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Abstract. We prove C1 regularity for local vectorial minimizers of the non-
autonomous functional

w ∈W 1,1
loc (Ω;RN ) 7−→

∫
Ω
b(x)

[
|Dw|p + a(x)|Dw|p log(e+ |Dw|)

]
dx ,

with Ω open subset of Rn, n ≥ 2 , p > 1, 0 ≤ a(·) ≤ ‖a‖L∞(Ω) < ∞ and

0 < ν ≤ b(·) ≤ L. The result is obtained provided that the function a(·)
is log-Dini continuous and that the coefficient b(·) is Dini continuous or it

is weakly differentiable and its gradient locally belongs to the Lorentz space
Ln,1(Ω;Rn).

Keywords: non-autonomous functionals, gradient continuity, Dini continuous
coefficients.

1. Introduction and results

A recent and important object of investigation in the Calculus of Variations is
the study of the regularity of minimizers of non-autonomous functionals of the type

(1.1) u ∈W 1,1
loc (Ω) 7−→

∫
Ω

f(x, u,Du) dx ,

being Ω a bounded domain in Rn and f : Ω×R×Rn → R a Carathéodory function
satisfying unbalanced growth conditions of (p, q)-type:

(1.2)
1

c
|ξ|p ≤ f(x, u, ξ) ≤ c

(
1 + |ξ|q

)
1 < p < q ,

for almost every x ∈ Ω and all (u, ξ) ∈ R × Rn, with c ≥ 1. General energies of
this type (i.e., when no structural assumptions are made) were initially introduced
and studied by Marcellini [41, 42, 43] in the late eighties but the theory has seen
deep and substantial contributions in the recent years, see for instance the Schauder
estimates in [29, 30], the series of regularity results under sharp bounds on p and q
by Bella and Schäffner [8, 9, 35, 45], the interesting approach developed in [7] also
covering more general cases and the new boundary regularity results in [11, 31].

Starting from [18, 19, 20], a substantial amount of work has been put in the study
of a special structure having (p, q)-growth, the so-called double phase structure,
where the peculiar form of the energy has allowed a much more precise, clean
and careful analysis of several aspects of regularity. We refer with double phase
structure the fact that the energy density has the form

(1.3) f(x, u, ξ) ≈ |ξ|p + a(x)|ξ|q

with p and q as in (1.2) and a(·) ≥ 0 continuous and sufficiently regular to compen-
sate the non-uniform ellipticity of the functional [28]; see [6] for a regularity theory
for local minimizers in a general framework, [25, 26] for interesting borderline cases,
[27] for extension to manifold-valued minimizers, [44] for ω-minimizers, [22, 24] for
the fully nonlinear counterpart of the theory and [33, 34] for far-reaching extensions
of such structures.
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The object of study of this paper is the borderline version of the double phase
functional (1.1)-(1.3) that was introduced in [4]:

(1.4) u ∈W 1,1
loc (Ω;RN ) 7−→ P(u,Ω) :=

∫
Ω

b(x)H(x,Du) dx

=

∫
Ω

b(x)
[
|Du|p + a(x)|Du|p log(e+ |Du|)

]
dx

for p > 1, N ≥ 1, and the aspect of regularity we are interested in is the plain
continuity of the gradient of local minimizers. The basic assumptions we impose
on a(·), b(·) are as follows: a : Ω→ R continuous and b : Ω→ R measurable with

(1.5) 0 ≤ a(x) ≤ ‖a‖L∞ < +∞, 0 < ν ≤ b(x) ≤ L < +∞ for a.e. x ∈ Ω.

Due to the soft non-uniform ellipticity of the energy in (1.4), the regularity of
minimizers is strictly entangled with the behavior of the quantity

(1.6) ωlog(R) = ωa(R) log
( 1

R

)
where ωa : [0, 1]→ [0, 2‖a‖L∞ ] is a modulus of continuity for a(·): a concave (thus
continuous in (0, 1)) and increasing function, continuous in zero and with ωa(0) = 0,
such that

(1.7) |a(x)− a(y)| ≤ ωa(|x− y|) for all x, y ∈ Ω with |x− y| ≤ 1 .

We define in a totally analogous way ωb : [0, 1]→ [0, 2] as the modulus of continuity
of b(·), if b is (uniformly) continuous (note that all the results we are mentioning
and proving are local; it is therefore not restrictive to assume that if b is continuous,
then it has a modulus of continuity):

(1.8) |b(x)− b(y)| ≤ Lωb(|x− y|) for all x, y ∈ Ω with |x− y| ≤ 1 .

More in detail, schematically summarizing the results in [4, 5, 21], one has that
scalar local minimizer to (1.4) (i.e., N = 1) in the case (1.5) holds are such that

• if lim supρ↘0 ωlog(R) <∞, then

u ∈ C0,α
loc (Ω), Du ∈ Lp(1+δ0)

loc (Ω;Rn)

for some constants α, δ0 ∈ (0, 1) depending on the data and the Harnack’s
inequality holds for positive solutions;

• if lim sup
R↘0

ωlog(R) = 0 and b(·) is continuous (i.e., it has a modulus of con-

tinuity), then

u ∈ C0,α
loc (Ω) for every α ∈ (0, 1);

• if ωlog(R) + ωb(R) ≤ cRγ for some γ ∈ (0, 1) and c ≥ 1, then

u ∈ C1,β
loc (Ω)

for some exponent β ∈ (0, 1) depending on the data.

Note that some of the previous results have also a vectorial counterpart, but some
do not. Other noticeable results for minimizers of the functionals in (1.4) and
measure data problems associated to its Euler equation can be found in [12, 13, 14]
by Byun, Youn and collaborators; see also [1] for a significant counterexample.
A natural borderline question would be regarding the assumptions to be imposed
on b(·), a(·) in order to ensure gradient continuity for local minimizers and a first
answer is given in the next theorem:
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Theorem 1.1. Let u ∈ W 1,p
loc (Ω;RN ), N ≥ 1, a local minimizer of (1.4) under

the assumption (1.5); suppose moreover that b(·) is Dini continuous and that a(·)
is log-Dini, in the sense, respectively, that both ωb(ρ) and ωlog(ρ) are integrable in
zero with respect to the measure dρ/ρ:

(1.9)

∫ 1

0

ωb(ρ)
dρ

ρ
<∞,

∫ 1

0

ωlog(ρ)
dρ

ρ
=

∫ 1

0

ωa(ρ) log
(1

ρ

) dρ
ρ
<∞ .

Du is continuous in Ω and the following local boundedness estimate holds: for every
K b Ω, there exists a radius R0 depending on n,N, p, L/ν, ωb(·), ωa(·),dist(K, ∂Ω)
and ‖H(·, Du)‖L1(K) such that for almost every x0 ∈ K and each ball BR(x0) ⊂ K
with radius R ∈ (0, R0] it holds

(1.10) H(x0, Du(x0)) ≤ c(n,N, p, L/ν)

∫
BR(x0)

H(x,Du(x)) dx .

Note that the scalar case of the previous result is a consequence of [13, Theorem
1.2] and the fact that an energy, weak solution to the Euler equation of P is also a
SOLA; the extension of the results in [13] to the vectorial case is completely non-
trivial and therefore we decided to present and prove Theorem 1.1, which follows
without effort from the approach we developed to prove the forthcoming Theorem
1.2. Dini continuity of the coefficient is a natural assumption ensuring gradient
continuity and pointwise potential estimates whose best possible consequence is
gradient continuity, see [13, 38, 39] and the counterexample in [36]; the log-Dini
continuity of a(·) is also quite natural in view of the fact that, at least heuristically,
it is simply needed a logarithmic correction on the assumption on b(·) for the
regularity of a(·) [13]; see also [3] for a declination of this principle from the point
of view of Sobolev-like assumptions.

Maybe more interesting and less expected of the previous one is the forthcoming
Theorem 1.2 where we replace the assumption of Dini continuity of b(·) with an
assumption of integral-Sobolev type. In particular we shall assume that b(·) is
weakly differentiable and that its gradient belongs to the Lorentz space Ln,1 locally
in Ω, which means that for every K b Ω there holds∫ ∞

0

∣∣{x ∈ K : |Db(x)| > λ}
∣∣ 1
n dλ <∞ .

We emphasize that a by-now classic Sobolev-type sharp embedding in Lorentz
spaces ensures that in this case b(·) is continuous but not Dini continuous; see
[17, Remark 3.6]. Therefore, Theorem 1.1 does not follow by embedding from

Theorem 1.2. Let u ∈ W 1,p
loc (Ω;RN ) a minimizer of (1.4) under the assumption

(1.5). Suppose that a(·) is log-Dini continuous and that b ∈ W 1,1
loc (Ω) with Db ∈

Ln,1loc (Ω;Rn); then Du is continuous in Ω and a local boundedness estimate as (1.10)
holds with the sole difference that R0 here depends on |Db(·)|/ν instead of ωb(·) (the
other dependencies remain unchanged).

We stress that it is also possible to impose Sobolev-Lorentz-Zygmund type as-
sumptions on the switching coefficient a(·) and this was done in [3] by the first
author. In particular in [3] the case without coefficient is treated (i.e., b ≡ 1) but
gradient continuity of minimizers of (1.4) is proved not supposing a(·) log-Dini
continuous, but weakly differentiable with∫ ∞

0

∣∣{x ∈ Ω : |Da(x)| > λ}
∣∣ 1
n log+ λ dλ <∞, (log+ λ = max{log λ, 0}) ,

that is, by a nice result by Bennett and Rudnick [10], Da ∈ Ln,1 logL(Ω;Rn) (or
at least locally in Ω). We believe that it is possible to consider on both a(·), b(·)
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assumptions of integral type, but this goes beyond the scopes of this work and will
be investigated in the future.

The concept allowing to prove gradient continuity under the assumptions of
Theorem 1.1 finds its roots in the basic perturbation idea going back to Campanato:
we fix a ball BR ≡ BR(x0) b Ω and we quantify, in integral terms, how much our
minimizer is distant from a regular minimizer of a reference variational problem (see
(3.3)-(3.4)). This is measured in terms of the quantities ωb(R) and ωlog(R) (see
(5.1)). Both the gradient boundedness and its continuity come from a telescopic
summation argument and this ultimately boils down to testing the summability of
ωb + ωlog along a sequence of radii Rj = δjR for some starting radius R > 0 and a
very small constant δ � 1. A simple computation shows that

∞∑
j=0

ωb(Rj) ≈
∫ 2R

0

ωb(ρ)
dρ

ρ
,

∞∑
j=0

ωlog(Rj) ≈
∫ 2R

0

ωlog(ρ)
dρ

ρ

(see (4.2) and (5.2)); it is immediate now to realize why the assumptions of Dini
and log-Dini continuity come into play.

Theorem 1.2 is based on a much more refined, and quite new, perturbation
argument. Thanks to the use of higher integrability, the aforementioned distance
from the regular minimizer is measured, for what concern the coefficient b(·) (the
switching coefficient is indeed treated exactly as in Theorem 1.1), in terms of the
Ls-excess, for s� 1 a very large constant:

(1.11)
(∫

BR

∣∣b− (b)BR

∣∣s dx)1/s

, (b)BR =

∫
BR

b(y) dy .

One has here to realize that in the case Db ∈ Ln,1, the dyadic summation of this
quantity is bounded, in view of Sobolev-Poincaré’s inequality and Lemma 4.1 (which
is a simple consequence of the characterization of Ln,1 in terms of rearrangements):
for q = s∗ = ns/(n+ s) < n as in Lemma 3.2 and Bj ≡ BRj (x0)

∞∑
j=0

(∫
Bj

∣∣b− (b)Bj

∣∣s dx)1/s

.
∞∑
j=0

Rj

(∫
Bj

|Db|q dx
)1/q

. ‖Db‖Ln,1(B2R) .

The idea of considering coefficient with controlled excess (in the sense just de-
scribed) is not totally new: equations and variational problems with VMO coeffi-
cients - that is, for which their excess as defined in (1.11) is vanishing as R↘ 0+,
uniformly with respect to the center of the balls - have been largely studied since
the seminal works [15, 16]. Much more recent is the observation that one can also
consider summability properties of the excess along dyadic sequences of radii be-
yond its qualitative smallness. In [38] it is proved that systems of p-Laplacian type
have C1

loc solutions provided the right-hand side belongs to Ln,1:

div
(
|Du|p−2Du

)
= f, p > 1 .

This is a consequence, for equations, of the celebrated linear potential estimates
in [37] and can also be proved as corollary of the more general vectorial potential
estimates of [40]. In any case, this is the affirmative response to a long-standing
conjecture by Uraltseva, claiming that the condition on f ensuring Lipschitz reg-
ularity for solution should be independent of p. We choose to mention [38] since
the telescopic summation technique therein introduced was the main inspiration
for the papers [2, 3] of the first author and also for the present one. A further step
is the extension of this idea to the coefficients of uniformly elliptic problems, and
this can be done (see [2] and the current paper) realizing that, at least by formal
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differentiation, coefficients can be treated as right-hand sides. In [28, Theorem 1.8]
it is shown that solutions to uniformly elliptic vectorial problems of the type

div
(
b(x)

ϕ′(|Du|)
|Du|

Du
)

= f

are Lipschitz (and therefore C1, after computations of standard flavor) regular
if both |f | and |Db| belong to Ln,1; the approach therein is based on Moser’s
iteration. See [2] again for the two dimensional case and a perturbative approach
to the question.

2. Preliminaries

2.1. Local and global minimizers. A local minimizer to P is a function u ∈
W 1,1

loc (Ω;RN ), N ≥ 1 such that H(·, Du) ∈ L1
loc(Ω) and the minimality condition

P(u, supp(u− v)) ≤ P(v, supp(u− v))

is satisfied whenever v ∈W 1,1
loc (Ω;RN ) is such that supp (u− v) b Ω.

Due to the local nature of our results, we may assume that Ω is a bounded
domain and that local minimizers u belong to W 1,p(Ω;RN ) with H(·, Du) ∈ L1(Ω)
too. As a consequence, we will write ‖Du‖Lp for ‖Du‖Lp(Ω;RN ) and ‖H(·, Du)‖L1

for ‖H(·, Du)‖L1(Ω). The minor changes that lead from this situation to the case

described in Theorems 1.1-1.2 are left to the reader.

2.2. Notation and elementary properties. In what follows we denote by c a
general positive constant possibly varying from line to line; special occurrences will
be denoted by c0, c̄, etc. All such constants will always be larger or equal than
one; relevant dependencies on parameters will be highlighted using parentheses,
i.e., c ≡ c(n, p, δ) will mean that c depends on n, p and δ. We denote by

Br(x0) := {x ∈ Rn : |x− x0| < r}
the open ball with center x0 and radius r > 0; when not important, or clear from the
context, we shall omit denoting the center writing Br ≡ Br(x0). Unless otherwise
stated, different balls in the same context will have the same center. With B ⊂ Rn
being a measurable set with positive, finite measure |B| > 0, and with g : B → R`,
` ≥ 1, being a locally integrable map, we shall denote by

(g)B :=

∫
B
g(x) dx =

1

|B|

∫
B
g(x) dx

its integral average. A well-known property is the following: for any g ∈ Lp(B;R`),
p ≥ 1, ` ≥ 1, the estimate

(2.1)

∫
B
|g(x) − (g)B|p dx ≤ 2p

∫
B
|g(x) − ζ|p dx

holds for each ζ ∈ R`. We use the agreement that N is the set {1, 2, 3, . . . } and
N0 := N ∪ {0}. The Sobolev conjugate exponent p∗ is np/(n− p) when p < n.

We recall some useful properties of the logarithm function of later frequent use:

log(e+Ax) ≤ A log(e+ x) for every x ≥ 0, A ≥ 1 ,(2.2)

log(e+ xy) ≤ log(e+ x) + log(e+ y) for every x, y ≥ 0 ,(2.3)

log(e+ xσ) ≤ 1 + max{1, σ} log(e+ x) for every x ≥ 0, σ > 0 .(2.4)

The proofs are very simple, we only highlight for (2.4) that distinguishing the cases
σ < 1, where log(e + xσ) ≤ log(2(e + x)) ≤ 1 + log(e + x), and σ ≥ 1, where
log(e+ xσ) ≤ σ log(e+ x), leads to the result.



6 BARONI AND COSCIA

The following lemma will be very useful in order to treat the logarithmic part of
the energy.

Lemma 2.1. Let s > 1, σ, β, θ ≥ 0 and let f be a positive function in Ls(Br) for
some ball Br(x0) with radius r ≤ e−1. Then there exists a constant c depending on
n, β, σ, θ, s such that∫

Br

f logβ
(
e+ fσ

)
dx ≤ c

(
1 + rθ ‖f‖L1(Br)

)β
logβ

(1

r

)(∫
Br

fs dx
)1/s

.

Proof. Recalling that r ≤ e−1, by (2.4), (2.3), the forthcoming (2.38), basic prop-
erties of the logarithm function (for instance (2.2)) we estimate∫
Br

f logβ(e+ fσ) dx ≤ c(σ, β)

∫
Br

f
[
1 + log (e+ f)

]β
dx

≤ c(σ, β)

∫
Br

f
[
1 + log

(
e+

f

(f)Br

)
+ log

(
e+ (f)Br

)]β
dx

≤ c(σ, β)
[∫

Br

f dx+

∫
Br

f logβ
(
e+

f

(f)Br

)
dx+ logβ

(
e+

∫
Br

f dx
)∫

Br

f dx
]

≤ c(n, σ, β, s)
(∫

Br

fs dx
)1/s[

1 + logβ
(
e+

∫
Br

f dx
)]

≤ c(n, σ, β, s)
(∫

Br

fs dx
)1/s[

1 + logβ
(
e+

1

rn

∫
Br

f dx
)]

≤ c(n, σ, β, s)
(∫

Br

fs dx
)1/s[

1 + logβ
(
e+ (1 + rθ r−θ ‖f‖L1(Br))

1

rn

)]
≤ c(n, σ, β, s)(1 + rθ ‖f‖L1(Br))

β
(∫

Br

fs dx
)1/s[

1 + logβ
(
e+

1

rn+θ

)]
≤ c(n, σ, β, s)(1 + rθ ‖f‖L1(Br))

β
(∫

Br

fs dx
)1/s[

logβ
(1

r

)
+
[
2(n+ θ) log

(1

r

)]β]
≤ c(n, σ, β, θ, s)(1 + rθ ‖f‖L1(Br))

β logβ
(1

r

)(∫
Br

fs dx
)1/s

and the proof is complete. �

2.3. N-functions setting. In the following we are going to introduce a general
class of tools, related to the so-called general class of N -functions. For the results
we mention here see for instance [23, 32].

We consider a convex function ϕ : [0,∞)→ [0,∞), such that

ϕ ∈ C1([0,∞)) ∩ C2((0,∞)), ϕ(0) = ϕ′(0) = 0,(2.5)

ϕ′(t) is monotone increasing and lim
t→∞

ϕ′(t) =∞ .

In addition we assume that there exists a constant cϕ ≥ 1 such that

(2.6)
1

cϕ
≤ ϕ′′(t)t

ϕ′(t)
≤ cϕ, for all t > 0 .

If the function ϕ verifies (2.5) and (2.6), then we call ϕ as anN -function. Notice that
every non-decreasing function ϕ : [0,∞)→ [0,∞) satisfies the following property

(2.7) ϕ(t+ s) ≤ ϕ(2t) + ϕ(2s) .
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We define the auxiliary vector field Vϕ : R` → R`, ` ∈ N by

Vϕ(z) :=

(
ϕ′(|z|)
|z|

)1/2

z ,

where Vϕ is continuously extended to zero when z = 0; Vϕ turns out to be a bijec-
tion of R` by (2.5) and under the assumption (2.6) Vϕ describes the monotonicity
properties of the map [ϕ′(|z|)/|z|]z: for z1, z2 ∈ R`, z1, z2 6= 0 we have
(2.8)

1

c

∣∣Vϕ(z1)− Vϕ(z2)
∣∣2 ≤ 〈ϕ′(|z1|)

|z1|
z1 −

ϕ′(|z2|)
|z2|

z2, z1 − z2〉 ≤ c
∣∣Vϕ(z1)− Vϕ(z2)

∣∣2 ,
for a constant c ≥ 1 depending on cϕ. For another constant c ≡ c(cϕ) the following
relations (see [32, Lemma 2.4]) hold for every z, z1, z2 ∈ R` with z1 or z2 different
from zero (which means |z1|+ |z2| > 0):

(2.9)
1

c
ϕ(|z|) ≤

∣∣Vϕ(z)
∣∣2 ≤ c ϕ(|z|) ,

(2.10)
1

c
ϕ′′(|z1|+ |z2|)|z1− z2|2 ≤

∣∣Vϕ(z1)−Vϕ(z2)
∣∣2 ≤ c ϕ′′(|z1|+ |z2|)|z1− z2|2 .

For a constant ā ≥ 0, we are interested in

(2.11) ϕp(t) =
tp

p
, ϕlog(t) =

tp

p
log(e+ t) , and ϕā(t) = ϕp(t) + ā ϕlog(t) ,

which verify all the assumptions (2.5). In addition for t > 0

t ϕ′′p(t)

ϕ′p(t)
= p− 1 , p− 1 ≤

t ϕ′′log(t)

ϕ′log(t)
≤ 2p ,

(p− 1)ϕ′ā(t) ≤ t ϕ′′ā(t) ≤ 2pϕ′ā(t) ,

so (2.6) is satisfied with a constant cϕ = cϕ(p) depending only on p and independent
of ā. It is also easy to estimate

tp−1 log(e+ t) ≤ϕ′log(t) ≤ 2 tp−1 log(e+ t) ,(2.12)

(p− 1) tp−2 log(e+ t) ≤ϕ′′log(t) ≤ (p+ 1) tp−2 log(e+ t) .(2.13)

Adopting the notation

(2.14) hā(t) = tp−1 + ā tp−1 log(e+ t) for every t ≥ 0 ,

from (2.12) and (2.13) we deduce the following estimates:

hā(t) ≤ϕ′ā(t) ≤ 2hā(t) ,(2.15)

1

c(p)
hā(t) ≤ t ϕ′′ā(t) ≤ c(p)hā(t) .(2.16)

which will be useful in the proof of Lemma 2.4.
In the sequel for p > 1, for every x ∈ Ω and z ∈ R`, we adopt the notation

H(x, z) := |z|p + a(x)|z|p log(e+ |z|) = p
[
ϕp(|z|) + a(x)ϕlog(|z|)

]
,(2.17)

Hā(z) := |z|p + ā |z|p log(e+ |z|) = pϕā(|z|) ;(2.18)

let us remark that the relations

(2.19) Hā(z) = hā(|z|) |z| , ∂zHā(z) = pϕ′ā(|z|) z

|z|
hold, where the function hā(·) is defined in (2.14). Let us denote by Vp(·) and
Vlog(·) the vector fields generated by ϕp and ϕlog, and by

(2.20) Vā(z) :=

√
ϕ′ā(|z|)
|z|

z ,
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the one generated by ϕā(t), all continuously extended to zero when z = 0. It is
easy to verify that

|Vp(z)|2 = |z|p = pϕp(|z|) ,
p ϕlog(|z|) = |z|p log(e+ |z|) ≤ |Vlog(z)|2 ≤ 2 |z|p log(e+ |z|) = 2pϕlog(|z|) ,
p ϕā(|z|) ≤ |Vā(z)|2 ≤ 2pϕā(|z|) ,(2.21)

thus in all cases (2.9) holds for a constant c depending only on p. In particular, if
a(·) is a function satisfying (1.5), from (2.21) it follows that for every x0 ∈ Ω

(2.22) H(x0, z) ≤
∣∣Va(x0)(z)

∣∣2 ≤ 2H(x0, z) .

In addition, since ϕ′′p(t) = (p−1)tp−2 the estimate in (2.10), which holds whenever

z1, z2 ∈ R` , |z1|+ |z2| > 0, becomes:

(2.23)
1

c
|z1 − z2|2 (|z1|+ |z2|)p−2 ≤ |Vp(z1)− Vp(z2)|2 ≤ c|z1 − z2|2 (|z1|+ |z2|)p−2

where c depends only on p. In particular, when p ≥ 2,

|z1 − z2|p ≤ c|Vp(z1)− Vp(z2)|2

holds, while for 1 < p ≤ 2 (see [38, Lemma 2]) we will use that

(2.24) |z1 − z2| ≤ c
∣∣Vp(z1)− Vp(z2)

∣∣2/p + c|z1|(2−p)/2
∣∣Vp(z1)− Vp(z2)

∣∣
both for a suitable constant c ≡ c(p). Finally, let us remark that combining (2.10)
for Vp(·) and Vā(·) it is easy to verify that for every z1, z2 ∈ R`

(2.25)
∣∣Vp(z1)− Vp(z2)

∣∣2 ≤ c(p)∣∣Vā(z1)− Vā(z2)
∣∣2 .

2.4. Preliminary results. First of all, let us prove that log-Dini continuity (1.9)
of a(·) guarantees that a(·) is log-Hölder vanishing (that is, (2.41) holds); later this
will allow the application of Theorem 2.7 to the minimizers of P in (1.4).

Lemma 2.2. Let a(·) be a function satisfying (1.5) and let ωa(·) be a modulus of
continuity of a(·) as in (1.7). If

(2.26)

∫ 1

0

ωa(ρ) log
(1

ρ

) dρ
ρ
<∞ ,

then lim
R↘0+

ωa(R) log(1/R) = 0.

Proof. It suffices to prove that lim supR↘0+ ωa(R) log
(
1/R

)
= 0. Reasoning by

contradiction, let us assume that there exists a decreasing sequence {Rk} ⊂ (0, 1/2]
such that R↘ 0+ and

(2.27) lim
k→+∞

ωa(Rk) log
( 1

Rk

)
= l ∈ (0,+∞] ;

we assume for now that l is finite. Up to a subsequence, we may assume in addition
that for every k

(2.28) ωa(Rk) log
( 1

Rk

)
≥ l

2
and lim

k→+∞

Rk+1

Rk
= 0 .

We want to prove that the integral (2.26) is divergent at 0. We can estimate the
improper integral (2.26) with a series of integrals on [Rk+1, Rk]:

(2.29)

∫ 1

0

ωa(ρ) log
(1

ρ

) dρ
ρ
≥
∞∑
k=0

∫ Rk

Rk+1

ωa(ρ) log
(1

ρ

) dρ
ρ
.
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Using the monotonicity of both ωa(R)/R and log(1/R) and (2.28), we estimate

∞∑
k=0

∫ Rk

Rk+1

ωa(ρ)

ρ
log
(1

ρ

)
dρ ≥

∞∑
k=0

ωa(Rk)

Rk
log
( 1

Rk

) ∫ Rk

Rk+1

dρ ≥ l

2

∞∑
k=0

(
1− Rk+1

Rk

)
.

By (2.28) the series with non-negative terms

∞∑
k=0

(
1 − Rk+1

Rk

)
is divergent, thus by

(2.29) the integral (2.26) is divergent at 0, against the assumption of the Lemma.
Finally, if the limit in (2.27) is l = +∞, fixed T > 0 it suffices to replace l/2 in
(2.28) with T to gain the same conclusion with the same calculations. �

First, we need the following estimates on the function Hā(·), defined in (2.18)
and on its gradient. For the proof see [21, (2.44),(2.45) and Lemma 2.2], where all
estimates are proved for the function H(·, ·) defined in (2.17), of which the function
Hā(·) is a particular case.

Lemma 2.3. Let Hā : R` → R be the function defined in (2.18). Then the following
estimates hold for every A ≥ 1 and every z, λ ∈ R`:

Hā(Az) ≤ Ap+1Hā(z) ,(2.30)

Hā(z1 ± z2) ≤ 2p+1(Hā(z1) +Hā(z2)) ,(2.31) ∣∣〈∂zHā(z), λ〉
∣∣ ≤ (p+ 1)

(
Hā(z) + Hā(λ)

)
.(2.32)

We collect in next lemma some monotonicity and growth results that link the
vector field ∂zHā and the related nonlinear expression Vā; these will be particularly
useful in order to prove the comparison Lemma 3.2.

Lemma 2.4. Let ` ∈ N and let Vā : R` → R`, Hā : R` → R , and hā : [0,+∞)→ R
be the functions defined in (2.20), (2.18), and (2.14) respectively. Then the following
estimates hold for every z, z1, z2 ∈ R`:

1

c(p)

∣∣Vā(z1)− Vā(z2)
∣∣2 ≤ 〈∂zHā(z1)− ∂zHā(z2) , z1 − z2〉 ,(2.33)

|∂zHā(z)| ≤ c(p)hā(|z|) ,(2.34) ∣∣Vā(z1)− Vā(z2)
∣∣2 ≥ 1

c(p)

hā(|z1|+ |z2|)
|z1|+ |z2|

|z1 − z2|2 ,(2.35)

(|z1|+ |z2|)hā(|z1|+ |z2|) ≤ 2p+1
(
Hā(z1) + Hā(z2)

)
,(2.36)

|z1 − z2|hā(|z1|) ≤ c(p)
∣∣Vā(z1)− Vā(z2)

∣∣(√Hā(z1) +
√
Hā(z2)

)
,(2.37)

under the further assumption |z1|+ |z2| > 0 in (2.35) and (2.37).

Proof. Inequality (2.33) follows immediately by (2.19), rewriting (2.8) for the vector
field Vā(·). Again by (2.19), we get |∂zHā(z)| = pϕ′ā(|z|) and inequality (2.34)
follows from (2.15). Inequality (2.35) can be obtained rewriting (2.10) for Vā(·)
together with (2.16). In order to prove (2.36), recalling (2.14), (2.11), (2.7) and
(2.30), we calculate

(|z1|+ |z2|)hā(|z1|+ |z2|) = pϕā( |z1|+ |z2| ) ≤ p
[
ϕā(2|z1|) + ϕā(2|z2|)

]
= Hā(2z1) + Hā(2z2) ≤ 2p+1

[
Hā(z1) +Hā(z2)

]
.

Finally, let us prove inequality (2.37). Let us fix z1, z2 ∈ R` with |z1| + |z2| > 0,
assuming without loss of generality that z1 6= 0; by (2.35), the monotonicity of
hā(t), the monotonicity and the subadditivity of the function

√
t on [0,+∞[, we
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estimate

|z1 − z2| = |z1 − z2|

√
hā( |z1|+ |z2| )
|z1|+ |z2|

√
|z1|+ |z2|

hā( |z1|+ |z2| )

≤ c(p)
∣∣Vā(z1)− Vā(z2)

∣∣√ |z1|+ |z2|
hā( |z1|+ |z2| )

≤ c(p)
∣∣Vā(z1)− Vā(z2)

∣∣√ |z2 − z1|+ 2|z1|
hā(|z1|)

≤ c(p)
∣∣Vā(z1)− Vā(z2)

∣∣[√ |z1 − z2|
hā(|z1|)

+

√
|z1|

hā(|z1|)

]
.

Therefore, by (2.19) we obtain that

|z1 − z2|hā(|z1|) ≤ c(p)
∣∣Vā(z1)− Vā(z2)

∣∣ [√hā(|z1|) |z1 − z2|+
√
Hā(z1)

]
≤ c(p)

[∣∣Vā(z1)− Vā(z2)
∣∣√Hā(z1) +

√
hā(|z1|) |z2|

]
.

Using again monotonicity, (2.36), and subadditivity we can estimate√
hā(|z1|) |z2| ≤

√(
|z1|+ |z2|

)
hā(|z1|+ |z2|) ≤ c(p)

(√
Hā(z1) +

√
Hā(z2)

)
and the proof of (2.37) is complete. �

The following lemma will be useful to prove an excess-like decay estimate for our
minimizer u, see Proposition 3.6.

Lemma 2.5. For every a1, a2 ≥ 0 and every z ∈ R`, ` ∈ N the following estimate
holds: ∣∣Va1

(z)− Va2
(z)
∣∣ ≤ |a1 − a2||z|p/2 log(e+ |z|) .

Proof. By the definition of the vector fields Va1 and Va2 , using the Lipschitz reg-
ularity (with Lipschitz constant 1/2) of the function t ∈ [0,+∞) →

√
1 + t, we

estimate

|Va1(z)− Va2(z)| =
∣∣∣
√
ϕ′a1

(|z|)
|z|

z −

√
ϕ′a2

(|z|)
|z|

z
∣∣∣

= |z|(p−1)/2|z|1/2
∣∣∣∣
√

1 + a1 log(e+ |z|) +
a1

p

|z|
e+ |z|

−

√
1 + a2 log(e+ |z|) +

a2

p

|z|
e+ |z|

∣∣∣∣
≤ 1

2
|z|p/2 |a1 − a2|

[
log(e+ |z|) +

1

p

|z|
(e+ |z|)

]
≤ |z|p/2 |a1 − a2| log(e+ |z|) .

�

We conclude this paragraph by recalling the following approximation lemma
(see [21, Lemma 3.2 and Remark 3.4]) which will be useful to specify the class of
admissible test functions in the weak formulation of the Euler-Lagrange equation
(Remark 3.3).
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Lemma 2.6. Let us consider a ball B = BR(x0) b Ω and φ ∈ W 1,p
0 (BR;RN ) a

function such that H(x,Dφ) ∈ L1(BR), with H defined in (2.17) and the modulus
of continuity ωa(·) of the function a(·) satisfying limR↘0+ ωa(R) log(1/R) < +∞.

Then there exists a sequence {φk} ⊂ C∞0 (BR;RN ) such that Dφk → Dφ a.e.,
φk → φ strongly in W 1,p(BR;RN ) and

H(x,Dφk)→ H(x,Dφ) strongly in L1(BR) .

2.5. Lp logγ L spaces. Given an open bounded set Ω ⊂ Rn and a Young function

ϕ : [0,∞)→ [0,∞) (ϕ is convex, strictly monotone increasing, limt→0
ϕ(t)
t = 0 and

limt→∞
ϕ(t)
t =∞) the Orlicz space Lϕ(Ω;R`), ` ∈ N is the set of measurable maps

f : Ω → R` such that
∫

Ω
ϕ(λ|f(x)|) dx < ∞ for some λ > 0. When ϕ(t) = tp/p,

the previous quantity defines an averaged Lp norm; when ϕ(t) = (tp/p) logγ(e+ t),
for p > 1, γ ∈ R or p = 1 and γ ≥ 0, the Orlicz space Lϕ(Ω;R`) is denoted by
Lp logγ L(Ω;R`) and it consists of the measurable functions such that∫

Ω

|f |p logγ(e+ |f |) dx <∞ .

In particular, we want to stress here that a classic inequality shows that for every
q > 1 and f ∈ Lq(Ω;R`) we have

(2.38)

∫
Ω

|f | logγ
(
e+

|f |
(|f |)Ω

)
dx ≤ c(n, `, γ, q)

(∫
Ω

|f |q dx
)1/q

(see [2, 3, 13]); being the quantity on the left-hand side equivalent to the Luxemburg
norm in L logγ L, as a consequence of (2.38) we deduce that

(2.39) f ∈ Lq(Ω;R`) , q > p =⇒ f ∈ Lp logL(Ω;R`) .

2.6. Basic estimates for minimizers of P. In this paragraph we describe a
higher integrability result available for local minimizers of P that holds under the
weak assumption

(2.40) lim sup
R↘0+

ωa(R) log
( 1

R

)
= lim sup

R↘0+

ωlog(R) <∞ :

by Lemma 2.2 our assumption of log-Dini continuity on a(·) ensures the stronger

(2.41) lim
R↘0+

ωa(R) log
( 1

R

)
= 0 ,

so we can assume that there exists a threshold R̄ > 0 such that

(2.42) sup
R∈(0,R̄]

ωa(R) log
( 1

R

)
≤ 1 .

As a consequence of (1.5) and (2.40) one has that local minimizers of P are higher
integrable, that is H(·, Du) belongs to Lebesgue’s space smaller than L1 . The fact
in (2.41) allows us to state such result in a slightly simpler form; in particular allows
to get rid of the dependence of the constants on the energy and this will simplify
later our approach.

Theorem 2.7 (Gradient’s higher integrability). Let u ∈ W 1,p(Ω;RN ) be a local
minimizer of the functional P defined in (1.4) and suppose that (1.5) and (2.41)
hold true. Then there exists a positive integrability exponent δ̄g > 0, depending only

on n,N, p and L/ν such that H(·, Du) ∈ L1+δ̄g
loc (Ω).

Moreover if M ≥ 1 is such that

(2.43) M ≥ ‖Du‖Lp
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then there exists a threshold

(2.44) R0 = min
{ 1

e+M
, R̄
}

such that if r ≤ R0 and Br(x0) ⊂ Ω the reverse Hölder’s inequality

(2.45)

(∫
Bϑr(x0)

[H(x,Du)]1+δ dx

) 1
1+δ

≤ c
∫
Br(x0)

H(x,Du) dx

holds true for every ϑ ∈ [1/2, 3/4] and every δ ∈ [0, δ̄g], for constant c depending
only on n,N, p and L/ν.

Proof. We outline the changes the proof in [4] requires, keeping the notation here
employed. The starting point for showing (2.45) is the proof of a reverse Hölder
inequality

(2.46)

∫
Br/2(x̄)

H(x,Du) dx ≤ c̃
(∫

Br(x̄)

[H(x,Du)]d dx
)1/d

for every ball Br(x̄) ⊂ Ω with r ≤ e−1 and with the exponent d ∈ (0, 1) depending

on n,N, p, L/ν and the constant c̃ depending on n,N, p, L/ν, L̃ and ‖Du‖Lp , see

(4.11) in [4]. However, the dependence of c̃ on L̃ can be avoided taking radii smaller
than R̄ (see (2.42) and compare with [4, Equation (4.5)]) and the dependence on
‖Du‖Lp in [4] only comes from the estimate (4.13), in particular when estimating

log
(
e+
‖Du‖pLp
rn

)
≤
(
1 + ‖Du‖pLp

)
log
(
e+

1

rn

)
≤ 2n

(
1 + ‖Du‖pLp

)
log
(1

r

)
using (2.2), also compare with [4, Remark 4.3]. If, on the other hand, we assume
(2.44) we can estimate ‖Du‖Lp ≤ r−1 if r ≤ R0 and therefore

log
(
e+
‖Du‖pLp
rn

)
≤ log

(
e+

1

rn+p

)
≤ 2(n+ p) log

(1

r

)
;

the proof now continues as in [4] but with c̃ not anymore depending on L̃ and
‖Du‖Lp . In view of (2.46) a standard application of Gehring’s Lemma yields the
result. Notice indeed that a simple scaling argument ensures that both the exponent
and the constant in (2.45) do not depend on R0: we fix Br(x0) ⊂ Ω and we write
(2.46) setting f(x) = H(x0 + rx,Du(x0 + rx)) as∫

Bρ/2(x̃)

|f | dx ≤ c̃
(∫

Bρ(x̃)

|f |d dx
)1/d

for every x̃ ∈ B1(0) and ρ ≤ 1 such that Bρ(x̃) ⊂ B1(0); notice that now c̃ does not
depend on ‖Du‖Lp . Using Gehring’s lemma (see for instance [4, Lemma 3.5]) gives(∫

B3/4(0)

|f |1+δ̄g dx
) 1

1+δ̄g ≤ c
∫
B1(0)

|f | dx

with δ̄g, c as in the statement, in particular not depending on R0; scaling back to
H(·, Du) gives (2.45) when ϑ = 3/4. If ϑ < 3/4 the results follows simply enlarging
the integral on the left-hand side:∫

Bϑr(x0)

[H(x,Du)]1+δ dx ≤ c(n)

∫
B3r/4(x0)

[H(x,Du)]1+δ dx .

�
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2.7. Estimates for reference functionals. This paragraph concerns the frozen
functional obtained by freezing the switching coefficients a(·), b(·) in P, defined in
(1.4). In particular, for A ⊂ Rn bounded domain (that in our case will always be
a ball inside Ω), we consider minimizers of functionals of the type

(2.47) Pā(w,A) :=

∫
A

[
|Dw|p + ā|Dw|p log(e+ |Dw|)

]
dx =

∫
A

Hā(Dw) dx ,

where ā ≥ 0 is a constant.
The result we want to recall is the following excess decay estimate, which encodes

the local C1,α regularity of minimizers; it can be found in [32, Theorem 6.4]. Notice
that the Hölder regularity Assumption 2.2 necessary in [32] is satisfied in our case,
see [4, Section 6].

Theorem 2.8. Let v ∈ W 1,p(A;RN ) be a local minimizer of the functional Pā
defined in (2.47) such that Hā(Dv) ∈ L1(A), and let Br ≡ Br(x0) ⊂ A. The
excess-decay estimate∫

B%

∣∣Vā(Dv)−
(
Vā(Dv)

)
Bρ

∣∣2 dx ≤ c(ρ
r

)2α
∫
Br

∣∣Vā(Dv)−
(
Vā(Dv)

)
Br

∣∣2 dx
holds for every couple of concentric balls Bρ ⊂ Br, for a constant c ≥ 1 and an
exponent α ∈ (0, 1) both depending only on n,N and p.

3. Comparison estimates and excess decay

In this section u ∈W 1,p(Ω;RN ) will always be a local minimizer of the functional
P defined in (1.4). We are going to define two more regular comparison maps and
first deduce an integral comparison estimate; then we shall show how this does
imply an excess-decay estimate with a correction term. We choose in (2.43)-(2.44)

(3.1) M =
(L
ν
‖H(·, Du)‖L1

)1/p

and R0 = min
{ 1

e+M
, R̄
}
,

R̄ being defined in (2.42), and we will work on a ball BR ≡ BR(x0) such that
B2R(x0) ⊂ Ω, with radius 0 < R ≤ R0/2.

3.1. Comparison lemma. In this paragraph we prove a comparison lemma (see
Lemma 3.2), where we estimate the distance between a minimizer of P and a
minimizer of a frozen functional obtained by considering the case in which the
coefficients a(·) and b(·) are constant.

Let us denote

(3.2) ā := inf
B2R

a(·) and bav := (b)BR/2(x0) =

∫
BR/2(x0)

b(x) dx ;

then, recalling (2.18), let v̄ ∈ W 1,p(BR;RN ) and v ∈ W 1,p(BR/2;RN ) be the solu-
tions of the following Dirichlet problems:

(3.3)


v̄ 7−→ min

w

∫
BR

b(x)Hā(Dw) dx

w ∈ u+W 1,p
0 (BR)

,

(3.4)


v 7−→ min

w

∫
BR/2

bav Hā(Dw) dx

w ∈ v̄ +W 1,p
0 (BR/2)

.
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Remark 3.1. Problems (3.3) and (3.4) are well-posed. Thanks to the definition
(3.2) of ā and to the bounds (1.5) on b(·) we get

(3.5)

∫
BR

b(x)Hā(Du) dx ≤ L
∫
BR

H(x,Du) dx <∞ ;

further, by the minimality of v̄ and (3.5) we obtain∫
BR/2

Hā(Dv̄) dx ≤
∫
BR

Hā(Dv̄) dx ≤ 1

ν

∫
BR

b(x)Hā(Dv̄) dx(3.6)

≤ 1

ν

∫
BR

b(x)Hā(Du) dx ≤ L

ν

∫
BR

H(x,Du) dx <∞ ,

thus the Direct Methods of the Calculus of Variations guarantees that problems
(3.3) and (3.4) have a minimizer.

Finally, the minimality of v and (3.6) imply that

(3.7)

∫
BR/2

Hā(Dv) dx ≤
∫
BR

Hā(Dv̄) dx ≤ L

ν

∫
BR

H(x,Du) dx <∞ ,

so both energies of v and v̄ can be estimated by the energy of the minimizer u.

Remark 3.2. Notice that the bound M defined in (3.1) guarantees that M ≥
‖Du‖Lp , thus the higher integrability result of Theorem 2.7 together with the local
estimate (2.45) is available. Moreover, by (3.6) we get also that M ≥ ‖Dv̄‖Lp(BR),
thus the threshold R0 for which the local higher integrability estimate for Dv̄ holds
can be made independent of ‖Dv̄‖Lp(BR) but depending on ‖H(·, Du)‖L1 .

Remark 3.3. We can show that the Euler-Lagrange equations

(3.8)

∫
BR/2

〈∂zHā(Dv), Dφ〉 dx = 0 ,

(3.9)

∫
BR

b(x)〈∂zHā(Dv̄), Dφ〉 dx = 0 ,

(3.10)

∫
BR

b(x)〈∂zH(x,Du), Dφ〉 dx = 0

are valid for every φ ∈ W 1,p
0 (BR/2;RN ) with Hā(Dφ(·)) ∈ L1(BR/2) for (3.8),

for every φ ∈ W 1,p
0 (BR;RN ) with Hā(Dφ(·)) ∈ L1(BR) for (3.9) and for every

φ ∈W 1,p
0 (BR;RN ) with H(·, Dφ) ∈ L1(BR) for (3.10) .

Let us prove (3.10) since with exactly the same arguments we can prove (3.8) and
(3.9). We argue by approximation since it is well known that the equation holds

for every φ ∈ C∞0 (BR;RN ). Let φ ∈ W 1,p
0 (BR;RN ) such that H(·, Dφ) ∈ L1(BR):

by Lemma 2.6 there exists a sequence {φk} ⊂ C∞0 (BR;RN ) such that Dφk → Dφ
a.e. and

H(·, Dφk)→ H(·, Dφ) strongly in L1(BR) .

Using the analogous of (2.32) for the function H(·, ·), with z = Du and λ = Dφk,
we estimate on BR∣∣b(x)〈∂zH(x,Du), Dφk〉

∣∣ ≤ Lc(p)(H(x,Du) +H(x,Dφk)
)

and we can conclude the strong convergence in L1(BR) of

b(·)〈∂zH(·, Du), Dφk(·)〉 → b(·)〈∂zH(·, Du), Dφ(·)〉

by a well-known variant of the Lebesgue’s dominated convergence theorem. There-
fore, since every φk satisfies (3.10) also φ does.
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To prove the comparison Lemma 3.2, we need to test the Euler equation (3.10)

with the function φ = u − v̄ ∈ W 1,p
0 (BR;RN ), so by (2.31) again for the function

H(·, ·), we must show that H(·, Dv̄) ∈ L1(BR). Indeed, from Hā(Dv̄) ∈ L1(BR) we
deduce that

Dv̄ ∈ Lp logL(BR;RnN ) , thus

∫
BR

b(x)H(x,Dv̄) dx <∞ :

this is immediate if ā > 0, while if ā = 0 the functional reduces to the classic
p-Dirichlet functional, apart from the coefficient b(·), and the result follows for

instance from the Theorem 3.1 and (2.39), since v̄ ∈ u+W 1,p
0 (BR;RN ) with Du ∈

Lp(1+δ̄g)(BR;RnN ) by Theorem 2.7.

For the solutions v̄ and v of the Dirichlet problems (3.3)-(3.4) the following up to
the boundary higher integrability result holds; for the proof, see [33, Theorem B.1]
for the scalar case and [23, Lemma 4.3] for the vectorial one. Notice that actually
the result in [33] is stronger; anyway, the version we quote here will be sufficient
for our purposes.

Theorem 3.1. Let Br(x0) ⊂ Ω be a ball, Hā(·) as in (2.18), w̄ ∈ W 1,p(Br;RN )
with Hā(Dx̄) ∈ L1(Br) and let w ∈W 1,p(Br;RN ) be the minimizer in the Dirichlet

class w̄ +W 1,p
0 (Br;RN ) of the functional

w 7−→
∫
Br

b(x)Hā(Dw) dx

with b(·) as in (1.5). Suppose moreover that Hā(Dw̄) ∈ L1+δ̄g (Br(x0)) for some
δ̄g > 0. Then there exists δg ≡ δg(n,N, p, L/ν) ∈ (0, δ̄g) such that Hā(Dw) ∈
L1+δg (Br(x0)) and the estimate

(3.11)

∫
Br(x0)

[
Hā(Dw)

]1+δ
dx ≤ c

∫
Br(x0)

[
Hā(Dw̄)

]1+δ
dx

holds for a constant c ≡ c(n,N, p, L/ν) and for every δ ∈ [0, δg].

Remark 3.4. In order to simplify the proofs, we are going from now on to apply
the interior estimate (2.45) to the three functions u (local minimizer of (1.4)), v̄
(solution of (3.3)) and v (solution of (3.4)) and the boundary estimate (3.11) to
both v̄ and v with the same common value for δ: we choose δg appearing above in
Theorem 3.1.

Now we can state and prove our comparison lemma.

Lemma 3.2 (Comparison). If v ∈W 1,p(BR/2;RN ) is the solution of the Dirichlet
problem (3.4), then there exists an exponent q = q(n,N, p, L/ν) < n such that the
inequality

(3.12)

∫
BR/2

∣∣Vā(Du)− Vā(Dv)
∣∣2 dx

≤ c
[[
ωa(R) log

( 1

R

)]2
+
R2

ν2

(∫
BR

|Db|q dx
)2/q

] ∫
B3R/2

H(x,Du) dx

holds for a constant c ≡ c(n,N, p, L/ν).

Proof. The proof of the comparison lemma consists of two steps, by freezing the
coefficients a(·) and b(·) one at a time: more precisely we consider the minimizer
v̄ of the Dirichlet problem (3.3) and we prove two comparison estimates, the first
one between u and v̄ and the second one between v̄ and v.
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Step 1. Let v̄ ∈W 1,p(BR,RN ) be the minimizer of the Dirichlet problem (3.3):
the following comparison estimate between u and v̄

(3.13)

∫
BR

∣∣Vā(Du)− Vā(Dv̄)
∣∣2 dx ≤ c[ωa(R) log

( 1

R

)]2 ∫
B3R/2

H(x,Du) dx

holds for a constant c = c(n,N, p, L/ν).
First of all, let us show the following estimate, of which we will make frequent

use in the sequel. Let δg = δg(n,N, p, L/ν) ∈ (0, 1) be the higher integrability
exponent of Theorem 2.7-Remark 3.4 applied to u; by Lemma 2.1, applied with
f = |Du|p, σ = 1/p, β = 2, θ = p, s = 1 + δg, the reverse Hölder’s inequality (2.45)
with θ = 2/3 and r = 3R/2, (3.1) together with Remark 3.2 we can estimate∫

BR

|Du|p log2(e+ |Du|) dx(3.14)

≤ c(n, p, δg)
(
1 +Rp‖Du‖pLp(Ω)

)2
log2

( 1

R

)(∫
BR

|Du|p(1+δg) dx
)1/(1+δg)

≤ c
(
1 +Rp0‖Du‖

p
Lp(Ω)

)2
log2

( 1

R

) (∫
BR

H(x,Du)1+δg dx
)1/(1+δg)

≤ c log2
( 1

R

) ∫
B3R/2

H(x,Du) dx .

for c ultimately depending only on n,N, p and L/ν. Since both u and v̄ are min-
imizers, we can use the corresponding Euler-Lagrange equations (3.10) and (3.9).

By Remark 3.3 we can test with φ = u− v̄ ∈W 1,p
0 (BR;RN ):

(3.15)∫
BR

b(x)〈∂zH(x,Du), Du−Dv̄〉 dx−
∫
BR

b(x)〈∂zHā(Dv̄), Du−Dv̄〉 dx = 0 .

Using (2.32), with z = Du(x) and λ = Du(x)−Dv̄(x), and (2.31) we may estimate

(3.16)
∣∣〈∂zHā(Du), Du−Dv̄〉

∣∣ ≤ c(p)(Hā(Du) +Hā(Dv̄)
)
,

thus in (3.15) we can add and substract the integral∫
BR

b(x)〈∂zHā(Du), Du−Dv̄〉 dx ,

which is finite by (3.16), (3.5) and (3.7), obtaining

D1 : =

∫
BR

b(x)〈∂zHā(Du)− ∂zHā(Dv̄), Du−Dv̄〉 dx

=

∫
BR

b(x)〈∂zHā(Du)− ∂zH(x,Du), Du−Dv̄〉 dx := D2 .

By applying (2.33) with z1 = Du(x) and z2 = Dv̄(x), and again (1.5), we can
estimate D1 from below obtaining that

(3.17)
ν

c(p)

∫
BR

|Vā(Du)− Vā(Dv̄)|2 dx ≤ D1 = |D2| .

Using Cauchy-Schwarz inequality, (1.5), (2.18), (2.17) and (2.12) we can estimate
|D2| as

|D2| ≤ L
∫
BR

|∂zHā(Du)− ∂zH(x,Du)| |Du−Dv̄| dx(3.18)

= pL

∫
BR

|a(x)− ā|ϕ′log(|Du|) |Du−Dv̄| dx
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≤ c(p)L
∫
BR

|a(x)− ā| |Du|p−1
log(e+ |Du|) |Du−Dv̄| dx

= c(p)L

∫
BR

|a(x)− ā| |Du|
p−2

2 + p
2 log(e+ |Du|) |Du−Dv̄| dx = I1 ;

now we need to distinguish two cases.

The case p ≥ 2. In this case, using Young’s inequality with conjugate exponents
(2, 2) and ε ∈ (0, 1) to be chosen, we can estimate

I1 ≤ c(p)Lε
∫
BR

|Du|p−2|Du−Dv̄|2 dx

+
c(p)L

4ε

∫
BR

|a(x)− ā|2|Du|p log2(e+ |Du|) dx = I2 + I3 .

As p ≥ 2, by (2.23) and (2.25) we have

|Du|p−2|Du−Dv̄|2 ≤
(
|Du|+ |Dv̄|

)p−2|Du−Dv̄|2

≤ c(p)
∣∣Vp(Du)− Vp(Dv̄)

∣∣2 ≤ c(p) ∣∣Vā(Du)− Vā(Dv̄)
∣∣2 ,

so the term I2 can be estimated by

I2 ≤ c(p)Lε
∫
BR

∣∣Vā(Du)− Vā(Dv̄)
∣∣2 dx

and it can be reabsorbed in the left-hand side of (3.17) for ε sufficiently small
depending only on p and L/ν. Since, using monotonicity and concavity of ωa(·), it
is easy to prove that

(3.19) |a(x)− ā| ≤ 3ωa(R) ,

by (3.14) we can estimate the term I3 as

I3 ≤
c(p)

ε
L
[
ωa(R)

]2 ∫
BR

|Du|p log2(e+ |Du|) dx

≤ c(n,N, p, L/ν)L
[
ωa(R) log

( 1

R

)]2 ∫
B3R/2

H(x,Du) dx .

The case p < 2. In this case to estimate the integral in (3.18) we use (2.24) to get

I1 = c(p)L

∫
BR

|a(x)− ā| |Du|p−1
log(e+ |Du|) |Du−Dv̄| dx

≤ c(p)L
[∫

BR

|a(x)− ā| |Du|p−1
log(e+ |Du|) |Vp(Du)− Vp(Dv̄)|2/p dx

+

∫
BR

|a(x)− ā| |Du|p/2 log(e+ |Du|) |Vp(Du)− Vp(Dv̄)| dx
]
.

Estimating both the integrals with Young’s inequality, the first with conjugate
exponents (p, p′), the second with (2, 2), both with ε ∈ (0, 1) to be chosen, and
using (2.25) we obtain

I1 ≤ 2c(p)Lε

∫
BR

∣∣Vā(Du)− Vā(Dv̄)
∣∣2 dx

+
c(p)

ε
L

∫
BR

|a(x)− ā|p
′
|Du|p logp

′
(e+ |Du|) dx

+
c(p)

ε
L

∫
BR

|a(x)− ā|2|Du|p log2(e+ |Du|) dx =: I4 + I5 + I6 .
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The term I4 can be reabsorbed in the left-hand side of (3.17) for ε sufficiently small
depending only on p and L/ν, the term I6 is estimated exactly as the term I3 in
the case p ≥ 2 (note that the value of p is irrelevant). To estimate the remaining
term I5, we follow the reasoning in (3.14), using again (3.19), Lemma 2.1 with
f = |Du|p, σ = 1/p, β = p′, θ = p, s = 1 + δg (δg from Remark 3.4), assumption
(2.42) together with the fact that p′ > 2, and the reverse Hölder’s inequality (2.45)
with θ = 2/3 and r = 3R/2, obtaining that

I5 ≤
c(p)

ε
L
[
ωa(R)

]p′ ∫
BR

|Du|p logp
′
(e+ |Du|) dx

≤ c(n,N, p, L/ν)L
[
ωa(R) log

( 1

R

)]p′(∫
BR

|Du|p(1+δg) dx
) 1

1+δg

≤ c(n,N, p, L/ν)L
[
ωa(R) log

( 1

R

)]2 ∫
B3R/2

H(x,Du) dx .

We conclude that in both cases (1 < p < 2 and p ≥ 2) the comparison estimate
(3.13) holds for a constant c ≡ c(n,N, p, L/ν).

Step 2. There exists an exponent q = q(n,N, p, L/ν) < n such that the following
comparison estimate between v̄ and v holds:
(3.20)∫

BR/2

|Vā(Dv̄)− Vā(Dv)|2 dx ≤ c R
2

ν2

(∫
BR

|Db|q dx
)2/q

∫
B3R/2

H(x,Du) dx ,

for a constant c depending on n,N, p and L/ν.
Since both v̄ and v are minimizers, we can use the corresponding Euler-Lagrange

equations (3.9) and (3.8). We can test with φ = v̄−v ∈W 1,p
0 (BR/2;RN ) (extended

to 0 on BR \BR/2) as Hā(Dφ) ∈ L1(BR/2) by (3.7):
(3.21)∫

BR/2

b(x)〈∂zHā(Dv̄), Dv̄ −Dv〉 dx−
∫
BR/2

bav〈∂zHā(Dv), Dv̄ −Dv〉 dx = 0 .

Using (2.32), with z = Dv̄(x) and λ = Dv̄(x)−Dv(x), and (2.31) we may estimate

(3.22) |〈∂zHā(Dv̄), Dv̄ −Dv〉| ≤ c(p)
(
Hā(Dv̄) +Hā(Dv)

)
,

thus in (3.21) we can add and substract the integral∫
BR/2

bav〈∂zHā(Dv̄), Dv̄ −Dv〉 dx ,

which is finite by (3.22) and (3.7), obtaining

D1 :=

∫
BR/2

bav〈∂zHā(Dv̄)− ∂zHā(Dv), Dv̄ −Dv〉 dx

=

∫
BR/2

(
bav − b(x)

)
〈∂zHā(Dv̄), Dv̄ −Dv〉 dx := D2 .

By applying (2.33) with z1 = Dv̄(x) and z2 = Dv(x), and noticing that ν ≤ bav ≤ L,
we can estimate D1 from below obtaining that

(3.23)
ν

c(p)

∫
BR/2

∣∣Vā(Dv̄)− Vā(Dv)
∣∣2 dx ≤ D1 = |D2| .

By Cauchy-Schwarz inequality, (2.34) with z = Dv̄(x), and (2.37) with z1 = Dv̄(x)
and z2 = Dv(x), we can estimate |D2| as

|D2| ≤
∫
BR/2

|b(x)− bav||∂zHā(Dv̄)| |Dv̄ −Dv| dx
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≤ c(p)

∫
BR/2

|b(x)− bav|hā(|Dv̄|)|Dv̄ −Dv| dx

≤ c(p)
∫
BR/2

|b(x)− bav|
∣∣Vā(Dv̄)− Vā(Dv)

∣∣√Hā

(
Dv̄
)
dx

+ c(p)

∫
BR/2

|b(x)− bav|
∣∣Vā(Dv̄)− Vā(Dv)

∣∣√Hā

(
Dv
)
dx = I1 + I2 .(3.24)

Using Young’s inequality with conjugate exponents (2, 2) and ε ∈ (0, 1) to be chosen,
we can estimate

(3.25) I1 ≤ c(p) ε
∫
BR/2

∣∣Vā(Dv̄)− Vā(Dv)
∣∣2 dx

+
c(p)

4ε

∫
BR/2

|b(x)− bav|2Hā(Dv̄) dx = I3 + I4 ,

where the term I3 can be reabsorbed in the left-hand side of (3.23) for ε sufficiently
small depending only on p, ν.

In order to estimate I4 in (3.25), let δg ∈ (0, 1) be the higher integrability
exponent from Theorem 2.7-Remarks 3.2 & 3.4 which holds for both v̄ and v,
depending on n,N, p and L/ν, and let us choose q = q(n, δg) < n such that

(3.26) q∗ =
nq

n− q
= 2
(

1 +
1

δg

)
⇐⇒ q =

q∗

n+ q∗
n =

2(1 + δg)

nδg + 2(1 + δg)
n .

Now, by applying first Hölder’s inequality with conjugate exponents (1 + 1/δg, 1 +
δg), then the Sobolev-Poincaré and the reverse Hölder’s (2.45) inequalities with
θ = 1/2 and r = R, and finally (3.7), we obtain

I4 ≤
c(p)

ε

(∫
BR/2

|b(x)− bav|
2(1+ 1

δg
)
dx
) δg

1+δg
(∫

BR/2

[
Hā(Dv̄)

]1+δg
dx
) 1

1+δg

=
c(p)

ν

[( ∫
BR/2

|b(x)− bav|q
∗
dx
)1/q∗]2(∫

BR/2

[
Hā(Dv̄)

]1+δg
dx
) 1

1+δg

≤ c(n,N, p, L/ν)

ν

[
R
(∫

BR/2

|Db|q dx
)1/q]2 ∫

BR

Hā(Dv̄) dx

≤ c(n,N, p, L/ν)

ν
R2
(∫

BR

|Db|q dx
)2/q

∫
B3R/2

H(x,Du) dx .(3.27)

It remains to estimate the term I2 in (3.24): arguing as in (3.25) we obtain first

I2 ≤ c(p) ε
∫
BR/2

|Vā(Dv̄)− Vā(Dv)|2 dx

+
c(p)

4ε

∫
BR/2

|b(x)− bav|2Hā(Dv) dx = I5 + I6 ,

with the term I5 which can be reabsorbed in the left-hand side of (3.23) for ε
sufficiently small depending only on p, ν. Then, with the same exponent q defined
in (3.26) and the same computations in (3.27), using (3.11) we can estimate the
term I6 as

I6 ≤ c ,
R2

ν

(∫
BR

|Db|q dx
)2/q

∫
B3R/2

H(x,Du) dx ,

for a constant c ≡ c(n,N, p, L/ν). Putting together all the estimates into (3.23)
and (3.24), we obtain (3.20).
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From (3.13) and (3.20), we deduce immediately the comparison estimate (3.12).
�

Next, an inequality allowing to replace the energy on the right-hand side with a
quantity more appropriate for the forthcoming iteration proof.

Proposition 3.3. There exists a constant c ≡ c(n,N, p, L/ν) such that∫
B3R/2

H(x,Du) dx ≤ c
∫
B2R

∣∣Va(x0)(Du)
∣∣2 dx

holds for every ball B2R ≡ B2R(x0) ⊂ Ω with R smaller than R0/2.

Proof. The self-improving character of reverse-Hölder inequality yields that, as a
consequence of the higher integrability estimate (2.45), for every σ > 0 there holds

(3.28)

∫
B3R/2

H(x,Du) dx ≤ c(n,N, p, L/ν, σ)

(∫
B2R

[
H(x,Du)

]σ
dx

)1/σ

.

Observing that for every x0 ∈ Ω the function H(x0, Du(·)) ∈ L1(B2R) due to the
higher integrability result of Theorem 2.7 and (2.39), we choose σ = 1/2 and we
use sub-additivity to estimate the right-hand side:∫

B2R

[
H(x,Du)

]σ
dx ≤

∫
B2R

[
H(x0, Du)

] 1
2 dx

+

∫
B2R

∣∣a(x)− a(x0)
∣∣ 1

2 |Du|
p
2 log

1
2 (e+ |Du|) dx .

Since the first integral is bounded by
(∫

B2R

∣∣Va(x0)(Du)
∣∣2 dx)1/2

, using Hölder’s

inequality and (2.22), we focus on the second one. In order to estimate it, we use

first Lemma 2.1 with f = |Du|
p
2 , σ = 2/p, β = 1/2, θ = p, s = 2, then (2.42) and

the fact that R ≤ R0 < 1, and finally (2.22):∫
B2R

∣∣a(x)− a(x0)
∣∣ 1

2 |Du|
p
2 log

1
2 (e+ |Du|) dx

≤
[
ωa(2R)

] 1
2

∫
B2R

|Du|
p
2 log

1
2 (e+ |Du|) dx

≤ c(n, p)
[
ωa(R) log

( 1

2R

)] 1
2 [

1 +Rp‖Du‖
p
2

L
p
2 (B2R)

) 1
2

(∫
B2R

|Du|p dx
) 1

2

≤ c
[
ωa(R) log

( 1

R

)] 1
2
[
1 +Rp

∫
B2R

(1 + |Du|p) dx
] 1

2
(∫

B2R

|Du|p dx
) 1

2

≤ c
[
ωa(R) log

( 1

R

)] 1
2
[
1 + c(n)Rn+p

0 +Rp0‖Du‖
p
Lp(Ω)

] 1
2

(∫
B2R

|Du|p dx
) 1

2

≤ c
(∫

B2R

H(x0, Du) dx
)1/2

≤ c(n, p)
(∫

B2R

∣∣Va(x0)(Du)
∣∣2 dx) 1

2

.

The proof is concluded in view of (3.28) with σ = 1/2. �

Remark 3.5. Notice that we can prove in a similar way that if B4R(x0) ⊂ Ω has
radius R ≤ R0/4, then∫

B2R

∣∣Va(x0)(Du)
∣∣2 dx ≤ c(n,N, p, L/ν)

∫
B4R

H(x,Du) dx .

Indeed, using (2.22), Lemma 2.5, (3.14) from B2R to B4R (in the higher integrability
estimate (2.45) choose θ = 1/2 and r = 4R), the concavity of ωa(·) together with
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the monotonicity of the logarithm function, and (2.42) we have∫
B2R

∣∣Va(x0)(Du)
∣∣2 dx

≤ 2

∫
B2R

∣∣Va(x)(Du)
∣∣2 dx+ 2

∫
B2R

∣∣Va(x)(Du)− Va(x0)(Du)
∣∣2 dx

≤ 4

∫
B2R

H(x,Du) dx+ 2

∫
B2R

|a(x)− a(x0)|2|Du|p log2(e+ |Du|) dx

≤ c(n)

∫
B4R

H(x,Du) dx+ c(n,N, p, L/ν)
[
ωa(R) log

( 1

R

)]2 ∫
B4R

H(x,Du) dx .

3.2. Excess decay estimate. From now on, let us denote for radii r ≤ R and for
the exponent q ∈ (1, n) defined in Lemma 3.2

Br,q ≡ Br,q(x0) :=
r

ν

(∫
Br(x0)

|Db|q dx
)1/q

and we recall that ωlog has been defined in (1.6). Also in this paragraph the center
of all the balls will be x0 and therefore we shall omit it.

The forthcoming Lemma is a preliminary decay estimate for the L2-excess of a
certain nonlinear function of the gradient. The function ξ 7→ Vā(ξ) with ā as in
(3.2) reflects the growth of the comparison problems but it is not appropriate for
the iteration procedures we are going to perform; it will be replaced later in order
to get the final excess-decay estimate (3.30).

Lemma 3.4. There exist an exponent α ∈ (0, 1) depending on n,N and p, and
a constant c ≡ c(n,N, p, L/ν), such that for every pair of concentric balls Bρ ≡
Bρ(x0) ⊂ B2R ≡ B2R(x0) ⊂ Ω with R ≤ R0/2, it holds

(3.29)∫
Bρ

∣∣Vā(Du)−
(
Vā(Du)

)
Bρ

∣∣2 dx ≤ c( ρ
R

)2α ∫
B2R

∣∣Vā(Du)−
(
Vā(Du)

)
B2R

∣∣2 dx
+ c
[(R

ρ

)n
+
( ρ
R

)2α][
ω2

log(R) + B2
R,q

] ∫
B2R

∣∣Va(x0)(Du)
∣∣2 dx .

Proof. It suffices to prove the lemma for 0 < ρ ≤ R/2, indeed for R/2 < ρ ≤ 2R
the estimate follows immediately using (2.1), enlarging the integral, and observing
that 2(ρ/R) ≥ 1. Now, noticing that the function v is also a local minimizer of
the functional Pā defined in (2.47) on A = BR/2, thus Theorem 2.8 applies to the
minimizer v, and using also (2.1), we can estimate∫

Bρ

∣∣Vā(Du)−
(
Vā(Du)

)
Bρ

∣∣2 dx
≤ 8

[∫
Bρ

∣∣Vā(Du)− Vā(Dv)
∣∣2 dx+

∫
Bρ

∣∣Vā(Dv)−
(
Vā(Dv)

)
Bρ

∣∣2 dx]
≤ c(n,N, p)

[(R
ρ

)n ∫
BR/2

∣∣Vā(Du)− Vā(Dv)
∣∣2 dx

+
( ρ
R

)2α ∫
BR/2

∣∣Vā(Dv)−
(
Vā(Dv)

)
BR/2

∣∣2 dx] .
As∫

BR/2

∣∣Vā(Dv)−
(
Vā(Dv)

)
BR/2

∣∣2 dx ≤ c(n)
[∫

BR/2

∣∣Vā(Du)− Vā(Dv)
∣∣2 dx
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+

∫
B2R

∣∣Vā(Du)−
(
Vā(Du)

)
B2R

∣∣2 dx] ,
by the comparison Lemma 3.2 and Proposition 3.3 we conclude that∫

Bρ

∣∣Vā(Du)−
(
Vā(Du)

)
Bρ

∣∣2 dx
≤ c(n,N, p)

[(R
ρ

)n
+
( ρ
R

)2α] ∫
BR/2

∣∣Vā(Du)− Vā(Dv)
∣∣2 dx

+ c(n,N, p)
( ρ
R

)2α ∫
B2R

∣∣Vā(Du)−
(
Vā(Du)

)
B2R

∣∣2 dx
≤ c
( ρ
R

)2α ∫
B2R

∣∣Vā(Du)−
(
Vā(Du)

)
B2R

∣∣2 dx
+ c
[(R
ρ

)n
+
( ρ
R

)2α][
ω2

log(R) + B2
R,q

] ∫
B2R

|Va(x0)(Du)|2 dx

with c ≡ c(n,N, p, L/ν). �

The next Lemma is necessary in order to perform the final iteration more smoothly;
in particular we need to uniformize the nonlinear expression of the gradient appear-
ing in the left- and right-hand sides of (3.29), replacing Vā(·) with Va(x0)(·).

Lemma 3.5. There exists a constant c ≡ c(n,N, p, L/ν) such that for every pair
of concentric balls Bρ ≡ Bρ(x0) ⊂ B2R ≡ B2R(x0) ⊂ Ω with R ≤ R0/2, it holds∫

Bρ

∣∣Vā(Du)− Va(x0)(Du)
∣∣2 dx ≤ c(R

ρ

)n[
ωlog(R)

]2 ∫
B2R

∣∣Va(x0)(Du)
∣∣2 dx ,

where ā is the infimum of the continuous function a(·) on B2R as defined in (3.2).

Proof. Using Lemma 2.5, with a1 = ā and a2 = a(x0), the fact that |ā − a(x0)| ≤
2ωa(R), (3.14) and Proposition 3.3, we can estimate∫

Bρ

∣∣Vā(Du)−Va(x0)(Du)
∣∣2 dx

≤
(R
ρ

)n ∫
BR

|ā− a(x0)|2|Du|p log2(e+ |Du|) dx

≤ c(n,N, p, L/ν)
(R
ρ

)n[
ωlog(R)

]2 ∫
B2R

|Va(x0)(Du)|2 dx .

�

Finally, the decay estimate we were looking for.

Proposition 3.6. There exist an exponent α ∈ (0, 1) depending on n,N and p,
and a constant c̄ ≡ c̄(n,N, p, L/ν), such that for every pair of concentric balls
Bρ ≡ Bρ(x0) ⊂ B2R ≡ B2R(x0) ⊂ Ω with R ≤ R0/2, it holds

(3.30)

∫
Bρ

∣∣Va(x0)(Du)−
(
Va(x0)(Du)

)
Bρ

∣∣2 dx
≤ c̄
( ρ
R

)2α ∫
B2R

∣∣Va(x0)(Du)−
(
Va(x0)(Du)

)
B2R

∣∣2 dx
+ c̄
[(R
ρ

)n
+
( ρ
R

)2α][
ω2

log(2R) + B2
2R,q

] ∫
B2R

∣∣Va(x0)(Du)
∣∣2 dx .

Proof. Putting together Lemmata 3.5 and 3.4, we obtain for a constant c depending
on n,N, p and L/ν:
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Bρ

∣∣Va(x0)(Du)−
(
Va(x0)(Du)

)
Bρ

∣∣2 dx
≤ c
( ρ
R

)2α ∫
B2R

∣∣Vā(Du)−
(
Vā(Du)

)
B2R

∣∣2 dx
+ c
[(R
ρ

)n
+
( ρ
R

)2α][
ω2

log(R) + B2
R,q

] ∫
B2R

∣∣Va(x0)(Du)
∣∣2 dx .

Using again Lemma 3.5 we estimate∫
B2R

∣∣Vā(Du)−
(
Vā(Du)

)
B2R

∣∣2
≤ 8
[∫

B2R

∣∣Vā(Du)− Va(x0)(Du)
∣∣2 dx+

∫
B2R

∣∣Va(x0)(Du)−
(
Va(x0)(Du)

)
B2R

∣∣2 dx]
≤ c
[∫

B2R

∣∣Va(x0)(Du)−
(
Va(x0)(Du)

)
B2R

∣∣2 dx+ ω2
log(R)

∫
B2R

∣∣Va(x0)(Du)
∣∣2 dx]

for a constant c ≡ c(n,N, p, L/ν); the conclusion follows from BR,q ≤ c(n, q)B2R,q

and ωlog(R) ≤ ωlog(2R), with the second one obtained by the monotonicity of ωa(·)
and the inequality log

( 1

R

)
≤ 4 log

( 1

2R

)
which holds for every R ≤ 1/e. �

4. Iteration and conclusion

Once having at hand the excess decay estimate of Proposition 3.6, the conclusion
is quite standard (see [38, 2, 3, 40] for instance). We sketch the proof for the reader’s
convenience. We take x0 ∈ Ω and a radius R such that B2R(x0) ⊂ Ω and 2R is
smaller than the threshold R0 as defined in (3.1); we shall further reduce the value
of R0. We define the sequence of radii and corresponding balls

(4.1) R̃j = 2Rδj , `Bj = `Bj(x0) = B`R̃j (x0) , ` > 0, j ∈ N0 ,

for δ ∈ (0, 1) that will be chosen later. The fundamental result all the forthcoming
proofs are based upon is the following, whose proof can be found in [38, Lemma 1]
or [3].

Lemma 4.1. Let Ω ⊂ Rn and f ∈ Ln,1loc (Ω;Rn); let moreover δ ∈ (0, 1) and q ∈
(1, n) be fixed. For every K b Ω and ε > 0, there exists a radius Rε > 0 depending
on n, q, δ, |f(·)| and ε such that if R ∈ (0, Rε] and R < dist(∂Ω,K), then

sup
x∈K

∞∑
j=0

R̃j

(∫
Bj(x)

|f |q dy
)1/q

≤ ε

with R̃j and Bj(x) as in (4.1) (with x replacing x0).

The analogous result regarding ωlog is based on a simple computation (see [13,
Eq. (4.6)]) and ensures

(4.2)

∞∑
j=0

ωlog(R̃j) ≤ δ−1

∫ 2R0

0

ωlog(ρ)
dρ

ρ
;

note that the right-hand side of the previous inequality tends to zero as R0 ↘ 0+.
We immediately choose δ ≡ δ(n,N, p, L/ν) ∈ (0, 1/4) as the constant satisfying√
c̄ (2δ)α = 1/4, with c̄ and α the constants from Proposition 3.6. We then define

the radii and the balls as in (4.1), set for j ∈ N0 ωj = ωlog(R̃j), Bj = BR̃j ,q and

(4.3)

aj :=
∣∣∣ ∫

Bj

Va(x0)(Du) dx
∣∣∣, Ej :=

(∫
Bj

∣∣Va(x0)(Du)−
(
Va(x0)(Du)

)
Bj

∣∣2 dx)1/2

.
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At this point we have for every j ∈ N0, using (3.30) with 2R = R̃j , ρ = R̃j+1

Ej+1 ≤
1

4
Ej + c̃

[
ωj + Bj

]( ∫
Bj

|Va(x0)(Du)|2 dx
) 1

2

≤ 1

4
Ej + c̃

[
ωj + Bj

]
Ej + c̃

[
ωj + Bj

] ∣∣∣ ∫
Bj

Va(x0)(Du) dx
∣∣∣

with the constant c̃ depending only on n,N, p and L/ν; in the last line we used
triangle’s inequality. Now we reduce, in view of (2.41) and Lemma 4.1, the value
of R0 so that

sup
R≤R0

ωlog(R) + sup
R≤R0

BR,q ≤
1

4c̃
=⇒ c̃

[
ωj + Bj

]
≤ 1

4
;

R0 at this point depends also on ωa(·) and |Db(·)|/ν; this yields

Ej+1 ≤
1

2
Ej + c̃

[
ωj + Bj

]
aj

and in turn, summing for j ∈ {`, . . . , k} with `, k ∈ N0, ` ≤ k fixed,

(4.4)

k+1∑
j=`+1

Ej ≤
1

2

k∑
j=`

Ej+ c̃

k∑
j=`

[
ωj+Bj

]
aj ⇒

k+1∑
j=`

Ej ≤ 2E`+2c̃

k∑
j=`

[
ωj+Bj

]
aj

for c̃ depending on n,N, p and L/ν.

4.1. Gradient boundedness by induction. In this paragraph we suppose that
x0 ∈ Ω is a Lebesgue’s point for Du and we finally are in the position to prove by
induction that

aj =

∣∣∣∣ ∫
Bj

Va(x0)(Du) dx

∣∣∣∣ ≤ 12δ−n
(∫

B2R(x0)

∣∣Va(x0)(Du)
∣∣2 dx) 1

2

= λ0

for all j ∈ N0, with δ defined just after (4.2): thanks to the choice of x0, this leads
to (1.10), using also Remark 3.5, after renaming R. The base case j = 0 is trivial
by Hölder’s inequality; notice also that

a0 + E0 ≤ 3
(∫

B2R(x0)

∣∣Va(x0)(Du)
∣∣2 dx) 1

2 ≤ δn

4
λ0 .

Suppose now that aj ≤ λ0 holds for all j ∈ {0, 1, . . . , k} for some k ∈ N0 and further
reduce R0, in a way depending on n,N, p, L/ν, ωa(·) and |Db(·)|/ν, so that

∞∑
j=0

[
ωj + Bj

]
≤ δn

8c̃
,

this being possible thanks to Lemma 4.1 and (4.2). Since

aj+1 − aj =

∣∣∣∣ ∫
Bj+1

Va(x0)(Du) dx

∣∣∣∣− ∣∣∣∣ ∫
Bj

Va(x0)(Du) dx

∣∣∣∣
≤
∣∣∣∣ ∫

Bj+1

Va(x0)(Du) dx−
∫
Bj

Va(x0)(Du) dx

∣∣∣∣
≤ δ−n

∫
Bj

∣∣Va(x0)(Du)−
(
Va(x0)(Du)

)
Bj

∣∣ dx ≤ δ−nEj ,
we have by telescopic summation

ak+1 = a0 +

k∑
j=0

[
aj+1 − aj

]
≤ a0 + δ−n

k∑
j=0

Ej
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and using (4.4) for ` = 0 and our inductive assumption

ak+1 ≤ a0 + 2δ−nE0 + 2c̃ δ−n
∞∑
j=0

[
ωj + Bj

]
λ0 ≤

λ0

4
+
λ0

2
+
λ0

4
= λ0 ;

the boundedness proof is thus concluded.

4.2. Quantitative locally uniform VMO-type estimate. In order to be able
to prove the gradient continuity in the next paragraph, we need as intermediate
step a qualitative result of VMO-type. From the result of the previous paragraph,
we know that the gradient is locally bounded in Ω and therefore, for K b Ω we fix
an intermediate compact set K b K̃ b Ω such that dist(K, ∂K̃) = dist(K, ∂Ω)/2
and we set

λ2
1 := ‖H(·, Du)‖L∞(K̃) .

We prove here that for every ε > 0, there exists a radius Rε, depending on
n,N, p, L/ν, ωa(·), |Db(·)|/ν, ‖H(·, Du)‖L1 and ε, such that if Rε ≤ dist(K, ∂Ω)/4
then

(4.5) sup
R∈(0,Rε]

sup
x∈K

(∫
BR(x)

∣∣Va(x)(Du)−
(
Va(x)(Du)

)
BR(x)

∣∣2 dy) 1
2 ≤ ε λ1 .

We fix δ ≡ δ(n,N, p, L/ν, ε) such that 2
√
c̄ (2δ)α = ε/2, where c̄ and α are the

constants from Proposition 3.6, and we define, for a starting radius R ≤ R1/2, with

R1 ≤ R0/2 a threshold to be chosen appropriately, R̃j , Bj(x) as in (4.1) and Ej(x)
the excess over Bj(x) as in (4.3). Using Proposition 3.6 and Remark 3.5 we have

for x ∈ K, if B4R(x) ⊂ K̃

Ej+1(x) ≤
√
c̄ (2δ)αEj(x) +

√
c̄ 2(2δ)−

n
2

[
ωlog(R̃j) + BR̃j ,q

]( ∫
2Bj(x)

H(y,Du) dy
) 1

2

≤
√
c̄
[
2(2δ)α + 2(2δ)−

n
2

[
ωlog(R̃j) + BR̃j ,q

]]
λ1

≤ ε

2
λ1 +

√
c̄
[
δ−

n
2

[
ωlog(R̃j) + BR̃j ,q

]]
λ1

for all j ∈ N0, due to our choice of δ. Now we can reduce the value of R1 so that
supR∈(0,R1] ωlog(R) ≤ δ n2 ε/[4

√
c̄ ] (and this is possible in view of (2.41)) and so that

supR∈(0,R1] BR,q ≤ δ
n
2 ε/[4

√
c̄ ] (and this is possible in view of Lemma 4.1, uniformly

in K) so that supx∈K Ej(x) ≤ ελ1 for all j ∈ N. We conclude the proof noticing
that if we take Rε = δR1, then for every R ≤ Rε there exists a radius r ∈ (δR1, R1]
such that R = δjr for some j ∈ N and thus Bj(x) = Bδjr(x) = BR(x); this
concludes the proof of (4.5).

4.3. Gradient continuity by locally uniform convergence. Here we prove
that the gradient Du is continuous in Ω by taking a generic but fixed compact set
K b Ω and proving that Du is continuous in K; to do that, we show that the
family of continuous maps

MR : x ∈ K 7−→
∫
BR(x)

Va(x)

(
Du(y)

)
dy, R ≤ 1

4
dist(K, ∂Ω) ,

satisfy the Cauchy’s criterion uniformly in K. Since their limit coincides almost ev-
erywhere with Va(·)(Du), the continuity of Va(·)(Du) is hence proven. Gradient con-
tinuity follows easily thanks to triangle’s inequality, the estimate in Lemma 2.5 and
the fact that Du is bounded, see [3, Last section]. We take K̃, λ1 as in the previous
Paragraph 4.2 and we show that for every ε > 0 there exists a radius R2 ≤ R0/4 and
a constant δ ∈ (0, 1), the first depending on n,N, p, L/ν, ωa(·), |Db(·)|/ν, dist(K, ∂Ω),
‖H(·, Du)‖L1 and ε, the latter on n,N, p and L/ν such that, setting again as in
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the previous Paragraph R̃j = δj(2R2), ωj = ωlog(R̃j),Bj(x) = BR̃j ,q(x), it holds

Bj ⊂ B4R2
(x) ⊂ K̃ for all x ∈ K and

(4.6) sup
x∈K

∣∣∣(Va(x)(Du)
)
Bk(x)

−
(
Va(x)(Du)

)
B`(x)

∣∣∣ < ελ1 for all 1 ≤ ` < k ;

to see how this does lead to the conclusion we refer for instance to [2, Paragraph
4.2], [13, After Step 3 in the proof of Theorem 4.3], [38, After eq. (124)], [39,
After eq. (179)]. (4.6) indeed allows to prove that for any ε > 0 there exists a
threshold Rε, depending on n,N, p, L/ν, ωa(·), |Db(·)|/ν, dist(K, ∂Ω), ‖H(·, Du)‖L1

and ε such that

sup
x∈K

∣∣∣(Va(x)(Du)
)
Br1 (x)

−
(
Va(x)(Du)

)
Br2 (x)

∣∣∣ < ελ1 for all 0 < r1 ≤ r2 ≤ Rε .

To prove (4.6) we define δ ≡ δ(n,N, p, L/ν) ∈ (0, 1/4) as after (4.1) and we notice
that from (4.4) and for x ∈ K∣∣(Va(x)(Du)

)
Bk(x)

−
(
Va(x)(Du)

)
B`(x)

∣∣
≤ δ−n

k−1∑
j=`

Ej(x) ≤ 2δ−nE`(x) + 2c̃δ−n
∞∑
j=0

[
ωj + Bj(x)

]
λ1

since now aj ≤ λ1 for all j ∈ N0. ForR2 sufficiently small, depending on n,N, p, L/ν,
ωa(·), |Db(·)|/ν and ε, the second term is smaller than λ1ε/2, uniformly in x ∈ K,
thanks to Lemma 4.1 and (4.2). The first one is also smaller than λ1ε/2 thanks to
(4.5) again for R2 sufficiently small. The proof is concluded.

5. Dini continuous coefficients

The proofs for b(·) Dini continuous are actually much simpler; therefore we are
going only to highlight the necessary changes. We start defining the comparison
maps v̄ ∈ W 1,p(BR;RN ) and v ∈ W 1,p(BR/2;RN ) exactly as in (3.3) and (3.4).
Comparison estimate (3.12) is now replaced by
(5.1)∫

BR/2

∣∣Vā(Du)− Vā(Dv)
∣∣2 dx ≤ c[[ωlog(R)

]2
+
[
ωb(R)

]2] ∫
B3R/2

H(x,Du) dx ,

the constant having the same dependencies and ωb(·) as defined in (1.8). The only
change in the proof is in the estimate for D2 (3.24): now we can simply estimate

|D2| ≤ c(p)ωb(R)

∫
BR/2

∣∣Vā(Dv̄)− Vā(Dv)
∣∣√Hā

(
Dv̄
)
dx

+ c(p)ωb(R)

∫
BR/2

∣∣Vā(Dv̄)− Vā(Dv)
∣∣√Hā

(
Dv
)
dx

≤ 2c(p) ε

∫
BR/2

∣∣Vā(Dv̄)− Vā(Dv)
∣∣2 dx

+
c(p)

ε

[
ωb(R)

]2[ ∫
BR/2

Hā(Dv̄) dx+

∫
BR/2

Hā(Dv) dx

]
for ε ∈ (0, 1) to be chosen, using Young’s inequality. At this point we use (3.6)-(3.7)
and reabsorb the integral of |Vā(Dv̄) − Vā(Dv)|2 and the proof is concluded. The
subsequent results have the same form except for the fact that ωb(R) replaces BR,q
and the same with 2R. Finally, also the results of Section 4 are formally identical
only replacing Bj with B̃j = ωb(R̃j); the final result is however the same, since
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again one can make both B̃j and
∑∞
j=0 B̃j arbitrarily small by choosing an initial

radius R̃ small in view of the fact

(5.2)

∞∑
j=0

ωb(R̃j) ≤ δ−1

∫ 2R̃

0

ωb(ρ)
dρ

ρ
if R̃j = δjR with R ≤ R̃

(see [13, Eq. (46) and subsequent lines] for instance); observe that thanks to the
first assumption in (1.9), that is the Dini continuity of b(·), the integral on the

right-hand side vanishes as R̃↘ 0+.
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[11] V. Bögelein, F. Duzaar, P. Marcellini, C. Scheven: Boundary regularity for elliptic

systems with p, q-growth. J. Math. Pures Appl. (9) 159 (2022), 250–293.

[12] S.-S. Byun, J. Oh: Global gradient estimates for the borderline case of double phase problems
with BMO coefficients in nonsmooth domains. J. Differential Equations 263, (2017), no. 2,

1643–1693.
[13] S.-S. Byun, Y. Youn: Riesz potential estimates for a class of double phase problems. J.

Differential Equations 264 (2018), no. 2, 1263–1316.

[14] S.-S. Byun, Y. Cho, Y. Youn: Global gradient estimates for a borderline case of double
phase problems with measure data. J. Math. Anal. Appl. 501 (2021), no. 1, 124072.

[15] F. Chiarenza, M. Frasca, P. Longo: Interior W 2,p estimates for nondivergence elliptic

equations with discontinuous coefficients. Ricerche Mat. 40 (1991), no. 1, 149–168.
[16] F. Chiarenza, M. Frasca, P. Longo: W 2,p-solvability of the Dirichlet problem for nondi-

vergence elliptic equations with VMO coefficients. Trans. Amer. Math. Soc. 336 (1993), no.
2, 841–853.

[17] A. Cianchi, M. Randolfi: On the modulus of continuity of weakly differentiable functions.
Indiana Univ. Math. J. 60 (2011), no. 6, 1939–1973.

[18] M. Colombo, G. Mingione: Regularity for double phase variational problems. Arch. Ratio-
nal Mech. Anal. 215 (2014), no. 2, 443–496.

[19] M. Colombo, G. Mingione: Bounded minimisers of double phase variational integrals. Arch.
Rational Mech. Anal. 218 (2015), no. 1, 219–273.

[20] M. Colombo, G. Mingione: Calderón-Zygmund estimates and non-uniformly elliptic oper-
ators. J. Funct. Anal. 270 (2016), no. 4, 1416–1478.

[21] A. Coscia: Regularity for minimizers of double phase functionals with mild transition and

regular coefficients. J. Math. Anal. Appl. 501 (2021), no. 1, 124569.

[22] J. V. Da Silva, G. C. Ricarte: Geometric gradient estimates for fully nonlinear models
with non-homogeneous degeneracy and applications. Calc. Var. 59 (2020), article 161 .

[23] C. de Filippis: On the regularity of the ω-minima of ϕ-functionals Nonlin. Anal. 194 (2020),
111464.

https://doi.org/10.1515/acv-2022-0016


28 BARONI AND COSCIA

[24] C. de Filippis: Regularity for solutions of fully nonlinear elliptic equations with nonhomo-

geneous degeneracy. Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), no. 1, 110–132.

[25] C. de Filippis, G. Mingione: A borderline case of Calderón-Zygmund estimates for nonuni-
formly elliptic problems. St. Petersburg Math. J. 31 (2020), no. 3, 455–477.

[26] C. de Filippis, G. Mingione: On the regularity of minima of non-autonomous functionals.
J. Geom. Anal. 30 (2020), no. 2, 1584–1626.

[27] C. de Filippis, G. Mingione: Manifold constrained non-uniformly elliptic problems. J.

Geom. Anal. 30 (2020), no. 2, 1661–1723.
[28] C. de Filippis, G. Mingione: Lipschitz bounds and nonautonomous integrals. Arch. Rational

Mech. Anal. 242 (2021), no. 2, 973–1057.

[29] C. de Filippis, G. Mingione: Gradient regularity in Mixed local and nonlocal problems.
Math. Ann. doi: https://doi.org/10.1007/s00208-022-02512-7

[30] C. de Filippis, G. Mingione: Nonuniformly elliptic Schauder theory. https://arxiv.org/

abs/2201.07369

[31] C. de Filippis, M. Piccinini: Borderline global regularity for nonuniformly elliptic systems.

Int. Math. Res. Not. IMRN, doi: https://doi.org/10.1093/imrn/rnac283

[32] L. Diening, B. Stroffolini, A. Verde: Everywhere regularity of functionals with ϕ-growth.
manuscripta math. 129 (2009), no. 4, 449–481.
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[45] M. Schäffner: Higher integrability for variational integrals with non-standard growth. Calc.
Var. 60 (2021), article 77.

Paolo Baroni, Department of Mathematical, Physical and Computer Sciences, Uni-
versity of Parma, I-43124 Parma, Italy

Email address: paolo.baroni@unipr.it

Alessandra Coscia, Department of Mathematical, Physical and Computer Sciences,

University of Parma, I-43124 Parma, Italy
Email address: alessandra.coscia@unipr.it

https://doi.org/10.1007/s00208-022-02512-7
https://arxiv.org/abs/2201.07369
https://arxiv.org/abs/2201.07369
https://doi.org/10.1093/imrn/rnac283

	1. Introduction and results
	2. Preliminaries
	3. Comparison estimates and excess decay
	4. Iteration and conclusion
	5. Dini continuous coefficients
	References

