,p))’ < Cj mE(Sgl/aQé(xap))

+5 4 I(arps)

A1 pds N—1pdg s 7 A1 pds
E A — E A E A —
Ce (M (SEWQV('%/))) 1-e m (t&,,Qu(l‘,p)) Ce (M (thQV@:vp)) 1-e
+370‘< Ad=1pdg ) +(axnt) Ad—1pd¢ * te ( Ad—1pd¢ ) '

Taking ¢ = s, in the previous inequality, we obtain

‘mE(S€V7 Q?/\(myp)) _ mE(Sp€V7 Qi\(x7p)) mE(Séya Qli\(x? p))

<1 % 4 Y(arps)

N1 pig AT pis, =5 s, N1 pdg
o (PO QY ool Q) | o (ot Q)
s N—1pdg APSp AT pds 59 AT pds :
(5.25)
Let € > 0. By the definition of f"o there exists s > 1 such that
F N N l—o
L6 o)< o and %6+§—2(f00(y)+5) <e. (5.26)
s
By (5.21) and the first inequality in (5.26) we get
. E(sf O )
() —e <limsup m”(st,, Qy (@, p)) <) +e, (5.27)

i, N1y
which by (5.25) gives

foo : mE(S €V7Q1>/\(xap)) ¢ ¢ mE(sg,,,Qi‘(x,p))
) —e< hsr_l)%:l_p [ )fd—lpdsp + f + i + Y(arps) N1 s
E A . E A E A _
co (mP (s, Q. p))\ 10 M (5,0, @) . 5 (1P (5,0, Q(w, p)) Y1
+sa ( Ad—1pdg ) +0(axps,) A—1pds, + 59 ( Xd=1pds, ) ]

By the second inequality in (5.26) and (5.27) we have

E A E A _
co m” (s, Q) (x,p)) | cs (m”(sl,, Q) (x, p))\ 1~
{? +0(arps) Ad=1pdg 5@ ( Ad=1pdg ) }

e lim Danps)(f=(0) +¢) = <.

lim sup
p—0+
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Since s, = 400 and ps, — 0+, by (5.23) we deduce that

lim {@ + 6 (mE(Spgw Q?)(x,p))>1f

p—0+ 59 Ad=1pds,
Combining the last three displayed formulas we obtain

foo(u) — 2¢ < limsup mE<5p€V7 Q,é (m, p))
o0+ N=lpdg, J

mE<spey,Q3<x,p>>} —0.

0,
+ 9(axps,) N 1pds,

which implies (5.24) by the arbitrariness of € > 0. This concludes the proof of (5.22).
Let us fix w € BV(A). By (5.3) and (5.22) for every A > 1 for |Dul-a.e. z € A we have

P (lex ), @, () (@,0))

hpri%l}rp )\d—lpdS;J\ (z) = > (vu(®)),
where D
A A o “u
§p(x) = sp(x)vu(z) and vy (z) = D] (z).

By (5.4) this gives
dE*(u,) _dDeu
e @ =1 (d|DCu|( %))

Since the measure E°(u,-) is absolutely continuous with respect to |D¢ul, we conclude that

OO dDC C
(u, B) / f D | d|Dul| (5.28)
for every w € BV (A) and every B € B(A

To prove that (5.28) holds also for every u € GBV,(A) we approximate u by truncations
and we pass to the limit repeating the arguments of the last part of the proof of [17,
Theorem 6.7]. This concludes the proof of (5.19). Together with (5.17) and (5.18) this gives
E(u,B) = Ef9(u,B) for every u € GBV,(A) and every B € B(A). This implies that
E = Ef9 on L°(R?) x B(RY). O

The following result shows that, for integrands in F* and G”, the I'-convergence of
a sequence of integral functionals can be deduced from the asymptotic behaviour of the
minimum values of some auxiliary minimisation problems on small cubes.

Theorem 5.4. Let (fx)r C F°, let (gk);€ C GV, and let E), := Ef*9 be as in Definition
2.8. Assume there exist two functions f: R? — [0,+00) and §: RY x R x S — [0, +00)
such that

~ Y4 T mEk / , z,
(&) =limsup lim inf Rgp( & dQ( 1)) — lim sup lim sup reple dQ( P))’
po0t hre P p—0+  k—oo P
m (s, ¢, Qu (. ) {1, Qu (1, )

g(z,¢,v) = limsup lim inf

1 = lim sup lim sup
p—0+ —00

p—0+  k—oo pd_l
for every x € R?, ¢ € R?, ( €R, and v € ST !, where K¢ is the constant defined in (3.18).
Then f e F*, g € G, and for every A € A(RY) the sequence Ej(-, A) T -converges to
EL9 with respect to the topology of L°(R?).

7

pd—l

Proof. By Theorem 2.10 there exist a subsequence (not relabelled) and a functional F € €.,
such that Ej(-, A) I'-converges to E(-, A) with respect to the topology of L°(R?) for every
A € A.(R%). By Theorem 4.10 we have E € ¢%Y. Let E® E¢ EJ be the functionals
introduced in Definition 2.11 and let f,g be the functions introduced in Definition 2.14.
By our hypotheses and Theorems 3.3 and 3.7 we have that f(z,&) = f(€) and g(z,(,v) =
§(z,¢,v) for every # € R, ¢ € R, ¢ € R, and v € S¥!. Moreover, by Propositions
4.11 and 4.12 we have f € F* and § € G”. Therefore, by Theorem 5.1 we conclude
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that £ = E/9 on LO(RY) x B(R?). By the Urysohn property of I'-convergence, see [14,
Proposition 8.3], we deduce that for every A € A.(R?) the whole sequence Ej(-, A) T'-
converges to Ef9(-, A). O

6. STOCHASTIC HOMOGENISATION

In this section we apply the results obtained in the previous sections to study homogenisa-
tion problems for integral functionals with integrands in F* and GY. We first study integral
functionals obtained by rescaling and after a natural change of variables we reformulate the
results of Theorem 5.4 in terms of limits of minimisation problems on large cubes. This
characterization is then used to study stochastic homogenisation problems by means of the
Subadditive Ergodic Theorem.

6.1. Functionals defined by rescaling. In this subsection we fix f € F* and g € GY;
for every & > 0 we define f.(z,¢) := f(z/e,€), g-(x,(,v) == g(x/e,(,v), and E. := Efe9=
see Definition 2.8. We also consider the function ¢°: RY x R x S%~! — R introduced in
(4.8) and the functionals E/9" and E/™9. By Remark 4.6 the functional E/9" is well-
defined. Finally, for every & € R? let k¢ be the constant introduced in (3.18). Our aim is
to prove a condition which implies the I'-convergence of the sequence E., when e, — 0+
(see Theorem 6.3 below).
We begin with two lemmas related to the change of variables z = y/e.

Lemma 6.1. Let 0 <e <1, z € R?, feRd, and p> 0. Then

miz, (be, Q(a, p)) — £my; (ﬁg,Q( )| < Cev(2rep)p?, (6.1)
where Cg := (cs|&| + ca)es/eq .
Proof. Let w € BV (Q(x, p)) N L>®(Q(x, p)) with
tr QU = Qe ple H' '-ae. on 0Q(z, p) and |u — le| < kep in Q(z, p), (6.2)

and let v € BV(Q(%,2)) N L>®(Q(%,£2)) be the function defined by v(z) := lu(ez). Note
that (6.2) is equivalent to

le H'-ae. on 0Q(%,2) and |[v —Le| < kef In Q(£,2).  (6.3)

tr .,z p v =1tr
s’s)

Q( QL.E

By a change of variables we obtain

/ fe(y, Vu)dy = ¢ / v)dz, (6.4)
Q(z,p) Q(g )
dDC dDC
ooy, S i Dew| = / £z, 2270y ipey (6.5)
/Qu,p) d|Deu | = Dl
/ 9e (s [u], v )dH ™! = / z,e[v], vy)dHIL (6.6)
Q(z,p)NJ %,ﬁ)ﬁh

Hence by (4.9), and (4.10) we have
|29(z,elv], ) = g° (2, [v], )| < 9(2ep) 2g(2,[v],v0)
129(z,e[v],v0) = 6°(2, [v], )| < 20(2kep)g° (2, [V], 1) -
This implies that
9°(z, [l v) < (1+0(2k¢p)) 29(2,€[v], 1)
Lg(z,e[v], ) < (1+ £9(2rep))g° (2, [v],v0) -
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Integrating we obtain

sd/ 9° (2. [v], v )™ < (1+9(2m¢p))e / 29(z o], vo)dH™t,
(5’5

Q(%,2)nJ,
sd/ 19(z,e[v], v )dHITE < (1 + 29(2k¢p))e / q°(z, [v], ) dHT .
Q(L,2)nJ, 2YNTy

T,

ele 575

Adding the absolutely continuous and the Cantor part, and recalling (6.4)-(6.6), leads to
0
eBM (0,Q(2,2)) < (1+9(2n¢p)) Be(u, Q(x, )

0
Ee(u,Q(x,p)) < (1+ 29(2r¢p))e BN (v, Q(£,2)).
By the equivalence between (6.2) and (6.3) we obtain

etmf! ; o (le; (%, 5)) < (1+0(2kep))m ngp(f&Q(x r));
mf;,)(fg,Q(%P)) (1+ &29(2rep))etmy (55 Q(E7g))~
Using /¢ in the minimisation problems defining mnsp(fg Q(a: p)) and m” (€§ Q(%,2))

we obtain mE:, (b, Q(z.p) < (cslé] + ca)p” and e'mE’y" (6, Q(£,2)) < lalé] + e,
which together with the previous inequalities give

em?, (%Q(m £) < mfgp(fs Q(z,p)) +9(2kep) (cslé] + ca)p?

r@gp(éﬁv Q(x,p)) < 5 m (ZE Q(E ) E)) + %19(2/15[))(63&‘ + 04)pd7

which prove (6.1). O
Lemma 6.2. Let 0 <e<1/(2¢c), 7 €RY, (€R, v €SI and 0 < p< 1. Then
_ .9 o
mEE(uz,C,wQu(‘r,P)) — e ImF (L“ ., wQV(E 5)) <C pd ' ) (6.7)

where C¢ is a constant depending only on ¢ and on the structural constants o, c3, and cg,
but independent of €, x, and p.

Proof. Let v € BV(Q,(x,p)) and let v € BV(Q,(%,%2)) be defined by v(z) := u(ez). By
a change of variables we see that

| rwved=<t [ g ive, (68)
Qu(w,p) Qu(g,2)
dD%u dD
2 gpediDou =<t [ e o, (69)
/Qm,p) " d|Deu| Qu(z.2) d|De|
/ ge(y, [u], vy )dHET = 271 / g(z, [v], vy)dHIL . (6.10)
Qu(z,p)NJy Qu(£,2)NJy
By Remark 4.3 for £%-a.e. z € Q,(%,2) we have
lef(z, 1Vv) — f>(2, V)| < cee + cee f(z, LV0)' . (6.11)
This implies that
(2, Vv) < ef(z, Vo) + coe + coc f (2, LV0) ' 7@ (6.12)

and

(2, Vo) > ef(z, 1Vv) — coe — cec f (2, %V’U) * > £ f(z, 1 V) — cge — cee(2c6(1 — a))lTTO ,
6(1 —

1

where we used the inequality 7!7% < ;L7 + (2¢ a)) = for 7 > 0 together with

2c
0 < e < 1/(2¢6). This implies that ’
ef(z,1Vv) < 2f%°(2,Vv) + Ce,
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11—«

where C':= 2¢g + 2¢6(2¢6(1 — ) = . This inequality together with (6.11) gives

ef(z, Vo) < f>°(2, Vv) + cge + coe f(z, 1 V)7

-«

< (2, Vo) + cge + cee® (2 (2, Vo) + Ce) (6.13)
Integrating on @, (%, 2) and using the Holder inequality, from (6.12) we obtain
gd-1 / (2, Vo)dz < sd/ f(z, 1Vv)dz + cep?
Qu(%,2) Qu(t. 2
-«
+cs (Ed/ f(z, %)dz) P>, (6.14)
Qu(£:2)
and from (6.13) we get
z—:d/ f(z,1Vv)dz < gd-t / (2, Vu)dz + cgp?
Qu(t. Qu(E,%)
11—«
e (25d*1 / F°(z, Vo)dz + de> pod (6.15)
Qu(%’g)

Adding the jump and the Cantor part to (6.14) and recalling (6.8)-(6.10), it follows that

eTNEIT(0,Qu(%,2)) < Ee(u,Qu (@, p)) + cop” + 6 Be(u, Qu (2, p)' ~*p,

while from (6.15) we obtain

E.(u,Qu(w,p)) < e EIT9(0,Qu (2, 2)) + cop”
11—«

+c (26d*1Ef°°’g(v, Qu(%,2)) + de) P

Since trg, (m U = tIQ, (@) Usc,y HE'-ae. on 0Q,(z,p) if and only if tr, (z,2)v =
tr, (= eyuz ¢ He-ae. on 0Q,(%,2), from the last two inequalities we deduce that

oo
gd—1 Ef ’9(

mP T (wz c Qu(E,2)) < M (g, Qula, p) + cop”
e (P (e, Qux, p))) "0, (6.16)

M (g g s Qu(@, p) < e mP 7 (uz ¢y Qu(E, 2)) + cop”
teo (227 P s 0 Qu(E )+ Cp") (6.17)

Taking u, ¢, in the minimisation problem that defines m® (uy ¢ ., Q. (z,p)) and using the
estimate (g3) we obtain m® (uy ¢., Qu(z,p)) < c3(|¢| A 1)p?~t. Similarly we prove that

mE’ (g je ey Qu(%,2)) < es([¢] AL)pt~t /et Hence from (6.16) and (6.17) we obtain

g

— .9 T —a d—1+4+«
et mP T (g e e Qu(E, 2)) < mP (e, Qule, p)) + cop” + coles(|C] A 1)) 7 p e,
_ .9
mEE(UI,C7V7QV($7p)) < Ed 1mE (ug’C,lMQV(%ﬂ f)) +Cﬁpd

11—« _ o
+eg(2e3(C| A1) + €)' ptm e

From these inequalities we deduce (6.7). O

Thanks to the following result, the I'-convergence of functionals defined by rescaling can
be deduced from the convergence of the minimum values of some auxiliary minimisation
problems on large cubes.
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Theorem 6.3. Assume that there exist two functions f: R? — [0, +00) and §: R x S~ x
(0, 4+00) — [0, +00) such that for every x € RY, ¢ € R4, ( € R, and v € ST we have

mE" (b, Qra, 1)

dim v = f(6), (6.18)
B9
L (Ura g, Qulre,r))
TEI},IOO Td_l - g(Cv V) ) (619)

where k¢ is defined in (3.18).
Then f € F*, § € G”, and for every e — 0+ and A € A(R?) the sequence E., (-, A)
I -converges to ET9(-, A) with respect to the topology of L°(R%).

Proof. Given e, — 0+, let us check that the hypotheses of Theorem 5.4 are satisfied by
fr = f., and gi := g, . For a given p > 0 we take r := p/e. By (6.18), applied with
replaced by x/p, and Lemma 6.1 we have

F©)p" = Cev(2nep)p® = lim (p/ry)? mfgf}io (Le, Q(riz/p,mk)) — Ced(2kep) p

< lim inf mPk, (e, Q(x, p)) < h;?i sup m P, (e, Q(x, p))

.gO ~
< klim(p/fk)dmfsfr‘k (b, Q(rra/p,r1)) + Ced(2rep)p® = [(€)p™ + Ced(2r¢p)p™.

oo

This shows that the hypothesis of Theorem 5.4 concerning mfﬁ’fp(K& Q(z,p)) is satisfied.
By (6.19), applied with « replaced by z/p, and Lemma 6.2 we have

N _ _ . _ £ _
§(C )™t = Cep™ e = Tim (p/ry)* " m” (W pcos Qu(Tam/pyi)) — Cop® e

= lim inf m™* (uz, e, Qu(z, p)) < limsup mPx (ug,c.v, Qu(z, p))
k—o0 k—o0

. _ .9 1ta ~ _ ta
Skhlﬂo(P/Tk)d P (¢ s Qu i/ py i) 4 Cep®™ 1% = §(C ) p ™t + Cep =11

Since a > 0, this shows that the hypothesis of Theorem 5.4 concerning m* (uz ¢ ., Q. (z, p))
is satisfied with ¢ independent of x.
Therefore, all hypotheses of Theorem 5.4 are satisfied and the conclusion follows. (]

The following lemma shows that in order to apply Theorem 6.3 it is enough to check that
(6.18) holds when ¢ is rational.

Lemma 6.4. Assume that for every x € R? and &€ € Q¢ the limit

£.9°
lim mEETg (fg,Q(?‘x,T))
r——+00 Td

(6.20)

exists and does not depend on x, where ke is defined in (3.18). Then there exists a contin-
uous function f: R? — [0, 4+00) such that

Ef,go
dim iz wi’d@(m’ D _ fe (6.21)

for every x € R% and € € R?.

Proof. Given r > 0, € R?, and &,& € R?, we set a := 1+ d'/?|&; — &| and we claim
that

mE" (G, Qlra,ar)) < mE"Y (fe,, Qlra, v)) + sl — Ealr+ (esl€a| +ca) (@~ 1)r . (6.22)
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Given n > 0, let up € BV(Q(rz,r))NL>*(Q(rx,r)) be such that trg e s = trQ(ra,nle,
HI¥ 1 ae. on OQ(rx,r), |luz — ley |l Lo (Q(ra,r)) < H§2T7 and

0
BN (ug, Q(ra, 1)) < mng r (fgz,Q(m,T)) +n,
and extend it as fe, to Q(rx,ar). Then uy := uy — le, + lg, satisfies trggamur =
trQ(ra,ar)le; HI 1 ae. on 9Q(rz,ar),
|U1 - gfll < Kg, T = Kgy 7+ (|§2‘ - |€1|)d1/27“ < Kg T+ |€1 - gQ‘dl/QT < Ke¢, ar,
where we used k¢, > 1. By (a), (b), (c2), and (e) in Definition 2.3 we have

mE (b, Q(re,ar)) < B59" (uy, Q(rz,ar)) < EF9" (uy, Q(rr, 1)
tesl€1 — Ealr? + (cslér] + ca)(a® — 1)r?

< mEf’io (Ley, Q(ra,m)) + 0+ csl&r — Lalr® + (eslé] + ca) (a® = 1)1, (6.23)

Keo

which, by the arbitrariness of n gives (6.22).
Let us now fix z € R? and ¢ € R?. To prove the existence of f(¢) such that (6.21) holds

. : mE Qe ) .
it is enough to show that the function r — 5—d satisfies the Cauchy condition

for r — 4o00.

Let r,8 > 0,let 6 > 0, and & € Q¢ with |& — & < 6. We set ag := 1 + |& — &|dY/?
and observe that as — 1 as § — 0+. We also set rs := agr, s5 := s/as, x5 := asx, and
Zs :=x/as. By (6.22) applied with & =&, & = &5, © = x5, and r = s5, we have

£.99
mp. (le, Q(sz, ) < m,.gg ss (QmQ(Saﬂia, 55)) + cs508§ + (csl¢] + ca)(af — 1)s§
y (6.22) applied with & = &5 and §2 = £ we have

g0 .
mfgf;m (€567Q(r6x57r5)) < mn§r (Efa Q(TJ?, 7“)) + c56Td + (C3|§5| + C4)(ag - 1)Td

Recalling that a5 > 1, these inequalities give

mEL" (te, Qlow,s)) _ mELY (Ley, Qlsots, 30))

5d = o + 560 + (c3]€] + ca)(af — 1) (6.24)
5
ME" (bey, Qrsiis,rs)  mE (e, Q(ra, ) )
T < i + 50 + (cslés| +ea)(af — 1), (6.25)
)

Let us fix ¢ > 0 and choose § > 0 such that c58 + (c3(|¢| + ) + ca)(ad — 1) < e. By
(6.20) there exists Ms > 0 such that

1.9 1,99 .
mE, e ey, Qlssws,s5))  mf v, (bey, Q(rsis, 75))
d B d
Ss rs

provided rs, ss > Ms. Therefore, if r,s > asMs, by (6.24)-(6.26) we obtain

ﬁWQme< mE" (be, Qra,v))
5d = rd

<e, (6.26)

+ 3¢. (6.27)

Exchanging the roles of r and s we obtain that the Cauchy condition is satisfied and the
proof of the existence of the limit in (6.21) is concluded.
To prove the continuity of f, using the inequality a > 1 we deduce from (6.22) that

g0 9
mE (te, Qra,ar))  mElY (b, Qra, )

qdrd S > +es|é — ol + (eslé] + ca)(a® = 1).




HOMOGENISATION PROBLEMS FOR FREE DISCONTINUITY FUNCTIONALS 31

Passing to the limit as » — +o00 we obtain

F(&1) < F(&) + eslér — &l + (esléa] + ca) (@ = 1)
with a :=1 +d1/2\fl —&5|. Exchanging the roles of & and £ we obtain an inequality which
together with the previous one entails the continuity of f. O

6.2. Stochastic homogenisation. To study stochastic homogenisation problems we fix
a probability space (Q,7,P) and a group (7;),cze of P-preserving transformations on
(Q,T,P), ie., a family (7,),cze of maps 7.: Q — Q with the following properties

(a
(b
(c
(d

(measurability) 7, is T -measurable for every z € Z¢;

(bijectivity) 7. is bijective for every z € Z%;

(invariance) P(7.(E)) = P(E) for every E € T and every z € Z%;

(group property) 79 = idg (the identity map on Q) and 7.4, = 7, o 7,» for every
2,2 € 7%,

)
)
)
)

We recall that the group is called ergodic if every set E € T with 7,(E) = E for every
z € Z4 has probability 0 or 1.
We introduce now the classes of random integrands we are going to consider.

Definition 6.5 (Stochastically periodic random volume integrands). Let SF* be the col-
lection of functions f: © x R? x R? — [0, +00) satisfying the following properties
(a) f is measurable for the product of 7 and the Borel o-algebra of R% x R%;
(b) setting f(w) := f(w,-,-), we have f(w) € F“ for every w € Q;
(c) f is stochastically periodic with respect to (7;),czq, i.e.,
flw,z+2,8) = f(1:(w), z,§) (6.28)
for every w € Q, z € R?, z € Z%, and € € R?.
Definition 6.6 (Stochastically periodic random surface integrands). Let SG” be the col-
lection of functions g: 2 x R? x R x S4~1 — [0, +00) satisfying the following properties
(a) g is measurable for the product of 7 and the Borel o-algebra of R x R x S4~1;
(b) setting g(w) := g(w,,-,-), we have g(w) € G” for every w € Q;
(c) g is stochastically periodic with respect to (7.),cza, i-€.,
9w,z +2,(,v) = g(r:(w), z,(,v) (6.29)
for every w € Q, 2 € R, 2 € Z?, (€ R, and v € S471.

Let (Q,’]A‘, 13) be the completion of (2,7, P). It is obvious that for every z € Z? the
function 7.: Q — Q is also T -measurable. We now introduce the notion of subadditive
process. Let R be the collection of all rectangles of the form

[a,b) :={x €R:a; <x; < b fori=1,---,d} witha,bcR?.
Definition 6.7 (Subadditive process). A subadditive process with respect to (7;).cz¢ is a
function p: Q x R — R with the following properties:

(a) (measurability) the function p(-, R) is T -measurable for every R € R;
(b) (covariance) p(w, R+ z) = u(r.(w), R) for every w € Q, RER, and z € Z¢;
(¢) (subadditivity) if R € R and (R;);e; C R is a finite partition of R then

p(w, R) < Zu(w, R;) for every w € Q;
iel
(d) (boundedness) there exists ¢ > 0 such that 0 < u(w, R) < cL%(R) for every w € Q
and ReR.

We shall use the following variant of the Subadditive Ergodic Theorem [1, Theorem 2.7],
see also [15] and [22].
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Theorem 6.8. Let p be a subadditive process with respect to (7,),eza. Then there exist a
set O €T with P(Y) =1 and a T -measurable function ¢: Q' — [0,+00) such that

lim plw, Qlra, v)) = p(w) (6.30)

r——+00 'r‘d

for every x € RY and every w € . If, in addition, (T.).cza is ergodic, then ¢ is constant
P-a.e.

Given f € SFY, g€ 8G?, and w € Q let f°°(w) and ¢°(w) be the functions defined by

e w)(z, &) = lim flw,z,rd) and  ¢°(w,z,7¢,v) := lim 1g(cu x,r¢,v)

r—+00 r r—0+ 7

for every z € R, ¢ e R4, ( € R, and v € S 1.

Lemma 6.9. Let f € SFY, g€ SG”, and let ¢ € RY. For every R € R let p(R) be the
mazimum length of its sides. Then the function ®¢: Q2 x R — [0,400) defined by

F(),9% (@) o
(1)5 (wa R) = Egp(R) (£§7 R)

is a subadditive process.

Proof. The %—measurability of ®¢(-, R) can be obtained by adapting the proof in [12, Ap-
pendix].

To prove the covariance property, we fix 2 € Z%, R € R, and w € Q. By (6.28) and
(6.29) we have

ES@=@)" (@) (y, Ry = BI@9°@) (14 R+ 2).

Since T,l¢ = l¢ — l¢(2), by the invariance property (d) in Definition 2.3, we deduce that
®(7,(w),R) = P(w, R+ 2).

We now prove subadditivity. Let us fix w € 2, R € R, a finite partition (R;); of R,
and n > 0. For every i = 1,...,n there exists u; € BV(}O%i) NL*(R;) with trg,u; = trg, ¢
He1-ae. on OR; and ||u; — le|| oo (ry) < Kep(R;) such that

B (u, By <m0 (b, )+ 2.

n

Let u be the function defined £%-a.e. in R by u = u; on R;. Then u € BV(}%) and
trrpu = trrle He1_a.e. on OR.

Since p(R;) < p(R) for every i = 1,--- ,n we have also that |[u — l¢||Lo(r) < Kep(R).
This implies that

(w, R) = mfg,;;) “te, R) < BEFO9" @, R)
w).a%(w £(@),9%(w) B
<ZEf( 97 (u;, R <Z mE iy (le, R Z@ ) +n,  (6.31)
=1

and passing to the limit as n — 0+ we obtain the subadditivity of d.

Moreover, taking ¢ in the minimisation problem defining mff;w) o0 (Le, ]%) we obtain
O(w, R) < (calé] + e5)LY(R),
which concludes the proof. O

Proposition 6.10. Let f € SF® and g € SG”. Then there exist ' € T with P(V) = 1
and a function f : Q' x RY — [0, +00), with f(-,€) T -measurable for every ¢ € R and
f(w,) continuous for every w € Q' , such that

w), 99 (w
mEf( ),9°( )(€§7Q(T.’L'7’l"))

ReT

lim
r— 400 rd

= f(w,€) (6.32)
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for every w e ', x € R, and € € RY. If, in addition, (7.),eza is ergodic, then f is
independent of w and

ﬂ@zmHiAmﬂW%WMMMMHM- (6.33)

r——+00 Td

Proof. By Lemma 6.9, for every ¢ € Q¢ the map
£(w),9%(w) o
(w,R) = mf gy (le, R)
is a subadditive process on (€, T, ]3) By the Subadditive Ergodic Theorem 6.8 there exist
Q€T with P() =1 and a function f: Q' x Q¢ — [0, +00), with f(-,£) T -measurable
for every & € Q¢, such that

mE, " (te, Qra. )

ReT

= f(w,9) (6.34)

for every w € @, z € R?, and ¢ € Q. By Lemma 6.4 we can extend f to a function
f:Q xR = [0, +00), with f(-,£) T -measurable for every € € R? and f(w,-) continuous
for every w € €', such that (6.32) holds for every w € ', x € R?, and ¢ € R?.

If, in addition, (7,),czq is ergodic, then the function f(w, &) for € € Q% does not depend
on w and consequently the same property holds for its extension to & € R?. O

Proposition 6.11. Let f € SF® and g € SG”. Then there exist V' € T with P(Y) = 1
and a measurable function §: Q' x R x ST~ — [0, +00) for the product of T and the Borel
o -algebra of R x S™1, such that

o0 (w),g(w)
lim E o (urI,C,VvQV(T'TaT))

r——+00 rd—1

= g(w,(,v) (6.35)

for every w € ', x € R4, ¢ €R, and v € S¥ L. If, in addition, (7.),cze is ergodic, then
g is independent of w and

§Cv) = lim

[ g Qul0. )P ). (6.36)
Q

Proof. The result can be obtained by adapting all arguments of the proofs of [12, Proposi-
tions 9.3, 9.4, and 9.5] and of [11, Theorem 6.1]. O

The following theorem summarizes the results of this section.

Theorem 6.12. Let f € SF® and g € SG”. For every e > 0 and w € Q let felw) € F
and g.(w) € G¥ be defined by

felw,2,8) = f(w,z/e, &) and g.(w,x,(,v) = g(w,x/e, (V) (6.37)
for every x € R4, £ €R4, ( €R, and v € S*'. Finally, let E.(w) := Ef=«)9:() ¢ g9
Then there exist a set Q' € T, with P(Q') = 1, and two functions f: Q' x RY — [0, +00)
and §: Q' x R x S¥1 — [0, 4+00) such that

(a) f is measurable for the product of T and the Borel o -algebra of R®, and f(w, ) €
Fe for every w e Q) ;
(b) § is measurable for the product of T and the Borel o-algebra of R x S4~1  and
§(w,-,") € GY for every we Q' ;
(c) foreveryw € ', e — 0+, and A € A.(RY) the sequence E., (w)(-, A) T -converges
to ET(@)9W) (. A) with respect to the topology of L°(R%).
If, in addition, (7.),czae is ergodic, then f and § are independent of w.

Proof. The result follows from Theorem 6.3 and Propositions 6.10 and 6.11. O



34 GIANNI DAL MASO AND RODICA TOADER

Remark 6.13. Thanks to Theorem 6.12 the convergence results for minimum values and
quasi-minimisers considered in [17, Theorems 7.1 and 7.14, Corollary 7.15] can be obtained
for the functionals E.(w) for P-a.e. w € © indexed in R?.

Remark 6.14. The notions of stationarity and ergodicity can be defined also with respect
of a group (7,),cre. Arguing as in [11] we can obtain the results of Theorem 6.12 also in
the case (7;),cpe. Our preference for (7),cze is due to the following remark, which deals
with the deterministic periodic case.

Remark 6.15. If © consists of a single point, and consequently 7, = idq for every z € Z4,
then stochastic periodicity (see Definitions 6.5 and 6.6) reduces to periodicity of period 1
in each coordinate. Therefore all results of this subsection are valid in the deterministic
periodic case.
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