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Abstract. Let (M, g) be a Riemannian manifold with Riemannian distance dg ,
and M(M) be the space of all non-negative Borel measures on M , endowed

with the Hellinger–Kantorovich distance HKdg induced by dg .

Firstly, we prove that
(
M(M),HKdg

)
is a universally infinitesimally Hilber-

tian metric space, and that a natural class of cylinder functions is dense in

energy in the Sobolev space of every finite Borel measure on M(M).
Secondly, we endow M(M) with its canonical reference measure, namely

A.M. Vershik’s multiplicative infinite-dimensional Lebesgue measure Lθ, θ > 0,

and we consider (a) the geometric structure on M(M) induced by the natural
action on M(M) of the semi-direct product of diffeomorphisms and densities

on M , under which Lθ is the unique invariant measure; and (b) the metric

measure structure of
(
M(M),HKdg ,Lθ

)
, inherited from that of (M, dg , volg).

We identify the canonical Dirichlet form
(
E,D(E)

)
of (a) with the Cheeger

energy of (b), thus proving that these two structures coincide. We further
prove that

(
E,D(E)

)
is a conservative quasi-regular strongly local Dirichlet

form on M(M), recurrent if and only if θ ∈ (0, 1], and properly associated

with the Brownian motion of the Hellinger–Kantorovich geometry on M(M).
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1. Introduction

Let (M, g) be a smooth, connected, orientable, complete Riemannian manifold
with Riemannian distance dg. We denote byM(M) the cone of all non-negative and
finite Borel measures on M , endowed with the Hellinger–Kantorovich distance HKdg

induced by dg, see §1.4.1 below.
Firstly, for a suitable class FC of cylinder functions on M(M), we prove the

following Myers–Serrin-type theorem.

Theorem 1.1. Let Q be any non-negative Borel measure on
(
M(M),HKdg

)
with

all exponential moments, i.e. such that∫
e−tµM dQ(µ) < +∞ for every t > 0 .

Then, the space FC is dense in 2-energy in the metric Sobolev space

H1,2
(
M(M),HKdg ,Q

)
,

and the latter is a Hilbert space.

Secondly, we focus on a specific choice for Q. For a parameter θ > 0 and a
probability measure ν ∈ P(M), we consider Vershik’s infinite-dimensional multi-
plicative Lebesgue measure Lθ,ν on M(M), see §1.3.3 below, and we show that it
is the unique natural measure for the Hellinger–Kantorovich geometry on M(M).
Further denote by ∇ the gradient for real-valued functions onM(M) associated to
the Hellinger–Kantorovich geometry, see §1.2.2, and by 〈 · | · 〉µ a suitably weighted

scalar product, see (1.13).

Theorem 1.2. For every θ > 0, the canonical energy form

E(u, v) :=

∫
〈(∇u)µ | (∇v)µ〉µ dLθ,ν(µ) , u, v ∈ FC ,

is closable on L2(Lθ,ν). Its closure
(
E ,D(E)

)
• is a conservative quasi-regular strongly local Dirichlet form on L2(Lθ,ν);
• coincides with the Cheeger energy of the metric measure space(

M(M),HKdg ,Lθ,ν
)

;

• is properly associated with a Hunt diffusion with state space M(M), the
‘Brownian motion’ of the Hellinger–Kantorovich geometry on M(M).

Finally, the latter process is recurrent if θ ∈ (0, 1], and transient if θ ∈ (1,∞).

We proceed to explain the motivations and significance of our results.
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1.1. Large Lie groups and stochastic partial differential equations. A large
Lie group is a Lie group modelled on an infinite-dimensional Hilbert, Banach, or
Fréchet space. Prototypical examples of such groups are

• transformation groups, as diffeomorphism groups of differential manifolds;
• G-current groups, i.e. groups of G-valued functions, for some Lie group G;
• multiplier groups, i.e. (Abelian) (R+, ·)-current groups, which are maximal

toral subgroups in the corresponding SL2-current groups.

In spite of their Lie-group structure, these groups are typically wild, displaying a
number of strange phenomena that do not occur in the standard finite-dimensional
theory. For instance, concerning diffeomorphism groups: the exponential map from
the corresponding Lie algebra into the group fails to be open, hence it is not sur-
jective even on the identity component of the group [63], its image is meager [68],
and in fact extremely small [44].

A fruitful approach to the study of large Lie groups via their representations has
been the subject of a longstanding programme initiated for diffeomorphism groups
by A.M. Vershik, I.M. Gel’fand, and M.I. Graev in [95], and continued by Vershik
and Graev for current groups [96, 97], and more recently by Yu.G. Kondratiev,
E.W. Lytvynov, and Vershik for certain semidirect products of diffeomorphisms
and multipliers in [56].

In order for the representations of these groups to be faithful —i.e. for them to
retain sufficient information on the group— the representations need to be con-
structed on some ‘large’ Hilbert space. Especially in the case of diffeomorphisms
and of multipliers, a concrete realization of such a Hilbert space is the space L2(Q)
of some measure Q on a space of measures. Indeed, diffeomorphisms naturally
act on measures by push-forward, and multipliers simply act on measures by mul-
tiplication by densities (hence the name). When Q is a probability measure, it
is usually regarded as (the law of) a random measure, typically, a random point
process. This is the case in: [95], concerned with Poisson point processes; [56], con-
cerned with Gamma compound Poisson point processes; and [21, 23], concerned
with Dirichlet–Ferguson point processes.

Geometric Brownian motions. As already noted in [23, 56], this action of
diffeomorphisms, multipliers, or a combination thereof, on a space of measures
induces an energy functional on L2(Q). As it turns out, the functional is, in many
of these settings, a Dirichlet form, and it is therefore uniquely associated with a
measure-valued Markov process. We call this process the geometric measure-valued
Brownian motion induced by the group action.

On the one hand, it is one goal of the aforementioned programme to study proper-
ties of the representation on L2(Q) of a given large Lie group via the corresponding
geometric measure-valued Brownian motion. For instance, it is usually expected
that invariant sets of this Brownian motion are in one-to-one correspondence with
irreducible sub-representations of the group action.

On the other hand, geometric measure-valued Brownian motions are very inter-
esting stochastic processes in their own right. This is readily seen from two impor-
tant examples in the case when Q is the Dirichlet–Ferguson measure. (See below.)
In this case, one process induced by the action of multipliers is the Fleming–Viot
process with parent independent mutation [35, 67], while one process induced by
the action of diffeomorphisms is the Dirichlet–Ferguson diffusion [23], the unique
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solution to the Dean–Kawasaki stochastic partial differential equation with singular
drift [54, 55, 24].

Metric-measure Brownian motions. Another fundamental approach to the
construction of energy functionals on spaces of measures is as follows. When the
space of measures in question is endowed with some natural distance (e.g., Hellinger,
Bhattacharyya, Kantorovich–Rubinstein a.k.a. Wasserstein, Hellinger–Kantorovich
a.k.a. Wasserstein–Fisher–Rao, etc.) and with a reference random measure Q, we
consider the Cheeger energy of the resulting metric measure space.

For Lp-Kantorovich–Rubinstein distances on spaces of probability measures,
the study of these energy functionals has been undertaken in [36, 89]. Here, we
rather consider the space of all non-negative finite measures with the Hellinger–
Kantorovich distance. (See below.) Also in this case, the Cheeger L2-energy is a
quadratic functional, and thus a Dirichlet form. We call the unique Markov process
associated to it the metric measure measure-valued Brownian motion induced by
the distance.

Main results: Identification. It is one main result of this work that, for a spe-
cific choice ofQ, the geometric point of view (group actions) and the metric-measure
point of view (distances) are one and the same, i.e. that the geometric measure-
valued Brownian motion coincides with the metric measure Brownian motion just
described.

Not only this provides an identification of the stochastic process in question; it
will also grant us the possibility to import tools from metric measure geometry in
the study of geometric Brownian motions and of the corresponding representations
for a given group action, and vice versa to use the Lie-group construction for the
study of the metric measure space arising from the Hellinger–Kantorovich distance
and the reference measure Q.

In future work, we will address the complete identification of this Brownian mo-
tion as the unique solution to some singular stochastic partial differential equation
with measure-valued solutions.

Let us now present in greater detail the constructions we touched on above.

1.2. The geometric point of view. Let X be a Polish topological space. Denote
by Cb(X), resp. C0(X), the space of all continuous bounded, resp. continuous van-
ishing at infinity, real-valued functions on X. For a non-negative and finite Borel
measure µ on X and a Borel function f : X → R, write

f?µ :=

∫
X

fdµ

whenever the integral makes sense, and µx := µ {x}. Analogously, for a vector
f = (f1, . . . , fk), k ∈ N, we set f? := (f?1 , . . . , f

?
k ). The push-forward of a measure µ

by a measurable map T is the measure

T]µ := µ ◦ T−1 .

Spaces of measures. We denote by M(X), resp. P(X), the space of all non-
negative and finite Borel, resp. Borel probability, measures on X, always endowed
with the weak topology, i.e. the coarsest topology under which the maps µ 7→ f?µ
are continuous for every f ∈ Cb(X), and with the corresponding Borel σ-algebra.
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As it is well-known, both M(X) and P(X) are Polish, and thus standard Borel
spaces. Let N : M(X)→ P(X) ∪ {0} be the normalization map

N : µ 7−→ 1
µXµ , µ ∈M(X) ,

where, conventionally, N(0) = 0 is the zero measure. Note that there is a Borel
bi-measurable isomorphism J : M(X)→ P(X)× R+

(1.1) J : µ 7−→
(
N(µ), µX

)
, µ ∈M(X) .

For S either M(X) or P(X), we write S pa for the subspace of S consisting of
all purely atomic measures in S .

1.2.1. Group actions. For a topological group G acting measurably on a measurable
space (Ω,F ), we write 	 : G×Ω→ Ω, (g, ω) 7→ g.ω for its action. We consider the
following groups acting on M(X).

Multipliers. Denote by Bb(X) the space of real-valued bounded Borel func-
tions on X, regarded as an Abelian Lie algebra with the pointwise product of
functions. For ν ∈ M(X), further define the ν-traceless subalgebra Bb(X)ν :={
f ∈ Bb(X) :

∫
f dν = 0

}
of Bb(X). The corresponding Abelian Lie groups are

the groups of multipliers M(X) := {ea : a ∈ Bb(X)} and its subgroup Mν(X) :=
{ea : a ∈ Bb(X)ν}, both endowed with pointwise product of functions.

The group M(X) (hence all its subgroups) acts naturally on M(X) by setting

(	·) ea. : µ 7−→ ea · µ , a ∈ Bb(X) , µ ∈M(X) .

Shifts. Denote by S(X) the group of shifts, i.e. Borel bi-measurable bijections
of X with the composition of functions. The group S(X) (hence all its subgroups)
acts naturally on M(X) (hence on P(X)), by setting

(	]) ψ. : µ 7−→ ψ]µ , ψ ∈ S(X) , µ ∈M(X) .

The action 	] commutes on M(X) with the normalization of measures and thus
factors over the map J in (1.1) in the sense that J(ψ]µ) = (ψ]N(µ), µ(X)).

For ν ∈M(X), further denote by Sν(X) the subgroup of S(X) consisting of all
elements fixing ν, or, equivalently, N(ν).

Products. We denote by ψ∗k := k ◦ ψ the pull-back of a function k by a
map ψ. The pull-back operator ∗ : ψ 7−→ ψ∗ is a group homomorphism ∗ : S(X)→
Aut(M(X)) on S(X) into the automorphism group Aut(M(X)) of M(X). Thus,
S(X) acts on M(X) by automorphisms via ∗, viz.

	∗ : (k, ψ) 7−→ (∗(ψ)).k = k ◦ ψ .

This action1 induces a right semidirect product S(X)o∗M(X) with group opera-
tion and inverse

h1h2 =
(
ψ1 ◦ ψ2, (ψ

∗
2k1)k2

)
,

h−1 =
(
ψ−1, (ψ−1)∗ 1

k

)
,

hi = (ψi, ki) ∈ S(X) o∗M(X) , i = 1, 2,∅ .

The product S(X) o∗M(X) acts naturally on M(X) by setting

(	o∗) h. : µ 7−→ ψ](k · µ) , h = (ψ, k) ∈ S(X) o∗M(X) , µ ∈M(X) .

1In order to avoid confusion, we shall always consider left actions. However, this choice forces
the somewhat unusual definition of right semidirect product in 	o∗ . Indeed, note the indices in

the composition (ψ∗2a1)a2. This also motivates the difference of our action from the one in [56].
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1.2.2. Differentiation in the smooth category. The groups M(X) and S(X) and
the group actions 	· and 	] above are given in the measurable category. The
same actions restrict to subgroups of M(X) and S(X) in other categories, e.g. the
continuous category, where M(X) is replaced by the subgroup of all its continuous
functions and S(X) by the group of self-homeomorphisms of X. The same applies
to the action 	o∗ provided that both M(X) and S(X) are restricted to the same
category, in order for the semidirect product to be defined in that category.

The smooth category will be of particular interest. Such restriction is possi-
ble when X is endowed with a structure of smooth (i.e. C∞-smooth), connected,
orientable manifold, henceforth denoted by M . In this case the restrictions of
both M(M) and S(M) are Lie groups, and we may discuss the corresponding
Lie algebras. Indeed, we may replace Bb(M) with the (Abelian Lie) subalge-
bra C∞c (M) of smooth compactly supported functions on M , the corresponding
Lie group exp[C∞c (M)] being defined in the obvious way as a subgroup of M(M).
The suitable restriction of S(M) is the group Diff+

0 (M) of orientation-preserving
compactly non-identical (smooth) (self-)diffeomorphisms of M , corresponding to
the Lie algebra X∞c (M) of (smooth) compactly supported vector fields on M with
the standard Lie bracket of vector fields.

In the following, let us replace X by a manifold M as above. For each w ∈
X∞c (M) we denote by ψwt the flow of w at time t ∈ R, satisfying

dtψ
w
t (x) = w

(
ψwt (x)

)
ψw0 (x) = x

, x ∈M , t ∈ R .

Since w is compactly supported, ψwt is well-defined everywhere onM and an element
of Diff+

0 (M) for every t ∈ R, with inverse (ψwt )−1 = ψw−t. The (Lie) exponential
of X∞c (M) is then the map

exp: w 7−→ ψw1 , w ∈ X∞c (M) .

Let us write G(M) := Diff+
0 (M) o∗ exp[C∞c (M)] for the semidirect product

of Diff+
0 (M) and exp[C∞c (M)] induced by 	o∗ , and

G×(M) := Diff+
0 (M)× exp[C∞c (M)]

for their direct product. The same (right) action 	o∗ and the semidirect prod-
uct G(M) have been previously considered by T. Gallouët and F.-X. Vialard in [40,
Eqn. (2.29)], where G(M) is interpreted as the automorphism group of the principal
fiber bundle of half-densities2 on M , see [40, §2.4], also cf. [38, §3.2.1].

Both G(M) and G×(M) are Lie groups, see e.g. [53, §5.16, p. 48, Eqn. (3)], and
we denote by g(M), resp. g⊕(M), the corresponding Lie algebras. As vector spaces,
both g(M) and g⊕(M) are linearly isomorphic to the direct sum X∞c (M)⊕C∞c (M).
However, g(M) is different from g⊕(M), i.e. their brackets do not coincide, and the
same holds for their exponentials expg(M) : g(M)→ G(M) and expg⊕(M) : g⊕(M)→
G×(M).

Directional derivatives. For every sufficiently smooth —to be clarified later
on— function u : M(M) → R, for every w ∈ X∞c (M) and every a ∈ C∞c (M), we

2In the terminology and notation of [40], the space of half-densities is Λ1/2 := C∞(M ;R+) =

exp[C∞(M)]. Note that Λ1/2 is a group under pointwise multiplication, and that our group of

(compactly non-identical smooth) multipliers exp[C∞c (M)] is a subgroup thereof.
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may define the directional derivatives in the directions w and a by setting

(1.2) (∂wu)µ := dt
∣∣
t=0

u(ψwt .µ) and (∂au)µ := dt
∣∣
t=0

u(eta.µ) .

Analogously, for every pair (w, a) ∈ g(M), we may define a directional derivative
in the direction (w, a), viz.

(∂w,au)µ = (∂w,au)(µ) := dt
∣∣
t=0

u
(

expg(M)
(
t(w, a)

)
.µ
)
.

A simple heuristic argument —which can be made rigorous for finite-dimensional
groups— shows that expg(M) and expg⊕(M) are tangent at first order, that is

expg(M)
(
t(w, f)

)
= (ψwt , e

ta) + o(t) , |t| � 1 .

Thus, for every sufficiently smooth function u : M(M) → R and every (w, a) ∈
g(M),

(1.3) (∂w,au)µ = dt
∣∣
t=0

u
(
(ψwt , e

ta).µ
)

= (∂wu)µ + (∂au)µ .

The directional derivatives in (1.2) have been widely considered, see e.g. [1,
45, 22, 23, 78, 84, 100, 75]. Notably, the directional derivative in (1.3) has been
considered by Yu.G. Kondratiev, E.W. Lytvynov, and A.M. Vershik in [56] as
arising from the group action onM(M) of the left semidirect product of Diff+

0 (M)
and exp[C∞c (M)].

1.2.3. The Dirichlet form. Assume further that M is endowed with a (smooth)
Riemannian metric g and set |w|g := g(w,w)1/2 for w ∈ X∞c (M). For each µ ∈
M(M), this allows us to define pre-Hilbert norms on X∞c (M), C∞c (M), and g(M),
respectively by setting, for every w ∈ X∞c (M) and a ∈ C∞c (M),

‖w‖Thor
µ

:=

[∫
X

|w|2g dµ

]1/2

, ‖a‖T ver
µ

:=

[∫
X

a2dµ

]1/2

,(1.4)

so that

‖(w, a)‖Tµ :=
√
‖w‖2Thor

µ
+ ‖a‖2T ver

µ
.(1.5)

Tangent spaces. We respectively define the

• horizontal tangent space T hor
µ M(M) toM(M) at µ as the completion of X∞c (M);

• vertical tangent space T ver
µ M(M) to M(M) at µ as the completion of C∞c (M);

• (total) tangent space TµM(M) to M(M) at µ as the completion of g(M).

The three spaces above are Hilbert spaces when endowed with the (non-relabeled)
extensions of the respective pre-Hilbert norms. As detailed below, these spaces have
been widely considered in the literature. Firstly, let us note that horizontal objects
are occasionally called intrinsic and vertical objects are occasionally called extrinsic.
This terminology is motivated from the perspective of the geometry of P(M), since
the action of 	] leaves P(M) invariant, while the action 	· does not. We prefer the
terminology of horizontal/vertical tangent space, since we mostly consider actions
on M(M), rather than on P(M).

When µ is a configuration, i.e. N-valued on all compact sets, the space T hor
µ M(M)

was first considered in [1, 2]. When µ is a probability measure in the L2-Wasserstein
space P2(M), it was considered in [41]. When µ ∈ P(M) and in the context of
group actions, it has been widely considered, e.g., in [23, 22, 75, 77]. It is an exten-
sion to vector fields of non-gradient type of the classical tangent space to P2(M) in
e.g. [66, 5], also cf. [29, §3.D.5, pp. 155ff.]. For further comments on the terminology
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as well as for other notions of tangent spaces to P2(M) (hence to M(M)) see the
Appendix to [22] and references therein.

The space T ver
µ M(M) has been widely considered, again usually for measures

in P(M), occasionally with an equivalent norm, e.g. [67, 84, 45], in relation with
the Dirichlet form of the Fleming–Viot and related processes, [35].

Finally, the space TµM(M) is an extension to vector fields of non-gradient type of
the Hellinger–Kantorovich tangent space in [60, 39]. We have a natural orthogonal
decomposition

(1.6) TµM(M) ∼= T hor
µ M(M)⊕⊥µ T ver

µ M(M) ,

where ⊥µ denotes orthogonality w.r.t. the TµM(M)-scalar product.

Gradients. Now, fix u : M(M) → R, sufficiently smooth. Whenever the linear
operator

(w, a) 7−→ (∂w,au)µ

is ‖ · ‖Tµ-bounded on g(M), it extends uniquely to TµM(M). Since the latter is

a Hilbert space, by the standard Riesz Representation Theorem for Hilbert spaces
this extension may be represented as

(1.7) (w, a) 7−→ 〈(∇u)µ | (w, a)〉Tµ , (w, a) ∈ TµM(M) ,

for some unique element (∇u)µ of TµM(M), satisfying

〈(∇u)µ | (w, a)〉Tµ = (∂w,au)µ , (w, a) ∈ g(M) .

We stress that the norm ‖ · ‖Tµ and therefore the gradient ∇u both depend on the

choice of the Riemannian metric g. We assume g to be fixed and thus omit this
dependence from the notation.

Finally, we denote by ∇hor, resp. ∇ver, the component of ∇ in T hor
µ M(M),

resp. T ver
µ M(M), w.r.t. the orthogonal decomposition in (1.6), satisfying〈

(∇horu)µ
∣∣w〉

Thor
µ

= (∂wu)µ , w ∈ X∞c (M) ,(1.8) 〈
(∇veru)µ

∣∣ a〉
T ver
µ

= (∂au)µ , a ∈ C∞c (M) ,(1.9)

and

(1.10) (∇u)µ =
(
(∇veru)µ, (∇horu)µ

)
.

The operators ∇], with ] = ∅,hor, ver, enjoy some of the properties that are
expected of a natural gradient operator. For example, it is readily verified from the
standard Leibniz rule for dt in (1.2) that they satisfy the Leibniz rule

(1.11) ∇](uv) = u∇]v + v∇]u

thus acting as derivations on the space of smooth functions and taking values into
the space of sections to the corresponding tangent bundles, viz.

(1.12) ∇]u : M(M) −→ T ]M(M) :=
⋃

µ∈M(M)

T ]µM(M) , ] = ∅,hor, ver .

Dirichlet form and cylinder functions. Let Q be a non-negative Radon (σ-
finite, not necessarily finite) Borel measure on M(M). Then,
(1.13)

E(u, v) :=

∫ [〈
(∇horu)µ

∣∣ (∇horv)µ
〉
Thor
µ

+ 4 〈(∇veru)µ | (∇verv)µ〉T ver
µ

]
dQ(µ)
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is a symmetric bilinear form on L2(M(M),Q) defined on the class of sufficiently
smooth functions. The presence of a factor 4 in the vertical-direction will be clarified
in §1.4.1 below. If this form is densely defined and closable in L2(M(M),Q), it is
readily seen that its closure is a local Dirichlet form.

Let us now turn to the definition of some class of smooth functions sufficiently
large for our purposes and admitting a gradient as in (1.7) (while in this introduction
we focus only on one class of such functions, in the rest of the work we will use also
other classes of functions). For every linear functional of the form f?, f ∈ C∞c (M),
we may easily compute

(∂w,af
?)µ =

∫
M

(
(df)w + fa

)
dµ ,

where df denotes the exterior differential of f on M . For w ∈ X∞c (M) and a ∈
C∞c (M), the functional (∂w,af

?)µ is thus, again, the potential energy induced
by (df)w+fa ∈ C∞c (M). Thus, the potential energy f? is the prototypical smooth
function, and we consider the algebra of smooth cylinder functions induced by
potential energies, viz.

F∞,∞c,c C∞c :=

û : M(M)→ R :

u = F ◦ f? , F ∈ C∞c (Rk+1;R) ,

k ∈ N , f :=
(
fi
)

0≤i≤k , f0 ≡ 1 ,

fi ∈ C∞c
(
M
)

for 1 ≤ i ≤ k

 .(1.14)

Note that every u ∈ F∞,∞c,c C∞c vanishes on measures with total mass µM > κ :=

max supt∈Rk suppF ( · , t1, . . . , tk), and that u(µ) = u(µ
∣∣
K

) whereK := ∪i≤N supp fi
is a compact subset of M . Since the subset {µ ∈M(M) : µM = µK ≤ κ} is com-
pact in M(M) by Prokhorov’s Theorem, we have F∞,∞c,c C∞c ⊂ L2(M(M),Q) for

every Q, and we may thus consider the form
(
E ,F∞,∞c,c C∞c

)
.

1.3. A candidate measure. In this section we discuss a natural choice of the
measure Q in (1.13), namely the multiplicative infinite-dimensional Lebesgue mea-
sure. We start by recalling the notion of (quasi-)invariance of a measure w.r.t. a
group action.

1.3.1. Quasi-invariance under group actions. Let G be a topological group acting
measurably on a σ-finite measure space (Ω,F ,Q) and write 	 : G×Ω→ Ω, (g, ω) 7→
g.ω for the action.

Definition 1.3. We say that Q is:

(a) (	-)quasi-invariant if

Qg := (g.)]Q = Rg · Q

for some F -measurable Radon–Nikodým derivative Rg : Ω→ [0,∞];
(b) projectively (	-)invariant if, additionally, Rg is a constant function on Ω

(possibly depending on g);
(c) (	-)invariant if, additionally, Qg = Q for every g ∈ G;
(d) partially (	-)quasi-invariant [56, Dfn. 9] if there exists a filtration (Ft)t∈T

of F , indexed by a (possibly uncountable) totally ordered set T , so that
• F is the minimal σ-algebra generated by (Ft)t;
• for each g ∈ G and s ∈ T there exists t ∈ T such that g.Fs ⊂ Ft (in

which case it must be s ≤ t);
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• for each g ∈ G and t ∈ T the restriction Qt of Q to Ft is 	-quasi-
invariant with Ft-measurable Radon–Nikodým derivative Rg,t : Ω →
[0,∞], viz. (g.)]Qt = Rg,t · Qt.

Note that (c) =⇒ (b) =⇒ (a) =⇒ (d).

These properties are related to the theory of representations of G. Indeed, each
(	-quasi-)invariant measure Q induces a so-called (quasi-)regular representation
of G on the Hilbert space L2(M(X),Q) by defining a unitary operator

UQg : f 7−→ R1/2
g · f ◦ (g−1.) .

If Q is merely partially quasi-invariant, no representation of G is induced on
L2(M(X),Q). However, a representation is induced on L2(M(X),Qt) for every t
and the family of all such representations may still be used to infer properties of
the action on L2(M(X),Q). We refer the reader to the Introduction in [56] for
further heuristics about partial quasi-invariance.

In the setting of §1.2.2, the (partial quasi-)invariance of Q is also instrumen-
tal in establishing the closability of the form (1.13). Notable examples of this
fact are the forms induced by: the Dirichlet–Ferguson measure (see below), the
Diff+

0 (M)	]-quasi-invariant entropic measure in [100], general Diff+
0 (M)	]-quasi-

invariant measures on configuration spaces in [78], and on P(M) in [22].
We shall therefore seek for measures on M(M) that are (partially) G(M)	o∗ -

quasi-invariant. Nonetheless, let us first address the case when X has no smooth
structure.

1.3.2. The Dirichlet–Ferguson measure. Let I := [0, 1] and denote by Bβ the Beta
distribution of parameters 1 and β > 0, viz.

dBβ(t) := β(1− t)β−1dt , t ∈ I .

Let ν ∈ P(X) be diffuse (i.e. atomless) and, for ease of notation, set

(1.15) µxt := (1− t)µ+ tδx , µ ∈M(X) , x ∈ X , t ∈ I .

The Dirichlet–Ferguson measure Dβν with intensity βν [32] is the unique Borel
probability measure on P(X) satisfying, for every bounded Borel F : P(X)×X ×
I → R, the Mecke-type identity [25] (also cf. [86])
(1.16)∫ ∫

X

F (η, x, ηx)dη(x)dDβν(η) =

∫ ∫
I

∫
X

F (ηxt , x, t)dν(x) dBβ(t) dDβν(η) .

We refer the reader to [32] for the original construction of Dβν via Kolmogorov
consistency as a limit of Dirichlet distributions on standard simplices, to [21] for a
construction and characterization of Dβν via Fourier transform, and to [58, 86, 49,
26] for other characterizations.

Dirichlet–Ferguson measures have appeared throughout mathematics, with many
important applications to —only to name a few— the theory of random permuta-
tions (see e.g. [10] and references therein), Bayesian non-parametrics (see e.g. [32]),
population genetics (see e.g. [31] and references therein), infinite-dimensional sto-
chastic analysis [67, 23], and the representation theory of groups of diffeomorphisms
and multipliers [23, 21].
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1.3.3. The multiplicative infinite-dimensional Lebesgue measure. For each θ > 0,
we define a σ-finite Borel measure on R+ by

(1.17) dλθ(t) :=
tθ−1 dt

Γ(θ)
, t > 0 .

The family (λθ)θ>0 is a convolution semigroup, in the sense that λθ ∗ λτ = λθ+τ
for all θ, τ > 0.

In [92], N.V. Tsilevich, A.M. Vershik, and M. Yor introduced the multiplica-
tive infinite-dimensional Lebesgue measure Lθ,ν with shape parameter θ > 0 and
intensity measure ν ∈ P(X) as

(1.18) Lθ,ν := J−1
]

(
Dν ⊗ λθ

)
,

with J as in (1.1). The σ-finite measure Lθ,ν —which ought to be regarded as an
infinite-dimensional analogue of λθ— displays a number of remarkable properties.

Here and everywhere in the following, let

(1.19) Br := {µ ∈M(X) : µX ≤ r} , r ≥ 0 .

Proposition 1.4 (Tsilevich–Vershik–Yor, see [92, §4]). The measures Lθ,ν , with θ >
0, enjoy the following properties:

(i) (Lθ,ν)θ>0 is a convolution semigroup, viz. Lθ,ν ∗ Lτ,ν = Lθ+τ,ν for ev-
ery θ, τ > 0;

(ii) Lθ,ν is projectively invariant for the 	·-action of M(X), with Radon–
Nikodým derivative

(1.20)
d(k·)]Lθ,ν

dLθ,ν
≡ e−θ

∫
log k dν , k ∈M(X) .

In particular, Lθ,ν is invariant for the 	·-action of Mν(X) and θ-homo-
geneous, i.e. Lθ,ν(c · ) = cθLθ,ν for every constant c > 0.

(iii) Lθ,ν is invariant for the 	]-action of Sν(X).

In combination with several other properties, the invariance for the 	·-action
of Mν(X) or the projective invariance for the 	·-action of M(X) have been used
to characterize the measures Lθ,ν ; see [92, Thm. 4.2] and [94, Thm. 5]. We extend
these uniqueness results by providing the following characterization under minimal
assumptions.

Proposition 1.5 (Prop. 5.2). The following are equivalent:

(i) Q is a non-negative Borel measure on M(X) satisfying:
• non-triviality: QB0 = 0, cf. (1.19);
• normalization: QB1 = 1, cf. (1.19);
• 	·-invariance: Q is projectively invariant for the 	·-action of M(X).

(ii) Q = 1
Γ(θ+1)Lθ,ν with

θ :=

∫
µX e−µXdQ(µ) and ν := θ−1

∫
µ( · ) e−µXdQ(µ) .

Let us now turn to the smooth category. In the case when X = M is a manifold
as in §1.2.2, Proposition 1.5 holds as well if we replace M(M) by its smaller ana-
logue exp[C∞c (M)] in the smooth category. Now, let us further assume, as in §1.2.3,
that M is endowed with a Riemannian metric g. As shown below, in this case we
may further completely identify the ‘pseudo-intensity’ measure ν.
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Indeed, we look for measures Q onM(M) which are both natural (in the smooth
category) and universal. By ‘natural’ we mean that given a measure Q on a smooth,
connected, orientable Riemannian manifold (M, g) we can identify Q by g. Rig-
orously, Q is invariant for the (	])-action on M(M) of the isometry group Iso(g)
of (M, g). (Of course, depending on (M, g), this constraint might be void as Iso(g)
might be the trivial group.) By ‘universal’ we mean that for every (smooth, con-
nected, orientable) manifold M and every Riemannian metric g, we can find a nat-
ural Q. Rigorously, for every manifold M there exists a multi-valued map g ⇒ Q
whose image consists of natural measures.

Now, assume further that Q is as in Proposition 1.5. It is not difficult to show
that (the infinite-dimensional multiplicative Lebesgue measure) Q is natural and
universal if and only if ν is invariant for the natural action on M of Iso(g). Since Q
is completely determined by its pseudo-intensity ν and by the scale (homogeneity)
parameter θ > 0, it is reasonable to strengthen the above notion of naturalness
by requiring that Q be determined only by volg rather than by g. Rigorously, we
require the multi-valued map g ⇒ Q to factor over the map g 7→ volg assigning to g
its volume measure volg. That is, we have a multi-valued map volg ⇒ Q.

Finally, let Diff+
0 (g) be the group of compactly non-identical, orientation-preserv-

ing diffeomorphisms on M preserving the Riemann volume form of g by pullback
or, equivalently, preserving volg by push-forward. In other words, we require Q to

be invariant for the (	])-action on M(M) of Diff+
0 (g). Contrary to the previous

definition, this stronger version of naturalness is always non-void, since Diff+
0 (g)

is the infinite-dimensional Lie group modelled on the (infinite-dimensional) Lie
algebra of compactly supported divg-free vector fields, and it is in fact sufficient to
turn the multi-valued map g ⇒ Q into a uniquely determined function.

Corollary 1.6 (See Prop. 5.4). Let (M, g) be a smooth, connected, orientable Rie-
mannian manifold with finite total volume. Then, the following are equivalent:

(i) Q is a non-negative Borel measure on M(M) satisfying:
• non-triviality: QB0 = 0;
• normalization: QB1 = 1;
• 	·-invariance: Q is projectively invariant for the 	·-action of exp[C∞c (M)];
• 	]-invariance: Q is invariant for the 	]-action of Diff+

0 (g).
(ii) Q = 1

Γ(θ+1)Lθ,ν with θν = volg and νM = 1.

1.3.4. Closability of the canonical form. It is shown in [23] that Dβν is not quasi-

invariant w.r.t. the action 	] of Diff+
0 (M) on P(M), but merely partially quasi-

invariant with respect to some filtration (Ft)t of the Borel σ-algebra of P(M).
Since 	] on M(M) factorizes over J in (1.1), it follows that Lθ,ν too is not quasi-
invariant for the same action. Its partial quasi-invariance may not be immediately
deduced from that of Dβν since the normalization map is not Borel/Ft-measurable
for any t. As in turns out however, Lθ,ν is indeed partially quasi-invariant under

the 	]-action of Diff+
0 (M), and thus under the 	o∗ -action of G(M) := Diff+

0 (M)o∗
exp[C∞c (M)], Prop. 5.11.

This is of particular importance, since partial 	o∗ -quasi-invariance can be used

to prove the closability on L2(M(M),Lθ,ν) of the pre-Dirichlet energy in (1.13)
with Q = Lθ,ν .
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Theorem 1.7. The quadratic form
(
E ,F∞,∞c,c C∞c

)
is densely defined and closable

on L2(M(M),Lθ,ν). Its closure (E ,D(E)) is a quasi-regular conservative strongly
local Dirichlet form on M(M), recurrent if θ ∈ (0, 1] and transient if θ ∈ (1,∞).

1.3.5. The Vershik diffusion on the cone of non-negative measures. As a conse-
quence of Theorem 1.7 and by the standard theory of Dirichlet forms, there exists
a conservative Markov diffusion process µ• with state space M(M) and invari-
ant measure Lθ,ν properly associated with the form

(
E ,D(E)

)
. We call µ• the

Vershik diffusion. It is the counterpart on M(M) to the Dirichlet–Ferguson diffu-
sion on P(M) constructed in [23] and the Lθ,ν-reversible Brownian motion for the
Hellinger–Kantorovich geometry of M(M).

A detailed study of the Vershik diffusion lies beyond the scope of this paper and
will be addressed in future work. However, instrumentally to a proof of conser-
vativeness and recurrence/transience for

(
E ,D(E)

)
in Theorem 1.7, we prove the

following statement. Let xt be a squared Bessel process of dimension θ, i.e. the
(pathwise-unique, strong) solution to the sde

(1.21) dxt =
√

2xt dWt + θ dt , t > 0 ,

driven by a standard Wiener process Wt on R.

Proposition 1.8. For every θ > 0, the radial-part process µtM ≥ 0 of the Lθ,ν-
reversible Vershik diffusion is distributed as xt/4.

The time-rescaling factor 1
4 should be regarded as an artefact of our convention

that the Wiener process is generated by the Laplacian ∆ (rather than by 1
2∆)

together with the factor 4 in the vertical part of the Dirichlet form, cf. (1.13).
The appearance of the squared Bessel process of dimension θ in the description

of the radial part process of µ• is significant. Indeed, the family of squared Bessel
processes indexed by θ > 0 forms a convolution semigroup of diffusions on the
real line —which is reflected by the same property for the measures λθ and Lθ,ν—
and is one instance in the larger class of continuous-state branching processes with
immigration, [88, 52]. (See Appendix A.) This suggests that the ‘vertical random
motion’ associated to the Dirichlet form obtained by replacing ∇ with ∇ver and
choosing Q = Lθ,ν in (1.13) is an unconstrained version of the celebrated Fleming–
Viot process [35, 67]: it describes the distribution of alleles in a selectively neutral
genetic population as influenced by mutation and random genetic drift, as opposed
to the distribution of allelic frequencies in the Fleming–Viot process.

1.4. The metric point of view. In this section, we will present another quite
natural construction of an energy form for functions onM(M), namely the Cheeger
energy induced by the Hellinger–Kantorovich distance and by Lθ,ν .

1.4.1. Hellinger–Kantorovich distance on the cone of positive measures. One of the
most remarkable results in the theory of optimal transport is to provide notions
of distances between probability measures: given a complete and separable metric
space (X, d), the L2-Kantorovich–Rubinstein (also: Wasserstein) distance W2,d

between two probability measures µ0, µ1 ∈ P(X) is given by the optimal transport
cost induced by d2 i.e.

W2,d(µ0, µ1) :=

[
inf

γ∈Cpl(µ0,µ1)

∫
X2

d2 dγ

]1/2

,(1.22)
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where Cpl(µ0, µ1) ⊂ P(X2) is the space of couplings between µ0 and µ1 i.e. proba-
bilities on the product space with marginals µ0 and µ1. When restricted to the set
of probability measures with finite second moment P2(X), the Wasserstein distance
is complete and separable, length (resp. geodesic) if d is a length (resp. geodesic)
distance. The Wasserstein distance has also the remarkable property of making
the map x 7→ δx an isometric embedding of X into P2(X). We refer to the classic
monographs [6, 98, 99, 79, 72, 73] and to the more recent [3, 34] for a treatment of
optimal transport and Wasserstein distances.

The generalization of the optimal transport problem to the unbalanced setting
(i.e. to the case when µ0 and µ1 may have different total non-negative masses) has
been considered in a variety of papers, see for example the generalization of the
dynamical approach to balanced optimal transport [9] to the unbalanced setting in
[57, 62, 69, 70, 16]; static generalizations connected to the Kantorovich formulation
were explored in [14]; see also the work [33] where the so-called optimal partial
transport has been introduced. A very general framework for unbalanced optimal-
transport problems can be also found in [83] where, using the methods developed
in [82], the ideas already contained in [59, 17] are extended.

We focus here on the class of distances HKd introduced at the same time in
the works [59, 17] and called Wasserstein–Fisher–Rao and Hellinger–Kantorovich
respectively: these can be defined in many ways (see in particular Section 3.1 for one
of these possibilities) and are rightfully considered to be the correct generalization
toM(X) of the Wasserstein distances. Indeed, the space (M(X),HKd) is a complete
and separable metric space whose topology is the one of the weak convergence of
measures, it preserves the length and geodesic properties of the underlying space,
and makes the map (X × R+

0 ) 3 (x, r) 7→ rδx ∈ M(X) an isometric immersion,
provided X×R+

0 is endowed with the natural cone distance, cf. (3.1) below. Perhaps
the simplest way to grasp the idea behind the Hellinger–Kantorovich distance is to
look at its dynamical formulation on the Euclidean space Rd: if µ0, µ1 ∈ M(Rd),
we have

(1.23) HK(µ0, µ1)2 = inf

{∫ 1

0

∫
Rd

[
|vt|2 + 1

4 |wt|
2
]

dµt dt

}
where the infimum is taken among all triplets (µ·,v·, w·) with µt|t=i = µi for i =
0, 1, and solving the continuity equation with reaction

∂tµt + div(vtµt) = wtµt in D ′
(
(0, 1)× Rd

)
.

This formula, a generalization of the classical Benamou–Brenier theorem [9], shows
that the HK-geometry encompasses both a horizontal movement of mass (driven
by v) and a reaction/dilation behavior driven by the term w. We refer to the second
part of [59] for details and proofs regarding the Hellinger–Kantorovich distance.

Let us finally remark that deep relationships between the group G(M) (here M
is a manifold as in §1.2.3 which is additionally assumed to be complete ) and the
Hellinger–Kantorovich distance are already apparent in the work [40], where it is
noted that a left action of G(M) —thus opposite to 	o∗— gives a Riemannian

submersion between an L2-type of metric on G(M) and the Hellinger–Kantorovich
metric on the space of densities, see [40, Prop. 10].

1.4.2. Metric measure geometry and Cheeger energies. One of the earliest and sim-
plest construction of Sobolev space on a smooth domain Ω ⊂ Rd is to consider the
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closure of smooth functions w.r.t. a given Sobolev norm i.e.

H1,2(Ω) := C∞(Ω)
H1,2

, ‖ϕ‖2H1,2 :=

∫
Ω

[
|ϕ(x)|2 + |∇ϕ(x)|2

]
dx .

The key idea is very simple: we have a class of regular functions for which the
notion of derivative is given and a norm to measure it: we consider limits of smooth
functions w.r.t. this norm. The fundamental observation to generalize this approach
to metric spaces is to notice that what is needed is not really the gradient of a
smooth function, but rather its norm. This leads to the following construction:
if (X, d) is a complete and separable metric space endowed with a non-negative,
finite, Borel measure m, for a Lipschitz and bounded function f ∈ Lipb(X, d) we
define the so called asymptotic Lipschitz constant as

(1.24) lipd f(x) := lim sup
y,z→x,y 6=z

|f(z)− f(y)|
d(z, y)

, x ∈ X ,

and the corresponding 2-pre-Cheeger energy as

(1.25) pCE2,d,m(f) :=

∫
X

(lipd f)2 dm, f ∈ Lipb(X, d) .

The quantity lipd f is a surrogate for the modulus of the gradient of a smooth func-
tion. The functional pCE2,d,m is however defined only on Lipschitz functions. In
order to extend it to more general functions, we can consider its lower semicontinu-
ous relaxation in L2(m), namely the 2-Cheeger energy CE2,d,m, [15, 42]. The vector
subspace of functions in L2(X,m) for which CE2,d,m is finite is the metric Sobolev
space H1,2(X, d,m) [11, 46, 43, 81] which can be proven to be a Banach space with
the norm

‖f‖H1,2 :=
[
‖f‖2L2(X,m) + CE2,d,m(f)

]1/2
.

Here, we are interested in the case when (X, d) = (M(M),HKdg ) for a manifold
(M, g) as in §1.2.3 with Riemannian distance dg.

1.4.3. Density of cylinder functions. Let (M, g) be a smooth, connected, complete
Riemannian manifold. Given µ ∈M(M) and (w, a) ∈ TµM(M), we set

|(w, a)|⊕ :=
[
g(w,w) + 4 |a|2

]1/2
,

and

‖(w, a)‖T 1,4
µ

:=
√
‖w‖2µ + 4 ‖a‖2µ =

[∫
M

|(w, a)|2⊕ dµ

]1/2

.(1.26)

We will show in Proposition 4.7 that

(1.27) ‖(∇u)µ‖T 1,4
µ

= lipHKdg
u(µ) , µ ∈M(M) ,

whenever u ∈ F∞,∞c,c C∞c is a smooth cylinder function as in (1.14); that is, the metric
slope of a cylinder function pointwise coincides with the modulus of its geometric
gradient.

In order to compare the geometric and the metric approach, pursuing the same
strategy as in [36], we aim at showing that cylinder functions are dense in 2-energy
in the Sobolev space H1,2(M(M),HKdg ,Q) for every finite, non-negative, Borel
measure Q on M(M).

The idea is to exploit the equality in (1.27) and to approximate the HK distance
function from a fixed reference measure with suitable cylinder functions: this was
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done for the Wasserstein distance in [36] using regular Kantorovich potentials, also
cf. [22]. Even if suitably-adapted versions of Kantorovich potentials are available for
the HK-distance, their regularity properties are scarce [60], so that it seems difficult
to be able to reproduce the same argument as in [36] in this case. However, we
show in Corollary 4.11 that we can approximate with cylinder functions a smoothed
version of the HK-distance (namely, the so called Gaussian Hellinger–Kantorovich
distance, GHK, which induces HK as length-distance) instead of HK directly, employing
the regularity of its adapted version of Kantorovich potentials (cf. Theorem 3.8).

Together with Theorem 2.12, which shows that it is enough to approximate a
distance function δ from a reference point with an algebra of functions A in order
to obtain the density of A in the Sobolev space induced by the length distance
generated by δ, we thus obtain the sought density of a suitable class of cylinder
functions in H1,2(M(Rd),HKde ,Q), where de is the Euclidean distance on Rd (see
Theorem 4.12). The result is then extended first to the Riemannian setting in
Theorem 4.15 and then further refined to the smaller class of smooth cylinder
functions. We then have the following general result (Corollary 4.17).

Theorem 1.9. Let Q be a non-negative Borel measure on M(M). If

(1.28)

∫
e−tµM dQ(µ) < +∞ for every t > 0 ,

then,
(
H1,2(M(M),HKdg ,Q

)
is a Hilbert space, the subalgebra F∞,∞c,c C∞c is strongly

dense in H1,2(M(M),HKdg ,Q) and for every u ∈ H1,2(M(M),HKdg ,Q) there exists
a sequence (un)n ⊂ F∞,∞c,c C∞c such that

un → u in L2(M(M),Q), pCE2,HKdg ,Q(un)→ CE2,HKdg ,Q(u) .

1.4.4. Identification of the metric and the geometric points of view. Let us now
come to a comparison of the Dirichlet form (E ,D(E)) in Theorem 1.7 with the
Cheeger energy CE2,HKdg ,Lθ,ν in Theorem 1.9, when we chose as reference measure
Q the multiplicative infinite-dimensional Lebesgue measure Lθ,ν . Firstly let us
stress that these two objects (and the relative constructions) are a priori related
only by the choice of the same reference measure Lθ,ν . Indeed, on the one hand,
the construction of (E ,D(E)) relies on the infinite-dimensional Lie group G(M)
(motivating also the choice of Lθ,ν) and on the class of cylinder functions. On the
other hand, the definition of CE2,HK,Lθ,ν relies solely on the Hellinger–Kantorovich
distance HKdg and on the class of HKdg -Lipschitz functions. As a consequence of
Theorem 1.9 and, the equality (1.27), and the definition in (1.13) we obtain the
following result.

Theorem 1.10. As quadratic forms on L2(M(M),Lθ,ν),

(E ,D(E)) =
(
CE2,HKdg ,Lθ,ν , H

1,2(M(M),HKdg ,Lθ,ν)
)
.

In other words, the geometric construction and the metric construction coincide,
and the Vershik diffusion is the metric measure Brownian motion of the metric
measure space

(
M(M),HKdg ,Lθ,ν

)
.

1.5. Applications and outlook.
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1.5.1. Applications to PDEs. As described in the beginning of §1.2.3, on the space
P2(Rd) of Borel probability measures on Rd with finite second moment the hor-
izontal gradient corresponds to the geometry of Otto calculus, inducing the L2-
Kantorovich–Rubinstein distance W2, in (1.22). This was first formally introduced
in [50] and later developed in e.g. [6] to study PDEs of the form

(1.29) ∂tρ−∇ ·
(
ρ∇δF

δρ

)
= 0 in Rd × (0,+∞),

where δF
δρ is the first variation of a typical integral functional

F(ρ) =

∫
Rd
F (x, ρ(x),∇ρ(x))dx.

The use of Otto calculus allows to identify (1.29) as a gradient flow dynamics
for the functional F on the space P2(M) w.r.t. W2. There are many advantages
in recogninzing this kind of dynamics on the space of probability measures: the
gradient-flow formulation suggests the use of the minimizing-movement scheme to
prove existence of solutions or to numerically approximate them; it allows for con-
traction and energy estimates, and provides an important tool for the study of the
dependence of solutions from perturbation of the functional; working in the space
of probability measures allows for weaker assumptions on the initial data (which
can be general probability measures), and forces the solutions to be non-negative a
priori. See e.g. [6, Chapter 11] for an overview.

The addition of a reaction term in (1.29) destroys the possibility to resort to Otto
calculus, since then mass is no longer preserved during the evolution, which is then
set in the space M(Rd), rather than in P2(Rd). To recover a similar framework,
one can consider the full gradient introduced in the end of §1.2.3 inducing the
Hellinger–Kantorovich distance (1.23), which thus serves as a generalization of the
Otto calculus to functions defined on M(M). The present paper provides more
insight in the structure of M(M) and the differentiation of functionals defined
therein, which will serve as a tool to study the gradient flow structure of natural
generalizations of the PDE in (1.29).

1.5.2. Applications to SPDEs. Let H : P2(M) → R be a measurable function,
and ξ be a space-time white noise on M with values in the tangent bundle to M .
The Dean–Kawasaki equation [20, 51] is the stochastic partial differential equation
(spde)

(1.30) ∂ρ = ∆ρ+∇ · (√ρ ξ) +∇ ·
(
ρ∇δF

δρ

)
.

Equation (1.30) has been proposed, independently, by D.S. Dean and by K. Kawa-
saki, [20, 51], to describe the density function of a large particle system subject to
a diffusive Langevin dynamics, combining a deterministic interaction H with a
noise ξ accounting for the particles’ thermal fluctuations. Together with its vari-
ants, it has been used to describe super-cooled liquids, colloidal suspensions, the
glass-liquid transition, some bacterial patterns, and other systems; see, e.g., the
recent review [90] and the introduction to [24].

Recently, the noise term in (1.30) has been identified as the natural noise for the
geometry of P2(M). Indeed, in the ‘free case’ H ≡ 0, a solution t 7→ ρ = ρt to (1.30)
is an intrinsic random perturbation of the gradient flow of the Boltzmann–Shannon
entropy on P2(M) by a noise distributed according to the energy dissipated by the
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system, i.e. by the natural isotropic noise arising from the Riemannian structure
of P2(M), see [48, 55, 54]. Generalizations to (1.30) have been further completely
characterized in [24], where it shown that Markov solutions to the free Dean–
Kawasaki equation correspond to the Dirichlet form induced by the horizontal form
on P2(M).

It is therefore natural to ask whether the Vershik diffusion µt can be identified
as the (unique) solution to some spde with M(M)-valued solutions, and —if so—
what is dynamics of the corresponding infinite marked particle system on M . By
analogy with the massive particle systems in [24], we expect the Vershik diffusion to
solve a combination of the Dean–Kawasaki and Dawson–Watanabe spdes, cf. [24,
§1.5.3]. Since the chosen invariant measure Lθ is concentrated on purely atomic
measures, we also expect the solution µt to this spde to be the empirical measure
of a massive particle system in the sense of [24], viz.

µt =
∑
i

Sit δXit .

The atoms’ locations Xi
t will solve the infinite system of sdes:

dXi
t = dWi

t/Sit

where the Wi’s are mutually independent instances of the Brownian motion on M ,
while the atoms’ masses Sit will solve an infinite system of sdes of Bessel type
driven by mutually independent standard Brownian motions on the real line also
independent of the Wi’s.

Plan of the work. In §2 we collect preliminary results about Sobolev spaces on
arbitrary metric measure spaces. In §3 we recall the definition and some properties
of the Hellinger–Kantorovich distance, and we prove new regularity estimates for
optimal potentials in its dual formulation. In §4.1 and 4.2 we introduce cylinder
functions on M(M) and prove their density in energy in the metric Sobolev space
of the metric measure space

(
M(Rd),HKde ,Q

)
for any finite Borel measure Q on

M(Rd). In §4.3 we extend the density (and consequently the Hilbertianity) result
to the case of a Riemannian manifold and to the class of smooth cylinder func-
tions in F∞,∞c,c C∞c , and we also draw some consequences of the latter in terms of
the density of cylinder functions in (and the Hilbertianity of) the Sobolev spaces
H1,2(M(Rd), d,Q), where d is either the L2-Wasserstein (extended) distance or the
2-Hellinger distance. In §5.1 we study the uniqueness and invariance properties of
the measure Lθ,ν . In §5.2 and §5.3 we prove the closability of the form (E ,F∞,∞c,c C∞c )
and we study its properties. In Appendix A we construct the Dirichlet form as-
sociated to the squared Bessel process whose properties are instrumental to many
results related to the closure of (E ,F∞,∞c,c C∞c ). Finally, in Appendix B we collect
some properties of measure-preserving diffeomorphisms on manifolds.
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2. Metric Sobolev spaces and the density of subalgebras

2.1. Preliminaries. We recall some standard facts in the theory of metric measure
spaces and establish the necessary notation.

Metric-topological objects. Let (X, τ) be a Hausdorff topological space and
d : X ×X → [0,+∞] be an extended distance on X, i.e. d satisfies all the axioms
of a distance but may attain the value +∞. Given a function f : X → R and a
set A ⊂ X we define

• the local d-Lipschitz constant

Ld,A(f) := sup
x,y∈A, x 6=y

|f(x)− f(y)|
d(x, y)

;

• the (global) d-Lipschitz constant Ld(f) := Ld,X(f);
• the asymptotic (τ, d)-Lipschitz constant

(2.1) lipτd f(x) := inf
U∈Ux

Ld,U (f) , x ∈ X,

where Ux is the directed set of all the τ -neighbourhoods of x.

We denote by Lipb(X, τ, d) the set of bounded τ -continuous and d-Lipschitz func-
tions in X i.e.

Lipb(X, τ, d) := {f ∈ Cb(X, τ) : Ld(f) < +∞}.

Definition 2.1 (Extended metric-topological measure space (e.m.t.m. space)).
Let (X, τ) be a Hausdorff topological space and let d : X × X → [0,+∞] be an
extended distance on X. We say that (X, τ, d) is an extended metric-topological
space if

(1) τ coincides with the initial topology induced by Lipb(X, τ, d) on X, i.e. the
coarsest topology on X such that all functions in Lipb(X, τ, d) are contin-
uous;

(2) the distance d can be recovered starting from non-expansive d-Lipschitz
τ -continuous functions:

d(x, y) := sup{|f(x)− f(y)| : f ∈ Lipb(X, τ, d), Ld(f) ≤ 1} , x, y ∈ X .

Given a non-negative, Radon measure m on (X,B(X, τ)) finite on d-balls, we call
X := (X, τ, d,m) an extended metric-topological measure space. In the particular
case when (X, d) is a complete and separable metric space and τ = τd is the topology
induced by d, we say that (X, d,m) is a Polish metric measure space.

Remark 2.2. When (X, d) is a complete and separable metric space, every non-
negative Borel measure m finite on d-bounded sets is automatically Radon; see,
e.g., [85, Thm. II.11, p. 125].

A subalgebra A of Lipb(X, τ, d) is

• unital if the constant function 1 is an element of A ;
• point-separating if for every x0, x1 ∈ X there exists f ∈ A with f(x0) 6=
f(x1).

Curves. Given an interval I ⊂ R and a metric space (X, d), we call a curve a
continuous function γ : I → X and we denote its metric speed by

(2.2) |γ̇|d(t) := lim sup
h→0

d
(
γ(t+ h), γ(t)

)
|h|

, t ∈ I .
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The distance d induces a length functional `d on the space of curves in Lip([0, 1]; (X, d)):

`d(γ) := sup

{
N∑
n=1

d(γ(tn−1), γ(tn)) : 0 = t0 < t1 < · · · < tN−1 < tN = 1

}

=

∫ 1

0

|γ̇|d(t) dt .

The length (extended) distance d̂ induced by d on a subset Y ⊂ X is then, for
every y0, y1 ∈ Y ,

d̂Y (y0, y1) := inf

{
`d(γ) :

γ ∈ Lip([0, 1]; (Y, d)) ,

γ(0) = y0, γ(1) = y1

}
(2.3)

= inf

{
` > 0 :

γ ∈ Lip([0, `]; (Y, d)) ,

γ(0) = y0, γ(`) = y1, |γ̇|d ≤ 1 a.e.

}
.(2.4)

In case Y = X, we simply write d̂.

Measure objects. Unless explicitly stated otherwise, by a measure we mean
a non-negative non-zero measure. Let (X,Σ,m) be a measure space. We denote
by L0(X,m) the space of real-valued measurable functions on X, identified up to
equality m-a.e., endowed with the topology of the local convergence in m-measure.
For r ∈ [1,+∞], we denote by Lr(X,m) the usual Lebesgue spaces of real-valued,
measurable r-summable functions, identified up to equality m-a.e., with its usual
norm. For Y (any subset of) a Banach space, we write Lr(X,m;Y ) for the corre-
sponding space of Y -valued functions.

2.2. Relaxed gradients, Cheeger energies, and Sobolev spaces. We fix for
this subsection a e.m.t.m. space X = (X, τ, d,m), a unital point-separating subal-
gebra A ⊂ Lipb(X, τ, d), and q ∈ (1,+∞).

Definition 2.3 (Cheeger energy and Sobolev space). The (q,A )-Cheeger energy
is the functional
(2.5)

CEq,A (f) = inf

{
lim inf
n→+∞

pCEq(fn) :
(fn)n ⊂ A ,

fn → f in L0(X,m)

}
, f ∈ L0(X,m) ,

where the pre-Cheeger energy pCEq : Lipb(X, τ, d)→ [0,+∞] is defined as

(2.6) pCEq(f) :=

∫
X

(lipτd f)q dm , f ∈ Lipb(X, τ, d) .

We denote by D1,q(X; A ) the subspace of functions in L0(X,m) with finite (q,A )-
Cheeger energy. The Sobolev space H1,q(X; A ) is defined as Lq(X,m)∩D1,q(X; A ).
The Sobolev norm of f ∈ H1,q(X; A ) is defined by

‖f‖qH1,q(X;A )
:= ‖f‖qLq(X,m) + CEq,A (f) .

We adopt the following definition of relaxed gradient, see [8, 7, 81], also cf. [87, 11]
for a different approach.

Definition 2.4 ((q,A )-relaxed gradient). We say that G ∈ Lq(X,m) is a (q,A )-
relaxed gradient of f ∈ L0(X,m) if there exist a sequence (fn)n ⊂ A with

(lipτd fn)n ⊂ Lq(X,m) and G̃ ∈ Lq(X,m) such that:
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• fn → f in L0(X,m) and lipτd fn ⇀ G̃ in Lq(X,m);

• G̃ ≤ G m-a.e. in X.

Remark 2.5. In general, it is not the case that lipτd f ∈ Lq(X,m) for f ∈ Lipb(X, τ, d).

For f ∈ L0(X,m) set

SX,q,A (f) := {G ∈ Lq(X,m) : G is a (q,A )-relaxed gradient of f} .
It is a simple but important property of relaxed gradients that, if SX,q,A (f) is
non-empty, then it has a unique element of minimal Lq(X,m)-norm, see [8, 7, 81],
denoted by |Df |?,q,A and called the minimal (q,A )-relaxed gradient of f .

Remark 2.6 (Notation). Whenever τ = τd for a complete and separable distance d
on X, and A = Lipb(X, τ, d) we will omit the dependence on either τ , A , or both
from the notation. Furthermore, the notion of relaxed gradient, the minimal relaxed
gradient (if it exists) and the Cheeger (resp. pre-Cheeger) energy of a function in
L0(X,m) depend of course on X, A and q (resp. on X and q) but, while we will
always keep the dependence on A (except for the case specified above) and q
explicit, we will usually not state explicitly the one w.r.t. X. In some circumstances
however, it will be useful to do so, and we will talk about (X, q,A )-relaxed gradient
and write |Df |?,X,q,A , CEX,q,A (f) and pCEX,q(f).

Let us collect a few properties of relaxed gradients and Sobolev spaces that will
be useful in the following. For a more comprehensive list and references to the
proofs, see [36].

Theorem 2.7. Let X = (X, τ, d,m) be a e.m.t.m. space, let A ⊂ Lipb(X, τ, d) be
a unital point-separating subalgebra and let q ∈ (1,+∞). The following properties
hold true:

(i) Completeness: (H1,q(X; A ), ‖ · ‖H1,q(X;A )) is a Banach space.
(ii) Closure: The set

SX,q,A :=
{

(f,G) ∈ L0(X,m)× Lq(X,m) : G is a (q,A )-relaxed gradient of f
}

is convex and closed with respect to the product topology of the local convergence
in m-measure and the weak convergence in Lq(X,m). In particular, for every r ∈
(1,+∞), the restriction SrX,q,A := SX,q,A ∩Lr(X,m)×Lq(X,m) is weakly closed in

Lr(X,m)× Lq(X,m).
(iii) Strong approximation: If f ∈ D1,q(X, d,m; A ) then there exists a sequence

fn ∈ A such that

(2.7) fn → f m-a.e. in X, lipτd fn → |Df |?,q,A strongly in Lq(X,m).

(iv) Local representation: It holds

(2.8) CEq,A (f) :=

∫
X

|Df |q?,q,A dm for every f ∈ D1,q(X; A ).

Further assume that m is finite and let f, g ∈ D1,q(X; A ). Then,

(v) Refined approximation: If in addition f ∈ Lr(X,m) for some r ∈ {0} ∪
[1,+∞) and takes values in a closed (possibly unbounded) interval I ⊂ R, the se-
quence in (iii) can be found taking also values in I and converging to f in Lr(X,m).

(vi) Pointwise minimality: If G is a (q,A )-relaxed gradient of f , then |Df |?,q,A ≤
G m-a.e.
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(vii) Leibniz rule: If f, g ∈ D1,q(X; A ) ∩ L∞(X,m), then fg ∈ D1,q(X; A ) and

(2.9) |D(fg)|?,q,A ≤ |f | |Dg|q,?,A + |g| |Df |?,q,A m-a.e.

(viii) Sub-linearity: If α, β ∈ R, then αf + βg ∈ D1,q(X; A ) and

(2.10) |D(αf + βg)|?,q,A ≤ |α| |Df |q,?,A + |β| |Dg|?,q,A m-a.e.

(ix) Locality: for any L 1-negligible Borel subset N ⊂ R we have

(2.11) |Df |?,q,A = 0 m-a.e. on f−1(N) .

Furthermore,

(2.12) |Df |?,q,A = |Dg|?,q,A m-a.e. on {f = g}.
(x) Chain rule: If φ ∈ Lip(R) then φ ◦ f ∈ D1,q(X; A ) and

(2.13) |D(φ ◦ f)|?,q,A ≤ |φ′(f)| |Df |?,q,A m-a.e.,

and equality holds in (2.13) if φ is monotone or C1.
(xi) Truncations: If fj ∈ D1,q(X; A ), 1 ≤ j ≤ k, then f+ := max(f1, . . . , fk)

and f− := min(f1, . . . , fk) satisfy f± ∈ D1,q(X; A ) and

|Df±|?,q,A = |Dfj |?,q,A m-a.e. on {f± = fj} , 1 ≤ j ≤ k .(2.14)

Remark 2.8. In the notation of Theorem 2.7, we have that if m is finite, the restric-
tion of CEq,A to Lr(X,m), r ∈ [1,+∞), can be equivalently obtained as
(2.15)

CEq,A (f) = inf

{
lim inf
n→+∞

pCEq(fn) :
(fn)n ⊂ A ,

fn → f in Lr(X,m)

}
, f ∈ Lr(X,m).

2.3. Density of sub-algebras of Lipschitz functions. The main property we
are interested in is the density of the subalgebra A in the metric Sobolev space

D1,q(X) = D1,q(X; Lipb(X, τ, d)) .

Definition 2.9 (Density in energy of a subalgebra of Lipschitz functions). Let
X = (X, τ, d,m) be an e.m.t.m. space, let A ⊂ Lipb(X, τ, d) be a subalgebra and let
q ∈ (1,+∞). We say that A is dense in q-energy in D1,q(X) if for every f ∈ D1,q(X)
there exists a sequence (fn)n satisfying

(2.16) fn ∈ A , fn → f m-a.e. in X, lipτd fn → |Df |?,q strongly in Lq(X,m).

(In particular fn → f in L0(m) as well.)

Remark 2.10. When m is finite, Definition 2.9 is also equivalent to the following
strong approximation property: for every f ∈ H1,q(X) there exists a sequence (fn)n
satisfying

(2.17) fn ∈ A , fn → f in Lq(X,m), lipτd fn → |Df |?,q strongly in Lq(X,m).

When A is unital and point-separating, Definition 2.9 is equivalent to either the
equality D1,q(X; A ) = D1,q(X) with equal minimal relaxed gradients, or the equal-
ity of the Sobolev spaces H1,q(X; A ) = H1,q(X) with equal norms.

Remark 2.11 (Strong density). If a subalgebra A ⊂ Lipb(X, d) satisfies (2.17)
and the space H1,q(X) is reflexive, then A is also strongly dense i.e. for every
f ∈ H1,q(X) there exists a sequence (fn)n ⊂ A such that

fn → f in H1,q(X).
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This follows noticing that, for a sequence (fn)n ⊂ A as in (2.17), the sequence
(|Dfn|?,q)n is uniformly bounded in Lq(X,m) so that (fn)n is uniformly bounded
in H1,q(X). By reflexivity we have that fn converges weakly in H1,q(X) to some
g ∈ H1,q(X). Applying Mazur’s theorem, we find a sequence (gn)n ⊂ A converg-
ing strongly in H1,q(X) (and thus in particular in Lq(X,m)) to g. Since fn was
converging in Lq(X,m) to f , it must be that f = g.

In the following theorem we are going to consider a situation that may appear
a bit artificial but it is actually what it is going to happen in the concrete case we
are going to analyze.

Theorem 2.12. Let (X, d) be a complete and separable metric space, let m be a
finite, non negative Borel measure on (X, d) and let A ⊂ Lipb(X, d) be a unital
and point-separating subalgebra. Let δ be a distance on X such that:

(a) (X, δ) is separable;
(b) the topology τ induced by δ coincides with the one induced by d;

(c) it holds d ∧ 1 ≤ δ ≤ d̂ in X ×X.

Let Y ⊂ X be a countable d-dense set. Setting X := (X, τ, d,m) and X′ :=
(X, τ, δ,m), if

(2.18) dy ∈ D1,q(X′; A ) and
∣∣Ddy

∣∣
?,X′,q,A ≤ 1 , y ∈ Y ,

then A is dense in q-energy in D1,q(X′) in the sense of Definition 2.9.

Proof. Note that, under the given assumptions, (X, d) and (X, δ) are both complete
and separable metric spaces. By [81, Cor. 5.3.6] we have D1,q(X) = D1,q(X′) with
same minimal relaxed gradient, viz.

|Df |?,X,q = |Df |?,X′,q , f ∈ D1,q(X) = D1,q(X′) .

The proof is precisely the same of [36, Theorem 2.12] but for one (simple, yet
crucial) detail: the distances d and δ are different in general: we are considering
here the relaxed gradient of dy induced by δ. Note that the analogous condition
with d in place of δ is stronger. Since the use of the two distances δ and d may
cause confusion, we prove the assertion in full. We split the proof in various steps.
It suffices to prove that
(2.19)
|Df |?,X′,q,A ≤ |Df |?,X′,q = |Df |?,X,q m-a.e. , f ∈ D1,q(X)

(
= D1,q(X′)

)
,

since the opposite inequality holds by definition.

(1) Claim: It is not restrictive to assume d bounded above by 1. Indeed: metric
completeness, the induced length distance, the class of Lipschitz and bounded func-
tions, and the definition of asymptotic Lipschitz constant are all invariant under
truncation.

(2) Claim: It is sufficient to prove that

(2.20) CEX′,q,A (f) ≤
∫
X

(lipd f)q dm , f ∈ Lipb(X, d) .

Indeed, if f ∈ D1,q(X) = D1,q(X′), we can find a sequence fn ∈ Lipb(X, d) such
that fn → f m-a.e. and lipd fn → |Df |?,X,q = |Df |?,X′,q strongly in Lq(X,m) as
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n → ∞. By the L0-lower semicontinuity of the CEX′,q,A -energy, letting f = fn
in (2.20) and letting n→∞ we get

CEX′,q,A (f) ≤
∫
X

|Df |q?,X′,q dm = CEX′,q(f) = CEX,q(f) <∞ .

We deduce that f has a (X′, q,A )-relaxed gradient (equivalently a (X, q,A )-relaxed
gradient) and that (2.19) holds, since |Df |?,X′,q = |D|?,q,d ≤ |Df |?,X′,q,A m-a.e.

(3) Hopf–Lax regularizations. Let r ∈ (1,+∞) be the Hölder conjugate ex-
ponent of q, satisfying i.e. 1/r + 1/q = 1. For every f ∈ Lipb(X, d) and t > 0 we
introduce the Hopf–Lax regularization Qtf : X → R,

Qtf(x) := inf
y∈X

1

rtr−1
dr(x, y) + f(y) , x ∈ X .(2.21)

It is clear that Qtf is bounded (with values in the interval [infX f, supX f ]) and
d-Lipschitz, being the infimum of a family of uniformly d-Lipschitz functions. We
further consider the upper semicontinuous function [8, (3.4) and Prop. 3.2]

D+
t f(x) := sup lim sup

n→∞
d(x, yn),(2.22)

where the supremum ranges over all the minimizing sequences (yn)n of (2.21). The

function D+
t f too is bounded uniformly in t and satisfies (see e.g. [81, Lem. 3.2.1])

(2.23)

(
D+
t f(x)

t

)r
≤
(
rLd(f)

)q
.

In fact, if (yn)n is a minimizing sequence for the right-hand side of (2.21), for every
ε > 0 we have, eventually in n,

1

rtr−1
dr(x, yn) + f(yn) ≤ Qtf(x) + ε ≤ f(x) + ε ,

i.e., setting L := Ld(f),

1

tr
dr(x, yn) ≤ εr

t
+
r

t

(
f(x)− f(yn)

)
≤ εr

t
+ rL

d(x, yn)

t

≤ εr

t
+ (rL)q +

dr(x, yn)

rtrq1/(q−1)
.

We thus get

lim sup
n→∞

1

tr
dr(x, yn) ≤ εr

t
+ (rL)q

which yields (2.23) since ε > 0 is arbitrary.
(4) Claim: For every f ∈ Lipb(X, d) and for every t > 0,

(2.24) |DQtf |?,X′,q,A ≤
(
t−1D+

t f
)r−1

m-a.e. .

Indeed, let {yn}n be an enumeration of the countable d-dense set Y , fix f ∈
Lipb(X, d), and set

Qnt f(x) := min
1≤k≤n

1

rtr−1
dr(x, yk) + f(yk) .

It is readily checked that

(2.25) Qtf(x) = inf
y∈Y

1

rtr−1
dr(x, y) + f(y) = lim

n→∞
Qnt f(x) .
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We consider now the upper semicontinuous function

(2.26) Dnt (x) := max

{
d(x, yk) : 1 ≤ k ≤ n, Qnt (x) =

1

rtr−1
dr(x, yk) + f(yk)

}
.

By (2.18) and Theorem 2.7(xi), we have that (t−1Dnt )r−1 is a (X′, q,A )-relaxed
gradient of Qnt f . It is then clear that for every x there exists a a minimizing
sequence (zn,x)n of (2.21) with zn,x ∈ {y1, . . . , yn}, i.e. such that

Dnt (x) = d(x, zn,x) and

lim
n

Qnt f(x) =
1

rtr−1
dr(x, zn,x) + f(zn,x)→ Qtf(x) ,

x ∈ X .

We deduce that

(2.27) lim sup
n→∞

Dnt (x) = lim sup
n→∞

d(x, zn,x) ≤ D+
t f(x) , x ∈ X .

Since d ≤ 1, we have Dnt ≤ 1. In particular, Dnt is bounded uniformly in n
for every t. Therefore, we can assume with no loss of generality —up to ex-
tracting a suitable non-relabeled subsequence— that (t−1Dnt )r−1 converges weakly*
in L∞(X,m) to some G. Thus, G is a (X′, q,A )-relaxed gradient of Qtf by The-
orem 2.7(ii), hence |DQtf |?,X′,q,A ≤ G m-a.e. by Theorem 2.7(vi). Now, since m
is finite, 1B ∈ L1(X,m) for every Borel B ⊂ X. Furthermore, since m is finite,
Dnt ≤ 1 ∈ L1(m) uniformly in n and t. We can thus apply the reverse Fatou lemma
and conclude from the L∞(X,m)-weak*-convergence of (t−1Dnt )r−1 to G that, for
every Borel B ⊂ X,∫

B

Gdm = lim
n

∫
B

(
t−1Dnt

)r−1
dm ≤

∫
B

lim sup
n

(
t−1Dnt

)r−1
dm

≤
∫
B

(
t−1D+

t f
)r−1

dm ,

where the last inequality follows from (2.27). We conclude that |DQtf |?,X′,q,A ≤
(t−1D+

t f)r−1 m-a.e..
(5) Claim: For every x ∈ X, t > 0, and f ∈ Lipb(X, d) we have

f(x)− Qtf(x)

t
=

1

q

∫ 1

0

(
D+
utf(x)

ut

)r
du ,(2.28)

lim sup
t↓0

f(x)− Qtf(x)

t
≤ 1

q

(
lipd f(x)

)q
.(2.29)

This follows by [81, Thm. 3.2.4]; also cf. [6, Thm. 3.1.4, Lemma 3.1.5].
(6) Conclusion. We argue as in [81, Theorem 3.2.7]: (2.28) and (2.23) yield the

uniform bound

(2.30)
f(x)− Qtf(x)

t
≤ 1

q

(
rLd(f)

)q
, x ∈ X , t > 0 .

Integrating (2.29) in X and applying the reverse Fatou Lemma we get

(2.31) lim sup
t↓0

∫
X

f − Qtf

t
dm ≤ 1

q

∫
X

(lipd f)q dm .

On the other hand, (2.28) and Fubini’s Theorem yield

(2.32)

∫
X

f − Qtf

t
dm =

1

q

∫ 1

0

∫
X

(
D+
utf

ut

)r
dm du ,
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and an application of Fatou’s Lemma yields

(2.33) lim inf
t↓0

∫
X

f − Qtf

t
dm ≥ 1

q
lim inf
t↓0

∫
X

(
D+
t f

t

)r
dm .

Using the fact that t−1D+
t f is uniformly bounded by (2.23), we can find a decreasing

and vanishing sequence (tn)n ⊂ R+ and a limit function G ∈ L∞(X,m) such that(
t−1
n D+

tnf
)r−1

⇀∗ G weakly∗ in L∞(X,m) as n→∞,

lim
n→∞

∫
X

(
D+
tnf

tn

)r
dm = lim inf

t↓0

∫
X

(
D+
t f

t

)r
dm .(2.34)

Since
(
t−1D+

t f
)r−1

is a (X′, q,A )-relaxed gradient of Qtf by Claim (4) and Qtf →
f pointwise everywhere on X, we see that G is a (X′, q,A )-relaxed gradient of f
by Theorem 2.7(ii).

Using the lower semicontinuity of the Lq-norm w.r.t. the weak∗ L∞(X,m) con-
vergence,

(2.35)
lim
n→∞

∫
X

(
D+
tnf

tn

)r
dm = lim

n→∞

∫
X

(
D+
tnf

tn

)q(r−1)

dm

≥
∫
X

Gq dm ≥
∫
X

|Df |q?,X′,q,A dm ,

where we also used the pointwise minimality of |Df |?,X′,q,A given by Theorem
2.7(vi). Combining (2.35), (2.34), (2.33) and (2.31) we deduce that∫

X

|Df |q?,X′,q,A dm ≤
∫
X

(lipd f)q dm

so that (2.20) holds. �

2.4. Stability under changes of measures and distances. We recall the notion
of infinitesimal Hilbertianity.

Definition 2.13. A Polish metric measure space (X, d,m) is infinitesimally Hilber-
tian if H1,2(X, d,m) is a Hilbert space — or, equivalently, if CE2,m is a quadratic
form.

A complete and separable metric space (X, d) is universally infinitesimally Hilber-
tian if (X, d,m) is infinitesimally Hilbertian for every non-negative Borel measure m
on (X, d) finite on d-bounded sets.

2.4.1. Changes of measures. In this section we study how to derive the infinitesimal
Hilbertianity and the density of subalgebras of Lipschitz functions for a Polish
metric measure space with possibly infinite measure m when the same property is
satisfied by a class of finite measures that have a good compatibility with m.

In particular, if (X, d,m) is a Polish metric measure space, we will consider
measures m′ satisfying

ϑ :=
dm′

dm
∈ L1(X,m) and for every compact set K ⊂ X there exist

r > 0 and c > 0 satisfying 0 < c ≤ ϑ ≤ 1 on {x ∈ X : d(x,K) ≤ r} .
(2.36)
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This condition guarantees that H1,2(X, d,m) ⊂ H1,2(X, d,m′) with equal minimal
relaxed gradients, see [8, Lem. 4.11] or [28, Lem. 4.7]. (Note that m′ and m share
the same class of negligible sets.)

Lemma 2.14. Let (X, d,m) be a Polish metric measure space and fix x0 ∈ X.
Then, there exist a continuous function ϑ = ϑx0

∈ L1(X,m)+ and, for every r > 0,
a constant c(r) > 0, such that 0 < c(r) ≤ ϑ ≤ 1 in B(x0, r). In particular, m′ := ϑm
satisfies (2.36).

Proof. Let f : [0,+∞) → [1,+∞) be a nondecreasing continuous function such
that

f(n) = mB(x0, n+ 1) + 1 , n ∈ N0 ,

and set % : t 7→ t+log f(t)) for t > 0. Now, define V = Vx0
:= % ◦ dx0

, and ϑ = ϑx0
:=

e−V , and note that ϑ is continuous and takes values in (0, 1]. It is clear from the
monotonicity of f (hence, in turn, of %) that, wherever dx0

≤ r for some r > 0, we
have ϑ ≥ e−r/f(r) > 0, which shows the lower bound for ϑ with c(r) := e−r/f(r) >
0. Analogously, wherever dx0 ≥ r for some r > 0, we have ϑ ≤ e−r/f(r) > 0, and
thus ∫

X

|ϑ| dm =

∞∑
n=1

∫
B(x0,n)\B(x0,n−1)

ϑ dm ≤
∞∑
n=1

mB(x0, n)
e1−n

f(n− 1)

≤
∞∑
n=1

e1−n < +∞ . �

Proposition 2.15. Let (X, d,m) be a Polish metric measure space and let (mk)k
be a sequence of measures mk := ϑkm satisfying (2.36), and assume either of the
following:

(a) ϑk ∈ L2(X,m) and ϑk ⇀ 1 in L2(X,m);
(b) ϑk ↑ 1 m-a.e..

If H1,2(X, d,mk) is Hilbert for every k, then H1,2(X, d,m) too is Hilbert.

Proof. In light of (2.36), |D( · )|?,X,2 coincides with |D( · )|?,Xk,2 onH1,2(X) ⊂ H1,2(Xk)
for every k by [8, Lemma 4.11], where X := (X, d,m) and Xk := (X, d,mk).
Thus, throughout the proof we may write |D( · )|?,2 in place of both |D( · )|?,X,2
and |D( · )|?,Xk,2. Fix f, g ∈ H1,2(X).

Assume (a). By the infinitesimal Hilbertianity of H1,2(Xk),∫
X

|D(f + g)|2?,2ϑk dm +

∫
X

|D(f − g)|2?,2ϑk dm

=

∫
X

|D(f + g)|2?,2 dmk +

∫
X

|D(f − g)|2?,2 dmk

= 2

∫
X

|Df |2?,2 dmk + 2

∫
X

|Dg|2?,2 dmk

= 2

∫
X

|Df |2?,2ϑk dm + 2

∫
X

|Dg|2?,2ϑk dm

Passing to the limit on both sides as k → +∞ we get

CEX,2(f + g) + CEX,2(f − g) = 2CEX,2(f) + 2CEX,2(g) ,

which concludes that CEX,2 is a quadratic form and thus that H1,2(X) is a Hilbert
space.
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Assume now (b). Since ϑk ≤ 1 we have mk ≤ m. By the infinitesimal Hilber-
tianity of H1,2(Xk),∫

X

|D(f + g)|2?,2ϑk dm +

∫
X

|D(f − g)|2?,2ϑk dm

=

∫
X

|D(f + g)|2?,2 dmk +

∫
X

|D(f − g)|2?,2 dmk

= 2

∫
X

|Df |2?,2 dmk + 2

∫
X

|Dg|2?,2 dmk

≤ 2

∫
X

|Df |2?,2 dm + 2

∫
X

|Dg|2?,2 dm

= 2CEX,2(f) + 2CEX,2(g).

Passing to the limit as k → +∞ we get that

CEX,2(f + g) + CEX,2(f − g) ≤ 2CEX,2(f) + 2CEX,2(g)

which is enough (cf. e.g. [19, Prop. 11.9]) to conclude that CEX,2 is a quadratic form
and thus that H1,2(X) is a Hilbert space. �

Proposition 2.15 shows that infinitesimal Hilbertianity is stable under suitable
limits. As we now show, this entails that universal infinitesimal Hilbertianity can
be checked on finite measures only.

Proposition 2.16. Let (X, d) be a complete and separable metric space and as-
sume that (X, d,m) is infinitesimally Hilbertian for every non-negative, finite Borel
measure m on X. Then, (X, d) is universally infinitesimally Hilbertian.

Proof. Let m be a non-negative Borel measure on X finite on d-bounded sets. It
suffices to construct a sequence of finite measure mk := ϑkm with ϑk ∈ L1(X,m) as
in (2.36) and satisfying (b) in Proposition 2.15. Indeed, in this case H1,2(X, d,mk)
is Hilbert by assumption, since mk is a finite measure, and the infinitesimal Hilber-
tianity of H1,2(X, d,m) follows from Proposition 2.15.

Fix x0 ∈ X, let %, V , and ϑ be as in the proof of Lemma 2.14, and set Vk :=
min(V, k), ϑk := e−(V−Vk), and mk := ϑkm. Observe that each measure mk satisfies
(2.36): if d(x, x0) ≤ r for some r > 0, then V − Vk ≤ V ≤ %(r) so that ϑk ≥
e−r

f(r) > 0. Since every compact set K is contained in some ball, this proves that ϑk
stays strictly positive in any enlargement of K; by construction we also have that
0 < ϑk ≤ 1 in X so that mk ≤ m. Furthermore,

mk(X) =

∫
X

ϑk dm ≤ m {V ≤ k}+ ek
∫
X

e−V dm

≤ mB(x0, k) + ek
∫
X

e−V dm < +∞ .

It is also clear that ϑk ↑ 1 in X, which verifies the assumption in Proposition 2.15(b)
and thus concludes the proof. �

In the next result we show how the density of subalgebras of Lipschitz functions
can be transferred from finite measures to infinite measure, assuming that suit-
able truncation functions are available in the algebra. For simplicity of notation,
let lipd A := {lipd f : f ∈ A }.
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Lemma 2.17. Let (X, d,m) be a Polish metric measure space, let q ∈ (1,+∞),
and let A ⊂ Lipb(X, d) be a subalgebra such that A , lipd A ⊂ Lq(X,m). If there
exists functions (ϑk)k ⊂ Lipb(X, d) such that:

(a) for every k ∈ N, mk := ϑkm satisfies (2.36), A is dense in q-energy in

D1,q(X, d,mk), (lipd ϑk)q

ϑk
∈ L∞(X,m), and fϑk ∈ A for every f ∈ A ;

(b) supk ‖ lipd ϑk‖∞ < +∞, ϑk ↑ 1 and lipd ϑk → 0 m-a.e., as k → +∞.

Then A is dense in H1,q(X, d,m) in the following sense: for every f ∈ H1,q(X, d,m)
there exist a sequence (fn)n ⊂ A satisfying

fn → f, lipd fn → |Df |?,q in Lq(X,m) as n→ +∞.

Proof. Let us set X := (X, d,m) and Xk := (X, d,mk). Recall that H1,q(X) ⊂
H1,q(Xk) as a consequence of (2.36). Since A is dense in q-energy in D1,q(Xk), by
Definition 2.9 and Remark 2.10 (mk is finite), for every f ∈ H1,q(X) there exist
sequences

(
fkn
)
n
⊂ A satisfying

fkn → f, lipd f
k
n → |Df |?,Xk,q in Lq(X,mk) as n→ +∞ .

By [8, Lemma 4.11] we may replace |Df |?,Xk,q′ with |Df |?,X,q. Let us set

gkn := fknϑk , gk := fϑk , lipd g
k
n ≤ Gkn := ϑk lipd f

k
n + |fkn | lipd ϑk

Gk := ϑk|Df |?,X,q + |f | lipd ϑk .

We note that gkn ∈ A , gkn → gk and Gkn → Gk in Lq(X,m) as n → +∞, and
gk → f and Gk → |Df |?,X,q in Lq(X,m) as k → +∞. The diagonal argument in
Lq(X,m)×Lq(X,m) gives the existence of a subsequence k 7→ nk such that setting
fk := gknk ∈ A we have

fk → f and lipd fk ≤ Gknk → |Df |?,X,q in Lq(X,m) .

Up to passing to a (non-relabeled) subsequence we get that

fk → f and lipd fk ⇀ G in Lq(X,m)

for some G ∈ Lq(X,m)+ with G ≤ |Df |?,X,q. Since G is a q-relaxed gradient of
f by Definition 2.4, we conclude that G = |Df |?,X,q by the Lq(X,m)-minimality
of |Df |?,X,q. The convergence is also strong in Lq(X,m) since

lim sup
n

∫
X

| lipd fk|q dm ≤ lim sup
n

∫
X

|Gknk |
q dm =

∫
X

|Df |q?,X,q dm.

This concludes the proof. �

2.4.2. Changes of distances. Here we consider the problem of transferring the den-
sity or Hilbertianity property from a (family of) distance(s) to another distance.

The following lemma is an immediate consequence of the fact that, setting dλ :=
λd, λ > 0, we have for any function f : X → R and A ⊂ X

Ldλ,A(f) = λ−1Ld,A(f).

Lemma 2.18. Let X = (X, τ, d,m) be a e.m.t.m. space, let A ⊂ Lipb(X, τ, d) be a
subalgebra and let q ∈ (1,+∞). Then, setting Xλ := (X, τ, dλ,m), we have that A
is dense in q-energy in D1,q(X) if and only if it is dense in q-energy in D1,q(Xλ)
and H1,2(X) is Hilbert if and only if H1,2(Xλ) is Hilbert.

The next result shows how to transfer the density of a subalgebra A from a
family of distances approximating d to d itself.
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Proposition 2.19. Let X := (X, τ, d,m) be an e.m.t.m. space with m finite, let
(di)i∈I be a directed family of complete τ -continuous distances in X such that d =
supi∈I di and let A ⊂ ∩i∈I Lipb(X, τ, di) ⊂ Lipb(X, τ, d) be a unital and point-
separating subalgebra. Set Xi := (X, τdi , di,m). Then,

(i) if A is dense in 2-energy in D1,2(Xi) for every i ∈ I, then A is dense in
2-energy in D1,2(X);

(ii) if H1,2(Xi) is Hilbert for every i ∈ I, then H1,2(X) is Hilbert too.

Proof. We want to apply [4, Theorem 9.1] in our setting so that we need to make a
few comments: (a) The Cheeger energy in [4] is defined as a functional on L2(X,m)
so that we can compare it with the restriction of our notion of Cheeger energy to
L2(X,m). (b) The Cheeger energy in [4] is defined starting from a different notion
of asymptotic Lipschitz constant but it turns out that it coincides with our notion of
Cheeger energy [28, proof of Proposition 2.22]. (c) In the notation of the discussion
above [4, Theorem 9.1] we have that, in our case, πi is the identity map in X so

that d̃i = di, Xi = X, mi = m and πi? is the identity in L2(X,m). Again in the
notation of [4, Theorem 9.1], we deduce that Chi coincides with the restriction of
CEXi,2 to L2(X,m). Applying [4, Theorem 9.1] we deduce that

CEX,2(f) = inf

{
lim inf
n→+∞

inf
i∈I

CEXi,2(fn) :
(fn)n ⊂ L2(X,m) ,

fn → f ∈ L2(X,m)

}
, f ∈ L2(X,m).

We thus have that for every f ∈ L2(X,m) there exists a sequence (fk)k ⊂ L2(X,m)
and a subsequence (ik)k ⊂ I such that

(2.37) ‖f − fk‖L2(X,m) < 1/k, CEX,2(f) + 1/k ≥ CEXik ,2(fk) for every k ∈ N.

Proof of (i). If A is dense in 2-energy in D1,2(Xi) for every i ∈ I, we deduce
that for every f ∈ L2(X,m) there exists a sequence (fn)n ⊂ A and a subnet
(ik)k ⊂ I such that

‖f−fk‖L2(X,m) < 1/k , CEX,2(f)+1/k ≥ pCEXik ,2
(fk) ≥ pCEX,2(fk) , k ∈ N .

Passing the above inequality to the lim infk we get that, for every f ∈ L2(X,m) it
holds

CEX,2(f) ≥ lim inf
k

pCEX,2(fk) ≥ CEX,2,A (f).

This proves the density of in 2-energy of A in D1,2(X).

Proof of (ii). Let f, g ∈ L2(X,m) and let (fk)k, (gk)k be sequences as in (2.37)
for f and g respectively (note that this can be done for the same subnet (ik)k since
the hypotheses of the present theorem also holds restricting I to (ik)k). We have

inf
i∈I

CEXi,2(fk + gk) + inf
i∈I

CEXi,2(fk − gk) ≤ CEXik ,2(fk + gk) + CEXik ,2(fk − gk)

= 2CEXik (fk) + 2CEXik (gk)

≤ 2CEX(f) + 2CEX(g) +
4

k
.

Taking lim infk in the above inequality, we deduce that

2CEX(f) + 2CEX(g) ≥ lim inf
k

inf
i∈I

CEXi,2(fk + gk) + lim inf
k

inf
i∈I

CEXi,2(fk − gk)

≥ CEX(f + g) + CEX(f − g) .
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This is enough (cf. e.g. [19, Prop. 11.9]) to conclude that CEX,2 is a quadratic form
in L2(X,m) and thus that H1,2(X) is a Hilbert space. �

3. Distances on measures

In this section we introduce the distances on the space of measures we are going
to work with. To this aim we fix a complete and separable metric space (U, %) and
we consider the space M(U) of finite, non-negative Borel measures on (U, %).

The first distance we will work with is the Wasserstein distance induced by %.

Definition 3.1 (Extended Wasserstein distance). We define the extended (Kant-
orovich–Rubinstein) Wasserstein (2, %)-distance

W2,% : M(U)→ [0,+∞]

W2,%(µ0, µ1)2 := inf

{∫
U×U

%2 dγ : γ ∈ Cpl(µ0, µ1)

}
, µ0, µ1 ∈M(Rd) ,

where Cpl(µ0, µ1) denotes the set of couplings between µ0 and µ1 defined as

Cpl(µ0, µ1) := {γ ∈M(U × U) : πi]γ = µi, i = 0, 1},

being πi : U × U → U the projection πi(x0, x1) := xi for every (x0, x1) ∈ U × U .

Note that, whenever µ0(U) 6= µ1(U), then Cpl(µ0, µ1) = ∅ so that W2,%(µ0, µ1) =
+∞. When we restrict W2,% to the subset of P(U) (the Borel probability measures
in U) given by

P2(U) := {µ ∈ P(U) :

∫
U

%2(x0, x) dµ(x) < +∞ for some (hence for every) x0 ∈ U}

then W2,% is finite and (P2(U),W2,%) is a complete and separable metric space
whose topology is stronger than (the restriction of ) the weak topology. We refer to
the monographs [99, 98, 6] for a throughout presentation of Wasserstein distances.

The second distance we introduce is the well known Hellinger distance.

Definition 3.2 (Hellinger distance). We define the Hellinger 2-distance

He2 : M(U)→ [0,+∞) ,

He2(µ0, µ1)2 :=

∫
U

∣∣∣∣∣
√

dµ0

dη
−

√
dµ1

dη

∣∣∣∣∣
2

dη, µ0, µ1 ∈M(Rd) ,

where η ∈ M(U) is any measure such that µi � η for i = 0, 1. Notice that,
since (s, t) 7→ |

√
t−
√
s|2 is positively 1-homogeneous, the above definition does not

depend on η.

3.1. The Hellinger–Kantorovich distances. We follow [59] to introduce the
Hellinger–Kantorovich distance, see also [17]. We introduce on U × R+ the equiv-
alence relation

(x, r) ∼ (y, s)
def⇐⇒ [x = y, r = s 6= 0 ∨ r = s = 0]

and the corresponding geometric cone C[U ] := (U × R+)/ ∼, whose points are
denoted by fraktur letters as y. We denote by p the quotient map p : U×R+ → C[U ]
mapping a point (x, r) to its equivalence class [x, r]. Note that p is just the identity
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map except for those points with r = 0, all mapped to the same equivalence class,
the so called vertex of the cone, that we denote by o.

On the cone C[U ] we introduce the projections on R+ and U simply defined as
r([x, r]) = r and x([x, r]) = x if r > 0 and x([x, r]) = x̄ if r = 0, where x̄ ∈ U is some
fixed point. We omit the dependence of x on x̄ since in the constructions where x
is involved this will be irrelevant.

On C[U ] we consider the following topology, weaker then the quotient one: a
local system of neighbourhoods of a point [x, r] is just the image trough p of the
local system of neighbourhoods given by the product topology at (x, r) ∈ U × R+,
if r > 0. A local system of neighbourhoods at 0 is given by{

{[x, r] ∈ C[U ] : 0 ≤ r < ε} : ε > 0
}
.

The topology of C[U ] is induced, for every a ∈ (0, π], by the distance %a,C : C[U ]×
C[U ]→ [0,+∞) defined as

(3.1) %a,C([x, r], [y, s]) :=
(
r2 + s2 − 2rs cos(%(x, y) ∧ a)

) 1
2 , [x, r], [y, s] ∈ C[U ].

With this distance, (C[U ], %a,C) is a Polish metric space. We introduce the set

N2
+(C[U ]) :=

{
α ∈M(C[U ]) :

∫
C[U ]

r2dα < +∞

}
,

and the map

h : N2
+(C[U ])→M(U), h(α) = x](r

2α) .

Note that the map h does not depend on the point x̄ in the definition of x.

We introduce now the product cone: we define C[U,U ] := C[U ]× C[U ] endowed
with the product topology. On the product cone we can consider the projections on
the two components πCi : C[U,U ] → C[U ] sending ([x0, r0], [x1, r1]) to [xi, ri] and
the projections on R+ and on the two copies of U simply defined as ri := r◦πCi and
xi := x ◦πCi (xi depends on the choice of points x̄i ∈ U , but this will be irrelevant).
We introduce the set

N2
+(C[U,U ]) :=

{
α ∈M(C[U,U ]) :

∫
C[U,U ]

(r20 + r21)dα < +∞

}
,

and the maps

hi : N
2
+(C[U,U ])→M(Ui) , hi(α) = (xi)](r

2
iα) , i = 0, 1 .

Note that the map hi does not depend on the point x̄i ∈ Ui in the definition of xi.
Finally we define, for every (µ0, µ1) ∈M(U)×M(U), the set

(3.2) H(µ0, µ1) :=
{
α ∈ N2

+(C[U,U ]) : hi(α) = µi, i = 0, 1
}
.

If α ∈ H(µ0, µ1), we say that µ0 and µ1 are the 2-homogeneous marginals of α.
We can now give the definition of Hellinger–Kantorovich distance induced by %.

Definition 3.3 (Hellinger–Kantorovich distance). We define the Hellinger–Kant-
orovich %-distance HK% : M(U)→ [0,+∞) as

(3.3) HK%(µ0, µ1)2 = inf

{∫
C[U,U ]

%2
π,Cdα : α ∈ H(µ0, µ1)

}
.
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The minimum in (3.3) is always attained (see [59, Theorem 7.6]), and we denote
by OPT%(µ0, µ1) the set of plans α attaining it. The pair (M(U),HK%) is a complete
and separable metric space which is a length (resp. geodesic) space if (U, %) is a
length (resp. geodesic) space (cf. [59, Theorems 7.15, 7.17, 8.5]). The topology of
induced by HK% on M(U) coincides with the weak topology σ(M(Rd),Cb(U, %)).

We introduce the Gaussian Hellinger–Kantorovich distance: let us consider the
function g : [0,+∞)→ [0, π2 ) defined as

g(z) := arccos(e−z
2/2) , z ∈ [0,+∞) .

Since g is a concave increasing function with g(0) = 0, then g% := g ◦% is a distance
on U inducing the same topology of %. Note that

g%π,C([x0, r0], [x1, r1]) =
[
r2
0 + r2

1 − 2r1r2e−%(x0,x1)2/2
]1/2

, [x0, r0], [x1, r1] ∈ C[U ] .

Definition 3.4. We define the Gaussian Hellinger–Kantorovich %-distance

GHK% : M(U)→ [0,+∞) , GHK%(µ0, µ1) := HKg%(µ0, µ1) , µ0, µ1 ∈M(U) .

Again, (M(U),GHK%) is a complete and separable metric space and the topology
of (M(U),GHK%) coincides with the weak topology, [59, Theorem 7.25]. Moreover,
if (U, %) is a length space, then HK% is the length distance induced by GHK%, [59,
Corollary 8.7].

The following result is the duality theorem for the GHK% distance. We will use
the following notation: given two functions φi : U → [−∞,+∞], i = 0, 1, the map
φ0 ⊕o φ1 : U × U → [−∞,+∞] is defined as

φ0⊕oφ1(x0, x1) := lim
n→+∞

(−n∨φ0(x0)∧n)+(−n∨φ1(x1)∧n), (x0, x1) ∈ U×U .

Theorem 3.5. Let (U, %) be a complete and separable metric space. Then, for
every µ0, µ1 ∈M(U) we have

GHK%(µ0, µ1)2 = inf

[∑
i

∫
U

(σi log σi − σi + 1) dµi +

∫
U×U

%2 dγ : γ ∈M(U × U)

]

= sup

[∑
i

∫
U

(1− e−2φi) dµi : φi ∈ Ai(U), φ0 ⊕o φ1 ≤ %2/2

]
,

where σi := dγi
dµ1

, being γi, i = 0, 1, the marginals of γ, and Ai(U) can be chosen

between the spaces Cb(U), LSCb(U), Bb(U) and

L1
e(µi) :=

{
φ : U → [−∞,+∞] : φ is Borel and

∫
U

e−2φ dµi < +∞
}
.

Furthermore:

(i) The set of plans γ which realize the infimum above is non-empty and it is
denoted by OPT′%(µ0, µ1).

(ii) If γ ∈ OPT′%(µ0, µ1) there exist two Borel sets Ai ⊂ supp(γi) on which γi
is concentrated and two Borel densities σi : Ai → (0,+∞) of γi w.r.t. µi
such that

σ0σ1 ≥ e−%
2

in A0 ×A1,(3.4)

σ0σ1 = e−%
2

γ-a.e. in A0 ×A1.(3.5)
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(iii) If we define the Borel potentials φi : U → [−∞,+∞] as

φi :=


− 1

2 log σi, in Ai,

−∞, in supp(µi) \Ai,
+∞, otherwise,

then the pair (φ0, φ1) ∈ L1
e(µ0) × L1

e(µ1) and realizes the supremum above
and satisfies φ0 ⊕o φ1 ≤ %2/2.

(iv) Every γ ∈ OPT′%(µ0, µ1) has the following properties:
(a) µi � γi � µi, for i = 0, 1;
(b) γ is a solution for the Optimal Transport problem between its two

marginals with cost %2;
(c) the plan

α :=
(
[idU , σ

−1/2
0 ], [idU , σ

−1/2
1 ]

)
]
γ

belongs to OPTg%(µ0, µ1).

(v) If (φ̃0, φ̃1) ∈ L1
e(µ0) × L1

e(µ1) realizes the supremum above and satisfies

φ̃0 ⊕o φ̃1 ≤ %2/2, then φi = φ̃i µi-a.e. on U .

Proof. The first equality is [59, Theorem 7.20] while the equality between infimum
and supremum is [59, Theorem 6.3(a)]. Assertion (i) is a consequence of [59, The-
orem 6.2(a)]. Assertion (ii) is [59, Theorem 6.3(b)] while assertion (iii) is [59,
Theorem 6.3(d)]. Assertion (iv) is [59, Theorem 6.3(c)] together with comments
(a) and (b) after [59, Theorem 7.20]. Finally, assertion (v) is [59, Formula (4.21)];
see also [60, Theorem 2.14]. �

3.2. Estimates on optimal potentials in the Euclidean case. We now spe-
cialize Theorem 3.5 to the case of (U, %) = (Rd, de), where de is the distance induced
by the Euclidean norm in Rd. The symbolMac(Rd) denotes the set of measures in
M(Rd) which are absolutely continuous w.r.t. the d-dimensional Lebesgue measure.
Analogous notation is adopted for Pac(Rd) and Pac2 (Rd).

Proposition 3.6. Let ν, µ ∈ Mac(Rd) and let R, δ > 0 be such that supp(ν) =

B(0, R) and ν ≥ δL d B(0, R). Then there is a unique pair of convex and contin-
uous functions ϕ : B(0, R)→ R and ψ : Rd → R such that

(i) ψ and ϕ are the Legendre conjugate of each other:

ϕ(x) := sup
y∈Rd

[
〈x, y〉 − ψ(y)

]
, x ∈ B(0, R) ,

ψ(y) := sup
x∈B(0,R)

[
〈x, y〉 − ϕ(x)

]
, y ∈ Rd ;

(ii) ψ is R-Lipschitz;
(iii) the pair ( 1

2 | · |
2−ϕ, 1

2 | · |
2−ψ) is optimal for the dual problem for the GHKde

distance i.e.

ϕ(x) + ψ(y) ≤ 〈x, y〉 for every (x, y) ∈ B(0, R)× Rd,

(3.6)

GHKde(ν, µ)2 =

∫
B(0,R)

[
1− e−|x|

2+2ϕ(x)
]

dν(x) +

∫
Rd

[
1− e−|y|

2+2ψ(y)
]

dµ(y) .

(3.7)
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Such pair satisfies also

GHKde(ν, µ)2 =

∫
Rd

[[
1− e−|y|

2+2ψ(y)
]2

+ e−2|y|2+4ψ(y)
[
e|y−∇ψ(y)|2 − 1

]]
dµ(y) .

(3.8)

Proof. By Theorem 3.5(iii), we can find Borel functions φi : Rd → [−∞,+∞]
which are optimal for the dual problem for the GHKde distance and such that

φ0 ⊕o φ1 ≤ 1
2d

2
e in Rd × Rd,(3.9)

φ0 + φ1 = 1
2d

2
e γ-a.e. .(3.10)

Let us consider γ ∈ OPT′de(ν, µ) (whose existence is granted by Theorem 3.5(i))
and let us define

γ̃0 := γ0/γ(Rd × Rd), γ̃1 := γ1/γ(Rd × Rd) ,

ϕ̃(x) := inf
y∈Rd

[
1
2 |x− y|

2 − φ1(y)
]
, x ∈ Rd ,

ψ̃(y) := inf
x∈Rd

[
1
2 |x− y|

2 − ϕ̃(x)
]
, y ∈ Rd ,

ϕ(x) := 1
2 |x|

2 − ϕ̃(x), ψ(y) := 1
2 |y|

2 − ψ̃(y), x, y ∈ Rd .

Clearly γ̃i ∈ Pac(Rd). Since, by Theorem 3.5(4a), ν � γ0 � ν, we have that

supp(γ̃0) = B(0, R), so that γ̃0 ∈ Pr2 (Rd). Moreover, since

+∞ > GHKde(ν, µ)2 ≥
∫
Rd×Rd

d2
e dγ ≥W2

2,de(γ̃0, γ̃1),

we also get that γ̃1 ∈ P2(Rd).
Since ϕ̃ + ψ̃ ≤ d2

e/2 in Rd × Rd and ϕ̃ ≥ φ0, ψ̃ ≥ φ1 in Rd, we have that

ϕ̃ = φ0 ν-a.e. and ψ̃ = φ1 µ-a.e.. This, together with (3.10) and the optimality of γ
(cf. Theorem 3.5(4b)), gives that

1
2

∫
Rd
|x|2 dγ̃0(x) + 1

2

∫
Rd
|x|2 dγ̃1(x)−W2

2,de(γ̃0, γ̃1) =

∫
B(0,R)

ϕdγ̃0 +

∫
Rd
ψ dγ̃1 .

It is also clear that ϕ and ψ are the Legendre transform of each other. The proof
of [36, Theorem 3.2] shows that, after restricting ϕ to B(0, R), both ϕ and ψ are
finite, convex, continuous and satisfy (i). The representation in (3.7) follows since
1
2 | · |

2 − ϕ coincides with φ0 ν-a.e. and 1
2 | · |

2 − ψ coincides with φ1 µ-a.e.
Assertion (ii), as well as (3.6), follows immediately from (i).
We now prove (3.8). It is a classical result in Optimal Transport theory that γ

must be concentrated on the graph of ∇ψ in the sense that

γ = (∇ψ, idRd)]γ1 .

By Theorem 3.5(4c), we have that

α :=
(

[idRd , σ
−1/2
0 ], [idRd , σ

−1/2
1 ]

)
]
γ ,

belongs to OPTgde (ν, µ) so that

GHKde(ν, µ)2 =

∫
C[Rd,Rd]

(
gdeπ,C

)2

dα
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=

∫
Rd×Rd

[
1

σ0(x0)
+

1

σ1(x1)
− 2e−|x0−x1|2/2

σ0(x0)1/2 σ1(x1)1/2

]
dγ(x0, x1)

=

∫
Rd

[
1

σ0(∇ψ(y))
+

1

σ1(y)
− 2e−|y−∇ψ(y)|2/2

σ0(∇ψ(y))1/2 σ1(y)1/2

]
dγ1(y)

=

∫
Rd

(
1 + σ1(y)2e|y−∇ψ(y)|2 − 2σ1(y)

)
dµ(y)

=

∫
Rd

(
1 + e−4φ1(y)e|y−∇ψ(y)|2 − 2e−2φ1(y)

)
dµ(y)

=

∫
Rd

(
(1− e−2φ1(y))2 + e−4φ1(y)(e|y−∇ψ(y)|2 − 1)

)
dµ(y)

=

∫
Rd

(
(1− e−|y|

2+2ψ(y))2 + e−2|y|2+4ψ(y)(e|y−∇ψ(y)|2 − 1)
)

dµ(y) .

We now prove uniqueness. If another pair (ϕ0, ψ0) is as in the statement and
satisfies (i)-(iii) above, we have by Theorem 3.5(v) that 1

2 | · |
2 − ϕ0 must coincide

ν-a.e. with φ0 which coincides ν-a.e. with 1
2 | · |

2 − ϕ. Since ν is equivalent to the

Lebesgue measure, we deduce that ϕ0 = ϕ L d-a.e. in B(0, R). Being both functions
continuous, we deduce that they coincide everywhere, so that by (i) also ψ0 and ψ
coincide in Rd. �

Our aim is to fix a suitably regular measure ν ∈ M(Rd) and consider a suffi-
ciently regular class of measures µ for which the resulting potentials ψ are uniformly
regular. To do so we are going to consider a family of regularizing operators Tε.
Let us start with the relevant definitions.

We consider two functions κ ∈ C∞c (Rd,R) and f ∈ C∞(Rd,Rd) satisfying the
following properties:

(1) κ(x) ≥ 0 for every x ∈ Rd, supp(κ) = B(0, 1), κ(x) = κ(−x) for every
x ∈ Rd and

∫
Rd κ(x) dx = 1;

(2) f(x) = x for every x ∈ B(0, 1), |f(x)| ≤ 2 for every x ∈ Rd and ‖Df(x)‖ ≤ 1
for every x ∈ Rd, where ‖·‖ denotes the operator norm of a matrix in Rd×d.

We then consider κε(x) := 1
εd
κ(x/ε) and fε(x) := 1

εf(εx) for every x ∈ Rd and

ε ∈ (0, 1). It is thus clear that κε ∈ C∞c (Rd,R), fε ∈ C∞(Rd,Rd) and they satisfy
the following properties:

(1) κε(x) ≥ 0 for every x ∈ Rd, supp(κε) = B(0, ε), κε(x) = κε(−x) for every
x ∈ Rd and

∫
Rd κε(x) dx = 1;

(2) fε(x) = x for every x ∈ B(0, 1/ε), |fε(x)| ≤ 2/ε for every x ∈ Rd and
‖Dfε(x)‖ ≤ 1 for every x ∈ Rd.

We define the operator Tε :M(Rd)→Mac(Rd) as

(3.11) Tε(µ) = ((fε)]µ+ εδ0) ∗ κε, µ ∈M(Rd).

Proposition 3.7. Let Tε be as in (3.11). Then Tε is well defined and Tε(µ)→ µ
as ε ↓ 0 for every µ ∈ M(Rd). Let ν ∈ Mac(Rd) and let R,B, δ > 0 be such that

supp(ν) = B(0, R), νRd ≤ B and ν ≥ δL d B(0, R). Then, for every ε > 0,
there exists a constant K = K(ε,B,R) > 0 such that, for every µ ∈ M(Rd), if
(ϕ,ψ) is as in Proposition 3.6 for the pair (ν,Tε(µ)), then ψ(0) ≤ K and the map

y 7→ 1−e−|y|
2+2ψ(y)

2 is K-Lipschitz and K-bounded.
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Proof. The proof is divided in several claims.

Claim (a): the operator Tε is well defined and tends to the identity as ε ↓ 0.

Proof of claim (a). Since fε is a Borel function and the convolution preserves
mass and non-negativity of the measure, we have that Tε(µ) ∈ M(Rd) for every
µ ∈ M(Rd). It is also clear that Tε(µ) has a density w.r.t. the Lebesgue measure
in Rd so that Tε(µ) ∈Mac(Rd) for every µ ∈M(Rd). Let ϕ ∈ Cb(Rd); then∫

Rd
ϕdTn(µ) = ε(ϕ ∗ κε)(0) +

∫
Rd

((ϕ ∗ κε) ◦ fε) dµ.

Since ϕ ∗ κε → ϕ locally uniformly in Rd as ε ↓ 0, we have in particular that
(ϕ∗κε)(0) is bounded, so that ε(ϕ∗κε)(0)→ 0 as ε ↓ 0. For the convergence of the
integral we use the Dominated Convergence Theorem: note that ‖(ϕ∗κε)◦fε)‖∞ ≤
‖ϕ ∗ κε‖∞ ≤ ‖ϕ‖∞ and, for a fixed x ∈ Rd, if ε < 1/|x|, then fε(x) = x so that
(ϕ ∗ κε) ◦ fε)(x)→ ϕ(x) for every x ∈ Rd. We can thus conclude that∫

Rd
ϕdTn(µ)→

∫
Rd
ϕdµ for every ϕ ∈ Cb(Rd) as ε ↓ 0.

Claim (b): there exist a constant a = a(ε,B,R) > 0 such that

sup
µ∈M(Rd)

B + Tε(µ)Rd∫
Rd

e−|x|
2−2R|x| dTε(µ)(x)

≤ a.

Proof of claim (b). Denote by fR : Rd → R and C(ε,R) > 0 the function and
the constant

fR(x) := e−|x|
2−2R|x| x ∈ Rd, C(ε,R) := min

B(0,2/ε)
fR ∗ κε > 0 .

We have

B + Tε(µ)Rd∫
Rd

e−|x|
2−2R|x| dTε(µ)(x)

=
B + ((fε)]µ+ εδ0) (Rd)∫

Rd
(fR ∗ κε) d ((fε)]µ+ εδ0) (x)

=
B + ε+ µRd

ε(fR ∗ κε)(0) +

∫
Rd

((fR ∗ κε) ◦ fε) dµ(x)

≤ B + ε+ µRd

ε(fR ∗ κε)(0) + C(ε,R)µRd

≤ B + ε

ε(fR ∗ κε)(0)
+

1

C(ε,R)

=: a .

Claim (c): for every µ ∈ M(Rd), if (ϕ,ψ) is as in Proposition 3.6 for the pair
(ν,Tε(µ)), then e2ψ(0) ≤ a, where a is the constant from claim (b).

Proof of claim (c). By Proposition 3.6, we know that ψ is R-Lipschtiz and the
pair (ϕ,ψ) satisfies∫

Rd
(1− e−|y|

2+2ψ(y)) dTε(µ)(y) + νRd ≥
∫
Rd

(1− e−|y|
2+2ψ(y)) dTε(µ)(y)
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+

∫
B(0,R)

(1− e−|x|
2+2ϕ(x)) dν(x)

= GHKde(ν,Tε(µ))2

≥ 0

so that∫
Rd

e−|y|
2−2R|y|+2ψ(0) dTε(µ)(y) ≤

∫
Rd

e−|y|
2+2ψ(y) dTε(µ)(x) ≤ νRd + Tε(µ)Rd

≤ B + Tε(µ)Rd

thus giving that e2ψ(0) ≤ a.

Claim (d): there exists a constant K = K(ε,B,R) > 0 such that, for every
µ ∈M(Rd), if (ϕ,ψ) is as in Proposition 3.6 for the pair (ν,Tε(µ)), then ψ(0) ≤ K
and the map y 7→ 1−e−|y|

2+2ψ(y)

2 is K-Lipschitz and K-bounded..

Proof of claim (d): it is clear that ψ(0) ≤ ln(a)/2; observe that

−|y|2 + 2ψ(y) ≤ −|y|2 + 2R|y|+ 2ψ(0) ≤ R2 + 2ψ(0) for every y ∈ Rd,

so that

0 ≤ e−|y|
2+2ψ(y) ≤ e2ψ(0)eR

2

≤ aeR
2

for every y ∈ Rd,

where we have used claim (c). Moreover, we can write

e−|y|
2+2ψ(y) = e−|y|

2+2R|y|+2ψ(0)e2ψ(y)−2R|x|−2ψ(0) =: e−|y|
2+2R|y|+2ψ(0)e−f(y).

Notice that y 7→ e−|y|
2+2R|y|+2ψ(0) is Lipschtz and bounded and f(y) ≥ 0 so that

e−f ≤ 1. Moreover,

LRd(e−f ) ≤ LR−(exp)LRd(f) ≤ LRd(f) ,

so that also e−f is Lipschitz and bounded. We deduce that e−|·|
2+2ψ is Lipschitz,

so that its Lipschtiz constant can be estimated by the essential supremum of the
norm of its derivative:

|∇e−|y|
2+2ψ(y)| = e−|y|

2+2ψ(y)|2y+2∇ψ(y)| ≤ 2e2ψ(0)e−|y|
2+2R|y|(|y|+R) ≤ 2aC ′(R),

where

C ′(R) =
(√

R2 + 1/2 +R
)

e−R
2+2R

√
R2+1/2−1/2.

This concludes the proof. �

We can summarize the results of this subsection in the following theorem.

Theorem 3.8. Let ν ∈ Mac(Rd) and let R,B, δ > 0 be such that supp(ν) =

B(0, R), νRd ≤ B and ν ≥ δL d B(0, R); let ε ∈ (0, 1) be fixed and let Tε be as in
(3.11). Then there exists a constant K(ε,B,R) that depends only on ε, R and B
such that, for every measure µ ∈ M(Rd), there exist a unique pair of convex and
continuous functions ϕ : B(0, R)→ R and ψ : Rd → R such that:

(1) ψ is R-Lipschitz and ψ(0) ≤ K;

(2) the map y 7→ 1−e−|y|
2+2ψ(y)

2 is K-Lipschitz and K-bounded;
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(3) ϕ and ψ are the Legendre conjugate of each other:

ϕ(x) := sup
y∈Rd

[〈x, y〉 − ψ(y)] , x ∈ B(0, R) ,

ψ(y) := sup
x∈B(0,R)

[〈x, y〉 − ϕ(x)] , y ∈ Rd ;

(4) the pair ( 1
2 | · |

2 − ϕ, 1
2 | · |

2 − ψ) is optimal for the dual problem for the GHK
distance between ν and Tε(µ):

ϕ(x) + ψ(y) ≤ 〈x, y〉 for every (x, y) ∈ B(0, R)× Rd,

1
2GHKde(ν, µ)2 =

∫
B(0,R)

1− e−|x|
2+2ϕ(x)

2
dν(x) +

∫
Rd

1− e−|y|
2+2ψ(y)

2
dTε(µ) .

The same pair also satisfies

GHKde(ν,Tε(µ))2 =

=

∫
Rd

[[
1− e−|y|

2+2ψ(y)
]2

+ e−2|y|2+4ψ(y)
[
e|y−∇ψ(y)|2 − 1

]]
dTε(µ)(y) .

4. Cylinder functions

Let (M, g) be a smooth, connected, complete Riemmanian manifold with Rie-
mannian distance dg; to every f ∈ Lipb(M, dg) we can associate the functional f?

on M(M)

(4.1) f? : µ→
∫
M

f dµ.

By [59, Proposition 7.18], we have that

(4.2)

|f?(µ)− f?(µ′)|
HKdg (µ, µ′)

≤ (L(f) ∨ ‖f‖∞)·

·
√

2 + π2

2

(
µM + µ′M

)1/2
,

µ 6= µ′ ∈M(M) ,

so that, if f ∈ Lipb(M, dg), then f? is HKdg -Lipschitz on every HKdg -bounded set

in M(M). If f = (f1, . . . , fN ) ∈
(

Lipb(M, dg)
)N

, we denote by f? := (f?1 , . . . , f
?
N )

the corresponding map from M(M) to RN .
We denote by Cmb (M) the space of m-times continuously differentiable functions

on M with bounded derivatives up to order m, and by Cmc (M) the subset of Cmb (M)
of functions with compact support.

Definition 4.1 (Cylinder functions). We consider several algebras of cylinder func-
tions on M(M), viz.
(4.3)

Fm1,m2

]1,]2
Cm3

]3
(M(M)) :=

u : M(M)→ R :

u = (χ ◦ 1?) · (F ◦ f?) ,

N ∈ N , χ ∈ Cm1

]1
(R+

0 ) ,

F ∈ Cm2

]2
(RN ) , f ∈

(
Cm3

]3
(M)

)N
 ,

where m1,m2,m3 ∈ N∪{∞} and ] stands for either b for bounded or c for compact
support. Further define

Fm1,m2

u,]2
Cm3

]3
(M(M)) := Fm1,m2

c,]2
Cm3

]3
(M(M))⊕ R

to include constant functions.
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Remark 4.2. Note that:

(a) the representation of a cylinder function u by χ, F and f is not unique;
(b) we have the following inclusions

F1,1
b,b C1

b (M(M))

F∞,∞c,c C∞c (M(M) F1,1
u,bC1

b (M(M))

Lipb(M(M),HKdg )

(
(

(

(c) cylinder functions in Fm1,m2

b,]1
Cm3

]3
(M(M)) may be expressed only in terms of F

and f by replacing F with χ⊗ F and f with (1, f1, . . . , fN );
(d) F∞,∞c,c C∞c (M(M) is point-separating, hence so are all algebras in (4.3);
(e) in particular,

(4.4)
F1,1
u,bC

1
b (M(M)) is a unital point-separating

subalgebra of Lipb(M(M),HKdg ) .

To shorten the notation we will usually remove the M(M) symbol in front of
sets of cylinder functions and write Fm1,m2

]1,]2
Cm3

]3
in place of Fm1,m2

]1,]2
Cm3

]3
(M(M)),

unless we are considering spaces of cylinder functions on specific manifolds such
as Rd.

The following result is an immediate consequence of the definition of cylinder
functions and of the construction in Section 1.2.2.

Lemma 4.3. For every u ∈ F1,1
b,b C1

b and every µ ∈ M(M), the gradient (∇u)µ ∈
TµM(M) as in (1.10) is well defined and, whenever u = F ◦ f? for some N ∈ N,
F ∈ C1

b(RN ) and f = (f1, . . . , fN ) ∈ (C1
b(M))N , we have

(4.5) (∇u)µ(x) =

N∑
n=1

∂nF (f?µ)(∇fn(x), fn(x)) for µ-a.e. x ∈ Rd.

Lemma 4.4. Let ς ∈ C∞c ([0,+∞)) be a non-increasing function such that ς(r) = 1
if 0 ≤ r ≤ 1, ς(r) = 0 if r ≥ 2 and ‖ς ′‖∞ ≤ 2. Define the continuous functions
uk :M(M)→ [0, 1] as

uk(µ) := ς(µM/k), µ ∈M(M) .

Then uk ∈ F∞,∞c,c C∞c , ‖uk‖∞ = 1, uk(µ) = 1 if µM ≤ k, uk(µ) = 0 if µM ≥ 2k
and

lipHKdg
uk(µ) ≤ |ς

′(µM/k)|
k

√
4 + π2 (µM)1/2 ≤ 2

√
8 + 2π2

√
k

χ{µM≤2k}(µ).

Proof. This follows by the definition of uk and (4.2) together with the fact that
lipd(ψ ◦ f) = (|ψ′| ◦ f) lipd f whenever ψ ∈ C1(R). �

Remark 4.5 (2-integrable variations). Let (µt)t∈[0,1] ∈ AC2
(
[0, 1]; (M(M),HKdg )

)
and let (vt, wt) be a vector field in L2((0, 1)×M,µI ;TM×R), where µI :=

∫ 1

0
(µt⊗

δt)dt, such that

∂tµt +∇ · (vtµt) = wtµt in D ′((0, 1)×M) .

If u ∈ F1,1
b,b C1

b then

(4.6)
d

dt
u(µt) = 〈(∇u)µt | (vt, wt)〉TµtM(M) for a.e. t ∈ (0, 1) .
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This is indeed a simple consequence of the chain rule. If µ ∈ M(M), (T1, T2) ∈
L2(M,µ;TM ×R), and we define the curve µt := exp(tT1)]

(
(1 + tT2)2µ

)
, t ∈ [0, 1],

then

(4.7) lim
t↓0

u(µt)− u(µ)

t
= 〈(∇u)µ | (T1, 2T2)〉Tµ .

This follows again by the chain rule and the fact that for every f ∈ C1
b(M) we have∫

M

f dµt =

∫
M

fdµ+ t

∫
M

(
〈∇f |T1〉g + 2fT2

)
dµ+ o(t) .

The following Lemma is a simple extension of [36, Lemma 4.6] and will be useful
in the proof of Proposition 4.7.

Lemma 4.6. Let (U, %) be a complete and separable metric space and let G :
M(U) × U → [0,+∞) be a bounded and continuous function w.r.t. the product
topology induced by the weak topology and %. If (µn)n is a sequence in M(U) con-
verging weakly to µ as n→ +∞, then

lim
n→∞

∫
U

G(µn, y) dµn(y) =

∫
U

G(µ, y) dµ(y) .

Proof. Let ε > 0 be fixed; since µn converges weakly to µ the set {µn}n ∪ {µ} is
uniformly tight and uniformly bounded in mass by [12, Theorem 8.6.2(ii)]. We can
thus find a compact set Kε ⊂ U and Mε ∈ N such that, for every n > Mε, it holds

sup
n
µn(U \Kε) < ε, µ(U \Kε) < ε,

∣∣∣∣∫
U

G(µ, y)dµn(y)−
∫
U

G(µ, y)dµ(y)

∣∣∣∣ < ε,

where the last inequality comes from the weak convergence of µn to µ and the
regularity of y 7→ G(µ, y). Let Cε ⊂M(U)× U be the compact set defined as

Cε := ({µn}n ∪ {µ})×Kε .

Recall that HK% metrizes the weak topology. Since G is continuous, it is uniformly
continuous on Cε so that we can find ηε > 0 such that

|G(µ′, y′)−G(µ′′, y′′)| < ε
for every (µ′, y′), (µ′′, y′′) ∈ Cε
with HK%(µ

′, µ′′) + |y′ − y′′| < ηε .

Since HK%(µn, µ)→ 0, we can find Lε > 0 such that

HK%(µn, µ) < ηε for every n > Lε .

Let us define Nε := Mε ∨ Lε; then, if n > Nε,∣∣∣∣∣
∫
U

G(µn, y)dµn(y)−
∫
U

G(µ, y)dµ(y)

∣∣∣∣∣
≤
∣∣∣∣∫
U

G(µn, y)dµn(y)−
∫
U

G(µ, y)dµn(y)

∣∣∣∣
+

∣∣∣∣∫
U

G(µ, y)dµn(y)−
∫
U

G(µ, y)dµ(y)

∣∣∣∣
≤
∣∣∣∣∫
Kε

G(µn, y)dµn(y)−
∫
Kε

G(µ, y)dµn(y)

∣∣∣∣
+ 2ε‖G‖∞ + ε
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≤ ε

[
sup
n
µnU + 1 + 2‖G‖∞

]
,

where we have used that for every y ∈ Kε we have (µn, y), (µ, y) ∈ Cε with
HK%(µn, µ) + |y − y| = HK%(µn, µ) < ηε. This concludes the proof. �

4.1. Asymptotic Lipschitz constant of cylinder functions. The following
proposition corresponds to [36, Proposition 4.9] and the proof is quite similar but
we still report it here because of a few differences.

Proposition 4.7. Fix u ∈ F1,1
b,b C1

b . Then,

‖(∇u)µ‖T 1,4
µ

= lipHKdg
u(µ) , µ ∈M(M) ,

where ‖(∇u)µ‖T 1,4
µ

is as in (1.26) and lipHKdg
is as in (2.1).

Proof. We prove separately the two inequalities. We start from lipHKdg
u(µ) ≤

‖(∇u)µ‖T 1,4
µ

and we first prove it on (M, dg) = (Rd, de). Let µ ∈ M(Rd) and let

(µ′n, µ
′′
n) ∈ M(Rd) ×M(Rd) with µ′n 6= µ′′n be such that (µ′n, µ

′′
n) → (µ, µ) in HKde

and

lim
n

|u(µ′n)− u(µ′′n)|
HKde(µ

′
n, µ
′′
n)

= lipHKde
u(µ).

Let (µnt )t∈[0,1] be constant speed geodesics (cf. [59, Proposition 8.3]) connecting
µ′n to µ′′n. By [59, Theorems 8.16, 8.17] we can find Borel vector fields (vnt , w

n
t ) ∈

L2((0, 1)× Rd, µnI ;Rd × R), where µnI :=
∫ 1

0
(µnt ⊗ δt)dt, such that

∂tµ
n
t +∇ · (vnt µnt ) = wnt in D ′((0, 1)× Rd)

and ∫
Rd

(
|vnt |2 + 1

4 |w
n
t |2
)

dµnt = |µ̇nt |2 for a.e. t ∈ (0, 1) ,

where |µ̇nt | denotes the HKde -metric speed of the curve (µnt )t∈[0,1] at time t. We have

|u(µ′n)− u(µ′′n)| =
∣∣∣∣∫ 1

0

〈
(∇u)µnt

∣∣ (vnt , wnt )
〉
Tµnt

dt

∣∣∣∣
≤
[∫ 1

0

∥∥(∇u)µnt
∥∥2

T 1,4
µnt

dt

] 1
2
[∫ 1

0

∫
Rd

(
|vnt |2 + 1

4 |w
n
t |2
)

dµnt dt

] 1
2

= HKde(µ
′
n, µ
′′
n)

[∫ 1

0

∥∥(∇u)µnt
∥∥2

T 1,4
µnt

dt

] 1
2

,

where the first equality holds integrating (4.6). Dividing both sides by HKde(µ
′
n, µ
′′
n),

we obtain

|u(µ′n)− u(µ′′n)|
HKde(µ

′
n, µ
′′
n)

≤
[∫ 1

0

∥∥(∇u)µnt
∥∥2

T 1,4
µnt

dt

] 1
2

.

Observe that µnt → µ in M(Rd) for every t ∈ [0, 1]. We can then let n→∞ in the
above inequality using the Dominated Convergence Theorem and Lemma 4.6 with

G(µ, x) := |(∇u)µ(x)|2⊕ , (µ, x) ∈M(Rd)× Rd ,

where | · |⊕ is defined immediately before (1.26). We hence get

lipHKde
u(µ) ≤

[∫ 1

0

‖(∇u)µ‖2T 1,4
µ

dt

] 1
2

= ‖(∇u)µ‖T 1,4
µ

.
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We now turn to the case of a general manifold M . Let ι : M → Rd be a smooth
Nash embedding, let ι := ι] and let ι∗ be its pullback. By definition, u = F ◦ f
for some F ∈ C1

b(RN ), f = (f1, . . . , fN ) ∈ (C1
b(M))N and N ∈ N. For every

i ∈ {1, . . . , N} let us construct f̃i ∈ C1
b(Rd) such that

fi = f̃i ◦ ι , (dι)p(∇gfi)p = (∇f̃i)ι(p) , p ∈M .

Indeed, by e.g. [65, Prop. 7.26, p. 200], ι(M) has a smooth tubular neighbor-
hood with (smooth) variable radius ε : x → R+, locally isometric to its trivial-

ization
⋃
x {x} × B

T⊥x ι(M)

ε(x) . Let χ ∈ C∞(R+ × R+
0 ) with χ(ε, · ) ≡ 1 on [0, ε/2)

and χ(ε, · ) ≡ 0 on [ε,∞) for every ε ∈ R+. Finally, set

f̃i(y) :=

{
fi(x)χ

(
ε(x), |x− y|

)
if y ∈ BT

⊥
x ι(M)

ε(x) for some x ∈ ι(M)

0 otherwise
, y ∈ Rd .

It is readily seen that f̃i is a smooth function on Rd, and that, letting x = ι(p),

(∇f̃i)x = (∇ι∗g f̃i)x ⊕ (∇⊥f̃i)x
=
(
fi(x)

(
∇ι∗gχ

(
ε( · ), 0

))
x

+ (∇ι∗g f̃i)xχ
(
ε(x), 0

))
⊕ (∇⊥f̃i)x

= (∇ι∗g f̃i)x ⊕
(
∇⊥χ

(
ε(x, ·

))
x

= (∇ι∗g f̃i)x = (dι)p(∇gfi)p .

Now, set ũ := F ◦ f̃? ∈ F1,1
b,b C1

b (M(Rd)), and note that u = ι∗ũ on M(M).

On the hand, since ι : (M, dg)→ (Rd, de) is non-expansive, and since d 7→ HKd is
a monotone assignment,

lipHKdg
u(µ) ≤ lipHKde

ũ(ιµ) = ‖(∇ũ)ιµ‖T 1,4
ιµ
.

On the other hand, since ι : (M, g)→ (ι(M), ι∗g) is a Riemannian isometry,

‖(∇ũ)ιµ‖2T 1,4
ιµ

= ‖(∇u)µ‖2T 1,4
ιµ

.

This proves the first inequality in the general case.

To prove the other inequality we fix µ ∈M(M) and we consider the curve

µt := (exp(tT1))]((1 + 2tT2)2µ) , t ∈ [0, 1] ,

where
(T1(x), T2(x)) = (∇u)µ(x) , x ∈M .

It is not difficult to check that

αt :=
(
[idM , 1], [exp(tT1), 1 + 2tT2]

)
]
µ ∈M(C(M,M))

belongs to H(µ, µt) (cf. (3.3)) so that we can estimate

HKdg (µ, µt)
2 ≤

≤
∫
M

(dg)π,C
(
[idM , 1], [exp(tT1), 1 + 2tT2]

)2
dµ

=

∫
M

[
4t2|T2(x)|2 + 4(1 + t2T2(x)) sin2

(
dg
(
x, expx(tT1(x)

)
∧ π

2

)]
dµ(x)

≤
∫
M

[
4t2|T2(x)|2 + (1 + t2T2(x)) d2

g

(
x, expx(tT1(x)

)]
dµ(x)

≤
∫
M

[
4t2|T2(x)|2 + (1 + t2T2(x)) |tT1(x)|2

]
dµ(x)
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≤ t2‖(∇u)µ‖2T 1,4
µ

+ o(t2) as t ↓ 0,

where we have used the uniform boundedness of (T1, T2) and [59, Formula (7.4)].
On the other hand, by (4.7), we get that

lim
t↓0

u(µt)− u(µ)

t
= 〈(∇u)µ | (T1, 4T2)〉Tµ = ‖(∇u)µ‖2T 1,4

µ
.

Thus

lipHKdg
u(µ) ≥ lim sup

t↓0

u(µt)− u(µ)

HKdg (µ, µt)

≥ lim sup
t↓0

u(µt)− u(µ)

t

t

HKdg (µ, µt)
≥ ‖(∇u)µ‖T 1,4

µ
. �

As a final remark we compute the asymptotic Lipschitz constant of cylinder
functions w.r.t. the distances He2 and W2,dg .

Proposition 4.8. Let u ∈ F1,1
b,b C1

b and µ ∈M(M). Then

lipτwW2,dg
u(µ) = ‖(∇horu)µ‖T 1,4

µ
, lipτwHe2 u(µ) = ‖(∇veru)µ‖T 1,4

µ
,

where ∇hor and ∇ver are as in (1.8) and (1.9), respectively and τw is the weak
topology on M(M).

Proof. We treat separately the two distances.

The extended Wasserstein case. The proof is very similar to the one of [89,
Proposition 4.7], we only have to take care that the distance can also attain also the
value +∞. To show the first inequality lipτwW2,dg

u(µ) ≤ ‖(∇horu)µ‖T 1,4
µ

we observe

that for every µ ∈M(M), we can find a sequence (µ′n, µ
′′
n) ∈M(M)×M(M) such

that µ′n 6= µ′′n, W2,dg (µ′n, µ
′′
n) < +∞ for every n ∈ N and

µ′n, µ
′′
n ⇀ µ, lipτwW2,dg

u(µ) = lim
n→+∞

|u(µ′n)− u(µ′′n)|
W2,dg (µ′n, µ

′′
n)

as n→ +∞ .

This is because τw is metrized by HKdg and for every r > 0 we can always find
µ′, µ′′ ∈ BHKdg

(µ, r) such that µ′ 6= µ′′ and W2,dg (µ′, µ′′) < +∞. Indeed it is enough
to consider three distinct points x0, x1, x2 ∈M and note that

µ′ε := µ Bdg (x0, 1/ε) + εδx1
, µ′′ε := µ Bdg (x0, 1/ε) + εδx2

weakly converge to µ as ε ↓ 0, they are different and compactly supported non-
negative measures with the same positive total mass. Since W 2

2 (µ′n, µ
′′
n) < +∞ we

can find γn ∈ Cpl(µ′n, µ
′′
n) such that∫

M×M
d2
g dγn = W 2

2 (µ′n, µ
′′
n) for every n ∈ N .

Let G : M ×M → C([0, 1];M) be a (universally measurable) map associating to
every pair of points (x0, x1) ∈M×M the curve G(x0, x1) = (γx0,x1

t )t∈[0,1] which is a
constant speed geodesic connecting x0 to x1. Finally let µnt := (et◦G)]γ

n, t ∈ [0, 1],
where et : C([0, 1];M)→M is the evaluation map sending a curve (γt)t∈[0,1] to its
value at time t, γt ∈M . It is not difficult to check that

d

dt
u(µnt ) =

∫
M×M

g
(
(∇horu)µnt (γx,yt ), γ̇x,yt

)
dγn(x, y) for a.e. t ∈ (0, 1),
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so that

|u(µ′n)− u(µ′′n)| =
∣∣∣∣∫ 1

0

∫
M×M

g
(
(∇horu)µnt (γx,yt ), γ̇x,yt

)
dγn(x, y)dt

∣∣∣∣
≤
[∫ 1

0

∥∥(∇horu)µnt
∥∥2

Thorµnt
dt

] 1
2

·
[∫

M×M
d2
g dγn

] 1
2

= W2,dg (µ′n, µ
′′
n)

[∫ 1

0

∥∥(∇horu)µnt
∥∥2

Thorµnt
dt

] 1
2

.

Dividing by W2,dg (µ′n, µ
′′
n) and passing to the limit as n→ +∞ leads to the sought

inequality, also using Lemma 4.6 with

G(µ, x) :=
∣∣(∇horu)µ(x)

∣∣2 , (µ, x) ∈M(M)×M .

The other inequality is obtained similarly to the one in Proposition 4.7 using the
curve µt := exp(tT )]µ and the plan γt := (idM , exp(tT )) ∈ Cpl(µ, µt), where
T (x) = (∇horu)µ(x).

The Hellinger case. The proof is again a modification of [89, Proposition 4.7]
but we reproduce the argument in full. Since τw is metrizable (e.g. by HKdg ), we
can find (µ′n, µ

′′
n) ∈M(M)×M(M) with µ′n 6= µ′′n such that µ′n, µ

′′
n ⇀ (µ, µ) and

lipτwHe2 u(µ) = lim
n

|u(µ′n)− u(µ′′n)|
He2(µ′n, µ

′′
n)

.

For every n ∈ N, let ηn ∈ M(M) be such that µ′n, µ
′′
n � ηn and let us define for

every t ∈ [0, 1] the quantities

ρ′n :=
dµ′n
dηn

, ρ′′n :=
dµ′′n
dηn

, ρtn :=
[
(1− t)

√
ρ′n + t

√
ρ′′n

]2
,

wt := 2

√
ρ′′n −

√
ρ′n√

ρtn
, µtn := ρtnηn .

It is not difficult to check that t 7→ µtn is weakly continuous, µ0
n = µ′n, µ1

n = µ′′n,
∂tµ

t
n = wtnµ

t
n in the sense of distributions in (0, 1)×M and

4He2(µ′n, µ
′′
n)2 =

∫ 1

0

∫
Rd
|wnt |2 dµnt dt ,

d

dt
u(µtn) =

∫
Rd

(∇veru)µnt w
n
t dµnt ,

for a.e. t ∈ (0, 1) .

We thus have

|u(µ′n)− u(µ′′n)| =
∣∣∣∣∫ 1

0

∫
Rd

(∇veru)µnt w
n
t dµnt dt

∣∣∣∣
≤
[∫ 1

0

4
∥∥(∇veru)µnt

∥∥2

T ver
µnt

dt

] 1
2

·
[∫ 1

0

∫
M

(
1
4 |w

t
n|2
)

dµnt dt

] 1
2

= He2(µ′n, µ
′′
n)

[∫ 1

0

4
∥∥(∇veru)µnt

∥∥2

T ver
µnt

dt

] 1
2

.
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Dividing both sides by He2(µ′n, µ
′′
n), we obtain

|u(µ′n)− u(µ′′n)|
He2(µ′n, µ

′′
n)

≤
[
4

∫ 1

0

∥∥(∇veru)µnt
∥∥2

T ver
µnt

dt

] 1
2

.

Observe that µtn ⇀ µ for every t ∈ [0, 1], so that we can pass to the limit as n→ +∞
the above inequality using the Dominated Convergence Theorem and Lemma 4.6
with

G(µ, x) := 4 |(∇veru)µ(x)|2 , (µ, x) ∈M(M)×M .

We hence get

lipτwHe2 u(µ) ≤ 2 ‖(∇veru)µ‖T ver
µ

= ‖(∇veru)µ‖Tµ .

To prove the other inequality we fix µ ∈M(M) and we consider the curve

µt := (1 + 2tT )2µ, t ∈ [0, 1] ,

where

T (x) = (∇veru)µ(x), x ∈M .

We can estimate, for t sufficiently small, that

He2(µ, µt)
2 =

∫
M

[√
(1 + 2tT )2 −

√
1
]2

dµ = t2
∫

4T 2 dµ = 4t2 ‖(∇veru)µ‖2T ver
µ

.

On the other hand it is not difficult to see that

lim
t↓0

u(µt)− u(µ)

t
= 4

∫
M

(∇veru)µTdµ = 4 ‖(∇veru)µ‖2T ver
µ

.

Thus

lipτwHe2 u(µ) ≥ lim sup
t↓0

u(µt)− u(µ)

t

t

He2(µ, µt)
≥ ‖(∇veru)µ‖Tµ . �

4.2. Density of cylinder functions. In this section, we consider again the (Gauss-
ian) Hellinger–Kantorovich distance only on the complete and separable metric
space (U, %) = (Rd, de), where de denotes the distance induced by the Euclidean
norm on Rd. For this reason, we remove the dependence on de in the notation for
the HK = HKde and the GHK = GHKde distances.

Recall that (M(Rd),HK) and (M(Rd),GHK) are complete and separable met-
ric spaces and they induce the same topology on M(Rd) which also coincides
with the weak topology σ(M(Rd),Cb(Rd)). We fix a finite, non-negative, non-
zero Borel measure Q on (M(Rd),HK) and we consider the Polish metric measure
space X(Q) := (M(Rd),HK,Q).

Our aim is to prove that the unital and point-separating subalgebra A :=
F1,1
u,bC1

b (M(Rd)) ⊂ Lipb(M(Rd),HK) (see Definition 4.1) is dense in 2-energy in

D1,2(X(Q)) in the sense of Definition 2.9. In order to do so, we are going to apply
Theorem 2.12 to X = M(Rd), δ = HK and d = GHK since HK is the length dis-
tance generated by GHK, as noted in [59, Corollary 8.7]. Note that the underlying
metric-measure space is always X(Q) so that, in particular, (2,A )-relaxed gradi-
ents are computed w.r.t. the distance HK. We will thus devote this section to prove
inequality (2.18) i.e.

(4.8) for every ν ∈M(Rd) |DGHK(ν, · )|?,2,A ≤ 1 Q-a.e. in M(Rd) .
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The structure of this section and the proofs we present closely follow the ones of
[36, Section 4.2]. There are however several important differences so that we will
report all the arguments in detail. We start with a technical result.

Lemma 4.9. Let (vk)k be a sequence of functions in D1,2(X(Q); A )∩L∞(M(Rd),Q)
such that vk and |Dvk|?,2,A are uniformly bounded in every bounded subset of
M(Rd) and let v,G be Borel functions in L2(M(Rd),Q), G nonnegative. If

(4.9) lim
k→∞

vk(µ) = v(µ), lim sup
k→∞

|Dvk|?,2,A (µ) ≤ G(µ) Q-a.e. in M(Rd),

then v ∈ H1,2(X(Q); A ) and |Dv|?,2,A ≤ G.

Proof. Let uk be as in Lemma 4.4 for M = Rd: since uk ∈ A we have |Duk|?,2,A ≤
lipHK uk so that, setting C := 2

√
8 + 2π2, we have

(4.10)
uk ∈ H1,2(X(Q); A ) , |Duk|?,2,A ≤ C/

√
k ,

|Duk|?,2,A (µ) = 0 if µRd ≤ k or µRd ≥ 2k .

Notice also that uk vanishes if µRd ≥ 2k. Thanks to the Leibniz rule, setting
vk,m(µ) := vk(µ)u2

m(µ) and Gk := |Dvk|?,2,A , we have

(4.11)
vk,m ∈ D1,2(X(Q); A ) ,

|Dvk,m|?,2,A (µ) ≤ Gk(µ)u2
m(µ) + 2Cm−1/2vk(µ)um(µ) .

Since for every m ∈ N the sequence k 7→ Gku
2
m is uniformly bounded, we can find

an increasing subsequence j 7→ k(j) such that j 7→ Gk(j)u
2
m is weakly∗ convergent

in L∞(M(Rd),Q) and we denote by G̃m is weak∗ limit. By Fatou’s lemma, for
every Borel set B ⊂M(Rd) we get∫

B

G̃m dQ = lim
j→∞

∫
B

Gk(j)(µ)u2
m(µ) dQ(µ)

≤
∫
B

lim sup
j→∞

(
Gk(j)(µ)u2

m(µ)
)

dQ(µ)

≤
∫
B

G2u2
m dQ

so that we deduce

(4.12) G̃m ≤ G2u2
m Q-a.e. in M(Rd), for every m ∈ N.

On the other hand, passing to the limit in (4.11) along the subsequence k(j) and
recalling that limj→∞ vk(j),m = vu2

m Q-a.e. we get
(4.13)

|D(vu2
m)|?,2,A (µ) ≤ G̃m(µ) +

2C

m1/2
v(µ)um(µ)

≤ G(µ)u2
m(µ) +

2C

m1/2
v(µ)um(µ)

for Q-a.e. µ ∈M(Rd).

We eventually pass to the limit as m→∞ concluding the proof of the Lemma. �

The main result of this section is the following Proposition which is just one step
away from (4.8). Recall the notation introduced in Section 3.2 and in Theorem 3.8.
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Proposition 4.10. Let ν ∈ Mac(Rd) and let R, δ > 0 be such that supp(ν) =

B(0, R), and ν ≥ δL d B(0, R); let ε ∈ (0, 1) be fixed and let Tε be as in (3.11).
Let ζ ∈ C1(R) be a non-decreasing function whose derivative has compact support.
Then, for Q-a.e. µ ∈M(Rd)∣∣∣Dζ ◦ ( 1

2GHK
(
ν,Tε( · )

)2)∣∣∣
?,2,A

(µ) ≤ ζ ′
(

1
2GHK

(
ν,Tε(µ)

)2)
GHK
(
ν,Tε(µ)

)
.

Proof. We set B := νRd; for the whole proof we are going to keep ν, B, R, ε and ζ
fixed and then we will not stress the dependence of the objects we are going to
define w.r.t. them, even if many of them do depend on ν, R, B, ε and ζ.

Let G := (µh)h ⊂M(Rd) be a countable and dense subset ofM(Rd). We define
the pair (ϕh, ψh) as the pair coming from Theorem 3.8 for (ν, µh) and the functions
ηh and η∗h as

qh(y) :=
1− e−|y|

2+2ψh(y)

2
, q∗h(x) :=

1− e−|x|
2+2ϕh(x)

2
, (x, y) ∈ B(0, R)× Rd.

Recall that, by Theorem 3.8(1)-(2), we have that ψh is C-Lipschitz and qh is C-
Lipschitz and C-bounded, for a constant C that does not depend on h. In particular
we have that

1
2GHK(ν,Tε(µ

h))2 =

∫
Rd
qhdTε(µ

h) +

∫
B(0,R)

q∗hdν for every h ∈ N .

Let us define, for every h, k ∈ N, the functions

wh(µ) :=

∫
Rd
qhdTε(µ) +

∫
B(0,R)

q∗hdν, zk(µ) := max
1≤h≤k

wh(µ), µ ∈M(Rd).

Notice that, while q∗h ∈ L1(Rd, ν) by definition, qh is Borel and bounded and
therefore integrable for every measure in M(Rd).

Claim (1). We have that

(4.14) lim
k→+∞

zk(µ) = sup
k
zk(µ) = 1

2GHK(ν,Tε(µ))2 for every µ ∈M(Rd).

Proof of claim (1). Since zk(µ) is increasing w.r.t. h, the supremum

sup
k
zk(µ) , µ ∈M(Rd) ,

is well defined and satisfies by Theorem 3.5 the inequality

sup
k
zk(µ) ≤ 1

2GHK(ν,Tε(µ))2 for every µ ∈M(Rd)

with equality if µ ∈ G. By density of G, to prove the claim, it is enough to
prove that supk zk(·) is a locally HK-Lipschitz function. To this aim, let us fix
µ′, µ′′ ∈M(Rd) and observe that, since qh is C-Lipschitz and C-bounded, we have
(cf. [59, Proposition 7.18]) that∫

Rd
qh d

[
Tε(µ

′)− Tε(µ
′′)
]

≤ C
√

2 + π2

2

[
Tε(µ

′)(Rd) + Tε(µ
′′)(Rd)

]1/2
HK
(
Tε(µ

′),Tε(µ
′′)
)
,

hence

|zk(µ′)− zk(µ′′)| ≤ C
√

2 + π2

2

[
Tε(µ

′)(Rd) + Tε(µ
′′)(Rd)

]1/2
HK
(
Tε(µ

′),Tε(µ
′′)
)
.
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Passing to the limit as k → +∞ we obtain the sought local HK-Lipschitz property,
also noting that Tε is HK-Lipschitz (cf. [59, Section 8.7]). This proves the claim.

Claim (2). Let uk be as in Lemma 4.4; If we set vk := uk · (ζ ◦ zk), then
vk ∈ H1,2(X(Q); A ) and

(4.15)
|Dvk|?,2,A (µ) ≤ uk(µ)(ζ ′(wh(µ)))

√∫
(|∇qh|2 + 4|qh|2) dTε(µ)

+

√
4 + π2

k
|θ′(µRd/k)|

√
µRd‖ζ‖∞

for Q-a.e. µ such that zk(µ) = wh(µ).

Proof of claim (2). First of all note that uk · (ζ ◦ wh) ∈ F1,1
c,b C1

b (M(Rd)) ⊂ A
since it can be written as

uk · (ζ ◦ wh) = (θk ◦ 1?)(ζh ◦ g?h)

where ςk = ς( · /k) ∈ C1
c(R) and

ζh(s) := ζ

(
s+

∫
B(0,R)

q∗hdν + ε(qh ∗ κε)(0)

)
, s ∈ R ,

gh := (qh ∗ κε) ◦ fε ∈ C1
b(Rd) .

By Lemma 4.4 we have

lipHK uk(µ) ≤ |ς
′(µRd/k)|

k

√
4 + π2(µRd)1/2 , µ ∈M(Rd) ,

we can estimate

lipHK(uk · (ζ ◦ wh))(µ) ≤ uk(µ) lipHK(ζ ◦ wh)(µ) + lipHK uk(µ)|(ζ ◦ wh)|

(4.16)

≤ uk(µ) lipHK(ζ ◦ wh)(µ) +

√
4 + π2

k

∣∣∣∣ ς ′(µRd)k

∣∣∣∣√µRd ‖ζ‖∞ .(4.17)

We can also estimate the asymptotic Lipschitz constant of (ζ ◦ wh): still by
Proposition 4.7, we have

lipHK(ζh ◦ g?h)(µ)2

= (ζ ′h(g?h(µ)))2

∫ [
|∇gh|2 + 4|gh|2

]
dµ

≤ ζ ′h(g?h(µ))2

∫ [
|(∇(qh ∗ κε)) ◦ fε|2‖Dfε‖2 + 4|(qh ∗ κε) ◦ fε|2

]
dµ

≤ ζ ′h(g?h(µ))2

∫ [
|(∇(qh ∗ κε)) ◦ fε|2 + 4|(qh ∗ κε) ◦ fε|2

]
dµ

= ζ ′h(g?h(µ))2

∫ [
|∇(qh ∗ κε)|2 + 4|qh ∗ κε|2

]
d(fε)]µ

≤ ζ ′h(g?h(µ))2

∫ [
|∇(qh ∗ κε)|2 + 4|qh ∗ κε|2

]
d [(fε)]µ+ εδ0]

= ζ ′h(g?h(µ))2

∫ [
|(∇qh) ∗ κε|2 + 4|qh ∗ κε|2

]
d [(fε)]µ+ εδ0]
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≤ ζ ′h(g?h(µ))2

∫ [
|∇qh|2 + 4|qh|2

]
∗ κεd [(fε)]µ+ εδ0]

= ζ ′h(g?h(µ))2

∫ [
|∇qh|2 + 4|qh|2

]
d [[(fε)]µ+ εδ0] ∗ κε]

= ζ ′h(g?h(µ))2

∫ [
|∇qh|2 + 4|qh|2

]
dTε(µ)

where we have also used that ‖Dfε(x)‖ ≤ 1 for every x ∈ Rd. We also deduce that

(4.18)
lipHK(ζh ◦ g?h)(µ) ≤ ζ ′h(g?h(µ))

√∫
(|∇qh|2 + 4|qh|2) dTε(µ)

≤ ‖ζ ′‖∞
√

5C
√
ε+ µRd.

We can now estimate the minimal relaxed gradient of the function vk = uk · (ζ ◦
zk): since ζ is an increasing function we have that

uk · (ζ ◦ zk) = uk · max
1≤h≤k

(ζ ◦ wh) .

By (2.12), for Q-a.e. µ where wh(µ) = zk(µ), we have

|Dvk|?,2,A (µ) = |Duk · (ζ ◦ zk)|?,2,A (µ)

= |Duk · (ζ ◦ wh)|?,2,A (µ)

≤ lipHK(uk · (ζ ◦ wh))(µ)

≤ uk(µ) lipHK(ζ ◦ wh)(µ) +

√
4 + π2

k
|ς ′(µRd/k)|

√
µRd‖ζ‖∞

≤ uk(µ)(ζ ′h(g?h(µ)))

√∫
(|∇qh|2 + 4|qh|2) dTε(µ)

+

√
4 + π2

k
|ς ′(µRd/k)|

√
µRd‖ζ‖∞.

This concludes the proof of the second claim.

Claim (3). Let µ ∈M(Rd) and let (hn)n ⊂ N be such that∫
Rd
qhndTε(µ) +

∫
B(0,R)

q∗hndν = whn(µ)→ 1
2GHK

2(ν,Tε(µ))2 as n→ +∞ .

Then there exist two convex and continuous functions ϕ : B(0, R)→ R and ψ : Rd →
R such that ϕ and ψ are the Legendre conjugate of each other and, up to an non-
relabeled subsequence, ϕhn → ϕ locally uniformly in B(0, R), ψhn → ψ locally
uniformly in Rd and ∇ψhn → ∇ψ L d-a.e. in Rd.

Proof of claim (3). We consider the shifted pairs

ϕ̃hn := ϕhn + ψhn(0) , ψ̃hn := ψhn − ψhn(0) .

Notice that ψ̃hn(0) = 0 by construction, ϕhn(0) ≤ C by Theorem 3.8(1) for a con-

stant C > 0 that does not depend on n, and, again by Theorem 3.8(3), ϕ̃hn and ψ̃hn
are the Legendre transform of each other. Now we show that

∫
B(0,R)

ϕ̃hn dL d ≤ I
for a constant I > 0 that does not depend on n: since∫

Rd
qhndTε(µ) +

∫
B(0,R)

q∗hndν → 1

2
GHK2(ν,Tε(µ))2 ≥ 0 as n→ +∞,
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we can assume without loss of generality that∫
B(0,R)

q∗hndν ≥ −1−
∫
Rd
qhndTε(µ) ≥ −1− 1

2µR
d .

Now we estimate∫
B(0,R)

[
1
2 |x|

2 − ϕhn(x)
]

dL d(x) ≥
∫

B(0,R)

q∗hn dL d

=

∫
B(0,R)

(q∗hn − 1/2) dL d +
1

2
L d(B(0, R))

≥ 1

δ

∫
B(0,R)

(q∗hn − 1/2) dν +
1

2
L d(B(0, R))

=
1

δ

∫
B(0,R)

q∗hn dν − 1

2δ
νRd +

1

2
L d(B(0, R))

≥ −1

δ
− 1

2δ
µRd − 1

2δ
νRd +

1

2
L d(B(0, R))

Thus∫
B(0,R)

ϕhn dL d ≤ 1
2

∫
B(0,R)

|x|2 dL d(x)+ 1
2δ

(
2 + µRd + νRd − δL d(B(0, R))

)
=: I ′

Finally∫
B(0,R)

ϕ̃hn dL d =

∫
B(0,R)

ϕhn dL d + CnL
d(B(0, R)) ≤ I ′ + CL d(B(0, R)) =: I.

Notice moreover that, by convexity of ϕhn , we deduce that

ϕhn(0) ≤ I ′

L d(B(0, R))Rd

so that

Cn := ψhn(0) ≥ −ϕhn(0) ≥ − I ′

L d(B(0, R))Rd
.

This gives that the sequence Cn is uniformly bounded. By [36, Lemma 3.5] applied
to ϕ̃hn and ψhn , we deduce the thesis of the present claim for the shifted pairs
and, since we have showed that Cn is bounded, also for the original pairs. This
concludes the proof of the third claim.

Claim (4). Let µ ∈M(Rd) and let (hn)n ⊂ N be such that∫
Rd
qhndTε(µ) +

∫
B(0,R)

q∗hndν = whn(µ)→ 1
2GHK

2(ν,Tε(µ))2 as n→ +∞ .

Then

lim sup
n→+∞

∫ [
|∇qhn |2 + 4|qhn |2

]
dTε(µ) ≤ GHK(ν,Tε(µ)2 .

Proof of claim (4). We extract a non-relabeled subsequence such that the
lim sup in the statement of the present claim is achieved as a limit. By the conver-
gence in claim (3), as n→ +∞, we have that

qhn(y) =
1− e−|y|

2+2ψhn (y)

2
→ q(y) :=

1− e−|y|
2+2ψ(y)

2
for every y ∈ Rd,
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q∗hn(y) =
1− e−|y|

2+2ϕh (y)

2
→ q∗(y) :=

1− e−|y|
2+2ϕ(y)

2
for every y ∈ B(0, R).

Since qhn is uniformly bounded, by Dominated Convergence Theorem, we deduce
that

(4.19) lim
n→+∞

∫
Rd
qhn dTε(µ) =

∫
Rd
q dTε(µ) .

On the other hand, q∗hn is uniformly bounded from above so that Fatou’s lemma
shows that

(4.20) lim sup
n→+∞

∫
Rd
q∗hn dν ≤

∫
Rd
q∗ dν .

We can thus conclude that∫
Rd
q dTε(µ) +

∫
B(0,R)

q∗dν ≥ lim sup
n

[∫
Rd
qhndTε(µ) +

∫
B(0,R)

q∗hndν

]
= 1

2GHK(ν,Tε(µ))2 .

Note that
∫
Rd q dµ ∈ R since q is uniformly bounded so that also

∫
Rd q

∗ dν ∈ R
since q∗ is bounded above. By Theorem 3.5 the one above must be an equality so
that, by the uniqueness part of Theorem 3.8, we deduce that (ϕ,ψ) is the unique
pair of functions whose existence is stated in Theorem 3.8 for the pair (ν, µ). In
particular, by Theorem 3.8(5), we deduce that

GHK(ν,Tε(µ))2 =

∫
Rd

[[
1− e−|y|

2+2ψ(y)
]2

+ e−2|y|2+4ψ(y)
[
e|y−∇ψ(y)|2 − 1

]]
dTε(µ)(y) .

Since qhn is uniformly Lipschitz and bounded, we can use the Dominated Conver-
gence Theorem and conclude that

lim
n→+∞

∫ [
|∇qhn |2 + 4|qhn |2

]
dTε(µ) =

=

∫ [
|∇q|2 + 4|q|2

]
dTε(µ)

=

∫ [
|y −∇ψ(y)|2e−2|y|2+4ψ(y) + (1− e−|y|

2+2ψ(y))2
]

dTε(µ)

≤
∫
Rd

[[
1− e−|y|

2+2ψ(y)
]2

+ e−2|y|2+4ψ(y)
[
e|y−∇ψ(y)|2 − 1

]]
dTε(µ)(y)

= GHK(ν,Tε(µ))2.

This concludes the proof of fourth claim.

Claim (5). Let vk be defined as in claim (2). Then, for Q-a.e. µ ∈M(Rd),

lim sup
k
|Dvk|?,2,A (µ) ≤ ζ ′

(
1

2
GHK(ν,Tε(µ))2

)
GHK(ν,Tε(µ)) .
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Proof of claim (5). Let A ⊂M(Rd) be defined as

A :=
⋂
k

k⋃
h=1

Akh ,

where Akh is the full Q-measure subset of Ekh := {µ : zk(µ) = wh(µ)} where (4.15)
holds. Notice that A has full Q-measure. Let µ ∈ A be fixed and let us pick a
non-decreasing sequence k 7→ hk such that

zk(µ) = whk(µ) .

By claim (2) we have that

|Dvk|?,2,A (µ) ≤ uk(µ)(ζ ′(whk(µ)))

[∫ [
|∇qhk |2 + 4|qhk |2

]
dTε(µ)

]1/2

+

√
4 + π2

k
|ς ′(µRd/k)|

√
µRd‖ζ‖∞

and by claim (4) we know that

lim sup
k→+∞

∫ [
|∇qhk |2 + 4|qhk |2

]
dTε(µ) ≤ GHK(ν,Tε(µ)2.

Noting that uk(µ) → 1 and passing to the lim supk→+∞, we obtain the statement
of the fifth claim.

Claim (6). Conclusion. We deduce the assertion of the present proposition
from Lemma 4.9. We set

v := ζ
(

1
2GHK

(
ν,Tε( · )

)2)
, G := ζ ′

(
1
2GHK

(
ν,Tε( · )

)2)
GHK
(
ν,Tε( · )

)
.

By claim (2), vk ∈ D1,2(X(Q); A ) and it is clear that vk ∈ L∞(M(Rd),Q) since
it is bounded by ‖ζ‖∞ (in particular the sequence vk is uniformly bounded in
every bounded set ofM(Rd)). The sequence of relaxed gradients |Dvk|?,2,A is also
uniformly bounded in every bounded set of M(Rd) since by claim (2) and (4.18)
we have

|Dvk|?,2,A (µ) ≤ uk(µ)‖ζ ′‖∞C
√

5
√
ε+ µRd

+
2
√

4 + π2

k
|ς ′(µRd/k)|

√
µRd‖ζ‖∞ ,

µ ∈M(Rd) .

Clearly v and G are Borel functions with v ∈ L2(M(Rd),Q) (since ‖v‖∞ ≤ ‖ζ‖∞)
and G non-negative. By claim (1) and claim (5) we have that

lim
k
vk(µ) = v(µ), lim sup

k→∞
|Dvk|?,2,A (µ) ≤ G(µ) Q-a.e. in M(Rd).

We conclude by Lemma 4.9 that v ∈ H1,2(X(Q); A ) and that |Dv|?,2,A ≤ G Q-
a.e. in M(Rd). This concludes the proof of the proposition. �

Arguing precisely as in [36, Corollary 4.18], we deduce the (4.8).

Corollary 4.11. Let ν ∈Mac(Rd) and let R, δ > 0 be such that supp(ν) = B(0, R),
and ν ≥ δL d B(0, R). Then

|DGHK(ν, ·)|2,?,A ≤ 1 Q-a.e. in M(Rd).

As a further corollary we obtain our main result concerning the space X(Q).
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Theorem 4.12. For every finite, non-negative Borel measure Q on (M(Rd),HK)

the unital and point-separating subalgebra A = F1,1
u,bC1

b (M(Rd)) ⊂ Lipb(M(Rd),HK)

is dense in 2-energy in D1,2(M(Rd),HK,Q). In particular H1,2(M(Rd),HK,Q) is a
Hilbert space and (M(Rd),HK) is universally infinitesimal Hilbertian.

Proof. The first statement follows by Corollary 4.11 and Theorem 2.12, also re-
calling that HK is the length distance induced by GHK. The Hilbertianity of the
metric measure space H1,2(M(Rd),HK,Q) is then an immediate consequence of
Proposition 4.7 and [36, Theorem 2.17]. The universal infinitesimal Hilbertianity
of (M(Rd),HK) then follows by Proposition 2.16. �

4.3. Extensions of the Hilbertianity and density results.

4.3.1. Cylinder functions in the Riemannian setting. In this section we extend the
density result from measures on Rd to measures on a Riemannian manifold. We
proceed as in [36, Section 6] and we recall the following result [36, Theorem 2.24]
after introducing some notation.

If X is a set and Y ⊂ X,  : Y → X is the inclusion map and g : X → R, then
we define ∗g : Y → R as ∗g := g ◦ .

Theorem 4.13. Let (X, d) be a complete and separable metric space and let Y ⊂ X
be a closed subset endowed with a metric δ such that (Y, δ) is complete and separable
and

(4.21) d1(y1, y2) ≤ δ(y1, y2) ≤ d̂Y (y1, y2) , y1, y2 ∈ Y .

Let m be a non-negative, finite, Borel measure on (Y, δ) and let  : Y → X be the
inclusion map. Consider the Polish metric-measure spaces X := (X, d, ]m) and
Y := (Y, δ,m). If A ⊂ Lipb(X, d) is a unital and point separating subalgebra dense
in q-energy in D1,q(X), q ∈ (1,+∞), then ∗(A ) ⊂ Lipb(Y, δ) and

CEY,q ◦ ∗ = CEY,q,∗(A ) ◦ ∗ = CEX,q = CEX,q,A on L0(X, ]m) .

Theorem 4.14. Let C ⊂ Rd be a closed set and let σ : C × C → [0,+∞) be a
metric on C such that (C, σ) is complete and separable and satisfying

de(y1, y2) ≤ σ(y1, y2) ≤ ˆ(de)Y (y1, y2) for every y1, y2 ∈ C ,

where de is the distance induced by the Euclidean norm on Rd. Let Q be a non-
negative, finite Borel measure on (M(C),HKσ) and let  := ] where  : C → Rd
is the inclusion. Set Y := (M(C),HKσ,Q) and X := (M(Rd),HKde , ]Q). Then
H1,2(X) is linearly isomorphic to H1,2(Y) and

(4.22) |D(∗u)|?,Y,2 = ∗(|Du|?,X,2) for every u ∈ H1,2(X).

In particular H1,2(Y) is a Hilbert space and the unital and point separating subal-

gebra ∗(F1,1
u,bC1

b (M(Rd))) is dense in 2-energy in D1,2(Y).

Proof. Since the topologies induced by σ and de on C are both Polish and com-
parable, B(C, de) and B(C, σ) coincide so that we can simply write M(C) without
specifying the distance inducing the topology on C. Clearly every measure in
M(Rd) with support contained in C can be identified with an element of M(C)
and every measure in M(C) can be viewed as a measure in M(Rd) with support
contained in C. Therefore we can identify M(C) as a subset of M(Rd) and the
inclusion map is provided by .
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We want to apply Theorems 4.13 and 4.12 with X :=M(Rd), d := HKde , Y :=
M(C), and δ := HKσ. Since C is closed, alsoM(C) is closed in (M(Rd),HKde). We
only have to check the inequalities (4.21): the first one

HKde ∧ 1 ≤ HKσ on M(C)×M(C) ,

is immediately satisfied since (de)π,C ≤ σπ,C on C(C), as a consequence of the
definition of the distance on the cone (cf. (3.1)) and since the same inequality
being satisfied by de and σ. This gives the stronger inequality HKde ≤ HKσ. To
prove the second inequality in (4.21), we consider two measures µ0, µ1 ∈ M(C)
and a HKde -Lipschitz curve µ : [0, `] → M(C) such that µ(0) = µ0 and µ(`) = µ1

parametrized by HKde -arc-length. By [59, Theorem 8.4]) there exists a measure
η ∈ P(C([0, `];C[Rd])) concentrated on (de)π,C-absolutely continuous curves such
that (h ◦ et)](η) = µt for every t ∈ [0, `] and

1 = |µ̇|2HKde
(t) =

∫
|ẇ|2(de)π,C(t) dη(w) for a.e. t ∈ [0, `] .

Let us now consider the continuous function ζ : C[Rd]→ [0,+∞) defined as

ζ([x, r]) = r2dist(x,C) , [x, r] ∈ C[Rd] ,

and note that ζ vanishes precisely on C[C] considered as a subset of C[Rd]. Fubini’s
Theorem yields∫ ∫ `

0

ζ(w(t)) dtdη(w) =

∫ `

0

∫
ζ(et(w)) dη(w) dt =

∫ `

0

∫
Rd

dist(x,C) dµt(x) dt = 0

since
∫

dist(x,C) dµt(x) = 0 for every t ∈ [0, `]. It follows that
∫ `

0
ζ(w(t)) dt = 0 for

η-a.e. w, so that the set of t ∈ [0, `] for which w(t) ∈ C[C] is dense in [0, `]. Being C
closed, we conclude that w takes values in C[C] for η-a.e. w. Observe also that every
w ∈ AC([0, `]; (C[C], (de)π,C)) belongs to AC([0, `]; (C[C], σπ,C)) and |ẇ|(de)π,C(t) =
|ẇ|σπ,C(t) for a.e. t ∈ [0, `]: this is a consequence of the representation in [59,
Lemma 8.1]. We can now estimate the HKσ distance between the two measures µ0

and µ1, viz.

HKσ(µ0, µ1)2 ≤
∫
C[C]×C[C]

σ2
π,C d((e0, e1)]η) =

∫
σπ,C(w(0),w(1))2 dη(w)

≤ `
∫ ∫ `

0

|ẇ|2σπ,C(t) dtdη(w) = `

∫ ∫ `

0

|ẇ|2(de)π,C(t) dtdη(w)

= `

∫ `

0

∫
|ẇ|2(de)π,C(t) dη(w) dt = `

∫ `

0

|µ̇|2HKde
(t) dt

= `2

where we have used that (e0, e1)]η ∈ H(µ0, µ1). Taking the infimum w.r.t. `, we
deduce that

HKσ(µ0, µ1) ≤ ˆ(HKde)M(C)(µ0, µ1)

which is the second inequality in (4.21). �

In the rest of this section we assume that (M, g) is a smooth, connected, complete
Riemannian manifold with Riemannian distance dg.
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Theorem 4.15. Let Q be a finite, non negative Borel measure on M(M). Then,

the unital and point-separating subalgebra F1,1
u,bC1

b is dense in 2-energy in

D1,2(M(M),HKdg ,Q) and H1,2(M(M),HKdg ,Q) is a Hilbert space.

Proof. By Nash Isometric Embedding Theorem [64] we can find a dimension d, and
a smooth isometric embedding ι : M → ι(M) ⊂ Rd. On C := ι(M) we can define
the (Riemannian) metric dC inherited by dg: dC(ι(x), ι(y)) = dg(x, y) so that ι is
an isometry and (C, dC) is a complete and separable metric space. We denote by
ι := ι] the corresponding isometry between (M(M),HKdg ) and (M(C),HKdC ) and

we also set Q̃ := ι]Q which is a non-negative and finite Borel measure onM(C). It
is clear that the map ι∗ : u 7→ u ◦ ι induces a linear isometric isomorphism between
H1,2(M(C), dC , Q̃) and H1,2(M(M),HKdg ,Q).

Since M is complete and ι is an embedding, C is a closed subset of Rd and dC
induces on C the relative topology of Rd. Since ι is isometric, we also have

(4.23) de(y1, y2) ≤ dC(y1, y2) = (d̂e)C(y1, y2) for every y1, y2 ∈ C .

We can introduce the inclusion map  : C → Rd and the corresponding  =
] : M(C) → M(Rd). By Theorem 4.13 we have that the map ∗ : u 7→ u ◦
 provides a linear isometric isomorphism between H1,2(M(Rd),HKde , ]Q̃) and

H1,2(M(C),HKdC , Q̃) satisfying (4.22); we conclude that the map κ∗ := ι∗ ◦ ∗ =
( ◦ ι)∗ is a linear isometric isomorphism between H1,2(M(Rd),HKde ,κ]Q) (note
that κ] = ] ◦ ι]) and H1,2(M(M),HKdg ,Q) satisfying

(4.24) |D(κ∗u)|?,Y,2 = κ∗ (|Du|?,X,2) for every u ∈ H1,2(M(Rd),HKde ,κ]Q),

where Y := (M(M),HKdg ,Q) and X := (M(Rd),HKde ,κ]Q). This property in

particular yields the Hilbertianity of H1,2(M(M),HKdg ,Q). To prove the density

of the subalgebra F1,1
u,bC1

b it is enough to prove that A ′ := κ∗(F1,1
u,bC1

b (M(Rd))) ⊂
F1,1
u,bC1

b is dense in 2-energy in D1,2(M(M),HKdg ,Q). First of all observe that for

every ũ ∈ F1,1
u,bC1

b (M(Rd)) and every µ ∈M(M) it holds

lipHKdg
(κ∗ũ)(µ) ≤ κ∗(lipHKde

ũ)(µ).

This follows by the fact that κ is a HKdg -HKde contraction, since de(κ(y0), κ(y1)) ≤
dg(y0, y1) for every y0, y1 ∈M . Let now u = κ∗ũ for u ∈ H1,2(M(Rd),HKde ,κ]Q).

By Theorem 4.14, we can find a sequence (ũn)n ⊂ F1,1
u,bC1

b (M(Rd)) such that

ũn → ũ, lipHKde
ũn → |Dũ|?,X,2 in L2(M(Rd),κ]Q).

We deduce that, setting un := κ∗ũn ∈ A ′, we have

un → u ,

lipHKdg
un ≤ κ∗(lipHKde

ũn)→ κ∗(|Dũ|?,X,2) = |Du|?,Y,2
in L2(M(M),Q) .

Up to extracting a suitable (not relabelled) subsequence we can suppose that
lipHKdg

un converges weakly in L2(M(M),Q) to some G ∈ L2(M(M),Q) which is

a Y-relaxed gradient of u. We also see that∫
G2 dQ ≤ lim sup

n→∞

∫
(lipHKdg

un)2 dQ ≤ lim sup
n→∞

∫ (
κ∗(lipHKde

ũn))
)2

dQ

=

∫
|Du|2?,Y,2 dQ,
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showing that G = |Du|?,Y,2 and lipHKdg
un → |Du|?,Y,2 strongly in L2(M(M),Q).

�

We prove now the density result for smaller but dense algebras of functions,
following [36, Proposition 4.19].

We say that a function F : R∞ → R is finitary if F (t1, t2, . . . ) = f(t1, . . . , tk)
for some f : Rk → R and k ∈ N0. For an algebra A of R-valued functions on R∞
we denote by Afin the subset of finitary elements in A .

Proposition 4.16. Let Q be a finite, non negative Borel measure on M(M). Let

(a) A1 ⊂ C1(R+
0 ) be a subalgebra locally uniformly C1(R+

0 )-dense in C1
c(R

+
0 );

(b) A2 ⊂ C1(R∞)fin be a subalgebra locally uniformly C1(R∞)-dense in C1
b(R∞)fin;

(c) A3 ⊂ C1(M) be a subalgebra such that for every f ∈ C1
b(Rd) there exists a

sequence (fn)n ⊂ A3 satisfying
(4.25)

sup
n

sup
x∈M

[|fn(x)|+ |∇fn(x)|] < +∞ ,

lim
n→+∞

∫
M

(|f − fn|2 + |∇f −∇fn|2) dµ = 0
for every µ ∈M(M) .

Then the algebra

(4.26) A :=

u : M(M)→ R :

u = (χ ◦ 1?) · (F ◦ f?) ,

χ ∈ A1 ,

F ∈ A2 , f ∈ A∞3

 ,

is dense in 2-energy in D1,2(M(M),HKdg ,Q).

Proof. Thanks to Theorem 4.12, it is enough to show that for every u ∈ F1,1
u,bC1

b

there exists a sequence (un)n ⊂ A such that

(4.27) un → u and ‖(∇un)·−(∇u)·‖T· → 0 in L2(M(M),Q) as n→ +∞.
If u ≡ 1, since A1 is locally uniformly C1(R+

0 )-dense in C1
c(R

+
0 ), we can find a se-

quence (χk)k ⊂ A1 approximating the functions t 7→ ς(t/k) with ς as in Lemma 4.4.
The sequence uk := χk ◦ 1? converges in D1,2(M(M),HKdg ,Q) to u. Let us now

consider a general u = (χ◦1?)·(F ◦f?) ∈ F1,1
c,b C1

b , where χ ∈ C1
c(R), f = (f1, . . . , fN )

is a vector of functions in C1
b(M) and F ∈ C1

b(RN ), N ∈ N. Since χ is compactly
supported, there exists some r > 1 such that supp(χ) ⊂ [−r, r]. Since in (4.27)
the convergence is in L2(M(M),Q), we can proceed by steps approximating χ, F
and f and then use a diagonal argument to conclude.

Approximation of χ. Let (χn)n ⊂ A1 be such that sup|t|≤r |χn(t) − χ(t)| +
|χ′n(t)− χ′(t)| ≤ 1/n for every n ∈ N and let us set un := (χn ◦ 1?) · (F ◦ f?). We
clearly have

‖un − u‖2L2(M(M),Q) =

∫
Br
|(χn(µM)− χn(µM)|2|(F ◦ f?)(µ)|2 dQ(µ)

≤ Q(Br)
n2
‖F‖2∞

so that clearly un → u in L2(M(M),Q) as n→ +∞. Moreover by Proposition 4.7
we have

(∇un)µ(x) = (F ◦ f?)(µ)χ′n(µM)(0, 1) + χn(µM)∇(F ◦ f?)µ(x) ,
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(∇u)µ(x) = (F ◦ f?)(µ)χ′(µM)(0, 1) + χ(µM)∇(F ◦ f?)µ(x) ,

so that ∫
‖(∇un)µ − (∇u)µ‖2T 1,4

µ
dQ(µ)

≤ 8

∫
Br

∫
M

|(F ◦ f?)(µ)|2|χ′n(µM)− χ′(µM)|2 dµ(x) dQ(µ)

+ 2

∫
Br

∫
M

|∇(F ◦ f?)µ(x)|2⊕ |χn(µM)− χ(µM)|2 dµ(x) dQ(µ)

≤ 8rQ(Br)
n2

‖F‖2∞ +
2rQ(Br)

n2
sup
(µ,x)

|∇(F ◦ f?)µ(x)|2⊕ ,

giving that (4.27) holds for un. We can thus assume that χ ∈ A1.

Approximation of F . Setting R := r supM, 1≤k≤N [|fk|+ |∇fk|], we can find a
sequence (Fn)n ⊂ A2 such that

(4.28) sup
|z|≤R

|Fn(z)− F (z)|+ |∇Fn(z)−∇F (z)| ≤ 1

n
for every n ∈ N.

Let us set un := (χ ◦ 1?) · (Fn ◦ f?). We have

‖un − u‖2L2(M(M),Q) =

∫
Br
|χ(µM)|2|Fn(f?µ)− F (f?µ)|2 dQ(µ)

≤ Q(Br)
n2
‖χ‖2∞

so that clearly un → u in L2(M(M),Q) as n → +∞. By Proposition 4.7 we also
have

(∇un)µ(x) = (F ◦ f?)(µ)χ′(µM)(0, 1) + χ(µM)∇(Fn ◦ f?)µ(x),

(∇u)µ(x) = (F ◦ f?)(µ)χ′(µM)(0, 1) + χ(µM)∇(F ◦ f?)µ(x),

so that∫
‖(∇un)µ − (∇u)µ‖2T 1,4

µ
dQ(µ)

≤
∫
Br

∫
M

|χ(µM)|2|∇(Fn ◦ f?)µ(x)−∇(F ◦ f?)µ(x)|2⊕ dµ(x) dQ(µ)

≤ ‖χ‖2∞
∫
Br

∫
M

∣∣∣∣∣
N∑
k=1

[
∂kF (f?µ)− ∂kFn(f?(µ))

]
· (∇fk(x), fk(x))

∣∣∣∣∣
2

⊕

dµ(x) dQ(µ)

≤ ‖χ‖2∞
∫
Br

∫
M

N∑
k=1

|∂kF (f?µ)− ∂kFn(f?(µ))|2

· |(∇fk(x), fk(x))|2⊕ dµ(x) dQ(µ)

≤ ‖χ‖2∞
5R2rQ(Br)

n2

giving that (4.27) holds for un. We can thus assume both that χ ∈ A1 and F ∈ A2.
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Approximation of f . Let us consider bounded sequences (fk,n)n ⊂ A3, k =
1, . . . , N , approximating fk in the sense that

R′ := sup
k,n

sup
x∈M

(|fn,k(x)|+ |∇fn,k(x)|) < +∞

and

lim
n→+∞

sup
k

∫
M

(|fk − fk,n|2 + |∇fk −∇fk,n|2) dµ = 0 for every µ ∈M(M).

Let us set fn := (f1,n, f2,n, . . . , fN,n) and un := (χ ◦ 1?) · (F ◦ f?n) ∈ A . Let us
denote by R′′ the quantity

R′′ := R′ ∨ sup
k

sup
M

(|fk(x)|+ |∇fk(x)|) < +∞

and by L the maximum of the Lipschitz constants of F and ∂kF in the cube
[−rR′′, rR′′]N with respect to the ∞-norm in RN . We see that

‖un − u‖2L2(M(M),Q) =

∫
Br
|χ(µM)|2|F (f?n(µ))− F (f?(µ))|2 dQ(µ)

≤ L2‖χ‖2∞
∫
Br

sup
k
|f?n,k(µ)− f?k (µ)|2 dQ(µ)

≤ rL2‖χ‖2∞
∫
Br

sup
k

∫
M

|fn,k − fk|2 dµdQ(µ) .

By Dominated Convergence we deduce that un → u in L2(M(M),Q) as n→ +∞.
By Proposition 4.7,

(∇un)µ(x) = (F ◦ f?n)(µ)χ′(µM)(0, 1)

+ χ(µM)

N∑
k=1

∂kF (f?nµ)(∇fk,n(x), fk,n(x)) ,

(∇u)µ(x) = (F ◦ f?)(µ)χ′(µM)(0, 1)

+ χ(µM)

N∑
k=1

∂kF (f?µ)(∇fk(x), fk(x))

so that∫
‖(∇un)µ − (∇u)µ‖2T 1,4

µ
dQ(µ)

≤ 8

∫
Br

∫
M

|(F ◦ f?n)(µ)− (F ◦ f?)(µ)|2|χ′(µM)|2 dµ(x) dQ(µ)

+ 2

∫
Br

∫
M

∣∣∣∣∣χ(µ)

N∑
k=1

(
∂kF (f?nµ)(∇fk,n(x), fk,n(x))

− ∂kF (f?µ)(∇fk(x), fk(x))

)∣∣∣∣∣
2

⊕

dµ(x) dQ(µ)

≤ 8r2L2‖χ′‖2∞
∫
Br

sup
k

∫
M

|fn,k − fk|2 dµdQ(µ)

+ 2‖χ‖2∞
∫
Br

∫
M

N∑
k=1

∣∣∣∣∣∂kF (f?nµ)(∇fk,n(x), fk,n(x))
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− ∂kF (f?µ)(∇fk(x), fk(x))

∣∣∣∣∣
2

⊕

dµ(x) dQ(µ) .

The first summand in the last inequality converges to 0 as n→ +∞ by Dominated
Convergence. We then concentrate on the integral in the second summand:∫

Br

∫
M

N∑
k=1

∣∣∣∣∂kF (f?nµ)(∇fk,n(x), fk,n(x))

− ∂kF (f?µ)(∇fk(x), fk(x))

∣∣∣∣2
⊕

dµ(x) dQ(µ)

≤ 2

∫
Br

∫
M

N∑
k=1

∣∣∣∣∂kF (f?nµ)(∇fk,n(x), fk,n(x))

− ∂kF (f?nµ)(∇fk(x), fk(x))

∣∣∣∣2
⊕

dµ(x) dQ(µ)

+ 2

∫
Br

∫
M

N∑
k=1

∣∣∣∣∂kF (f?nµ)(∇fk(x), fk(x))

− ∂kF (f?µ)(∇fk(x), fk(x))

∣∣∣∣2
⊕

dµ(x) dQ(µ)

≤ 2‖∇F‖2∞
N∑
k=1

∫
Br

∫
M

(|∇fk −∇fk,n|2 + 4|fk − fk,n|2) dµdQ(µ)

+ 10r(R′′)2
N∑
k=1

∫
Br
|∂kF (f?nµ)− ∂kF (f?µ)|2 dQ(µ)

≤ 2‖∇F‖2∞
N∑
k=1

∫
Br

∫
M

(|∇fk −∇fk,n|2 + 4|fk − fk,n|2) dµdQ(µ)

+ 10r2L2(R′′)2
N∑
k=1

∫
Br

sup
k

∫
M

|fn,k − fk|2 dµdQ(µ).

Both summands converge to 0 thanks to the Dominated Convergence Theorem.
This shows that (4.27) holds for un and concludes the proof. �

Corollary 4.17. The space (M(M),HKdg ) is universally infinitesimally Hilbertian.
Let Q be a non-negative Borel measure on M(M). If∫

e−tµM dQ(µ) < +∞ for every t > 0 ,

then, the subalgebra F∞,∞c,c C∞c is strongly dense in H1,2(M(M),HKdg ,Q), and for

every u ∈ H1,2(M(M),HKdg ,Q) there exists a sequence (un)n ⊂ F∞,∞c,c C∞c such
that

un → u, lipHKdg
un → |Du|?,2 in L2(M(M),Q) .

Proof. Combining Theorem 4.15 with Proposition 2.16 we immediately obtain the
Hilbertianity result. The density of smooth cylinder functions for a finite measureQ
follows by Proposition 4.16 with the choices A1 = C∞c (R+

0 ), A3 = C∞c (M), and
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A2 ⊂ C∞(R∞)fin is the set of functions F : R∞ → R such that F (t1, t2, . . . ) =
f(t1, . . . , tk) for some f ∈ C∞c (Rk) and some k ∈ N1.

This, together with Remark 2.11 and Lemma 2.17, gives the desired density
results for possibly infinite measures as above, also noting that both F∞,∞c,c C∞c
and lip(F∞,∞c,c C∞c ) are subsets of L2(M(Rd),Q) as a consequence of the truncation

induced by χ ◦ 1?, and that the function ϑk := e−
1
k 1

?

satisfies the assumptions in
Lemma 2.17. �

4.3.2. Smooth cylinder functions in the Euclidean setting. We now show how to
extend the density result for cylinder functions to the extended metric-topological
measure spaces

XHe(Q) := (M(Rd), τw,He,Q) and XW(Q) := (M(Rd), τw,W,Q),

where He = He2 and W = W2,de are the Hellinger and extended Wasserstein dis-
tances introduced in Definitions 3.2 and 3.1, respectively (recall that de is the
distance induced by the Euclidean norm on Rd), τw = σ(M(Rd),Cb(Rd)) is the
usual weak topology on M(Rd) and Q is finite, non-negative Borel measure on
(M(Rd), τw).

We know by [59, Thm.s 7.22, 7.23] that

(4.29) HKλde ↑ He, λHKde/λ ↑W as λ→ +∞.

We deduce by e.g. [81, Lemma 2.4] that both XHe(Q) and XW(Q) are indeed e.m.t.m.
spaces.

If we show that the unital algebra of cylinder functions is dense in 2-energy in
D1,2(Xλ(Q)), being Xλ(Q) := (M(Rd),HKλde ,Q), for every λ > 0, the density result
for D1,2(XHe(Q)) and D1,2(XW(Q)) will follow as a consequence of Lemma 2.18 and
Proposition 2.19.

We use the following notation: if λ > 0 we denote by Tλ : M(Rd)→M(Rd) the
map

Tλ(µ) := tλ] µ , µ ∈M(Rd) ,

where we denote by tλ : Rd → Rd the dilation x 7→ λx.

Lemma 4.18. Let λ > 0 be fixed. Then

HKλde(µ, ν) = HKde(T
λ(µ), (Tλ(ν)) for every µ, ν ∈M(Rd).

In particular Tλ is an isometric isomorphism from (M(Rd),HKλde) to (M(Rd),HKde).

Proof. This immediately follows since the map uλ : ([x, r], [y, s]) 7→ ([λx, r], [λy, s])
induces a bijection uλ] from H(µ, ν) to H(Tλ(µ), (Tλ(ν)). (Recall the notation

in (3.3).) �

Corollary 4.19. Let λ > 0; then the unital and point-separating subalgebra A =
F∞,∞u,c C∞c (M(Rd)) is dense in 2-energy in D1,2(Xλ(Q)).

Proof. Let X′λ(Q) := (M(Rd),HKde ,T
λ
]Q) and note that the map (Tλ)∗, defined as

(Tλ)∗(u) := u◦Tλ, is a bijection between Lipb(M(Rd),HKde) and Lipb(M(Rd),HKλde)
and the algebra A is invariant under its action i.e. A = (Tλ)∗(A ). We deduce by
Lemma 4.18 and [81, Proposition 5.15] that (Tλ)∗ is an isomorphism of H1,2(X′λ; A )
onto H1,2(Xλ; A ) and an isomorphism of H1,2(X′λ) onto H1,2(Xλ). By the density



THE HELLINGER–KANTOROVICH METRIC MEASURE GEOMETRY 63

in 2-energy of F∞,∞c,c C∞c (M(Rd)) ⊂ A in D1,2(X′λ) provided by Corollary 4.17 we
deduce that

H1,2(X′λ(Q); A ) = H1,2(X′λ(Q)) ,

so that
H1,2(Xλ(Q); A ) = H1,2(Xλ(Q)) . �

Corollary 4.20. The point-separating subalgebra F∞,∞c,c C∞c (M(Rd)) is dense in

2-energy in D1,2(XHe(Q)) and D1,2(XW(Q)), and H1,2(XHe(Q)) and H1,2(XW(Q))
are Hilbert spaces.

Proof. The density of A = F∞,∞u,c C∞c (M(Rd)) in D1,2(XHe(Q)) and D1,2(XW(Q))
as well as the Hilbertianity result follow by Corollary 4.19, Lemma 2.18, Propo-
sition 2.19 and (4.29). The density for the smaller (and non-unital) subalgebra
F∞,∞c,c C∞c (M(Rd)) follows by [36, Proposition 2.15], Lemma 4.4 and Proposition 4.8
which shows in particular the inequalities lipτwHe ≤ lipHK, lipτwW ≤ lipHK. �

5. The canonical form and the Cheeger energy

Let X be a Polish space, and ev : M(X)×X → R be the evaluation map

ev : (µ, x) 7→ evxµ := µx ,

where, for notational simplicity and throughout this section, we set

µx := µ{x} , x ∈ X .

5.1. The multiplicative infinite-dimensional Lebesgue measure. Let θ > 0,
and recall that Lθ,ν is the multiplicative infinite-dimensional Lebesgue measure
with intensity ν in (1.18). We collect here all the relevant properties of Lθ,ν .

Lemma 5.1. Lθ,ν is finite on every HKdg -ball for every θ > 0.

Proof. By triangle inequality it suffices to show the statement for sets of the form Br
for some r ≥ 0. By (1.18),

Lθ,ν(Br) = λθ([0, r)) <∞ . �

5.1.1. Invariance and uniqueness. We collect here some results about invariance
and uniqueness of multiplicative infinite-dimensional Lebesgue measures.

Proposition 5.2. Let Q be a non-negative (non-zero) projectively M(X)-invariant
Borel measure on M(X), and such that QB0 = 0 and QBr ∈ R+ for some r ∈ R+.
Then,

(i) kt :=
∫

e−tµXdQ(µ) is (positive and) finite for every t > 0;
(ii) α :=

∫
µ( · ) e−µXdQ(µ) is a finite non-negative (non-zero) Borel measure

on X;
(iii) letting θ := αX and ν := N(α), it holds that Q = k1 Lθ,ν .

Proof. For any a ∈ Bb(X) let Qa := (ea·)]Q be the shift of Q by ea, and d(ea) :=
dQa
dQ be the Radon–Nikodým derivative of Qa w.r.t. Q.

Claim 1: for every a ∈ Bb(X) the function d(ea) ∈ (0,+∞) is a constant and
satisfies d(ea) ∈ (0, 1] if a ≥ 0. If, additionally, a is constant, then d(ea) ∈ (0, 1) if
a > 0 and d(ea) = d(1) = 1 if a = 0. If a ∈ Bb(X)+ and r > 0, we have

d(ea)Q(Br) = Qa(Br) =

∫
1Br (e

a · µ) dQ(µ) ≤
∫
1Br (µ) dQ(µ) = Q(Br) .
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Choosing r > 0 such that Q(Br) ∈ (0,+∞) shows that d(ea) ∈ [0, 1]. If, by
contradiction, d(ea) = 0, then Qa(Br) = 0 for every r > 0 so that Qa is the
zero measure, a contradiction, since Q is not the zero measure. This proves that
d(ea) ∈ (0, 1] for every a ∈ Bb(X)+. For a ∈ Bb(X) we have

d(ea) =
d(ea

+

)

d(ea−)
∈ (0,+∞).

If additionally a is constant and positive, setting c := ea ∈ (1,+∞), we assume
by contradiction that d(c) = 1. Then, for any r > 0 such that Q(Br) ∈ (0,+∞),
we have Q(Br) = Q(Br/c), so that also Q(Br/c) > 0; we deduce that Q(Br/en \
Br/en+1) = 0 for every n ∈ N so that

Q(Br) = Q({0}) +

∞∑
n=0

Q(Br/cn \ Br/cn+1) = 0 ,

a contradiction. Finally, if a = 0, Qa = Q0 = Q so that d(ea) = d(1) = 1.

Claim 2: a 7→ d(ea) is continuous on bounded sets w.r.t. the pointwise con-
vergence in Bb(X). Let (an)n ∈ Bb(X) be pointwise convergent to a ∈ Bb(X)
and satisfying supn ‖an‖∞ <∞. Then, eanµ converges weakly to eaµ for every µ ∈
M(X) by Dominated Convergence in L1(µ) with dominating function |f | esupn ‖an‖∞

for any f ∈ Cb(X). Since Q is finite on mass-bounded sets, for every bounded
weakly continuous u : M(X)→ R with mass-bounded support,

lim
n

∫
u(µ)dQan(µ) = lim

n

∫
u(ean · µ)dQ(µ) =

∫
u(ea · µ)dQ(µ) =

∫
u(µ)dQa(µ)

by Dominated Convergence in L1(Q) with dominating function |u|1suppu. Then,
by projective invariance of Q,

(5.1) lim
n
d(ean)

∫
udQ = lim

n

∫
udQan =

∫
udQa = d(ea)

∫
udQ .

Since Q is finite on mass-bounded sets, we may choose u so that
∫
udQ ∈ (0,∞),

and cancelling it from (5.1) concludes the assertion.

Claim 3: d(ear) = d(ea)r for every r ∈ R and every a ∈ Bb(X). For r ∈ Z, the
assertion holds since a 7→ d(ea) is a group homomorphism. The case r ∈ Q follows
from the case r ∈ Z by a standard iteration argument. The case r ∈ R follows from
the case r ∈ Q by the continuity of a 7→ d(ea) in Claim 1.

Claim 4: the assignment

(5.2) α : A 7−→ − log d(e1A)

defines a finite non-negative Borel measure on X with total mass θ > 0. Since
1A ≥ 0, we have by Claim 1 that d(e1A) ∈ (0, 1] so that αA ≥ 0. Again by
Claim 1 we get that θ = αX = − log(d(e)) > 0 and α(∅) = − log(d(1)) = 0.
Since ea 7→ d(ea) is a group homomorphism, α is finitely additive on pairwise
disjoint sets. We are only left to show that ν̃ is countably additive. Let (Ai)i be
any countable pairwise disjoint collection of Borel subsets of X, and set A := ∪iAi.
For each n ∈ N1, define a finite partition (Bni )i≤n of A by setting Bni := Ai if i < n
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and Bnn := ∪i≥nAi. It suffices to show that d(e1A) =
∏∞
i d(e1Ai ). We have

(5.3) d(e1A) =

n∏
i

d(e
1Bn

i ) = d(e1Bnn )

n−1∏
i

d(e1Ai ) .

Since 1Bnn is pointwise non-increasing to 1∅ = 0 and uniformly bounded by 1, by

Claim 2, we have limn d(e1Bnn ) = d(e0) = d(1) = 1. The claim is proved by letting n
to infinity in (5.3).

Conclusion. We now detail some arguments in the proof of [92, Thm. 4.2].
For k ∈ Z let Ak :=

{
µ ∈M(X) : 2k ≤ µX < 2k+1

}
. Since 2 · Ak = Ak+1 we

have Q(Ak+1) = d(2)−1Q(Ak), hence Q(Ak) = d(2)−kA0. Then, since Q({0}) = 0
and d(2) < 1 by Claim 1,

(5.4) kt =

∫
e−tµXdQ(µ) ≤

∑
k∈Z
Q(A0) d(2)−k exp(−2kt) <∞, t > 0 .

Choosing t = 1 proves (i). Furthermore, (5.4) states that the Laplace transform
of Q is finite on constant functions, and it is readily verified that it is finite on all
positive simple functions: if N ∈ N1 and A1, . . . , AN is a pairwise disjoint partition
of X we set

ut :=

N∑
i=1

ti 1Ai ≥ min
1≤i≤N

ti 1X =: t1X , t = (t1, . . . , tN ) ∈ (R+)N .

We have

L(t) :=

∫
e−

∫
ut dµdQ(µ) ≤

∫
e−tµXdQ(µ) < +∞ .

For every t > 0, 1 ≤ j ≤ N and s, t ∈ (R+)N let us set

bj,t := 1X\Aj +t1Aj , s � t := (s1t1, s2t2, . . . , sN tN ) ,

and observe that

us�t = ut

N∏
i=1

bi,si .

We have

L(s � t) =

∫
e−t

∫
us�t dµdQ(µ) = L(t)

N∏
i=1

d
(
bi,si

)
= L(t)

N∏
i=1

d
(
e(log si) 1Ai

)
= L(t)

N∏
i=1

d(e1Ai )log si

by Claim 2, so that

L(s � t) = L(t)

N∏
i=1

s
−θ ν(Ai)
i ,(5.5)

with ν := N(α). We deduce that∫
e−

∫
ut dµdQ(µ) = L(t) = L(1, 1, . . . , 1) ·

N∏
i=1

t
−θ ν(Ai)
i
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= k1

N∏
i=1

t
−θ ν(Ai)
i

= k1 exp

(
−θ
∫

log ut dν

)
.

Thus

(5.6)

∫
e−

∫
u dµdQ(µ) = k1 exp

(
−θ
∫

log udν

)
for every positive simple function u. By a standard approximation argument, we
deduce that (5.6) holds for every Borel function u : X → [0,+∞].

Now, define a measureQ∗ onM(X) by dQ∗(µ) := k−1
1 e−µXdQ(µ). Note thatQ∗

is a probability measure by (i).
Choosing u = 1+v in (5.6), we deduce from (5.6) that∫

e−
∫
vdµdQ∗(µ) = exp

(
−θ
∫

log(1 + v)dν

)
for every Borel function v : X → [0,+∞]. By the uniqueness part in the general-
ized Bernstein theorem for Laplace transforms of probability measures (on abelian
semigroups [18, §47, p. 261] or on continuous bounded functions [47, Thm. 2.3]), to-
gether with the Laplace transform characterization of the Gamma measure, e.g. [92,
Eqn. (7)], we conclude that Q∗ is the Gamma measure Gθ,ν with intensity mea-
sure α = θν. It then follows from [92, Eqn. 9] that Q = k1Lθ,ν , which concludes
the proof of the representation in (iii) for the measure α = θν in (5.2).

It remains to show that the measure α in (5.2) satisfies the representation in (ii).
Since Q∗ = Gθ,ν , the representation follows by definition of intensity measure, see
also (5.9). �

Corollary 5.3. Let Q be a non-negative projectively M(X)-invariant Borel mea-
sure on M(X) such that QBr ∈ R+ for some r ∈ R+. Then, either Q = a0δ0
or Q = a1Lθ,ν for some constants a0, a1 ≥ 0, some constant θ > 0 and some Borel
probability measure ν on X.

Proof. Assume by contradiction that Q charges both {0} and its complement. In
this case, the restriction of Q to {0} is invariant, so that the measure Q too must
be invariant. Thus the restriction of Q toM(X) \ B0 is invariant. Since by Propo-
sition 5.2 the only non-negative (non-zero) projectively invariant Borel measure on
M(X)\B0 giving finite mass to some ball is the multiplicative infinite-dimensional
Lebesgue measure, and the latter is not invariant, we conclude that the restriction
of Q to M(X) \ B0 is the zero measure. �

Proposition 5.4. Let G < S(X) be any subgroup. Then, Lθ,ν is invariant for the
(	])-action of G on M(X) if and only if ν is invariant for the natural action of G
on X.

In particular, if X has a structure of smooth, connected, orientable Riemann-
ian manifold (M, g) with finite volume volg and Lθ,ν is invariant for the (	])-
action on M(M) of the group Diff+

0 (g) of all compactly non-identical, orientation-
preserving, volg-preserving diffeomorphisms, then θν = volg.
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Proof. Assume first that Lθ,ν is invariant for the (	])-action of G. Then, for ev-
ery ι ∈ G we have

θι]ν = ι]

∫
µ( · ) e−µXdLθ,ν(µ) =

∫
(ι]µ)( · ) e−(ι]µ)XdLθ,ν(µ)

=

∫
µ( · ) e−µXdι]]Lθ,ν(µ) =

∫
µ( · ) e−µXdLθ,ν = θν .

Since θ > 0, this shows that ι]ν = ν, that is, ν is invariant for the natural action
of G on X.

Vice versa, assume that ν is invariant for the natural action of S(X) on X. By
Proposition 5.6 below, for every ι ∈ G we have

ι]]Lθ,ν = Lθ,ι]ν = Lθ,ν .

This concludes the proof of the first assertion.

Now, assume that X = (M, g) and that Lθ,ν is invariant for the (	])-action of

Diff+
0 (g) on M(M). It follows from the first assertion that ν is invariant for the

natural action of Diff+
0 (g) on M . Thus, it suffices to show that ν ∝ volg, which is

shown in Proposition B.4 below. �

5.1.2. Functoriality. We collect here some facts about the functoriality of the as-
signment α 7→ LαX,N(α), greatly extending the convolution property of θ 7→ Lθ,ν
in Proposition 1.4(i).

Let α ∈M(X) and denote byM(X)+ :=M(X)\{0}. In order to state the next
results, it is convenient to write Lα := LαX,N(α). For a Polish space Y , we denote
byMσ(Y ) the space of all non-negative σ-finite Borel measures on Y . If Y = (Y,+)
is a cone in a topological linear space, we define the convolution of Q1,Q2 ∈Mσ(Y )
by

(5.7) (Q1 ∗ Q2)A :=

∫
Y

1A(y1 + y2)dQ1(y1)dQ2(y2)

with A ⊂ Y Borel. Since Polish spaces are strongly Radon, the existence of the
convolution of σ-finite (Radon) measures follows similarly to the proof of the same
assertion for (Radon) probability measures in [93, Prop. I.4.4, p. 64].

Corollary 5.5 (Convolution property). The assignment
(
M(X)+,+

)
3 α 7→ Lα ∈(

Mσ(M(X)+)+, ∗
)

is a homomorphism of magmas, that is

Lα1+α2
= Lα1

∗ Lα2
, α1, α2 ∈M(X)+ .

Proof. It is readily seen that the convolution Lα1
∗ Lα2

satisfies all the assump-
tions in Proposition 5.2. For example, let us briefly verify the projective M(X)-
invariance. From (5.7), for every Borel A ⊂M(X), for every a ∈ Bb(X),

(ea.)](Lα1
∗ Lα2

)A =

∫
1(ea.)−1(A)(µ1 + µ2)dLα1

(µ1)dLα2
(µ2)

=

∫
1A(ea.µ1 + ea.µ2)dLα1

(µ1) dLα2
(µ2)

=

∫
1A(µ1 + µ2)d(ea.)]Lα1

(µ1) d(ea.)]Lα2
(µ2)

= d1(ea)d2(ea)

∫
1A(µ1 + µ2)dLα1

(µ1) dLα2
(µ2)
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= d1(ea)d2(ea)(Lα1
∗ Lα2

)(A) ,

where, for i = 1, 2, we set di(e
a) :=

d(ea.)]Lαi
dLαi

, so that there exists
d(ea.)](Lα1

∗Lα2
)

d(Lα1∗Lα2 ) =

d1(ea)d2(ea).
Thus, by Proposition 5.2, we have Lα1

∗ Lα2
= k1Lα for some α ∈M(X)+ and

some constant k1 > 0, and it suffices to show that α = α1 +α2 and k1 = 1; we show
only the first assertion, the proof of the second is similar. By Fubini’s Theorem,∫

µ( · ) e−µXd(Lα1
∗ Lα2

)(µ) =

∫∫ (
µ1( · ) + µ2( · )

)
e−µ1X−µ2XdLα1

(µ1)Lα2
(µ2)

=

∫
µ1( · ) e−µ1XdLα1

(µ1)

∫
e−µ2XLα2

(µ2)

+

∫
µ2( · ) e−µ2XdLα2

(µ2)

∫
e−µ1XLα1

(µ1)

= (α1 + α2)( · )

again by Proposition 5.2. �

Proposition 5.6 (Mapping theorem). Let X and Y be Polish spaces, and f : X →
Y be a Borel function. Then, for every α ∈M(X),

f]]Lα = Lf]α .

Proof. Let α = θν with θ := αX > 0 and ν := N(α) ∈ P(X). It suffices to combine
the representation of Lα = Lθ,ν in (1.18) with the Mapping Theorem [21, Thm. 3.9]
for the Dirichlet–Ferguson measure Dν . �

5.1.3. Mecke identity. As it is clear from the study of the simplicial part Dν of Lθ,ν ,
and of the Gamma measure Gθ,ν , the characterization of such measures via Mecke-
type integral identities plays a key role. A similar, strikingly simple identity holds
as well for the multiplicative infinite-dimensional Lebesgue measure Lθ,ν .

Proposition 5.7 (Mecke identity for Lθ,ν). For every Borel measurable F : M(X)×
R+

0 ×X → [0,∞],

(5.8)

∫ [∫
X

F (µ, µx, x) dµ(x)

]
dLθ,ν(µ) =

θ

∫ [∫
X

∫ ∞
0

F (µ+ sδx, s, x) dsdν(x)

]
dLθ,ν(µ) .

Proof. Recall the Mecke identity for the Gamma measure Gθ, e.g. [25, Eqn. (2.4)]
viz.
(5.9)∫ [∫

X

G(µ, µx, x)dµ(x)

]
dGθ,ν(µ) =

θ

∫ [∫
X

∫ ∞
0

G(µ+ sδx, s, x) e−sdsdν(x)

]
dGθ,ν(µ) ,

and recall that dLθ,ν(µ) = eµXdGθ,ν(µ), see e.g. [91, p. 165] . Applying the above
identity to G(µ, µx, x) = eµXF (µ, µx, x), we then have∫ [∫

X

F (µ, µx, x)dµX

]
dLθ,ν(µ)
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= θ

∫ [∫
X

∫ ∞
0

e(µ+sδx)XF (µ+ sδx, s, x) e−sdsdν(x)

]
dGθ,ν(µ)

= θ

∫ [∫
X

∫ ∞
0

F (µ+ sδx, s, x) dsdν(x)

]
eµXdGθ,ν(µ)

= θ

∫ [∫
X

∫ ∞
0

F (µ+ sδx, s, x) dsdν(x)

]
dLθ,ν(µ) ,

which is the assertion. �

Lemma 5.8. The set

(5.10) N := ev−1((0,+∞)) = {(µ, x) : µx > 0} ⊂ M(X)×X

is Borel measurable and Lθ,ν ⊗ ν-negligible.

Proof. Since the map ev : (µ, x) 7→ µx is Borel measurable onM(X)×X the set N
is Borel measurable. Furthermore,∫

M(X)

µx dLθ,ν(µ) =

∫ ∞
0

∫
P(X)

ηx dDν(η) tdλθ(t)

= νx

∫ ∞
0

tdλθ(t) = 0 ,

x ∈ X ,

where we used the identity
∫
ηx dDν(η) = νx in [32, Prop. 1, p. 214], and the fact

that ν is non-atomic. Thus, the section Nx := {µ ∈M(X) : (µ, x) ∈ N} is Lθ,ν-
negligible for each x ∈ X. Since a Borel measurable set with negligible sections is
negligible for the product measure, the conclusion follows. �

Throughout the rest of this section, let (M, g) be a smooth, connected, ori-
entable, complete Riemannian manifold with Riemannian distance dg and Rie-
mannian volume measure volg and let ρ ∈ C∞b (M) be so that ρ > 0 everywhere
on M and ν := ρvolg is an element of P2(M), i.e.

νM = 1 and

∫
M

d2
g,x0

dν <∞ for some x0 ∈M .

We refer to the triplet (M, g, ν) as above as to a weighted Riemannian manifold.

Finally, for every function f̂ ∈ C1(R+
0 ×M) and every (s, x) ∈ R+

0 ×M , set

f̂ ′(s, x) := (∂sf̂)(s, x), ∇f̂(s, x) := (∇xf̂)(s, x), ∆f̂(s, x) := (∆xf̂)(s, x) .

In the following, we will make use of standard definitions and results in theory
of Dirichlet forms. We refer the reader to the monographs [37, 61] for a standard
treatment.

5.2. Extended cylinder functions, extended form. The following sets of cylin-
der functions will be instrumental to the proof of Theorem 1.7.

Definition 5.9 (Cylinder functions of reduced potential energies). For every f̂ ∈
Cb(R+

0 ×M), we define

f̂?(µ) :=

∫
M

f̂(µx, x) dµ(x) , µ ∈M(M) .(5.11)
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We also define the following sets of cylinder functions for ε ∈ [0,+∞):

Fm1

]1
Ĉm2

]2
:=

û : M(M)→ R :

û = F ◦ f̂? , F ∈ Cm1

]1
(Rk+1;R) ,

k ∈ N , f̂ :=
(
f̂i
)

0≤i≤k , f̂0 ≡ 1 ,

f̂i ∈ Cm2

]2

(
R+

0 ×M
)

for 1 ≤ i ≤ k

 ,

and

Fm1

]1
Ĉm2

]2,ε
:=

û : M(M)→ R :

û = F ◦ f̂? , F ∈ Cm1

]1
(Rk+1;R) ,

k ∈ N , f̂ :=
(
f̂i
)

0≤i≤k , f̂0 ≡ 1 ,

f̂i ∈ Cm2

]2

(
(ε,∞)×M

)
for 1 ≤ i ≤ k

 ,

where m1,m2 ∈ N ∪ {∞} and ] stands for either b for bounded or c for compact
support. Clearly

F∞c Ĉ∞c,ε ( F∞c Ĉ∞c,0 ( F∞c Ĉ∞c ( F0
b Ĉ0

b , ε > 0 .

and

F∞,∞c,c C∞c ( F∞c Ĉ∞c .

Let us start by showing that cylinder functions of reduced potential energies are
dense in L2(Lθ,ν), so that all forms in the following will be densely defined.

Lemma 5.10. The following assertions hold:

(i) all functions in F0
b Ĉ0

b are Borel measurable;
(ii) F∞,∞c,c C∞c is dense in Lp(Lθ,ν) for every θ > 0 and every p ≥ 1;

(iii) F∞c Ĉ∞c,0 is dense in Lp(Lθ,ν) for every θ > 0 and every p ≥ 1.

Proof. (i) It suffices to show that functions in F0
b Ĉ0

c are Borel measurable. The

assertion for functions in F0
b Ĉ0

b follows by approximation. By [30, Rmk. 2.6], all

functions of the form (5.11) with f̂ ∈ Cc(R+ ×M) are continuous w.r.t. the weak
atomic topology introduced in [30]. In particular, since as noted in [30, p. 5, below
Eqn. (2.3)], the Borel σ-algebra of the weak atomic topology on M(M) coincides
with the Borel σ-algebra of the narrow topology onM(M), these functions are Borel

measurable. It follows that all functions in F0
c Ĉ0

c are Borel measurable, being the
composition of a continuous function F ∈ C0(Rk+1;R) with the Borel measurable

functions f̂?i , 1 ≤ i ≤ k and with the Borel measurable function f̂?0 = 1?.
(ii) Let u ∈ Lp(Lθ,ν) and set, for every k ∈ N, Qk := χkLθ,ν , where χk := ϑk ◦1?

and ϑk ∈ C∞c (R+
0 ) with suppϑk ⊂ [0, k] and ϑk ↑ 1 as k → +∞; note that

Qk ≤ Lθ,ν is a finite non-negative Borel measure. Arguing as in [81, Lemma
2.1.27], we see that we can find sequences

(
ũkn
)
n
⊂ F∞,∞c,c C∞c such that ũkn → u in

Lp(Qk) as n → +∞. Setting uk := uχk, and ukn := ũknχk, k, n ∈ N, we see that
ukn ∈ F∞,∞c,c C∞c , ukn → uk in Lp(Lθ,ν) as n → +∞ and uk → u in Lp(Lθ,ν) as
k → +∞. We conclude by the diagonal argument in Lp(Lθ,ν).

(iii) By (ii), it suffices to show that any u ∈ F∞,∞c,c C∞c can be approximated

in Lp(Lθ,ν) by functions in F∞c Ĉ∞c,0. So let u = F ◦ f? for F ∈ C∞c (Rk+1) and
f = (1, f1, . . . , fk) with fi ∈ C∞c (M) for 1 ≤ i ≤ k ∈ N. We set, for every n ∈ N,

(5.12) ûn := F ◦
(
1?, (%n ⊗ f1)?, · · · (%n ⊗ fk)?

)
,
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with %n ∈ C∞c (R+), 0 ≤ %n ↗ 1, and supp %n ⊂ [1/n, n]. Clearly ûn ∈ F∞c Ĉ∞c,0 and
it is not difficult to see that

‖u−ûn‖pLp(Lθ,ν) ≤ k(L(F ))p
(

max
1≤i≤k

‖fi‖∞
)p ∫

Br

∫
M

|%n(µx)− 1|p dµ(x) dLθ,ν(µ) ,

where r > 0 is such that suppF ⊂ [−r, r]k+1. By Dominated Convergence Theorem
we conclude the assertion. �

Let us now show that Lθ,ν fits the abstract framework of §1.2 in that it is
partially 	o∗ -quasi-invariant. Whereas we will not make explicit use of this fact in
the following, we believe it to be of interest in its own right, from the representation-
theoretical point of view detailed in §1.3.1.

Firstly, we note that it is not restrictive to relax the definition of partial quasi-
invariance in the following way. Let (Ft)t∈T be the filtration in Definition 1.3(d),
and denote by F∨ its terminal σ-algebra. Rather than requiring F∨ = F , it
suffices to let A ⊂ Ω be Q-conegligible and to require that F∨ = FA, the trace
σ-algebra of F on A. In the present setting, note that Lθ,ν is concentrated on
the subsetMpa(M) of purely atomic measures, since Dν is concentrated on purely
atomic probability measures (e.g. [32, Thm. 2, p. 219]). We now choose A =
Mpa(M) in the above reasoning.

Proposition 5.11. For every θ > 0, the measure Lθ,ν is partially quasi-invariant

under the 	o∗-action of G(M) := Diff+
0 (M) o∗ exp[C∞c (M)].

Proof. Since Lθ,ν is projectively invariant w.r.t. the 	· of exp[C∞c (M)], and since
the push-forward of measures is homogeneous (in fact, linear), it suffices to show
that Lθ,ν is partially quasi-invariant under the 	]-action of Diff+

0 (M). Since the
action (	o∗) splits over the decomposition (1.1), it suffices to verify that there
exists a filtration F• := (Ft)t∈T ofMpa(M) with the following properties: (a) the
terminal σ-algebra F∨ of F• coincides with the Borel σ-algebra ofMpa(M); (b) F•
is J-saturated, i.e. Ft = (J−1 ◦ J)(Ft) for every t ∈ T ; (c) the simplicial part Dν
of Lθ,ν is partially quasi-invariant w.r.t. the split action (	]) on Ppa(M) for the
image filtration J(F•) := (J(Ft))t∈T .

To this end, let T := [0, 1] be unit interval with the reverse of its natural order,

and let Ft := σ
(
F∞c Ĉ∞c,t

)
be the σ-algebra generated by the family of cylinder

functions in Definition 5.9. Note that F∨ = σ
(
F∞c Ĉ∞c,0

)
, and recall that it generates

the Borel σ-algebra on Mpa(M) as noted in the proof of Lemma 5.10.
Finally, it was shown in [23, Prop. 5.20] that Dβ is partially quasi-invariant under

the 	]-action of Diff+
0 (M) for the filtration (Ft)t∈T with Ft = σ

(
F∞c Ĉ∞c,t

)
. �

For each û = F ◦ f̂? ∈ F0
b Ĉ0

b,0 define a function

(5.13) U : M(M)×M × R+ → R , U : (µ, x, s) 7−→ û(µ+ sδx) .

It is not difficult to show that the map (µ, x, s) 7→ µ+ sδx is continuous. This fact,
together with Lemma 5.10(i), implies that U is Borel measurable.
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5.2.1. Vertical differentiability of extended cylinder functions. Define an operator(
L̂ver,F∞c Ĉ∞c,0

)
by

(L̂verû)µ :=

∫
M

∂2
s

∣∣
s=µx

û(µ+ sδx − µxδx)dµ(x)

+ θ

∫
M

∂s
∣∣
s=0

û(µ+ sδx)dν(x) ,

û ∈ F∞c Ĉ∞c,0 .

Proposition 5.12. The form
(
Ever,F∞c Ĉ∞c,0

)
defined as

Ever(û, v̂) :=

∫ 〈
(∇verû)µ

∣∣ (∇verv̂)µ
〉
T ver
µ

dLθ,ν(µ)

=

∫ ∫
M

(∇verû)µ(x)(∇verv̂)µ(x) dµ(x) dLθ,ν(µ)

is well-defined and closable on L2(M(M),Lθ,ν). Its closure
(
Êver,D(Êver)

)
is a

closed bilinear form with generator the Friedrichs extension on L2(M(M),Lθ,ν) of

the operator
(
L̂ver,F∞c Ĉ∞c,0

)
.

In order to prove Proposition 5.12 we shall need several auxiliary results on
the differentiability of functions on M(M). Some of them may be inferred from
the general computations for derivatives on spaces of measures in [76], or from the
analogous results on the differentiability of functions on P(M) in [23], but we report
them for ease of reference.

Lemma 5.13. Fix û = F ◦ f̂? ∈ F0
c Ĉ0

c,0 with F : Rk+1 → R . Then,

(i) if û is in F1
c Ĉ1

c,0, then for Lθ,ν ⊗ ν-a.e. (µ, x) the function s 7→ U(µ, x, s)

as in (5.13) is differentiable on R+, and, for every s ∈ R+,
(5.14)

∂sU(µ, x, s) =

k∑
i=0

(∂iF )
(
f̂?(µ+ sδx)

) [
f̂i(s, x) + sf̂ ′i(s, x)

]
Lθ,ν ⊗ ν-a.e. ;

(ii) if û is in F2
c Ĉ2

c,0, then for Lθ,ν ⊗ ν-a.e. (µ, x) the function s 7→ U(µ, x, s)

as in (5.13) is twice differentiable on R+, and, for every s ∈ R+,
(5.15)

∂2
sU(µ, x, s) =

k,k∑
i,j=0

(∂2
ijF )

(
f̂?(µ+ sδx)

) [
f̂i(s, x) + sf̂ ′i(s, x)

] [
f̂j(s, x) + sf̂ ′j(s, x)

]

+

k∑
i=0

(∂iF )
(
f̂?(µ+ sδx)

) [
2f̂ ′i(s, x) + sf̂ ′′i (s, x)

]
Lθ,ν ⊗ ν-a.e. .

In particular, the left -hand sides of (5.14) and (5.15) are Borel measurable.

Proof. (i) Fix f̂ ∈ C1
c(R+×M). Let N be as in (5.10) and recall that it is Lθ,ν⊗ν-

negligible by Lemma 5.8. For every (µ, x) 6∈ N , for every s ∈ R+,

∂s
[
f̂?(µ+ sδx)

]
=

= ∂s

[∫
f̂
(
µy + s1x(y), y

)
dµ(y) + sf̂

(
µx + s, x

)]
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hence, by definition of N , continuing the above chain of equalities,

= ∂s

[∫
f̂(µy, y) dµ(y) + sf̂(s, x)

]
= f̂(s, x) + sf̂ ′(s, x) .

We used that, since f̂ ∈ C1
0( · , x) has compact support in R+ away from 0 uniformly

in x ∈ M , and since the total mass of µ is finite, every integral above is in fact a
finite sum, hence we may freely differentiate under integral sign.

On the complement of the Lθ,ν ⊗ ν-negligible set N , the equality in (5.14) for U
readily follows from the above equality and the standard chain rule.

(ii) A proof is similar to the one of (i) and therefore it is omitted. �

Lemma 5.14. Fix û = F ◦ f̂? ∈ F1
c Ĉ1

c,0 with F : Rk+1 → R . Then, for ev-
ery (µ, x) ∈M(M)×M there exists

(5.16) (∇verû)µ(x) =

k∑
i=0

(∂iF )
(
f̂?(µ)

) [
µxf̂

′
i(µx, x) + f̂i(µx, x)

]
and

(∇verû)µ(x) = ∂s
∣∣
s=µx

U(µ, x, s) Lθ,ν ⊗ ν-a.e.(5.17)

where U is as in (5.13).

Proof. Fix f̂ ∈ C1
c(R+ ×M). For every φ ∈ C∞c (M) we have

(∂φf̂
?)µ := dt

∣∣
t=0

f̂?
(
etφµ

)
=

∫
dt
∣∣
t=0

[
f̂
(
etφ(x)µx, x

)
etφ(x)

]
dµ(x)

=

∫ [
etφ(x)µxφ(x)f̂ ′

(
etφ(x)µx, x

)
etφ(x)

+ f̂
(
etφ(x)µx, x

)
φ(x)etφ(x)

]∣∣
t=0

dµ(x)

=

∫ [
µxf̂

′(µx, x) + f̂(µx, x)
]
φ(x) dµ(x) .

We used that, since f̂ ∈ C1
0( · , x) has compact support in R+ away from 0 uniformly

in x ∈ M , and since the total mass of µ is finite, every integral above is in fact a
finite sum, hence we may freely differentiate under integral sign.

By arbitrariness of φ ∈ C∞c (M) and density of C∞c (M) in T ver
µ for every µ ∈

M(M), we have

(∇verf̂?)µ(x) =
[
µxf̂

′(µx, x) + f̂(µx, x)
]
,

which clearly belongs to L2(M,µ).
The equality in (5.16) for û readily follows from the above equality and the

standard chain rule. The equality in (5.17) holds by comparison of (5.16) and (5.14)
also using the fact that µx = 0 for Lθ,ν ⊗ ν-a.e. (µ, x). �
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Proof of Proposition 5.12. Fix û = F ◦ f̂?, v̂ = G ◦ ĝ? ∈ F∞c Ĉ∞c,0 with F : Rk+1 → R
and G : Rh+1 → R. Then, by definition of Ever and by (5.16),

Ever(û, v̂) :=

∫ 〈
(∇verû)µ

∣∣ (∇verv̂)µ
〉
T ver
µ

dLθ,ν(µ)

=

∫ ∫
M

[
k∑
i=0

(∂iF )(f̂?(µ))
[
µxf̂

′
i(µx, x) + f̂i(µx, x)

]
·
h∑
j=0

(∂jG)(ĝ?(µ))
[
µxĝ

′
j(µx, x) + ĝj(µx, x)

]]
dµ(x) dLθ,ν(µ)

hence, by Proposition 5.7 and by (5.14),

= θ

∫ ∫
M

∫ ∞
0

[
k∑
i=0

(∂iF )(f̂?(µ+ rδx))
[
rf̂ ′i(r, x) + f̂i(r, x)

]
·
h∑
j=0

(∂jG)(ĝ?(µ+ rδx))
[
rĝ′j(r, x) + ĝj(r, x)

]]
dr dν(x) dLθ,ν(µ)

= θ

∫ ∫
M

∫ ∞
0

∂rû(µ+ rδx) ∂rv̂(µ+ rδx) dr dν(x) dLθ,ν(µ) .

Integrating by parts on R+ and applying both (5.14) and (5.15),

= θ

∫ ∫
M

[
û(µ+ rδx) ∂rv̂(µ+ rδx)

]∣∣∣∣∣
r=∞

r=0

dν(x) dLθ,ν(µ)

− θ
∫ ∫

M

∫ ∞
0

û(µ+ rδx) ∂2
s

∣∣
s=r

v̂(µ+ sδx) dr dν(x) dLθ,ν(µ)

= − θ
∫
û(µ)

∫
M

∂s
∣∣
s=0

v̂(µ+ sδx)dν(x) dLθ,ν(µ)

− θ
∫ ∫

M

∫ ∞
0

û(µ+ rδx) ∂2
s

∣∣
s=r

v̂(µ+ sδx) dr dν(x) dLθ,ν(µ)

= − θ
∫
û(µ)

∫
M

∂s
∣∣
s=0

v̂(µ+ sδx)dν(x) dLθ,ν(µ)

− θ
∫ ∫

M

∫ ∞
0

û(µ+ rδx) ∂2
s

∣∣
s=r

v̂
(
(µ+ rδx) + sδx − rδx)

)
dr dν(x) dLθ,ν(µ)

= − θ
∫
û(µ)

∫
M

∂s
∣∣
s=0

v̂(µ+ sδx)dν(x) dLθ,ν(µ)

−
∫
û(µ)

∫
M

∂2
s

∣∣
s=µx

v̂(µ+ sδx − µxδx) dµ(x) dLθ,ν(µ) .

where we used that û vanishes outside a ball of the origin in M(M) to cancel the
boundary term at r =∞. Furthermore, for Lθ,ν-a.e. µ,∫
M

∂s
∣∣
s=0

v̂(µ+ sδx)dν(x)

=

∫
M

h∑
i

(∂iG)
(
ĝ?(µ)

)
∂s
∣∣
s=0

[∫
ĝi(µy, y)dµ\x(y) + (µx + s)ĝi(µx + s, x)

]
dν(x)
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=

∫
M

h∑
i

(∂iG)
(
ĝ?(µ)

)
[µxĝ

′
i(µx, x) + ĝi(µx, x)] dν(x)

=

∫
M

h∑
i

(∂iG)
(
ĝ?(µ)

)
[ĝi(0, x)] dν(x) ,

since µx = 0 for Lθ,ν ⊗ ν-a.e. (µ, x) by Lemma 5.8. Since ĝi(0, x) ≡ 0 for every ĝi
and every x ∈ M by definition of v̂ = G ◦ ĝ? ∈ F∞c Ĉ∞c,0, we conclude that the
boundary term at r = 0 vanishes too, Lθ,ν-a.s. Thus, cancelling this boundary
term in the above chain of inequality we obtain the desired assertion

Ever(û, v̂) =
〈
û
∣∣ − L̂verv̂

〉
L2(Lθ,ν)

.

Since F∞c Ĉ∞c,0 is dense in L2(Lθ,ν) by Lemma 5.10(iii), the above equality shows

at once that L̂verF∞c Ĉ∞c,0 ⊂ L2(Lθ,ν) and that
(
L̂ver,F∞c Ĉ∞c,0

)
generates

(
Ever,F∞c Ĉ∞c,0

)
.

Thus,
(
Ever,F∞c Ĉ∞c,0

)
is closable and its closure

(
Êver,D(Êver)

)
is generated by the

Friedrichs extension of
(
L̂ver,F∞c Ĉ∞c,0

)
by [74, Thm. X.23]. �

5.2.2. Horizontal differentiability of extended cylinder functions. Define an opera-

tor
(
L̂hor,F∞c Ĉ∞c,0

)
by setting for every µ ∈M(M)

(L̂horû)µ :=

∫
M

∆z

∣∣
z=x

û(µ+ µxδz − µxδx)

µx2
dµ(x)

+

〈(
∇ log ρ

ev

)
µ

∣∣∣∣∣ (∇horû)µ

〉
Thor
µ M(M)

, û ∈ F∞c Ĉ∞c,0 .

Proposition 5.15. The form
(
Ehor,F∞c Ĉ∞c,0

)
defined as

Ehor(û, v̂) :=

∫ 〈
(∇horû)µ

∣∣ (∇horv̂)µ
〉
Thorµ

dLθ,ν(µ)

=

∫ ∫
M

〈
(∇horû)µ(x)

∣∣ (∇horv̂)µ(x)
〉
gx

dµ(x) dLθ,ν(µ)

is well-defined and closable on L2(M(M),Lθ,ν). Its closure
(
Êhor,D(Êhor)

)
is a

closed bilinear form with generator the Friedrichs extension on L2(M(M),Lθ,ν) of

the operator
(
L̂hor,F∞c Ĉ∞c,0

)
.

In order to prove Proposition 5.15 we shall need several auxiliary results.

Lemma 5.16. Fix û = F ◦ f̂? ∈ F0
c Ĉ0

c,0 with F : Rk+1 → R . Then,

(i) if û is in F1
c Ĉ1

c,0, then for Lθ,ν ⊗ ν-a.e. (µ, z) the function z 7→ U(µ, z, s)

as in (5.13) is differentiable on M at z, and, for every s ∈ R+,

(5.18) ∇zU(µ, z, s) = s

k∑
i=0

(∂iF )
(
f̂?(µ+ sδz)

)
∇f̂i(s, z) Lθ,ν ⊗ ν-a.e. ;
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(ii) if û is in F2
c Ĉ2

c,0, then for Lθ,ν ⊗ ν-a.e. (µ, z) the function z 7→ U(µ, z, s)

as in (5.13) is twice differentiable on M at z, and, for every s ∈ R+,

(5.19)

∆zU(µ, z, s) = s2
k∑

i,j=0

(∂2
ijF )

(
f̂?(µ+ sδz)

)
gz
(
∇f̂i(s, z),∇f̂j(s, z)

)
+ s

k∑
i=0

(∂iF )
(
f̂?(µ+ sδz)

)
∆f̂i(s, z) Lθ,ν ⊗ ν-a.e. .

In particular, the left-hand sides of (5.18) and (5.19) are Borel measurable.

Proof. (i) Fix f̂ ∈ C1
c(R+×M). Let N be as in (5.10) and recall that it is Lθ,ν⊗ν-

negligible by Lemma 5.8. For every (µ, z) 6∈ N , for every s ∈ R+,

∇z
[
f̂?(µ+ sδz)

]
= ∇z

[∫
f̂
(
µy + s1z(y), y

)
dµ(y) + sf̂

(
µz + s, z

)]
hence, by definition of N , continuing the above chain of equalities,

= ∇z
[∫

f̂
(
µy, y

)
dµ(y) + sf̂

(
s, z
)]

= s∇f̂(s, z) .

On the complement of the Lθ,ν ⊗ ν-negligible set N , the equality in (5.18) for U
readily follows from the above equality and the standard chain rule. (ii) A proof is
similar to the one of (i) and therefore it is omitted. �

Lemma 5.17. Fix û ∈ F1
c Ĉ1

c,0. Then, for every (µ, x) ∈M(M)×M there exists

(5.20) (∇horû)µ(x) =

k∑
i=0

(∂iF )
(
f̂?(µ)

)
∇f̂i(µx, x)

and

(∇horû)µ(x) = µ−1
x ∇z

∣∣
z=x

U(µ, z, µx) Lθ,ν ⊗ ν-a.e.(5.21)

where U is as in (5.13).

Proof. Fix f̂ ∈ C1
c(R+ ×M). For every w ∈ X∞c (M) we have

(∂wf̂
?)µ := dt

∣∣
t=0

f̂?
(
ψwt ]µ

)
= dt

∣∣
t=0

∫
f̂
(
(ψwt ]µ)y, y

)
dψwt ]µ(y)

= dt
∣∣
t=0

∫
f̂
(
(ψwt ]µ)ψwt (y), ψ

w
t (y)

)
dµ(y)

=

∫
dt
∣∣
t=0

f̂
(
µy, ψ

w
t (y)

)
dµ(y)

=

∫
gy(∇f̂(µy, y), wy) dµ(y) .

We used that, since f̂ ∈ C1
0( · , x) has compact support in R+ away from 0 uniformly

in x ∈ M , and since the total mass of µ is finite, every integral above is in fact a
finite sum, hence we may freely differentiate under integral sign.
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By arbitrariness of w ∈ X∞c (M) and density of X∞c (M) in T hor
µ M(M) for ev-

ery µ ∈M(M), we have

(∇horf̂?)µ(x) = ∇f̂(µx, x) .

The equality in (5.20) for û readily follows from the above equality and the
standard chain rule. The equality in (5.21) holds by comparison of (5.20) and (5.18)
also using the fact that µx = 0 for Lθ,ν ⊗ ν-a.e. (µ, x). �

Proof of Proposition 5.15. Fix û = F ◦ f̂?, v̂ = G ◦ ĝ? ∈ F∞c Ĉ∞c,0 with F : Rk+1 → R
and G : Rh+1 → R. Then, by definition of Ehor and by (5.20),

Ehor(û, v̂) :=

∫ 〈
(∇horû)µ

∣∣ (∇horv̂)µ
〉
Thor
µ

dLθ,ν(µ)

=

∫ ∫
M

gx

(
k∑
i=0

(∂iF )(f̂?(µ))∇f̂i(µx, x),

h∑
j=0

(∂jG)(ĝ?(µ))∇ĝj(µx, x)

)
dµ(x) dLθ,ν(µ)

hence, by Proposition 5.7 and by (5.18),

= θ

∫ ∫
M

∫ ∞
0

r−2 g
(
∇xû(µ+ rδx),∇xv̂(µ+ rδx)

)
dr dν(x) dLθ,ν(µ) .

Now, we integrate by parts on M . Since M is boundaryless, no boundary term

appears. Since the f̂i’s and the ĝj ’s are compactly supported in the M -variable,
no boundary term at the infinity of M appears either. Thus, continuing the above
chain of equalities

=− θ
∫ ∫

M

∫ ∞
0

r−2 û(µ+ rδx) divz
∣∣
z=x

[ρ(z)∇z v̂(µ+ rδz)] dr dvolg(x) dLθ,ν(µ)

=− θ
∫ ∫

M

∫ ∞
0

r−2 û(µ+ rδx)
[
g
(
∇z
∣∣
z=x

ρ(z),∇z
∣∣
z=x

v̂(µ+ rδz)
)

+ ρ(x) ∆z

∣∣
z=x

v̂(µ+ rδz)
]

dr dvolg(x) dLθ,ν(µ)

=− θ
∫ ∫

M

∫ ∞
0

r−2 û(µ+ rδx)
[
g
(
∇z
∣∣
z=x

log
(
ρ(z)

)
,∇z

∣∣
z=x

v̂(µ+ rδz)
)

+ ∆z

∣∣
z=x

v̂(µ+ rδz)
]

dr dν(x) dLθ,ν(µ)

=− θ
∫ ∫

M

∫ ∞
0

r−2 û(µ+ rδx)

·
[
g
(
∇z
∣∣
z=x

log
(
ρ(z)

)
,∇z

∣∣
z=x

v̂
(
(µ+ rδx) + rδz − rδx

))
+ ∆z

∣∣
z=x

v̂
(
(µ+ rδx) + rδz − rδx

)]
dr dν(x) dLθ,ν(µ) ,

and, applying again Proposition 5.7,

= −
∫
û(µ)

∫
M

µx
−2
[
g
(
(∇ log ρ)x,∇z

∣∣
z=x

v̂(µ+ µxδz − µxδx)
)

+ ∆z

∣∣
z=x

v̂(µ+ µxδz − µxδx)
]
dµ(x) dLθ,ν(µ)
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=
〈
û
∣∣ − L̂horv̂

〉
L2(Lθ,ν)

.

Since F∞c Ĉ∞c,0 is dense in L2(Lθ,ν) by Lemma 5.10(iii), the above chain of equal-

ities shows at once that L̂horF∞c Ĉ∞c,0 ⊂ L2(Lθ,ν) and that
(
L̂hor,F∞c Ĉ∞c,0

)
gener-

ates
(
Ehor,F∞c Ĉ∞c,0

)
. Thus,

(
Ehor,F∞c Ĉ∞c,0

)
is closable and its closure

(
Êhor,D(Êhor)

)
is generated by the Friedrichs extension of

(
L̂hor,F∞c Ĉ∞c,0

)
by [74, Thm. X.23]. �

5.2.3. Extended form. In light of Lemmas 5.14 and 5.17,

Γ̂(û, v̂)µ :=

∫ [
g
(
(∇horû)µ, (∇horv̂)µ

)
+ 4(∇verû)µ(∇verv̂)µ

]
dµ

is a well-defined bilinear form on F∞c Ĉ∞c,0. Analogously,

(L̂û)µ := (L̂horû)µ + 4(L̂verû)µ

is a well-defined operator
(
L̂,F∞c Ĉ∞c,0

)
.

Proposition 5.18. Fix θ > 0. The bilinear form
(
E ,F∞c Ĉ∞c,0

)
defined by

E(û, v̂) :=

∫
Γ̂(û, v̂) dLθ,ν , û, v̂ ∈ F∞c Ĉ∞c,0 ,

is closable on L2(Lθ,ν). Its closure
(
Ê ,D(Ê)

)
is a Dirichlet form on L2(Lθ,ν) gen-

erated by the Friedrichs extension
(
L̂,D(L̂)

)
of the operator

(
L̂,F∞c Ĉ∞c,0

)
.

Proof. Since F∞c Ĉ∞c,0 is dense in L2(Lθ,ν) by Lemma 5.10(iii), by Propositions 5.12

and 5.15 the operator
(
L̂,F∞c Ĉ∞c,0

)
satisfies L̂F∞c Ĉ∞c,0 ⊂ L2(Lθ,ν) and generates(

E ,F∞c Ĉ∞c,0
)
. Thus,

(
E ,F∞c Ĉ∞c,0

)
is closable and its closure

(
Ê ,D(Ê)

)
is generated

by the Friedrichs extension of
(
L̂,F∞c Ĉ∞c,0

)
by [74, Thm. X.23].

By the chain rule for ∇ consequence of Lemmas 5.14 and 5.17, the Markov

property holds on the Markovian core F∞c Ĉ∞c,0. This suffices to conclude the Markov

property for
(
Ê ,D(Ê)

)
by, e.g., [61, Prop. I.4.10, p. 35]. �

Finally, let us show the relation between the domain D(Ê) and standard cylinder
functions.

Lemma 5.19. Fix θ > 0. Then, F1,1
c,c C1

c ⊂ D(Ê).

Proof. We show that F∞,∞c,c C∞c ⊂ D(Ê). The conclusion for less regular cylinder
functions follows by approximation in a straightforward way.

For u = F ◦ f? ∈ F∞,∞c,c C∞c with F : Rk+1 → R, let ûn ∈ F∞c Ĉ∞c,0 be the sequence

of extended cylinder functions L2(Lθ,ν)-converging to u defined as in (5.12) with
%n additionally satisfying
(5.22)

1[2/n,n−1/n] ≤ %n ≤ 1[1/n,n] and |%′n| ≤ 2n
(
1[1/n,2/n] +1[n−1/n,n]

)
.

By a standard lower-semicontinuity argument, see e.g. [61, Lem. I.2.12, p. 22],

it suffices to show that supn Ê(ûn) < ∞. By definition of
(
Ê ,D(Ê)

)
we have

supn Ê(ûn) ≤ supn Êhor(ûn) + 4 supn Êver(ûn). Let R > 0 be so that suppF ⊂
[0, R]k+1. Using (5.20) and the fact that |%n| ≤ 1, it is not difficult to see that

sup
n
Êhor(ûn) ≤ k2L(F )2 max

i≤k
‖∇fi‖2g,C0 RLθ,ν(BR).
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We are left to show that supn Êver(ûn) <∞.
By (5.16),

Êver(ûn) =

∫ ∫
M

∣∣∣∣∣
k∑
i=0

(∂iF )
(
f̂?(µ)

)[
µx%

′
n(µx) + %n(µx)

]
fi(x)

∣∣∣∣∣
2

dµ(x) dLθ,ν(µ)

≤ k2L(F )2 max
i≤k
‖fi‖2C0︸ ︷︷ ︸

=:Cu

∫
BR

∫
M

|µx%′n(µx) + %n(µx)|2 dµ(x) dLθ,ν(µ)

≤ 2Cu

∫
1BR(µ)

∫
M

|µx%′n(x)|2 dµ(x) dLθ,ν(µ) + 2Cu

∫
BR

∫
M

dµdLθ,ν(µ)(5.23)

where we used that |%n| ≤ 1 in the last inequality. The second summand above is
bounded by 2CuRLθ,ν(BR), which is finite by Lemma 5.1 and independent of n.
As for the first summand, by the Mecke identity (5.8), and by (1.18),∫

1BR(µ)

∫
M

|µx%′n(x)|2 dµ(x) dLθ,ν(µ)

= θ

∫ ∫
M

∫ ∞
0

1BR(µ+ sδx)s2 |%′n(s)|2 dsdν(x) dLθ,ν(µ)

= θ νM

∫
P(M)

∫ ∞
0

∫ ∞
0

1[0,R](t+ s) |%′n(s)|2 s2dsdλθ(t) dDν(η)

= θ

∫ R

0

∫ R−t

0

s2 |%′n(s)|2 dsdλθ(t) .(5.24)

Then, by the estimate for |%′n| in (5.22) we have, for all n ≥ R+ 1,∫ R

0

∫ R−t

0

s2 |%′n(s)|2 dsdλθ(t) ≤ λθ([0, R]) (2n)2

∫ 2/n

1/n

s2ds

≤ 10n−1λθ([0, R]) = 10n−1Lθ,ν(BR) .

Finally, combining this latter estimate with (5.23) and (5.24),

(5.25) sup
n≥R
Êver(ûn) ≤ 2Cu Lθ,ν(BR) [R+ 10 θ] <∞ ,

which suffices to conclude the assertion. �

5.3. Identification of the canonical form and the Cheeger energy. We now
turn to the identification of the geometric and metric measure structures onM(M).
In this section we prove our main results Theorems 1.7 and 1.10, recalled below.

Theorem 5.20. Let (M, g, ν) be a weighted Riemannian manifold as in the begin-
ning of §5. Then, for every θ > 0,

(i) the form
(
E ,F∞,∞c,c C∞c

)
is densely defined and closable on L2(M(M),Lθ,ν);

(ii) its closure (E ,D(E)) is a (symmetric) conservative strongly local Dirichlet
form on L2(Lθ,ν);

(iii) (E ,D(E)) is recurrent if θ ∈ (0, 1] and transient if θ ∈ (1,∞);
(iv) (E ,D(E)) is quasi-regular and coincides with the Cheeger energy of the met-

ric measure space (M(M),HKdg ,Lθ,ν);
(v) (E ,D(E)) is properly associated with an Lθ,ν-invariant Hunt diffusion pro-

cess µ• with state space M(M), recurrent if θ ∈ (0, 1] and transient if θ ∈
(1,∞).
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Remark 5.21. Assume dimM ≥ 2. Arguing similarly to the proof of [23, Cor. 5.19,
Lem. A.20], it would be possible to show that F∞,∞c,c C∞c is in fact a form core

for
(
Ê ,D(Ê)

)
so that, in fact, the forms

(
E ,D(E)

)
and

(
Ê ,D(Ê)

)
coincide. The

details of this identification, instrumental to a complete description of the Vershik
diffusion, will be addressed elsewhere.

Proof of Theorem 5.20. The proof will require several auxiliary results which are
collected below and in Appendix A.

Proof of (i). The closability of
(
E ,F∞,∞c,c C∞c

)
follows from Proposition 5.18.

Indeed, we have F∞,∞c,c C∞c ⊂ D(Ê) by Lemma 5.19, and closability is inherited by

restrictions. It is shown in Lemma 5.10(ii) that F∞,∞c,c C∞c is dense in L2(Lθ,ν), that

is
(
E ,F∞,∞c,c C∞c

)
is also densely defined.

Proof of (ii) and (iii). Since F∞,∞c,c C∞c is closed under post-composition with

smooth functions, D(E) is a Markovian subspace of L2(Lθ,ν), and therefore, for
every u ∈ F∞,∞c,c C∞c ,

u+ ∧ 1 ∈ D(E) and E(u+ ∧ 1) = Ê(u+ ∧ 1) ≤ Ê(u) = E(u) .

By, e.g. [61, Prop. I.4.10], this suffices to establish that
(
E ,D(E)

)
has the Dirichlet

property.
Conservativeness is shown in Lemma 5.27. Locality follows from the diffusion

property for
(
E ,F∞,∞c,c C∞c

)
which is readily verified, or else from the identification

with the Cheeger energy in (iv). Strong locality follows from locality and conser-
vativeness, see e.g. [37, Thm. 4.5.4, p. 187].

Recurrence if θ ∈ (0, 1] holds combining Lemma 5.28 and Lemma A.4. Transience
if θ ∈ (1,∞) holds combining Lemma 5.29 and Lemma A.4.

Proof of (iv). Let X :=
(
M(M),HKdg ,Lθ,ν

)
. On the one hand, it follows from

Proposition 5.2, Corollary 4.17 and Proposition 4.7 that CE2,X extends (E ,D(E)).
On the other hand, H1,2(X) coincides with the closure of F∞,∞c,c C∞c by Corol-

lary 4.17, thus it must be
(
E ,D(E)

)
=
(
CE2,X, H

1,2(X)
)
. Since the Cheeger energy

of a (σ-finite Radon) metric measure space is always quasi-regular by [27, Prop. 3.21]
(also cf. the proof of [80, Thm. 4.1]) and local, we conclude that (E ,D(E)) is quasi-
regular and local.

Proof of (v). All assertions follow from (i)-(iv) and standard arguments in the
theory of Dirichlet forms. �

Let us now turn to the proof of recurrence, transience and of conservativeness,
which will complete the proof of points (ii), (iii) and (v) in Theorem 5.20. Note
that we will however make use of point (i) in Theorem 5.20 and that (E ,D(E))
is a (symmetric) local Dirichlet form on L2(Lθ,ν): both facts have been proven
above without relying on recurrence, transience, conservativeness and point (v) in
Theorem 5.20.

In the rest of this section we will make use of the following classical charac-
terizations of recurrence and conservativeness, see e.g. [37, Thm. 1.6.3(ii), p. 58]
and [37, Thm. 1.6.6, p. 63], which in fact hold in full generality without the need
for topological assumptions.



THE HELLINGER–KANTOROVICH METRIC MEASURE GEOMETRY 81

A Dirichlet form
(
E,D(E)

)
on L2(m) is recurrent if and only if there exist

functions un ∈ D(E) such that

0 ≤ un ≤ 1 and lim
n
un = 1 m-a.e. ,(5.26a)

lim
n
E(un) = 0 .(5.26b)

A Dirichlet form
(
E,D(E)

)
on L2(m) is conservative if and only if there exist

functions un ∈ D(E) with

0 ≤ un ≤ 1 and lim
n
un = 1 m-a.e. ,(5.27)

such that one of the following equivalent conditions holds. Either

lim
n
E(un, v) = 0 , v ∈ D(E) ∩ L1(m) ;(5.28a)

or there exists f ∈ L1(m) ∩ L2(m) with f > 0 m-a.e., and α > 0, such that

lim
n
E(un, v) = 0 , v = Gαf ,(5.28b)

where (Gα)α is the resolvent of
(
E,D(E)

)
.

5.3.1. Radial projection and intertwining. Let · rad : L2(Lθ,ν) → L2(Lθ,ν) be the
radial projection

· rad : u 7−→
(
urad : µ 7→

∫
u
(
1?(µ) · η

)
dDν(η)

)
,

and (Erad,D(Erad)) be the radial part of (E ,D(E)), i.e. the quadratic form defined
by

Erad(u) := E(u) , u ∈ D(Erad) :=
{
u ∈ D(E) : u = urad

}
.

Since Dν is a probability measure, · rad is a projection operator (in particular:
idempotent), acting as the identity on D(Erad). Note also that

∥∥urad
∥∥
L2(Lθ,ν)

≤
‖u‖L2(Lθ,ν) for every u ∈ L2(Lθ,ν) so that · rad is continuous.

Further denote by L2(Lθ,ν)rad the image of L2(Lθ,ν) via · rad. Then, it is readily
verified that

L2(Lθ,ν)rad ∼= L2(λθ) , θ > 0 ,

where the isomorphism is simply given by

(5.29) ·̃ : L2(Lθ,ν)rad → L2(λθ) , u 7−→ ũ : u = ũ ◦ 1? .

Lemma 5.22. If u ∈ D(E), then urad ∈ D(Erad) and

∇horurad ≡ 0 ,

(∇urad)µ = (∇verurad)µ

=

∫ ∫
(∇veru)µMηdη dDν(η) in T ver

µ M(M) for Lθ,ν-a.e. µ .

(5.30)

Moreover, E(urad) = 4Ever(urad) ≤ 4Ever(u) ≤ E(u) for every u ∈ D(E). In partic-
ular Erad is densely defined.
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Proof. The assertion regarding the horizontal gradient is obvious and holds for
every u ∈ D(E). Let u ∈ D(E) and observe that the Borel function (y, µ, η) 7→√
µM(∇veru)µMη(y) satisfies∫ ∫
P

∫
M

µM |(∇veru)µMη(y)|2 dη(y) dDν(η) dLθ,ν(µ) =

=

∫ ∫
M

∫
P

∫
M

|(∇veru)µMη(y)|2 dη(y) dDν(η) dµ(x) dLθ,ν(µ)

=

∫ ∞
0

∫
P

∫
M

∫
P

∫
M

|(∇veru)tη(y)|2 dη(y) dDν(η) d(tη′)(x) dDν(η′) dλθ(t)

=

∫ ∞
0

∫
P

∫
M

|(∇veru)tη(y)|2 d(tη)(y) dDν(η) dλθ(t)

=

∫ ∫
M

|(∇veru)µ(y)|2 dµ(y) dLθ,ν(µ)

= Ever(u).

Fubini’s theorem gives that the function

µ 7→ H(µ;u) :=
√
µM

∫ ∫
(∇veru)µMηdη dDν(η)

is Borel measurable and finite for Lθ,ν-a.e. µ; the same holds in particular for the
right hand side of (5.30). Jensen’s inequality also gives that ‖H( · ;u)‖2L2(Lθ,ν) is

bounded by Ever(u). Let us now show that (5.30) holds for cylinder functions;
let u := F ◦ f? ∈ F∞,∞c,c C∞c with F : Rk+1 → R. Then, for every f ∈ C∞c (M),

dt
∣∣
t=0

urad
(
etfµ

)
= dt

∣∣
t=0

∫
u
(
(etfµ)(M)η

)
dDν(η)

=

∫
dt
∣∣
t=0

u
(
(etfµ)(M)η

)
dDν(η)

=

∫ k∑
i=0

(∂iF )(µM f?η) dt
∣∣
t=0

f?i
(
(etfµ)(M)η

)
dDν(η)

=

∫ k∑
i=0

(∂iF )(µM f?η) dt
∣∣
t=0

f?i
(
(etfµ)(M)η

)
dDν(η)

=

∫ k∑
i=0

(∂iF )(µM f?η) f?i η dt
∣∣
t=0

(
(etfµ)(M)

)
dDν(η)

=

∫ k∑
i=0

(∂iF )(µM f?η) f?i η f
?µdDν(η)

=

∫
f(x)

∫ k∑
i=0

(∂iF )(µM f?η) f?i
(
η
)

dDν(η) dµ(x)

=

∫ [∫ ∫
(∇veru)µMηdη dDν(η)

]
fdµ

=

〈∫ ∫
(∇veru)µMηdη dDν(η)

∣∣∣∣ f〉
T ver
µ

.
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By arbitrariness of f ∈ C∞c (M) we conclude that urad ∈ D(E) for every cylinder
function u and that (5.30) holds for cylinder functions. In particular

(5.31)
E(urad) = 4Ever(urad) = 4‖H( · ;u)‖2L2(Lθ,ν) ≤ 4Ever(u)

≤ E(u) ,
u ∈ F∞c C∞c .

Let now u ∈ D(E) be arbitrary and let (un)n ⊂ F∞c C∞c be such that un E1/2
1 -

converges to u. By the inequality in (5.31) we deduce that
(
urad
n

)
n

is E1/2
1 -Cauchy

so that E1/2
1 -converges to some v ∈ D(E) which has to coincide with urad, since the

radial projection is continuous in L2(Lθ,ν). We deduce in particular that urad ∈
D(E). We are left to show that (5.30) holds for u ∈ D(E). We have∫ ∥∥∥∥(∇verurad)µ−

∫ ∫
(∇veru)µMηdη dDν(η)

∥∥∥∥2

T ver
µ

dLθ,ν(µ) =

≤ 2 Ever(urad − urad
n )

+ 2

∫ ∫ ∣∣∣∣∫ ∫ (∇ver(un − u)µMηdη dDν(η)

∣∣∣∣2 dµdLθ,ν(µ)

= 2 Ever(urad − urad
n ) + 2 ‖H( · ;un − u)‖2L2(Lθ,ν)

≤ 2 Ever(urad − urad
n ) + 2Ever(un − u)→ 0.

This proves (5.30) for a general u ∈ D(E), which in particular implies the inequality
Ever(urad) ≤ Ever(u) because of the bound on the L2(Lθ,ν)-norm of H( · ;u). �

More importantly, we have the following.

Proposition 5.23. The operator · rad : L2(Lθ,ν)→ L2(Lθ,ν) is an L2(Lθ,ν)-ortho-
gonal projection and

(5.32) E(urad, v) = E(u, vrad) , u, v ∈ D(E) .

In particular, · rad : D(E)1 → D(E)1 is an E1/2
1 -orthogonal projection.

Proof. We have already commented that · rad is a projection operator, i.e. linear
and idempotent, which holds irrespectively of the chosen domain. To show that it
is an L2(Lθ,ν)-orthogonal projection it suffices to show that

(5.33)
〈
urad

∣∣ v〉
L2(Lθ,ν)

=
〈
u
∣∣ vrad

〉
L2(Lθ,ν)

, u, v ∈ L2(Lθ,ν) ,

which is easily verifiable. Regarding the second assertion, note that · rad : D(E)→
D(E) by Proposition 5.22, so that combining (5.32) and (5.33) proves that · rad is

an E1/2
1 -orthogonal projection. We prove (5.32) below.

By definition of
(
E ,D(E)

)
and by the chain of equalities in (5.30),

E(urad, v) =

∫ ∫
M

[
g
(
(∇horurad)µ

)
(∇horv)µ + 4(∇verurad)µ(∇verv)µ

]
dµdLθ,ν(µ)

= 4

∫ ∫
M

(∇verurad)µ(∇verv)µdµdLθ,ν(µ)

= 4

∫ ∫
P

∫
M

(∇verv)µ

∫
M

(∇veru)µMηdη dDν(η) dµdLθ,ν(µ) (µ = tη′)

= 4

∫ ∞
0

∫∫
P

∫
M

(∇verv)tη′(∇veru)tη dDν(η) dη dDν(η′) tdλθ(t) ,



84 LORENZO DELLO SCHIAVO AND GIACOMO ENRICO SODINI

where we applied (1.18). By an application of Fubini’s Theorem we conclude that

E(urad, v) = 4

∫ ∞
0

t

∫∫
P

∫∫
M

(∇verv)tη′(∇veru)tη dη dη′ dDν(η) dDν(η′) dλθ(t) .

As this latter expression is symmetric in η, η′, applying the previous arguments in
reverse order to v in place of u proves (5.32). �

Proposition 5.23 implies that · rad : L2(Lθ,ν) → L2(Lθ,ν) and · rad : D(E)1 →
D(E)1 are self-adjoint operators. This fact, together with the intertwining property

D(Erad) = D(E)rad , E(urad) = Erad(urad) , u ∈ D(E) ,

has the standard yet important consequence that · rad intertwines the semigroups,
resolvents and generators corresponding to

(
E ,D(E)

)
and

(
Erad,D(Erad)

)
. In the

next result, we denote by T• := (Tt)t≥0, resp. G• := (Gα)α≥0, and
(
L,D(L)

)
, the

semigroup, resp. resolvent, and generator, of
(
E ,D(E)

)
on L2(Lθ,ν). We adopt

analogous notations for
(
Erad,D(Erad)

)
on the Hilbert space L2(Lθ,ν)rad.

Corollary 5.24 (Intertwining). The operator · rad intertwines
(
E ,D(E)

)
on L2(Lθ,ν)

with
(
Erad,D(Erad)

)
on L2(Lθ,ν)rad. That is, for every u ∈ L2(Lθ,ν),

(i) T rad
t urad = (Ttu)rad for every t > 0;

(ii) Grad
α urad = (Gαu)rad for every α > 0;

(iii) if additionally u ∈ D(L) then urad ∈ D(Lrad) and Lradurad = (Lu)rad.

Lemma 5.25. For every u ∈ D(Erad) there exists a sequence of cylinder functions

(un)n such that un → u w.r.t. (Erad)
1/2
1 . In particular F∞,∞c,c C∞c ∩ D(Erad) is a

form core for
(
Erad,D(Erad)

)
.

Proof. Fix u ∈ D(Erad) ⊂ D(E). By Proposition 4.16 with the choices A1 =
C∞c (R+

0 ), A3 = C∞c (M), and A2 = R[t1, t2, . . . ]fin, we can find functions uk ∈
F∞,∞c,c C∞c of the form

uk = (χk ◦ 1?) · (Fk ◦ f?k ) , fk = (fn,1, . . . , fn,Nk) ,

as in (4.3), converging to u w.r.t. E1/2
1 , and additionally so that Fk coincides with

a multivariate polynomial pk on the hypercube

Nk∏
i=1

[
0, ‖φn,i‖C0 max

k
supp(χk)

]
.

Claim: uk
rad ∈ F∞,∞c,c C∞c . For simplicity of notation, we drop the subscript k

and write q := Nk. Then

urad = (χ ◦ 1?)
∫
F
(
( ·M) f?(η)

)
dDν(η) = (χ ◦ 1?)

∫
p
(
1? ·f?(η)

)
dDν(η) .

Since F∞,∞c,c C∞c is a vector space, it suffices to show the assertion in the case

when p : (t1, . . . , tq) 7→
∏q
j t
nj
j is a monic monomial. In this case,

urad = (χ ◦ 1?) · (1?)n1+···+nq
∫ (

p ◦ f?
)
(η) dDν(η) ,

where the integral is a constant cp independent of µ. (See [26, Cor. 3.5] for an
explicit computation of cp.) Since χ̃ : t 7→ χ(t) tn1+···+nq is itself in C∞c (R+

0 ), this
shows that urad = cpχ̃ ◦ 1? is itself a cylindrical function, proving the claim.
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In order to conclude the assertion, it suffices to show that uk
rad is (Erad)

1/2
1 -

convergent to u. This follows from Proposition 5.23 and the assumption on (uk)k.
�

5.3.2. The radial-part process. In the next propositions, we relate (properties of)(
E ,D(E)

)
with (properties of) the Dirichlet form

(
Eθ,D(Eθ)

)
of the θ-dimensional

squared Bessel process discussed in Appendix A.

Proposition 5.26. The operator

(5.34) ·̃ : L2(Lθ,ν)rad → L2(λθ) , u 7−→ ũ : u = ũ ◦ 1?

is a unitary operator. Its non-relabeled restriction to D(Erad) is a unitary opera-
tor ·̃ : ( 1

4E
rad,D(Erad))→

(
Eθ,D(Eθ)

)
.

Proof. The fact that ·̃ : L2(Lθ,ν)rad → L2(λθ) is unitary follows from (1.18). To
show the second assertion, by virtue of Lemma 5.25 and Lemma A.3, it suffices
to show that ·̃ : ( 1

4E
rad,F∞0 C∞0 M(M) ∩ D(Erad)) →

(
Eθ,C∞c (R+

0 )
)

is unitary

w.r.t. ( 1
4E

rad)
1/2
1 and (Eθ)

1/2
1 . Clearly, for every χ ∈ C∞c (R+

0 ) the function u :=
χ◦1? satisfies ũ = χ so that surjectivity is proven. Let now u ∈ F∞,∞c,c C∞c ∩D(Erad)

and observe that it has to be of the form u = χ ◦ 1? for some χ ∈ C∞c (R+
0 ), which

then also satisfies ũ = χ. Then, by (4.5),

1
4 E

rad(u) = 1
4 E(u) =

∫
µM χ′(µM)2 dLθ,ν(µ) =

∫ ∞
0

tχ′(t)2 dλθ(t) = Eθ(ũ) .�

Lemma 5.27. The form
(
E ,D(E)

)
is conservative.

Proof. By the characterization of conservativeness in (5.27), (5.28b), it suffices to
show that there exist functions un ∈ D(E) satisfying

(5.35) 0 ≤ un ≤ 1 , lim
n→∞

un = 1 Lθ,ν-a.e. , lim
n→∞

E(un, v) = 0 ,

for some v = Gαf , with α > 0 and f ∈ L1(Lθ,ν) ∩ L2(Lθ,ν) and f > 0 Lθ,ν-a.e..
Since

(
Eθ,D(Eθ)

)
is conservative by Proposition A.2, there exist functions ũn ∈

D(Eθ) satisfying (5.27), (5.28a) (with λθ in place of m and Eθ in place of E.)
Let un be defined by un := ũn ◦1? and note that un = urad

n . By (1.18), it is readily
verified un satisfies (5.27) (with Lθ,ν in place of m).

Now, fix f̃ ∈ L1(λθ)∩L2(λθ) with f̃ > 0 λθ-a.e., and let f be its radial extension
to M(M) defined as above. Note that f = f rad satisfies f ∈ L1(Lθ,ν) ∩ L2(Lθ,ν)
and f > 0 Lθ,ν-a.e.. Fix any α > 0 and set v := Gαf . By standard properties
of resolvents, GαL1(Lθ,ν) ⊂ L1(Lθ,ν) and GαL2(Lθ,ν) ⊂ D(E). Thus v ∈ D(E) ∩
L1(Lθ,ν).

Since f = f rad, we have v = vrad by Corollary 5.24(ii), and then v ∈ D(Erad).
Thus, by Proposition 5.26, we have ṽ ∈ D(Eθ). Furthermore, ṽ ∈ L1(λθ) by (1.18).
Finally, again by Proposition 5.26,

lim
n→∞

E(un, v) = lim
n→∞

Erad(un, v) = lim
n→∞

4Eθ(ũn, ṽ) = 0

by (5.27), (5.28a) for ũn as shown above. This shows (5.35) and concludes the
proof. �

Lemma 5.28. The form
(
E ,D(E)

)
is recurrent if and only if so is

(
Eθ,D(Eθ)

)
.
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Proof. By Proposition 5.26 it is enough to show that
(
E ,D(E)

)
is recurrent if and

only if
(

1
4E

rad,D(Erad)
)

is recurrent. To prove this equivalence we will make use of
the characterization of recurrence in (5.26).

Assume that there exist functions un ∈ D(Erad) satisfying (5.26) with m = Lθ,ν
and E = Erad. Since D(Erad) ⊂ D(E) and Erad = E on D(Erad), (5.26) holds also
with m = Lθ,ν and E = E .

Assume now that there exist functions vn ∈ D(E) satisfying (5.26) with m = Lθ,ν
and E = E . It is readily seen that vn

rad satisfies (5.26a) (with Lθ,ν in place of m).
Furthermore, vn

rad satisfies

lim
n
Erad(vn

rad) ≤ lim
n
E(vn) = 0

by Lemma 5.22. Thus, (5.26) (with m = Lθ,ν and E = Erad) holds with un :=
vn

rad ∈ D(Erad). �

Recall that a Dirichlet form (E,D(E)) on L2(m) is called transient if there exists
a function g ∈ L1(m)+ ∩ L∞(m) such that

(5.36)

∫
|u| g dm ≤ E(u)1/2 , u ∈ D(E) .

Also note that, if (E,D(E)) is additionally local, then it is enough to check (5.36)
on non-negative functions u ∈ D(E).

Lemma 5.29. If the form
(
Eθ,D(Eθ)

)
is transient, then so is the form

(
E ,D(E)

)
.

Proof. Assume
(
Eθ,D(Eθ)

)
is transient, and let g̃0 : R+ → R be as in (5.36)

for
(
Eθ,D(Eθ)

)
. Further let g := 2 (g̃0 ◦ 1?) : M(M) → R be its lift to M(M).

Note that g ∈ L1(Lθ,ν)+ ∩ L∞(Lθ,ν). Then, for every non-negative u ∈ D(E),∫
ug dLθ,ν =

∫
ugrad dLθ,ν =

∫
uradg dLθ,ν =

∫ ∞
0

ũradg̃ dλθ

= 2

∫ ∞
0

ũradg̃0 ≤ 2

√
Eθ
(
ũrad

)
= Erad(urad)1/2 ≤ E(u)1/2 ,

where we used, respectively, that: · rad is self-adjoint on L2(Lθ,ν) by Proposi-
tion 5.23; that ·̃ : L2(Lθ,ν)rad → L2(λθ) is unitary by Proposition 5.26; that(
Eθ,D(Eθ)

)
is transient by assumption, so that we can apply (5.36) with u =

ũrad ∈ D(Eθ); that ·̃ : (1
4E

rad,D(Erad)) →
(
Eθ,D(Eθ)

)
is unitary by Proposi-

tion 5.26; and finally Lemma 5.22 for the last inequality. �

Appendix A. The Dirichlet form of the squared Bessel process

In this Appendix we construct the Dirichlet forms associated with squared Bessel
processes. It is helpful to regard these processes as parametrized by their dimen-
sion, that is as a class of Continuous-state Branching Processes with Immigration
(shortly: CBI processes). A general treatment of CBI processes by means of Feller
theory is classical and can be found in [52, 88]. CBI processes form one-parameter
families (in fact: convolution semigroups)

(
Pθa,b,c

)
θ≥0

of diffusion processes on the

real line, indexed by real parameters a, b, c with a, c ≥ 0, cf. [88, Thm. 1.2 and
Eqn. (1.23)].
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Let (Wt)t be a standard Brownian motion on R and denote by x+ := x ∨ 0 the
positive part. Here, we choose parameters a = 1, b = 0, and c = 1, resulting in the
squared Bessel process of dimension θ, the unique strong solution to the sde

(A.1) dxt =

√
2x+

t dWt + θdt , t > 0 .

Now, consider the quadratic form on L2(λθ) given by

(A.2)

D(Eθ) :=

{
f ∈ ACloc(R+) ∩ L2(λθ) :

∫ ∞
0

t f ′(t)2 dλθ <∞
}
,

Eθ(f, g) :=

∫ ∞
0

t f ′(t) g′(t) dλθ(t) .

Lemma A.1. The form in (A.2) is a Dirichlet form on L2(λθ), with generator

(A.3)
D(Lθ) :=

{
f ∈ D(Eθ) : f ′ ∈ ACloc(R+) and ∃ lim

t↓0
tθ f ′(t) = 0

}
,

(Lθf)(t) := tf ′′(t) + θf ′(t) .

Proof. In order to show that (A.2) is a Dirichlet form, it suffices to show that it
coincides, in the notation of [37], with the form

(
E+,D(E+)

)
in [37, Eqn.s (3.3.20)–

(3.3.21), p. 134] for the choice D = R+, ρ = ρθ = Γ(θ)−1tθ−1, and a(t) = Γ(θ)−1tθ.
Indeed, by a standard integration by parts on C∞c (R+) (i.e. with vanishing boundary
terms), we see that

(A.4) Eθ(φ, ψ) = −
∫ ∞

0

φLθψ dλθ(t) , φ, ψ ∈ C∞c (R+) .

It then follows from [37, Thm. 3.3.1, p. 135] that the form
(
Eθ,D(Eθ)

)
is a Dirichlet

form corresponding to the maximal Markovian non-positive self-adjoint extension
of
(
Lθ,C∞c (R+)

)
with core D(Eθ) ∩ C∞(R+) by [37, Lem. 3.3.3, p. 134]. Note

that C∞c (R+
0 ) embeds injectively and continuously into D(Eθ) by restriction to R+.

We always regard functions in C∞c (R+
0 ) as elements of D(Eθ) up to this identifica-

tion.
Now, consider the space

Vθ :=

{
ψ ∈ ACloc(R+) : ψ′ ∈ ACloc(R+) , ∃aψ := lim

t↓0
tθψ′(t) ∈ R

}
.(A.5)

By integration by parts with φ ∈ C∞c (R+
0 ) ⊂ D(Eθ) and ψ ∈ Vθ,

(A.6) Eθ(φ, ψ) = −
∫ ∞

0

φLθψ dλθ(t)− Γ(θ)−1

[
lim
t↓0

tθψ′(t)

]
φ(0) ,

so that the distributional generator of
(
Eθ,C∞c (R+

0 )
)

is formally given by

Lθψ + Γ(θ)−1

[
lim
t↓0

tθψ′(t)

]
δ0 , ψ ∈ Vθ ,

where δ0 is the linear functional on C∞c (R+
0 ) defined by δ0φ := limt↓0 φ(t). Since

C∞c (R+
0 ) ⊂ D(Eθ), this shows that D(Lθ) ⊂ Vθ ∩D(Eθ).

Finally, let ψ ∈ Vθ. On the one hand, since λθ is absolutely continuous w.r.t. L 1,
imposing Lθψ ∈ L2(λθ) implies that aψ = 0. As a consequence

D(Lθ) ⊂ {ψ ∈ Vθ : aψ = 0} ∩D(Eθ) .
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On the other hand, the integration by parts in (A.6) extends to φ ∈ D(Eθ) and ψ ∈
{ψ ∈ Vθ : aψ = 0} ∩ D(Eθ), so that D(Lθ) = {ψ ∈ Vθ : aψ = 0} ∩ D(Eθ). This
concludes the proof of (A.3). �

Proposition A.2. The form
(
Eθ,D(Eθ)

)
is a regular conservative strongly local

Dirichlet form on L2(λθ), properly associated with the squared Bessel process solving
the sde (A.1).

Lemma A.3. C∞c (R+
0 ) is a core for

(
Eθ,D(Eθ)

)
.

Proof. As in the proof of Lemma A.1, we regard C∞c (R+
0 ) as a subset of D(Eθ).

Let Fθ denote the Eθ1 -closure of C∞c (R+
0 ). It suffices to show that F⊥θ = {0},

where F⊥θ denotes the Eθ1 -orthogonal complement to Fθ in D(Eθ). Note that f ∈
F⊥θ if and only if∫ ∞

0

tf ′(t)φ′(t)dλθ(t) +

∫ ∞
0

f(t)φ(t) dλθ(t) = 0 , φ ∈ C∞c (R+
0 ) ,

so that f is a distributional solution in Vθ to Lθf = f , where Vθ is defined in (A.5).
It follows from e.g. [71, 14.1.2.62, p. 526 or 14.1.2.108, p. 531] that solutions

to Lθf = f form a two-dimensional linear space. A basis for the space of solutions
is expressible in terms of Bessel functions, see [71, ibid.]. We rather express them in

terms of the confluent hypergeometric function 0F1 and of its regularized form 0F̃1,
respectively defined by

0F1(; a; z) :=

∞∑
k=0

zk

〈a〉kk!
, z ∈ C , a ∈ C \ Z−0 ,(A.7)

0F̃1(; a; z) :=
0F1(; a; z)

Γ(a)
, a, z ∈ C ,

where Γ is Euler’s Gamma function and 〈a〉k := Γ(a+ k)/Γ(a) is the Pochhammer
symbol. Indeed, setting

(A.8) f0(t) := 0F1(; θ; t) and f1(t) := t1−θ0F̃1(; 2− θ; t)
and differentiating the series expression in (A.7), it is readily verified that f0 and f1

are linearly independent solutions to Lθf = f . Thus, each solution to Lθf = f has
the form a0f0 + a1f1 for some real constants a0, a1.

Since limt→∞ tθ−1fi(t)
2 =∞, we have fi /∈ L2(λθ) for i = 0, 1 and every θ > 0.

This shows that solutions in Vθ to Lθf = f are never in L2(λθ). As a conse-
quence, F⊥θ = {0} as desired, and the conclusion follows. �

Proof of Proposition A.2. Consider the quadratic form in (A.2). Closedness and
the Markov property were proved in Lemma A.1. Regularity follows from Lemma A.3.
Strong locality follows by inspection. The part

(
Lθ,C∞c (R+

0 )
)

of
(
Lθ,D(Lθ)

)
on C∞c (R+

0 ) is thus the generator of the CBI process solving (A.1) by, e.g., [88,
Eqn. (1.25)].

For the converse implications, we argue as follows.

Distributional adjoint of the generator. Consider the generator
(
Lθ,C∞c (R+

0 )
)

and note that, again by a standard integration by parts,∫ ∞
0

ψ Lθφdt = φ′tψ
∣∣∣∞
0
−
∫ ∞

0

(φ′ψ + φ′tψ′)dt+ θφψ
∣∣∣∞
0
−
∫ ∞

0

θφψ′dt
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= 0−
∫ ∞

0

φ′(ψ + tψ′)dt− θφ(0)ψ(0)− θ
∫ ∞

0

φψ′dt

=

∫ ∞
0

φ(2ψ′ − θψ′ + tψ′′)dt− φ(ψ + tψ′)
∣∣∣∞
0
− θφ(0)ψ(0)

=

∫ ∞
0

φ
(
(2− θ)ψ′ + tψ′′

)
dt− (θ + 1)φ(0)ψ(0) .

Thus, the distributional adjoint (Lθ)∗ of
(
Lθ,C∞c (R+

0 )
)

is given by

(Lθ)∗ψ = (2− θ)ψ′ + tψ′′ − (θ + 1)δ0 .

Invariant measures. The unique positive stationary solutions gθ := aθt
θ−1

on (0,∞), aθ > 0, to the corresponding Kolmogorov forward equation (Lθ)∗gθ ≡ 0
are thus the density of a candidate invariant measure dµθ = gθdt for Lθ. Further-
more, in light of [88, Eqn. (1.23) and Thm. 1.1], (µθ)θ>0 must be a convolution semi-

group. This property, together with (Lθ)∗µθ = 0, implies that the function θ 7→ aθ
must satisfy the functional equation

(A.9)
aθaτ
aθ+τ

=
Γ(θ + τ)

Γ(θ)Γ(τ)
.

For the solution aθ := Γ(θ)−1 to (A.9) we then have that µθ = λθ is an invariant
measure and such that (µθ)θ>0 is a convolution semigroup on R+.

Dirichlet form. By the integration by parts (A.4) we may apply Lemma A.1.
Thus,

(
Eθ,D(Eθ)

)
is the strongly local Dirichlet form generated by

(
Lθ,D(Lθ)

)
and the latter is the maximal Markovian self-adjoint extension of

(
Lθ,C∞c (R+)

)
.

The form is conservative since so is the associated CBI process solving (A.1), which
is in turn a consequence of [52, Thm. 1.2, p. 41], as noted in [52, Ex. 1.1, p. 42,
after (1.24)]. �

The next result follows from known properties of the squared Bessel process.
For integer θ > 0, it is a trivial consequence of the representation of the squared
Bessel process as the squared Euclidean norm of a standard Brownian motion. For
completeness, we provide a proof by Dirichlet-form methods.

Lemma A.4. The form
(
Eθ,D(Eθ)

)
is irreducible. It is recurrent if θ ∈ (0, 1] and

transient if θ ∈ (1,∞).

Proof. By Proposition A.2, the form
(
Eθ,D(Eθ)

)
is properly associated with the

squared Bessel process. As it is well-known that the latter is irreducible, so is(
Eθ,D(Eθ)

)
. In light of the transience/recurrence dichotomy for irreducible Dirich-

let forms, e.g. [37, Lem. 1.6.4(iii), p. 55], it suffices to show that
(
Eθ,D(Eθ)

)
is

recurrent if and only if θ ∈ (0, 1].
Assume first that θ ≤ 1. Let u ∈ C∞c (R+

0 ) be so that u(0) = 1. Further

set un(t) := u
(
(1 + t)1/n − 1

)
for t ≥ 0. Then, un ∈ C∞c (R+

0 ) ⊂ D(Eθ) and
limn un(t) = u(0) = 1 for every t ≥ 0, which verifies (5.26a). Furthermore, since θ ≤
1, ∫ ∞

0

|u′n(t)|2 tθdt =
1

n

∫ ∞
0

|u′(s)|2 (s+ 1)1−n((s+ 1)n − 1
)θ

ds

≤ 1

n

∫ ∞
0

|u′(s)|2 (s+ 1)ds .
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Since u has compact support, the latter integral is a constant cu > 0. It follows
that

lim sup
n

Eθ(un) ≤ lim sup
n

cu
Γ(θ)n

= 0 ,

which verifies (5.26b). This concludes the assertion by the above characterization
of recurrence.

Assume now that θ > 1 and argue by contradiction that there exist functions un
satisfying (5.26) (with λθ in place of m). Since un ∈ D(Eθ) ⊂ ACloc(R+), we
will always consider un as its unique continuous representative. Without loss of
generality, up to truncation, we may and will assume that un ≥ 0.

In particular, there exists t0 > 0 such that limn un(t0) = 1. Furthermore,
since un ∈ L2(λθ) and θ ≥ 1, there exists an increasing sequence (tn)n with t0 ≤
tn ↗∞ and such that un(tn) ≤ 1/2. On the one hand, by the fundamental theorem
of calculus,

(A.10) lim sup
n

∣∣∣∣∫ tn

t0

u′n(t)dt

∣∣∣∣2 = lim sup
n
|un(tn)− un(t0)|2 ≥ 1/4 .

On the other hand, since θ > 1,∣∣∣∣∫ tn

t0

u′n(t)dt

∣∣∣∣2 ≤∫ tn

t0

∣∣∣u′n(t) tθ/2
∣∣∣2 dt

∫ tn

t0

t−θdt ≤
∫ ∞

0

|u′n(t)|2 tθdt
∫ ∞
t0

t−θdt

= Γ(θ)
t1−θ0

θ − 1
Eθ(un) ,

so that, by the assumption in (5.26b),

lim sup
n

∣∣∣∣∫ tn

t0

u′n(t)dt

∣∣∣∣2 ≤ lim sup
n

Γ(θ − 1) t1−θ0 Eθ(un) = 0 ,

which contradicts (A.10) and concludes the assertion. �

Appendix B. Measure-preserving diffeomorphisms

Let (M, g) be a smooth connected, orientable Riemannian manifold with Rie-
mannian volume measure volg. We collect here some auxiliary results about the

group Diff+
0 (g) of all compactly non-identical, orientation-preserving, volg-preserving

diffeomorphisms.
Firstly, let us recall that Diff+

0 (g) is the (infinite-dimensional) Lie group corre-
sponding to the Lie algebra of divg-free vector fields on M with the Lie derivative
as its Lie bracket. Let us further recall some virtually well-known results about the
natural action of Diff+

0 (g) on M .
The following may be easily inferred from the arguments in [13, §3].

Lemma B.1 (Extension lemma). Let (M, g) be in addition open or boundaryless,
and K ⊂ M be any contractible compact subset. Then, every smooth vector field
on K has a compactly supported, divg-free extension to the whole of M .

As an immediate consequence, we see that the Lie algebra of divg-free vector

fields is infinite-dimensional, thus so is Diff+
0 (g).

Proposition B.2 (Transitivity, [13, Thm. A, §3, p. 98]). Diff+
0 (g) acts k-transitively

on M for every k ∈ N1. In particular, it acts transitively on M .



THE HELLINGER–KANTOROVICH METRIC MEASURE GEOMETRY 91

B.1. Actions on measures. In the following, let B1 ⊂ Rd be the open unit ball
equipped with the standard Euclidean metric ge.

Lemma B.3. Let ν be any finite measure on B1 invariant for the (	])-action

of Diff+
0 (ge). Then ν ∝ L d

∣∣
B1

. In particular, ν has no singular continuous part.

Proof. Let Q1, Q2 ⊂ B1 be arbitrary closed cubes with equal volume, define K
as the closed convex hull of Q1 ∪ Q2, and let w be the vector field on K defining
the translation of Q1 to Q2. By Lemma B.1 applied to K and w, there exists a
compactly supported divge -free vector field w′ on M extending w on K. Then,
the flow of w′ at time 1 is a compactly non-identical orientation-preserving, L d-
preserving diffeomorphism on M mapping Q1 to Q2. In other words, Diff+

0 (ge) acts
transitively on all closed cubes in B1, hence, by continuity, on the family C of all
semi-closed cubes Q of the form Q := x + q [0, 1)d with x ∈ Rd, q ∈ Q+ and such
that Q ⊂ B1.

Since ν is invariant, by a standard decomposition argument, for every rational q ∈
Q+ and every Q ∈ C with qQ ∈ C we have ν(qQ) = qdνQ. Now, let Q0 ∈ C be
fixed, and set c := νQ0/L dQ0. For every Q1 ∈ C there exists q ∈ Q+ and x ∈ Rd so
that Q1 = x+qQ0. For such q, by invariance of ν and of L d (also under rescaling),

νQ1 = ν(qQ0) = qdνQ0 = qdcL dQ0 = cL d(qQ0) = cL dQ1 .

Since C is a π-system generating the Borel σ-algebra of B1, it follows by a standard
monotone class argument that ν = cL d as Borel measures on B1, which concludes
the proof. �

Proposition B.4. Let ν be any finite Borel measure on M invariant for the
(	])-action of Diff+

0 (g). Then, ν ∝ volg.

Proof. Let ν be invariant, with Lebesgue decomposition ν = νpa +νac+νsc. Since ν

is a finite invariant measure, and since Diff+
0 (g) acts transitively on M by Propo-

sition B.2, a simple argument shows that νpa = 0.

Claim 1: νac and νsc are both invariant. By Lebesgue decomposition, there
exist Borel subsets Mac,Msc ⊂M with

Mac ∪Msc = M , Mac ∩Msc = ∅ , volgMsc = 0 , νscMac = 0 .

Let νac = ρvolg and fix an arbitrary ψ ∈ Diff+
0 (g). Since volgMsc = 0, we have

(B.1)

νacMsc = 0 and ψ]νacMsc =

∫
Msc

ρ◦ψ−1dψ]volg =

∫
Msc

ρ◦ψ−1dvolg = 0 .

Furthermore, since ν is invariant, for every Borel A ⊂M ,

ψ]νacA+ ψ]νscA = ψ]νA = νA = νacA+ νscA ,

whence

(B.2) ψ]νacA− νacA = νscA− ψ]νscA .

Combining (B.1) and (B.2), we conclude that

(B.3) ψ]νscA = νscA , A Borel , A ⊂Msc .

Choosing A = Msc in (B.3), we further have

ψ]νscMac = ψ]νsc(M \Msc) = ψ]νscM − ψ]νscMsc = νscM − ψ]νscMsc
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= νscMsc − ψ]νscMsc = 0 .(B.4)

Since Mac and Msc form a (disjoint) partition of M , combining (B.3) with (B.4)
shows that νsc is invariant.

Then, for every ψ ∈ Diff+
0 (g),

νac + νsc = ν = ψ]ν = ψ]νac + ψ]νsc = ψ]νac + νsc ,

and cancelling νsc shows that νac too is invariant. This concludes the proof of the
claim.

Claim 2: νsc = 0. Again since Diff+
0 (g) acts transitively on M by Proposi-

tion B.2, and since each element of Diff+
0 (g) is an open map, it is not difficult to

show that either νsc = 0, or supp νsc = M . Thus, it suffices to show that the
restriction of νsc to some small dg-ball in M is identically vanishing. Note that the
Lebesgue decomposition of ν is preserved by push-forward via local charts. Thus,
without loss of generality up to push-forward by a chart and rescaling, the assertion
is equivalent to the same assertion for the standard Euclidean unit ball, which is
shown in Lemma B.3.

Claim 3: νac ∝ volg. For νac = ρvolg we have

ρvolg = νac = ψ]νac = (ρ ◦ ψ−1)ψ]volg = (ρ ◦ ψ−1)volg , ψ ∈ Diff+
0 (g) .

Again since Diff+
0 (g) acts transitively on M , we conclude that ρ is volg-a.e. constant,

thus νac ∝ volg. This concludes the proof since νsc = νpa = 0 by the previous
claims. �
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no datasets were generated or analysed in the current study.
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[5] L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows in Metric Spaces and in the Space
of Probability Measures. Lectures in Mathematics - ETH Zürich. Birkhäuser, 2nd edition,
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second edition, 2008.
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[12] V. I. Bogachev. Measure theory. Vol. I, II. Springer-Verlag, Berlin, 2007.

[13] W. M. Boothby. Transitivity of the Automorphisms of Certain Geometric Structures. Trans.
Amer. Math. Soc., 137:93–100, 1969.

[14] L. A. Caffarelli and R. J. McCann. Free boundaries in optimal transport and Monge-Ampère

obstacle problems. Ann. Math., 171(2):673–730, 2010.
[15] J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct.

Anal., 9(3):428–517, 1999.
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[53] I. Kolář, J. Slovák, and P. W. Michor. Natural Operations in Differential Geometry. Springer
Berlin Heidelberg, 1993. doi:10.1007/978-3-662-02950-3.

[54] V. V. Konarovskyi and M.-K. von Renesse. Modified Massive Arratia flow and Wasserstein

diffusion. Comm. Pure Appl. Math., 72(4):764–800, 2019. doi:10.1002/cpa.21758.
[55] V. V. Konarovskyi and M.-K. von Renesse. Reversible coalescing-fragmentating Wasserstein

dynamics on the real line. J. Funct. Anal., 286(8):110342, April 2024. doi:10.1016/j.jfa.
2024.110342.

[56] Yu. G. Kondratiev, E. W. Lytvynov, and A. M. Vershik. Laplace operators on the cone

of Radon measures. J. Funct. Anal., 269(9):2947–2976, 2015. doi:10.1016/j.jfa.2015.06.

007.
[57] S. Kondratyev, L. Monsaingeon, and D. Vorotnikov. A new optimal transport distance on

the space of finite Radon measures. Adv. Differential Equations, 21(11-12):1117–1164, 2016.
doi:10.57262/ade/1476369298.

[58] G. Last. An Integral Characterization of the Dirichlet Process. J. Theor. Probab., 33(2):918–

930, jun 2019. doi:10.1007/s10959-019-00923-y.

https://doi.org/10.1016/j.jfa.2023.110153
https://doi.org/10.48550/ARXIV.2112.11056
https://doi.org/10.1137/16M106666X
https://doi.org/10.1016/j.jde.2017.12.008
https://doi.org/10.1016/j.jde.2017.12.008
https://doi.org/10.1007/978-3-030-38613-9
https://doi.org/10.1017/CBO9781316135914
https://doi.org/10.1017/CBO9781316135914
https://doi.org/10.1088/1751-8113/47/48/485001
https://doi.org/10.1088/1751-8113/47/48/485001
https://doi.org/10.1016/0378-4371(94)90533-9
https://doi.org/10.1016/0378-4371(94)90533-9
https://doi.org/10.1007/978-3-662-02950-3
https://doi.org/10.1002/cpa.21758
https://doi.org/10.1016/j.jfa.2024.110342
https://doi.org/10.1016/j.jfa.2024.110342
https://doi.org/10.1016/j.jfa.2015.06.007
https://doi.org/10.1016/j.jfa.2015.06.007
https://doi.org/10.57262/ade/1476369298
https://doi.org/10.1007/s10959-019-00923-y


THE HELLINGER–KANTOROVICH METRIC MEASURE GEOMETRY 95
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[72] S. T. Rachev and L. Rüschendorf. Mass transportation problems. Vol. I. Probability and its

Applications. Springer-Verlag, New York, 1998. Theory.
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[78] M. Röckner and A. Schied. Rademacher’s Theorem on Configuration Spaces and Applica-
tions. J. Funct. Anal., 169(2):325–356, 1999.

[79] F. Santambrogio. Optimal transport for applied mathematicians, volume 87 of Progress in

Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham, 2015.
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[90] M. te Vrugt, H. Löwen, and R. Wittkowski. Classical dynamical density functional theory:

from fundamentals to applications. Adv. Phys., 69(2):121–247, April 2020. doi:10.1080/

00018732.2020.1854965.

[91] N. Tsilevich and A. Vershik. Quasi-invariance of the gamma process and multiplicative prop-
erties of the Poisson-Dirichlet measures. C. R. Acad. Sci. Paris Sér. I Math., 329(2):163–168,

1999. doi:10.1016/S0764-4442(99)80482-0.

[92] N. V. Tsilevich, A. M. Vershik, and M. Yor. An Infinite-Dimensional Analogue of the
Lebesgue Measure and Distinguished Properties of the Gamma Process. J. Funct. Anal.,

185(1):274–296, 2001. doi:10.1006/jfan.2001.3767.

[93] N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan. Probability Distributions on Banach
Spaces, volume 14 of Mathematics and its Applications (Soviet Series). D. Reidel Publishing

Co., Dordrecht, 1987.

[94] A. M. Vershik. Invariant measures for the continual Cartan subgroup. J. Funct. Anal.,
255(9):2661–2682, November 2008. doi:10.1016/j.jfa.2008.06.015.

[95] A. M. Vershik, I. M. Gel’fand, and M. I. Graev. Representations of the Group of Diffeomor-

phisms. Russ. Math. Surv.+, 30(6):1–50, 1975.
[96] A. M. Vershik and M. I. Graev. Integral Models of Representations of Current Groups.

Funct. Anal. Appl., 42(1):19–27, 2008.
[97] Vershik, A. M. and Graev, M. I. Integral models of representations of the current groups of

simple Lie groups. Russ. Math. Surv.+, 64(2):205–271, 2009.

[98] C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2003.

[99] C. Villani. Optimal transport. Old and new, volume 338 of Grundlehren der Mathematischen

Wissenschaften. Springer-Verlag, Berlin, 2009.
[100] M.-K. von Renesse and K.-T. Sturm. Entropic measure and Wasserstein diffusion. Ann.

Probab., 37(3):1114–1191, 2009.

Lorenzo Dello Schiavo: Dipartimento di Matematica – Università degli studi di Roma
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