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Abstract. We consider solutions of p(x)-Laplacian systems with coefficients
and we show that their gradient is continuous provided that the variable ex-

ponent has distributional gradient belonging to the Lorentz-Zygmund space

Ln,1 logL and that the gradient of the coefficient belongs to the Lorentz space
Ln,1. The result is new since the use of the sharp Sobolev embedding in re-

arrangement invariant spaces does not ensure the unique (up to now) known
assumption for such result, namely the log-Dini continuity of p(·) and the plain

Dini continuity of the coefficient. Our approach relies on perturbation argu-

ments and allows to slightly improve results in dimension two even for the case
where p(·) is constant.

Keywords: non-uniformly elliptic systems, p(x)-Laplacian, gradient continu-
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1. Introduction

We consider weak solutions to the p(x)-Laplacian system with coefficients

(1.1) div
[
a(x)|Du|p(x)−2Du

]
= 0, in Ω ⊂ Rn, n ≥ 2,

Ω bounded domain, defined for functions in W 1,p(·)(Ω;RN ), N ≥ 1 (see Section
2 for the necessary definitions) and we start by supposing the variable exponent
p : Ω→ R measurable and satisfying the basic assumptions

(1.2) 1 < γ1 ≤ p(·) ≤ γ2 <∞,

while we require the coefficient a : Ω → R to be measurable and bounded, above
and away from zero:

(1.3) a ∈ L∞(Ω), 0 < ν ≤ a(·) ≤ L <∞.

Problems with p(x)-growth are one of the main models embraced by the more
general class of so-called problems with (p, q)-growth whose origin goes back to the
work of Marcellini starting in the late eighties [30, 31, 32, 33]; their peculiarity,
namely the fact that the nonuniform ellipticity is mild (see the nice description
via pointwise and nonlocal ellipticity ratios in [21]), has ensured then a prominent
position as an active research argument almost constantly for the last twenty years.
The literature on p(x)-problems is therefore too wide to even attempt to make a
reasonable list of selected references; we only recommend [25] for a somehow already
outdated survey and the seminal contributions [2, 24, 1, 16] proving, respectively
C0,α for some α ∈ (0, 1), C0,α for all α ∈ (0, 1) and C1,β for some β ∈ (0, 1)
regularity for local solutions to (1.1); all these results have as common background
(1.2)-(1.3), but different assumptions need to be further considered on both the
regularity of the coefficient and the variable exponent, the latter in terms of the
behavior for ρ ≈ 0 of the quantity

(1.4) ωlog(ρ) = ωp(ρ) log
(1

ρ

)
.
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Here ωp : [0, 1] → [0, γ2 − γ1] is a modulus of continuity for p(·), that is a concave
function with ωp(0) = 0, continuous in zero and such that

(1.5) |p(x)− p(y)| ≤ ωp(|x− y|) for all x, y ∈ Ω with |x− y| ≤ 1.

More in detail, supposing (1.2)-(1.3), one has the following schematic description
of the regularity of (local) solutions to (1.1) in terms of the behavior of ωlog(·) and
of ωa(·) as ρ ↘ 0 (being ωa : [0, 1] → [0, L− ν] a modulus of continuity for a(·), if
any - simply adapt the definition in (1.5)):

• lim sup
ρ↘0

ωlog(ρ) <∞ =⇒ u ∈ C0,α
loc (Ω;RN ), |Du|p(·) ∈ L1+δ0

loc (Ω) for some

constants α, δ0 ∈ (0, 1) depending on the data;

• lim sup
ρ↘0

(
ωlog(ρ) + ωa(ρ)

)
= 0 =⇒ u ∈ C0,α

loc (Ω;RN ) for every α ∈ (0, 1);

• ωlog(ρ) + ωa(ρ) ≤ c ργ for some γ ∈ (0, 1) and c > 0 =⇒ u ∈ C1,β
loc (Ω;RN )

for some exponent β ∈ (0, 1) depending on the data.

A natural but interesting borderline result, of particular interest in our context
and lying in between the second and the third result above, has been recently
obtained by Ok in [34] (see also [35]): if the exponent p(·) is log-Dini continuous
and the coefficient a(·) is Dini continuous, then u ∈ C1

loc(Ω;RN ). Dini continuity is
a classical and almost ubiquitous assumptions in borderline cases of the regularity
theory and consists in the fact that the modulus of continuity of the function one
considers is integrable in zero with respect to the measure dρ/ρ; in other words,
a(·) is Dini continuous if ∫ 1

0

ωa(ρ)
dρ

ρ
<∞.

The variable exponent p(·) is said to be log-Dini continuous if ωlog(·) is Dini con-
tinuous, that is, if

(1.6)

∫ 1

0

ωp(ρ) log
(1

ρ

) dρ
ρ
<∞;

it is evident a parallel between the regularity of the coefficient and that, corrected
by a logarithmic factor, of the exponent. This fact is also described in [4]: notice
that in [4] the differential operator is slightly different however a simple heuristic
explanation based on Taylor expansions justifies the formal similitude of the two.
This formal relation continues to hold true also in the case of the assumption of
this paper, even if in a different setting: see (1.7) and (1.8)-(1.9). The Dini and
log-Dini assumptions are extensively used in every other aspect related to gradient
continuity, for instance gradient potential estimates, see [7, 10, 11]. An interesting
variant, mixing the Dini condition with a modulus of continuity for the integral
oscillation and strictly related to the approach developed in this paper, can be
found in [22, 23] related to solutions to linear equations.

We prove here gradient continuity for local solutions to (1.1) under a new integral
assumptions on the regularity of both the coefficient and the variable exponent.
More precisely, we suppose (1.2)-(1.3) and moreover we assume that

(1.7) a, p ∈W 1,1(Ω) with Da ∈ Ln,1(Ω;Rn), Dp ∈ Ln,1 logL(Ω;Rn).

We recall that Da belongs to the Lorentz space Ln,1(Ω;Rn) if

(1.8)

∫ ∞
0

∣∣{x ∈ Ω : |Da(x)| > λ}
∣∣ 1
n dλ <∞;

such space, besides being fundamental as borderline rearrangement invariant space
between the classic Sobolev and Morrey embeddings, has attracted lot of attention
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in the last years as significant, differential-operator invariant borderline space en-
suring gradient continuity for solutions; see for instance [8, 12, 17, 21, 28, 34, 35]
for details in several contexts, from non-uniformly general elliptic operators to par-
abolic and variational ones. In view of a characterization by O’Neil, Dp belongs to
the Lorentz-Zygmund space Ln,1 logL(Ω;Rn) if

(1.9)

∫ ∞
0

∣∣{x ∈ Ω : |Dp(x)| > λ}
∣∣ 1
n log+ λ dλ <∞,

where log+ λ = max{log λ, 0} is the positive part of log λ; very roughly, it can be
seen as a space encoding a logarithmic correction in the decay of the measure of the
super-levels sets defining Ln,1, and this is needed in order to locally rebalance the
non-uniform ellipticity of the operator (compare with [8, 17, 19, 21, 26, 34, 35]).

An important point we want to stress is that the sharp, generalized Sobolev’s em-
bedding by Cianchi & Pick (see [13, 14]) ensures that functions in W 1Ln,1 logL are
continuous (see (1.10) below and notice that it therefore makes sense to mention the
pointwise value of p(·)), but it does not guarantee that their modulus of continuity
satisfies (1.6). Even more dramatically, functions in Ln,1, while being continuous,
are not uniformly equicontinuous, in the sense that it is not possible to guarantee
the embedding of W 1Ln,1 into any space of uniformly continuous functions shar-
ing the same modulus of continuity; see [14, Remark 3.6]. Therefore, since these
results are known to be optimal, Theorems 1.1-1.2 do not follow from continuity
properties for a(·), p(·) inferred via Sobolev’s embedding and their proofs require
an ad-hoc approach. For X a rearrangement invariant space, we shall sometimes
denote with W 1X the space of functions whose distributional gradients (better,
their components) belong to X.

Anyway, not everything is lost: the aforementioned result shows (for details we
refer [3]) that if the variable exponent p(·) has gradient belonging to Ln,1 logL ⊂
Ln,1, then it has a modulus of continuity ωp(·) satisfying

(1.10) lim sup
ρ↘0

ωlog(ρ) ≤ c(n)‖p‖W 1Ln,1 logL(Ω) = c(n, p(·))

(we are not interested here in Sobolev-Lorentz-Zygmund norms, defined in terms of
rearrangements), at least if ∂Ω is Lipschitz; therefore, the sole use of (generalized)
Sobolev’s embedding for p(·) ensures that solutions to (1.1) under the assumptions
(1.2)-(1.3) and (1.7) have gradient that is higher integrable, that is, there exists a

small positive constant δ0 > 0, depending on n,N, γ1, γ2, L/ν and L̃, such that

(1.11) |Du|p(·) ∈ L1+δ0
loc (Ω)

(see Paragraph 2.5 for more details). In this paper we want to show that a more
careful analysis1 leads to a much better regularity result for the gradient:

Theorem 1.1. Let u ∈ W 1,p(·)(Ω;RN ) be a weak solution to the system (1.1);
suppose that (1.2), (1.3) and (1.7) hold. Then Du is locally bounded: there exists a
radius R0 depending on data, p(·), a(·) and ‖|Du|p(·)‖L1(Ω) such that if B2R(x0) ⊂ Ω
is a ball with R ≤ R0, then

(1.12) sup
BR(x0)

|Du| ≤ c
∫
B2R(x0)

(
1 + |Du|

)
dx,

for a constant c depending on the data.

(see (2.1) for the meaning of data) and

1The results and the techniques of this paper were first announced in the online seminar
available at https://www2.karlin.mff.cuni.cz/~pick/2022-01-13-baroni.mp4

https://www2.karlin.mff.cuni.cz/~pick/2022-01-13-baroni.mp4


4 BARONI

Theorem 1.2. Let u ∈ W 1,p(·)(Ω;RN ) be as in Theorem 1.1. Then Du coincides
almost everywhere in Ω with a continuous function.

Enlarging for a moment the perspective from which we describe our results, the
study of problems with coefficients having assumption of Sobolev-Lorentz type is
attracting more and more interest in the very last years, even for problems satisfying
classic growth assumptions; in [21] it is shown that solutions to uniformly elliptic
vectorial problems of the type

(1.13) div
(
b(x)

ϕ′(|Du|)
|Du|

Du
)

= f in Ω ⊂ Rn

are Lipschitz (and therefore C1, after computation of standard flavor) regular if
f ∈ Ln,1(Ω) and |Db| belongs toL

n,1(Ω) if n ≥ 3

L2(logL)γ(Ω) γ > 2, if n = 2
.

Here the scalar positive function ϕ′ has growth of Orlicz type and the coefficient b is
elliptic, that is, it satisfies the assumptions in (1.3); for p ≥ 1, γ ∈ R, Lp logγ L(Ω)
is the space of measurable functions f : Ω→ R such that |f |p logγ(e+ |f |) belongs
to L1(Ω). Note that L2(logL)γ ( L2,1 (see [36, Theorem 9.5.14]); therefore our
result slightly improves [21, Theorem 1.8] in dimension 2 when ϕ(t) = tp, p > 1;
a perturbation approach similar to ours would lead to the result also for the the
more general growth conditions considered in [21].

We complete this introductory chapter stressing that an approach similar to that
of this paper has been applied by the author to a borderline case of so-called double
phase problems, see [3, 6]. Double phase problems are problems of the Calculus of
the Variations of the form

u ∈W 1,1(Ω) 7→
∫

Ω

[
F (Du) + s(x)G(Du)

]
dx, s(x) ≥ 0,

with the peculiarity that G grows faster than F at infinity; they are the object of
a substantial amount of research nowadays and for particular choices of F,G, they
share many aspects of regularity with p(x) problems, see [3, 6, 4, 11, 20, 37]. Also
in this setting borderline cases are often difficult and require subtle arguments, see
for instance [18, 19] and compare with [5, 15] and [26, 27]. We are convinced that
the perturbative approach developed in this paper could find some applications
leading to a deeper understanding of borderline cases in this research area and, as
consequence, a deeper insight for the general theory; for more detail we again refer
to [3, 6, 11, 26, 27, 37].

Technical novelty of the paper. The approach we follow in this paper is of
perturbative type: using appropriate liftings, we classically relate the regularity of
solutions of (1.1) to the good, known C1,β-regularity of solutions to systems with p-
Laplacian growth, see (2.13)-(3.6). The novelty is twofold: the localization around
the average of the variable functions p(·), a(·) and the use of the Sobolev-Poincaré
inequality. The former replaces the classic freezing of the variable functions a(·)
and p(·) in the center of the ball considered (see essentially all the references in the
bibliography regarding p(x) problems); the use of the latter is allowed by the use
of Hölder inequality with conjugate exponents (1 + 1/δ0, 1 + δ0), where δ0 ≈ 0 is
the higher integrability exponent from (1.11), and this replaces the classic use of
Hölder’s inequality in the form L∞ − L1. Needless to say, we need to heavily use
the fact that the gradient is higher integrable: this follows from (1.10), see (1.11).
These two facts allow to make use of Lemma 2.1, enconding an independently inter-
esting discretization of Lorentz-Zygmund spaces. Our approach also requires some
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localization effort (averages change at different steps of usual iteration procedures
along sequences of shrinking balls) and we decided to solve the problem by per-
forming the iteration at L1 level: the linearized estimate we are able to get (see for
instance (4.6)) could be useful in future advances in the theory and we think this
could justify our effort. See [3] for a different solution to this localization problem.

To the best of our knowledge, this is the first time such a perturbative argument
is carried on, despite being inspired by the techniques in [28].

Extension to local solutions and more general structures. In order to avoid
unessential complication we suppose that the solution u is globally integrable, that
is, |Du|p(·) ∈ L1(Ω); accordingly, we set

(1.14) M =

∫
Ω

(
1 + |Du|p(x)

)
dx.

Clearly all the forthcoming results are local in nature and therefore it is possible
to suppose u local solution (that is, |Du|p(·) ∈ L1

loc(Ω)) and relax in an appropriate
local way the assumptions in (1.7). Easy, minor modifications of the current proof
would lead to the same results in this case.

Possible extensions of our results involve more general differential, or variational,
structures of p(x)-type. We prefer to focus here on the simple model case (1.1) and
leave such extensions to future contributions.

Acknowledgements. We thank the reviewer for the careful reading of the manu-
script and for his suggestions, which lead to an improved version of this paper. We
also thank A. Cianchi for useful insights into generalized Sobolev’s embeddings.

2. Preliminaries

2.1. Notation. In this paper we are going to denote by c a positive constant pos-
sibly varying from line to line; special occurrences will be denoted by c1, c∗, c̄ or the
like. All such constants will always be larger or equal than one; moreover relevant
dependencies on parameters will be emphasised in parentheses, i.e., c1 ≡ c1(n, p)
means that c1 depends on n and p. By data we denote the set of parameters

(2.1) {n,N, γ1, γ2, L/ν, L̃}

(with L̃ that is going to be defined in (2.2)) so that by writing c(data) we shall

mean that the constant depends on n,N, γ1, γ2, L/ν and L̃. The dependencies of
the radii on p(·) and a(·) will all derive only from the use of (1.10) and Corollary
2.2. We denote by

BR(x0) := {x ∈ Rn : |x− x0| < R}
the open ball with center x0 and radius R > 0; when not important, or clear from
the context, we shall omit denoting the center just denoting BR ≡ BR(x0). With
B ⊂ Rn being a measurable set with positive, finite measure |B| > 0, and with
g : B → R`, ` ≥ 1, being a measurable map, we shall denote by

(g)B ≡
∫
B
g(x) dx :=

1

|B|

∫
B
g(x) dx

its integral average. Moreover, oscillation of g on B is defined as

osc
B
g = sup

x,y∈B
|g(x)− g(y)|.

A great importance will have the (L1) excess: for g,B as above, it is defined by∫
B

∣∣g − (g)B
∣∣ dx;
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note that by triangle’s inequality we have∫
B

∣∣g − (g)B
∣∣ dx ≤ 2

∫
B
|g − ξ| dx for all ξ ∈ R`,

a property we are going to use very often.
For x ≥ 0, γ ∈ R, we denote by logγ(e + x) the quantity [log(e + x)]γ and

logγ(t) = | log(t)|γ for t > 0. We use the agreement that N is the set {1, 2, 3, . . . }
and N0 := N ∪ {0}; by an interval in N0 we mean the intersection of an interval in
R with N0. We use the notation χ(−∞,2)(p) for the characteristic function of the
set (−∞, 2), that is

χ(−∞,2)(p) =

{
0 if p ≥ 2

1 if p < 2
;

similarly for χ[t,+∞) with t ∈ R. For 1 < p < ∞ we denote with p′ the Hölder
conjugate of p; for 1 < p < n with p∗ its Sobolev conjugate and for p > 1 with p∗
the quantity you can see below:

p′ =
p

p− 1
, p∗ =

np

n− p
, p∗ =

np

n+ p
;

notice that p∗ = q if and only if p = q∗ (if p < n).

2.2. Function spaces, variable exponents and weak solutions. The variable
exponent Lebesgue space Lp(·)(Ω;R`), ` ≥ 1, for a variable exponent as in (1.2), is
defined as the space of measurable functions f : Ω→ R` such that |Du|p(·) ∈ L1(Ω);
it is endowed with the Luxemburg norm

‖u‖Lp(·) = inf
{
λ > 0 :

∫
Ω

∣∣∣u(x)

λ

∣∣∣p(x)

dx ≤ 1
}
.

We define W 1,p(·)(Ω;RN ) as the space of weakly differentiable functions whose

distributional derivatives belong to Lp(·)(Ω) and W
1,p(·)
0 (Ω;RN ) as the closure of

C∞c (Ω;RN ) with respect to the norm ‖u‖W 1,p(·) = ‖u‖Lp(·) + ‖Du‖Lp(·) ; local vari-
ants of such spaces are defined in the usual way. Note that the extension to zero

outside Ω of a function in W
1,p(·)
0 (Ω;RN ) belongs to W 1,p(·) of any superset of Ω.

By a weak solution to (1.1) we mean a function u ∈W 1,p(·)(Ω;RN ) such that∫
Ω

〈a(x)|Du|p(x)−2Du,Dϕ〉 dx = 0 for all ϕ ∈ C∞c (Ω;RnN )

and, by density, for every ϕ ∈ W 1,p(·)
0 (Ω;RnN ). 〈·, ·〉 denotes the scalar product in

RnN (or better the Frobenius product).

We shall denote for a ball BR ≡ BR(x0) ⊂ Ω (its center will always be clear
from the context) and for radii r ≤ R

p+
r = sup

Br(x0)

p(·), p−r = inf
Br(x0)

p(·).

As a consequence of (1.10) we can assume that there exists L̃ > 0 such that

(2.2) sup
ρ∈(0,1]

ωp(ρ) log
(1

ρ

)
≤ L̃,

a fact that we are going to use often. We also remark that, using (2.2), we have
that if ρ ≤ 1 then

(2.3) ρ−ωp(ρ) = eωp(ρ) log( 1
ρ ) ≤ c(L̃).
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2.3. Discretization of Lorentz-Zygmund spaces. For a function f : BR(x0) ⊂
Rn → R`, ` ∈ N, the sum

(2.4) Sq,β(f)(x0, R) :=

∞∑
j=0

Rj logβ
( 1

Rj

)(∫
Bj(x0)

|f |q dx
) 1
q

, q ∈ (1, n), β ∈ R,

where

R ∈ (0, 1), σ ∈ (0, 1), Rj = σjR, Bj(x0) = BRj (x0), j ∈ N0,

will take on great importance in view of the following lemma; see [3] and compare
with [28, Lemma 1].

Lemma 2.1. Let f ∈ Ln,1 logβ L(BR(x0)) for β ∈ {0, 1} being R ≤ 1 and let
q ∈ (1, n) and σ ∈ (0, 1); then

Sq,β(f)(x0, R) ≤ c(n, q, σ)‖f‖Ln,1 logβ(BR(x0)).

As a consequence, since the Lorentz norm Ln,1 logβ L is defined in terms of
an integral, by absolute continuity (cf. [36, Paragraph 9.9]) it follows that we
can make, taking the initial radius R sufficiently small, the sum Sq,β(f)(x0) small
(locally) uniformly in x0.

Corollary 2.2. Let Ω ⊂ Rn and f ∈ Ln,1 logβ L(Ω) for β ∈ {0, 1}; let moreover
σ ∈ (0, 1) and q ∈ (1, n) be fixed. For every K b Ω and ε > 0, there exists a radius
Rε > 0 depending on n, q, σ, f and ε such that if R ∈ (0, Rε] and R < dist(∂Ω,K),
then

sup
x0∈K

Sq,β(f)(x0, R) ≤ ε.

2.4. Auxiliary vector fields. We will work often with a classic nonlinear expres-
sion of the gradient encoding in a precise way the monotonicity properties of the
differential operator considered. In detail, for p ∈ [γ1, γ2], we set

Vp(ξ) = |ξ|
p−2

2 ξ, ξ ∈ R`.

For ξ1, ξ2 ∈ R` and p(x) > 1 we have the estimate

(2.5)
1

c

∣∣Vp(x)(ξ1)− Vp(x)(ξ2)
∣∣2 ≤ 〈|ξ1|p(x)−2ξ1 − |ξ2|p(x)−2ξ2, ξ1 − ξ2

〉
,

for a constant c ≡ c(γ1, γ2) ≥ 1. A basic property of the map Vp(·) is the following
local bi-Lipschitz character: indeed, for ξ1, ξ2 ∈ R` and p > 1 it holds

(2.6)
1

c

(
|ξ1|+ |ξ2|

)p−2|ξ2 − ξ1|2 ≤
∣∣Vp(ξ2)− Vp(ξ1)

∣∣2 ≤ c (|ξ1|+ |ξ2|)p−2|ξ2 − ξ1|2.

The constant c here depends only on p and we stress that for p ∈ [γ1, γ2] it can be
replaced by one depending only on γ1 and γ2; in other words, in case of a function
p : Ω → [γ1, γ2], estimate (2.6) can be written with p = p(x) and the constant c
will depend only on γ1 and γ2. As a consequence, if 2 ≤ p ≤ γ2 <∞ then

(2.7) |ξ1 − ξ2|p ≤ c(γ2)|Vp(ξ2)− Vp(ξ1)|2

while if 1 < γ1 ≤ p < 2 then

(2.8) |ξ1 − ξ2| ≤ c |Vp(ξ1)− Vp(ξ2)|
2
p + c |ξ1|

2−p
2 |Vp(ξ1)− Vp(ξ2)|,

for a constant depending only on γ1. For these properties, see for instance [7, 28, 34].
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2.4.1. Logs. We have the following useful properties of the logarithm we are often
going to use without explicit reference:

(2.9)



log
(x
`

)
≤ (1− log `) log x for every x ≥ e and for all ` ∈ (0, 1];

log(e+ xσ) ≤ 1 + max{1, σ} log(e+ x) for all x ≥ 0 and σ > 0;

log(e+ xy) ≤ log(e+ x) + log(e+ y) for all x, y ≥ 0

log(e+Ax) ≤ A log(e+ x) for all x ≥ 0 and A ≥ 1.

The proofs are very simple, see for instance [6].

The following lemma is an appropriate version of a well-known estimate for the
treatment of such operators; for the simple proof in this general form see [6, Lemma
2.1].

Lemma 2.3. Let ς̃ > 1, σ, β, θ ≥ 0 and let f be a positive function in Lς̃(Br)
for some ball Br ≡ Br(x0) with radius r ≤ e−1. Then there exists a constant c
depending on n, β, σ, θ and ς̃ such that∫

Br

f logβ
(
e+ fσ

)
dx ≤ c

(
1 + rθ ‖f‖L1(Br)

)β
logβ

(1

r

)(∫
Br

f ς̃ dx

)1/ς̃

.

2.5. Reference estimates for solutions to (1.1). We consider here solutions to
(1.1) under the assumptions (1.2)-(1.3) and (2.2) that, we recall, holds by embed-
ding as a consequence of our main assumption (1.7).

The basic assumptions deduced by Sobolev’s embedding, despite not allowing to
get the results stated in our main Theorems 1.1-1.2, still allow to catch some gra-
dient regularity in terms of its higher integrability. As a reference for the following
result we suggest [7, 9, 34, 38] even if we are going to sketch a proof, since we need
the local estimate (2.10) in a particular form not present in the literature.

Theorem 2.4. Let E ⊂ Rn and u ∈ W 1,p(·)(E;RN ) be a solution to (1.1) under
the assumptions (1.2)-(1.3) and (2.2). Then there exists an exponent δ0 ∈ (0, 1),

depending on the data such that |Du|p(·) ∈ L1+δ0
loc (E); moreover, for

M =

∫
E

(
1 + |Du|p(x)

)
dx,

there exists a threshold R̄ ≡ R̄(n, p(·),M) ≤ 1 such that the local estimate

(2.10)

(∫
BR(x0)

|Du|p(x)(1+δ0) dx

) 1
1+δ0

≤ c
(∫

B2R(x0)

(
1 + |Du|

)
dx
)p(x̄)

holds if R ≤ R̄ and B2R(x0) ⊂ E, for a constant c depending on data and for every
x̄ ∈ B2R(x0). In particular we also have

(2.11) R̄ =
1

4
min

{ 1

M
, R1, 1

}
with sup

ρ∈(0,2R1]

ωp(ρ) ≤ 1

c(n)
.

Proof. The local estimate

(2.12)

(∫
BR(x0)

|Du|p(x)(1+δ0) dx

) 1
1+δ0

≤ c
∫
B2R(x0)

(
1 + |Du|

)p(x)
dx

and, as customary consequence of the self-improving character of the reverse Hölder
inequalities,(∫

BR(x0)

|Du|p(x)(1+δ0) dx

) 1
1+δ0

≤ c
(∫

B2R(x0)

(
1 + |Du|

)
dx
)p+

2R
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are well-founded for every ball B2R(x0) ⊂ E with radius R ≤ R̄ (R̄, δ0 > 0 and the
constant c as in the statement) and its proof is quite standard, see for instance [34,
Theorem 3.1] for a transparent form. To prove (2.10) we need to show that we can
bound (∫

B2R(x0)

(
1 + |Du|

)
dx
)p+

2R−p(x̄)

by a constant independent of R; we have, with c ≡ c(n, γ1, γ2) and if p+
2R−p(x̄) > 0(∫

B2R(x0)

(
1 + |Du|

)
dx
)p+

2R−p(x̄)

≤ c
( M

(2R)n

)p+
2R−p(x̄)

≤ c (2R)−(n+1)ωp(2R) ≤ c(n, γ1, γ2, L̃)

thanks to (2.11) and (2.3). �

2.6. Excess decay estimates for reference problems. We consider the classic
p-Laplacian system

(2.13) div
[
|Dw|p−2Dw

]
= 0 in E ⊂ Rn,

for p > 1. It is well known that solutions to (2.13) are locally C1,α regular: see [29,
Theorem 3.1] for the following precise form of the excess decay.

Theorem 2.5. Let w ∈ W 1,p(E;RN ) be a weak solution to (2.13). There exist
constants cph ≥ 1, α0 ∈ (0, 1), σ0 ∈ (0, 1], depending on n,N and p, such that for
every ball BR(x0) ⊂ E and for all σ ∈ (0, σ0]

osc
BσR(x0)

Dw ≤ cph σα0

∫
BR(x0)

∣∣Dw − (Dw)BR(x0)

∣∣ dx.
3. Comparison results

We start this section by fixing a solution u ∈W 1,p(·)(Ω;RN ) to (1.1) and a ball
BR ≡ BR(x0) ⊂ Ω with radius R smaller than a threshold R0 whose value will
be reduced several times in the course of the proof; all the balls we are going to
work with in this section will have the same center x0. We start setting R0 =
min{R̄, e−1}, where R̄ ≡ R̄(n, p(·),M) is the radius appearing in Theorem 2.4 for
M = M as defined in (1.14); in particular we have R0 ≤ 1 so (2.2) is at our disposal.
Moreover, we denote for radii r ≤ R

(3.1) ār := (a)Br =

∫
Br

a(x) dx, p̄r := (p)Br =

∫
Br

p(x) dx.

We also set, for q ∈ (1, n)

(3.2) Ar,q = r
(∫

Br

|Da|q dx
) 1
q

, Pr,q = r log
(1

r

)(∫
Br

|Dp|q dx
) 1
q

.

We immediately stress that we are going to work with the following additional
assumption (later we will show how to guarantee this by appropriately reducing
the value of R0):

(3.3) Ar,q ≤ 1, Pr,q ≤ 1 if r ≤ R0.

Next we further reduce the value of the R0 so that

(3.4) ωp(R0) ≤ γ1

2 max{2, γ′1}
· δ0

2 + δ0
≤ min

{γ1δ0
4
,

γ1

2 max{2, γ′1}
· δ0

2 + δ0

}
,

where δ0 is the positive constant appearing in the higher-integrability result of
Theorem 2.4; this makes R0 ultimately depend only on data, p(·) and M .
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First we are going to consider the solution to the comparison problem

(3.5)

div
[
āR/2|Dv|p(x)−2Dv

]
= 0 in BR/2

v = u on ∂BR/2

;

later we are going to consider the solution to the problem with standard p-Laplacian
growth

(3.6)

div
[
|Dw|p̄R/4−2Dw

]
= 0 in BR/4

w = v on ∂BR/4

.

Notice that both problems are well posed and have a unique solution: the boundary
datum of (3.5) is a function in W 1,p(·)(BR/2;RN ) that is exactly the energy space
of the differential operator in (3.5)1, while for the second we observe that the local
higher integrability result in Theorem 2.4 implies that v ∈W 1,p(·)(1+δ0)(BR/4;RN )
and the smallness assumption of the radius (3.4) ensures that for all x ∈ BR/4

p̄R/4 − inf
BR/4

p(·) ≤ ωp(R0) ≤ γ1δ0 =⇒ p̄R/4 ≤ p(x)(1 + δ0)

and therefore

(3.7) W 1,p(·)(1+δ0)(BR/4;RN ) ⊂W 1,p̄R/4(BR/4;RN );

again monotonicity methods apply. In particular, by density, the weak formulation

of the system (3.5) can be tested with the function ϕ = u− v ∈W 1,p(·)
0 (BR/2;RN )

and that of (3.6) with the function ϕ = v − w ∈W 1,p̄R/4
0 (BR/4;RN ).

3.1. Basic results. Note the solving (3.5) is equivalent to finding the minimizer of

the energy v 7→
∫
BR/2

|Dv|p(x)/p(x) dx in the Dirichlet class u+W
1,p(·)
0 (BR/2;RN );

thus

(3.8)

∫
BR/2

|Dv|p(x) dx ≤ c(γ1, γ2)

∫
BR/2

|Du|p(x) dx.

Moreover, since the differential operator in (3.5) satisfies (1.2),(1.3) and (2.2), the
higher integrability result of Theorem 2.4 applies to Dv too with the same constant
and exponent. However, the critical radius for which the local estimate (2.10) holds
depends on M =

∫
BR/2

(1 + |Dv|) dx. Anyway, due to the previous inequality (3.8)

and the explicit monotonicity of R̄ with respect to the energy (2.11), we can possibly
reduce the value of R̄ (and therefore of R0) so that Theorem 2.4 is at our disposal
for both Du and Dv with a constant depending on data and for radii smaller than
the threshold R0 ≡ R0(n, p(·),M). In particular∫

BR/4

|Dv|p(x)(1+δ0) dx ≤ c
(∫

BR/2

(
1 + |Dv|

)p(x)
dx
)1+δ0

≤ c
(∫

BR/2

(
1 + |Du|

)p(x)
dx
)1+δ0

≤ c
(∫

BR

(
1 + |Du|

)
dx
)p(x̄)(1+δ0)

(3.9)

holds true for every x̄ ∈ BR; c here depends only on the data. We used (2.12) for
Dv, (3.8) and (2.10) for Du.

We can finally start by deriving a first comparison estimate.
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Lemma 3.1 (Comparison I). Let v ∈ u + W
1,p(·)
0 (BR/2;RN ) be the solution to

(3.5); there exists an exponent

(3.10) q = q(data) < n

such that

(3.11)

∫
BR/2

∣∣Vp(x)(Du)− Vp(x)(Dv)
∣∣2 dx ≤ cA2

R/2,q

(∫
BR

(
1 + |Du|

)
dx
)p(x̄)

holds true for a constant c depending only on the data and for every x̄ ∈ BR.

Proof. We subtract the weak formulations of the systems solved by u and v and we
test such difference with ϕ = u− v. We have, after some simple computations

I =

∫
BR/2

〈
āR/2|Du|p(x)−2Du− āR/2|Dv|p(x)−2Dv,Du−Dv

〉
dx

=

∫
BR/2

〈
āR/2|Du|p(x)−2Du− a(x)|Du|p(x)−2Du,Du−Dv

〉
dx

≤
∫
BR/2

|āR/2 − a(x)||Du|p(x)−1|Du−Dv| dx = II.(3.12)

We use the monotonicity in (2.5) and (1.3) to estimate from below

I ≥
āR/2

c

∫
BR/2

∣∣Vp(x)(Du)− Vp(x)(Dv)
∣∣2 dx ≥ 1

c

∫
BR/2

∣∣Vp(·)(Du)− Vp(·)(Dv)
∣∣2 dx.

To estimate II we need to distinguish two cases:
In the case p(x) ≥ 2 we can estimate pointwise, using Young’s inequality for

ε ∈ (0, 1) to be chosen later and (2.6)

ii := |āR/2 − a(x)||Du|p(x)−1|Du−Dv|

= |āR/2 − a(x)||Du|
p(x)

2
[
|Du|+ |Dv|

] p(x)−2
2 |Du−Dv|

≤ ε
∣∣Vp(x)(Du)− Vp(x)(Dv)

∣∣2 + c(ε, γ2)|a(x)− āR/2|2|Du|p(x).

If on the other hand p(x) < 2 using (2.8), twice Young’s inequality and (1.3)

ii ≤ c|āR/2 − a(x)||Du|p(x)−1
∣∣Vp(x)(Du)− Vp(x)(Dv)

∣∣ 2
p(x)

+ c|āR/2 − a(x)||Du|
p(x)

2

∣∣Vp(x)(Du)− Vp(x)(Dv)
∣∣

≤ ε
∣∣Vp(x)(Du)− Vp(x)(Dv)

∣∣2 + cε|a(x)− āR/2|2|Du|p(x)

with c depending on γ1, L and ε; notice that [p(x)]′ > 2 in this case and therefore

|a(x)− āR/2|[p(x)]′ ≤ L
2−γ1
γ1−1 |a(x)− āR/2|2.

Combining the two cases we get

II ≤ ε
∫
BR/2

∣∣Vp(x)(Du)− Vp(x)(Dv)
∣∣2 dx+ cε

∫
BR/2

|a(x)− āR/2|2|Du|p(x) dx.

At this point we estimate the last integral: for δ0 ∈ (0, 1) the higher integrability
exponent of Theorem 2.4,∫

BR/2

|a(x)− āR/2|2|Du|p(x) dx

≤
(∫

BR/2

|a(x)− āR/2|2(1+δ0)′ dx
) 1

(1+δ0)′
(∫

BR/2

|Du|p(x)(1+δ0) dx
) 1

1+δ0
;
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we use now Sobolev-Poincaré’s inequality recalling that āR/2 is the average of a(·)
on BR/2 and that, belonging a(·) in particular to W 1,n(BR/2), it is possible to
choose an arbitrarily large value for the exponent of a(·)− āR/2. This is to say, we
can select q = q(n, δ0) < n such that

(3.13) 2(1 + δ0)′ = q∗ =
nq

n− q
⇐⇒ q =

[
2

1 + δ0
δ0

]
∗

=
2n(1 + δ0)

δ0(n+ 2) + 2

so that(∫
BR/2

|a(x)− āR/2|2(1+δ0)′ dx
) 1

(1+δ0)′ ≤ c(n, δ0)
(
Rq
∫
BR/2

|Da|q dx
) 2
q

= cA2
R/2,q.

We complete the estimate for II using the local estimate from Theorem 2.4

II ≤ ε
∫
BR/2

∣∣Vp(x)(Du)− Vp(x)(Dv)
∣∣2 dx+ cεA

2
R/2,q

(∫
BR

(
1 + |Du|

)
dx
)p(x̄)

cε depends on the data and ε. Inserting this estimate into (3.12) together with the
estimate for I, choosing ε sufficiently small and reabsorbing gives (3.11). �

Lemma 3.2 (Comparison I localized). Let v ∈ u + W
1,p(·)
0 (BR/2;RN ) be as in

Lemma 3.1 and let x̄ ∈ BR and ρ ≤ R/4; then

(3.14)

∫
BR/4

∣∣Vp̄ρ(Du)− Vp̄ρ(Dv)
∣∣2 dx

≤ c
[
A2
R,q +

(R
ρ

)n
q−1

P2
R,q

]( ∫
BR

(
1 + |Du|

)
dx
)p(x̄)

holds true for a constant c depending only on the data and for (a possibly different
than that in (3.10)) constant q ∈ (1, n), still depending on the data.

Proof. Let us denote F = |Du(x)| + |Dv(x)|, p̄ = p̄ρ and ω = ωp(R) in short;
suppose F 6= 0. The trivial estimate (we use triangle’s inequality here)

F p̄−2|Du(x)−Dv(x)|2 ≤ F p(x)−2|Du(x)−Dv(x)|2

+ F
p(x)

2

∣∣F p̄−p(x) − 1
∣∣F p(x)−2

2 |Du(x)−Dv(x)|

together with (2.6) and Young’s inequality implies that∣∣Vp̄(Du(x))− Vp̄(Dv(x))
∣∣2

≤ c
∣∣Vp(x)(Du(x))− Vp(x)(Dv(x))

∣∣2 + c F p(x)
∣∣F p̄−p(x) − 1

∣∣2
with c ≡ c(γ1, γ2). Now we notice that the mean value theorem yields

(3.15)
∣∣F p̄−p(x) − 1

∣∣ = |p(x)− p̄|Fλx(p̄−p(x))| logF |

with λx ∈ (0, 1). Now we estimate the quantity F p(x)+2λx(p̄−p(x)) log2 F distin-
guishing the two cases F = F (x) ∈ (0, e) and F ≥ e: in the first one

F p(x)+2λx(p̄−p(x)) log2 F ≤ c(γ1, γ2)

thanks to the estimate

(3.16) sup
t∈(0,e)

tσ| log t| ≤ 1

ae
+ eb for all σ ∈ [a, b],

with 0 < a < b (simply consider the cases t ∈ (0, 1] an t ∈ [1, e)) and the fact∣∣λx(p̄− p(x)
)∣∣ ≤ ωp(R0) ≤ γ1

4
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- we are using (3.4) here. If F ≥ e, using the bound above,

F p(x)+2λx(p̄−p(x)) logF ≤ F p(x)+2ω log2
(
e+ F p(x)+2ω

)
.

Merging these two cases gives

F p(x)
∣∣F p̄−p(x) − 1

∣∣2 ≤ c(γ1, γ2)|p(x)− p̄|2
(
1 + F p(x)+2ω

)
log2

(
e+ 1 + F p(x)+2ω

)
;

averaging the previous inequality over BR/4 and using Hölder’s inequality with
conjugate exponents (1 + δ, 1 + 1/δ) for δ ∈ (0, 1) to be chosen gives

(3.17)

∫
BR4

F p(x)
∣∣F p̄−p(x) − 1

∣∣2 dx ≤ c(γ1, γ2)
(∫

BR/4

|p(x)− p̄|2(1+ 1
δ ) dx

) δ
1+δ×

×
(∫

BR/4

(
1 + F p(x)+2ω

)1+δ
log2(1+δ)

(
e+ 1 + F p(x)+2ω

)
dx
) 1

1+δ

.

Now, for δ0 the higher integrability exponent appearing in Theorem 2.4, we notice
that choosing δ, depending only on δ0 and sufficiently small, we have (after setting
ω̃ = 2ω/γ1):

(3.18) (1 + ω̃)(1 + δ) ≤ (1 + ω̃)(1 + δ)2 ≤
(

1 +
δ0
2

)
(1 + δ)2 ≤ 1 + δ0

taking also into account (3.4). In order to estimate the last integral in (3.17) with
the correct dependence of the exponent we estimate, we use (3.9)-(2.12), to infer

∫
BR/4

(
1 + F p(x)+2ω

)1+δ
dx ≤

∫
BR/4

(
1 + F p(x)(1+ω̃)

)1+δ
dx

(3.19)

≤ (γ2, δ0)

∫
BR/4

(
1 + F p(x)(1+δ0)

)
dx

≤ c
∫
BR/4

(
1 + |Du|p(x)(1+δ0) + |Dv|p(x)(1+δ0)

)
dx

≤ c(data)
(∫

BR/2

(
1 + |Du|

)p(x)
dx
)1+δ0

≤ cR−n(1+δ0)M1+δ0 ≤ cR−(n+1)(1+δ0).

In light of Lemma 2.3 with the choices f = (1 + F p(x)+ω)1+δ, β = 1 + δ, σ =
1/(1 + δ), θ = (n+ 1)δ0 + 1, ς̃ = 1 + δ and the previous estimate (3.19) we have now∫

BR/4

(
1 + F p(x)+2ω

)1+δ
log1+δ

(
e+ 1 + F p(x)+2ω

)
dx

≤ c
(

1 +R(n+1)(1+δ0)

∫
BR/4

(
F p(x)+ω

)1+δ
dx
)1+δ

×

× log1+δ
( 4

R

)(∫
BR/4

(
1 + F p(x)+2ω

)(1+δ)2

dx
) 1

1+δ

≤ c log1+δ
( 1

R

)(∫
BR/4

(
1 + F p(x)(1+ω̃)

)(1+δ)2

dx
) 1

1+δ

and the constant depends on data, δ and δ0 - that is, on data only. Now we can
continue to estimate the integral on the right-hand side using (3.18) similarly as
what done in (3.19):∫

BR/4

(
1 + F p(x)(1+ω̃)

)(1+δ)2

dx ≤ c
(∫

BR/4

(
1 + F p(x)(1+δ0)

)
dx
) (1+ω̃)(1+δ)2

1+δ0
(3.20)
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≤ c
(∫

BR/2

(
1 + |Du|p(x)

)
dx
)(1+ω̃)(1+δ)

≤ c
(∫

BR

(
1 + |Du|

)
dx
)p(x̄)(1+δ)

.

We justify now the last inequality: we have

(3.21)
(∫

BR/2

(
1 + |Du|p(x)

)
dx
)ω̃(1+δ)

≤
(M
Rn

)ωp(R)2
1+δ0
γ1 ≤ c(γ1, δ0)

using (2.3) as in the proof of Theorem 2.4; we also used (2.10). The constant in
(3.20), finally and in view of this, depends on data and M . Plugging (3.20) into
(3.17) gives∫

BR/4

F p(x)
∣∣F p̄−p(x) − 1

∣∣2 dx
≤ c log2

( 1

R

)(∫
BR/4

|p(x)− p̄|2(1+ 1
δ0

) dx
) δ0

1+δ0
(∫

BR

(
1 + |Du|

)
dx
)p(x̄)

with c depending on data and M . Now, as in (3.13), for q = q(n, δ0) < n such that

2
(

1 +
1

δ0

)
= q∗ ⇐⇒ q =

[
2
(

1 +
1

δ0

)]
∗

=
2n(1 + δ0)

δ0(n+ 2) + 2

we have, enlarging the integral over Bρ:(∫
BR/4

|p(x)− p̄|2(1+ 1
δ0

) dx
) δ0

1+δ0
=
(∫

BR/4

|p(x)− (p)Bρ |q
∗
dx
) 2
q∗

≤ 2
(∫

BR/4

|p(x)− (p)BR/4 |
q∗ dx

) 2
q∗

+ 2
(∫

Bρ

|p(x)− (p)BR/4 |
q∗ dx

) 2
q∗

≤ c(n, δ0)
(

1 +
R

ρ

) 2n
q∗
(
Rq
∫
BR/4

|Dp|q dx
) 1
q

.

Therefore∫
BR/4

F p(x)
∣∣F p̄−p(x) − 1

∣∣2 dx ≤ c(R
ρ

)2(nq−1)

P2
q,R/4

(∫
BR

(
1 + |Du|

)
dx
)p(x̄)

We conclude the proof noticing that (see (2.9))

AR/2,q ≤ c(n, q)AR,q, PR/4,q ≤ c(n, q)PR,q.

�

Now we derive a second comparison estimate for the solution of (3.6).

Lemma 3.3 (Comparison II). Let w ∈W 1,p̄R/4(BR/4;RN ) be the solution to (3.6);
there exists an exponent

q = q(data) < n

such that

(3.22)

∫
BR/4

∣∣Vp̄R/4(Dv)− Vp̄R/4(Dw)
∣∣2 dx ≤ cP2

R,q

(∫
BR

(
1 + |Du|

)
dx
)p(x̄)

holds true for a constant c depending only on the data and for every x̄ ∈ BR(x0).
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Proof. We use in the proof the short notation p̄ := p̄R/4. Similarly as before we
subtract the weak formulations of the systems solved by v and w and we use as
a test function ϕ = v − w; this function is allowed thanks to the discussion after
(3.6), see in particular (3.7).

I =

∫
BR/4

〈
|Dv|p̄−2Dv − |Dw|p̄−2Dw,Dv −Dw

〉
dx

=

∫
BR/4

〈
|Dv|p̄−2Dv − |Dv|p(x)−2Dv,Dv −Dw

〉
dx

≤
∫
BR/4

∣∣|Dv|p(x)−p̄ − 1
∣∣|Dv|p̄−1|Dv −Dv| dx = II.

Using again (2.5) we get

(3.23) I ≥ 1

c̄(γ1, γ2)

∫
BR/4

∣∣Vp̄(Dv)− Vp̄(Dw)
∣∣2 dx.

In order to get an estimate for II we estimate similarly to what done for (3.15):
for almost every x ∈ BR/4 with |Dv(x)| 6= 0 it holds∣∣|Dv(x)|p(x)−p̄ − 1

∣∣ = |p(x)− p̄||Dv|λx(p(x)−p̄)∣∣ log |Dv|
∣∣

for λx ∈ (0, 1). Now we distinguish two cases: if p̄ ≥ 2 then

|Dv −Dv| ≤ c(γ2)|Dv|
2−p̄

2

∣∣Vp̄(Dv)− Vp̄(Dw)
∣∣

by (2.6) and using Young’s inequality we have

II ≤
∫
BR/4

|p(x)− p̄||Dv|
p̄
2 +λx(p(x)−p̄)∣∣ log |Dv|

∣∣ ∣∣Vp̄(Dv)− Vp̄(Dw)
∣∣ dx

≤ c
∫
BR/4

|p(x)− p̄|2|Dv|p̄+2λx(p(x)−p̄) log2 |Dv| dx

+
1

2c̄

∫
BR/4

∣∣Vp̄(Dv)− Vp̄(Dw)
∣∣2 dx.

If p̄ < 2 on the other hand we use (2.8) and Young’s inequality twice so that

II ≤ c(γ1)

∫
BR/4

|p(x)− p̄||Dv|p̄−1+λx(p(x)−p̄)∣∣ log |Dv|
∣∣ ∣∣Vp̄(Dv)− Vp̄(Dw)

∣∣ 2
p̄ dx

+ c(γ1)

∫
BR/4

|p(x)− p̄||Dv|
p̄
2 +λx(p(x)−p̄)∣∣ log |Dv|

∣∣ ∣∣Vp̄(Dv)− Vp̄(Dw)
∣∣ dx

≤ c
∫
BR/4

|p(x)− p̄|p̄
′
|Dv|p̄+λx p̄

′(p(x)−p̄) logp̄
′
|Dv| dx

+ c

∫
BR/4

|p(x)− p̄|2|Dv|p̄+λx2(p(x)−p̄) log2 |Dv| dx

+
1

2c̄

∫
BR/4

∣∣Vp̄(Dv)− Vp̄(Dw)
∣∣2 dx = III + IV + V

using again, twice, Young’s inequality.
Now we pointwise estimate in both cases, distinguishing the two cases |Dv(x)| ∈

(0, e) and |Dv(x)| ≥ e: in the first one, for t = 2, p̄′

|Dv(x)|p̄+tλx(p(x)−p̄) logt |Dv(x)| ≤ c(γ1, γ2)

thanks to the estimate (3.16), since using (3.4) we infer∣∣tλx(p(x)− p̄)
∣∣ ≤ t ωp(·)(R/4) ≤ max{2, γ′1}ωp(·)(R0) ≤ γ1

2
.
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In the second one, when |Dv(x)| ≥ e, using the previous bound and denoting in
short ω = ωp(R/4)

|Dv(x)|p̄+tλx(p(x)−p̄) logt |Dv(x)|

≤
(
1 + |Dv(x)|

)p̄+tω
logt

(
e+ (1 + |Dv(x)|)p̄+tω

)
.

Thus III + IV is bounded by

c
∑

t∈{2,p̄′}

χ[2,+∞)(t)

∫
BR/4

|p(x)− p̄|t
(
1 + |Dv|

)p̄+tω
logt

(
e+ (1 + |Dv|)p̄+tω

)
dx.

We estimate in the same way the two averaged integrals: being δ0 the posi-
tive constant from Theorem 2.4, we use Hölder’s inequality with conjugate ex-
ponents (1 + δ0/4, 1 + 4/δ0) and then Lemma 2.3 with the choices f = (1 +
|Dv|)(p̄+tω)(1+δ0/4), β = t(1 + δ0/4), σ = (1 + δ0/4)−1, θ = (n + 1)δ0/2 + 1 and

ς̃ = 1+δ0/2
1+δ0/4

so that∫
BR/4

|p(x)− p̄|t
(
1 + |Dv|

)p̄+tω
logt

(
e+ (1 + |Dv|)p̄+tω

)
dx

≤ Rt
(∫

BR/4

∣∣∣p(x)− p̄
R/4

∣∣∣t(1+ 4
δ0

)

dx
) δ0

4+δ0×

×
(∫

BR/4

(
1 + |Dv|

)(p̄+tω)(1+
δ0
4 )

logt(1+
δ0
4 )
(
e+ (1 + |Dv|)p̄+tω

)
dx
) 4

4+δ0

≤ cRt logt
( 1

R

)(∫
BR/4

∣∣∣p(x)− p̄
R

∣∣∣t(1+ 4
δ0

)

dx
) δ0

4+δ0×

×
(

1 +R(n+1)(1+
δ0
2 )

∫
BR/4

(
1 + |Dv|

)(p̄+tω)(1+
δ0
4 )
dx
)t
×

×
(∫

BR/4

(
1 + |Dv|

)(p̄+tω)(1+
δ0
2 )
dx
) 2

2+δ0

(3.24)

for t ∈ {2, p̄′}; similarly as described in the proof of Lemma 3.2, we can take the
constant depending only on the data (up to possibly further reduce the value of
the radius R0(n, p(·),M)).

For the first integrals appearing in the addendi of the display above, we can
choose q ≡ q(data) large enough so that

t
(

1 +
4

δ0

)
= q∗ ⇐⇒ q =

[ t(4 + δ0)

δ0

]
∗

=
nt(4 + δ0)

(t+ n)δ0 + 4t
< n

(remember that t can only take the values 2 and p̄′ and therefore t > 1); hence

(3.25)
(∫

BR/4

∣∣∣p(x)− p̄
R/4

∣∣∣ t(4+δ0)
δ0

dx
) δ0

4+δ0 ≤ c(data)
(∫

BR

|Dp|q dx
) t
q

for the choice of q = q(t) made above. Clearly we can take an exponent q valid for
the two cases simply choosing the largest of the ones corresponding to the choices
t = 2 and t = p̄′. For the second integrals we can estimate (with the compact
notation p− = p−R/4)∫

BR/4

(
1 + |Dv|

)(p̄+tω)(1+
δ0
2 )
dx ≤

∫
BR/4

(
1 + |Dv|

)p(x) p̄+tω

p−
(1+

δ0
2 )
dx
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and we notice that thanks to (3.4) it holds

p̄+ tω

p−

(
1 +

δ0
2

)
≤
(

1 +
max{2, γ′1}

γ1
ωp(R/4)

)(
1 +

δ0
2

)
≤
(

1 +
δ0

2 + δ0

)(
1 +

δ0
2

)
≤ 1 + δ0;

therefore for x̄ ∈ BR(∫
BR/4

(
1 + |Dv|

)(p̄+tω)(1+
δ0
2 )
dx
) 2

2+δ0 ≤ c
(∫

BR/4

(
1 + |Dv|

)p(x)(1+δ0)
dx
) p̄+tω

p−
1

1+δ0

≤ c
(∫

BR/2

(
1 + |Dv|

)p(x)
dx
) p̄+tω

p−

≤ c min
{(∫

BR

(
1 + |Du|

)
dx
)p(x̄)

, R−(n+1)
}

(3.26)

for c ≡ c(data) since we can use (3.8)-(2.10) and estimate (see the similar (3.21))(∫
BR/2

(1 + |Du|)p(x) dx
) p̄+tω

p−
−1

≤
(∫

BR/2

(1 + |Du|)p(x) dx
) t+1
γ1

ω

≤ c.

Merging the estimates from (3.23) to (3.26) and recalling the notation in (3.2) we
come up with

1

c̄

∫
BR/4

|Vp̄(Dv)− Vp̄(Dw)|2 dx ≤ I ≤ II ≤ 1

2c̄

∫
BR/4

|Vp̄(Dv)− Vp̄(Dw)|2 dx

+ c
[
P2
R,q + χ(−∞,2)(p̄)P

p̄′

R,q

]( ∫
BR

(
1 + |Du|

)
dx
)p(x̄)

and this, after reabsorbing and taking into account (3.3), concludes the proof. �

Remark 3.1. We can suppose, possibly enlarging the smaller of the two, that the
two exponents defined in Lemmas 3.2 and 3.3 do coincide.

We make explicit a consequence of a simple estimate in the previous proof; notice
that the assumption (3.30) here is not needed (and this is the reason why (3.28)
will be used before (3.31), in order to ensure that (3.30) holds).

Lemma 3.4 (Rough comparison). Let w be the solution to (3.6) as in Lemma 3.3.
For every ε1 ∈ (0, 1) there exists a constant M1 ≡M1(data, ε1) ≥ 1 such that if

(3.27)

∫
BR

|Du| dx ≤ λ, AR,q + PR,q ≤
1

M1

for some λ ≥ 1, then

(3.28)

∫
BR/4

|Du−Dw| dx ≤ ε1λ.

Proof. We denote p̄ = p̄R/4; merging (3.14) and (3.22) for appropriate choices of
ρ, x̄, then using (3.27) yields∫

BR/4

∣∣Vp̄(Du)− Vp̄(Dw)
∣∣2 dx ≤ c[AR,q + PR,q

]2(∫
BR

(
1 + |Du|

)
dx
)p̄

≤ c̃(data)

M2
1

λp̄(3.29)
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and this, in view of (2.7), gives (3.28) with M2
1 = c(γ2)c̃/εγ2

1 if p̄ ≥ 2 (c(γ2) is the
constant appearing in (2.7)). If p̄ < 2 we use (2.8), Hölder’s inequality and the
reverse Hölder’s inequality (2.10):∫
BR/4

|Du−Dw|p̄ dx ≤ c
∫
BR/4

∣∣Vp̄(Du)− Vp̄(Dw)
∣∣2 dx

+ c
(∫

BR/4

|Du|p̄ dx
) 2−p̄

2
(∫

BR/4

∣∣Vp̄(Du)− Vp̄(Dw)
∣∣2 dx) p̄2

≤
˜̃c(data)

M2
1

λp̄ +
˜̃c(data)

M p̄
1

(∫
BR

(
1 + |Du|

)
dx
)p̄ 2−p̄

2

λp̄
p̄
2

again using (3.29), and this gives (3.28) for Mγ1

1 = 2˜̃c/εγ1

1 . We choose the value

M1 = max
{(c(γ2)c̃

εγ2

1

) 1
2

,
( 2˜̃c

εγ1

1

) 1
γ1
}

to conclude the proof. �

In this paper we want to follow a similar, but different, route with respect to
that taken in [3]. We have different comparison estimates involving two different
V -functions and we do not want here to localize such estimates at every step of
the iteration; we better linearize those estimates in order to be able to perform
the iteration at L1-level. Therefore the following refined comparison lemma will
be necessary: for a constant σ ∈ (0, 1/4) to be chosen, suppose that Bσ−1R ≡
Bσ−1R(x0) ⊂ Ω and let

ṽ ∈ u+W 1,p(·)(Bσ−1R/2), w̃ ∈ v +W 1,p̄σ−1R/2(Bσ−1R/4)

be the solutions to (3.5)-(3.6) with Bσ−1R replacing BR. Suppose moreover σ−1R ≤
R0 for R0 ≡ R0(data, p(·),M) the constant defined at the beginning of Section 3
and subsequently reduced. Lemma 3.5 can be seen as a quantitative version of
Lemma 3.4.

Lemma 3.5 (Linearized comparison). Suppose that there exist constants A, λ ≥ 1
such that

(3.30)
λ

A
≤ inf
BR/4

|Dw̃| and

∫
Bσ−1R

|Du| dx ≤ λ;

then

(3.31)

∫
BR/4

|Du−Dw| dx ≤ c
[
Aσ−1R,q + Pσ−1R,q

]
λ

holds true for a constant c depending only on data, A and σ; q < n is the exponent
mentioned in Remark 3.1.

Proof. We again denote p̄ = p̄R/4 and we start noticing that Lemma 3.2 for appro-
priate choices of ρ and x̄ yields

(3.32)

∫
BR/4

∣∣Vp̄(Du)− Vp̄(Dv)
∣∣2 dx ≤ c[A2

R,q + P2
R,q

]
λp̄

and ∫
Bσ−1R/4

∣∣Vp̄(Du)− Vp̄(Dṽ)
∣∣2 dx ≤ c[A2

σ−1R,q + P2
σ−1R,q

]
λp̄;

moreover merging the previous estimate and (3.22) we have (3.29) and∫
BR/4

∣∣Vp̄(Du)− Vp̄(Dw̃)
∣∣2 dx ≤ c(n, σ)

∫
Bσ−1R/4

∣∣Vp̄(Du)− Vp̄(Dw̃)
∣∣2 dx
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≤ c
[
A2
σ−1R,q + P2

σ−1R,q

]
λp̄.(3.33)

The four constant are depending on data and σ; we also used (3.30). In order to
prove (3.31), we separately consider the cases where p̄ > 2 and p̄ < 2 (being the
case p̄ = 2 a trivial consequence of (3.29), since V2(ξ) = ξ). In the first one, using
our assumption (3.30)∫

BR/4

|Du−Dw|p̄
′
dx ≤ c(γ2, A)λ(2−p̄)p̄′

∫
BR/4

|Dw̃|(p̄−2)p̄′ |Du−Dw|p̄
′
dx;

then we use triangle’s inequality several times to estimate∫
BR/4

|Dw̃|(p̄−2)p̄′ |Du−Dw|p̄
′
dx ≤ c(γ2)

∫
BR/4

|Dv|(p̄−2)p̄′ |Du−Dv|p̄
′
dx

+ c(γ2)

∫
BR/4

|Dv|(p̄−2)p̄′ |Dv −Dw|p̄
′
dx

+ c(γ2)

∫
BR/4

|Du−Dv|(p̄−2)p̄′ |Du−Dw|p̄
′
dx

+ c(γ2)

∫
BR/4

|Du−Dw̃|(p̄−2)p̄′ |Du−Dw|p̄
′
dx = c

[
I + II + III + IV

]
.

Since p̄ > 2, due to (2.6), as after (3.23)

|Dv|(p̄−2)p̄′ |Du−Dv|p̄
′
≤ c
∣∣Vp̄(Du)− Vp̄(Dv)

∣∣p̄′ |Dv| p̄−2
2 p̄′ ;

therefore, using Holder’s inequality with conjugate exponents (2(p̄ − 1)/p̄, 2(p̄ −
1)/(p̄− 2)), (3.32), (3.26) and (3.30)

I ≤
(∫

BR/4

∣∣Vp̄(Du)− Vp̄(Dv)
∣∣2 dx) p̄′2 (∫

BR/4

|Dv|p̄ dx
) p̄−2

2(p̄−1)

≤ c
[
Ap̄
′

R,q + Pp̄′

R,q

]
λp̄

p̄′
2

(∫
BR

(
1 + |Du|

)
dx
)p̄ p̄−2

2(p̄−1) ≤ c
[
Ap̄
′

R,q + Pp̄′

R,q

]
λp̄

with c depending on data and σ, since λ ≥ 1. Similarly, using this time (3.22) and
again (3.26)-(3.30)

II ≤
(∫

BR/4

∣∣Vp̄(Dv)−Vp̄(Dw)
∣∣2 dx) p̄′2 (∫

BR/4

|Dv|p̄ dx
) p̄−2

2(p̄−1) ≤ c
[
Ap̄
′

R,q+Pp̄′

R,q

]
λp̄.

Finally, we use Hölder’s inequality, (2.7), (3.32) to estimate the first integral and
(3.29) for the second in III:

III ≤
(∫

BR/4

|Du−Dv|p̄ dx
) p̄−2
p̄−1(∫

BR/4

|Du−Dw|p̄ dx
) 1
p̄−1

≤ c
[
A2
σ−1R,q + P2

σ−1R,q

]
λp̄.

Similarly, using (3.29)-(3.33)

IV ≤
(∫

BR/4

|Du−Dw̃|p̄ dx
) p̄−2
p̄−1(∫

BR/4

|Du−Dw|p̄ dx
) 1
p̄−1

≤ c
[
A2
σ−1R,q + P2

σ−1R,q

]
λp̄.

This essentially concludes the proof in the super-quadratic case, up to some alge-

braic manipulations, after noticing that A2
σ−1R,q ≤ Ap̄

′

σ−1R,q thanks to (3.3), and

similarly for Pσ−1R,q.
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If, on the other hand, p̄ < 2, we use (2.8) and Hölder’s inequality:∫
BR/4

|Du−Dw|p̄ dx ≤ c
∫
BR/4

∣∣Vp̄(Du)− Vp̄(Dw)
∣∣2 dx

+ c
(∫

BR/4

|Du|p̄ dx
) 2−p̄

2
(∫

BR/4

∣∣Vp̄(Du)− Vp̄(Dw)
∣∣2 dx) p̄2 .

Next we plug in the estimate (3.29) obtaining∫
BR/4

|Du−Dw|p̄ dx ≤ c
[
A2
R,q + P2

R,q

]
λp̄ + c

[
Ap̄R,q + Pp̄

R,q

]
λ
p̄2

2

(∫
BR/2

|Du|p̄ dx
) 2−p̄

2

≤ c
[
AR,q + PR,q

]p̄
λp̄,

were we again used the higher integrability (2.10) and (3.3) thanks to p̄ < 2. �

4. Excess decay and conclusion

Once having at hand the comparison estimates of the previous section, the proof
follows the lines of the similar ones in [28, 3]; we however re-propose it to highlight
several different points.

As a first result of this section, we show how the previous comparison estimates
translate into a precise decay inequality for the L1-excess. We start from a ball
BR(x0) ⊂ Ω with R ≤ R0, with R0 defined in the previous section as a function of
data, p(·) and M and we immediately stress we are going to further decrease the
value of R0 in a way depending only on data, p(·), a(·) and M .

For σ ∈ (0, 1/4) (that we are going to choose explicitly soon, see (4.9)), we define

(4.1) Rj = σjR, θBj = BθRj (x0), j ∈ N0, θ > 0;

accordingly we call vj the comparison function defined for BR/2 = Bj/2 in (3.5)
and wj the solution to (3.6) over Bj/4. We also define, q as in Remark 3.1,

(4.2) aj =
∣∣∣ ∫

Bj

Dudx
∣∣∣, Ej =

∫
Bj

∣∣Du− (Du)Bj

∣∣ dx,
Aj = ARj ,q = Rj

(∫
Bj

|Da|q dx
) 1
q

, Pj = PRj ,q = Rj log
( 1

Rj

)(∫
Bj

|Dp|q dx
) 1
q

.

Notice that with this notation, for j ∈ N we have σ−1Rj ≤ R ≤ R0; therefore the
pre-requisite for Lemma 3.5 is satisfied and we can prove the following lemma (see
[34, Lemma 4.2], [10, After (4.14)], [29, Lemma 8.5] for related results).

Lemma 4.1. Let j ∈ N, ε2, ε3 ∈ (0, 1) and A ≥ 1.

• (Qualitative excess smallness) There exists a threshold σ1 ∈ (0, 1/4), de-
pending on data and ε2, such that for any σ ∈ (0, σ1] there exists a large
constant M2 ≡M2(data, ε2, σ) ≥ 1 such that if

(4.3)

∫
Bj

|Du| dx ≤ λ, Aj−1 + Pj−1 ≤
1

M2

for some λ ≥ 1, then

(4.4)

∫
Bj+1

∣∣Du− (Du)Bj+1

∣∣ dx ≤ ε2λ.
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• (Quantitative excess smallness) There exists a threshold σ2 ≡ σ2(data, ε3, A) ∈
(0, 1/4) such that for σ ∈ (0, σ2] there exists M3 ≡M3(data, σ, A) ≥ 1 such
that if

(4.5)
λ

A
≤
∫
Bj+1

|Du| dx,
∫
Bj−1

|Du| dx ≤ λ, Aj−1 + Pj−1 ≤
1

M3

for some λ ≥ 1, then

(4.6)

∫
Bj+1

∣∣Du− (Du)Bj+1

∣∣ dx ≤ ε3

∫
Bj

∣∣Du− (Du)Bj
∣∣ dx+ cld

[
Aj−1 + Pj−1

]
λ

with cld depending on data, A and σ.

Proof. Using several times a standard property of the excess and being σ ≤ σ0 (the
constant appearing in Theorem 2.5)∫

Bj+1

∣∣Du− (Du)Bj+1

∣∣ dx
≤ 2

∫
Bj+1

∣∣Du− (Dwj)Bj+1

∣∣ dx
≤ 2

∫
Bj+1

∣∣Dwj − (Dwj)Bj+1

∣∣ dx+ 2

∫
Bj+1

|Du−Dwj | dx

≤ 4cph (4σ)α0

∫
Bj/4

∣∣Dwj − (Du)Bj
∣∣ dx+ 2(4σ)−n

∫
Bj/4

|Du−Dwj | dx

≤ 4n+1cph (4σ)α0

∫
Bj

∣∣Du− (Du)Bj
∣∣ dx+ 2σ−n

∫
Bj/4

|Du−Dwj | dx.(4.7)

To prove (4.4) we observe that if σ1 ≤ σ0 is such that 4n+2cph (4σ1)α0 ≤ ε2 then,
using (4.3)

4n+1cph (4σ)α0

∫
Bj

∣∣Du− (Du)Bj
∣∣ dx ≤ 2 · 4n+1cph (4σ1)α0

∫
Bj

|Du| dx ≤ ε2

2
λ

for every σ ≤ σ1; now we take M2 as the constant given by Lemma 3.4 for the
choice ε1 = ε2/[4σ

−n] and we have (4.4).
To prove (4.6) we take

σ2 ≤ min
{
σ0,
( 1

4n+6cphA

) 1
α0

,
1

4

( ε3

4n+1cph

) 1
α0
,

1

8

}
(cph and α0 are from Theorem 2.5) and for σ ≤ σ2 let M3 be the constant M1 from
Lemma 3.4 corresponding to the choice ε1 = (4σ2)n/[2A]: using our assumption,
(3.28) and triangle’s inequality we have

λ

A
≤
∫
Bj+1

|Du| dx ≤ 1

(4σ2)n

∫
Bj−1/4

|Du−Dwj−1| dx+

∫
Bj+1

|Dwj−1| dx

≤ λ

2A
+

∫
Bj+1

|Dwj−1| dx

and therefore ∫
Bj+1

|Dwj−1| dx ≥
λ

2A
.

Thus there exists a point x̄ ∈ Bj+1 such that (remember that |Dwj−1| is continuous)
|Dwj−1(x̄)| ≥ λ/[3A] and∫

Bj−1/4

|Dwj−1| dx ≤ 4n
∫
Bj−1

|Du| dx+

∫
Bj−1/4

|Du−Dwj−1| dx ≤ 4n+1λ.
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Collecting these informations and using Theorem 2.5 yields

inf
Bj/4
|Dwj−1| ≥ |Dwj−1(x̄)| − osc

Bj/4
Dwj−1

≥ λ

3A
− 2cph σ

α0

∫
Bj−1/4

|Dwj−1| dx ≥
λ

3A
− 4n+2cph σ

α0
2 λ ≥ λ

4A

and we can use Lemma 3.5 (with BR = Bj and 4A replacing A) to bound the
second term appearing in the right-hand side of (4.7); for the first term is simply
note that the coefficient of the excess is smaller than ε3 due to our choice of σ2. �

We also recall the notation introduced in (2.4): in this setting we have, for q the
constant of Remak 3.1

Sq,0(Da,R)(x0) :=

∞∑
j=0

Aj , Sq,1(Dp,R)(x0) :=

∞∑
j=0

Pj .

4.1. Gradient boundedness. We here suppose that x0 ∈ Ω is such that the limit

lim
ρ↘0

∫
Bρ(x0)

Dudx

exists; notice that this holds for a.e. x0 ∈ Ω by Lebesgue’s differentiation theorem.
We want to prove that

(4.8) lim
j→+∞

∣∣∣ ∫
Bj

Dudx
∣∣∣ ≤ λ := c̄

∫
BR

(
1 + |Du|

)
dx

with c̄ ≥ 1 depending on data to be chosen (see (4.9)); this would ensure the local
boundedness of the gradient thanks to Lebesgue’s differentiation theorem and the
local estimate (1.12) would follow by a standard covering argument.

In order to prove (4.8) we choose ε3 = 1/4, A = 80 in (4.5), take the correspond-
ing constant σ2 depending on data and choose

(4.9) σα0 = min
{ 1

240 · 4n+2cph
, σα0

2

}
, c̄ = 200σ−3n

with cph, α0 the constants appearing in Theorem 2.5; note that also c̄, σ both depend
only on data. Next we fix the value of M3 in (4.5) corresponding to this choice of
σ; then we take ε1 = (4σ)2/160 and the corresponding constant M1 from Lemma
3.4. We also take M2 corresponding to ε2 = σ2n/80 in (4.4). Thanks to Lemma
2.1 and the absolute continuity of the Lorentz-Zygmund norm, we then reduce the
radius R0, depending on data, p(·) and a(·) so that

(4.10)

Sq,0(Da)(x0, R)+Sq,1(Dp)(x0, R) =

∞∑
j=0

Aj+

∞∑
j=0

Pj ≤ min
{ 1

M1
,

1

M2
,

1

M3
,
σn

16cld

}
=⇒ Aj + Pj ≤ min

{ 1

M1
,

1

M2
,

1

M3
,

1

4cld

}
for all j ∈ N0.

We then set for j ∈ N0

Cj :=

∫
Bj

|Du| dx+ σ−2n

∫
Bj

∣∣Du− (Du)Bj

∣∣ dx, J :=
{
j ∈ N0 : Cj <

λ

40

}
;

note that J 6= ∅ (since 0 ∈ J due to the choice of c̄) and that if J is infinite we are
done, since along some subsequence

∫
Bjm
|Du| dx < λ and therefore the (existing)

limit of the averages would be less or equal than λ. Therefore to complete the
boundedness proof we can suppose J to be non-empty and finite and accordingly
set je = maxJ ; in particular we have
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(4.11) Cje =

∫
Bje

|Du| dx+ σ−2n

∫
Bje

∣∣Du− (Du)Bje

∣∣ dx ≤ λ

40
,∫

Bj

|Du| dx+ σ−2n

∫
Bj

∣∣Du− (Du)Bj

∣∣ dx ≥ λ

40
for j ≥ je + 1.

To prove (4.8) we want to show by induction that

aj + Ej ≤ λ for all j ≥ je.

Note that the base of induction is true (notice that aje + Eje ≤ Cje ≤ λ by the
definition of Cj and (4.11)) and we are thus left to prove that if for some k ≥ je
aj + Ej ≤ λ for all j ∈ {je, . . . , k}, then ak+1 + Ek+1 ≤ λ.

For the inductive step, we notice that for j ∈ {je, . . . , k}∫
Bj

|Du| dx ≤
∣∣∣ ∫

Bj

Dudx
∣∣∣+

∫
Bj

∣∣Du− (Du)Bj

∣∣ dx = aj + Ej ≤ λ;

on the other hand by (4.11) and (4.4) for j ∈ {je, . . . , k} we also have

λ

40
≤
∫
Bj+1

|Du| dx+ σ−2n

∫
Bj+1

∣∣Du− (Du)Bj+1

∣∣ dx ≤ ∫
Bj+1

|Du| dx+
λ

80
;

therefore ∫
Bj+1

|Du| dx ≥ λ

80
for the same indexes.

We are thus in position to use (4.6) with A = 80 uniformly for j ∈ {je + 1, . . . , k};
in particular

Ek+1 =

∫
Bk+1

∣∣Du− (Du)Bk+1

∣∣ dx
≤ 1

4

∫
Bk

∣∣Du− (Du)Bk
∣∣ dx+ cld

[
Ak−1 + Pk−1

]
λ ≤ λ

4
+
λ

4
=
λ

2

thanks to our inductive assumption and (4.10). On the other hand summing up for
j ∈ {je + 1, . . . , k} (and performing some simple algebraic manipulations) gives

k+1∑
j=je+1

∫
Bj

∣∣Du− (Du)Bj
∣∣ dx ≤ 1

4

k+1∑
j=je+1

∫
Bj

∣∣Du− (Du)Bj
∣∣ dx

+

∫
Bje+1

∣∣Du− (Du)Bje+1

∣∣ dx+ cld λ

k−1∑
j=je

[
Aj + Pj

]
from which

k+1∑
j=je+1

∫
Bj

∣∣Du−(Du)Bj
∣∣ dx ≤ 2

∫
Bje+1

∣∣Du−(Du)Bje+1

∣∣ dx+2cld λ

k−1∑
j=je

[
Aj+Pj

]
and manipulating the integrals defining the excesses over Bje and Bje+1

k+1∑
j=je

∫
Bj

∣∣Du− (Du)Bj
∣∣ dx ≤ 5σ−n

∫
Bje

∣∣Du− (Du)Bje
∣∣ dx+ 2cldλ

∞∑
j=0

[
Aj + Pj

]
.

Now we see that (4.11) together with (4.10) guarantees

k+1∑
j=je

∫
Bj

∣∣Du− (Du)Bj
∣∣ dx ≤ [λ

8
+
λ

8

]
σn.
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Finally we can estimate by telescopic summation and triangle’s inequality

(4.12) ak+1 ≤ aje + σ−n
k∑

j=je

∫
Bj

∣∣Du− (Du)Bj

∣∣ dx ≤ λ

4
+
λ

4
=
λ

2

and the boundedness proof is concluded.

4.2. Gradient continuity. Now that we have proved that the gradient is locally
bounded, we proceed with its continuity, with a proof similar to that of the previous
section; in particular, we are going to prove that the gradient is continuous being
the local uniform limit of continuous functions - namely, its averages on small balls.
Therefore, for a compactly supported subset K b Ω, we here take an intermediate
subset K b K̃ b Ω such that d = dist(K, ∂K̃) = dist(K̃, ∂Ω); we then set

λ = ‖Du‖L∞(K̃) + 1

and we take balls with center in K and radius smaller than d.
We start fixing ε > 0 and a radius R1 = min{d/2, R0}, being R0 the threshold

from Section 3; we are going to further reduce its value. Then we choose ε3 =
1/2, A = 48/ε in (4.6), we define the corresponding small constant σ2(data, ε), set
σ = σ2 and finally take the corresponding M3 = M3(data, ε).

We begin the proof noticing that for every ε4 > 0, it is possible to find a threshold
R2, depending on data, a(·), p(·),M, d and ε4 such that

(4.13) sup
R≤R2

sup
x0∈K

∫
BR(x0)

∣∣Du− (Du)BR(x0)

∣∣ dx ≤ ε4λ :

we simply take R2 = σ2 min{R1, R̃} where R̃ ≡ R̃(data, p(·), a(·), ε4) is such that

Sq,0(Da)(x0, R) + Sq,1(Dp)(x0, R) =

∞∑
j=0

Aj +

∞∑
j=0

Pj ≤
1

M2
if R ≤ R̃,

being M2 the constant provided by Lemma 4.1 for the value ε2 = ε4 (Aj ,Pj built

starting from a generic radius R ≤ R̃ as in (4.2)). We have BR(x0) = Bj+1 with

j ≥ 1 for an appropriate choice of the starting radius r ∈ (0,min{R1, R̃}] and this
proves (4.13); note that the first condition in (4.3) is satisfied by our choice of λ.

Now we take a generic but fixed radius R ≤ σR1 and a point x0 ∈ K and we
build the sequence of balls Bj as the quantities Aj ,Pj as in (4.1)-(4.2). For ε > 0,
we reduce R1, again thanks to Corollary 2.2 and the previous result, so that

∞∑
j=0

[
Aj + Pj

]
≤ σn ε

48cld
for every starting radius R ≤ R1

and (4.13) holds with ε4 = σ2nε/48 for R ≤ R1; in particular

(4.14)

∫
Bj

∣∣Du− (Du)Bj

∣∣ dx ≤ σ2n ε

48
λ for all j ∈ N0.

This makes R1 depend on data, p(·), a(·),M, d and ε. We also define

Jε :=
{
j ∈ N0 :

∫
Bj

|Du| dx ≤ ε

48
λ
}
, je =

minJε if Jε 6= ∅

+∞ if Jε = ∅

and we write N r Jε as disjoint union of nonempty (possibly infinite) maximal
intervals Ci (i ∈ I for some set of indexes I ⊂ N0) so that Ci ⊂ N r Jε, i = min Ci
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and Ci is maximal with respect to the inclusion. In particular, for i ∈ I r {0},
i− 1 ∈ Jε. What we want to prove here is that

(4.15)
∣∣(Du)B` − (Du)Bk

∣∣ ≤ ελ for 1 ≤ k < `;

later we will show how does this lead to the conclusion of the proof.
We prove the estimate in the display above distinguishing three cases. The first

one is when k < ` < je: in this case we aim at linearizing the system due to the
fact that, by definition,∫

Bj+1

|Du| dx > ε

48
λ for all j ∈ {k − 1, . . . , `− 1}

and, obviously ∫
Bj−1

|Du| dx ≤ λ for j ∈ N.

Summing (4.6) for j ∈ {k, . . . , `− 1} and reabsorbing yields∑̀
j=k

∫
Bj

∣∣Du− (Du)Bj
∣∣ dx ≤ 2

∫
Bk

∣∣Du− (Du)Bk
∣∣ dx+ 2cld

∞∑
j=0

[
Aj + Pj

]
λ

≤ σn ε
24
λ+ σn

ε

24
λ ≤ σn ε

12
λ

using also the smallness information given by our choice of R0; hence, by telescopic
summation, as in (4.12)∣∣(Du)B` − (Du)Bk

∣∣ ≤ σ−n `−1∑
j=k

∫
Bj

∣∣Du− (Du)Bj

∣∣ dx ≤ ε

12
λ ≤ ελ.

The second case we consider is when je ≤ k < ` (if je < +∞); in this case we prove

(4.16)
∣∣(Du)B`

∣∣ ≤ ε

2
λ,

∣∣(Du)Bk

∣∣ ≤ ε

2
λ

and (4.15) will follow by triangle’s inequality. The proof of the first of the previous
inequality (being the second one the same) is anyway simple: if ` ∈ Jε, then simply∣∣(Du)B`

∣∣ ≤ ∫
B`

|Du| dx ≤ ε

48
λ;

if ` 6∈ Jε, on the other hand, we can consider the maximal interval Cı̄ containing `
and we redo the argument of the previous case, replacing k with ı̄− 1 (notice that
ı̄ > je ≥ 0 since ` ≥ ı̄ and ` > je), to get∣∣(Du)B` − (Du)Bı̄−1

∣∣ ≤ σ−n ∑̀
j=ı̄−1

∫
Bj

∣∣Du− (Du)Bj

∣∣ dx
≤ 2σ−n

∫
Bı̄−1

∣∣Du− (Du)Bı̄−1

∣∣ dx+ 2σ−ncld

∞∑
j=0

[
Aj + Pj

]
λ

≤ ε

8
λ+

ε

24
λ

and therefore, since ı̄− 1 ∈ Jε by definition of Cı̄,∣∣(Du)B`

∣∣ ≤ ∣∣(Du)B` − (Du)Bı̄−1

∣∣+
∣∣(Du)Bı̄−1

∣∣ ≤ ε

4
λ+

ε

48
λ ≤ ε

2
λ.

We complete the proof of (4.15) by showing that also in the case k < je ≤ ` (4.16)
holds. Indeed we can proceed as in the first case replacing ` with je−1 ≥ 1 getting∣∣(Du)Bje−1

− (Du)Bk

∣∣ ≤ ε

12
λ =⇒
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∣∣(Du)Bje − (Du)Bk

∣∣ ≤ σ−n ∫
Bje

∣∣Du− (Du)Bje

∣∣ dx+
ε

12
λ =⇒∣∣(Du)Bk

∣∣ ≤ ∣∣(Du)Bje − (Du)Bk

∣∣+
∣∣(Du)Bje

∣∣ ≤ ε

48
λ+

ε

12
λ+

ε

48
λ ≤ ε

2
λ

using (4.14) too and recalling that je ∈ Jε; on the other hand, if we proceed as in
the second one we directly have ∣∣(Du)B`

∣∣ ≤ ε

2

and also in this last case we have (4.15).
To conclude, we notice that the previous result implies that for every ε > 0 there

exists a constant Rε > 0 depending on data, p(·), a(·),M, d and ε but uniform with
respect to x0 ∈ K such that

(4.17)
∣∣(Du)Br1 (x0) − (Du)Br2 (x0)

∣∣ ≤ ελ
for all 0 < r1 < r2 ≤ Rε; as a direct consequence Du is continuous for every x0 ∈ K
and thus in Ω. Let indeed be Rε = σR1: there exist two indexes 1 ≤ k ≤ ` such
that

σ`+1R2 < r1 ≤ σ`R2, σk+1R2 < r2 ≤ σkR2;

we have by (4.13)∣∣(Du)Br1 (x0) − (Du)B`+1

∣∣ ≤ σ−n ∫
Br1 (x0)

∣∣Du− (Du)Br1 (x0)

∣∣ dx ≤ ε

48
,∣∣(Du)Br2 (x0) − (Du)Bk+1

∣∣ ≤ ε

48

and these two estimates, together with (4.15), give (4.17).
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