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ABSTRACT. Let (M, g) be a Riemannian manifold with Riemannian distance dg,
and M(M) be the space of all non-negative Borel measures on M, endowed
with the Hellinger-Kantorovich distance H(y, induced by dg.

Firstly, we prove that (M(M ), I-Kdg) is a universally infinitesimally Hilber-
tian metric space, and that a natural class of cylinder functions is dense in
energy in the Sobolev space of every finite Borel measure on M (M).

Secondly, we endow M (M) with its canonical reference measure, namely
A.M. Vershik’s multiplicative infinite-dimensional Lebesgue measure Lg, 0 > 0,
and we consider (a) the geometric structure on M(M) induced by the natural
action on M(M) of the semi-direct product of diffecomorphisms and densities
on M, under which Ly is the unique invariant measure; and (b) the metric
measure structure of (/\/l(M)7 Hq,,, Eg), inherited from that of (M,dg,volg).
We identify the canonical Dirichlet form (£, 2(€)) of (a) with the Cheeger
energy of (b), thus proving that these two structures coincide. We further
prove that (5,@(8)) is a conservative quasi-regular strongly local Dirichlet
form on M(M), recurrent if and only if 8 € (0,1], and properly associated
with the Brownian motion of the Hellinger-Kantorovich geometry on M (M).
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1. INTRODUCTION

Let (M, g) be a smooth, connected, orientable, complete Riemannian manifold
with Riemannian distance d,. We denote by M (M) the cone of all non-negative and
finite Borel measures on M, endowed with the Hellinger—Kantorovich distance Hy,
induced by dgy, see §1.4.1 below.

Firstly, for a suitable class FC of cylinder functions on M(M), we prove the
following Myers—Serrin-type theorem.

Theorem 1.1. Let Q be any non-negative Borel measure on (M(M), I-Kdg) with
all exponential moments, i.e. such that

/e*t“M dQ(p) < 400 for everyt >0 .

Then, the space FC is dense in 2-energy in the metric Sobolev space
Hl)z (M(M)a l-Kdga Q) )
and the latter is a Hilbert space.

Secondly, we focus on a specific choice for Q. For a parameter § > 0 and a
probability measure v € P(M), we consider Vershik’s infinite-dimensional multi-
plicative Lebesgue measure Ly, on M(M), see §1.3.3 below, and we show that it
is the unique natural measure for the Hellinger—Kantorovich geometry on M (M).
Further denote by V the gradient for real-valued functions on M (M) associated to
the Hellinger-Kantorovich geometry, see §1.2.2, and by (- | -),, a suitably weighted
scalar product, see (1.13).

Theorem 1.2. For every 6 > 0, the canonical energy form
Ew) = [ (Y0, |(T0)),dLos() . wveFC,

is closable on L?(Ly,). Its closure (€, 2(E))

e is a conservative quasi-reqular strongly local Dirichlet form on L*(Ly,);
e coincides with the Cheeger energy of the metric measure space

(M(M)7 I-Kdg ; ‘CO,IJ) ;

e is properly associated with a Hunt diffusion with state space M(M), the
‘Brownian motion’ of the Hellinger—Kantorovich geometry on M(M).

Finally, the latter process is recurrent if 6 € (0,1], and transient if 6 € (1, 00).

We proceed to explain the motivations and significance of our results.
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1.1. Large Lie groups and stochastic partial differential equations. A large
Lie group is a Lie group modelled on an infinite-dimensional Hilbert, Banach, or
Fréchet space. Prototypical examples of such groups are

e transformation groups, as diffeomorphism groups of differential manifolds;

e G-current groups, i.e. groups of G-valued functions, for some Lie group G;

o multiplier groups, i.e. (Abelian) (RT,.)-current groups, which are maximal
toral subgroups in the corresponding S Lao-current groups.

In spite of their Lie-group structure, these groups are typically wild, displaying a
number of strange phenomena that do not occur in the standard finite-dimensional
theory. For instance, concerning diffeomorphism groups: the exponential map from
the corresponding Lie algebra into the group fails to be open, hence it is not sur-
jective even on the identity component of the group [63], its image is meager [68],
and in fact extremely small [44].

A fruitful approach to the study of large Lie groups via their representations has
been the subject of a longstanding programme initiated for diffeomorphism groups
by A.M. Vershik, .M. Gel'fand, and M.I. Graev in [95], and continued by Vershik
and Graev for current groups [96, 97], and more recently by Yu.G. Kondratiev,
E.W. Lytvynov, and Vershik for certain semidirect products of diffeomorphisms
and multipliers in [56].

In order for the representations of these groups to be faithful —i.e. for them to
retain sufficient information on the group— the representations need to be con-
structed on some ‘large’ Hilbert space. Especially in the case of diffeomorphisms
and of multipliers, a concrete realization of such a Hilbert space is the space L%(Q)
of some measure Q on a space of measures. Indeed, diffeomorphisms naturally
act on measures by push-forward, and multipliers simply act on measures by mul-
tiplication by densities (hence the name). When Q is a probability measure, it
is usually regarded as (the law of) a random measure, typically, a random point
process. This is the case in: [95], concerned with Poisson point processes; [56], con-
cerned with Gamma compound Poisson point processes; and [21, 23], concerned
with Dirichlet—Ferguson point processes.

Geometric Brownian motions. As already noted in [23, 56|, this action of
diffeomorphisms, multipliers, or a combination thereof, on a space of measures
induces an energy functional on L%(Q). As it turns out, the functional is, in many
of these settings, a Dirichlet form, and it is therefore uniquely associated with a
measure-valued Markov process. We call this process the geometric measure-valued
Brownian motion induced by the group action.

On the one hand, it is one goal of the aforementioned programme to study proper-
ties of the representation on L?(Q) of a given large Lie group via the corresponding
geometric measure-valued Brownian motion. For instance, it is usually expected
that invariant sets of this Brownian motion are in one-to-one correspondence with
irreducible sub-representations of the group action.

On the other hand, geometric measure-valued Brownian motions are very inter-
esting stochastic processes in their own right. This is readily seen from two impor-
tant examples in the case when Q is the Dirichlet—Ferguson measure. (See below.)
In this case, one process induced by the action of multipliers is the Fleming—Viot
process with parent independent mutation [35, 67], while one process induced by
the action of diffeomorphisms is the Dirichlet-Ferguson diffusion [23], the unique
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solution to the Dean—Kawasaki stochastic partial differential equation with singular
drift [54, 55, 24].

Metric-measure Brownian motions. Another fundamental approach to the
construction of energy functionals on spaces of measures is as follows. When the
space of measures in question is endowed with some natural distance (e.g., Hellinger,
Bhattacharyya, Kantorovich-Rubinstein a.k.a. Wasserstein, Hellinger-Kantorovich
a.k.a. Wasserstein—Fisher—Rao, etc.) and with a reference random measure Q, we
consider the Cheeger energy of the resulting metric measure space.

For LP-Kantorovich-Rubinstein distances on spaces of probability measures,
the study of these energy functionals has been undertaken in [36, 89]. Here, we
rather consider the space of all non-negative finite measures with the Hellinger—
Kantorovich distance. (See below.) Also in this case, the Cheeger L?-energy is a
quadratic functional, and thus a Dirichlet form. We call the unique Markov process
associated to it the metric measure measure-valued Brownian motion induced by
the distance.

Main results: Identification. It is one main result of this work that, for a spe-
cific choice of Q, the geometric point of view (group actions) and the metric-measure
point of view (distances) are one and the same, i.e. that the geometric measure-
valued Brownian motion coincides with the metric measure Brownian motion just
described.

Not only this provides an identification of the stochastic process in question; it
will also grant us the possibility to import tools from metric measure geometry in
the study of geometric Brownian motions and of the corresponding representations
for a given group action, and vice versa to use the Lie-group construction for the
study of the metric measure space arising from the Hellinger—Kantorovich distance
and the reference measure Q.

In future work, we will address the complete identification of this Brownian mo-
tion as the unique solution to some singular stochastic partial differential equation
with measure-valued solutions.

Let us now present in greater detail the constructions we touched on above.

1.2. The geometric point of view. Let X be a Polish topological space. Denote
by Cp(X), resp. Co(X), the space of all continuous bounded, resp. continuous van-
ishing at infinity, real-valued functions on X. For a non-negative and finite Borel
measure ¢ on X and a Borel function f: X — R, write

= /X fdu

whenever the integral makes sense, and pu, = p{z}. Analogously, for a vector
f=(f1,..., fx), k€N, weset £* == (ff,..., fi). The push-forward of a measure u
by a measurable map T is the measure

Ty = poT™ 1.

Spaces of measures. ~ We denote by M(X), resp. P(X), the space of all non-
negative and finite Borel, resp. Borel probability, measures on X, always endowed
with the weak topology, i.e. the coarsest topology under which the maps u — f*u
are continuous for every f € Cp(X), and with the corresponding Borel o-algebra.



6 LORENZO DELLO SCHIAVO AND GIACOMO ENRICO SODINI

As it is well-known, both M(X) and P(X) are Polish, and thus standard Borel
spaces. Let N: M(X) — P(X) U {0} be the normalization map

Nipr— op,  peMX),
where, conventionally, N(0) = 0 is the zero measure. Note that there is a Borel
bi-measurable isomorphism J: M(X) — P(X) x Rt
(1.1) J:pr— (N(p), pX) , uweM(X).

For . either M(X) or P(X), we write #P? for the subspace of . consisting of
all purely atomic measures in ..

1.2.1. Group actions. For a topological group G acting measurably on a measurable
space (Q, F), we write O: G xQ = Q, (g,w) — g.w for its action. We consider the
following groups acting on M(X).

Multipliers.  Denote by By(X) the space of real-valued bounded Borel func-
tions on X, regarded as an Abelian Lie algebra with the pointwise product of
functions. For v € M(X), further define the v-traceless subalgebra By(X), =
{f €EByX): [fdv= 0} of By(X). The corresponding Abelian Lie groups are
the groups of multipliers M(X) = {e® : a € Bp(X)} and its subgroup M, (X) =
{e” : a € By(X),}, both endowed with pointwise product of functions.

The group M(X) (hence all its subgroups) acts naturally on M (X) by setting

(©.) et p—et o, a € By(X), weM(X).

Shifts.  Denote by &(X) the group of shifts, i.e. Borel bi-measurable bijections
of X with the composition of functions. The group &(X) (hence all its subgroups)
acts naturally on M(X) (hence on P(X)), by setting

() Yo Yy veBX), peMX).
The action % commutes on M(X) with the normalization of measures and thus
factors over the map J in (1.1) in the sense that J(¢yu) = (YyN (1), u(X)).

For v € M(X), further denote by &, (X) the subgroup of G(X) consisting of all
elements fixing v, or, equivalently, N (v).

Products. We denote by ¢*k = k o the pull-back of a function k by a
map . The pull-back operator *: ) — ¢* is a group homomorphism *: §(X) —
Aut(PM(X)) on &(X) into the automorphism group Aut(M(X)) of M(X). Thus,
S(X) acts on MM(X) by automorphisms via *, viz.

O (k) — (") k=ko .
This action! induces a right semidirect product &(X) »x* M(X) with group opera-
tion and inverse

hihy = (Y1 02, (Vki)ks) |
h—l — (w—l’(w—l)*%) ,

The product &(X) x* M(X) acts naturally on M(X) by setting

(Oue) b pr—tpy(k-p),  h= (k) € S(X) " MX),  peM(X).

hi = (i, ki) € G(X) x* M(X), i=120.

1n order to avoid confusion, we shall always consider left actions. However, this choice forces
the somewhat unusual definition of right semidirect product in Oy+. Indeed, note the indices in
the composition (1)a1)az. This also motivates the difference of our action from the one in [56].



THE HELLINGER-KANTOROVICH METRIC MEASURE GEOMETRY 7

1.2.2. Differentiation in the smooth category. The groups 9M(X) and &(X) and
the group actions . and Cy above are given in the measurable category. The
same actions restrict to subgroups of M(X) and &(X) in other categories, e.g. the
continuous category, where (X)) is replaced by the subgroup of all its continuous
functions and &(X) by the group of self-homeomorphisms of X. The same applies
to the action Oy~ provided that both 9(X) and &(X) are restricted to the same
category, in order for the semidirect product to be defined in that category.

The smooth category will be of particular interest. Such restriction is possi-
ble when X is endowed with a structure of smooth (i.e. C*°-smooth), connected,
orientable manifold, henceforth denoted by M. In this case the restrictions of
both M (M) and &(M) are Lie groups, and we may discuss the corresponding
Lie algebras. Indeed, we may replace By(M) with the (Abelian Lie) subalge-
bra C°(M) of smooth compactly supported functions on M, the corresponding
Lie group exp[C2°(M)] being defined in the obvious way as a subgroup of M(M).
The suitable restriction of &(M) is the group Diff§ (M) of orientation-preserving
compactly non-identical (smooth) (self-)diffeomorphisms of M, corresponding to
the Lie algebra X2°(M) of (smooth) compactly supported vector fields on M with
the standard Lie bracket of vector fields.

In the following, let us replace X by a manifold M as above. For each w €
X2°(M) we denote by ¥}’ the flow of w at time ¢ € R, satisfying

deypy’ (x) = w (¥’ (x))
v (z) ==
Since w is compactly supported, ¢}’ is well-defined everywhere on M and an element

of Difff (M) for every t € R, with inverse (1*)~! = ¢®,. The (Lie) exponential
of X3°(M) is then the map

, reM,teR.

exp: w— Yy | we XX (M) .

Let us write &(M) = Difff (M) x* exp[C(M)] for the semidirect product
of Difff (M) and exp[CS°(M)] induced by (5-, and

®, (M) = Diff§ (M) x exp[C2° (M)

for their direct product. The same (right) action Oy« and the semidirect prod-
uct B(M) have been previously considered by T. Gallouét and F.-X. Vialard in [40,
Eqn. (2.29)], where &(M) is interpreted as the automorphism group of the principal
fiber bundle of half-densities® on M, see [40, §2.4], also cf. [38, §3.2.1].

Both &(M) and &, (M) are Lie groups, see e.g. [53, §5.16, p. 48, Eqn. (3)], and
we denote by g(M), resp. ge (M), the corresponding Lie algebras. As vector spaces,
both g(M) and gq (M) are linearly isomorphic to the direct sum X2° (M) & C° (M).
However, g(M) is different from gq (M), i.e. their brackets do not coincide, and the
same holds for their exponentials exp?): g(M) — &(M) and exp9e (M) . g (M) —
&, (M).

Directional derivatives. For every sufficiently smooth —to be clarified later
on— function u: M(M) — R, for every w € X°(M) and every a € CX(M), we

2In the terminology and notation of [40], the space of half-densities is Ay /5 == C>®(M;Rt) =
exp[C>(M)]. Note that A,y is a group under pointwise multiplication, and that our group of
(compactly non-identical smooth) multipliers exp[C2°(M)] is a subgroup thereof.
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may define the directional derivatives in the directions w and a by setting
(1.2) (Opu), = dt|t=Ou(1/1,§“.,u) and (Oqu), = dt|t=0u(et“.u) .

Analogously, for every pair (w,a) € g(M), we may define a directional derivative
in the direction (w,a), viz.

(w0t = (Dw,at) () = dy|,_,u (eXp9<M) (t(w, a))-u) :

A simple heuristic argument —which can be made rigorous for finite-dimensional
groups— shows that exp®®™) and exp% (M) are tangent at first order, that is

expdM) (t(w,f)) = (¢}, ") + o(t) , [t < 1.
Thus, for every sufficiently smooth function u: M(M) — R and every (w,a) €
g(M),
(1.3) (Ow,att) = dt’t:Ou(( he em)-ﬂ) = (Owu)y + (Gau)y -

The directional derivatives in (1.2) have been widely considered, see e.g. [1,
45, 22, 23, 78, 84, 100, 75]. Notably, the directional derivative in (1.3) has been
considered by Yu.G. Kondratiev, E.-W. Lytvynov, and A.M. Vershik in [56] as
arising from the group action on M(M) of the left semidirect product of Diff§ (M)
and exp[C(M)].

1.2.3. The Dirichlet form. Assume further that M is endowed with a (smooth)
Riemannian metric g and set |w[, = g(w,w)/? for w € X°(M). For each u €
M(M), this allows us to define pre-Hilbert norms on X°(M), C (M), and g(M),
respectively by setting, for every w € X2°(M) and a € C (M),

1/2 1/2
2
(1.4) e U |wgd4 S U azdﬂ} ,
X X

so that

(1.5) [(w; )

Tangent spaces.  We respectively define the

e horizontal tangent space T*"M(M) to M(M) at pu as the completion of X2°(M);
e vertical tangent space T);*" M(M) to M(M) at ji as the completion of C°(M);
e (total) tangent space T, M(M) to M(M) at p as the completion of g(M).

The three spaces above are Hilbert spaces when endowed with the (non-relabeled)
extensions of the respective pre-Hilbert norms. As detailed below, these spaces have
been widely considered in the literature. Firstly, let us note that horizontal objects
are occasionally called intrinsic and vertical objects are occasionally called extrinsic.
This terminology is motivated from the perspective of the geometry of P(M), since
the action of (Y leaves P(M) invariant, while the action ©. does not. We prefer the
terminology of horizontal/vertical tangent space, since we mostly consider actions
on M(M), rather than on P(M).

When p is a configuration, i.e. N-valued on all compact sets, the space Tffor/\/l (M)
was first considered in [1, 2]. When y is a probability measure in the L2-Wasserstein
space Po(M), it was considered in [41]. When p € P(M) and in the context of
group actions, it has been widely considered, e.g., in [23, 22, 75, 77]. Tt is an exten-
sion to vector fields of non-gradient type of the classical tangent space to Pa(M) in
e.g. [66, 5], also cf. [29, §3.D.5, pp. 155ff.]. For further comments on the terminology

2 2
7, = ol + llalzye.
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as well as for other notions of tangent spaces to P2(M) (hence to M(M)) see the
Appendix to [22] and references therein.

The space T} M(M) has been widely considered, again usually for measures
in P(M), occasionally with an equivalent norm, e.g. [67, 84, 45], in relation with
the Dirichlet form of the Fleming—Viot and related processes, [35].

Finally, the space T, M (M) is an extension to vector fields of non-gradient type of
the Hellinger—Kantorovich tangent space in [60, 39]. We have a natural orthogonal
decomposition
(1.6) T, M(M) = T M(M) &+ Ty M(M)
where 1, denotes orthogonality w.r.t. the T,, M (M)-scalar product.

Gradients. Now, fix u: M(M) — R, sufficiently smooth. Whenever the linear
operator
(w,a) — (Ow,att),
is || - ||Tu—bounded on g(M), it extends uniquely to T),M(M). Since the latter is
a Hilbert space, by the standard Riesz Representation Theorem for Hilbert spaces
this extension may be represented as

(1.7) (w, a) — (Vu)u | (w, @)z, (w,a) € TLM(M) ,
for some unique element (Vu), of T, M (M), satisfying
(Vu), | (w,a)>Tu = (Ow,aW)p , (w,a) € g(M) .

We stress that the norm || - ||Tu and therefore the gradient Vu both depend on the
choice of the Riemannian metric g. We assume g to be fixed and thus omit this
dependence from the notation.

Finally, we denote by V", resp. V¥, the component of ¥ in T" M(M),
resp. T, M(M), w.r.t. the orthogonal decomposition in (1.6), satisfying

(1.8) (") | 0) per = (Dt we XX (M),
(1.9) (V) | @) ger = (Oat)u ac Co (M),
and

(1.10) (V) = (V") (Vhoru)u) :

The operators V¥, with § = @, hor, ver, enjoy some of the properties that are
expected of a natural gradient operator. For example, it is readily verified from the
standard Leibniz rule for d; in (1.2) that they satisfy the Leibniz rule

(1.11) Vi (uv) = uVio 4+ vV

thus acting as derivations on the space of smooth functions and taking values into
the space of sections to the corresponding tangent bundles, viz.

(1.12)  Viu: M(M) — T*M(M) = ] TIM(M), # = @, hor, ver .
HEM(M)
Dirichlet form and cylinder functions. Let Q be a non-negative Radon (o-
finite, not necessarily finite) Borel measure on M (M). Then,
(1.13)

E) = [ [((F7u | (950, e+ (T, | (70} Q)
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is a symmetric bilinear form on L?(M (M), Q) defined on the class of sufficiently
smooth functions. The presence of a factor 4 in the vertical-direction will be clarified
in §1.4.1 below. If this form is densely defined and closable in L2(M (M), Q), it is
readily seen that its closure is a local Dirichlet form.

Let us now turn to the definition of some class of smooth functions sufficiently
large for our purposes and admitting a gradient as in (1.7) (while in this introduction
we focus only on one class of such functions, in the rest of the work we will use also
other classes of functions). For every linear functional of the form f*, f € C°(M),
we may easily compute

(Ot ) = /M ((df)w + fa)du

where df denotes the exterior differential of f on M. For w € X°(M) and a €
C(M), the functional (Ow,qf*), is thus, again, the potential energy induced
by (df)w+ fa € C°(M). Thus, the potential energy f* is the prototypical smooth
function, and we consider the algebra of smooth cylinder functions induced by
potential energies, viz.

u=Fof*, FeCPR'",R),
(L.14)  FoCe = a:M(M)—nR:keN,f::(fi)ogiék,f051,
fiECSO(M)forlgiSk

Note that every u € F2°°C2° vanishes on measures with total mass uM > k ==
max supgeps Supp F(-,t1,..., %), and that u(p) = u(u|K) where K = U;<y supp f;
is a compact subset of M. Since the subset {u € M(M) : uM = pK < k} is com-
pact in M(M) by Prokhorov’s Theorem, we have F>°C® C L*(M(M), Q) for
every Q, and we may thus consider the form (8, fg’;’meo).

1.3. A candidate measure. In this section we discuss a natural choice of the
measure Q in (1.13), namely the multiplicative infinite-dimensional Lebesque mea-
sure. We start by recalling the notion of (quasi-)invariance of a measure w.r.t. a
group action.

1.3.1. Quasi-invariance under group actions. Let G be a topological group acting
measurably on a o-finite measure space (2, .%, Q) and write O: GxQ — , (g,w) —
g.w for the action.

Definition 1.3. We say that Q is:

(a) (O-)quasi-invariant if
Qg =(9-)1Q=Ry-Q

for some .%-measurable Radon-Nikodym derivative Ry: Q — [0, co];
(b) projectively (O-)invariant if, additionally, R, is a constant function on
(possibly depending on g);
(¢) (O-)invariant if, additionally, Q4 = Q for every g € G;
(d) partially (O-)quasi-invariant [56, Dfn. 9] if there exists a filtration (F;),.
of %, indexed by a (possibly uncountable) totally ordered set T', so that
e .7 is the minimal o-algebra generated by (%#),;
e for each g € G and s € T there exists ¢ € T such that g.%, C % (in
which case it must be s < t);
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e for each g € G and t € T the restriction Q! of Q to %; is (O-quasi-
invariant with .#;-measurable Radon-Nikodym derivative Ry .: Q@ —

[0, 00], viz. (9.)4Q" = Ry - Q.
Note that (¢) = (b) = (a) = (d).

These properties are related to the theory of representations of G. Indeed, each
(O-quasi-)invariant measure Q induces a so-called (quasi-)regular representation
of G on the Hilbert space L?(M(X), Q) by defining a unitary operator

Q. 1/2 —1
U2:fr— R fo(g™h).

If Q is merely partially quasi-invariant, no representation of G is induced on
L?(M(X), Q). However, a representation is induced on L*(M(X), Q°) for every ¢
and the family of all such representations may still be used to infer properties of
the action on L?(M(X), Q). We refer the reader to the Introduction in [56] for
further heuristics about partial quasi-invariance.

In the setting of §1.2.2) the (partial quasi-)invariance of Q is also instrumen-
tal in establishing the closability of the form (1.13). Notable examples of this
fact are the forms induced by: the Dirichlet—Ferguson measure (see below), the
Diff§ (M)Cy-quasi-invariant entropic measure in [100], general Diff{ (M )Cy-quasi-
invariant measures on configuration spaces in [78], and on P(M) in [22].

We shall therefore seek for measures on M(M) that are (partially) &(M)Ouyx-
quasi-invariant. Nonetheless, let us first address the case when X has no smooth
structure.

1.3.2. The Dirichlet-Ferguson measure. Let I := [0, 1] and denote by Bs the Beta
distribution of parameters 1 and 8 > 0, viz.

dBg(t) = (1 —t)°~tdt , tel.
Let v € P(X) be diffuse (i.e. atomless) and, for ease of notation, set
(1.15) =1 —tpu+ts,, peMX), zeX tel.

The Dirichlet—Ferguson measure Dg, with intensity fv [32] is the unique Borel
probability measure on P(X) satisfying, for every bounded Borel F': P(X) x X x
I — R, the Mecke-type identity [25] (also cf. [86])

(1.16)

// (. )dn(@)iDa ) = [ [ PG 0aw@) aBot) @D )

We refer the reader to [32] for the original construction of Dg, via Kolmogorov
consistency as a limit of Dirichlet distributions on standard simplices, to [21] for a
construction and characterization of Dg, via Fourier transform, and to [58, 86, 49,
26] for other characterizations.

Dirichlet—Ferguson measures have appeared throughout mathematics, with many
important applications to —only to name a few— the theory of random permuta-
tions (see e.g. [10] and references therein), Bayesian non-parametrics (see e.g. [32]),
population genetics (see e.g. [31] and references therein), infinite-dimensional sto-
chastic analysis [67, 23], and the representation theory of groups of diffeomorphisms
and multipliers [23, 21].
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1.3.3. The multiplicative infinite-dimensional Lebesgue measure. For each 6 > 0,
we define a o-finite Borel measure on RT by
-1 d¢

1.17 dhg(t) = ——— | t>0.
The family (Ag)y is a convolution semigroup, in the sense that Ag x Ar = gy,
for all 6,7 > 0.

In [92], N.V. Tsilevich, A.M. Vershik, and M. Yor introduced the multiplica-
tive infinite-dimensional Lebesgue measure Ly, with shape parameter 6 > 0 and
intensity measure v € P(X) as

(1.18) Lo, = J (Dy®N)

with J as in (1.1). The o-finite measure L4, —which ought to be regarded as an
infinite-dimensional analogue of Ag— displays a number of remarkable properties.
Here and everywhere in the following, let

(1.19) B, ={pe MX):uX <r}, r>0.

Proposition 1.4 (Tsilevich—Vershik—Yor, see [92, §4]). The measures Ly ,,, with 6 >
0, enjoy the following properties:
(1) (Low)gsqy 8 a convolution semigroup, viz. Lo, * Lr, = Loyr, for ev-
ery 0,7 > 0;
(13) Lo, is projectively invariant for the O.-action of M(X), with Radon—
Nikodym derivative

(1.20) AE)eLoy _ 0 froghar ke MX) .
dLy. ’
In particular, Lg, is invariant for the O.-action of M, (X) and 0-homo-
geneous, i.e. Lg,(c-) = ceﬁgvy for every constant ¢ > 0.
(19i) Ly, is invariant for the Cy-action of &,(X).

In combination with several other properties, the invariance for the .-action
of M, (X) or the projective invariance for the .-action of M (X) have been used
to characterize the measures Ly ,; see [92, Thm. 4.2] and [94, Thm. 5]. We extend
these uniqueness results by providing the following characterization under minimal
assumptions.

Proposition 1.5 (Prop. 5.2). The following are equivalent:

(1) Q is a non-negative Borel measure on M(X) satisfying:

e non-triviality: QBy =0, ¢f. (1.19);

e normalization: OBy =1, ¢f. (1.19);

e O.-invariance: Q is projectively invariant for the O.-action of M(X).
(i) Q= rprmy Lo with

0= /,uXe_“XdQ(,u) and  v:= 9_1/u(~)e_“XdQ(,u) .

Let us now turn to the smooth category. In the case when X = M is a manifold
as in §1.2.2, Proposition 1.5 holds as well if we replace 9 (M) by its smaller ana-
logue exp[C2°(M)] in the smooth category. Now, let us further assume, as in §1.2.3,
that M is endowed with a Riemannian metric g. As shown below, in this case we
may further completely identify the ‘pseudo-intensity’ measure v.
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Indeed, we look for measures Q on M (M) which are both natural (in the smooth
category) and universal. By ‘natural’ we mean that given a measure Q on a smooth,
connected, orientable Riemannian manifold (M, g) we can identify Q by g. Rig-
orously, Q is invariant for the (Cy)-action on M(M) of the isometry group Iso(g)
of (M, g). (Of course, depending on (M, g), this constraint might be void as Iso(g)
might be the trivial group.) By ‘universal’ we mean that for every (smooth, con-
nected, orientable) manifold M and every Riemannian metric g, we can find a nat-
ural Q. Rigorously, for every manifold M there exists a multi-valued map g = Q
whose image consists of natural measures.

Now, assume further that Q is as in Proposition 1.5. It is not difficult to show
that (the infinite-dimensional multiplicative Lebesgue measure) Q is natural and
universal if and only if v is invariant for the natural action on M of Iso(g). Since Q
is completely determined by its pseudo-intensity v and by the scale (homogeneity)
parameter # > 0, it is reasonable to strengthen the above notion of naturalness
by requiring that Q be determined only by vol, rather than by g. Rigorously, we
require the multi-valued map g = Q to factor over the map g — vol, assigning to g
its volume measure vol,. That is, we have a multi-valued map vol, = Q.

Finally, let Diffa' (g) be the group of compactly non-identical, orientation-preserv-
ing diffeomorphisms on M preserving the Riemann volume form of g by pullback
or, equivalently, preserving vol, by push-forward. In other words, we require Q to
be invariant for the (%)-action on M(M) of Diff§ (g). Contrary to the previous
definition, this stronger version of naturalness is always non-void, since Diﬂ“ar (9)
is the infinite-dimensional Lie group modelled on the (infinite-dimensional) Lie
algebra of compactly supported div,-free vector fields, and it is in fact sufficient to
turn the multi-valued map ¢ = Q into a uniquely determined function.

Corollary 1.6 (See Prop. 5.4). Let (M, g) be a smooth, connected, orientable Rie-
mannian manifold with finite total volume. Then, the following are equivalent:

(i) Q is a non-negative Borel measure on M(M) satisfying:

e non-triviality: OBy = 0;

e normalization: OBy = 1;

e O.-invariance: Q is projectively invariant for the O.-action of exp[C°(M)];

e Cy-invariance: Q is invariant for the Cy-action of Diffg (g).
(11) Q= ﬁﬁg,y with v = vol, and vM = 1.
1.3.4. Closability of the canonical form. It is shown in [23] that Dg, is not quasi-
invariant w.r.t. the action Cy of Diff§ (M) on P(M), but merely partially quasi-
invariant with respect to some filtration (%), of the Borel o-algebra of P(M).
Since ¢y on M(M) factorizes over J in (1.1), it follows that Ly, too is not quasi-
invariant for the same action. Its partial quasi-invariance may not be immediately
deduced from that of Dg, since the normalization map is not Borel/.%;-measurable
for any ¢. As in turns out however, Ly, is indeed partially quasi-invariant under
the Cy-action of Diff§ (M), and thus under the (y--action of &(M) := Diffd (M) x*
exp[C°(M)], Prop. 5.11.

This is of particular importance, since partial Oy +-quasi-invariance can be used

to prove the closability on L?(M(M), Lg, ) of the pre-Dirichlet energy in (1.13)
with @ = Ly ,.
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Theorem 1.7. The quadratic form (5,}—3‘;’”03") is densely defined and closable
on L2(M(M), Le,). Its closure (€, 2(E)) is a quasi-reqular conservative strongly
local Dirichlet form on M(M), recurrent if 0 € (0, 1] and transient if § € (1, 00).

1.3.5. The Vershik diffusion on the cone of non-negative measures. As a conse-
quence of Theorem 1.7 and by the standard theory of Dirichlet forms, there exists
a conservative Markov diffusion process peo with state space M(M) and invari-
ant measure Ly, properly associated with the form (5 7@(5)). We call e the
Vershik diffusion. Tt is the counterpart on M(M) to the Dirichlet—Ferguson diffu-
sion on P(M) constructed in [23] and the Ly ,-reversible Brownian motion for the
Hellinger—Kantorovich geometry of M(M).

A detailed study of the Vershik diffusion lies beyond the scope of this paper and
will be addressed in future work. However, instrumentally to a proof of conser-
vativeness and recurrence/transience for (£, 2(£)) in Theorem 1.7, we prove the
following statement. Let x; be a squared Bessel process of dimension 6, i.e. the
(pathwise-unique, strong) solution to the SDE

(121) d:ct = \/21’tth+9dt s t>0 s
driven by a standard Wiener process W; on R.

Proposition 1.8. For every 0 > 0, the radial-part process M > 0 of the Lg,, -
reversible Vershik diffusion is distributed as xy 4.

The time-rescaling factor i should be regarded as an artefact of our convention
that the Wiener process is generated by the Laplacian A (rather than by %A)
together with the factor 4 in the vertical part of the Dirichlet form, cf. (1.13).

The appearance of the squared Bessel process of dimension 6 in the description
of the radial part process of i, is significant. Indeed, the family of squared Bessel
processes indexed by # > 0 forms a convolution semigroup of diffusions on the
real line —which is reflected by the same property for the measures Ag and Lg,—
and is one instance in the larger class of continuous-state branching processes with
immigration, [88, 52]. (See Appendix A.) This suggests that the ‘vertical random
motion’ associated to the Dirichlet form obtained by replacing V with VV' and
choosing Q = Ly, in (1.13) is an unconstrained version of the celebrated Fleming—
Viot process [35, 67]: it describes the distribution of alleles in a selectively neutral
genetic population as influenced by mutation and random genetic drift, as opposed
to the distribution of allelic frequencies in the Fleming—Viot process.

1.4. The metric point of view. In this section, we will present another quite
natural construction of an energy form for functions on M (M), namely the Cheeger
energy induced by the Hellinger-Kantorovich distance and by Ly ..

1.4.1. Hellinger—Kantorovich distance on the cone of positive measures. One of the
most remarkable results in the theory of optimal transport is to provide notions
of distances between probability measures: given a complete and separable metric
space (X,d), the L?*-Kantorovich-Rubinstein (also: Wasserstein) distance W3 4
between two probability measures g, u1 € P(X) is given by the optimal transport
cost induced by d? i.e.

1/2
1.22 W ) = inf d*d ;
( ) 2,d (H’O Nl) |:'y€Cpl(MO7N1) /)(2 ’7:|
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where Cpl(uo, 111) C P(X?) is the space of couplings between pg and p; i.e. proba-
bilities on the product space with marginals po and pp. When restricted to the set
of probability measures with finite second moment P»(X), the Wasserstein distance
is complete and separable, length (resp. geodesic) if d is a length (resp. geodesic)
distance. The Wasserstein distance has also the remarkable property of making
the map z — J, an isometric embedding of X into P2(X). We refer to the classic
monographs [6, 98, 99, 79, 72, 73] and to the more recent [3, 34] for a treatment of
optimal transport and Wasserstein distances.

The generalization of the optimal transport problem to the unbalanced setting
(i.e. to the case when g and p; may have different total non-negative masses) has
been considered in a variety of papers, see for example the generalization of the
dynamical approach to balanced optimal transport [9] to the unbalanced setting in
[57, 62, 69, 70, 16]; static generalizations connected to the Kantorovich formulation
were explored in [14]; see also the work [33] where the so-called optimal partial
transport has been introduced. A very general framework for unbalanced optimal-
transport problems can be also found in [83] where, using the methods developed
in [82], the ideas already contained in [59, 17] are extended.

We focus here on the class of distances H{q introduced at the same time in
the works [59, 17] and called Wasserstein—Fisher—Rao and Hellinger—Kantorovich
respectively: these can be defined in many ways (see in particular Section 3.1 for one
of these possibilities) and are rightfully considered to be the correct generalization
to M(X) of the Wasserstein distances. Indeed, the space (M(X), Hy) is a complete
and separable metric space whose topology is the one of the weak convergence of
measures, it preserves the length and geodesic properties of the underlying space,
and makes the map (X x R{) > (z,7) + ré, € M(X) an isometric immersion,
provided X xR} is endowed with the natural cone distance, cf. (3.1) below. Perhaps
the simplest way to grasp the idea behind the Hellinger—-Kantorovich distance is to
look at its dynamical formulation on the Euclidean space R?: if pg, 1 € M(R?),
we have

1
(1.23) H (w0, p11)? = inf {/ / [loef? + Flwel?] dp dt}
0 R4

where the infimum is taken among all triplets (u.,v.,w.) with p|—; = p; for i =
0,1, and solving the continuity equation with reaction

3tut + diV(’Utth) = Wbt in .@/((07 1) X Rd) .

This formula, a generalization of the classical Benamou—Brenier theorem [9], shows
that the HK-geometry encompasses both a horizontal movement of mass (driven
by v) and a reaction/dilation behavior driven by the term w. We refer to the second
part of [59] for details and proofs regarding the Hellinger—Kantorovich distance.

Let us finally remark that deep relationships between the group &(M) (here M
is a manifold as in §1.2.3 which is additionally assumed to be complete ) and the
Hellinger—Kantorovich distance are already apparent in the work [40], where it is
noted that a left action of & (M) —thus opposite to O.«— gives a Riemannian
submersion between an L2-type of metric on &(M) and the Hellinger—Kantorovich
metric on the space of densities, see [40, Prop. 10].

1.4.2. Metric measure geometry and Cheeger energies. One of the earliest and sim-
plest construction of Sobolev space on a smooth domain  C R? is to consider the
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closure of smooth functions w.r.t. a given Sobolev norm i.e.

H2(Q) = (@), llolms = / [lo@)P + |Ve(@)[?] da .

The key idea is very simple: we have a class of regular functions for which the
notion of derivative is given and a norm to measure it: we consider limits of smooth
functions w.r.t. this norm. The fundamental observation to generalize this approach
to metric spaces is to notice that what is needed is not really the gradient of a
smooth function, but rather its norm. This leads to the following construction:
if (X,d) is a complete and separable metric space endowed with a non-negative,
finite, Borel measure m, for a Lipschitz and bounded function f € Lip,(X,d) we
define the so called asymptotic Lipschitz constant as

. L 1f(z) — f(y)]
(1.24) lipg f(z) ~—y};§1§}522 TER

and the corresponding 2-pre-Cheeger energy as

(1.25) PCEs g m(f) = /X (lipg f)?dm, [ € Lip,(X.d) .

The quantity lipy f is a surrogate for the modulus of the gradient of a smooth func-
tion. The functional pCE, 4, is however defined only on Lipschitz functions. In
order to extend it to more géneral functions, we can consider its lower semicontinu-
ous relaxation in L?(m), namely the 2-Cheeger energy CEz 4 m, [15, 42]. The vector
subspace of functions in L?(X, m) for which CEs 4 is finite is the metric Sobolev
space HY2(X,d, m) [11, 46, 43, 81] which can be proven to be a Banach space with
the norm

re X,

1/2
1 122 = |11 x m) + CE2.a.m (f)
Here, we are interested in the case when (X,d) = (M(M),Hy,) for a manifold
(M, g) as in §1.2.3 with Riemannian distance d,.

1.4.3. Density of cylinder functions. Let (M, g) be a smooth, connected, complete
Riemannian manifold. Given p € M(M) and (w,a) € T,M(M), we set

|(w,a)], = [g(w,w) +4]al*]"?,

and

1/2
(126) [l @)l =/ lwl]? + 4]jal = [ /M I(w,a)lrf.;du} .

We will show in Proposition 4.7 that
(1.27) (V) s =, () . g€ MO,

whenever u € F2%°°C° is a smooth cylinder function as in (1.14); that is, the metric
slope of a cylinder function pointwise coincides with the modulus of its geometric
gradient.

In order to compare the geometric and the metric approach, pursuing the same
strategy as in [36], we aim at showing that cylinder functions are dense in 2-energy
in the Sobolev space 1‘]1’2(./\/1(M),|-Kdg7 Q) for every finite, non-negative, Borel
measure Q on M(M).

The idea is to exploit the equality in (1.27) and to approximate the HKK distance
function from a fixed reference measure with suitable cylinder functions: this was
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done for the Wasserstein distance in [36] using regular Kantorovich potentials, also
cf. [22]. Even if suitably-adapted versions of Kantorovich potentials are available for
the HK-distance, their regularity properties are scarce [60], so that it seems difficult
to be able to reproduce the same argument as in [36] in this case. However, we
show in Corollary 4.11 that we can approximate with cylinder functions a smoothed
version of the HK-distance (namely, the so called Gaussian Hellinger-Kantorovich
distance, GK, which induces K as length-distance) instead of KK directly, employing
the regularity of its adapted version of Kantorovich potentials (cf. Theorem 3.8).

Together with Theorem 2.12, which shows that it is enough to approximate a
distance function § from a reference point with an algebra of functions .7 in order
to obtain the density of 7 in the Sobolev space induced by the length distance
generated by J, we thus obtain the sought density of a suitable class of cylinder
functions in HY2(M(RY), Ky, , Q), where d. is the Euclidean distance on R? (see
Theorem 4.12). The result is then extended first to the Riemannian setting in
Theorem 4.15 and then further refined to the smaller class of smooth cylinder
functions. We then have the following general result (Corollary 4.17).

Theorem 1.9. Let Q be a non-negative Borel measure on M(M). If
(1.28) /e_t“M dO(n) < +o0  for everyt >0,

then, (Hl’z(M(M), Hq,, Q) is a Hilbert space, the subalgebra F22°C2e is strongly
dense in H?(M(M),Hgq,, Q) and for everyu € H"*(M(M),Hq,, Q) there exists
a sequence (Un)n C Fow™Ce such that

Uy — U N [,2(/\/1(M)7 Q), pCEQ’H(dg’Q(un) — CEg,mdwg(u) .

1.4.4. Identification of the metric and the geometric points of view. Let us now
come to a comparison of the Dirichlet form (£, 2(€)) in Theorem 1.7 with the
Cheeger energy CE ik, ,z,, in Theorem 1.9, when we chose as reference measure
Q the multiplicative infinite-dimensional Lebesgue measure Lg,. Firstly let us
stress that these two objects (and the relative constructions) are a priori related
only by the choice of the same reference measure Ly ,. Indeed, on the one hand,
the construction of (£, 2(€)) relies on the infinite-dimensional Lie group & (M)
(motivating also the choice of Lg,) and on the class of cylinder functions. On the
other hand, the definition of CEs i, ¢, , relies solely on the Hellinger-Kantorovich
distance H(y, and on the class of Hy -Lipschitz functions. As a consequence of
Theorem 1.9 and, the equality (1.27), and the definition in (1.13) we obtain the
following result.

Theorem 1.10. As quadratic forms on L*(M(M), Lq.,),
(57 @(5)) = (CEQ,de,ﬁs,le’z(M(M)a |-Kdg7£071/)) .

In other words, the geometric construction and the metric construction coincide,
and the Vershik diffusion is the metric measure Brownian motion of the metric
measure space (M(M),Hq,, Lo, ).

1.5. Applications and outlook.
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1.5.1. Applications to PDEs. As described in the beginning of §1.2.3, on the space
Pa(R?) of Borel probability measures on R? with finite second moment the hor-
izontal gradient corresponds to the geometry of Otto calculus, inducing the L2-
Kantorovich-Rubinstein distance Wa, in (1.22). This was first formally introduced
in [50] and later developed in e.g. [6] to study PDEs of the form
OF
§F

where %~ is the first variation of a typical integral functional
P

Fip) = [ Plaupla). Voa))de.

The use of Otto calculus allows to identify (1.29) as a gradient flow dynamics
for the functional F on the space Pa(M) w.r.t. Wy. There are many advantages
in recogninzing this kind of dynamics on the space of probability measures: the
gradient-flow formulation suggests the use of the minimizing-movement scheme to
prove existence of solutions or to numerically approximate them; it allows for con-
traction and energy estimates, and provides an important tool for the study of the
dependence of solutions from perturbation of the functional; working in the space
of probability measures allows for weaker assumptions on the initial data (which
can be general probability measures), and forces the solutions to be non-negative a
priori. See e.g. [6, Chapter 11] for an overview.

The addition of a reaction term in (1.29) destroys the possibility to resort to Otto
calculus, since then mass is no longer preserved during the evolution, which is then
set in the space M(R?), rather than in Py(R?). To recover a similar framework,
one can consider the full gradient introduced in the end of §1.2.3 inducing the
Hellinger-Kantorovich distance (1.23), which thus serves as a generalization of the
Otto calculus to functions defined on M(M). The present paper provides more
insight in the structure of M(M) and the differentiation of functionals defined
therein, which will serve as a tool to study the gradient flow structure of natural
generalizations of the PDE in (1.29).

1.5.2. Applications to SPDEs. Let H: P2(M) — R be a measurable function,
and £ be a space-time white noise on M with values in the tangent bundle to M.
The Dean—Kawasaki equation [20, 51] is the stochastic partial differential equation
(SPDE)

(1.30) 6p=Ap+V-(\/ﬁ§)+V-(pr§i) )

Equation (1.30) has been proposed, independently, by D.S. Dean and by K. Kawa-
saki, [20, 51], to describe the density function of a large particle system subject to
a diffusive Langevin dynamics, combining a deterministic interaction H with a
noise £ accounting for the particles’ thermal fluctuations. Together with its vari-
ants, it has been used to describe super-cooled liquids, colloidal suspensions, the
glass-liquid transition, some bacterial patterns, and other systems; see, e.g., the
recent review [90] and the introduction to [24].

Recently, the noise term in (1.30) has been identified as the natural noise for the
geometry of Po(M). Indeed, in the ‘free case’ H = 0, a solution ¢ — p = p; to (1.30)
is an intrinsic random perturbation of the gradient flow of the Boltzmann—-Shannon
entropy on Pa(M) by a noise distributed according to the energy dissipated by the
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system, i.e. by the natural isotropic noise arising from the Riemannian structure
of Po(M), see [48, 55, 54]. Generalizations to (1.30) have been further completely
characterized in [24], where it shown that Markov solutions to the free Dean—
Kawasaki equation correspond to the Dirichlet form induced by the horizontal form
on Py(M).

It is therefore natural to ask whether the Vershik diffusion u; can be identified
as the (unique) solution to some SPDE with M (M )-valued solutions, and —if so—
what is dynamics of the corresponding infinite marked particle system on M. By
analogy with the massive particle systems in [24], we expect the Vershik diffusion to
solve a combination of the Dean—Kawasaki and Dawson—Watanabe SPDEs, cf. [24,
§1.5.3]. Since the chosen invariant measure Ly is concentrated on purely atomic
measures, we also expect the solution p; to this SPDE to be the empirical measure
of a massive particle system in the sense of [24], viz.

The atoms’ locations X} will solve the infinite system of SDEs:
dX; = dW; g

where the W¥’s are mutually independent instances of the Brownian motion on M,
while the atoms’ masses S; will solve an infinite system of SDEs of Bessel type
driven by mutually independent standard Brownian motions on the real line also
independent of the W¥’s.

Plan of the work. In §2 we collect preliminary results about Sobolev spaces on
arbitrary metric measure spaces. In §3 we recall the definition and some properties
of the Hellinger—Kantorovich distance, and we prove new regularity estimates for
optimal potentials in its dual formulation. In §4.1 and 4.2 we introduce cylinder
functions on M (M) and prove their density in energy in the metric Sobolev space
of the metric measure space (./\/l(]Rd)7 Hq, , Q) for any finite Borel measure Q on
M(R?). In §4.3 we extend the density (and consequently the Hilbertianity) result
to the case of a Riemannian manifold and to the class of smooth cylinder func-
tions in F22°°C2, and we also draw some consequences of the latter in terms of
the density of cylinder functions in (and the Hilbertianity of) the Sobolev spaces
HY2(M(R?),d, Q), where d is either the L2-Wasserstein (extended) distance or the
2-Hellinger distance. In §5.1 we study the uniqueness and invariance properties of
the measure L ,. In §5.2 and §5.3 we prove the closability of the form (&, F2%°C°)
and we study its properties. In Appendix A we construct the Dirichlet form as-
sociated to the squared Bessel process whose properties are instrumental to many
results related to the closure of (£, F2%°°Ce°). Finally, in Appendix B we collect
some properties of measure-preserving diffeomorphisms on manifolds.
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2. METRIC SOBOLEV SPACES AND THE DENSITY OF SUBALGEBRAS

2.1. Preliminaries. We recall some standard facts in the theory of metric measure
spaces and establish the necessary notation.

Metric-topological objects. Let (X,7) be a Hausdorff topological space and
d: X x X — [0,+00] be an extended distance on X, i.e. d satisfies all the axioms
of a distance but may attain the value 4o0c0. Given a function f: X — R and a
set A C X we define

e the local d-Lipschitz constant

|f(z) = f(w)l
Laa(f) = sup “————o
( ) z,YyEA, x#Yy d(l‘,y)
o the (global) d-Lipschitz constant Ly(f) = Lq x(f);
e the asymptotic (7,d)-Lipschitz constant

(2.1) lip] f(x) = Ulgzi Lau(f), r e X,

where U, is the directed set of all the 7-neighbourhoods of .

We denote by Lip, (X, 7,d) the set of bounded 7-continuous and d-Lipschitz func-
tions in X i.e.

Lip, (X, 7,d) == {f € Cp(X, 7) : La(f) < +o00}.

Definition 2.1 (Extended metric-topological measure space (e.m.t.m. space)).
Let (X,7) be a Hausdorff topological space and let d: X x X — [0, +00] be an
extended distance on X. We say that (X,7,d) is an extended metric-topological
space if
(1) 7 coincides with the initial topology induced by Lip, (X, 7,d) on X, i.e. the
coarsest topology on X such that all functions in Lip, (X, 7,d) are contin-
uous;
(2) the distance d can be recovered starting from non-expansive d-Lipschitz
T-continuous functions:

d(z,y) = sup{[f(z) — f(y)| : f € Lip,(X,7,d), La(f) <1}, z,y€X .
Given a non-negative, Radon measure m on (X, #(X, 7)) finite on d-balls, we call
X = (X, 7,d,m) an extended metric-topological measure space. In the particular
case when (X, d) is a complete and separable metric space and 7 = 74 is the topology
induced by d, we say that (X,d, m) is a Polish metric measure space.

Remark 2.2. When (X,d) is a complete and separable metric space, every non-
negative Borel measure m finite on d-bounded sets is automatically Radon; see,
e.g., [85, Thm. I.11, p. 125].

A subalgebra &7 of Lip,(X,7,d) is

e unital if the constant function 1 is an element of o7
e point-separating if for every zp,x1 € X there exists f € o with f(zg) #

f(x1).

Curves.  Given an interval I C R and a metric space (X, d), we call a curve a
continuous function vy: I — X and we denote its metric speed by

22) 51a(t) = limsup SOE+ ()

, tel.
h—0 |h‘
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The distance d induces a length functional £4 on the space of curves in Lip([0, 1]; (X, d)):

N
L4(7) :== sup {Zd(y(tn_l),’y(tn)) 0=ty <t1 < - <tny_1<ity= 1}
-1

=A|ﬂdﬂ&-

The length (extended) distance d induced by d on a subset Y C X is then, for
every yo,y1 €Y,

o € Lip(0,1): (V.d))
(23) dY(yanl) = inf {éd(y) : ’Y(O) = o, 'y(l) =y }

v € Lip([0,4; (Y, d)) , }

z4 { 7(0) = yo, v(0) =y1, [¥la £ 1 ace.

In case Y = X, we simply write d.

Measure objects. Unless explicitly stated otherwise, by a measure we mean
a non-negative non-zero measure. Let (X, 3, m) be a measure space. We denote
by L°(X,m) the space of real-valued measurable functions on X, identified up to
equality m-a.e., endowed with the topology of the local convergence in m-measure.
For r € [1, +o0], we denote by L"(X, m) the usual Lebesgue spaces of real-valued,
measurable r-summable functions, identified up to equality m-a.e., with its usual
norm. For Y (any subset of) a Banach space, we write L™ (X, m;Y") for the corre-
sponding space of Y-valued functions.

2.2. Relaxed gradients, Cheeger energies, and Sobolev spaces. We fix for
this subsection a e.m.t.m. space X = (X, 7,d, m), a unital point-separating subal-
gebra o/ C Lip,(X,7,d), and ¢ € (1,4+00).

Definition 2.3 (Cheeger energy and Sobolev space). The (q, % )-Cheeger energy
is the functional
(2.5)

(fa)n C o,

. - . 0
CEqg,or(f) —mf{ggggpca(fn). bt LK, m)} . fer’(X,m),

where the pre-Cheeger energy pCE, : Lip, (X, 7,d) — [0, +-00] is defined as

(2.6) pCE,(f) = /X(lipg Hidm f € Lip,(X,,d) .

We denote by D%4(X;.e7) the subspace of functions in L°(X, m) with finite (¢, o7)-
Cheeger energy. The Sobolev space H'4(X; «7) is defined as LY(X, m)NDY4(X; o).
The Sobolev norm of f € HY9(X;.e/) is defined by

||f||3{1,q(x;g¢) = Hf”qu(Xm) + CEq o (f) -

We adopt the following definition of relaxed gradient, see [8, 7, 81], also cf. [87, 11]
for a different approach.

Definition 2.4 ((q, %7)-relaxed gradient). We say that G € LY(X,m) is a (g, & )-
relaxed gradient of f € L°(X,m) if there exist a sequence (fn), C &/ with
(lipg fr)n € LY9(X,m) and G € L(X, m) such that:
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o fn— fin L°(X,m) and lip} fn, — G in L(X, m);
o G <G m-ae. in X.
Remark 2.5. In general, it is not the case that lip] f € L9(X, m) for f € Lip, (X, 7,d).
For f € L°(X, m) set
Sx.q.0(f) ={G e LYX,m) : G is a (q, &/)-relaxed gradient of f} .

It is a simple but important property of relaxed gradients that, if Sx g o (f) is
non-empty, then it has a unique element of minimal L?(X, m)-norm, see [8, 7, 81],
denoted by |Dfls,q4, and called the minimal (¢, o)-relaxed gradient of f.

Remark 2.6 (Notation). Whenever 7 = 74 for a complete and separable distance d
on X, and & = Lip, (X, 7,d) we will omit the dependence on either 7, o, or both
from the notation. Furthermore, the notion of relaxed gradient, the minimal relaxed
gradient (if it exists) and the Cheeger (resp. pre-Cheeger) energy of a function in
L°(X, m) depend of course on X, &7 and ¢ (resp. on X and ¢) but, while we will
always keep the dependence on & (except for the case specified above) and ¢
explicit, we will usually not state explicitly the one w.r.t. X. In some circumstances
however, it will be useful to do so, and we will talk about (X, ¢, &)-relaxed gradient
and write |Df|, x 4,0, CEx g, (f) and pCEx ,(f)-

Let us collect a few properties of relaxed gradients and Sobolev spaces that will
be useful in the following. For a more comprehensive list and references to the
proofs, see [36].

Theorem 2.7. Let X = (X, 7,d,m) be a e.m.t.m. space, let of C Lipy(X,7,d) be
a unital point-separating subalgebra and let q € (1,400). The following properties
hold true:

(i) Completeness: (H9(X;a), || - || mra(x.er)) is a Banach space.

(7) Closure: The set

SX,q,0 = {(f, G) e L°(X,m) x LY(X,m) : G is a (¢, o )-relazed gradient of f}

is convexr and closed with respect to the product topology of the local convergence
in m-measure and the weak convergence in LY(X,m). In particular, for every r €
(1,+00), the restriction Sk , ;= Sx,q, N L"(X, m) x LI(X, m) is weakly closed in
L™(X,m) x L1(X,m).

(ii7) Strong approximation: If f € D(X,d, m;.<7) then there exists a sequence
fn € & such that

(2.7) fo = f m-ace.in X, lipg frn = |Dfls.q. Strongly in LY(X, m).
(iv) Local representation: It holds
(2.8) CEq.er (f) ::/ IDfIS ,.rdm  for every f € DYU(X; o).
X

Further assume that m is finite and let f,g € DV9(X;.o/). Then,

(v) Refined approximation: If in addition f € L"(X,m) for some r € {0} U
[1,+00) and takes values in a closed (possibly unbounded) interval I C R, the se-
quence in (1i1) can be found taking also values in I and converging to f in L™ (X, m).

(vi) Pointwise minimality: If G is a (q, o)-relaxed gradient of f, then |Dfl|. g0 <
G m-a.e.
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(vii) Leibniz rule: If f,g € DY9(X;.%7) N L>®(X, m), then fg € DY(X; <) and
(2.9) ID(f9)ls.q.r < [fIDglgx.er + 19l DS
(viii) Sub-linearity: If o, 8 € R, then af + Bg € DV9(X;.«/) and
(2.10) ID(evf + Bg)
(iz) Locality: for any £!-negligible Borel subset N C R we have

g, M-a.e.

*,q, < |a‘ |Df|q,*,4zi + |ﬂ| |Dg|*7q,$?7 m-a.e.

(2.11) Dflger =0 m-ae. on f~1(N).

Furthermore,

(2.12) Dfls.q,e7 = |DGla,q,er Mm-a.e. on {f = g}.
() Chain rule: If ¢ € Lip(R) then ¢ o f € DY9(X; /) and

(2.13) D(60 Nl <16/ (1) IDflugr m-ae.,

and equality holds in (2.13) if ¢ is monotone or CL.
(zi) Truncations: If f; € DY(X; /), 1 < j < k, then fy = max(fi,..., fx)
and f— =min(fy,..., fr) satisfy f+ € DV4(X;.o7) and

(2.14) IDftlcg.ov = |Dfjlegqer m-ace. on {fx = f;}, 1<5<k.

Remark 2.8. In the notation of Theorem 2.7, we have that if m is finite, the restric-
tion of CE, o to L™(X, m), r € [1,400), can be equivalently obtained as
(2.15)

(fu)n C o

CEg.or () inf{gggrgpcwn): Py L,ﬂ()’(’m)} . fer(X,m).

2.3. Density of sub-algebras of Lipschitz functions. The main property we
are interested in is the density of the subalgebra o7 in the metric Sobolev space

DY(X) = DY(X; Lip, (X, 7,d)) .

Definition 2.9 (Density in energy of a subalgebra of Lipschitz functions). Let
X = (X, 7,d,m) be an e.m.t.m. space, let &7 C Lip,(X, 7,d) be a subalgebra and let
q € (1,+00). We say that .« is dense in g-energy in DV4(X) if for every f € DV9(X)
there exists a sequence (f,,), satisfying

(2.16) fp,e o/, fo— fmae in X, lip]f, = |Df|«q strongly in LY(X,m).
(In particular f,, — f in L°(m) as well.)

Remark 2.10. When m is finite, Definition 2.9 is also equivalent to the following
strong approximation property: for every f € H4(X) there exists a sequence (f,,)n
satisfying

(217) frne s, fo— fin LYX,m), lp] fn — |Dfl«q strongly in LI(X, m).
When .o/ is unital and point-separating, Definition 2.9 is equivalent to either the

equality DV9(X;.o7) = D14(X) with equal minimal relaxed gradients, or the equal-
ity of the Sobolev spaces HY(X; /) = H"9(X) with equal norms.

Remark 2.11 (Strong density). If a subalgebra &/ C Lip,(X,d) satisfies (2.17)
and the space H'9(X) is reflexive, then 7 is also strongly dense i.e. for every
f € H"(X) there exists a sequence (f,), C &/ such that

fn— f in HY(X).
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This follows noticing that, for a sequence (f,), C & as in (2.17), the sequence
(IDfnlx,q)n is uniformly bounded in L?(X, m) so that (f,), is uniformly bounded
in H4(X). By reflexivity we have that f, converges weakly in H4(X) to some
g € HY4(X). Applying Mazur’s theorem, we find a sequence (g,), C & converg-
ing strongly in H%%(X) (and thus in particular in L¢(X,m)) to g. Since f, was
converging in L9(X, m) to f, it must be that f = g.

In the following theorem we are going to consider a situation that may appear
a bit artificial but it is actually what it is going to happen in the concrete case we
are going to analyze.

Theorem 2.12. Let (X,d) be a complete and separable metric space, let m be a
finite, non negative Borel measure on (X,d) and let of C Lipy(X,d) be a unital
and point-separating subalgebra. Let 0 be a distance on X such that:

(a) (X,0) is separable;
(b) the topology T induced by § coincides with the one induced by d;
(c) it holdsdAN1<d<din X x X.

Let Y C X be a countable d-dense set. Setting X = (X,7,d,m) and X' =
(X7 T7 67 m)’ Zf

(2.18) d, € DV(X;o/) and |Ddy|*)x,)qﬂ <1, yey,

then < is dense in q-energy in DV4(X') in the sense of Definition 2.9.

Proof. Note that, under the given assumptions, (X, d) and (X, §) are both complete
and separable metric spaces. By [81, Cor. 5.3.6] we have D*4(X) = D4(X’) with
same minimal relaxed gradient, viz.

IDflsx.q = IDflsxrq feD"(X)=D"(X).

The proof is precisely the same of [36, Theorem 2.12] but for one (simple, yet
crucial) detail: the distances d and ¢ are different in general: we are considering
here the relaxed gradient of d, induced by 6. Note that the analogous condition
with d in place of § is stronger. Since the use of the two distances § and d may
cause confusion, we prove the assertion in full. We split the proof in various steps.
It suffices to prove that

(2.19)

|Df|*,X’,q,g{ < |Df|*,X’,q = |Df|*,X7q m-a.e. , f € DLQ(X) (: DLQ(X/)) )

since the opposite inequality holds by definition.

(1) Claim: It is not restrictive to assume d bounded above by 1. Indeed: metric
completeness, the induced length distance, the class of Lipschitz and bounded func-
tions, and the definition of asymptotic Lipschitz constant are all invariant under
truncation.

(2) Claim: It is sufficient to prove that

(2.20) CExrgor (f) < /X (lipg f)?dm,  f € Lip,(X.d).

Indeed, if f € DY(X) = DY(X’), we can find a sequence f,, € Lip,(X,d) such
that f,, — f m-a.e. and lipy fr, = |Dflsx,q = |Df|sx,q strongly in LI(X, m) as
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n — oo. By the L%lower semicontinuity of the CEx: , -energy, letting f = f,
in (2.20) and letting n — oo we get

CExgor(f) < / D[, dm = CExo g(f) = CExo(f) < 00 .
X

We deduce that f has a (X', ¢, 7)-relaxed gradient (equivalently a (X, ¢, &7 )-relaxed
gradient) and that (2.19) holds, since |Df|,x/,q = |Dlx,qd < IDflxx/ g0 M-a.€.

(3) Hopf-Laz regularizations. Let 7 € (1,400) be the Holder conjugate ex-
ponent of ¢, satisfying i.e. 1/r 4+ 1/q¢ = 1. For every f € Lip,(X,d) and t > 0 we
introduce the Hopf-Lax regularization Q;f : X — R,

(2.21) Quf(e) = inf ﬁ%dr(m,y) Ffy), weX.

It is clear that Qf is bounded (with values in the interval [infx f,supy f]) and
d-Lipschitz, being the infimum of a family of uniformly d-Lipschitz functions. We
further consider the upper semicontinuous function [8, (3.4) and Prop. 3.2]

(2.22) D/ f(x) :==suplimsupd(z,y,),

n—roo

where the supremum ranges over all the minimizing sequences (y,),, of (2.21). The
function D; f too is bounded uniformly in ¢ and satisfies (see e.g. [81, Lem. 3.2.1])

(223) (P < ratr)”

In fact, if (y5),, is a minimizing sequence for the right-hand side of (2.21), for every
e > 0 we have, eventually in n,

L)+ £ () < Qu(e) e < f) e

i.e., setting L = Lq(f),

L 24l er  -d(@ yn
74 @) < — + 2 (f(@) = flyn) < — +1"L(f)
er o, 9@ yn)
= t DT rtrqt/(a=1) °

We thus get
. 1 er
lim sup ;dr(%yn) < 7T (rL)?

n—oo
which yields (2.23) since € > 0 is arbitrary.
(4) Claim: For every f € Lip,(X,d) and for every t > 0,

(2.24) IDQuflexr g0 < (t_lD;rf)T_1 m-a.e. .

Indeed, let {y,}, be an enumeration of the countable d-dense set Y, fix f €
Lip,(X,d), and set

1
?f(x) == min
i /@) 1<k<n rtv—1

d"(z, yk) + f (k) -
It is readily checked that

1
(2.25) Quf(x) = Inf

d"(e.y) + () = lim Q} f(z)
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We consider now the upper semicontinuous function

(2.26) Dj(x) := max {d(a:,yk) 1<k<n, Qx)= rtT1*1 (z,yr) + f(yk)} .

By (2.18) and Theorem 2.7(xi), we have that (t7'D})"~! is a (X', ¢, &)-relaxed
gradient of Q}'f. It is then clear that for every x there exists a a minimizing
sequence (2,,), of (2.21) with 2, » € {y1,...,¥n}, i.e. such that

DY (z) =d(z, zn.z) and

: n reX.
hTan Qt f($) = T‘trfl (1‘7 Zn,x) + f(zn,a,) — Qtf(x) )
We deduce that
(2.27) lim sup D} (x) = limsupd(x, 2, ) < Df f(z) , reX.
n—oo n—oo

Since d < 1, we have D} < 1. In particular, D} is bounded uniformly in n
for every t. Therefore, we can assume with no loss of generality —up to ex-
tracting a suitable non-relabeled subsequence— that (t~1D?")"~! converges weakly*
in L*>°(X, m) to some G. Thus, G is a (X', ¢, &)-relaxed gradient of Q;f by The-
orem 2.7(7), hence |DQflsx/ .7 < G m-a.e. by Theorem 2.7(vi). Now, since m
is finite, 15 € L'(X, m) for every Borel B C X. Furthermore, since m is finite,
D? <1 € L'(m) uniformly in n and t. We can thus apply the reverse Fatou lemma
and conclude from the L>° (X, m)-weak*-convergence of (t~'D?)"~! to G that, for
every Borel B C X,

/de: lim/ (flo?)”’ldmg/hmsup (t7'Dp)" " dm
B " JB B

<[ iy tam,
B

where the last inequality follows from (2.27). We conclude that |DQqfl|sx7.q.00 <
(t~ID/ )"t m-ae..
(5) Claim: For every x € X, t >0, and f € Lip,(X,d) we have

- 1
(2.29) limsupM < = (lipg f(x))q .
t40 t q
This follows by [81, Thm. 3.2.4]; also cf. [6, Thm. 3.1.4, Lemma 3.1.5].
(6) Conclusion. We argue as in [81, Theorem 3.2.7]: (2.28) and (2.23) yield the
uniform bound

f(z) — Quf(x)

(2.30) ; _q(rL (f)) ; zeX, t>0.
Integrating (2.29) in X and applying the reverse Fatou Lemma we get
— 1
(2.31) limsup/ de < f/ (lipg f/)?dm .
L0 qJx

On the other hand, (2.28) and Fubini’s Theorem yield

e [ e

) dmdu ,
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and an application of Fatou’s Lemma yields

— 1 D\’
(2.33) liminf/ Q> fliminf/ <tf> dm .
0 Jx t q to Jx t

Using the fact that t~'D;" f is uniformly bounded by (2.23), we can find a decreasing
and vanishing sequence (t,), C RT and a limit function G € L>°(X, m) such that

(t;lDZ:lf)Tfl —* G weakly* in L*(X,m) asn — oo,

D+ " +e\"
(2.34) lim Put ) gm = timinf (fo> dm
X X

n—oo n tl0 t

Since (t_lef)T_l is a (X, q, &)-relaxed gradient of Q; f by Claim (4) and Q;f —
f pointwise everywhere on X, we see that G is a (X', ¢, &)-relaxed gradient of f
by Theorem 2.7(i7).

Using the lower semicontinuity of the L9-norm w.r.t. the weak* L% (X, m) con-
vergence,

s (r—1)
D AN
lim —ind dm = lim #f dm

2/ GQdmZ/ |Df|ZX,qddm,
b'e X B

where we also used the pointwise minimality of |Df|sx/ 4. given by Theorem
2.7(vi). Combining (2.35), (2.34), (2.33) and (2.31) we deduce that

/ D, dm < / (lipg £)7 dm
X X

so that (2.20) holds. O

2.4. Stability under changes of measures and distances. We recall the notion
of infinitesimal Hilbertianity.

Definition 2.13. A Polish metric measure space (X, d, m) is infinitesimally Hilber-
tian if HY?(X,d, m) is a Hilbert space — or, equivalently, if CE3 , is a quadratic
form.

A complete and separable metric space (X, d) is universally infinitesimally Hilber-
tian if (X, d, m) is infinitesimally Hilbertian for every non-negative Borel measure m
on (X,d) finite on d-bounded sets.

2.4.1. Changes of measures. In this section we study how to derive the infinitesimal
Hilbertianity and the density of subalgebras of Lipschitz functions for a Polish
metric measure space with possibly infinite measure m when the same property is
satisfied by a class of finite measures that have a good compatibility with m.

In particular, if (X,d,m) is a Polish metric measure space, we will consider
measures m’ satisfying

9 dm’
(2.36) dm
r>0and ¢ > 0satisfying 0 <c <9 <1 on {xeX:dz,K)<r}.

€ L*(X,m) and for every compact set K C X there exist
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This condition guarantees that H'?(X,d,m) C HY?(X,d, m’) with equal minimal
relaxed gradients, see [8, Lem. 4.11] or [28, Lem. 4.7]. (Note that m” and m share
the same class of negligible sets.)

Lemma 2.14. Let (X,d,m) be a Polish metric measure space and fiz zy € X.
Then, there exist a continuous function ¥ = ¥, € L*(X,m)T and, for every r > 0,
a constant c(r) > 0, such that 0 < ¢(r) < ¥ < 1 in B(xo,r). In particular, m’ := JIm
satisfies (2.36).

Proof. Let f : [0,4+00) — [1,+00) be a nondecreasing continuous function such
that

f(n) =mB(zg,n+1)+1, n € Ny ,
and set o: t — t+log f(t)) for t > 0. Now, define V =V, := pod,,, and ¥ =9, =
eV, and note that ¥ is continuous and takes values in (0, 1]. It is clear from the

monotonicity of f (hence, in turn, of p) that, wherever d,, < r for some r > 0, we
have ¥ > e~"/f(r) > 0, which shows the lower bound for ¥ with ¢(r) = e~ "/ f(r) >
0. Analogously, wherever dg, > r for some r > 0, we have ¥ < e™"/f(r) > 0, and
thus

& e el—n
|9 dm = / ddm < mB(zg,n) —
/x nz::l B(z0,n)\B(z0,n—1) nzz:l f(n—1)
< Z el < o0 . O
n=1

Proposition 2.15. Let (X,d, m) be a Polish metric measure space and let (my),
be a sequence of measures my = Opm satisfying (2.36), and assume either of the
following:

(a) Yy € L*(X,m) and 9 — 1 in L?*(X,m);

(b) ¥ 1t 1 m-a.e..
If HY2(X,d, my) is Hilbert for every k, then H*2(X,d, m) too is Hilbert.
Proof. Inlight of (2.36), |D( - )|« x,2 coincides with [D( - )|, x, 2 on H*(X) € H"?(X})
for every k by [8, Lemma 4.11], where X = (X,d,m) and X; = (X,d, mg).
Thus, throughout the proof we may write |D(-)|,2 in place of both |D(-)|«x,2
and |D(-)|sx, .2 Fix f,g € HY?(X).

Assume (a). By the infinitesimal Hilbertianity of H'2(X}y),

/X D(f + g) 50k dm + /X ID(f — g)2 505 dm
- / ID(f + g)[2, dmy + / ID(f — g)[2, dmy
X X
—2 / D[ dmy +2 / Dg[2 , dm,
X X

= 2/ IDfI2 o0k dm + 2/ IDg|? y9k dm
b'e b'e
Passing to the limit on both sides as k — +oco we get

CEx2(f +9) + CExo(f —g) = 2CEx2(f) + 2 CEx2(9) »

which concludes that CEx  is a quadratic form and thus that H'2(X) is a Hilbert
space.
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Assume now (b). Since ¥y < 1 we have mi < m. By the infinitesimal Hilber-
tianity of H2(Xy),

/ D(f +g)[2 305 dm + / ID(f — g)[2 49 dm
X X
- / ID(f + g)[2, dmy, + / D(f — g)[2, dmy
X X
=2 / D[ 5 dmy, +2 / Dg[2 , dmy
X X

<2 [ IDfZ,dm-+2 [ Dgl2,dm
X X
= 2CEx2(f) +2CEx2(9)-
Passing to the limit as K — 400 we get that
CEx,2(f +9) + CEx2(f — g) < 2CEx2(f) +2CEx2(9)

which is enough (cf. e.g. [19, Prop. 11.9]) to conclude that CEx - is a quadratic form
and thus that H12(X) is a Hilbert space. O

Proposition 2.15 shows that infinitesimal Hilbertianity is stable under suitable
limits. As we now show, this entails that universal infinitesimal Hilbertianity can
be checked on finite measures only.

Proposition 2.16. Let (X,d) be a complete and separable metric space and as-
sume that (X,d, m) is infinitesimally Hilbertian for every non-negative, finite Borel
measure m on X. Then, (X,d) is universally infinitesimally Hilbertian.

Proof. Let m be a non-negative Borel measure on X finite on d-bounded sets. It
suffices to construct a sequence of finite measure my, := ¥9xm with 9, € L(X, m) as
in (2.36) and satisfying (b) in Proposition 2.15. Indeed, in this case H%?(X,d, mj)
is Hilbert by assumption, since my is a finite measure, and the infinitesimal Hilber-
tianity of H%2(X,d, m) follows from Proposition 2.15.

Fix g € X, let g, V, and 9 be as in the proof of Lemma 2.14, and set V =
min(V, k), ¥y = e~ (V=V%) "and my, := Ypm. Observe that each measure my, satisfies
(2.36): if d(x,x0) < r for some r > 0, then V —V, < V < p(r) so that J5 >
% > 0. Since every compact set K is contained in some ball, this proves that ¥

stays strictly positive in any enlargement of K; by construction we also have that
0 <Y, <1in X so that mp < m. Furthermore,

mk(X):/ﬂkdem{ng}—i—ek/ eV dm
X p's

< mB(xo,k)+ek/ e”Vdm < +o0 .
X
It is also clear that ¥y, 1 1 in X, which verifies the assumption in Proposition 2.15(b)
and thus concludes the proof. O

In the next result we show how the density of subalgebras of Lipschitz functions
can be transferred from finite measures to infinite measure, assuming that suit-
able truncation functions are available in the algebra. For simplicity of notation,
let lipy &7 == {lipy f : f € &}.
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Lemma 2.17. Let (X,d,m) be a Polish metric measure space, let ¢ € (1,400),
and let o/ C Lipy(X,d) be a subalgebra such that o lipy &/ C L(X,m). If there
exists functions (V) C Lipy (X, d) such that:

(a) for every k € N, my = Upm satisfies (2.36), </ is dense in g-energy in

DY(X,d, my,), W € L>(X,m), and fO, € o for every f € o ;

(b) supy, ||lipg Fklloo < 400, V% T 1 and lipg 9, — 0 m-a.e., as k — +o0.
Then < is dense in H9(X,d, m) in the following sense: for every f € HY9(X,d, m)
there exist a sequence (fn)n C & satisfying

fo = f, lipg fn = |IDfleq in LY(X,m) as n — +o0.

Proof. Let us set X := (X,d,m) and X, := (X,d,mg). Recall that H"4(X) C
HY4(X}) as a consequence of (2.36). Since .« is dense in g-energy in D»9(X}), by
Definition 2.9 and Remark 2.10 (my is finite), for every f € H19(X) there exist
sequences ( f,’f)n C o satisfying
¥ f, lipg f¥ — |Df|ax,.q in L9(X,my) as n — +oo .
By [8, Lemma 4.11] we may replace |Df|. x,,¢ With |Df|.x,q. Let us set
g =IOk g =[O, lipggy < Gy = 0xlipg fiy + | frllipg Ok
G* = Uk|Dfluxq + | flipg Vs -

We note that gf € o7, g¢ — ¢gF and GF — G* in L9(X,m) as n — +oo, and
g* — fand G* = |Df|. x4 in L9(X,m) as k — +o00. The diagonal argument in
L1(X,m) x L1(X, m) gives the existence of a subsequence k — ny, such that setting
fe = g,’i‘k € o/ we have

fe—f and lipy fx < Gﬁk — IDflxx.q in LY(X,m) .
Up to passing to a (non-relabeled) subsequence we get that

fi— f and lipg fx =~ G in LY X, m)

for some G € LY(X,m)" with G < |Df|,x,. Since G is a g-relaxed gradient of
f by Definition 2.4, we conclude that G = |Dfl, x4 by the L7(X, m)-minimality
of [IDf|.x,q- The convergence is also strong in L9(X, m) since

limsup/ [lipy fx]|9dm glimsup/ |GE |9dm :/ IDf]? x , dm.
n X n X X o

This concludes the proof. O

2.4.2. Changes of distances. Here we consider the problem of transferring the den-
sity or Hilbertianity property from a (family of) distance(s) to another distance.

The following lemma is an immediate consequence of the fact that, setting dy =
Ad, A > 0, we have for any function f: X - Rand A C X

L, a(f) = A "Lg,a(f).

Lemma 2.18. Let X = (X, 7,d,m) be a e.m.t.m. space, let of C Lip,(X,7,d) be a
subalgebra and let g € (1,4+00). Then, setting Xy = (X, 7,dx,m), we have that o
is dense in g-energy in DV9(X) if and only if it is dense in q-energy in D%9(Xy)
and HY2(X) is Hilbert if and only if HV2(Xy) is Hilbert.

The next result shows how to transfer the density of a subalgebra < from a
family of distances approximating d to d itself.
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Proposition 2.19. Let X = (X,7,d,m) be an e.m.t.m. space with m finite, let
(di);c; be a directed family of complete T-continuous distances in X such that d =
sup;c;d; and let & C Nier Lip, (X, 7,d;) C Lip, (X, 7,d) be a unital and point-
separating subalgebra. Set X; = (X, 7q4,,d;, m). Then,
(i) if o is dense in 2-energy in DY2(X;) for every i € I, then </ is dense in
2-energy in DV2(X);
(ii) if HY%(X;) is Hilbert for every i € I, then H%?(X) is Hilbert too.

Proof. We want to apply [4, Theorem 9.1] in our setting so that we need to make a
few comments: (a) The Cheeger energy in [4] is defined as a functional on L?(X, m)
so that we can compare it with the restriction of our notion of Cheeger energy to
L?(X,m). (b) The Cheeger energy in [4] is defined starting from a different notion
of asymptotic Lipschitz constant but it turns out that it coincides with our notion of
Cheeger energy [28, proof of Proposition 2.22]. (¢) In the notation of the discussion
above [4, Theorem 9.1] we have that, in our case, 7' is the identity map in X so
that d; = d;, X; = X, m; = m and 7 is the identity in L2(X,m). Again in the
notation of [4, Theorem 9.1], we deduce that Ch; coincides with the restriction of
CEx, 2 to L*(X, m). Applying [4, Theorem 9.1] we deduce that

(fn)n C L*(X,m) ,
fn— f€L*X,m)

We thus have that for every f € L?(X, m) there exists a sequence (fx)r C L*(X, m)
and a subsequence (ix)r C I such that

(237) ||f - kaLZ(X,m) < 1/1€, CEXQ(f) + 1/]€ > CEX%Q(fk) for every k € N.

n—+00 1€

CEx »(f) = inf {hminf in§ CEx, o(fn) : } . feL*X,m).

Proof of (i). If & is dense in 2-energy in D*?(X;) for every i € I, we deduce
that for every f € L?(X,m) there exists a sequence (f,), C & and a subnet
(ik)r C I such that

If=fellzoxm < 1/k s CExa(f)+1/k > pCEyx, o(fr) > PCExo(fx) »  kEN.

Passing the above inequality to the liminf;, we get that, for every f € L?(X,m) it
holds

CEx o (f) > limkinf pCEXQ(fk) > CEx 2, (f)-
This proves the density of in 2-energy of .7 in D':?(X).

Proof of (ii).  Let f,g € L*(X,m) and let (fi)x, (gx)r be sequences as in (2.37)
for f and g respectively (note that this can be done for the same subnet (i) since
the hypotheses of the present theorem also holds restricting I to (ig)r). We have

ig CEx, 2(fr + gx) + 12? CEx, 2(fr — gr) < CEx,, 2(fik +gr) + CEx,, 2(fk — gr)
= 2CEx,, (fx) +2CEx,, (9x)
< 2 CEx(f) + 2CEx(o) + ¢
Taking liminf, in the above inequality, we deduce that
2CEx(f) + 2CEx(g) > limkinf 12? CEx, 2(fx + gx) + limkinf 115 CEx, 2(fx — gx)
> CEx(f +9) + CEx(f —9) -

V
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This is enough (cf. e.g. [19, Prop. 11.9]) to conclude that CEx > is a quadratic form
in L2(X, m) and thus that H2(X) is a Hilbert space. O
3. DISTANCES ON MEASURES

In this section we introduce the distances on the space of measures we are going
to work with. To this aim we fix a complete and separable metric space (U, ¢) and
we consider the space M(U) of finite, non-negative Borel measures on (U, o).

The first distance we will work with is the Wasserstein distance induced by p.

Definition 3.1 (Extended Wasserstein distance). We define the extended (Kant-
orovich—Rubinstein) Wasserstein (2, 0)-distance

Wo 2 M(U) = [0, +00]
Wa, o (pt0, p1)? = inf{/ o’ dy:ye CPI(NOaNI)}» fo, g1 € M(R?)
UxU

where Cpl(puo, p11) denotes the set of couplings between g and py defined as
Cpl(po, 1) ={vy € MU x U) : 7757 = pi, i = 0,1},
being 7* : U x U — U the projection 7¢(xq,x1) = z; for every (zg,21) € U x U.

Note that, whenever po(U) # p1(U), then Cpl(uo, p11) = 0 so that Wo (o, 1) =
+oo. When we restrict Wy , to the subset of P(U) (the Borel probability measures
in U) given by

Po(U) ={pnePU): / 0% (0, ) du(x) < +oo for some (hence for every) zo € U}
U

then Wy , is finite and (P2(U), W3 ,) is a complete and separable metric space
whose topology is stronger than (the restriction of ) the weak topology. We refer to
the monographs [99, 98, 6] for a throughout presentation of Wasserstein distances.

The second distance we introduce is the well known Hellinger distance.

Definition 3.2 (Hellinger distance). We define the Hellinger 2-distance
Hey: M(U) — [0,400) ,

dNO dlil
dn dn

where n € M(U) is any measure such that u; < n for ¢ = 0,1. Notice that,
since (s,t) — |v/t —+/5|? is positively 1-homogeneous, the above definition does not
depend on 7.

Hes (110, p1)? 1: n, o, 1 € M(RY)

3.1. The Hellinger—Kantorovich distances. We follow [59] to introduce the
Hellinger—Kantorovich distance, see also [17]. We introduce on U x R4 the equiv-
alence relation

(x,7) ~ (y,58) Aok, [t=y,r=5#0 V r=s5=0]

and the corresponding geometric cone €[U] := (U x R;)/ ~, whose points are
denoted by fraktur letters as y. We denote by p the quotient map p: U xR, — €[U]
mapping a point (z, ) to its equivalence class [z, 7]. Note that p is just the identity
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map except for those points with » = 0, all mapped to the same equivalence class,
the so called vertex of the cone, that we denote by o.

On the cone €[U] we introduce the projections on Ry and U simply defined as
r([z,r]) = r and x([z,r]) = z if r > 0 and x([z,7]) = Z if r = 0, where Z € U is some
fixed point. We omit the dependence of x on Z since in the constructions where x
is involved this will be irrelevant.

On €[U] we counsider the following topology, weaker then the quotient one: a
local system of neighbourhoods of a point [z,r] is just the image trough p of the
local system of neighbourhoods given by the product topology at (z,7) € U x Ry,
if r > 0. A local system of neighbourhoods at o is given by

{{lz,r) €€U]:0<r<e}:e>0}.

The topology of €[U] is induced, for every a € (0, 7], by the distance gq.¢ : €[U] x
C[U] — [0, +00) defined as

Nl=

(3.1) oae([z,7], [y, s]) = (r* + s* = 2rscos(o(z,y) Na))?, [z,7],[y,s] € C[U].
With this distance, (€[U], g4.¢) is a Polish metric space. We introduce the set

N2 (eU]) = {a e M(¢[U]) : /Q[U] rida < —l—oo} ,

and the map
h: N (C[U]) = M(U), bla) =x(r’a) .
Note that the map b does not depend on the point Z in the definition of x.

We introduce now the product cone: we define €[U, U] := €[U] x €[U] endowed
with the product topology. On the product cone we can consider the projections on
the two components 7% : €[U,U] — €[U] sending ([zo,70], [z1,71]) to [z;,7;] and
the projections on R and on the two copies of U simply defined as r; := ron% and
x; = xom% (x; depends on the choice of points Z; € U, but this will be irrelevant).
We introduce the set

N2 (LU, V) = {a € M(C[U,U)) : / (r2 +rHda < +oo} ,
¢[U,U]

and the maps
b;: L (€U, U]) — M(U;) , hi(@) = (xi)s(rfer) , i=0,1.

Note that the map b; does not depend on the point Z; € U; in the definition of x;.
Finally we define, for every (uo, pu1) € M(U) x M(U), the set

(3.2) H(po, 1) = {a € NL(C[U,U)) : hi(ax) = py, i = 0,1}

If o € H(po, p1), we say that po and py are the 2-homogeneous marginals of a.
We can now give the definition of Hellinger—-Kantorovich distance induced by o.

Definition 3.3 (Hellinger-Kantorovich distance). We define the Hellinger-Kant-
orovich g-distance HK,: M(U) — [0, +00) as

(3.3) HK, (10, p11)? = inf {/ 02 eda:a € ﬁ(uo,,ul)} .
e[U,U)
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The minimum in (3.3) is always attained (see [59, Theorem 7.6]), and we denote
by OPT , (10, p11) the set of plans a attaining it. The pair (M(U), H,) is a complete
and separable metric space which is a length (resp. geodesic) space if (U, ) is a
length (resp. geodesic) space (cf. [59, Theorems 7.15, 7.17, 8.5]). The topology of
induced by KK, on M(U) coincides with the weak topology (M (R%), Cy(U, 0)).

We introduce the Gaussian Hellinger—Kantorovich distance: let us consider the
function g : [0, +00) — [0, §) defined as

g(z) = arccos(e722/2) , z € [0,400) .

Since g is a concave increasing function with ¢g(0) = 0, then g2 := go g is a distance
on U inducing the same topology of p. Note that

1/2
g2 ¢ ([0, 70, [x1,m]) = |r§ + 17 — 2ryrpe” e@0:01)"/2 s [wo,rol, [x1,m] € €[UT

Definition 3.4. We define the Gaussian Hellinger—Kantorovich o-distance
G-KQ: M(U) — [07+OO) ) G-Kg(:anlufl) = l-KgQ(NJOvﬂl) ) Ho, M1 € M(U) .

Again, (M(U), @K,) is a complete and separable metric space and the topology
of (M(U),3K,) coincides with the weak topology, [59, Theorem 7.25]. Moreover,
if (U, 0) is a length space, then KK, is the length distance induced by GK,, [59,
Corollary 8.7].

The following result is the duality theorem for the GK, distance. We will use
the following notation: given two functions ¢;: U — [—00, +00], i = 0, 1, the map
b0 Bo ¢1: U X U = [—00, +00] is defined as

b0 B0 d1(x0, 1) = ngrfoo(—n\/gbo(xo)/\n)+(fn\/¢>1(x1)/\n), (xg,21) €U XU .
Theorem 3.5. Let (U, ) be a complete and separable metric space. Then, for
every o, 1 € M(U) we have

xU

GK, (1o, p11)? = inf [Z/(Jilogai—m—kl)dui—f—/ o?dy vy e MU x U)
—Ju U

)

= sup lZ/U(l —e ) dp; : di € Ay(U), do ®o 61 < 07/2

where g; = g:i , being v;, 1 = 0,1, the marginals of vy, and A;(U) can be chosen

between the spaces Cyp(U), LSCy(U), Bp(U) and

Li(p) = {gb: U — [—o00,+00] : ¢ is Borel and /Uefz‘ls dp; < +oo} .

Furthermore:

(i) The set of plans v which realize the infimum above is non-empty and it is
denoted by OPT, (110, j11).

(i1) If v € OPT,(po, 1) there exist two Borel sets A; C supp(vyi) on which ~;
is concentrated and two Borel densities o;: A; — (0,400) of v; w.r.t. p;
such that

(34) 0001 > 6792 mn AO X Al,

(3.5) ooo1 =e ¢ y-a.e. in Ay X Aj.
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(#i7) If we define the Borel potentials ¢;: U — [—00, +00] as

—%logai, n A,
¢; = { —o0, in supp(p;) \ Ai,
400, otherwise,

then the pair (¢o, 1) € LL(1o) x Li(u1) and realizes the supremum above
and satisfies ¢o D, ¢1 < 0°/2.
(tv) Every v € OPT (o, 1) has the following properties:
(a) pi <y < pi, fori=0,1;
(b) v is a solution for the Optimal Transport problem between its two
marginals with cost 0°;
(¢) the plan

o= ([idU, 00_1/2}, [idy, 01_1/2])117

belongs to OPTge (140, pt1)-
(v) If (¢0,¢1) € L(uo) x Lé(,u}) realizes the supremum above and satisfies
b0 Do d1 < 0%/2, then ¢; = ¢; pi-a.e. on U.

Proof. The first equality is [59, Theorem 7.20] while the equality between infimum
and supremum is [59, Theorem 6.3(a)]. Assertion (i) is a consequence of [59, The-
orem 6.2(a)]. Assertion (i) is [59, Theorem 6.3(b)] while assertion (iii) is [59,
Theorem 6.3(d)]. Assertion (iv) is [59, Theorem 6.3(c)] together with comments
(a) and (b) after [59, Theorem 7.20]. Finally, assertion (v) is [59, Formula (4.21)];
see also [60, Theorem 2.14]. O

3.2. Estimates on optimal potentials in the Euclidean case. We now spe-
cialize Theorem 3.5 to the case of (U, o) = (R%,d,), where d. is the distance induced
by the Euclidean norm in R¢. The symbol M2 (R¢) denotes the set of measures in
M(R?) which are absolutely continuous w.r.t. the d-dimensional Lebesgue measure.
Analogous notation is adopted for P*¢(R?) and Pg¢(R?).

Proposition 3.6. Let v, € M(R?) and let R,§ > 0 be such that supp(v) =

B(0,R) and v > §.2%1_B(0, R). Then there is a unique pair of convex and contin-
uous functions ¢ : B(0, R) — R and ¢ : RY — R such that

(1) ¥ and ¢ are the Legendre conjugate of each other:

o(x) = S;ID@ [(z,y) —(y)] , r€B(0,R),
Y(y) = sup [(z,y) — ()], yeRY,
z€B(0,R)

(ii) ¢ is R-Lipschitz;
(iii) the pair (|- — ¢, 3|+ |> =) is optimal for the dual problem for the GKq,
distance 1i.e.
(3.6)

p(x) +¥(y) < (z,y)  for every (z,y) € B(0, R) x R,
(3.7)
G-Kde (V7 M)Q = /

B(0,R)

[1 - e_|m|2+2‘p(m)} dv(x) —|—/

R 1= el 20w apqy)
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Such pair satisfies also

(3.8)
@Ky, (v, 1) = / [[l o207y (=20 [yl _ 1}] duly) .
]Rd

Proof. By Theorem 3.5(iii), we can find Borel functions ¢; : R? — [—o0,+00]
which are optimal for the dual problem for the GKy, distance and such that

(3.9) ¢ @o b1 < 5d2 in R x R,
(3.10) do+¢1 = 3d2 y-ae. .

Let us consider v € OPT'y_ (v, 1) (whose existence is granted by Theorem 3.5(7))
and let us define

Fo = 70/7(R? x RY), 41 =71 /7R x RY) |
p(z) = inf [fle—yf —oi(y)], zeR?,
yeR
Uly) = inf [3le—y* - o@)], yeR?,
o(x) =Lz’ — @(z), ¥(y) =3yl —d(y), z,yeR’.

Clearly 7; € P*(R?). Since, by Theorem 3.5(4a), v < 7y < v, we have that
supp(%) = B(0, R), so that 7y € P5(R?). Moreover, since

oo > QK (1, 1) > / 42 dy > W24 (30,91),
Re X R4
we also get that 7; € Pa(R9).
Since ¢ + 1 < d?/2 in R? x R% and ¢ > ¢y, ¥ > ¢1 in RY, we have that
@ = ¢o v-a.e. and P = ¢y p-a.e.. This, together with (3.10) and the optimality of ~
(cf. Theorem 3.5(4b)), gives that

! / j2l? do() + 1 / e ? A3 () — W2, (50, 1) = / o dio + / b .
Rd Rd B R4

(07R)

It is also clear that ¢ and v are the Legendre transform of each other. The proof
of [36, Theorem 3.2] shows that, after restricting ¢ to B(0, R), both ¢ and v are
finite, convex, continuous and satisfy (i). The representation in (3.7) follows since
1]+ |> — ¢ coincides with ¢g v-a.e. and 1| - |> — ¢ coincides with ¢; p-a.e.

Assertion (i), as well as (3.6), follows immediately from (7).

We now prove (3.8). It is a classical result in Optimal Transport theory that ~
must be concentrated on the graph of V4 in the sense that

= (Vwalde)ﬁ’yl .
By Theorem 3.5(4c), we have that

o= ([idge, 75 %) lid, 07 /7))

belongs to OPT g, (v, 11) so that

2
GKq, (v, p)* = / (%) da
¢[R4, R4
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dy(zo, x1)

1 2e~lro—a1]*/2
- /Rdx]Rd [JO(xO) - o1(z1) - o0(x0)/2 o1 (w1)1/?
1 1 26— ly=Ve(y)|?/2
S0 (Vo) T a1ly)  ol(VEw) P or ()

1+ 01 (y)2elv= VWP _ 201@)) duly)

— /Rd (1 + e 41 W) ely=Vew)I* _ 26—2%(@4)) dp(y)

1 dv,(y)

— /Rd (1 —e 2012 +e—4¢1(y)(e|y—vw(y)|2 — 1)) dp(y)

:/ (1= e +2600)2 | =20 44500 (o= _ 1)) duy) .
]Rd

We now prove uniqueness. If another pair (pg,%p) is as in the statement and
satisfies (i)-(iii) above, we have by Theorem 3.5(v) that £ - |* — o must coincide
v-a.e. with ¢o which coincides v-a.e. with |- | — ¢. Since v is equivalent to the
Lebesgue measure, we deduce that ¢o = ¢ #%-a.e. in B(0, R). Being both functions
continuous, we deduce that they coincide everywhere, so that by (7) also ¥y and ¢

coincide in R4, O

Our aim is to fix a suitably regular measure v € M(R?) and consider a suffi-
ciently regular class of measures p for which the resulting potentials v are uniformly
regular. To do so we are going to consider a family of regularizing operators T..
Let us start with the relevant definitions.

We consider two functions x € C°(R% R) and f € C®(R? R?) satisfying the
following properties:

(1) k(z) > 0 for every x € R?, supp(x) = B(0,1), k(z) = x(—z) for every
ze R and [, k(z)dz = 1;
(2) f(z) =z forevery x € B(0,1), |f(x)| < 2for every z € R? and | Df(z)| < 1

for every x € R¢, where ||- || denotes the operator norm of a matrix in R4*4,

We then consider k. (z) = Zrk(x/e) and f-(z) == Lf(ex) for every z € R? and

£ € (0,1). Tt is thus clear that k. € CX(RY R), f. € C°(R4 R%) and they satisfy
the following properties:

(1) ke(x) > 0 for every x € R?, supp(k.) = B(0,¢), ko(x) = ke(—x) for every
ze R and [, ke(x)dz = 1;

(2) fo(z) = z for every z € B(0,1/e), |f-(x)| < 2/e for every z € RY and
|Df-(x)| <1 for every x € R

We define the operator T, : M(RY) — M (R?) as
(311) To) = ((Fo)ep + 200) #er 1€ M(R?)

Proposition 3.7. Let T, be as in (3.11). Then T. is well defined and T.(p) — p
as e | 0 for every p € M(R?). Let v € M*(R?) and let R, B,§ > 0 be such that
supp(v) = B(0,R), vRY < B and v > §.2¢1_B(0,R). Then, for every ¢ > 0,
there erists a constant K = K (g, B, R) > 0 such that, for every u € M(R?), if
(¢, 1) is as in Proposition 3.6 for the pair (v, To(p)), then ¥(0) < K and the map

2
ngﬂ is K-Lipschitz and K-bounded.

Yy —
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Proof. The proof is divided in several claims.
Claim (a): the operator T, is well defined and tends to the identity as € | 0.

Proof of claim (a).  Since f. is a Borel function and the convolution preserves
mass and non-negativity of the measure, we have that T.(u) € M(R?) for every
p € M(R?). It is also clear that T.(x) has a density w.r.t. the Lebesgue measure
in R? so that T.(u) € M(RY) for every u € M(R?). Let ¢ € Cy(R?); then

[ edTutn) ==(ox w0+ [ ((prro)of)d

R4 Rd
Since ¢ * k. — ¢ locally uniformly in R? as ¢ | 0, we have in particular that
(p#*ke)(0) is bounded, so that e(p*x.)(0) — 0 as ¢ | 0. For the convergence of the
integral we use the Dominated Convergence Theorem: note that ||(¢# k)0 fo)|loo <
llo * Kelloo < [|¢lloe and, for a fixed x € RY, if ¢ < 1/|x|, then f.(z) = = so that
(o * Ke) o fo)(z) — p(z) for every x € R%. We can thus conclude that

/ edT,(u) — @du  for every ¢ € Cy(R?) as e | 0.
R R

Claim (b): there exist a constant a = a(e, B, R) > 0 such that
B+ T ()R
sup + T (1)

weM(R?) / o1 =2Rl] 4T_(1)(2)
Rd

<a.

Proof of claim (b). Denote by fF:R? — R and C(e, R) > 0 the function and
the constant

fBz) = e~ leF=2Rlzl 5 e R C(e,R) = B(I&iQI}E) fRxk.>0.

We have
B+ T.(u)R? B ((f)sr+ebo) (RY)

/ e_|x‘2—2R|37|dT5(/L)(SU) / (fR* Hs)d((fs)ﬁﬂ+560> (‘r)
Rd R4
B+ ¢+ uR¢

RO+ [ (TR o L) duta)

B+ ¢+ uR¢
~ e(fB xk.)(0) + C(e, R)uR?
B+« 1
= Z(fFr(0) T CER)

= a.

Claim (c): for every p € M(RY), if (p,1) is as in Proposition 3.6 for the pair
(v, To(p)), then e*¥©) < a, where a is the constant from claim (b).

Proof of claim (¢). By Proposition 3.6, we know that ¢ is R-Lipschtiz and the
pair (¢, 1) satisfies

/ (1— e W20 AT, () (y) + vR? > / (1= e W20 dT, () (y)
R R
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+ / (1- eflx‘zﬁ“"(z)) dv(x)
B(0,R)

= GKq, (1, Te(n)?
>0

so that

JLL O AT ) < [ O AT @) < VR4 TR
R R

< B+ Te(p)R?
thus giving that e2¥(9) < q.
Claim (d): there exists a constant K = K(e,B,R) > 0 such that, for every
€ M(R?), if (,v) is as in Proposition 3.6 for the pair (v, T.(u)), then 1¥(0) < K
2
and the map y — w is K-Lipschitz and K-bounded..

Proof of claim (d): it is clear that (0) < In(a)/2; observe that
~lyl* +20(y) < —[y|* + 2Rly| + 26(0) < R? + 20(0) for every y € R,

so that
0< e~ W20 (y) < 20(0)oR? < ae® for every y € RY,

where we have used claim (c¢). Moreover, we can write

e WP +20(y) _ o~ lyl*+2Rly|+2¢(0) g2¢(y) —2R|z|-2¢(0) _. o—|y[*+2Rly[+2¢(0) o —F(¥)

Notice that y — e~1vI*+2Rlu+20(0) jg Lipschtz and bounded and f(y) > 0 so that
e~/ < 1. Moreover,

Lga(e™) < Lg- (exp)Lga(f) < Lga(f) ,

so that also e~ is Lipschitz and bounded. We deduce that e~ IP+2v jg Lipschitz,
so that its Lipschtiz constant can be estimated by the essential supremum of the
norm of its derivative:

‘Ve_|y|2+21/)(y)| = e_|y|2+2l/l(y)|2y+2v,¢(y)| < 2e2w(0)e_|y|2+2R|yl(|y|+R) - 2a0/(R)7
where
C'(R) = (VRZ+1/2+ R) o~ M H2RVE 122172,

This concludes the proof. (I

We can summarize the results of this subsection in the following theorem.

Theorem 3.8. Let v € M%(R?) and let R,B,§ > 0 be such that supp(v) =
B(0,R), vRY < B and v > 622 B(0, R); let € € (0,1) be fized and let T be as in
(3.11). Then there exists a constant K(e, B, R) that depends only on ¢, R and B
such that, for every measure u € M(RY), there exist a unique pair of convexr and

continuous functions ¢ : B(0,R) — R and ¢ : R? — R such that:
(1) % is R-Lipschitz and ¥(0) < K;

1y 2 Y
(2) the map y — % is K-Lipschitz and K-bounded;
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(3) ¢ and v are the Legendre conjugate of each other:

p(x) = sup (@, y) —¥(y)] , r € B(0O,R),
Y(y) = sup  [(z,y) —o(z)] . yeR?;
2€B(0,R)

(4) the pair (3| |* — ¢, 3| - |> — ¥) is optimal for the dual problem for the GK
distance between v and T.(u):

o(z) +¥(y) < (2,y)  for every (z,y) € B(0,R) x R?,

1 — e~ lzl*+2¢(2) 1 — e~ lyl*+29(y)
Sk (= [ v [ S
B(0,R) 2 Rd 2

The same pair also satisfies
GKy, (v, Te(p))? =

. 2
:/Rd Hl — W] g o) [P 1H AT, (1)(y) .

4. CYLINDER FUNCTIONS

dTe(p) -

Let (M, g) be a smooth, connected, complete Riemmanian manifold with Rie-
mannian distance dg; to every f € Lip,(M,d,) we can associate the functional f*

on M(M)
(4.1) ffop— /Mfdu.

By [59, Proposition 7.18], we have that

£6) =P L omy ).
ay el S EOVIS) e

24+ (uM 4+ M)

so that, if f € Lip,(M,d,), then f* is HKgy, -Lipschitz on every HKy,-bounded set
in M(M). TE £ = (fi,..., fn) € (Lipy(M,d,))", we denote by £* == (ff,..., f%)
the corresponding map from M (M) to RV,

We denote by CJ* (M) the space of m-times continuously differentiable functions
on M with bounded derivatives up to order m, and by C7* (M) the subset of C}* (M)
of functions with compact support.

Definition 4.1 (Cylinder functions). We consider several algebras of cylinder func-
tions on M (M), viz.
(4.3)

u=(Xol*) - (Fof”),

Frmaers(M(M)) = { us M(M) »R:  NEN, xeC(R]),
FeCRY), fe (Cfe(M))

where my, ma, m3 € NU{oo} and f stands for either b for bounded or ¢ for compact
support. Further define

Fugy Gyt (M(M)) o= FOLTCER (M(M) S R

u c fis

9

N

to include constant functions.
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Remark 4.2. Note that:

(a) the representation of a cylinder function u by X, F' and f is not unique;
(b) we have the following inclusions

Foy CHM(M))

FEXCE(M(M) C FurCh(M(M))

=

&
Lipy, (M(M), K, )
(¢) cylinder functions in 7} "™*C"* (M (M)) may be expressed only in terms of I
and f by replacing F' with X ® F' and f with (1, f1,..., fn);
(d) FouoC(M(M) is point-separating, hence so are all algebras in (4.3);
(e) in particular,
fi;Cé(M(M)) is a unital point-separating

(4.4)
subalgebra of Lip,(M(M),HKy,) .

To shorten the notation we will usually remove the M(M) symbol in front of
sets of cylinder functions and write F}'y"C/" in place of FJ"y™*CJ"*(M(M)),
unless we are considering spaces of cylinder functions on specific manifolds such
as R

The following result is an immediate consequence of the definition of cylinder
functions and of the construction in Section 1.2.2.

Lemma 4.3. For every u € ]-';&}Cg and every p € M(M), the gradient (Vu), €
T, M(M) as in (1.10) is well defined and, whenever w = F o f* for some N € N,
FeClRN) and £ = (f1,..., fn) € (CL(M))N, we have

N
(45)  (Vu)u(@) =D 0uF(E p)(Vial2), ful2))  for p-ae. z R
n=1

Lemma 4.4. Let ¢ € C°(]0,+00)) be a non-increasing function such that ¢(r) =1
fO0<r<1,¢(r)=04r>2and|<|x < 2. Define the continuous functions
up : M(M) — [0,1] as
up(p) = <s(pM/k), pe M(M).

Then up € FooXCx, Jurlloo = 1, up(p) = 1 if uM < k, ug(p) = 0 if uM > 2k
and

. ' (uM/k 2v/8 + 272

lipy,, ur(p) < w\/ 4+ 72 (uM)'? < TX{HMS%}(,“)-
Proof. This follows by the definition of u; and (4.2) together with the fact that
lipg(t o £) = (4] o f) iy f whenever € C'(R). 0
Remark 4.5 (2-integrable variations). Let (u¢)ico,1) € AC? ([0, 1]; (M(M), HKq,))

and let (vg, w;) be a vector field in L?((0,1) x M, jur; TM x R), where juy == f;(m@
d¢)dt, such that

Orpir + V- (vppr) = wipy in 2'((0,1) x M) .
Ifue fbl;blc,} then

(4.6) %u(,ut) = ((Vu),, | (vtth»TMM(M) for a.e. t € (0,1) .
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This is indeed a simple consequence of the chain rule. If y € M(M), (T1,T3) €
L*(M, pi; TM x R), and we define the curve 1, == exp(tT7)s ((1 + ¢12)?p), t € [0,1],
then

(@.7) i ) (9, (1,2,

This follows again by the chain rule and the fact that for every f € C}(M) we have
[t [ faust [ (051, + 2 T)dnr oft).
M M M

The following Lemma is a simple extension of [36, Lemma 4.6] and will be useful
in the proof of Proposition 4.7.

Lemma 4.6. Let (U,0) be a complete and separable metric space and let G :
MU) x U — [0,400) be a bounded and continuous function w.r.t. the product
topology induced by the weak topology and 0. If (un)n is a sequence in M(U) con-
verging weakly to @ as n — +0o, then

lim G(un, ) dpn (y /Gu, ) duly

Proof. Let € > 0 be ﬁxed; since p,, converges weakly to u the set {fin}, U {u} is
uniformly tight and uniformly bounded in mass by [12, Theorem 8.6.2(ii)]. We can
thus find a compact set K. C U and M. € N such that, for every n > M., it holds

wp U\ K2) < & U\ K- \ [ Gt - [ G(u,wdu(y)\q,

where the last inequality comes from the weak convergence of u, to p and the
regularity of y — G(u,y). Let C. C M(U) x U be the compact set defined as

Ce = ({Mn}n U {N}) X Ke .

Recall that KK, metrizes the weak topology. Since G is continuous, it is uniformly
continuous on C; so that we can find 7. > 0 such that

for every (1',y"), (1", y") € C:

G, y') = G(u",y")| < e .
with HK, (¢, 1) + |y — 4" <7e

Since H,(ftn, ) — 0, we can find L. > 0 such that
Hp (tn, o) < e for every n > L.
Let us define N, := M. V L.; then, if n > N,

'/ G(umy)dun(y)—/ G(p, y)dp(y)
U U

< /UG(umy)dun(y)—/UG(uyy)dun(y)‘

/G(M,y)dun(y)—/G(u,y)du(y)’

/ G(pn, y)dpn (y / G(p, y)dpn(y )'
+25HG||OO+€

+

IN
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< e |sup U + 14 2||Glo]|

where we have used that for every y € K. we have (un,y),(u,y) € Ce with
H, (o 1) + [y — y| = Hp(ftn, 1) < me. This concludes the proof. O

4.1. Asymptotic Lipschitz constant of cylinder functions. The following
proposition corresponds to [36, Proposition 4.9] and the proof is quite similar but
we still report it here because of a few differences.

Proposition 4.7. Fiz u € .7-"1)17’1710,}. Then,

(Tl =liow, w0, e M)
where H(VU)HHT‘%A is as in (1.26) and lipmdg is as in (2.1).

Proof. We prove separately the two inequalities. We start from lip . u(p) <
|(Vu), ||T14 and we first prove it on (M,d,) = (R%,d.). Let u € M(R?) and let
(Hns 1) € M(R?) x M(R?) with g, # pu;; be such that (7, ) — (1, 1) in Hq,
and , "
i [202) — )
n K, (1 17)
Let (ui')ieo,1) be constant speed geodesics (cf. [59, Proposition 8.3]) connecting
o to plr. By [59, Theorems 8.16, 8.17] we can find Borel vector fields (v}, w}) €

L2((0,1) x R4, pu?; RY x R), where p? = fol(,u? ® d¢)dt, such that
Oepy + V- (v}'uf') = wi in 2'((0,1) x RY)

= lipy,, u(p).

and
(R + o By aup = g for et € 0.1).

where (17| denotes the HKy, -metric speed of the curve (uf)icjo,1) at time ¢. We have

i, uun|\/ (V). vt,wt»“dt\

[/ | VuuHTudt} [// (o7 * + Awﬂ)dutdt

:|-Kd Mn?/j/n |:/ H V’LL ny T14dt:| ’

where the first equality holds integrating (4.6). Dividing both sides by Hy_ (!, pl’),

we obtain
|u(u’n) B :un
Ha, (1, 1) [/ [V HT“dt]

Observe that u* — p in M(RY) for every t € [0,1]. We can then let n — oo in the
above inequality using the Dominated Convergence Theorem and Lemma 4.6 with

Glp.) = |(Vu)u(@)l} . (n,2) € MRY) xR?,
where |- | is defined immediately before (1.26). We hence get

1
1 2
i, 00) < | [ 1y t] = 1Ty
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We now turn to the case of a general manifold M. Let ¢ : M — R¢ be a smooth
Nash embedding, let ¢ := ¢4 and let ¢* be its pullback. By definition, u = F o f
for some F € C{(RN), f = (f1,...,fn) € (CL{(M))N and N € N. For every
i€{l,...,N} let us construct f; € C}(R?) such that

fi=fior,  (Ap(Vfi)p = (Vi) , PEM.
Indeed, by e.g. [65, Prop. 7.26, p. 200], ¢«(M) has a smooth tubular neighbor-
hood with (smooth) variable radius e: x — R™T, locally isometric to its trivial-

ization U, {z} x BI5; ™. Let X € C®(R* x R) with X(c, -) = 1 on [0,2/2)

and X(g, -) =0 on [g,00) for every € € RT. Finally, set

fl(y) = s(@) ; ye Rd .

5 filz)x(e(z), |z —y|) ifye B% " Mgor some z € L(M)
0 otherwise
It is readily seen that fl is a smooth function on R?, and that, letting x = «(p),
(Vﬁ)z = (vb*gfi)ac S (vlfz)x
= (fi(2) (V9X(e(+).0)), + (V9 fi)aX(2(2),0)) @ (V- fi)a
= (vb*gfi)w @ (VLX(E(% ))z = (VL*gfi)x = (dL)p(vgfi)p .
Now, set @ = F o f* € f;’fcg(M(Rd)), and note that u = ¢*@ on M(M).
On the hand, since ¢: (M,d,) — (R, d.) is non-expansive, and since d — HKgy is
a monotone assignment,

lipy,, u(p) <lipug,, @ep) = (V@) iyl 7.
On the other hand, since ¢: (M, g) — (¢(M), t+g) is a Riemannian isometry,
[(Va)u a0 = (Tl
This proves the first inequality in the general case.
To prove the other inequality we fix u € M(M) and we consider the curve
Mt = (eXp(tTl))u((l + 2tT2)2M) , te [07 1] )
where
(T (x), To(x)) = (Vu)u(z) , xeM.
It is not difficult to check that

oy = ([idar, 1], [exp(tT1), 1 + 2tT2])ﬂu € M(€(M, M))
belongs to $H(, p¢) (cf. (3.3)) so that we can estimate
I-Kdg (Ma ,U/t)2 S

g/ (dg)m.e (fidar, 1], [exp(tT}), 1 + 26T)) *dpe
M

— —

~

A2\ Ty(2) | + 4(1 + t2T5(x)) sin? (d-" (& exp, ng(x)) " ”)] dp(z)

[482| To (2)|* + (1 + t2T%(z)) dg (z, exp, (tT (x))] du(z)

IN

IA
=

482 (Ty(@)? + (1 + 2T (2) [1T3(2)]° ] dpl)
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< t2||(vu);t||;1,4 + 0(t2) ast |0,
o

where we have used the uniform boundedness of (T1,75) and [59, Formula (7.4)].
On the other hand, by (4.7), we get that

tim W) ) (), (334, = (T2

t10 t
Thus

. . u(pe) — ulp)

li U > limsup ———=

P, w(p) = 1 Sup Ha, (1, )

. u(pee) — u(p) t

> limsu > |(Vu 4. |
el £10 P t l-Kdg(M7//4t) - ||( )N”T;AL

As a final remark we compute the asymptotic Lipschitz constant of cylinder
functions w.r.t. the distances Hey and Wy 4, .

Proposition 4.8. Let u € .7:1711’1716'; and € M(M). Then
ligy,, () = (VP llgra s lipie, u(n) = (V") gy

where VT and VY are as in (1.8) and (1.9), respectively and T, is the weak
topology on M(M).

Proof. We treat separately the two distances.

The extended Wasserstein case. ~ The proof is very similar to the one of [89,
Proposition 4.7], we only have to take care that the distance can also attain also the
value +o00. To show the first inequality lipw’;,dg u(p) < H(Vhoru)HHTiA we observe

that for every u € M(M), we can find a sequence (ul,, 1) € M(M) x M(M) such
that p;, # pr, Wa g, (1, pir;) < 400 for every n € N and

AN "
Wil = liply u(u) = lim fulpn) —ulp)| 0
g

n=too Wa g, (1, 1)
This is because 7, is metrized by Hy, and for every r > 0 we can always find
', 1" € B, (p,7) such that p' # p" and Wa g, (1, ") < +00. Indeed it is enough
to consider three distinct points xg, x1, 22 € M and note that

/u'/s = IU'I—Bdg (x07 1/5) + 5611 ) N’Isl = IU'I—Bdg (580, 1/5) + 6612

weakly converge to p as € | 0, they are different and compactly supported non-
negative measures with the same positive total mass. Since W3 (u’,, p’) < +o00 we
can find 4" € Cpl(ul,, pl') such that

/ d2dy" = W3 (up,, ) for every n € N .
M xM

Let G: M x M — C([0,1]; M) be a (universally measurable) map associating to
every pair of points (zo, 1) € M x M the curve G(zo,z1) = (7" )ie[o,1) Which is a
constant speed geodesic connecting zo to 1. Finally let py = (e,0G)yy™, t € [0, 1],
where e; : C([0,1]; M) — M is the evaluation map sending a curve (v¢)¢ejo,1) to its
value at time ¢, v, € M. It is not difficult to check that

d n or Z,1 X n
G = [ (T (65 4 ) foracte (0.1,
MxM
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so that

(i) — ()| = g (V") (4P, 4Y) dv”(w,y)dt‘

M><M

2 3 3
[ h et o] [,
0 MxM

= W2,d p“n?ﬂ’n |:/ H Vhor /“'t ||Thor dt:|

Dividing by Wa g, (t4r,, f1,) and passing to the limit as n — +oo leads to the sought
inequality, also using Lemma 4.6 with

G(p,x) = ‘ (V") (2)

The other inequality is obtained similarly to the one in Proposition 4.7 using the
curve fi; = exp(tT)zp and the plan v, = (ida,exp(tT)) € Cpl(u, p¢), where
T(z) = (V') ().

2 (uz) e M(M) x M.

The Hellinger case.  The proof is again a modification of [89, Proposition 4.7]
but we reproduce the argument in full. Since 7, is metrizable (e.g. by Ky, ), we
can find (u,, pll) € M(M) x M(M) with ul, # ull such that pl,, ur — (u, ) and

- fulpg,) = ul(py)]
lipgie, u(p) = lim Heo (pil, pull)
n’ n

For every n € N, let 7, € M(M) be such that ul,p! < n, and let us define for
every t € [0, 1] the quantities

dy/ dp!” 2
o= Pri= =" Ph= [(1 —t)\/péﬁt\/péi} ;

dnp, dny,
/ Al /
o o Pk gl

It is not difficult to check that ¢ — pf, is weakly continuous, pud = ul,, pt = ull,
Oy, = wlut, in the sense of distributions in (0,1) x M and

AHes (4, 1 / [t g ar.
for a.e. t € (0,1) .

d ver n n
) = [ (7 g

‘We thus have

lu(pay,) — u(p,)]

(VYu) i wy d,u?dt‘

L]

TV?LT dt}
Hi

Rd

: [/0 el

= Hea(yt, ) U 4]V
0
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Dividing both sides by Hea(ul,, pl), we obtain

\u(,un)—u ver,,
) < [y [y

Observe that pf, — p for every t € [0, 1], so that we can pass to the limit as n — +o00
the above inequality using the Dominated Convergence Theorem and Lemma 4.6
with
ver 2
Glonz) = 4|V )@, (n.2) € M(M) x M .

We hence get

T, -

lipric, u(p) < 2[[(V* )l pyer = (V70|
To prove the other inequality we fix u € M(M) and we consider the curve
Kt = (1 + QtT)Q:uv te [O? 1] ’

where
T(z) = (V™) (x), z€M.

We can estimate, for ¢ sufficiently small, that

HGQ(M /j/t :/ [\/W 1:| du = t2/4T2 d/,[, — 4t2 ||(Vve1ru)u||;ver )
o

On the other hand it is not difficult to see that

i L) g [ (9, Tl = 4T

tl0 t M w

Thus
7 . u(pe) —ulp) 1
lip/# w(p) > limsu > |[(VYu), |
pHe2 (,LL) - £10 p t HeQ(//z7Mt) - H( )l ||T

4.2. Density of cylinder functions. In this section, we consider again the (Gauss-
ian) Hellinger-Kantorovich distance only on the complete and separable metric
space (U, ) = (R%,d.), where d. denotes the distance induced by the Euclidean
norm on R%. For this reason, we remove the dependence on d. in the notation for
the KK = HKq, and the GK = GKy, distances.

Recall that (M(R9),HK) and (M(R?), GK) are complete and separable met-
ric spaces and they induce the same topology on M(R?) which also coincides
with the weak topology o(M(R9),Cy(R?)). We fix a finite, non-negative, non-
zero Borel measure Q on (M(R?),HK) and we consider the Polish metric measure

space X(Q) = (M(RY), K, Q).

Our aim is to prove that the unital and point-separating subalgebra o =
fi:;Cg(M(Rd)) C Lipy(M(R9),HK) (see Definition 4.1) is dense in 2-energy in
DY2(X(Q)) in the sense of Definition 2.9. In order to do so, we are going to apply
Theorem 2.12 to X = M(R?), § = KK and d = GK since K is the length dis-
tance generated by GK, as noted in [59, Corollary 8.7]. Note that the underlying
metric-measure space is always X(Q) so that, in particular, (2, .<7)-relaxed gradi-
ents are computed w.r.t. the distance HK. We will thus devote this section to prove
inequality (2.18) i.e.

(4.8) for every v € M(R?)  |DGK(z, Nyow <1 Qae in M(R?) .
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The structure of this section and the proofs we present closely follow the ones of
[36, Section 4.2]. There are however several important differences so that we will
report all the arguments in detail. We start with a technical result.

Lemma 4.9. Let (vg)r be a sequence of functions in DY2(X(Q); @/ )NL>(M(R?), Q)
such that vy and |Dvgl|, 2, are uniformly bounded in every bounded subset of
M(R?) and let v, G be Borel functions in L>(M(R?), Q), G nonnegative. If

(4.9) kli_}m ve(p) = v(p), lilrgnsup Dupls 2.0 (1) < G(p) Q-a.e. in M(RY),
0 —00

then v € HY2(X(Q); &) and |Dv|4 2.0 < G.

Proof. Let uy, be as in Lemma 4.4 for M = R%: since u;, € &7 we have Dk 4,200 <
lip;k ug so that, setting C' := 2v/8 + 272, we have

up € H(X(Q); ) , |Dug|s,2,00 < C/\/E )

(4.10)
Duglyo.w(p) =0 if uR?<kor uR? > 2k .

Notice also that u vanishes if uR? > 2k. Thanks to the Leibniz rule, setting

Ve (1) = v (u)u?, (1) and Gy = |Dug|4.2.cr, Wwe have

vE.m € DM2(X(Q); )
(1) < Gr(p)uz, (1) +2Cm™ 2oy ()um (1) -

Since for every m € N the sequence k — Gru2, is uniformly bounded, we can find
an increasing subsequence j — k(j) such that j — Gk(j)ufn is weakly* convergent
in L>°(M(R%), Q) and we denote by G,, is weak* limit. By Fatou’s lemma, for
every Borel set B C M(R?) we get

(4.11)

/ Crnd@ = Jim [ G ()0 () AQ)

]—)OO

< /Blimsup (Gw)(u)u?n(u)) dQ(u)

j—o0

< / qu?n do
B
so that we deduce

(4.12) Gm < G*2,  Q-a.e. in M(R?), for every m € N.

On the other hand, passing to the limit in (4.11) along the subsequence k(j) and
recalling that lim; o Vg(j),m = u?, Q-a.e. we get
(4.13)

D (vuy,)

() < i) + %kum(u)

90 for Q-a.e. u € M(R?).
< Gluyun () + —75v()um (1)

We eventually pass to the limit as m — oo concluding the proof of the Lemma. O

The main result of this section is the following Proposition which is just one step
away from (4.8). Recall the notation introduced in Section 3.2 and in Theorem 3.8.
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Proposition 4.10. Let v € M*(R?) and let R,§ > 0 be such that supp(v) =
B(0,R), and v > §.Z4L B(0, R); let € € (0,1) be fivzed and let T. be as in (3.11).
Let ¢ € CY(R) be a non-decreasing function whose derivative has compact support.

Then, for Q-a.e. p € M(R?)

Do (3aK(To()")| (0 < ¢ (3GKE To(w)”) GK( To(n) -

*,2,9/
Proof. We set B := vR%; for the whole proof we are going to keep v, B, R, € and (
fixed and then we will not stress the dependence of the objects we are going to
define w.r.t. them, even if many of them do depend on v, R, B, € and (.

Let G == (u")n, € M(R?) be a countable and dense subset of M(R%). We define
the pair (pp, 1) as the pair coming from Theorem 3.8 for (v, u”*) and the functions
nn and 7} as

1 — o~y +2un(y) 1 — g~ lzl*+2¢n(2)
an(y) = 5 o qu(@) = 5 :

Recall that, by Theorem 3.8(1)-(2), we have that " is C-Lipschitz and g, is C-
Lipschitz and C-bounded, for a constant C' that does not depend on h. In particular
we have that

%MWMMW=/

R

(z,y) € B(0, R) x R%.

and T (") + / grdv  for every h € N.
d B(0,R)

Let us define, for every h, k € N, the functions

wp (@) ::/ qndTe (1) +/ Gidv,  zp(p) == max wy(p), pe M(R?).
Rd B(O,R) 1<h<k

Notice that, while ¢; € L'(R% v) by definition, g, is Borel and bounded and
therefore integrable for every measure in M(R?).

Claim (1). We have that
(4.14) kli:r_l zi(p) = sup 2 (p) = 3GK(v, To(p)*  for every p € M(R?).

Proof of claim (1).  Since zx(u) is increasing w.r.t. h, the supremum
Sup A pe MRY) ,
is well defined and satisfies by Theorem 3.5 the inequality
sup 2 (1) < $GK(v, To(p))?  for every p € M(R?)
k

with equality if p € G. By density of G, to prove the claim, it is enough to
prove that supy zx(-) is a locally HK-Lipschitz function. To this aim, let us fix
w " € M(R?) and observe that, since gy, is C-Lipschitz and C-bounded, we have
(cf. [59, Proposition 7.18]) that

| and[T) =T
< OV24 5 [To(u)(RY) + To (1) (RY]PH(To (1), To (1))

hence

2 (1) — 2 (W) < OV/2+ T [Te(u) (R + To ()R] H(To (W), Te (i) -
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Passing to the limit as k — 400 we obtain the sought local HK-Lipschitz property,
also noting that T. is HK-Lipschitz (cf. [59, Section 8.7]). This proves the claim.

Claim (2). Let up be as in Lemma 4.4; If we set vy = ug - (( o zx), then
v € HY?(X(Q); ) and

|Dvgls,2,07 (1) < Uk(u)(C’(wh(u)))\//(IVQh2 + 4)gn|?) dTe ()

(4.15)
+ @w'(uﬂed/k)\WHCHw

for Q-a.e. p such that z(p) = wp(u).
Proof of claim (2).  First of all note that uy - (Cowy,) € ]_-61’,17105 (MRY) c &

since it can be written as

g - (Cown) = (O 0 1) (Ch 0 giy)
where ¢, = ¢(- /k) € CL(R) and

Cr(s) =¢ (s + /B(O " qrdv + e(qn * HE)(O)> ) seR,

gn = (aqn * ke) o fo € Cy(R?) .
By Lemma 4.4 we have
. ' (uR?/k
tip s () < USSRy 2 e e

we can estimate
(4.16)

oo - (€ 0 03)) 1) < k1) o (€ © 1) 1)+ T 1) C o )|
p ! d
AR N N

We can also estimate the asymptotic Lipschitz constant of (¢ o wy): still by
Proposition 4.7, we have

(4.17) < ug(p) lipy (€ 0 wn) (1) +

lipp (G © g7) (1)

= G5 )* [ [Vonf? + algn"]
[[(V(gn k) o fl*[IDFN1? + 4l(gn * k) © f=*] dp

[1(V(gn * k) o fol? + 4l (an * re) © fo|*] dps

[V (qn * ke)|? + 4lgn * ke ?] d [(f)sp + £60]

/
/
= Ggi)? [ 19 (an x kP + e (o)
/
/

[[(Van) * rel? + dlgn * ke|*] d [(fo)sp + b0
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< CZ(QZ(H))Q/ [IVan|? + 4lqn|?] = ked [(f)s1 + 60]
— gt (W) / (1902 + 4lgn|?] A [[(fo)gpe + 6] * re]

— g (W) / (1Van[? + 4lgn]?] dT. ()

where we have also used that |[Df.(x)|| < 1 for every x € R%. We also deduce that

lipuc (Ch © g (1) < Cz(gf’;(u))\/ / (IVan|? + 4lgn]?) dT<(r)
< I¢ o0 VEC Ve + pRe.

We can now estimate the minimal relaxed gradient of the function vy = ug - (o
2z): since € is an increasing function we have that

(4.18)

ug - (Coz) =ug - 121}?%%(( owp) .

By (2.12), for Q-a.e. y where wp,(p) = 2z (1), we have
|Dvg|x,2,07 (1) = [Dug - (€0 21) w207 (1)
= [Dug - (Cown)lx 2,7 (1)
< lip (ug - (€ o wn)) (1)

V4 + 72

< wk (1) lipp (¢ 0 wn) () + ~———— 1" (UR* /) [/ iR C o

< Uk(u)(Cé(gZ(u)))\// (IVan|?* + 4lqn[?) dTe(u)

7.[-2
T R ) R

This concludes the proof of the second claim.

Claim (3). Let p € M(R?) and let (h,), C N be such that

/ qn, dT(p) —|—/ g dv=wp, (1) = $GK*(1, To(0)>  asn— +oo .
R4 B(0,R)

Then there exist two convex and continuous functions p: B(0, R) — R and¢: R? —
R such that ¢ and ¢ are the Legendre conjugate of each other and, up to an non-
relabeled subsequence, @p, — ¢ locally uniformly in B(0, R), ¢p, — 9 locally
uniformly in R and Vi, — Vi L-a.e. in RY.

Proof of claim (3). We consider the shifted pairs

Ph,, = Ph,, + V1, (0), Yh, = P, — ¥n,(0) .

Notice that 1, (0) = 0 by construction, ¢, (0) < C by Theorem 3.8(1) for a con-
stant C' > 0 that does not depend on n, and, again by Theorem 3.8(3), ¢, and J}hn
are the Legendre transform of each other. Now we show that fB(O)R) @p, dLI<T
for a constant I > 0 that does not depend on n: since

1
/ qn, dT. (1) —|—/ q,, dv — §G-K2(u, T.(1)* >0asn — +oo,
Rd B(0,R)
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we can assume without loss of generality that
/ gy, dv > —1 —/ qn, dTo(p) > —1 — 2uR% .
B(0,R) R

Now we estimate

/ [Laf? — on, (2)] d2%a) > / g, 42"
B(0,R)

B(0,R)

- / (ar. —1/2)d2 + L 29B(0, B))
B(0,R) ) 2

> 1 / (@ —1/2)dv+ 29(B(0, R))
9 JB(0,R) 2

1 1
== ¢ dv— —vRY+ Z24B(0, R
5 B(0.R) hn 2 9 ( ( ))
1 1 . 1 2 1 .4

2 -5 26MR 251/R + 2$ (B(0,R))
Thus
/ on, 424 < %/ 2|2 ALY (2)+55 (2 + pR? + VR — 6.2%B(0, R))) =: I’

B(0,R) B(0,R)

Finally

/ @n, 424 = / on, 424+ C,. 2 B(0,R)) < I' + CL*B(0,R)) = I.
B(0,R) B(0,R)

we deduce that
I/
< ——
om0 S Zami0, m)Ra

Notice moreover that, by convexity of ¢p

n?

so that

II
~ 24(B(0,R))R?
This gives that the sequence C,, is uniformly bounded. By [36, Lemma 3.5] applied
to @p, and ¢y, , we deduce the thesis of the present claim for the shifted pairs
and, since we have showed that C), is bounded, also for the original pairs. This
concludes the proof of the third claim.

Claim (4). Let p € M(R?) and let (h,), C N be such that

[T+ [ i, v =, () > JOKA T as s oo

Cn =9, (0) = —¢n, (0) >

B(0,R)
Then
limiup/ [IVan, > + 4lan, |?] dTe(n) < GK(v, To(p)? .
n——+0oo
Proof of claim (4). We extract a non-relabeled subsequence such that the

lim sup in the statement of the present claim is achieved as a limit. By the conver-
gence in claim (3), as n — +oo, we have that

1 — e~y +2¢n, (v) 1 — e~y +29(y)
an, (y) = 9 —q(y) = 9

for every y € RY,
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1 — e~ lWl*+2¢n () 1 — e—lul+20(»)
B = q"(y) = I S— for every y € B(0, R).
Since gp,, is uniformly bounded, by Dominated Convergence Theorem, we deduce

that

(4.19) i [ an AT = [ adTo).

n—-+oo Rd

dn,, (y) =

On the other hand, ¢ is uniformly bounded from above so that Fatou’s lemma
shows that

(4.20) lim sup/ qp, dv < / ¢ dv .
n—+oo JR4 R4
We can thus conclude that

/ qdT.(u) +/ ¢*dv > limsup
R B(0,R) n

/ qn, dTe(p) + / qi’indl’]
Rd B(0,R)
= 1GK(r, To(p))? .

-2

Note that fRd qdp € R since ¢ is uniformly bounded so that also fRd q¢*dv € R
since ¢* is bounded above. By Theorem 3.5 the one above must be an equality so
that, by the uniqueness part of Theorem 3.8, we deduce that (p,1) is the unique
pair of functions whose existence is stated in Theorem 3.8 for the pair (v,u). In
particular, by Theorem 3.8(5), we deduce that

GK(v, Ts(ﬂ))z :/]Rd [[1 — e*|y‘2+2¢(y)]2

+ e 2P ) [ =YYW _ 1] | aT. () (y) -

Since gqp,,, is uniformly Lipschitz and bounded, we can use the Dominated Conver-
gence Theorem and conclude that

lim [‘th"

n——+oo
= [ [IVaP + 4P T (1)

= [ [lv= Votp)e 2 40 4 (1 o0 4T ()

* +4|qn,

2] dT.(p) =

g/ [[1 - e*|y|2+2¢(y)]2 + e 2P+ () [GI%WJJ(@/)I2 — 1]} dTo(p)(y)
Rd

= GK(v, To(n)>.
This concludes the proof of fourth claim.

Claim (5). Let vy be defined as in claim (2). Then, for Q-a.e. u € M(R?),

imsup (Do () < ¢ (S@KO:TL(0)2 ) GKOAT. 1)
k
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Proof of claim (5). Let A C M(R?) be defined as

k
A= 4%,

k h=1

where A¥ is the full Q-measure subset of Ef := {y : 2 (1) = wp(p)} where (4.15)
holds. Notice that A has full Q-measure. Let u € A be fixed and let us pick a
non-decreasing sequence k +— hj such that

2k (1) = wa, (1) -
By claim (2) we have that

1/2
|D1}}€

w2, (1) < up(p) (¢ (wn, (1)) [/ [[Van,|* + 4lgn, ] dTe(p)

V4 + 72
+ I R R) |V pRIC oo
and by claim (4) we know that
imsup [ [V, *+ lan ] 4T < @K T (1)
k——+oco
Noting that ux(p) — 1 and passing to the limsup,_,, ., we obtain the statement
of the fifth claim.

Claim (6). Conclusion. ~ We deduce the assertion of the present proposition
from Lemma 4.9. We set

vi=C(3aKT()?) 6= (3aK(Te()?) GK(n Te()) -

By claim (2), vy, € D¥?(X(Q); &) and it is clear that v;, € L>(M(R?), Q) since
it is bounded by |||l (in particular the sequence vy is uniformly bounded in
every bounded set of M(R?)). The sequence of relaxed gradients |Duvg |, 2,cr is also
uniformly bounded in every bounded set of M(R?) since by claim (2) and (4.18)
we have
IDvk|x,2,07 (1) < ur(W) ¢l CVEV e + pRY )
2VI+ n? e MR
+ 2T e ) R e

Clearly v and G are Borel functions with v € L2(M(R?), Q) (since ||v]/oo < [|¢]/o0)
and G non-negative. By claim (1) and claim (5) we have that

lilgnvk(u) =ov(p), limsup |Duglso.w(n) < G(u) Q-ae. in M(R?).

k— o0

We conclude by Lemma 4.9 that v € H»?(X(Q); «/) and that |Dv|, 2.4 < G O-
a.e. in M(RR?). This concludes the proof of the proposition. O

Arguing precisely as in [36, Corollary 4.18], we deduce the (4.8).

Corollary 4.11. Letv € M%(R%) and let R, 5 > 0 be such that supp(v) = B(0, R),
and v > 5.Z?_B(0,R). Then

IDGK(v,)]y, » <1 Q-a.e. in M(R).

As a further corollary we obtain our main result concerning the space X(Q).
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Theorem 4.12. For every finite, non-negative Borel measure Q on (M(R?), KK)
the unital and point-separating subalgebra o/ = ]-'i:;Cg (M(R?)) C Lip,(M(R?), KK)
is dense in 2-energy in DV2(M(R?), K, Q). In particular HY2(M(R?), K, Q) is a
Hilbert space and (M(R?), HK) is universally infinitesimal Hilbertian.

Proof. The first statement follows by Corollary 4.11 and Theorem 2.12, also re-
calling that HK is the length distance induced by GK. The Hilbertianity of the
metric measure space H?(M(R?),H, Q) is then an immediate consequence of
Proposition 4.7 and [36, Theorem 2.17]. The universal infinitesimal Hilbertianity
of (M(R?), KK) then follows by Proposition 2.16. O

4.3. Extensions of the Hilbertianity and density results.

4.3.1. Cylinder functions in the Riemannian setting. In this section we extend the
density result from measures on R? to measures on a Riemannian manifold. We
proceed as in [36, Section 6] and we recall the following result [36, Theorem 2.24]
after introducing some notation.

If Xisasetand Y C X, 7: Y — X is the inclusion map and g: X — R, then
we define 7*¢g: Y = R as y*g :=go .

Theorem 4.13. Let (X, d) be a complete and separable metric space and letY C X
be a closed subset endowed with a metric 0 such that (Y, 0) is complete and separable
and

(4.21) di(y1,y2) < 6(y1,92) < dy (y1,92) y,y2 €Y .

Let m be a non-negative, finite, Borel measure on (Y,0) and let 3: Y — X be the
inclusion map. Consider the Polish metric-measure spaces X = (X,d, yym) and
Y :=(Y,d,m). If & C Lip,(X,d) is a unital and point separating subalgebra dense
in q-energy in DV(X), q € (1,+00), then y*(&/) C Lip,(Y,d) and

CEyv,g0J" = CBygpr(w) 07 = CBxg = CEx g  on LO(X, zym) .

Theorem 4.14. Let C C R be a closed set and let o: C x C — [0,+00) be a
metric on C such that (C,0) is complete and separable and satisfying

de(y1,92) < 0(y1,y2) < (de)y (y1,2)  for every y1,y2 € C
where d. is the distance induced by the Euclidean norm on R. Let Q be a non-
negative, finite Borel measure on (M(C),HK,) and let 3 == j3 where 3: C — R4
is the inclusion. Set Y = (M(C),HK,, Q) and X = (M(RY),HKq,,2:Q). Then
HY2(X) is linearly isomorphic to HY2(Y) and

(4.22) ID(5*w)|x,v2 = 7" (|Dulsx2) for everyu € Hl’Q(X).

In particular HY2(Y) is a Hilbert space and the unital and point separating subal-
gebra j*(fijicl} (M(R®))) is dense in 2-energy in DV2(Y).

Proof. Since the topologies induced by ¢ and d. on C are both Polish and com-
parable, B(C,d.) and B(C, o) coincide so that we can simply write M(C') without
specifying the distance inducing the topology on C. Clearly every measure in
M(R?) with support contained in C can be identified with an element of M(C)
and every measure in M (C) can be viewed as a measure in M(R?) with support
contained in C. Therefore we can identify M(C) as a subset of M(R?) and the
inclusion map is provided by 7.
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We want to apply Theorems 4.13 and 4.12 with X := M(R?), d := KKy, YV =
M(C), and § := HK,. Since C is closed, also M(C) is closed in (M(R%), Hq,). We
only have to check the inequalities (4. 21) the first one

Ha, N1 < HK, on M(C)x M(C),

is immediately satisfied since (de)re < oxe on €(C), as a consequence of the
definition of the distance on the cone (cf. (3.1)) and since the same inequality
being satisfied by d. and o. This gives the stronger inequality HKgq, < HK,. To
prove the second inequality in (4.21), we consider two measures pg, 1 € M(C)
and a HKy, -Lipschitz curve p : [0,4] — M(C) such that p(0) = po and p(€) =
parametrized by HKy_ -arc-length. By [59, Theorem 8.4]) there exists a measure
n € P(C([0,£]; €[RY])) concentrated on (d.), e-absolutely continuous curves such
that (hoey)s(n) = w for every t € [0,¢] and

1= il () :/|rb|§dem(t)dn(m) for ae. ¢ € [0,4] .

Let us now consider the continuous function ¢ : €[R%] — [0, +00) defined as
C([x,r]) = ridist(z, C) , [z,7] € €[RY],

and note that ¢ vanishes precisely on €[C] considered as a subset of €[R¢]. Fubini’s
Theorem yields

//( )) dt dn(ro //Cet )dn(ro)dt = //RddIStl”CdHt()dt—O

since [ dist(x, C') duy(z) = 0 for every t € [0, ¢]. It follows that fo ¢(ro(t))dt = 0 for
n-a.e. 1o, so that the set of ¢ € [0, ¢] for which ro(¢) € €[C] is dense in [0, ¢]. Being C
closed, we conclude that w takes values in €[C] for n-a.e. . Observe also that every
w € AC([0, 4]; (€[C], (de)x,e)) belongs to AC([0,4]; (€[C], 0r.¢)) ()=
I0|o, . (t) for a.e. t € [0,£]: this is a consequence of the representation in [59,
Lemma 8.1]. We can now estimate the HK, distance between the two measures fi
and p1, viz.

M, (10 11)? < / ey Pl enm) = / 0r e(m(0), (1)) dry(w)

<z// 2. (t) dt dp(w _z// [, . (£) dtdn(w)
.y / [ 6l o 6) dnfro) e = ¢ / il (1)t

=

where we have used that (ep,e1)sm € (1o, p1). Taking the infimum w.r.t. £, we
deduce that

HK (110, 11) < (HKa, ) nq(cy (05 f11)
which is the second inequality in (4.21). (]

In the rest of this section we assume that (M, g) is a smooth, connected, complete
Riemannian manifold with Riemannian distance d,.
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Theorem 4.15. Let Q be a finite, non negative Borel measure on M(M). Then,
the wunital and point-separating subalgebra fizgcl} is demse in 2-energy in
DY2(M(M),HKq,, Q) and H?(M(M),HKgy,, Q) is a Hilbert space.

Proof. By Nash Isometric Embedding Theorem [64] we can find a dimension d, and
a smooth isometric embedding ¢ : M — (M) C R% On C := (M) we can define
the (Riemannian) metric do inherited by dg: de(u(z), t(y)) = dg(x,y) so that ¢ is
an isometry and (C,d¢) is a complete and separable metric space. We denote by
¢ := 1y the corresponding isometry between (M(M), Hq,) and (M(C), K4, ) and
we also set Q ‘= 13 Q which is a non-negative and finite Borel measure on M(C). Tt
is clear that the map ¢* : u — wot induces a linear isometric isomorphism between
HY2(M(C),dc, Q) and HY2(M(M), Ky, Q).

Since M is complete and ¢ is an embedding, C is a closed subset of R? and d¢
induces on C the relative topology of R?. Since ¢ is isometric, we also have

(4.23) de(y1,v2) < dc(y1,v2) = (de)c(y1,y2)  for every y1,y2 € C .

We can introduce the inclusion map 7: ¢ — R¢ and the corresponding 3 =
g M(C) - M(RY). By Theorem 4.13 we have that the map j*: u ~— uo
7 provides a linear isometric isomorphism between H?(M(R?), Ky ,7;Q) and
HY2(M(C), Ky, Q) satisfying (4.22); we conclude that the map k* == t* 0 3* =
(30¢)* is a linear isometric isomorphism between HY2(M(R?), Hy_,x;Q) (note
that kg = g5 0 ¢4) and H?(M(M),Hgy,, Q) satisfying
(4.24)  D(k*u)|sv2 = K" (|Dul, x2) for every u € HY2(M(R?), Kq,, 54 Q),
where Y = (M(M),HKq,,Q) and X = (M(R?),Hq,,k4Q). This property in
particular yields the Hilbertianity of H?(M(M), Ky, , Q). To prove the density
of the subalgebra fi:;C,} it is enough to prove that &’ = n*(fi:;C;(M(Rd))) C
]:1”;(3,} is dense in 2-energy in D'2(M(M),Hq,, Q). First of all observe that for

u

every o € fi:;Cg(M(Rd)) and every p € M(M) it holds
lipy,, (k70)(p) < K" (lipw, @) (1)-

This follows by the fact that & is a HKy, -HKq, contraction, since d.(x(yo), x(y1)) <
dgy(yo, 1) for every yo,y1 € M. Let now u = k*@ for u € H2(M(R?), Ky, , k4 Q).
By Theorem 4.14, we can find a sequence (@, ), C Fi:;C,} (M(R?)) such that

G — @, lipy, @n — Dillyx2 in L2(M(RY),k: Q).

We deduce that, setting u,, := k*@,, € &/, we have

Up —> U,

in L2 (M(M), Q) .

lipy,, un < K" (lipy,, @n) = &7 (IDalex2) = [Dulyy,2

Up to extracting a suitable (not relabelled) subsequence we can suppose that
lipy, un converges weakly in L?(M(M), Q) to some G € L*(M(M), Q) which is
a Y-relaxed gradient of u. We also see that

2
/G2 dQ §limsup/(lipmdg u,)?dQ < lim sup/ (”*(hpmde ﬂn))> do

n—oo n—oo

- / Duf? 4 5 dQ,
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showing that G = |[Dul, y,2 and lipy, un, — [Dul, vz strongly in L*(M(M), Q).
([l

We prove now the density result for smaller but dense algebras of functions,
following [36, Proposition 4.19].

We say that a function F' : R® — R is finitary if F(t1,te,...) = f(t1,...,tx)
for some f: R¥ — R and k € Ny. For an algebra &/ of R-valued functions on R>
we denote by o, the subset of finitary elements in ..

Proposition 4.16. Let Q be a finite, non negative Borel measure on M(M). Let
(a) @ C CHRY) be a subalgebra locally uniformly C*(RY)-dense in CL(RY);
(b) o C CHR™®)gy be a subalgebra locally uniformly C'(R>)-dense in C}(R™)gn;
(c) o3 C CYH(M) be a subalgebra such that for every f € C}H(R?) there exists a
sequence (frn), C 3 satisfying
(4.25)
sup sup [(1fn(@)] + [V fu(2)]] < 400,
’ for every p € M(M) .
lim | (f = fal? + [V = Vo) dp=0

n—-+4oo M

Then the algebra
w=(xol1%). (Fof),
(4.26) o =S u: M(M) = R: Xed, ,
Fedoh, fed™

is dense in 2-energy in D*?(M(M), Ky, , Q).

Proof. Thanks to Theorem 4.12, it is enough to show that for every u € ]-"i;C;
there exists a sequence (uy), C & such that

(4.27) up, —u and  ||(Vu,).—(Vu). ||z =0 in L2(M(M), Q) as n — +oc.

If u = 1, since & is locally uniformly C!(R{)-dense in CL(Ry), we can find a se-
quence (X ), C 4 approximating the functions ¢t — ¢(t/k) with ¢ as in Lemma 4.4.
The sequence uy ‘= X o 1* converges in D"?(M (M), HKy,, Q) to u. Let us now
consider a general u = (Xo1*)-(Fof*) € fj;blcg, where X € CL(R), f = (f1,---, fn)
is a vector of functions in C}(M) and F € C{(RY), N € N. Since X is compactly
supported, there exists some r > 1 such that supp(X) C [—r,7]. Since in (4.27)
the convergence is in L?(M (M), Q), we can proceed by steps approximating X, F'
and f and then use a diagonal argument to conclude.

Approzimation of X.  Let (Xpn)n C @ be such that supj, <, [Xa(t) — X(¢)| +
X5, (t) — X' (t)] < 1/n for every n € N and let us set u, = (X, 0 1*) - (F o f*). We
clearly have

o = ulsancan.on = [ 106 130) = X, (uADRIE o £) () 41

Q(Br)
n2
so that clearly u,, — u in L2(M(M), Q) as n — +o0. Moreover by Proposition 4.7

we have

(Vun)u(x) = (F o £) ()X, (uM)(0, 1) + X (uM)V (F 0 £%), () ,

<

1715
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(Vu)u(z) = (F o £*) ()X (uM)(0,1) + X(uM)V (F o £%) ,(2) ,
so that

/|| Vi) = (V)34 dQ(w)
< 8/& /M|(F0f*)(u)|2\X;(MM) — X (uM)|? dpu(z) dQ(p)

2 / / IV (F o £9),(2) 2 X (M) — X(uM)[? dpa(r) AQ(p)
STQ ) 2r9Q(B,)

P12 + sup |V(F o f*),(x)[2,
()
giving that (4.27) holds for u,,. We can thus assume that X € .

Approzimation of F.  Setting R = rsupy 1<p<n [[fr] + |V fi|], we can find a
sequence (F,), C % such that

(4.28) sup |Fn(z) — F(2)| +|VF,(2) — VF(2)| < 1 for every n € N.
|zI<R n
Let us set uy, == (X o 1*) - (F}, o f*). We have

it = 12 a0 = /B XD Fn (£ ) — F(E* 1) 2 dQ (1)

L 9B)
n2

X115

so that clearly u,, — u in L2(M(M), Q) as n — +oo. By Proposition 4.7 we also
have

(Vtn)u() = (F o £) ()X (uD)(0, 1) + X(uM)V (E, 0 £), (),
(Vu)u(x) = (F o £) ()X (uM)(0, 1) + X(uM)V (F 0 £),(x),
/ (V) — (T2 4 4Q(n)

< [ [ MUDRIVFL 0 £),0) - V(F o £, dutr) 4

< X% 3kF £ 1) — O Fn (£ ()]

2

(Vi(2), fu(@))| dp(z) dQ(p)

G2

N
< 2, /B /M SOk F (£ ) — 00 Fu (£ (1)
r Mgy

NV f(@), fro(@)]2 du(z) dQ(u)

< ||X||2 %

giving that (4.27) holds for u,,. We can thus assume both that X € @ and F' € .
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Approzimation of f.  Let us consider bounded sequences (fxn)n C 24, k =
1,..., N, approximating f; in the sense that

R’ = sup sup (| fox(x)| + [V frr(z)]) < 400
kn xeM
and

tim sup [ (1fi = funl? +19F = Vhinl i =0 for every p € M(M).

n—-+oo
Let us set £, == (f1,n, fon,---» fyn) and u, == (X o 1*) - (Fof}) € &/. Let us
denote by R” the quantity

R'=RvV st;pSEpﬂfk(fﬂ + [V fe(2)]) < +o0

and by L the maximum of the Lipschitz constants of F' and OxF in the cube
[-rR",rR"]N with respect to the co-norm in RY. We see that

lun = wlZ2aan) 2 /IX PM)P|F(£] (1) — F(£ (1) [* dQ(1)

< L2 / sup |£2,4(0) — £ ()1 4Q(0)

< rL?X|% / sup / ok — Ful? dudQ(u) -
B, k M

By Dominated Convergence we deduce that u, — u in L*(M(M), Q) as n — +o0.
By Proposition 4.7,

(Vun)u(x) = (F o £7) ()X (nM)(0,1)

N
X(uM) Y~ Ok F (£ 10)(V fron (@), fin(@))

k=1

(Vu)u(x) = (F o £) ()X (nM)(0,1)
N

+ X(uM) > " W F (£ u)(V fr(), fr(z))

k=1
so that

< 8/ / |(F o £3) (1) — (F o £) (1) [*[X (nM)|? du(x) dQ(p)
B, J M
N

Wy (amf;m(wk,n(ac» fion(@))
k=1

2

dp(z) dQ(p)

521

_ mF(f*u)(m(x),fk(x)))

< 82I2|Y|1%, / sup / ok — Ful? dudQ(n)

oz f [ Z

O F (£ 1) (V frn (), frm(x))
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2

dp(z) dQ(p) -

52}
The first summand in the last inequality converges to 0 as n — 400 by Dominated
Convergence. We then concentrate on the integral in the second summand:

LLE

k=1

— O F(E" ) (V fi (), fi(2))

8kF(f7tM) (ka,n(x)7 fk,n (l‘))

2
dp(z) dQ(p)

&

— Ok F (£ 1) (V fi(2), fi())

8kF(f;U) (vfk,n(m)v fk,n(x))

dp(z) dQ(p)

53]

— Ok F(£51)(V fi (), fi ()

O F (£5,1)(V fr(z), fx(x))

2

dpa() dQ(p)

53]

N
2V FE|? Vi —Vienl?+4 e — fonl?)dud
<9 ||me_1/lgr/M< Fo = Venl? 441 — frnl?) dudQ()

— O F(E*p)(V fi(2), fi(x))

N
F10r(RDPS [P0 - 0P () 4Q(w)
k=17Br

2)dpdQ(p)

N
<2VFIZ Y / / (I fe = Vfonl? + 41 — frm
o1 /B I M

N
+10r2L2(R”)QZ/ sup/ | fo — ful? dudQ(p).
k=1/Br k JM

Both summands converge to 0 thanks to the Dominated Convergence Theorem.
This shows that (4.27) holds for w, and concludes the proof. O

Corollary 4.17. The space (M(M),Hy,) is universally infinitesimally Hilbertian.
Let Q be a non-negative Borel measure on M(M). If

/e_t“M dQ(u) < +oo  for everyt >0,

then, the subalgebra Fu>°C® is strongly dense in H'*(M(M),Hq,, Q), and for
every u € H"?(M(M),Hq,, Q) there exists a sequence (un)n C Fou™C such
that

Up — U, lipmdg Uy, — [Dulyo  in L*(M(M), Q) .

Proof. Combining Theorem 4.15 with Proposition 2.16 we immediately obtain the
Hilbertianity result. The density of smooth cylinder functions for a finite measure Q
follows by Proposition 4.16 with the choices @4 = C®(RY), @4 = C*(M), and



62 LORENZO DELLO SCHIAVO AND GIACOMO ENRICO SODINI

oty C C®(R*®)g, is the set of functions F': R>® — R such that F(t1,ta,...) =
f(t1,...,ty) for some f € CZ(R*) and some k € Nj.

This, together with Remark 2.11 and Lemma 2.17, gives the desired density
results for possibly infinite measures as above, also noting that both F2.°°C2°
and lip(F>°C2°) are subsets of L?(M(R?), Q) as a consequence of the truncation

induced by X o 1*, and that the function ¥y, := e~ 1" gatisfies the assumptions in
Lemma 2.17. U

4.3.2. Smooth cylinder functions in the Fuclidean setting. We now show how to
extend the density result for cylinder functions to the extended metric-topological
measure spaces

Xhe(Q) == (M(RY),7,,He, Q) and Xw(Q) = (M(RY), 7,,W, Q),

where He = Hey and W = Wy 4, are the Hellinger and extended Wasserstein dis-
tances introduced in Definitions 3.2 and 3.1, respectively (recall that d. is the
distance induced by the Euclidean norm on R%), 7, = o(M(R%), Cy(R%)) is the
usual weak topology on M(R?) and Q is finite, non-negative Borel measure on

(M(R?), 7).
We know by [59, Thm.s 7.22, 7.23] that
(429) I—K)\de 1 He, )‘I-Kde/)\ TW  as A — 4o0.

We deduce by e.g. [81, Lemma 2.4] that both Xp.(Q) and Xw/(Q) are indeed e.m.t.m.
spaces.

If we show that the unital algebra of cylinder functions is dense in 2-energy in
DY2(X(Q)), being X, (Q) == (M(R?), K4, , Q), for every A > 0, the density result
for D12 (Xpe(Q)) and D*?(Xw(Q)) will follow as a consequence of Lemma 2.18 and
Proposition 2.19.

We use the following notation: if A > 0 we denote by T*: M(R?) — M(R?) the
map

TNu) =tjn,  peMRY),
where we denote by t* : R — R? the dilation z — A\z.
Lemma 4.18. Let A > 0 be fized. Then
Hsa, (1) = Ha, (TA(), (TAW))  for every v € M(RY),
In particular TX is an isometric isomorphism from (M(R?), Ky, ) to (M(R?), HKg, ).

Proof. This immediately follows since the map u*: ([x,7], [y, s]) = ([Az, 7], [\y, s])
induces a bijection uﬁ‘ from $(p,v) to H(T p), (T*(v)). (Recall the notation
in (3.3).) O

Corollary 4.19. Let A\ > 0; then the unital and point-separating subalgebra of =
Fo20C(M(RY)) is dense in 2-energy in D?(X5(Q)).

Proof. Let X} (Q) == (M(R?), I-KdE,T&\ Q) and note that the map (T*)*, defined as
(TM)*(u) == uoT?, is a bijection between Lip, (M (R%), H4_) and Lip, (M (R%), H»q,)
and the algebra 7 is invariant under its action i.e. &/ = (T*)*(«7). We deduce by
Lemma 4.18 and [81, Proposition 5.15] that (T*)* is an isomorphism of H'2(X}; <)
onto H2(X; &) and an isomorphism of H%(X}) onto H?(X}). By the density
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in 2-energy of F2°C®(M(RY)) C o/ in D¥?(X}) provided by Corollary 4.17 we
deduce that

HY2(X4(Q); o) = H'*(X\(Q))
so that

H"(X\(Q); o) = H'*(XA(Q)) - O
Corollary 4.20. The point-separating subalgebra F2%*°C(M(R?)) is dense in
2-energy in D12 (Xpe(Q)) and DV2(Xw(Q)), and HY?(Xpe(Q)) and HY?(Xw(Q))
are Hilbert spaces.
Proof. The density of & = F;%>°C2°(M(R?)) in D*?(Xpe(Q)) and D*?(Xw(Q))
as well as the Hilbertianity result follow by Corollary 4.19, Lemma 2.18, Propo-
sition 2.19 and (4.29). The density for the smaller (and non-unital) subalgebra

F2o°C (M(R)) follows by [36, Proposition 2.15], Lemma 4.4 and Proposition 4.8
which shows in particular the inequalities lip[ < lipy, lipyy < lipi- O

5. THE CANONICAL FORM AND THE CHEEGER ENERGY
Let X be a Polish space, and ev: M(X) x X — R be the evaluation map

ev: (U, ) — evep = g

where, for notational simplicity and throughout this section, we set
e = plz} reX.

5.1. The multiplicative infinite-dimensional Lebesgue measure. Let 6 > 0,
and recall that Ly, is the multiplicative infinite-dimensional Lebesgue measure
with intensity v in (1.18). We collect here all the relevant properties of Lg .

Lemma 5.1. Ly, is finite on every Ky, -ball for every 6 > 0.

Proof. By triangle inequality it suffices to show the statement for sets of the form B,
for some r > 0. By (1.18),

ﬁe’y(BT) = )\9([0,7")) < 00 . O

5.1.1. Invariance and uniqueness. We collect here some results about invariance
and uniqueness of multiplicative infinite-dimensional Lebesgue measures.

Proposition 5.2. Let Q be a non-negative (non-zero) projectively M(X )-invariant
Borel measure on M(X), and such that QBy = 0 and QB, € RT for some r € RT.
Then,
(i) k== [ e XdQ(u) is (positive and) finite for every t > 0;
(i4) o= [p(-)e "XdQ(u) is a finite non-negative (non-zero) Borel measure
on X;
(7i1) letting 0 == aX and v = N(a), it holds that Q = ki Lg .

Proof. For any a € By(X) let Q, := (e%-)4Q be the shift of Q by e*, and d(e®) =

dd%" be the Radon—Nikodym derivative of Q, w.r.t. Q.

Claim 1: for every a € By(X) the function d(e®) € (0,+00) is a constant and
satisfies d(e®) € (0,1] if a > 0. If, additionally, a is constant, then d(e®) € (0,1) if
a>0andd(e*)=d1)=1ia=0. Ifac€By(X)" and r > 0, we have

Ae) Q) = Qu(B,) = [ 1s, ("1 dQMw) < [ 15, (1)) = Q(B,)




64 LORENZO DELLO SCHIAVO AND GIACOMO ENRICO SODINI

Choosing r > 0 such that Q(B,) € (0,4+00) shows that d(e*) € [0,1]. If, by
contradiction, d(e*) = 0, then Q,(B,) = 0 for every r > 0 so that Q, is the
zero measure, a contradiction, since Q is not the zero measure. This proves that
d(e”) € (0,1] for every a € By(X)™. For a € By(X) we have

d(e®")

M) = G

€ (0, +00).

If additionally a is constant and positive, setting ¢ := e® € (1,400), we assume
by contradiction that d(¢) = 1. Then, for any r > 0 such that Q(B,) € (0,+0c0),
we have Q(B,) = Q(B,/.), so that also Q(B,,.) > 0; we deduce that Q(B, e \
B, jen+1) = 0 for every n € N so that

Q(BT) = Q({O}) + Z Q(Br/c" \Br/c"+1) =0,

n=0
a contradiction. Finally, if a =0, Q, = Q¢ = Q so that d(e*) = d(1) = 1.

Claim 2: a — d(e%) is continuous on bounded sets w.r.t. the pointwise con-
vergence in By(X).  Let (an), € By(X) be pointwise convergent to a € By(X)
and satisfying sup,, [|an||cc < 00. Then, e®" 1 converges weakly to e for every u €
M(X) by Dominated Convergence in L' (1) with dominating function | f| es"Pn llanlloc
for any f € Cp(X). Since Q is finite on mass-bounded sets, for every bounded
weakly continuous u: M(X) — R with mass-bounded support,

tim [ u()dQ, () =tim [ (e - 9d Q) = [ ute® Q) = [ Qa0

by Dominated Convergence in L!(Q) with dominating function |u| Lsupp«. Then,
by projective invariance of Q,

(5.1) limd(e“”)/udQzlim/uann = /uan = d(e“)/udQ.

Since Q is finite on mass-bounded sets, we may choose u so that [udQ € (0,00),
and cancelling it from (5.1) concludes the assertion.

Claim 3: d(e*") = d(e®)" for everyr € R and every a € By(X). Forr € Z, the
assertion holds since a — d(e®) is a group homomorphism. The case r € Q follows
from the case r € Z by a standard iteration argument. The case r € R follows from
the case r € Q by the continuity of @ — d(e®) in Claim 1.

Claim 4: the assignment
(5.2) a: A —logd(e'4)

defines a finite non-negative Borel measure on X with total mass § > 0.  Since
14 > 0, we have by Claim 1 that d(e'4) € (0,1] so that A > 0. Again by
Claim 1 we get that § = aX = —log(d(e)) > 0 and «(@) = —log(d(1)) = 0.
Since e* — d(e%) is a group homomorphism, « is finitely additive on pairwise
disjoint sets. We are only left to show that o is countably additive. Let (A;), be
any countable pairwise disjoint collection of Borel subsets of X, and set A := U; A;.
For each n € Ny, define a finite partition (B}'),., of A by setting B} := A; ifi <n
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and B! := U;>, A;. It suffices to show that d(e'4) = [7° d(e'4:). We have

(53) atet) = [Jdte" ) = deto) [ det)

Since 1 g is pointwise non-increasing to 1y = 0 and uniformly bounded by 1, by
Claim 2, we have lim,, d(e"##) = d(e®) = d(1) = 1. The claim is proved by letting n
to infinity in (5.3).

Conclusion. ~ We now detail some arguments in the proof of [92, Thm. 4.2].
For k € Z let A, = {u eM(X): 2k <uX < 2k+1}. Since 2 - Ay = Ak we

have Q(Ag11) = d(2) 1 Q(Ax), hence Q(Ax) = d(2)~*Ay. Then, since Q({0}) =0
and d(2) < 1 by Claim 1,

(5.4) ke = /e*tﬂxdg(u) < Z Q(Ap) d(2) Fexp(—2Ft) <00, t>0.
keZ

Choosing t = 1 proves (i). Furthermore, (5.4) states that the Laplace transform
of Q is finite on constant functions, and it is readily verified that it is finite on all

positive simple functions: if N € Ny and A4, ..., Ay is a pairwise disjoint partition
of X we set
N
= ; > i ; = = HN
ug Z;mlAl > min tilx =tlx, (t1,...,tx) € (RY)
i—
We have

L(t) = /e‘f“f drdQ(p) < /e_ﬁ“XdQ(/ﬁ) < 400 .
For every t > 0,1 <j < N and s,t € (RT)Y let us set
bj,t = ]lX\Aj +t1 Aj, sot = (Sltl, SQtQ, ey SNtN) s

and observe that

N
Usot = Ut H bi,si .
i=1

‘We have

L(sot) = / et ueordnqQ(u) = L(t) [[ d(bis,)

=1
N N
= L) [J (e M) = L(t) [T (et
=1 =1
by Claim 2, so that
N
(5.5) L(sot)=L(t) []s; """,
1=1

with v :== N(a). We deduce that

N
/e—f"t WdQ(u) = L(t) = L(1,1,...,1) - [[ ;"
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N

-k H 10 v(Ai)

i=1

= kq exp (—9/logut dy) .
Thus

(5.6) / o= T U RAQ(1) = ky exp (—e / logudy>

for every positive simple function u. By a standard approximation argument, we
deduce that (5.6) holds for every Borel function u: X — [0, +00].

Now, define a measure Q, on M(X) by dQ. () = k7 e #XdQ(u). Note that Q.
is a probability measure by (7).

Choosing v = 1 +v in (5.6), we deduce from (5.6) that

/e*f”d”dQ*(u) = exp (9/log(1 + v)dy)

for every Borel function v: X — [0,4+o00]. By the uniqueness part in the general-
ized Bernstein theorem for Laplace transforms of probability measures (on abelian
semigroups [18, §47, p. 261] or on continuous bounded functions [47, Thm. 2.3]), to-
gether with the Laplace transform characterization of the Gamma measure, e.g. [92,
Eqn. (7)], we conclude that Q. is the Gamma measure Gy, with intensity mea-
sure o = Ov. It then follows from [92, Eqn. 9] that Q = k; Ly, which concludes
the proof of the representation in (7ii) for the measure oo = v in (5.2).

It remains to show that the measure « in (5.2) satisfies the representation in (i7).
Since Q. = Gy,,, the representation follows by definition of intensity measure, see
also (5.9). O

Corollary 5.3. Let Q be a non-negative projectively M(X)-invariant Borel mea-
sure on M(X) such that QB, € RY for some r € R*. Then, either Q = agdo
or Q@ = a1Lg, for some constants ag, a1 > 0, some constant 0 > 0 and some Borel
probability measure v on X.

Proof. Assume by contradiction that Q charges both {0} and its complement. In
this case, the restriction of Q to {0} is invariant, so that the measure Q too must
be invariant. Thus the restriction of Q to M(X)\ By is invariant. Since by Propo-
sition 5.2 the only non-negative (non-zero) projectively invariant Borel measure on
M(X)\ By giving finite mass to some ball is the multiplicative infinite-dimensional
Lebesgue measure, and the latter is not invariant, we conclude that the restriction
of Q to M(X) \ By is the zero measure. O

Proposition 5.4. Let G < &(X) be any subgroup. Then, Ly, is invariant for the
(Cy)-action of G on M(X) if and only if v is invariant for the natural action of G
on X.

In particular, if X has a structure of smooth, connected, orientable Riemann-
ian manifold (M,g) with finite volume voly and Lg, is invariant for the (Cy)-
action on M(M) of the group Diff{ (g) of all compactly non-identical, orientation-
preserving, volg-preserving diffeomorphisms, then v = voly.
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Proof. Assume first that Ly, is invariant for the ((y)-action of G. Then, for ev-
ery v € G we have

Bugw = 1y / () e XL, (1) = / (a)(-) e~ X dLy ()

- /,LL( °) eiﬂdeﬁtiﬁG,U(H) - /'u( *) eiﬂxdﬁﬂu =0v.

Since € > 0, this shows that (yv = v, that is, v is invariant for the natural action
of G on X.

Vice versa, assume that v is invariant for the natural action of §(X) on X. By
Proposition 5.6 below, for every ¢ € G we have

)

LﬂﬁLO,u = ﬁG,Lul/ = EG v
This concludes the proof of the first assertion.

Now, assume that X = (M, g) and that Ly, is invariant for the (Cy)-action of
Diffd (g) on M(M). Tt follows from the first assertion that v is invariant for the
natural action of Diff{ (g) on M. Thus, it suffices to show that v o volg, which is
shown in Proposition B.4 below. ([

5.1.2. Functoriality. We collect here some facts about the functoriality of the as-
sighment o — L, x n(a), greatly extending the convolution property of 6 — Ly,
in Proposition 1.4(7).

Let a € M(X) and denote by M(X)* := M(X)\{0}. In order to state the next
results, it is convenient to write L, = L, x N(a)- For a Polish space Y, we denote
by M, (Y) the space of all non-negative o-finite Borel measureson Y. If Y = (Y, +)
is a cone in a topological linear space, we define the convolution of Q1, Qs € M,(Y)
by

(5.7) (Q1 % Q2)A = /Y La(yr +y2)dQa(y1)dQ2(y2)

with A C Y Borel. Since Polish spaces are strongly Radon, the existence of the
convolution of o-finite (Radon) measures follows similarly to the proof of the same
assertion for (Radon) probability measures in [93, Prop. 1.4.4, p. 64].

Corollary 5.5 (Convolution property). The assignment (M(X)“‘, +) Sa— Ly €
(Mo (M(X) )T, %) is a homomorphism of magmas, that is

£a1+a2 = Eal *Lag y 1,0 € M(X)Jr .

Proof. Tt is readily seen that the convolution L, * L,, satisfies all the assump-
tions in Proposition 5.2. For example, let us briefly verify the projective 9t(X)-
invariance. From (5.7), for every Borel A C M(X), for every a € By(X),

(e")4(Lay * Lay)A :/1(ea.)*1(A) (11 + p2)dLa, (p1)dLa, (p2)
:/1A(ea-ul +e%.p2)dLa, (1) dLay (12)
= [ Lalin + 1))y (1) A (1)

— dy (") da(e?) / La(pir + p2) AL, (1) ALy (1)
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= dy(e")dz(e")(La, * Lay)(A)

where, for i = 1,2, we set d;(e?) := %, so that there exists % =
o oy %Ly

d1 (e“)dg (e“).

Thus, by Proposition 5.2, we have L, * L4, = k1L, for some a € M(X)" and
some constant kq > 0, and it suffices to show that & = a; + a9 and k; = 1; we show
only the first assertion, the proof of the second is similar. By Fubini’s Theorem,

[ uye e, L) = [ () + o)X P L (1) Lo 2
= [ (e XdLn, ) [ L)

+/u2(~)e’“gxdﬁaz(u2) /e"“xﬁal(m)
= (o1 +a2)(+)
again by Proposition 5.2. |

Proposition 5.6 (Mapping theorem). Let X and Y be Polish spaces, and f: X —
Y be a Borel function. Then, for every a € M(X),

FiLo =Ly

Proof. Let o = 0v with § :== aX > 0 and v := N(«) € P(X). It suffices to combine
the representation of £, = Ly, in (1.18) with the Mapping Theorem [21, Thm. 3.9]
for the Dirichlet—Ferguson measure D,,. O

5.1.3. Mecke identity. As it is clear from the study of the simplicial part D, of Ly ,,
and of the Gamma measure Gy ,, the characterization of such measures via Mecke-
type integral identities plays a key role. A similar, strikingly simple identity holds
as well for the multiplicative infinite-dimensional Lebesgue measure Ly , .

Proposition 5.7 (Mecke identity for Lg,, ). For every Borel measurable F': M(X)x
R x X — [0, 0],

/ [/X Flu, o 2) dﬂ(w)} Lo, (n) =
o [ s shes ey dsave] acanin

Proof. Recall the Mecke identity for the Gamma measure Gy, e.g. [25, Eqn. (2.4)]
viz.

(5.9)
/ [ /X G(M»wa)du(x)} dGo . (1) =

9/ {/X /000 G(p + 86z, s,x) e °ds dy(m)} dGo., (1) ,

and recall that dLg , (1) = e*XdGy (1), see e.g. [91, p. 165] . Applying the above
identity to G(u, iz, *) = e*X F(p, p1,, ), we then have

/ UX F(mux,x)duX} AL, (1)

(5.8)
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= 0/ /X /000 eHHs0)X P14 56,5, 2) e *ds dl/(x)] dGp., (1)
= 0/ _/x /OOO F(u+ $b,,s,x)ds dl/(:z:)] e"*dGp., (1)

= 9/ /X /000 F(u+ sby,s,x) dsdl/(x)] dLo (1) ,

which is the assertion. O

Lemma 5.8. The set
(5.10) N = ev 1 ((0,4+00)) = {(, ) : ptz >0} C M(X) x X
is Borel measurable and Ly, ® v-negligible.

Proof. Since the map ev: (p, ) + i, is Borel measurable on M(X) x X the set N/
is Borel measurable. Furthermore,

L/ uxdEaAu)=i/ L/ ne dDy (n) ¢ dAg(2)
M(X) 0 P(X)
:um/ tdXg(t) =0,
0

where we used the identity [ 7, dD,(n) = v, in [32, Prop. 1, p. 214], and the fact
that v is non-atomic. Thus, the section N, = {u € M(X): (u,x) e N} is Lg -
negligible for each x € X. Since a Borel measurable set with negligible sections is
negligible for the product measure, the conclusion follows. ([l

re X,

Throughout the rest of this section, let (M,g) be a smooth, connected, ori-
entable, complete Riemannian manifold with Riemannian distance d, and Rie-
mannian volume measure vol, and let p € C;°(M) be so that p > 0 everywhere
on M and v := pvol, is an element of Py (M), i.e.

vM =1 and /d2 dv < oo for some xg € M .
M

g;%o

We refer to the triplet (M, g,v) as above as to a weighted Riemannian manifold.
Finally, for every function f € C}(RS x M) and every (s,z) € Ry x M, set

F(s,2) = (0:f)(s,2), V(s,2) = (Vof)(s,2), Af(s,2) = (Auf)(s,2) -

In the following, we will make use of standard definitions and results in theory
of Dirichlet forms. We refer the reader to the monographs [37, 61] for a standard
treatment.

5.2. Extended cylinder functions, extended form. The following sets of cylin-
der functions will be instrumental to the proof of Theorem 1.7.

Definition 5.9 (Cylinder functions of reduced potential energies). For every f €
Cy(Ry x M), we define

(5.11) fwwa@ﬂ%@wm, ie M(M) .
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We also define the following sets of cylinder functions for € € [0, +00):
i=Fof*, FeC/"(R",R),
1
FiiCy? = a:M(M)—HR{:keN,f::(fi)ogi§k7fozl, ,
fieCP2(Ry x M) for 1 <i<k
and
i=Fof*, FeC/"(R",R),
1
ForCpr =qu: M(M) - R: keN, fi= (fi)ogigk ,fo=1,
fie 2 ((e,00) x M) for 1 <i <k

where my,my € NU {oo} and § stands for either b for bounded or ¢ for compact
support. Clearly

FoC2 C FC% C FoC2 C FC), >0,
and
FLooCe ¢ FOC

Let us start by showing that cylinder functions of reduced potential energies are
dense in L?(Ly,,), so that all forms in the following will be densely defined.

Lemma 5.10. The following assertions hold:

(1) all functions in ff(:’? are Borel measurable;
(41) Fou°Ce is dense in LP(Ly,,) for every 0 >0 and every p > 1;
(#i7) fgoc:?jg) is dense in LP(Ly ) for every 6 >0 and every p > 1.

Proof. (i) It suffices to show that functions in .7-'8@ are Borel measurable. The

assertion for functions in .7:1?(?,9 follows by approximation. By [30, Rmk. 2.6], all
functions of the form (5.11) with f € C.(R* x M) are continuous w.r.t. the weak
atomic topology introduced in [30]. In particular, since as noted in [30, p. 5, below
Eqn. (2.3)], the Borel o-algebra of the weak atomic topology on M (M) coincides
with the Borel o-algebra of the narrow topology on M (M), these functions are Borel
measurable. It follows that all functions in FOC? are Borel measurable, being the
composition of a continuous function F' € CO(R*+1;R) with the Borel measurable
functions fl* , 1 <i <k and with the Borel measurable function fg =1~

(#7) Let u € LP(Ly,,,) and set, for every k € N, Qp = X Lg,,,, where X}, = 01"
and ¥, € CX(RY) with suppd, C [0,k] and 9) 1 1 as k — +oo; note that
Qr < Ly, is a finite non-negative Borel measure. Arguing as in [81, Lemma
2.1.27], we see that we can find sequences (ﬁﬁ)n C Fou2C such that k¥ — uin
LP(Qy) as n — +oo. Setting u® := uXy, and uf = @Fxy, k,n € N, we see that
uf € F2ooC, uf — uF in LP(Le,) as n — +oo and uf — w in LP(Ly,) as
k — 400. We conclude by the diagonal argument in L?(Lg ).

(ii1) By (ii), it suffices to show that any u € F2°°C° can be approximated
in LP(Ly,) by functions in ffo(?g‘é). So let u = Fof* for F € CP(R¥1!) and
f=(1,f1,..., fr) with f; € C°(M) for 1 <1i < k € N. We set, for every n € N,

(5.12) Uy = F o (1%, (00 ® f1)*s - (00 ® fi)*) ,
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with g, € C2(RT), 0 < 9, /1, and supp 0, C [1/n,n]. Clearly @, € F°C% and
it is not difficult to see that

p
lu—iinl, z, ., < RLF))? (max ||fz-||oc) /B [ leali) =1 dp(w) a0 1)

1<i<k

where r > 0 is such that supp F' C [—r, r]**1. By Dominated Convergence Theorem
we conclude the assertion. O

Let us now show that Ly, fits the abstract framework of §1.2 in that it is
partially O.«-quasi-invariant. Whereas we will not make explicit use of this fact in
the following, we believe it to be of interest in its own right, from the representation-
theoretical point of view detailed in §1.3.1.

Firstly, we note that it is not restrictive to relax the definition of partial quasi-
invariance in the following way. Let (%;),. be the filtration in Definition 1.3(d),
and denote by #, its terminal o-algebra. Rather than requiring %, = %, it
suffices to let A C Q be Q-conegligible and to require that %, = %4, the trace
o-algebra of .# on A. In the present setting, note that Ly, is concentrated on
the subset MP?(M) of purely atomic measures, since D, is concentrated on purely
atomic probability measures (e.g. [32, Thm. 2, p. 219]). We now choose A =
MP2(M) in the above reasoning.

Proposition 5.11. For every § > 0, the measure Ly, is partially quasi-invariant
under the Oy -action of &(M) := Diffd (M) x* exp[C(M)].

Proof. Since Ly, is projectively invariant w.r.t. the O. of exp[C®(M)], and since
the push-forward of measures is homogeneous (in fact, linear), it suffices to show
that Ly, is partially quasi-invariant under the Cy-action of Diff (M). Since the
action (Ox-) splits over the decomposition (1.1), it suffices to verify that there
exists a filtration F, == (F),cp of MP*(M) with the following properties: (a) the
terminal o-algebra %, of %, coincides with the Borel o-algebra of MP*(M); (b) Z,
is J-saturated, i.e. #; = (J~1 o J)(Z) for every t € T; (c) the simplicial part D,
of Ly, is partially quasi-invariant w.r.t. the split action (%) on PP*(M) for the
image filtration J(F,) = (J(F1)),crp-

To this end, let T := [0, 1] be unit interval with the reverse of its natural order,
and let 7 = a(ffOCA‘c’fjg) be the o-algebra generated by the family of cylinder

functions in Definition 5.9. Note that %, = 0(]:30(:’\007%), and recall that it generates
the Borel o-algebra on MP?(M) as noted in the proof of Lemma 5.10.
Finally, it was shown in [23, Prop. 5.20] that Dg is partially quasi-invariant under

the (y-action of Diff§ (M) for the filtration (%;),c, with #, = a(ffOCACOft). O

For each &t = F o f* € ]-}9@70 define a function
(5.13) U: M(M)x M xRT - R, U: (p,x,8) — a(p+ 8d;) .

It is not difficult to show that the map (u,x,s) — u+ s, is continuous. This fact,
together with Lemma 5.10(¢), implies that U is Borel measurable.
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5.2.1. Vertical differentiability of extended cylinder functions. Define an operator
(Cver,}'é’ng”%) by

(£¥erir),, = / 8§’s:uma(“ + 805 — po0z)dp() -

M e FC -

+ 9/ | _(p + 56,)dv(z)
M

Proposition 5.12. The form (Evcr,ffc}%) defined as
gver(,&7@) — /<(Vver,&)u | (Vverﬁ)H>Tl“ dﬁe,y(ﬂ)
= [ ] (7 @) (700 ) dLo ()

is well-defined and closable on L*(M(M),Ly,). Its closure (E"er,_@(EA"er)) is a
closed bilinear form with generator the Friedrichs extension on L*(M(M), Ly,) of
the operator (E"er, ]-'COOC;?%).

In order to prove Proposition 5.12 we shall need several auxiliary results on
the differentiability of functions on M(M). Some of them may be inferred from
the general computations for derivatives on spaces of measures in [76], or from the
analogous results on the differentiability of functions on P (M) in [23], but we report
them for ease of reference.

Lemma 5.13. Fiz i = F o f* € FOCOy with F: R¥' — R . Then,

() if u is in .7-'61(/,’2’0, then for Ly, ® v-a.e. (u,x) the function s — U(u,x,s)
as in (5.13) is differentiable on R™, and, for every s € R,

(5.14)
k

U (1, w,5) = S (OF) (E*(u + 50,) [ fi(s,2) + 5fl(s,2)]| Loy @v-aie.
i=0
(i) if 4 is in .7:62@270, then for Lo, @ v-a.e. (u,x) the function s — U(u,x,s)
as in (5.13) is twice differentiable on R™, and, for every s € RT,

(5.15)
k.k

20 (s, ) = - (OFF)(F(u+ 62)) s, 2) + sfi(s,2)] [ fi(5.2) + ] (s, 2)]
i,j=0

k
+ Z(@F) (£ (u + 56,)) [Zfz’(s, z) + sfl (s, x)] Lo, @ v-a.e.

=0

In particular, the left -hand sides of (5.14) and (5.15) are Borel measurable.

Proof. (i) Fix f € CL(RT x M). Let N be as in (5.10) and recall that it is Ly, © v-
negligible by Lemma 5.8. For every (u,z) € N, for every s € R,

as [f*(ﬂ + 351)} =

= 0, [/ Fluy +s1a(y),y) duly) + sf (pe + 5,2)
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hence, by definition of A/, continuing the above chain of equalities,

= 0. | [ fley) aut) + 570,
= f(s,x) + sf'(s,x) )

We used that, since f € CJ(-, ) has compact support in R* away from 0 uniformly
in x € M, and since the total mass of u is finite, every integral above is in fact a
finite sum, hence we may freely differentiate under integral sign.

On the complement of the Ly, ® v-negligible set AV, the equality in (5.14) for U
readily follows from the above equality and the standard chain rule.

(74) A proof is similar to the one of (i) and therefore it is omitted. O

Lemma 5.14. Fiz i = F o f* € ]:CICEO with F: R¥1 — R . Then, for ev-
ery (u,z) € M(M) x M there exists

k
(5.16) (V< @)u(2) = D OF)E () 1ol (12 2) + filpias )]
=0
and
(5.17) (VYra),(x) = 88’S:“mU(u,x, s) Ly, Qu-a.e.

where U is as in (5.13).
Proof. Fix f € CL(RT x M). For every ¢ € C°(M) we have

(06 = Ao f* (") = / i,y [F(e ) iy, 2) )] dpu(a)

— / letmm) 12(2) F (90 iy, ) 90)

+ f (e, ) aﬁ(x)e“’(z)] | —odn(@)

= [ [0 1z12) + Fps )] 60) (e

We used that, since f € C}(-, ) has compact support in R* away from 0 uniformly
in x € M, and since the total mass of u is finite, every integral above is in fact a
finite sum, hence we may freely differentiate under integral sign.

By arbitrariness of ¢ € C2°(M) and density of CZ°(M) in T);°" for every u €
M(M), we have

(V) @) = [af (s ) + Flpia )]

which clearly belongs to L?(M, ).

The equality in (5.16) for 4 readily follows from the above equality and the
standard chain rule. The equality in (5.17) holds by comparison of (5.16) and (5.14)
also using the fact that p, = 0 for Ly, @ v-a.e. (i, ). O



74 LORENZO DELLO SCHIAVO AND GIACOMO ENRICO SODINI

Proof of Proposition 5.12. Fix @ = Fof*, o = Gog* € FEOCACO,‘E) with F': RFH1 5 R
and G: R"*1 — R. Then, by definition of £** and by (5.16),
€9 (1, 0) = / (V¥ i) | (F0),) gl (1)

k

://M [Z(&F)(f*(u))[Mmf{(ux,x) + fi(p, )]

=0

)) [ng;'(/lwv x) + gj (Mza JJ)]] d/,L(I) dLG,V(M)

M-
)

hence, by Proposition 5.7 and by (5.14),
_9// / [ (’)F (F* (1 + 6, ))[rf{(r,:v)—i—fi(r,x)}
. Z(ajG)( g (u+1dy)) [Tﬁé(r, z) + g;(r, m)]} drdv(z)dLe, (1)

= 9//M /0OO Opti(p + 10,) Op0(p 4 1rdy) drdv(z) dLg (1) -

Integrating by parts on RT and applying both (5.14) and (5.15),

—9// A(p + 165) 0p0(p + 165)] i

—9/// (p + 78, a2|3_ O(p + s6,) dr dv(z) ALy, (1)
_ _e/a(u)/ Ou| (1 + 58.)dw(x) AL, (1)

fa/// j+70,) 02| o+ 58,) dr du(z) L , (1)
= =0 [ i) [ 8] _qbtu-+ s8)dvle) dLo )

0 [ [ et 6 2]+ 182) + s 1) dr () L ()
_ 70/ (u /ay o+ 50,)dv(x) ALy , (1)

— [t [ 021, 0+ 582 — pa) o) L)

where we used that 4 vanishes outside a ball of the origin in M(M) to cancel the
boundary term at r = co. Furthermore, for £y ,-a.e. u,

/a\ B+ 56,)dv(z)

=00

( )dEGV( )

= /M Z(&-G) (8" (1) 0s|,_, [/ 9i(py, )i o (y) + (e + $)9i (e + 5, @) | dv(z)
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h
N / > (0:G) (& (1) (12 (1 ) + Gi (e, )] dv(2)
My

h
= /MZ(@G)(Q*(M)) [6:(0,2)] dv(z)

since p, = 0 for Ly, ® v-a.e. (i, ) by Lemma 5.8. Since §;(0,z) = 0 for every g,
and every x € M by definition of o = G o g* € ]—'é’o(/f\g%, we conclude that the
boundary term at » = 0 vanishes too, £y ,-a.s. Thus, cancelling this boundary
term in the above chain of inequality we obtain the desired assertion

_ Lvel‘/ﬁ

¥ (@, 0) = (@

>L2(£9,V) ’

Since ]-'005 is dense in L?(Lp,,) by Lemma 5. 10(iii) the above equality shows
at once that E"er]:ooC C L?*(Lp,,) and that (L’"er FoC %) generates (7, fEOCA‘C’%)
Thus, (5"‘“, ]-"SOCC,O) is closable and its closure (Ever, .@(Sver)) is generated by the
Friedrichs extension of (Ever,ffoé\c"ff)) by [74, Thm. X.23]. O

5.2.2. Horizontal differentiability of extended cylinder functions. Define an opera-
tor (Ehor, fgocgoo) by setting for every p € M(M)

= ()

vl
N <( 0gp>
ev M

Proposition 5.15. The form (Ehor,ffoCA;Oo) defined as

Az 7 + 152_ m(sz
o = [ Aelematltreh — o)
M

(Vh‘”ﬁ)#> , e FXC.
Thor M(M)

5hor(a’1}) — /<(Vhorﬁ)# | (Vhorﬁ)#>Th°ru dﬁg,y(u)
= [ [ () [ (90 0),0),, duto) Lo )

is well-defined and closable on L*(M(M),Ly,). Its closure (/\hor (9’”)) is a
closed bilinear form with generator the Friedrichs extension on L>(M(M), Ly,) of
the operator (Ehor, fgocgo).

In order to prove Proposition 5.15 we shall need several auxiliary results.

Lemma 5.16. Fiz 4= Fof* € .FOCCO with F : RETY 5 R . Then,

() if 4 is in ]—'1C60, then for Lo, ® v-a.e. (u,z) the function z — U(u, z,s)
as in (5.13) is differentiable on M at z, and, for every s € RT,

k
(5.18) V.U(p, 2,8) = SZ(@-F) (f'*(u + 352))Vﬂ-(s, z) Ly, Q@u-a.e. ;
i=0
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(i3) if @ is in ]-"CZCEO, then for Lo, ® v-a.e. (u,z) the function z — U(u, z,s)
as in (5.13) is twice differentiable on M at z, and, for every s € RT,

k
AU(pyz5) =8 Y (O5F) [ (n+82)) 9: (V fils, 2), V fj (s, 2)
(5.19) R
+s Z(&F) (f*(u + séz))Aﬂ-(s, z) Ly, Q@v-a.e.
i=0

In particular, the left-hand sides of (5.18) and (5.19) are Borel measurable.

Proof. (i) Fix f € CL(RT x M). Let A be as in (5.10) and recall that it is Ly, © v-
negligible by Lemma 5.8. For every (u,z) € N, for every s € RT,

V. [f(u+s8.)] = V. —/f(uy +s1.(y),y) du(y) + sf (. + s, Z)]

hence, by definition of A/, continuing the above chain of equalities,

=V. _/f(uy,y) du(y) + Sf(s’z)]

On the complement of the Ly, ® v-negligible set AV, the equality in (5.18) for U
readily follows from the above equality and the standard chain rule. (i) A proof is
similar to the one of (i) and therefore it is omitted. O

Lemma 5.17. Fiz 4 € ]:Clé\cl,o. Then, for every (u,x) € M(M) x M there exists

&
(5.20) (V") (x) = Y (0iF) (B (1)) V fi(ptr, 7)
i=0
and
(5.21) (Vhora) . (z) = pug 'V, ’Z:IU(,u, Z, lg) Loy @v-a.e.

where U is as in (5.13).

Proof. Fix f € CL(R* x M). For every w € X>°(M) we have
O f )= di|,_o fF* (0 ,11) = dt|t:o/f((wzvn“)y’y)dwuu“(y)
=dif,_, / FI@P 1) g (4 01 () dialy)
= /dtltzof(uy,wi“(y))du(y)
=/gy(Vf(uy,y),wy)du(y) :

We used that, since f € CY( -, x) has compact support in R away from 0 uniformly
in x € M, and since the total mass of u is finite, every integral above is in fact a
finite sum, hence we may freely differentiate under integral sign.
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By arbitrariness of w € X2°(M) and density of X2°(M) in T}°" M(M) for ev-
ery u € M(M), we have

(VP ) (@) = YV (pa, 2) -

The equality in (5.20) for 4 readily follows from the above equality and the
standard chain rule. The equality in (5.21) holds by comparison of (5.20) and (5.18)
also using the fact that u, =0 for Ly, ® v-a.e. (u, ). O

Proof of Proposition 5.15. Fix 4 = Fof*, 0 = Gog* € ffoé\co)% with F: RFH1 5 R
and G: R"*1 — R. Then, by definition of £ and by (5.20),

(i 6) = [ (V") [ (V70),) gy o 1)

k
_ / /N ng(2(@F><f*<u>>vfi<ux,x>7

=0
h
> (03 (1) V5 (e x)) dp(z) dLg,, (1)

J=0

hence, by Proposition 5.7 and by (5.18),

= 9//M/ 9(Vat(p +165), Voo (u+18y))dr duv(z) Lo, (1) -

Now, we integrate by parts on M. Since M is boundaryless, no boundary term
appears. Since the fi’s and the g;’s are compactly supported in the M-variable,
no boundary term at the infinity of M appears either. Thus, continuing the above
chain of equalities

——0 / / / A +ry) dive|_ [p(2) Vo (p + r6.)] drdvoly(z) dLe,, (1)
:—0//M/ (e + 16, [g(vz|m ), V.| o +76.))
2) .| o(u+ 76, )} dr dvol,y () dLo., (1)
:-9// / i(p+r6,) [g(VZ’Z:xlog( )), V|, 0 +76.))
AL i(u s )] dr dv(z) dLo.. (1)

:—0//M/ 4+ 16,)

. [g(VZ‘Z:mlog( 2)),V. | o((u+rdy) + 16, —16s))
+ A0t 6,) + 10, = 16,) | dr du(@) dLo (1) |
and, applying again Proposition 5.7,
= —/ﬂ(u) /MMI_2|: ((Viogp)a: Va|,_, (1 + pads — p1202))

F AL B+ pads — Mwaa:)} dp(z) dLo (1)
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= (@
Since ]:SOCACC’% is dense in L?(Lyp,,,) by Lemma 5.10(ii4), the above chain of equal-
ities shows at once that Bl°ffg°€g§) C L*(Ly,) and that (Zﬁhor,}'fo(?c"f(’)) gener-
ates (77, F°C). Thus, (£M°7, F2°C2%) is closable and its closure (EM°7, 2(EM"))
is generated by the Friedrichs extension of (E‘Or,Fé’oé\c"%) by [74, Thm. X.23]. O

5.2.3. Extended form. In light of Lemmas 5.14 and 5.17,

T (i, 0), = / [9((V"0) 0, (V770) ) + 4(VY0) (VYD) ] dps

/\horA
— L v>L2(£9,V) .

is a well-defined bilinear form on ffOCACO% Analogously,
(Liu = (L") + 4L ),
is a well-defined operator (EA, fgo(?ﬁ)).
Proposition 5.18. Fiz 0 > 0. The bilinear form (E,ISOCACO"(’)) defined by

£(a,0) = /fv,@) ALy, ,  a0eFRCS

is closable on L*(Ly ). Its closure (g, @(g)) is a Dirichlet form on L*(Ly,,) gen-
erated by the Friedrichs extension (Z, @(EA)) of the operator (2, ]:goé\g%)

Proof. Since ff"(?g% is dense in L?(Ly,,) by Lemma 5.10(iii), by Propositions 5.12
and 5.15 the operator (L, F°Co%) satisfies LFCSy C L2(Lo,) and generates
(S,ffoé\é’%). Thus, (5,]:30(/',’;0%) is closable and its closure (SA, @(g)) is generated
by the Friedrichs extension of (E, ngCACO%) by [74, Thm. X.23].

By the chain rule for V consequence of Lemmas 5.14 and 5.17, the Markov
property holds on the Markovian core F2°C2%. This suffices to conclude the Markov
property for (g, 9(5’)) by, e.g., [61, Prop. 1.4.10, p. 35]. O

-~

Finally, let us show the relation between the domain 2(€) and standard cylinder
functions.

~

Lemma 5.19. Fiz 0 > 0. Then, FLICl C 2(€).

c,c e

-~

Proof. We show that F2,°°C® C 2(€). The conclusion for less regular cylinder
functions follows by approximation in a straightforward way.

For u = Fof* € F2uo°C° with F: RFL - R, let i, € ffOCAé’OO be the sequence
of extended cylinder functions L?(Ly ,)-converging to u defined as in (5.12) with
on additionally satisfying
(5.22)

l[Q/n,n—l/n] <on < l[l/n,n] and |Q;1| < 2”(1[1/n,2/n] +]l[n—l/n,n}) .

By a standard lower-semicontinuity argument, see e.g. [61, Lem. 1.2.12, p. 22],
it suffices to show that sup, &(i,) < oco. By definition of (£, Z(E)) we have
sup,, E(i,) < sup, £ (di,) + 4sup, £Y(d,). Let R > 0 be so that supp F C
[0, R]*+1. Using (5.20) and the fact that |o,| < 1, it is not difficult to see that

sup £ (i) < KL (F) max |V fil; co R Lo, (Br)-
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We are left to show that sup,, £ (i) < oo.
By (5.16),

gver(ﬁn) - //M

< KLV a5l [ [ uadhne) + o) ) Ao )
= Br J M
=C\y
6:23) <20 [0 [ Inetn@ dute) o)+ 200 [ [ duacau
M rRJIM

where we used that |g,| < 1 in the last inequality. The second summand above is
bounded by 2C, R Ly, (Br), which is finite by Lemma 5.1 and independent of n.
As for the first summand, by the Mecke identity (5.8), and by (1.18),

/ s, (1) /M oy () dpa() L (1)

2

k
Z(&F) (£ (1)) [110 0 (112) + 00 (112)] fi ()| dpel) AL (1)

= 9//M /Ooo L, (1 + $02)5% |0, (s)|” ds dv(z) dLo, (1)

:eVM/ //n[O,R](Hs)|Q;(s)\252dsdA9(t)dDV(n)
oy Jo Jo

R R—t
(5.24) :9/0/0 s2 10, (s)]> ds dAg(t) .

Then, by the estimate for |g/,| in (5.22) we have, for alln > R+ 1,
2/n

R R—t ,
/ / s |0, (s)]” ds dXg(t) < Ag([0, R)) (2n)2/ s%ds
o Jo

1/n
10n"*Xg([0, R]) = 10n" Ly, (BR) -
Finally, combining this latter estimate with (5.23) and (5.24),

IN

(5.25) sup EV' (i) < 2Cy, Lo, (Br) [R +100] < oo ,
n>R
which suffices to conclude the assertion. O

5.3. Identification of the canonical form and the Cheeger energy. We now
turn to the identification of the geometric and metric measure structures on M (M ).
In this section we prove our main results Theorems 1.7 and 1.10, recalled below.

Theorem 5.20. Let (M, g,v) be a weighted Riemannian manifold as in the begin-
ning of §5. Then, for every 6 > 0,
(i) the form (€, Fgu°°C2°) is densely defined and closable on L*(M(M), Ly,,);
(i1) its closure (E£,2(€)) is a (symmetric) conservative strongly local Dirichlet
form on L*(Lq,,);
(731) (&€, 2(E)) is recurrent if @ € (0,1] and transient if 6 € (1,00);
(v) (€,2(8)) is quasi-regular and coincides with the Cheeger energy of the met-
ric measure space (M(M),HKq,, Lo, );
(v) (€,2(E)) is properly associated with an Lg ,, -invariant Hunt diffusion pro-
cess (e With state space M(M), recurrent if 6 € (0,1] and transient if 6 €
(1, 00).
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Remark 5.21. Assume dim M > 2. Arguing similarly to the proof of [23, Cor. 5.19,
Lem. A.20], it would be possible to show that F2u°°C is in fact a form core
for (EA, @(f)) so that, in fact, the forms (5, @(5)) and (é’\, @(f)) coincide. The
details of this identification, instrumental to a complete description of the Vershik
diffusion, will be addressed elsewhere.

Proof of Theorem 5.20. The proof will require several auxiliary results which are
collected below and in Appendix A.

Proof of (i).  The closability of (5,]-'2%00(330) follows from Proposition 5.18.

~

Indeed, we have F20°C® C 2(€) by Lemma 5.19, and closability is inherited by
restrictions. It is shown in Lemma 5.10(ii) that Fo%°°C2° is dense in L*(Lg,, ), that
is (5,]—'3%“’(3(‘:’0) is also densely defined.

Proof of (ii) and (iii). ~ Since F2°°CZ° is closed under post-composition with
smooth functions, Z(€) is a Markovian subspace of L?(Ly,), and therefore, for
every u € F2u°C°,

~

Eu) = Eu) .

<
By, e.g. [61, Prop. 1.4.10], this suffices to establish that (£, Z(€)) has the Dirichlet
property.

Conservativeness is shown in Lemma 5.27. Locality follows from the diffusion
property for (5 , fg;’ooch) which is readily verified, or else from the identification
with the Cheeger energy in (iv). Strong locality follows from locality and conser-
vativeness, see e.g. [37, Thm. 4.5.4, p. 187].

Recurrence if § € (0, 1] holds combining Lemma 5.28 and Lemma A .4. Transience
if # € (1,00) holds combining Lemma 5.29 and Lemma A.4.

utA1e 2(E) and Et Al)=E(ut A1)

Proof of (iv).  Let X := (M(M),Hq,,Ls,). On the one hand, it follows from
Proposition 5.2, Corollary 4.17 and Proposition 4.7 that CEs x extends (£, 2(£)).
On the other hand, H%?(X) coincides with the closure of FoaCe by Corol-
lary 4.17, thus it must be (€, 2(€)) = (CE2x, H"*(X)). Since the Cheeger energy
of a (o-finite Radon) metric measure space is always quasi-regular by [27, Prop. 3.21]
(also cf. the proof of [80, Thm. 4.1]) and local, we conclude that (£, Z(£)) is quasi-
regular and local.

Proof of (v).  All assertions follow from (7)-(iv) and standard arguments in the
theory of Dirichlet forms. O

Let us now turn to the proof of recurrence, transience and of conservativeness,
which will complete the proof of points (i7), (ii4) and (v) in Theorem 5.20. Note
that we will however make use of point (7) in Theorem 5.20 and that (£, 2(&))
is a (symmetric) local Dirichlet form on L?(Lg,): both facts have been proven
above without relying on recurrence, transience, conservativeness and point (v) in
Theorem 5.20.

In the rest of this section we will make use of the following classical charac-
terizations of recurrence and conservativeness, see e.g. [37, Thm. 1.6.3(ii), p. 58]
and [37, Thm. 1.6.6, p. 63], which in fact hold in full generality without the need
for topological assumptions.
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A Dirichlet form (E,Z(E)) on L?*(m) is recurrent if and only if there exist
functions u,, € Z(F) such that

)

(5.26a) 0<u,<1 and limu,=1 m-ae.

(5.26b) lim E(u,) =0 .

A Dirichlet form (E,Z(E)) on L*(m) is conservative if and only if there exist
functions u,, € Z(F) with

(5.27) 0<u,<1 and limu,=1 m-ae.

such that one of the following equivalent conditions holds. Either

(5.28a) lirrln E(up,v) =0, veZ(E)nLY(m);

or there exists f € L'(m) N L?(m) with f > 0 m-a.e., and a > 0, such that
(5.28b) lim E(u,,v) =0, v=Gquf,

where (G,), is the resolvent of (E, Z(E)).

5.3.1. Radial projection and intertwining. Let -*®4: L2(Lq,) — L?(Ly,) be the
radial projection

.rad, ( ui—>/ (1% (p dD()),

and (€24, 2(£%)) be the radial part of (£, 2(£)), i.e. the quadratic form defined
by

Ed(u) = E(u) , ue (&™) ={ue (&) u=u?} .

Since D, is a probability measure, -4 is a projection operator (in particular:

idempotent), acting as the identity on @(Emd). Note also that Hurade(ze ) <

lull 2z, for every u € L%(Ly,) so that - is continuous.
Further denote by L?(Lg )" the image of L?(Lg,,) via -™d. Then, it is readily
verified that

L2(Ly,)™ 2 L2 (Ng) , 0>0,
where the isomorphism is simply given by
(5.29) T L2(Lo,)™ — L2 (M) ur— G:u==uol* .

Lemma 5.22. Ifu € Z(&), then u! € 2(E*2) and

Vhorurad =90 ,
(5.30)
(Vurad) (Vver rad)

// u)nmndndDy(n) in T M(M)  for Le,-a.e. pi.

Moreover, €(u*ad) = 4£Ver (urad) < 4€Ver (u) < E(u) for every u € Z(£). In partic-
ular £24 s densely defined.
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Proof. The assertion regarding the horizontal gradient is obvious and holds for
every u € Z(£). Let u € 2(€) and observe that the Borel function (y,u,n) —
VM (V¥ u) 0 (y) satisfies

//P/M MMKchru)uMn(y)F dn(y) dD, (n) dLa,. (1) =
= / / / . [(VYu) wary (y) 2 dn(y) AD, (1) dp(z) dLg o, (1)

/ / / / / (V¥ w) 1 ()| di(y) D, () (i) () AD, () d g (1)
= / / / (V") (y)|* d(tn) (y) dD (1) dAa (1)
/ / (V") () * dpa(y) d Lo, (1)

— EVEI'

Fubini’s theorem gives that the function

n= H :uﬂ V K // Vver p,JVIndndD ( )

is Borel measurable and finite for Lg ,-a.e. u; the same holds in particular for the
right hand side of (5.30). Jensen’s inequality also gives that || H( -;u)Hiz(ﬁe ) s
bounded by £¥*'(u). Let us now show that (5.30) holds for cylinder functions;
let u = Fof* € F29°C° with F: RF*1 — R. Then, for every f € C2°(M),
il —gu™ (1) = il [ (e (M)2)aD, ()
= [ ], _qulte m(0)n) D, )

k
= [ @M £ () A01)aD, )

1=0

k
-/ SO M) ]y 7 () (M),
/Z (OCF) (M) £y (e ) (M) AD, ()

_ / Z(aiF)(qu*n) Fin £ pdDy ()
=0

k
= [ @) [ S (@F)udttn) 17 (1) ap, ) dte)
1=0

-/ [ /] (Vveruwndnd@y(m] fdu
- < /] <Vveru)ﬂMndndDu(n>’f>w .
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By arbitrariness of f € C>°(M) we conclude that u™ € Z(&) for every cylinder
function v and that (5.30) holds for cylinder functions. In particular

E(™) = 4% (u™) = 4| H(-; )|z, ) < 467 (u)
< &(u) ,

Let now u € Z(&) be arbitrary and let (uy), C FC be such that un 51/2

converges to u. By the inequality in (5.31) we deduce that ( ﬁfd)n is 51 —Cauchy
rad

(5.31) € FoCxe .

so that 511/2—converges to some v € (&) which has to coincide with u'?, since the
radial projection is continuous in L?(Ly,). We deduce in particular that u*ad €
2(E). We are left to show that (5.30) holds for u € 2(£). We have

2
/H Vver rad // Vver ,uMndndD ( )

< 25ver( rad urad)

+2// //Vver ) rindn dD,, (n)

ver ur? ra 2
=2¢& T ) 2| H (s un — ), )
S 25vcr(urad rad) + 25ver( u) = 0.

This proves (5.30) for a general u € (), which in particular implies the inequality
gver(yrad) < £ver(y) because of the bound on the L?(Lg,,)-norm of H(-;u). O

ALy, (1) =

ver
I

2
dpdLe,, (1)

More importantly, we have the following.

Proposition 5.23. The operator -*4: L2(Ly,) — L?(Ly,,) is an L?(Ly,,)-ortho-
gonal projection and

(5.32) ™ v) = E(u, v | u,v € () .

In particular, -**4: P(E)1 — D(E); is an 511/2-0rthogonal projection.

Proof. We have already commented that -4 is a projection operator, i.e. linear
and idempotent, which holds irrespectively of the chosen domain. To show that it
is an L?(Ly,, )-orthogonal projection it suffices to show that

(5.33) (urad ]v)LQ(ﬁeyu) = (u| vrad>L2(£9’V) , u,v € L*(Ly,) ,

which is easily verifiable. Regarding the second assertion, note that -™4: #(&) —
P(€) by Proposition 5.22, so that combining (5.32) and (5.33) proves that -4 is

an Sll/z—orthogonal projection. We prove (5.32) below.
By definition of (£, 2(£)) and by the chain of equalities in (5.30),

wd ) // Vhorurad)u) (Vhor),, +4(vverurad)u(vverv)u} dpdLa, (1)
:4//M(Vverurad)u(vverv)ududﬁg’y(u)
~if [ [ oo, / (V¥ w)urrady AD, () At AL () (10 = 1)
—4 / / / [ (7 (91 4D, 1) A D, 1) 0(0)
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where we applied (1.18). By an application of Fubini’s Theorem we conclude that

rad,U74/ //// (VY 0) 4 (VY )y dny dry’ dD,, () dD, () dNa () -

As this latter expression is symmetric in 7,7’, applying the previous arguments in
reverse order to v in place of u proves (5.32). O

Proposition 5.23 implies that -™4: L%(Ly,) — L?(Ly,) and -™4: (&) —
2(&); are self-adjoint operators. This fact, together with the intertwining property
g(grad) _ @(g)rad , g( rad) grad( rad) , = @(5) ,

has the standard yet important consequence that -4 intertwines the semigroups,

resolvents and generators corresponding to (£, 2(£)) and (£, 2(£4)). In the
next result, we denote by Te = (77);>0, resp. Go = (Ga),>(, and (£, 2(L)), the
semigroup, resp. resolvent, and gene;ator, of (8, 9(5)) on L?*(Ly,). We adopt
analogous notations for (€24, 7(£24)) on the Hilbert space L*(Lg,, ).

Corollary 5.24 (Intertwining). The operator - intertwines (€, 2(E)) on L*(Ly,.)
with (Emd, .@(Er‘"‘d)) on L?(Ly ). That is, for every u € L*(Ly,),
(1) Tredurad = (Tou)™d for every t > 0;
(i1) Gradurad = (G u)™d for every a > 0;
(iii) if additionally u € D(L) then vt € P(L) and Lr2dur>d = (Lu)rad,

Lemma 5.25. For every u € 2(E) there exists a sequence of cylinder functions

(un),, such that u, — u w.r.t. (Emd)%/z. In particular F°C° N 2(E4) is a
form core for (€724, P(Er2)).

Proof. Fix u € 2(£™4) C 9(€). By Proposition 4.16 with the choices | =
C®(RY), o3 = CX(M), and o = Rlt1,ta,...]an, we can find functions uy €
Foz®Cee of the form

uk:(XkO]l*)'(FkOf]:)’ fk:(fn,la--~7fn,Nk) bl

as in (4.3), converging to u w.r.t. 511 /2 and additionally so that F} coincides with
a multivariate polynomial p; on the hypercube

Ny,

H [0’ ||¢n,z

i=1

co Max supp(Xk)] .

Claim: u,"™d € FozCee. For simplicity of notation, we drop the subscript &
and write ¢ :== Nj. Then

u = (X0 17) / F((- M) £* () dDy(n) = (X 0 1%) / p(1% £*(5))dD, (1)

Since F2u°CZ° is a vector space, it suffices to show the assertion in the case

when p: (t1,...,tq) — H;I t;” is a monic monomial. In this case,

urad _ (X o ]1*) . (]l*)nl+"'+nq / (p o f*> (77) dDy('f]) 5

where the integral is a constant ¢, independent of p. (See [26, Cor. 3.5] for an
explicit computation of ¢,.) Since X: t = X(t) t"1F 74 is itself in C°(R{), this
shows that u™d = cpX o 1* is itself a cylindrical function, proving the claim.
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In order to conclude the assertion, it suffices to show that ;"4 is (Erad)}/ 2
convergent to u. This follows from Proposition 5.23 and the assumption on (ux),.
O

5.3.2. The radial-part process. In the next propositions, we relate (properties of)
(€,2(&)) with (properties of) the Dirichlet form (E?, 2(E?)) of the 6-dimensional
squared Bessel process discussed in Appendix A.

Proposition 5.26. The operator
(5.34) T L2 (L) = L2 (M) ur— 4 : u==uao0l*

is a unitary operator. Its non-relabeled restriction to 2(£**) is a unitary opera-

tor T (1&md @(grd)) - (B, 9(EY)).

Proof. The fact that ~: L2(Lg,)"! — L2(\g) is unitary follows from (1.18). To
show the second assertion, by virtue of Lemma 5.25 and Lemma A.3, it suffices
to show that ~: (1€ FeeCee M(M) N 2(E79)) — (EY,CX(Ry)) is unitary
w.r.t. (%Erad)}m and (EG)}/Q. Clearly, for every X € C2(R{) the function u =
Xo1* satisfies @ = X so that surjectivity is proven. Let now u € Fgo®°C®NZ(E™9)
and observe that it has to be of the form u = X o 1* for some X € C2(R{), which
then also satisfies @ = X. Then, by (4.5),

FEmt) = 3 8) = [ uM Xt ) = [ T () = (@) .0

Lemma 5.27. The form (£, 2(E)) is conservative.

Proof. By the characterization of conservativeness in (5.27), (5.28b), it suffices to

show that there exist functions u, € 2(€) satisfying

(5.35) 0<wu, <1, lim u, =1 Lg,-ae. lim &(un,v) =0,
n—oo n—oo

for some v = G, f, with a > 0 and f € L*(Ly,) N L*(Ly,) and f > 0 Ly, -a.c..

Since (EY, 2(E")) is conservative by Proposition A.2, there exist functions @, €
PD(EY) satisfying (5.27), (5.28a) (with Ay in place of m and E? in place of E.)
Let u,, be defined by u,, := @, o 1* and note that u,, = uﬁfd. By (1.18), it is readily
verified w,, satisfies (5.27) (with Ly, in place of m).

Now, fix f € L'(A\g) N L2(Ag) with f > 0 Ap-a.e., and let f be its radial extension
to M(M) defined as above. Note that f = frd satisfies f € L'(Ly,) N L?(Ly.,)
and f > 0 Ly ,-a.e.. Fix any o > 0 and set v := G, f. By standard properties
of resolvents, Go L'(Lp,,) C L*(Ly,) and Go,L?*(Ly,) C Z(E). Thus v € 2(€) N
LY (L)

Since f = 4 we have v = v*® by Corollary 5.24(ii), and then v € Z(£4).
Thus, by Proposition 5.26, we have & € 2(E?). Furthermore, & € L*(\g) by (1.18).
Finally, again by Proposition 5.26,

lim &(up,v) = lim &%(u,,v) = lim 4E°(d,,5) =0

n—oo n—oo n—oo
by (5.27), (5.28a) for @, as shown above. This shows (5.35) and concludes the
proof. O

Lemma 5.28. The form (5, @(5)) is recurrent if and only if so is (Ee, @(Ee)),
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Proof. By Proposition 5.26 it is enough to show that (£, 2(£)) is recurrent if and
only if (1&4, 9(£r24)) is recurrent. To prove this equivalence we will make use of
the characterization of recurrence in (5.26).

Assume that there exist functions u,, € Z(E™9) satisfying (5.26) with m = Ly,
and E = £, Since 2(£') C 2(€) and £ = € on 2(£724), (5.26) holds also
withm =Ly, and £ = €.

Assume now that there exist functions v, € 2(€) satisfying (5.26) with m = Ly,
and E = £. Tt is readily seen that v,,"®d satisfies (5.26a) (with Ly, in place of m).
Furthermore, v,,"*d satisfies

lim €744 (v,"24) < lim £(vy,) = 0

by Lemma 5.22. Thus, (5.26) (with m = £y, and E = £') holds with u,, =
v, € g(£r2d). O

Recall that a Dirichlet form (E, Z(E)) on L?(m) is called transient if there exists
a function g € L*(m)* N L>(m) such that

(5.36) /|u\ gdm < E(u)'/? | ue 2(E) .

Also note that, if (E, 2(F)) is additionally local, then it is enough to check (5.36)
on non-negative functions u € Z(E).

Lemma 5.29. If the form (Ee, .@(EG)) is transient, then so is the form (5, .@(5)).

Proof. Assume (E, 2(E’)) is transient, and let go: Ry — R be as in (5.36)
for (E%, 2(E’)). Further let g :== 2(jo o 1*): M(M) — R be its lift to M(M).
Note that g € L'(Lg,,) T N L>®(Ly,). Then, for every non-negative u € 2(),

/ugdﬁg,u :/ugrad dLe,, = /uradgdﬁg,,, :/ vjr\a/dgd)\g
0
—92 / ’l;f;agNO <2 /Ea(,;;a) _ Erad(urad)1/2 < 5(u)1/2 ,
0

where we used, respectively, that: -™d is self-adjoint on L?(Ly,) by Proposi-
tion 5.23; that ~: L%(Ly, )™ — L%(\g) is unitary by Proposition 5.26; that
(Ee,_@(Ee)) is transient by assumption, so that we can apply (5.36) with v =
wad € (E%); that ~: (3&™4,9(€4)) — (EY, 2(E’)) is unitary by Proposi-
tion 5.26; and finally Lemma 5.22 for the last inequality. (]

APPENDIX A. THE DIRICHLET FORM OF THE SQUARED BESSEL PROCESS

In this Appendix we construct the Dirichlet forms associated with squared Bessel
processes. It is helpful to regard these processes as parametrized by their dimen-
sion, that is as a class of Continuous-state Branching Processes with Immigration
(shortly: CBI processes). A general treatment of CBI processes by means of Feller
theory is classical and can be found in [52, 88]. CBI processes form one-parameter
families (in fact: convolution semigroups) (IF’ZJ),C) 030 of diffusion processes on the
real line, indexed by real parameters a,b,c with a,¢ > 0, cf. [88, Thm. 1.2 and
Eqn. (1.23)].
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Let (W), be a standard Brownian motion on R and denote by =t := 2V 0 the
positive part. Here, we choose parameters a = 1, b = 0, and ¢ = 1, resulting in the
squared Bessel process of dimension 6, the unique strong solution to the SDE

(A1) dz, = \/2x AW, + 0dt , t>0.
Now, consider the quadratic form on L?(\g) given by
P(E%) = {f € AC1o(RT) N L2(\g) : / tf/(t)*dg < oo} ,
(A.2) - 0
E(f9)= [ 50O .
0

Lemma A.1. The form in (A.2) is a Dirichlet form on L*(\g), with generator
(1Y) = {f € 2(E%) : f' € ACioe(RY) and Elltiﬁjlte )= O} )

(L)) =tf" (&) + 0 (1) -

Proof. In order to show that (A.2) is a Dirichlet form, it suffices to show that it
coincides, in the notation of [37], with the form (€%, 2(€")) in [37, Eqn.s (3.3.20)—
(3.3.21), p. 134] for the choice D = RY, p = pg = I'() "1t~ and a(t) = I'(9)~117.
Indeed, by a standard integration by parts on C3°(R™) (i.e. with vanishing boundary
terms), we see that

(A.3)

(A4) E () = — /0 SLYGAN(D) . b € CR(RY) .

It then follows from [37, Thm. 3.3.1, p. 135] that the form (E?, 2(E?)) is a Dirichlet
form corresponding to the maximal Markovian non-positive self-adjoint extension
of (LY, C*(RT)) with core Z(E?) N C*(RT) by [37, Lem. 3.3.3, p. 134]. Note
that C2°(R{") embeds injectively and continuously into Z(E?) by restriction to R*.
We always regard functions in C°(R{) as elements of Z(E?) up to this identifica-
tion.

Now, consider the space

(A.5) Vo = {w € AC10c(RT) : 9/ € AC1oc(RT) , Fay = ltig)thW(t) € R} .
By integration by parts with ¢ € C*(R{) € 2(E?) and ¢ € 75,

(a6)  Eo)=— | oLowdre(t) — T(0)"" [hm%’(t)} 6(0) .

0 tl0

so that the distributional generator of (E?,C°(Ry)) is formally given by
O |

where &y is the linear functional on C°(R7) defined by ¢ := limy o ¢(¢). Since
Cx(RY) € 2(E?), this shows that 2(Lf) C 75 N 2(EY).

Finally, let ¢ € ¥#. On the one hand, since )y is absolutely continuous w.r.t. Z*,
imposing L%y € L%()\g) implies that ay, = 0. As a consequence

(L) C{p€Vg:ay=0}ND(E) .
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On the other hand, the integration by parts in (A.6) extends to ¢ € 2(E?) and ¢ €
{ € ¥y :ay =0} N 2(EY), so that 2(LY) = {3 € ¥ :ay =0} N Z(E?). This
concludes the proof of (A.3). O

Proposition A.2. The form (E‘97 @(Ee)) s a reqular conservative strongly local

Dirichlet form on L*(\g), properly associated with the squared Bessel process solving
the SDE (A.1).

Lemma A.3. CX(R{) is a core for (E, 2(E?)).

Proof. As in the proof of Lemma A.1, we regard C°(R{) as a subset of Z(E?).
Let Fp denote the EY-closure of C°(Ry). It suffices to show that F;- = {0},
where Fg- denotes the Ef-orthogonal complement to Fy in Z(E?). Note that f €
FGJ- if and only if

/ootf’() ()N /f Har() =0,  ¢eCXR]),
0

so that f is a distributional solution in 75 to LY f = f, where #j is defined in (A.5).

It follows from e.g. [71, 14.1.2.62, p. 526 or 14.1.2.108, p. 531] that solutions
to L f = f form a two-dimensional linear space. A basis for the space of solutions
is expressible in terms of Bessel functions, see [71, ibid.]. We rather express them in
terms of the confluent hypergeometric function o F; and of its regularized form oF 1,
respectively defined by

0 k
Z p—
(A.7) oFl(;a;Z)::ZW, z€C, a€cC\Z,
oﬁl(;a;z):w}((;a);z), a,z € C,
a

where T' is Euler’s Gamma function and (a)y := I'(a 4+ k) /T'(a) is the Pochhammer
symbol. Indeed, setting

(A.8) fo(t) =0oFi(;6:t)  and  fi(t):=t""Fi(;2 - 0;t)

and differentiating the series expression in (A.7), it is readily verified that fo and f;
are linearly independent solutions to L? f = f. Thus, each solution to L f = f has
the form ag fy + a1 f1 for some real constants ag, a;.

Since lim; o t971 f;(t)? = 0o, we have f; ¢ L?()\g) for i = 0,1 and every 6 > 0.
This shows that solutions in % to L’f = f are never in L?()\g). As a conse-
quence, ;- = {0} as desired, and the conclusion follows. O

Proof of Proposition A.2. Consider the quadratic form in (A.2). Closedness and
the Markov property were proved in Lemma A.1. Regularity follows from Lemma A.3.
Strong locality follows by inspection. The part (LO,CS"(RS')) of (Le,@(Le))
on CX(R{) is thus the generator of the CBI process solving (A.1) by, e.g., [88,
Eqn. (1.25)].

For the converse implications, we argue as follows.

Distributional adjoint of the generator.  Consider the generator (Le, C® (R ))
and note that, again by a standard integration by parts,

/O¢L9¢dt w‘ /O (&' + &'ty) dt+9¢w’ /09¢¢’dt
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—0- / &/ (4 + t0')dt — B6(0)(0) — 0 / ou'dt
0 0

- /0 (20 — 00 + ")t — d( + 1)] " — 96(0)(0)

0
= [ ol2 =00’ + 1)t - 0+ Do(0)(0)

0
Thus, the distributional adjoint (L?)* of (LY, C*(R{)) is given by

(LY = (2—0) +t" — (0 +1)d .

Invariant measures. The unique positive stationary solutions gy = agt? "
on (0,00), ag > 0, to the corresponding Kolmogorov forward equation (L?)*gy = 0
are thus the density of a candidate invariant measure dug = godt for L?. Further-
more, in light of [88, Eqn. (1.23) and Thm. 1.1], (u¢) ¢, must be a convolution semi-
group. This property, together with (L?)*us = 0, implies that the function 6 — ag
must satisfy the functional equation

aga,  T(0+T)
agrr T(OT(1)

For the solution ap := I'(§) ™! to (A.9) we then have that pg = Ay is an invariant
measure and such that (u),- is a convolution semigroup on R*.

(A.9)

Dirichlet form. By the integration by parts (A.4) we may apply Lemma A.1.
Thus, (EY, 2(E")) is the strongly local Dirichlet form generated by (L, 2(L?))
and the latter is the maximal Markovian self-adjoint extension of (L?, CZ°(R™)).
The form is conservative since so is the associated CBI process solving (A.1), which
is in turn a consequence of [52, Thm. 1.2, p. 41], as noted in [52, Ex. 1.1, p. 42,
after (1.24)]. O

The next result follows from known properties of the squared Bessel process.
For integer 6 > 0, it is a trivial consequence of the representation of the squared
Bessel process as the squared Euclidean norm of a standard Brownian motion. For
completeness, we provide a proof by Dirichlet-form methods.

Lemma A.4. The form (E? 2(E®)) is irreducible. It is recurrent if 6 € (0,1] and
transient if 6 € (1, 00).

Proof. By Proposition A.2; the form (Ee, _@(EO)) is properly associated with the
squared Bessel process. As it is well-known that the latter is irreducible, so is
(E?, 2(E?)). In light of the transience/recurrence dichotomy for irreducible Dirich-
let forms, e.g. [37, Lem. 1.6.4(iii), p. 55], it suffices to show that (EY, 2(E?)) is
recurrent if and only if 6 € (0, 1].

Assume first that § < 1. Let u € C®(R{) be so that u(0) = 1. Further
set u,(t) == u((1+t)"/" —1) for t > 0. Then, u, € CZ(RT) C Z(E?) and
lim,, u, (t) = uw(0) = 1 for every ¢t > 0, which verifies (5.26a). Furthermore, since § <
1

)

/00 |u/n(t)|2 tfdt = 1 /OO |u’(s)\2 s+ ((s+1)" - 1)6ds
0 nJo
1 />, 2
<o [ WP e nas.

n
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Since uw has compact support, the latter integral is a constant ¢, > 0. It follows
that

limnsupEe(un) < limnsup F(CHu) o= 0,

which verifies (5.26b). This concludes the assertion by the above characterization
of recurrence.

Assume now that # > 1 and argue by contradiction that there exist functions u,,
satisfying (5.26) (with \g in place of m). Since u, € 2(E?) C AC).(RY), we
will always consider u,, as its unique continuous representative. Without loss of
generality, up to truncation, we may and will assume that u,, > 0.

In particular, there exists ¢y > 0 such that lim, u,(tp) = 1. Furthermore,
since u, € L?(\g) and @ > 1, there exists an increasing sequence (t,) , With tg <
t, /" oo and such that u,(t,) < 1/2. On the one hand, by the fundamental theorem

of calculus,
tn
/ ul, (t)dt
to

On the other hand, since 6 > 1,
to?

tn 2 tn 9 tn o0 S
/ ul (t)dt g/ u;,(t)t"“‘ dt/ t"’dtg/ \aﬁ,(t)ﬁt"dt/ t=0dt
to to
6—1

to 0 to
=TI(9)
so that, by the assumption in (5.26b),

2
= lim sup |ty () — un (to)|” > 1/4 .

n

(A.10) lim sup

n

Ee(un) ,

2

tn
lim sup / ul (t)dt| <limsupT(0 —1)t37% E%(u,) =0,
n to n
which contradicts (A.10) and concludes the assertion. O

APPENDIX B. MEASURE-PRESERVING DIFFEOMORPHISMS

Let (M,g) be a smooth connected, orientable Riemannian manifold with Rie-
mannian volume measure vol,. We collect here some auxiliary results about the
group Diﬂ?g (g9) of all compactly non-identical, orientation-preserving, voly-preserving
diffeomorphisms.

Firstly, let us recall that Diff§ (g) is the (infinite-dimensional) Lie group corre-
sponding to the Lie algebra of divg-free vector fields on M with the Lie derivative
as its Lie bracket. Let us further recall some virtually well-known results about the
natural action of Difff (g) on M.

The following may be easily inferred from the arguments in [13, §3].

Lemma B.1 (Extension lemma). Let (M, g) be in addition open or boundaryless,
and K C M be any contractible compact subset. Then, every smooth vector field
on K has a compactly supported, divy-free extension to the whole of M.

As an immediate consequence, we see that the Lie algebra of div,-free vector
fields is infinite-dimensional, thus so is Diff{ (g).

Proposition B.2 (Transitivity, [13, Thm. A, §3, p. 98]). Diff{ () acts k-transitively
on M for every k € Ny. In particular, it acts transitively on M.
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B.1. Actions on measures. In the following, let By C R¢ be the open unit ball
equipped with the standard Euclidean metric g..

Lemma B.3. Let v be any finite measure on By invariant for the (Cy)-action
of Diff§ (g.). Then v oc £

|B . In particular, v has no singular continuous part.
1

Proof. Let QQ1,Q2 C B; be arbitrary closed cubes with equal volume, define K
as the closed convex hull of )1 U @2, and let w be the vector field on K defining
the translation of @ to @)2. By Lemma B.1 applied to K and w, there exists a
compactly supported divy, -free vector field w’ on M extending w on K. Then,
the flow of w’ at time 1 is a compactly non-identical orientation-preserving, .Z%-
preserving diffeomorphism on M mapping ()1 to Q2. In other words, Diffa' (ge) acts
transitively on all closed cubes in Bj, hence, by continuity, on the family C of all
semi-closed cubes @ of the form Q = z + ¢[0,1)? with € R%, ¢ € Q* and such
that Q C By.

Since v is invariant, by a standard decomposition argument, for every rational ¢ €
QT and every Q € C with ¢Q € C we have v(qQ) = ¢?vQ. Now, let Qo € C be
fixed, and set ¢ :== vQo/ZL?Qo. For every @, € C there exists ¢ € Q" and z € R? so
that Q; = x4 ¢Qo. For such ¢, by invariance of v and of £ (also under rescaling),

vQ1 = v(qQo) = ¢"vQo = ¢“cL?Qy = cL(qQ0) = cLQ1 .

Since C is a w-system generating the Borel g-algebra of B, it follows by a standard
monotone class argument that v = c¢.Z? as Borel measures on B;, which concludes
the proof. 0

Proposition B.4. Let v be any finite Borel measure on M invariant for the
(Cy)-action of Diff§ (g). Then, v o vol,.

Proof. Let v be invariant, with Lebesgue decomposition v = vpa 4 Vge 4 Vse. Since v
is a finite invariant measure, and since Diff§ (g) acts transitively on M by Propo-
sition B.2, a simple argument shows that vy, = 0.

Claim 1: vg4e and vse are both invariant. By Lebesgue decomposition, there
exist Borel subsets M., M,. C M with

Mac ) Msc =M ) Mac N Msc =g, VOlngc =0 y VscMac =0.

Let vq. = pvoly and fix an arbitrary ¢ € Diﬁ"a' (9). Since volyM,. = 0, we have
(B.1)

VaeMse =0 and  YyvacMs, :/ potp~tdipyvol, :/ potp~tdvol, =0 .
Msc

sc

Furthermore, since v is invariant, for every Borel A C M,

YiVacA + Pyree A = YA = vA = v A+ Vs A

whence

(B2) PrVacA — Voo A = Ve — e A .
Combining (B.1) and (B.2), we conclude that

(B.3) YV A = Vs A A Borel , A C M, .

Choosing A = My, in (B.3), we further have
'(/)ﬁyscMac = wﬁysc(M \ Msc) = wﬁyscM - wﬁyscMsc = VseM — wﬁyscMsc
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(B'4) = VseMye — wuVscMsc =0.

Since M,. and M. form a (disjoint) partition of M, combining (B.3) with (B.4)
shows that v, is invariant.
Then, for every ¢ € Diff{ (g),

Vac +Vse =V = 11}111/ = T;Z)]iyac + wﬁl/sc = wﬁl/ac + Vse

and cancelling vs. shows that v,. too is invariant. This concludes the proof of the
claim.

Claim 2: v, = 0. Again since Diff] (g) acts transitively on M by Proposi-
tion B.2, and since each element of Diff (¢) is an open map, it is not difficult to
show that either vy, = 0, or suppvs,. = M. Thus, it suffices to show that the
restriction of vy, to some small dg-ball in M is identically vanishing. Note that the
Lebesgue decomposition of v is preserved by push-forward via local charts. Thus,
without loss of generality up to push-forward by a chart and rescaling, the assertion
is equivalent to the same assertion for the standard Euclidean unit ball, which is
shown in Lemma B.3.

Claim 3: Ve < voly.  For v4. = pvol, we have

pvoly = vac = Yyvac = (po ™ )iyvoly = (po ™ Hvoly , ¢ € Diff( (g) -
Again since Diff{ (g) acts transitively on M, we conclude that p is vol,-a.e. constant,

thus v4. o voly. This concludes the proof since vy, = vpa = 0 by the previous
claims. [l
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