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Abstract. We show that local minimizers of the non-autonomous functional

Plog(u,Ω) =

∫
Ω

|Du|p
(
1 + a(x) log(e+ |Du|)

)
dx, p > 1,

have continuous gradient provided that the function a(·) is (almost everywhere)
non-negative and weakly differentiable, and moreover its gradient locally belongs to
the Lorentz-Zygmund space Ln,1 logL. This gives a precise insight of the fact that
for this type of two-phase functionals the lack of uniform ellipticity can be overcome
by additional regularity of the switching coefficient a(·); the novelty is that the
condition is not pointwise, but has integral character, and actually improves the
known results ensuring regularity for minimizers of such functionals.

1. Introduction

We consider local minimizers of the functional

u ∈W 1,1
loc (Ω) 7→ Plog(u,Ω) : =

∫
Ω

(
|Du|p + a(x)|Du|p log(e+ |Du|)

)
dx

=

∫
Ω

H(x,Du) dx,(1.1)

p > 1, where Ω ⊆ Rn, n ≥ 2 is a (bounded) domain and, to start, we suppose that the

function a(·) ∈W 1,1
loc (Ω) satisfies the following assumptions:

(1.2) a(x) ≥ 0 for a.e. x ∈ Ω, Da ∈ Ln,1 logL locally in Ω.

The gradient Da belongs to the Lorentz-Zygmund space Ln,1 logL(K), for K ⊆ Ω, if its
decreasing rearrangement |Da|∗ on K is such that

(1.3)

∫ |K|
0

r
1
n log

( |K|
r

)
|Da|∗(r)dr

r
<∞;

for more details we refer to Paragraphs 1.1 and 2.3. In the latter Paragraph we will show
that, thanks to the generalized Sobolev’s embedding by Cianchi & Pick ([11], see also [12]),
functions whose gradient belongs to Ln,1 logL agree almost everywhere to a continuous
function; therefore, it is not restrictive to speak of pointwise values (and in particular,
everywhere non-negativity) of a(·), and we are going to do it without being afraid to be
misunderstood.

The energy in (1.1) is clearly made up of two parts and the value of the switching
coefficient a(·) determines locally if the growth properties are of standard, p-Laplacian
types, of almost-polynomial type (see Paragraph 2.2) or a mixture of the two; we refer to
[7, 13, 14, 16] for extensive accounts on the origin and the scopes of this functional (and
also related functionals), while we focus here only on the theoretical aspects. We also refer
to [1, 2, 3] for remarkable results in the negative direction, i.e., regarding constructions of
counterexamples for functionals including Plog. The general concept behind the study of
minimizers of Plog is that the mild difference between the phases, i.e., the fact the difference
of growths between the two parts of the energy is of logarithmic size, log(e+|Du|), allows to
catch precisely, in detail, the interplay between the regularity of the non-negative switching
coefficient and the subsequent regularity of local minimizers; this paper (together with the
joint [6]) will be a further contribution to this analysis.
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The space whose definition is in (1.3) can be seen as a logarithmic correction (done in a
scaling-invariant form) to the classic, significant Lorentz space Ln,1 [27], known to be, in
several conjugations, the optimal space ensuring borderline continuity results for elliptic,
parabolic and variational degenerate problems with standard growth: see for instance
[9, 15, 16, 21] and also more details below. This correction, exactly of the size of the
phase transition (see also Paragraph 1.2), is needed in order to rebalance the non-uniform
ellipticity of the functional.

Under the assumption in (1.2) we prove that the gradient of any local minimizer of the
functional Plog is continuous:

Theorem 1.1. Let u ∈W 1,1
loc (Ω) be a local minimizer, in the sense of Definition 1, to the

functional Plog in (1.1); assume that the modulating coefficient a(·) satisfies (1.2). Then
the precise Sobolev representative of Du is locally continuous in Ω.

Moreover, the following local boundedness estimate holds: there exists a constant c,
depending on n, p, ‖H(·, Du)‖L1(B2R(x0)) and Da, such that

(1.4) sup
BR(x0)

H(·, Du) ≤ c
∫
B2R(x0)

H(x,Du) dx

for every ball B2R(x0) b Ω.

We stress that we are not interested here in quantifying the continuity of Du in terms
of moduli of continuity; moreover we stress that the dependence of the constants on Da
follows only from (1.7) and the use of the second part of Corollary 2.4 and it is therefore
of the type described after the same Corollary.

This result is quite unexpected, since up to the present day very few results were
available where regularity could be inferred from a Sobolev-type information on the map
x 7→ f(x, ξ) without the use of any embedding. We will be more precise on this aspect
and we will list some references in Paragraph 2.4; here we only highlight that a natural
condition on the coefficient a(·) ensuring gradient continuity for local minimizers to Plog

is its log-Dini continuity: for ω(·) a modulus of continuity for a(·), one must have

(1.5)

∫
0

ω(ρ) log
(1

ρ

)dρ
ρ
<∞

(in other words: a modulus of continuity of a(·) must be integrable over (0, R) for some
R > 0 with respect to the measure dρ/ρ, if corrected by a logarithmic term); see [8] or
simply appropriately modify the proofs in the present paper and compare for instance with
the results in [5, 24, 25]. We recall that a modulus of continuity for a(·) is an increasing
(and concave, without loss of generality) function ω : [0, diam(Ω)) → [0,+∞) continuous
in zero, such that ω(0) = 0 and

|a(x)− a(y)| ≤ c ω(|x− y|) for all x, y ∈ Ω

for some c > 0. Notice that is tacit in the case (1.5) holds that a(·) must be continuous
(and therefore everywhere non-negative), compare [8, Lemma 2.2].

It is possible to explicitly compute (and we shall do it in detail in Paragraph 2.4) a
modulus of continuity for a(·) and it will turn out that, by embedding, if (1.2) holds then
the function a(·) is (almost everywhere equal to) a log-Hölder continuous function, that
is, its modulus of continuity ω(·) satisfies

(1.6) lim sup
ρ↘0

ω(ρ) log
1

ρ
<∞.

Note that as a consequence we can assume that there exists L̃ ≥ 1 such that

(1.7) sup
ρ∈(0,1]

ω(ρ) log
1

ρ
= L̃,

a fact that we are going to use.

What we find interesting is that the maximal regularity one can obtain using only
the continuity of a(·) together with the quantitative estimate (1.6), that is, only using
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the information obtained by the optimal Sobolev embedding, is the De Giorgi-Nash-Moser-
Harnack theory for local minimizers of (1.1); in particular, for what concerns the gradient,

the best one can get is its higher integrability: essentially, the fact that Du ∈ Lp(1+δg)

loc (Ω)
for a small exponent δg > 0, see Theorem 2.5. Notice that the fact that u is a local
minimizer of (1.1) directly implies Du ∈ Lploc(Ω); in other words, under the assumptions
in (1.2), the minimality implies only a minimal regularity improvement for the gradient
of minimizers, and only at level of its integrability.

On the other hand, using directly, in its full power, the assumption on a(·) in (1.2),
one can prove much better results as the gradient boundedness and continuity stated in
Theorem 1.1. As an example, the function

(1.8) a(x) =

∫ |x|
0

1

s logα(1/s)
ds ≈ 1

logα−1(1/|x|)
is log–Dini in B1/2(0) iff α−1 > 2 but satisfies (1.2) for α−1 > 1, see Paragraph 2.4; thus
for α ∈ (2, 3] our result applies but that of [8] does not. This might look surprising; it
however follows from a natural choice in the perturbation argument, and this is allowed by
a two-steps procedure, where first gradient higher integrability is proven thanks to (1.6).
This two-steps proof forces the implementation of the iteration procedure in a slightly
more than usual careful way, see (3.1) and the subsequent Lemmas. Finally, notice that
the Dini-log assumption (1.6) and our Lorentz-Sobolev assumption (1.2) are in general
not comparable; correlate also with the content of Paragraph 2.4.

Enlarging for a moment the perspective from which we examine our results, the study
of problems with coefficients satisfying assumption of Sobolev-Lorentz type is attracting
more and more interest in the very recent years, even for problems satisfying classic growth
assumptions; in [15] it is shown that solutions to uniformly elliptic vectorial problems of
the type

(1.9) div
(
b(x)

ϕ′(|Du|)
|Du| Du

)
= f in Ω ⊆ Rn

are locally Lipschitz (and therefore C1, after a computation of standard flavor) regular if
both f andDb locally belong to the Lorentz space Ln,1 (at least when the spatial dimension
is larger or equal to three). Here the scalar non-negative function ϕ′ has growth of Orlicz
type (that is, it satisfies the assumptions stated in Paragraph 2.2) and the coefficient b is
elliptic: 0 < ν ≤ b ≤ L.

The gradient of b belongs to the Lorentz space Ln,1(K), for K ⊆ Ω, if

(1.10) ‖Db‖Ln,1 ≈n
∫ |K|

0

ρ
1
n |Db|∗(ρ)

dρ

ρ
≈n

∫ ∞
0

∣∣{K ∩ |Db| > λ}
∣∣ 1
n dλ <∞,

compare with (1.3) and (1.12); for several examples and an exhaustive description of the
literature, we refer to [9, 15, 16, 21, 24, 27].

After this introduction, we introduce some specific terminology starting by specifying
what do we mean by local minimizer to Plog:

Definition 1. A function u ∈W 1,1
loc (Ω) is a local minimizer of the functional Plog in (1.1)

if

|Du|p
(
1 + a(x) log(e+ |Du|)

)
∈ L1

loc(Ω)

and the minimality condition

(1.11) Plog

(
u, supp(u− v)

)
≤ Plog

(
v, supp(u− v)

)
is satisfied whenever v ∈W 1,1

loc (Ω) is such that supp (u− v) b Ω.

In order to avoid unessential complication, in view of the fact that all the forthcoming
results have local nature, we shall assume that u is a global minimizer, i.e., u is globally
integrable (H(·, Du) ∈ L1(Ω)) and (1.11) holds for every competitor v ∈ W 1,1(Ω) with
supp (u− v) ⊆ Ω; dependence of constant could include, as a consequence, ‖Du‖Lp(Ω) or
‖H(·, Du)‖L1(Ω). Easy, minor modifications of the current proof would lead to the results
in the case of local minimizers, or with the dependence stated in Theorem 1.1 (notice
indeed that, once fixing a ball B2R(x0) b Ω, then u is a global minimizer in B2R(x0)).
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1.1. O’Neil space. It is interesting in our opinion to stress the following characterization
of the Lorentz-Zygmund space in terms of decay of the measure of super-level sets. The
gradient of the function a(·) belongs to the Lorentz-Zygmund Ln,1 logL if and only if its
belongs to the O’Neil space Kn(log+ K)n and this happens if

(1.12)

∫ ∞
0

|{|Da| > λ}|
1
n log+ λ dλ <∞,

where log+ is the positive part of the logarithm: log+ λ = max{log λ, 0} for λ > 0; compare
this condition with the definition of the Lorentz space Ln,1 in (1.10). For the equivalente of
these two spaces see [10, Theorem 10.5]. Again, we see that, at least formally, exactly as it
happens with the pointwise assumption, also in this setting the condition can be obtained
adding a perturbation of logarithmic size to the condition ensuring gradient continuity on
the coefficients in (1.9).

1.2. Generalizations and Ls-excesses. Theorem 1.1 will follow as a significantly im-
portant corollary of the following result, which in some respects is more interesting (see
for instance the forthcoming [6]) as it captures the essence of assumption (1.2), that is,
the (local) log-Dini continuity of the excess. For simplicity, we state it for minimizers with
finite global energy, in particular for minimizers in W 1,p(Ω). Notice that it is not clear
whether the assumption (1.13) implies (1.7) (which is needed to ensure that the higher
integrability result of Theorem 2.5 holds true); therefore (1.7) must be supplementary
assumed.

Theorem 1.2. Let u ∈ W 1,p(Ω) be a local minimizer to the functional Plog in (1.1),
with a(·) ∈ L1

loc(Ω) almost everywhere non-negative. There exists a large constant s ≡
s(n, p, L̃, ‖H(·, Du)‖L1(Ω)) such that the following holds: Suppose that for every compact
set K ⊆ Ω, there exists a radius RK such that

(1.13) sup
x0∈K

∫ RK

0

log
(1

ρ

)(∫
Bρ(x0)

∣∣a− (a)Bρ(x0)

∣∣s dx) 1
s dρ

ρ
<∞.

Assume moreover that (1.7) holds for some L̃ ≥ 1. Then the results of Theorem 1.1 remain
valid: Du is locally continuous in Ω and the local estimate (1.4) holds.

The statement of the previous Theorem is somewhat clumsy, as requires regularity
properties for a(·) depending on the minimum of a functional involving the same a(·);
clearly the assumption (1.13) can be strengtgened by requiring the Ls-excess uniformly
log-Dini for any s large or, probably more transparently, requiring (1.2). We shall indeed
see that, if (1.2) holds, then (1.13) and (1.7) are satisfied: see Corollary 2.4 and Paragraph
2.4. We stress now that (1.13) can be interpreted as a log-Dini condition for the Ls-excess
(s � 1 large) and this actually is weaker than the log-Dini condition for the L∞-excess
(that is, for the oscillation) in (1.5).

Theorem 1.2 clarifies why the study of the relation between integral assumptions and
regularity of minimizers ends - at least at the gradient level - with the results of this paper:
one can imagine that an integral condition ensuring gradient Hölder continuity should be
of the type

sup
x0∈K

log
( 1

R

)(∫
BR(x0)

∣∣a− (a)BR(x0)

∣∣s dx) 1
s

. Rβ , R ≤ RK ,

for some β > 0, but this would imply the Hölder regularity of a(·), as

sup
x0∈K

(∫
BR(x0)

∣∣a− (a)BR(x0)

∣∣s dx) 1
s

. R
β
2

and Campanato embedding could apply, ensuring that a ∈ C0, β
2 locally. Now the local

Hölder regularity of the gradient for minimizers would follow from [7].

Using the same approach of this paper one can show that minimizers of the functional

u ∈W 1,1
loc (Ω) 7→

∫
Ω

|Du|p
(
1 + a(x) logα(e+ |Du|)

)
dx, p > 1, α > 0
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are locally continuous if a(x) ≥ 0 a.e. in Ω and Da ∈ Ln,1 logα L locally in Ω while an
approach similar to that in [8] would require∫

0

ω(ρ) logα
(1

ρ

) dρ
ρ
<∞,

being ω a modulus of continuity for a(·). Again, such continuity assumption is not guar-
anteed by the sharp Sobolev embeddings in [11, 12], see the comment after (2.30). The

results hold exactly in the same form for vector-valued minimizers u ∈ W 1,1
loc (Ω;RN ),

N > 1; see the discussion in [7, Section 6] and apply the basic elements to our proof here.
A similar approach, still different in some aspects, has been developed in [5] for systems
with p(x)-growth, compare with [19, 24].

2. Preliminaries

2.1. Notation. In this paper we denote by c a general positive constant, possibly varying
from line to line; special occurrences will be denoted by c1, c∗, c̄ or the like. All such
constants will always be larger or equal than one; moreover relevant dependencies on
parameters will be emphasized using parentheses, i.e., c1 ≡ c1(n, p, ε) means that c1
depends on n, p and ε. For S a set of parameters, the notation A .S B means that
there exists a constant c ≡ c(S) ≥ 1 such that A ≤ c(S)B, while A ≈S B means A .S B
and B .S A. We write A . B, A ≈ B if the constants in play are numerical and do not
depend on any of the parameters in play.
Br(x0) is the open ball with center x0 and radius r > 0; when not important, or clear

from the context, we shall omit denoting the center as follows: Br ≡ Br(x0). Unless
otherwise stated, different balls in the same context will have the same centre. With
B ⊆ Rn being a measurable set with positive, finite Lebesgue measure |B| > 0, and with
g : B → Rk, k ≥ 1, being a measurable map, we shall denote by

(g)B :=

∫
B
g(x) dx :=

1

|B|

∫
B
g(x) dx

its integral average; ωn = |B1(0)|. For x > 1, γ ∈ R, we shall denote by logγ(x) the
quantity [log(x)]γ . We use the agreement that N is the set {1, 2, 3, . . . } and N0 := N∪{0}.
We set, for s ≥ 1, t ∈ [1, n), n ∈ N ∩ [2,+∞)

s∗ =
ns

n+ s
, t∗ =

nt

n− t ;

as s∗ ∈ [1, n) we will always have (s∗)
∗ = s. In view of the lines after Definition 1, the

Lebesgue norms of the minimizer we shall be considering are to be intended finite over
the whole Ω: in short,

‖Du‖Lp = ‖Du‖Lp(Ω), ‖H(·, Du)‖L1 = ‖H(·, Du)‖L1(Ω).

Finally, we use

χ{p<2} =

{
0 if p ≥ 2

1 if p < 2

as χA is the characteristic function of the set A.

2.2. N-functions setting. In the following we are going to introduce a general class of
tools, related to the so-called general class of N -functions. Even if the study of related
equations, systems and functionals has been heavily developed in the last years, see for
instance [4, 18, 20, 22], the main reason of our use is that this will significantly simplify
notation and will provide a unified treatment for many of the results we are going to present
and use. Note that in the aforementioned papers one can find an extensive bibliography
for many of the results we shall mention.

We consider a function ϕ : [0,∞)→ [0,∞), ϕ(0) = ϕ′(0) = 0, such that

(2.1) ϕ ∈ C1([0,∞)) ∩ C2((0,∞)) and
1

cϕ
≤ Oϕ′(t) =

ϕ′′(t)t

ϕ′(t)
≤ cϕ
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for all t > 0 and some cϕ ≥ 1. Note that ϕ turns out to be convex and integrating by
parts the last double-sided inequality we also get

1

cϕ + 1
≤ ϕ′(t)t

ϕ(t)
≤ cϕ + 1.

The inequality in (2.1) implies that ϕ′ satisfies both the ∆2 and ∇2 condition, that can
be equivalently stated by saying that for any t, λ ∈ [0,∞)

min{λcϕ , λ1/cϕ}ϕ′(t) ≤ ϕ′(λt) ≤ max{λcϕ , λ1/cϕ}ϕ′(t);

we will use several times this property without explicitly stating it. Clearly the analogous
inequality above for Oϕ ensures that the same property, mutatis mutandis, holds for ϕ.
Once given ϕ as above, it is well defined its Young’s conjugate:

ϕ̃(t) = sup
s∈[0,∞)

st− ϕ(s) = max
s∈[0,∞)

st− ϕ(s);

it is possible to prove that the Orlicz ratio Oϕ̃(t) of ϕ̃ is bounded below and above if also
that of ϕ is. Moreover the following property holds:

ϕ(t) ≤ ϕ̃
(ϕ(t)

t

)
≤ 2ϕ(t) for all t ∈ (0,∞)

(see [4, 17, 18] and references therein), so that

ϕ(t) ≈cϕ ϕ̃
(
ϕ′(t)

)
for all t ∈ [0,∞)

and also

s
ϕ(t)

t
≤ ϕ(s) + 2ϕ(t) for all t ∈ (0,∞), s ∈ [0,∞).

In this paper we will use in particular three of such functions: we shall make the choices
ϕ = Hp, Hlog, Hā where, for p > 1 and ā ≥ 0 appropriate,

(2.2) Hp(t) =
tp

p
, Hlog(t) :=

tp

p
log(e+ t),

Hā(t) := Hp(t) + ā Hlog(t) =
1

p

[
tp + ā tp log(e+ t)

]
and hp(t) = H ′p(t), Hlog(t) = H ′log(t), hā(t) = H ′ā(t), so that H(x, t) = Ha(x)(t) and
h(x, t) = ha(x)(t). Note that these functions satisfy (2.1) for a constant cϕ depending
possibly only on p; in particular cϕā does not depend on ā (see [7, 13] for instance). We
have the following nice properties, if t ∈ (0,∞):

(2.3)


hā(t) = H ′ā(t) ≈ tp−1 + ātp−1 log(e+ t) = p

Hā(t)

t

h′ā(t) = H ′′ā (t) ≈p tp−2 + ātp−2 log(e+ t)

,

see for instance [13]. We shall use these properties also when ā = a(x), so that ha(x)(t) =
∂tHa(x)(t) = ∂tH(x, t), etc.

2.2.1. Two calculus facts. We prove here that, for a fixed ā ≥ 0, the map t 7→ [Hā(t)]σ

is bounded above and below, up to a constant depending only on p and σ, by convex
function for σ ≥ 1/p and a concave one for σ ∈ [0, 1/[p+ 1]). We set

Ψ(t) = σ

∫ t

0

[Hā(s)]σ

s
ds ≈p

∫ t

0

d

ds
[Hā(s)]σ ds = [Hā(t)]σ;

the equivalence follows from (2.3). We then prove that Ψ is convex, respectively concave,
for the range of exponents σ above, directly computing

Ψ′(t) = σ
[Hā(t)]σ

t
, Ψ′′(t) =

σ[Hā(t)]σ

t2

[
σ
hā(t)t

Hā(t)
− 1
]
;

it is easy now to make explicit the “≈p” in (2.3) since

p ≤ Ohā(t) =
t hā(t)

Hā(t)
≤ p+ 1

and this guarantees the sign to Ψ′′ in the two ranges of σ considered.
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2.2.2. Vector fields related to Orlicz functions. It will be extremely useful to define now
the associated vector fields Vϕ, Aϕ : R` → R`, ` ∈ N, by

(2.4) Vϕ(ξ) :=

√
ϕ′(|ξ|)
|ξ| ξ, Aϕ(ξ) :=

ϕ′(|ξ|)
|ξ| ξ,

whenever ξ ∈ R`; by (2.1) one can prove that Vϕ is a bijection of R`. Moreover, under
the assumptions stated above, Vϕ precisely describes the monotonicity properties of the
vector field Aϕ(·); indeed, for ξ1, ξ2 ∈ R` it holds that

(2.5) |Vϕ(ξ1)− Vϕ(ξ2)|2 ≈cϕ 〈Aϕ(ξ1)−Aϕ(ξ2), ξ1 − ξ2〉.

The following two relations hold for any ξ1, ξ2 ∈ R`:

(2.6) |Vϕ(ξ1)|2 ≈cϕ ϕ
(
|ξ1|
)
, |Vϕ(ξ1)− Vϕ(ξ2)|2 ≈cϕ ϕ

′′(|ξ1|+ |ξ2|)|ξ1 − ξ2|2.
According to (2.4), we define in particular the vector fields

(2.7) Vp(ξ) := |ξ|
p−2

2 ξ, Vlog(ξ) :=

(
|ξ|p−2 log(e+ |ξ|) +

|ξ|p−1

p(e+ |ξ|)

) 1
2

ξ

and Vā := Vϕā as Vϕ for the choice ϕ = Hā. Similarly are defined Ap, Alog, Aā. We stress
that for any ξ1, ξ2 ∈ R` we have, thanks to (2.6)

(2.8)
∣∣Vp(ξ1)− Vp(ξ2)

∣∣2 + ā
∣∣Vlog(ξ1)− Vlog(ξ2)

∣∣2
≈p ϕ′′p

(
|ξ1|+ |ξ2|

)
|ξ1 − ξ2|2 + ā ϕ′′log

(
|ξ1|+ |ξ2|

)
|ξ1 − ξ2|2

= ϕ′′ā
(
|ξ1|+ |ξ2|

)
|ξ1 − ξ2|2 ≈p

∣∣Vā(ξ1)− Vā(ξ2)
∣∣2.

Note that when p ≥ 2, for any ξ1, ξ2 ∈ R`

|ξ1 − ξ2|p ≤ c
∣∣Vp(ξ1)− Vp(ξ2)

∣∣2
holds, again for a constant c depending on p; this is an easy consequence of both (2.6)
and triangle’s inequality. Moreover

(2.9) |ξ1 − ξ2| ≤ c
∣∣Vp(ξ1)− Vp(ξ2)

∣∣ 2
p + c|ξ1|

2−p
2
∣∣Vp(ξ1)− Vp(ξ2)

∣∣
if 1 < p ≤ 2, see [21, Lemma 2]. Also the constant appearing in (2.9) depends only on p.
An estimate that will be useful is the next, see [8, Lemma 2.5]: for a1, a2 ≥ 0 and ξ ∈ R`

(2.10)
∣∣Va1(ξ)− Va2(ξ)

∣∣ ≤ |a1 − a2||ξ|
p
2 log

(
e+ |ξ|

)
,

using the Lipschitz regularity of the function t ∈ [0,∞) 7→
√

1 + t.

Finally, from (2.6) and (2.3) we have for every ω̃ ∈ [0, 1]

(2.11)
∣∣Vlog(ξ1)− Vlog(ξ2)

∣∣2 ≈p (|ξ1|+ |ξ2|)p−2 log(e+ |ξ1|+ |ξ2|)|ξ1 − ξ2|2

.p |Vp(ξ1)− Vp(ξ2)|2(1−ω̃)(|ξ1|+ |ξ2|)pω̃ log
(
e+ |ξ1|+ |ξ2|

)
.

2.2.3. Logarithms. We have the following useful properties of the logarithm:

(2.12)



log
(x
`

)
≤ (1 + | log `|) log x for every x ≥ e and for all ` ∈ (0, 1];

log(e+ xσ) ≤ 1 + c(σ) log(e+ x) for all x ≥ 0 and σ > 0;

log(e+ xy) ≤ log(e+ x) + log(e+ y) for all x, y ≥ 0

log(e+Ax) ≤ A log(e+ x) for all x ≥ 0 and A ≥ 1.

The proofs are very simple, we only highlight for the second one that distinguishing the
cases σ < 1, where log(e+xσ) ≤ log(2(e+x)), and σ ≥ 1 where log(e+xσ) ≤ σ log(e+x)
leads to the result.

As a consequence, as proven in [8, Lemma 2.1], we have
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Lemma 2.1. Let ς̃ > 1, σ, β, θ ≥ 0 and let f ∈ Lς̃(Br) for some ball Br(x0) with radius
r ≤ e−1. Then there exists a constant c depending on n, β, σ, θ and ς̃ such that∫

Br

|f | logβ
(
e+ |f |σ

)
dx ≤ c

(
1 + rθ‖f‖L1(Br)

)
logβ

(1

r

)(∫
Br

|f |ς̃ dx
)1/ς̃

.

2.2.4. Excesses. We recall a standard property of the excess: for any B measurable set
with positive and finite measure, for any F ∈ Ls(B;R`), ` ∈ N, s ≥ 1 it holds

(2.13)

∫
B

∣∣F − (F )B
∣∣s dx ≤ 2s

∫
B
|F − ξ|s dx for each ξ ∈ R`.

It will be useful to consider the following form of the classic excess functional: for B ⊆ Ω
a ball, ϕ as in (2.1) (with particular emphasis on the choices in (2.2)) and Vϕ as in (2.4),
we set

Eϕ(Du,B) :=

(∫
B

∣∣Vϕ(Du)−
(
Vϕ(Du)

)
B

∣∣2 dx)1/2

.

We also notice the following useful equivalence:

(2.14) Eϕ(Du,B) ≈cϕ
(∫

B

∣∣Vϕ(Du)− Vϕ
(
(Du)B

)∣∣2 dx)1/2

,

see the Appendix in [18]; as a consequence, being ā non-negative, we have by (2.8)

∫
B

∣∣Vā(Du)−
(
Vā(Du)

)
B

∣∣2 dx
(2.15)

≈p
∫
B

∣∣Vp(Du)− Vp
(
(Du)B

)∣∣2 dx+ ā

∫
B

∣∣Vlog(Du)− Vlog

(
(Du)B

)∣∣2 dx
≈p
∫
B

∣∣Vp(Du)−
(
Vp(Du)

)
B

∣∣2 dx+ ā

∫
B

∣∣Vlog(Du)−
(
Vlog(Du)

)
B

∣∣2 dx.
2.3. Rearrangements, Lorentz and Lorentz-Zygmund spaces. Good references for
most of the following facts are [23, 26]. Being E ⊆ Rn and f : E → R`, ` ∈ N both
measurable, we define the distribution function of f as µf : [0,+∞)→ [0,+∞)

µf (λ) =
∣∣{x ∈ E : |f(x)| > λ}

∣∣
and the (non-increasing) rearrangement of f as the map f∗ : [0,∞)→ [0,∞] given by

(2.16) f∗(ρ) = inf {λ ≥ 0 : µf (λ) ≤ ρ} .

Notice that f∗ is non-increasing supp (f∗) ⊆ [0, |E|] and f and f∗ have the same distri-
bution, that is µf∗ = µf . Moreover, if E = BR(x0) is a ball, f is decreasingly radial (that
is, f(x) = g(|x− x0|) with g a non-increasing function) we have the simple expression for
its rearrangement

(2.17) f∗(ρ) = g
(( ρ

ωn

)1/n)
.

We shall focus on the definition of Lorentz-Zygmund space: the more common Lorentz
spaces can be retrieved simply by our treatment by putting α = 0, that is, Lγ,q(E), for
exponents 1 ≤ γ < ∞, is by definition Lγ,q logα L(E) if α = 0. Given γ ∈ [1,+∞), q ∈
(0,∞] and α ∈ R, the Lorentz–Zygmund spaces Lγ,q logα L(E) are defined in terms of
the quasi-norms (they indeed lack of sub-additivity when γ < q - employ here a well-
established abuse of notation)

‖f‖Lγ,q logα L(E) =
∥∥∥(·)1/γ(1 + | log(·)|

)α
f∗(·)

∥∥∥
Lq((0,|E|),dt/t)

=



(∫ |E|
0

[
t1/γ

(
1 + | log t|

)α
f∗(t)

]q dt
t

)1/q

if q <∞

sup
t∈(0,|E|)

[
t1/γ

(
1 + | log t|

)α
f∗(t)

]
if q =∞

,(2.18)
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for a measurable function f over E, see [26, Chapter 9]. It is easy to show that when
α = 0 the norm defined in (2.18) agrees with the more classic quasi-norm for Lorentz
spaces defined by

‖f‖Lγ,q(E) =


(
γ

∫ ∞
0

[
λγµf (λ)

] q
γ
dλ

λ

)1/q

if q <∞

sup
λ>0

λ
[
µf (λ)

] 1
γ if q =∞

and that in the case |E| <∞, it is possible to simply require in our case (1.3). It is useful
now to introduce the maximal rearrangement of f as

f∗∗(ρ) =
1

ρ

∫ ρ

0

f∗(σ) dσ for ρ ∈ (0,∞);

notice that, being f∗ decreasing, also f∗∗ is and moreover f∗(ρ) ≤ f∗∗(ρ) for all ρ ∈ (0,∞).
The maximal rearrangement allows to define a useful norm, equivalent to the quasi-norm
in (2.18), when γ > 1 and q <∞:

(2.19) ‖f‖Lγ,q logα L(E) ≈γ,q,α
(∫ |E|

0

[
t1/γ

(
1 + | log t|

)α
f∗∗(t)

]q dt
t

)1/q

see [26, Theorem 9.5.1]. To conclude, note that for all 0 < γ, η < ∞, 0 < q ≤ ∞ and
α ∈ R we have

(2.20)
∥∥|f |η∥∥

Lγ,q logα L(E)
= ‖f‖η

Lγη,qη log
α
η L(E)

since (fη)∗ = (f∗)η for η > 0.

In the setting of Lorentz-Zygmund spaces, for a ball B2R(x0) ⊆ Rn, a scalar function
f : B2R(x0)→ R and a vectorial one F : B2R(x0)→ R`, ` ∈ N, we define the sums

(2.21) Eδs,α(f)(x0) :=

∞∑
k=0

logα
( 1

Rk

)(∫
Bk(x0)

∣∣f − (f)Bk(x0)

∣∣s dx) 1
s
,

and

(2.22) Mδ
q,α(f)(x0) :=

∞∑
k=0

Rk logα
( 1

Rk

)(∫
Bk(x0)

|F |q dx
) 1
q
, q ∈ (1, n), α ∈ R,

where

R ∈ (0, [2e]−1), δ ∈ (0, 1/2), Rk = δkR, Bk(x0) = BRk (x0), k ∈ N0,

and s ∈ [1,+∞), q ∈ (1, n), α ∈ R; it is clear that, if f has weak gradient sufficiently
integrable, by Poincaré’s inequality

(2.23) Eδs,α(f)(x0) ≤ c(n, s)Mδ
s∗,α(Df)(x0).

These dyadic sums will take on great importance in view of the following lemmas, where
f, F and R, δ are as before; compare the second with [21, Lemma 1].

Lemma 2.2. Let f ∈ L1
loc(Ω) and K b Ω. There exists a constant, depending on n, δ

and α such that∫ R

0

logα
(1

ρ

)(∫
Bρ(x0)

∣∣f − (f)Bρ(x0)

∣∣s dx) 1
s dρ

ρ
≤ cEδs,α(f)(x0),

Eδs,α(f)(x0) ≤ c
∫ 2R

0

logα
(1

ρ

)(∫
Bρ(x0)

∣∣f − (f)Bρ(x0)

∣∣s dx) 1
s dρ

ρ

for any R ≤ dist(K, ∂Ω)/2.

Proof. We prove the two inequalities assuming that their right-hand sides are finite. Set-
ting R−1 = 2R we have that, for ρ ∈ (Rk, Rk−1], k ∈ N0,∫

Bk(x0)

∣∣f − (f)Bk(x0)

∣∣s dx ≤ 2s

δn

∫
Bρ(x0)

∣∣f − (f)Bρ(x0)

∣∣s dx
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and ∫
Bρ(x0)

∣∣f − (f)Bρ(x0)

∣∣s dx ≤ 2s

δn

∫
Bk−1(x0)

∣∣f − (f)Bk−1(x0)

∣∣s dx,
using (2.13). Using the first property in (2.12),

(2.24)
1

1 + | log δ| log
( 1

Rk

)
≤ log

( 1

Rk−1

)
≤ log

(1

ρ

)
≤ log

( 1

Rk

)
for all k ∈ N0; thus, setting

(2.25) E(ρ) = logα
(1

ρ

)(∫
Bρ(x0)

∣∣f − (f)Bρ(x0)

∣∣s dx) 1
s

, Ek = E(Rk),

we have Ek/c ≤ E(ρ) ≤ cEk−1 if ρ ∈ (Rk, Rk−1] for any k ∈ N0, with c ≡ c(n, s, δ, α).
Hence, performing a standard computation,∫ R

0

E(ρ)
dρ

ρ
=

∞∑
k=1

∫ Rk−1

Rk

E(ρ)
dρ

ρ
≤ c

∞∑
k=0

| log δ|Ek = cEδs,α(f)(x0)

and

(2.26) Eδs,α(f)(x0) =
∞∑
k=0

Ek ≤
∞∑
k=0

1

log 2

∫ Rk−1

Rk

Ek
dρ

ρ
≤ c

∫ 2R

0

E(ρ)
dρ

ρ
.

�

Lemma 2.3. Let F ∈ Ln,1 logα L(B2R(x0)) for some α ∈ R; then

Mδ
q,α(F )(x0) ≤ c(n, q, α, δ)‖F‖Ln,1 logα(B2R(x0)).

Proof. First we consider the case α ≥ 0. If we set g = |F |q for ease of notation, we have∫
Bk(x0)

|F |q dx =
1

|Bk(x0)|

∫ |Bk(x0)|

0

g∗(ρ) dρ = g∗∗(|Bk(x0)|);

if then Rk ≤ ρ < Rk−1, setting R−1 = 2R, then by monotonicity (see also (2.24))

Mk := Rk logα
( 1

Rk

)(∫
Bk(x0)

|F |q dx
) 1
q

≤ δ−
n
q
(
1 + | log δ|

)α[
ρq logαq

(1

ρ

)
g∗∗(ωnρ

n)
] 1
q =: c(n, q, α, δ)M(ρ)

as 2 ≤ δ−1; therefore, estimating as in (2.26) and using (2.19)

∞∑
k=0

Mk ≤ c
∞∑
k=0

∫ Rk−1

Rk

M(ρ)
dρ

ρ
= c

∫ 2R

0

[
ρq logαq

(1

ρ

)
g∗∗(ωnρ

n)
] 1
q
dρ

ρ

= c

∫ |B2R(x0)|

0

[
%
q
n
[

logωn + | log %|
]αq

g∗∗(%)
] 1
q
d%

%

≤ c(n, q, α, δ)‖g‖
1
q

L
n
q
, 1
q logαq L(B2R(x0))

(notice that n/q > 1), that is, recalling the definition of g and (2.20),

Mδ
q,α(F )(x0) ≤ c

∥∥|F |q∥∥ 1
q

L
n
q
, 1
q logαq L(B2R(x0))

≤ c ‖F‖Ln,1 logα L(B2R(x0))

for c ≡ c(n, q, α, δ). We conclude noticing that the case α < 0 is completely analogous,
even simpler.

�

As a consequence of the previous results, since the Lorentz norm Ln,1 logα L is defined
in terms of an integral, by absolute continuity (cf. [26, Paragraph 9.9]) it follows that we
can make, taking the initial radius R sufficiently small, the sums Eδs,α(f) and Mδ

q,α(F )(x0)
uniformly small.
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Corollary 2.4. Let Ω ⊆ Rn, f ∈ L1
loc(Ω) and suppose that for every compact set K b Ω,

there exists a radius RK such that

(2.27) sup
x0∈K

∫ RK

0

logα
(1

ρ

)(∫
Bρ(x0)

∣∣f − (f)Bρ(x0)

∣∣s dx) 1
s dρ

ρ
<∞

for some s ≥ 1 and α ∈ R. Set δ ∈ (0, 1) and fix K b Ω; for every ε ∈ (0, 1), there exists
a radius Rε > 0, depending on n, α, δ, f,dist(∂Ω,K) and ε such that if R ∈ (0, Rε], then
defining Eδs,α(f) as in (2.21), one has

(2.28) sup
x0∈K

Eδs,α(f)(x0) ≤ ε.

Moreover, suppose that F ∈ Ln,1 logα L(Ω) locally for α ∈ R; again fix δ ∈ (0, 1),
q ∈ (1, n) and K b Ω. For every ε > 0, there exists a radius Rε > 0 depending on
n, q, α, δ, F,dist(∂Ω,K) and ε such that if R ∈ (0, Rε], then defining Mδ

q,α(f) as in (2.22),
one has

(2.29) sup
x0∈K

Mδ
q,α(F )(x0) ≤ ε.

We stress now that explicit dependences on the function a(·) and/or on its gradient
Da(·), in particular in the definition of several threshold radii, are uniquely derived from
the use of the previous Corollary; that is, on the rate of blow-up of the integrand in (2.27)
and the relation ε− δ in the absolute continuity of the Lorentz-Zygmund norm of |Da|.

2.4. Embeddings and associate spaces. Lorentz-Zygmund spaces are a special in-
stance of rearrangement invariant (r.i. for short) spaces, that is, linear spaces of measur-
able functions equipped with a norm satisfying some natural properties (see [12, Definition
2.1]), the most significant being the fact that two functions having the same rearrange-
ment (as defined in (2.16)) must have the same norm. It is clear that this last property
holds for Lorentz and Lorentz-Zygmund spaces by the very definitions of the norm; one
can also check that these are r.i. spaces. A r.i. space is a Banach space and a significant
role in the theory is played by its associate space. If X(E) is a r.i. space of functions
f : E → R`, ` ∈ N, its associate (rearrangement invariant) space X ′(E) is the space of all
measurable function g : E → R` such that the (r.i.) norm

‖g‖X′(E) = sup
f 6≡0

1

‖f‖X(E)

∫
E

|fg| dx

is finite. Given a r.i. space X(E), another important related space is its representation
space X̄(0,∞), that is a space such that

‖f‖X(E) = ‖f∗‖X̄(0,∞) = ‖f∗‖X̄([0,|E|]) for all f ∈ X(E);

representation spaces are not uniquely determined in general. Finally, given X(E) r.i.
space, W 1X(E) is the r.i. invariant space of weakly differentiable functions whose partial
derivatives belong to X(E).

Now we recall some results from [11, 12] with the purpose to justify the assertion of
quantitative continuity of a(·), that is, the estimate in (1.6). Given a r.i. invariant space
X over a domain with “nice” boundary (for instance, Lipschitz regular) we define the
quantity

ωX(ρ) =
∥∥s−n−1

n χ(0,ρn)(s)
∥∥
X̄′(0,∞)

,

where χ(0,ρn) is the characteristic function of the interval (0, ρn) and X̄ ′(0,∞) is the
associate space of a representation space for X. It can be shown that different choices of
the representation space result in functions ωX equivalent, up to multiplicative constants,
near zero and therefore the choice of a representation spaces becomes immaterial for what
we concern, see [12, Proposition 5.1]. Theorem 1.3 of [11] or Theorem 3.4 of [12] state that,
under these assumptions, if ωX(ρ) → 0 as ρ ↘ 0+, then a function belonging to W 1X is
almost everywhere equal to a function having modulus of continuity ωX ; in other words,
W 1X(E) ↪→ CωX (E) (in the sense of precise representatives). Note that local version of
those embedding do not require any regularity on the boundary of the domain E.
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In the case of our interst, X = Ln,1 logL and (cf. [26, Theorem 9.6.8 (i)] with α0 =

α∞ = 1, β0 = β∞ = 0), we have X ′ = X̄ ′ = Ln
′,∞ log−1 L. Therefore, for ρ ≤ 1

(2.30) ω(ρ) =
∥∥s−n−1

n χ(0,ρn)(s)
∥∥
X̄′(0,∞)

=
∥∥s− 1

n′ χ(0,ρn)(s)
∥∥
Ln
′,∞ log−1 L(0,∞)

=
∥∥∥ χ(0,ρn)(s)

1 + log(1/s)

∥∥∥
L∞(0,∞)

=
1

1 + log(1/ρn)
≤ 1

log(1/ρ)

and (1.6) is proven. Notice that in the case Da ∈ Ln,1 logα L(Ω) locally, exactly the same
calculation above shows that if α > 2, then a is almost everywhere equal to a log-Dini

continuous function as (Ln,1 logα L)′ = Ln
′,∞ log−α L.

For ε0 ∈ (0, 1) fixed and a : Bε0 → R radial, we take

a(x) =

∫ |x|
0

1

s log(1/s)η(s)
ds = ã(|x|)

for η : (0, ε0)→ R regular to be chosen, such that

s 7→ 1

s log(1/s)η(s)
is decreasing,

∫ ε0

0

1

s log(1/s)η(s)
ds < +∞

so that a(0) = 0. Under these assumption it turns out that Da ∈ Ln,1 logL(Bε0), using
(2.17) and changing variable, if and only if∫ ε0

0

1

s log(1/s)η(s)
log
(1

s

)
ds =

∫ ε0

0

1

sη(s)
ds < +∞.

On the other hand, by radiality and concavity, a modulus of continuity for a(·) is

ω(ρ) =

∫ ρ

0

1

s log(1/s)η(s)
ds

and a(·) is not log–Dini if and only if∫ ε0

0

∫ ρ

0

1

s log(1/s)η(s)
ds log

(1

ρ

) dρ
ρ

= +∞.

This is equivalent to ∫ ε0

0

1

sη(s)
log
(1

s

)
ds = +∞.

As an example, therefore, taking η(s) = logα−1(1/s), α ∈ (2, 3], a function log-Dini
continuous but not in W 1Ln,1 logL(Bε0) is the function in (1.8).

2.5. Known estimates for local minimizers of (1.1). The fact stated in (1.6) allows
to make use of some estimates from [7]. In particular we have the following local higher
integrability theorem, which will be fundamental in order to properly handle the logarith-
mic part of the functional as a perturbative one; it follows from [7, Theorem 4.1] once
observing that (1.7) holds.

Theorem 2.5. Let u ∈ W 1,H(·)(Ω) be a minimizer of Plog as in (1.1), where a(·) ≥ 0
is continuous and its modulus of continuity satisfies (1.7). Then there exists an exponent

δg > 0, depending only on n, p, L̃ and ‖Du‖Lp such that

H(·, Du) ∈ L1+δg
loc (Ω).

Moreover it holds the following local estimate: there exists a constant c ≥ 1, depending on
n, p, L̃ and ‖Du‖Lp , such that

(2.31)

∫
BϑR

[
H(x,Du)

]1+δg dx ≤ c
(∫

BR

H(x,Du) dx

)1+δg

for every ball BR ≡ BR(x0) ⊆ Ω with radius R ≤ e−1 and every ϑ ∈ [1/2, 3/4].

As a consequence of the previous theorem and Lemma 2.1 we have the perturbative
result we were mentioning before.
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Lemma 2.6. Let u ∈W 1,H(·)(Ω) be as in Theorem 2.5 and let B2R ≡ B2R(x0) ⊆ Ω with
R ≤ e−1; then, for every γ ∈ (0, 1 + δg) and β > 0, there exists a constant c depending on

n, p, L̃, γ, β and ‖H(·, Du)‖L1 such that

(2.32)

∫
BϑR

|Du|pγ logβ
(
e+ |Du|

)
dx ≤ c logβ

( 1

R

)(∫
BR

H(x,Du) dx

)γ
for any ϑ ∈ [1/2, 3/4].

Proof. We use Lemma 2.1 with the choice r = ϑR, f = |Du|pγ , σ = 1/(pγ), θ = nδg and
ς̃ = (1 + δg)/γ > 1 and the previous (2.31) twice, getting∫

BϑR

|Du|pγ logβ(e+ |Du|) dx

≤ c
(

1 +Rnδg
∫
BϑR

(
1 + |Du|p(1+δg)) dx) logβ

( 1

ϑR

)(∫
BϑR

|Du|p(1+δg) dx

) γ
1+δg

≤ c
(

1 +
(∫

BR

H(x,Du) dx
)1+δg

)
logβ

( 1

R

)(∫
BR

H(x,Du) dx

)γ
.

�

Proposition 2.7 (Reverse Hölder’s inequality). Let u be a minimizer to Plog as in The-

orem 2.5. There exists a constant depending on n, p, L̃ and ‖Du‖Lp such that

(2.33)

∫
B3R/2

H(x,Du) dx ≤ cH(a)B2R

(∫
B2R

|Du| dx
)
≤ c

∫
B2R

∣∣V(a)B2R
(Du)

∣∣2 dx
holds for every ball B2R ≡ B2R(x0) ⊆ Ω with R smaller than e−1. Moreover

(2.34)

∫
BR

∣∣V(a)BR
(Du)

∣∣2 dx ≤ c ∫
B2R

H(x,Du) dx

for a constant c depending on the same quantities.

Proof. Using the self-improving character of reverse-Hölder inequalities, a standard con-
sequence of Proposition 2.5 is that for every σ > 0 it holds∫

B3R/2

H(x,Du) dx ≤ c
(∫

B2R

[
H(x,Du)

]σ
dx

) 1
σ

for a constant depending on n, p, L̃, ‖Du‖Lp and σ. We choose σ = 1/[2p] and we use
sub-additivity to estimate the right-hand side in the following way:∫

B2R

[
H(x,Du)

]σ
dx ≤

∫
B2R

[
H(a)B2R

(Du)
] 1

2p dx

+

∫
B2R

∣∣a(·)− (a)B2R

∣∣ 1
2p |Du|

1
2 log

1
2p (e+ |Du|) dx.

To get a bound for the first integral we observe that the concavity-type property of Para-
graph 2.2.1 implies via Jensen’s inequality that∫

B2R

[
H(a)B2R

(Du)
] 1

2p dx ≤ c(p)
[
H(a)B2R

(∫
B2R

|Du| dx
)] 1

2p

.

To estimate the second integral, on the other hand, we use the first estimate of Lemma

2.1 with f = |Du|
1
2 , σ = 2, β = 1/(2p) and the fact that, as explained, a(·) is log-Hölder

continuous, that is, inequality (1.7):∫
B2R

∣∣a(·)− (a)B2R

∣∣ 1
2p |Du|

1
2 log

1
2p (e+ |Du|) dx

≤ [ω(2R)]
1
2p

∫
B2R

|Du|
1
2 log

1
2p (e+ |Du|) dx

≤ c
[
ω(R) log

( 1

2R

)] 1
2p

(∫
B2R

|Du| dx
)p· 1

2p
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≤ c
[
H(a)B2R

(∫
B2R

|Du| dx
)] 1

2p

;

with c ≡ c(n, p, L̃, ‖Du‖Lp); the proof of the first inequality of (2.33) is concluded. The
second follows from the convexity of t 7→ H(a)B2R

(t) (see again Paragraph 2.2.1) together

with (2.6) for ϕ = H(a)B2R
. The proof of (2.34) is similar, see for instance [8, Remark

3.8]. �

2.6. Estimates for frozen functionals. We collect here some results for minimizers of
a reference functionals, obtained by freezing the switching coefficient a(·) in Plog, defined
in (1.1). For these basic results basic references are the important paper of Lieberman
[22], as long as the scalar case is concerned, and [20] for the vectorial case. We consider,
for E ⊆ Rn bounded domain (that in our case will always be a ball inside Ω), minimizers
of functionals of the type

(2.35) Pā(w,E) :=

∫
E

[
|Dw|p + ā|Dw|p log(e+ |Dw|)

]
dx =

∫
E

Hā(Dw) dx,

where ā ≥ 0 is a constant.
The first result we want to recall is the following excess decay estimate, which encodes

the local C1,β regularity of minimizers; it can be found in [20, Theorem 6.4], for similar
results see also [4, Lemma 4.1] and [7, Theorem 3.1].

Theorem 2.8. Let v ∈ W 1,p(E) be a minimizer of the functional Pā defined in (2.35)
and let BR ≡ BR(x0) ⊆ E. The excess-decay estimate∫

B%

∣∣Vā(Dv)−
(
Vā(Dv)

)
Bρ

∣∣2 dx ≤ c( ρ
R

)2β
∫
BR

∣∣Vā(Dv)−
(
Vā(Dv)

)
BR

∣∣2 dx
holds for every couple of concentric balls Bρ ⊆ BR for a constant c ≥ 1 and an exponent
β ∈ (0, 1) both depending only on n and p.

3. Various comparison results

In this section u ∈W 1,H(Ω) will always be a minimizer of the functional Plog in (1.1);
we will work with a ball B2R ≡ B2R(x0) ⊆ Ω fixed, with radius 2R ≤ [2e]−1, and all the
balls in play will have center x0, therefore being concentric to B2R.

For convenience, we are going to denote for s > 1

Er,s = log
(1

r

)(∫
Br(x0)

∣∣a− (a)Br(x0)

∣∣s dx) 1
s

and

ār := (a)Br(x0) =

∫
Br(x0)

a(x) dx,

both for radii r ≤ 2R. We consider

(3.1) v = arg min

w∈u+W
1,ϕāR
0 (BR)

∫
BR

(
|Dw|p + āR|Dw|p log(e+ |Dw|)

)
dx.

The existence of the minimizer of the problem above follows from the higher integrability
Proposition 2.5 and we refer to the discussion in [7, Chapter 5] for more details. For similar
reasons, the minimizer satisfies the Euler-Lagrange equation in its weak formulation∫

BR

〈hāR(Dv), Dϕ〉 dx = 0

that is valid for every ϕ ∈W 1,p
0 (BR) with, moreover, Dϕ ∈ Lp logL(BR) if āR > 0.

We start by deriving a comparison estimate.

Lemma 3.1 (Comparison). Let v ∈W 1,p(BR) be the minimizer to the comparison Dirich-
let problem (3.1); there exists an exponent

(3.2) s = s(n, p, L̃, ‖H(·, Du)‖L1)� 1
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such that

(3.3)

∫
BR

∣∣VāR(Du)− VāR(Dv)
∣∣2 dx ≤ c[E2

R,s + χ{p<2}E
p′

R,s

] ∫
B3R/2

H(x,Du) dx

holds true for a constant c depending only on n, p, L̃ and ‖H(·, Du)‖L1 .

Proof. We subtract the Euler-Lagrange equations for both u and v and we test such
difference with the function ϕ = u − v ∈ W 1,p

0 (BR): notice that, if āR > 0, Du −
Dv ∈ Lp logL(BR) as Du ∈ Lp(1+δg)(BR) ⊆ Lp logL(BR) by Theorem 2.5 and Dv ∈
Lp logL(BR) as its energy is finite; thus ϕ is allowed in the Euler equation for Dv. On
the other hand, H(·, Dv) ∈ L1 as Dv ∈ Lp logL(BR) and a(·) is bounded on BR, hence ϕ
is also allowed in the Euler equation for Du. We compute

I =

∫
BR

〈
hāR(Du)− hāR(Dv), Du−Dv

〉
dx =

∫
BR

〈
hāR(Du), Du−Dv

〉
dx

=

∫
BR

[
āR − a(x)

]〈
hlog(Du), Du−Dv

〉
dx = II.

Then (2.5) applied to Vp and Vlog yields

I ≥ 1

c(p)

∫
BR

|VāR(Du)− VāR(Dv)|2 dx;

on the other hand we are going to estimate II, for ε ∈ (0, 1) to be chosen, using Young’s
inequality:

(3.4) |II| ≤ c(p)
∫
BR

∣∣a(x)− āR
∣∣|Du| p−2

2
+ p

2 log(e+ |Du|)|Du−Dv| dx =: III

Now we need to distinguish two cases.

The case p ≥ 2. In this case we can estimate, using Young’s inequality

(3.5) III ≤ c(p)ε
∫
BR

|VāR(Du)− VāR(Dv)|2 dx

+ c(p, ε)

∫
BR

∣∣a(x)− āR
∣∣2|Du|p log2(e+ |Du|) dx.

Note indeed that thanks to (2.6) applied to ϕ(t) = tp and the fact that p ≥ 2 we have

|Du|
p−2

2 |Du−Dv| ≤
[
|Du|+ |Dv|

] p−2
2 |Du−Dv| ≤ c

∣∣Vp(Du)− Vp(Dv)
∣∣.

At this point, for δg ∈ (0, 1) the higher integrability exponent of Proposition 2.5,

(3.6)

∫
BR

∣∣a(x)− āR
∣∣2|Du|p log2(e+ |Du|) dx

≤
(∫

BR

∣∣a(x)− āR
∣∣2(1+ 2

δg
)
dx
) δg

2+δg ×

×
(∫

BR

|Du|p(1+
δg
2

) log2(1+
δg
2

)(e+ |Du|) dx
) 2

2+δg ;

we choose

s1 = s1(n, δg) = 2
(

1 +
2

δg

)
.

For the second term we apply (2.32) with r = 3R/2, β = 2(1+δg/2), γ = 1+δg/2, ϑ = 2/3
to get

(3.7)

∫
BR

|Du|p(1+
δg
2

) log2(1+
δg
2

)(e+ |Du|) dx

≤ c log2(1+
δg
2

)
( 1

R

)(∫
B3R/2

H(x,Du) dx

)1+
δg
2

;

notice that we also used (2.12). Taking into account these estimates, we get
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BR

∣∣a(x)− (a)BR

∣∣2|Du|p log2(e+ |Du|) dx

≤ c log2
( 1

R

)(∫
BR

∣∣a(x)− āR
∣∣s1 dx) 2

s1

∫
B3R/2

H(x,Du) dx;

inserting this into (3.5), choosing ε sufficiently small and reabsorbing gives (3.3).

The case p < 2. In this case to estimate the integral in (3.4) we use (2.9) in order to
get

III ≤ c
∫
BR

∣∣a(x)− āR
∣∣|Du|p−1 log(e+ |Du|)

∣∣Vp(Du)− Vp(Dv)
∣∣ 2
p dx

+ c

∫
BR

∣∣a(x)− āR
∣∣|Du| p2 log(e+ |Du|)

∣∣Vp(Du)− Vp(Dv)
∣∣ dx

≤ 2ε

∫
BR

∣∣Vp(Du)− Vp(Dv)
∣∣2 dx

+ cε

∫
BR

∣∣a(x)− āR
∣∣p′ |Du|p logp

′
(e+ |Du|) dx

+ cε

∫
BR

∣∣a(x)− āR
∣∣2|Du|p log2(e+ |Du|) dx =: IV + V + V I;

we estimated both the integrals with Young’s inequality, the first with conjugate exponents
(p, p′), the second with (2, 2), both with ε ∈ (0, 1) to be chosen and cε = cε(p, ε). The
term IV will be reabsorbed in the left-hand side for ε sufficiently small, the term V I is
estimated exactly as in (3.6) and subsequent lines (notice that the fact that p ≥ 2 is there
irrelevant) while we focus our attention on the remaining term (even if the estimate is
very similar to the previous one):

V ≤
(∫

BR

∣∣a(x)− (a)BR

∣∣p′(1+ 2
δg

)
dx
) δg

2+δg ×

×
(∫

BR

|Du|p(1+
δg
2

) logp
′(1+

δg
2

)(e+ |Du|) dx
) 2

2+δg

by Hölder’s inequality, where δg ∈ (0, 1) is again the exponent appearing in Proposition
2.5. Now we choose

s = s(n, δg) = s
(
n, p, L̃, ‖H(·, Du)‖L1

)
= p′

(
1 +

2

δg

)
.

Notice that since p′ > 2, then s > s1 - therefore we can, up to using Hölder’s inequality,
use the exponent s also in the case p ≥ 2. For the second integral we again use (2.32)
with evident changes with respect to (3.7):∫

BR

|Du|p(1+
δg
2

) logp
′(1+

δg
2

)(e+ |Du|) dx

≤ c logp
′(1+

δg
2

)
( 1

R

)(∫
B3R/2

H(x,Du) dx

)1+
δg
2

;

inserting this estimate into the bound for V completes the proof also in this case.
�

The comparison Lemma above allows to prove the following excess-like decay estimate
for our minimizer u. We stress two aspects here: (3.8) is not a true excess decay estimate
due to the presence of the second term on the right-hand side; nonetheless it will allow to
prove gradient boundedness and continuity, since that term is stable under the operation
of summation along a sequence of dyadic radii (see Lemma 2.3). Moreover, notice that
the Orlicz function dictating the behaviour of the left-hand side is HāR , that is, we are
still considering the growth of the functional in (3.1); this is not suitable for iteration
procedures, and this will require a further effort (see Lemma 3.3).



LORENTZ-ZYGMUND SPACES AND REGULARITY OF MINIMIZERS 17

Proposition 3.2. Let u ∈ W 1,H(·)(Ω) be a minimizer of Plog as in Theorem 2.5. There
exists a constant c such that for every pair of concentric balls Bρ ≡ Bρ(x0) ⊆ B2R ≡
B2R(x0) ⊆ Ω with R ≤ [2e]−1, it holds

(3.8)∫
Bρ

∣∣VāR(Du)−
(
VāR(Du)

)
Bρ

∣∣2 dx ≤ c1( ρ
R

)2β
∫
BR

∣∣VāR(Du)−
(
VāR(Du)

)
BR

∣∣2 dx
+ c2

(R
ρ

)n[
E2
R,s + χ{p<2}E

p′

R,s

] ∫
B2R

∣∣Vā2R(Du)
∣∣2 dx;

β ∈ (0, 1) is the exponent appearing in Theorem 2.8, s in (3.2), the constant c1 depends

on n, p and L̃ and c2 on the same quantities but also ‖H(·, Du)‖L1 .

Proof. Let v be the solution to the comparison problem (3.1) over BR. We have, using
basic properties as (2.13)∫

Bρ

∣∣VāR(Du)− (VāR(Du))Bρ

∣∣2 dx ≤ 4

∫
Bρ

∣∣VāR(Du)− (VāR(Dv))Bρ

∣∣2 dx
≤ 8

∫
Bρ

∣∣VāR(Du)− VāR(Dv)
∣∣2 dx+ 8

∫
Bρ

∣∣VāR(Dv)− (VāR(Dv))Bρ

∣∣2 dx.
The first term is simply estimated using (3.3) and Proposition 2.7, as∫

Bρ

∣∣VāR(Du)− VāR(Dv)
∣∣2 dx ≤ (R

ρ

)n ∫
BR

∣∣VāR(Du)− VāR(Dv)
∣∣2 dx;

for the second, we use Theorem 2.8 together with the fact that, similarly to above, we can
further estimate the right-hand side as follows:( ρ

R

)2β
∫
BR

∣∣VāR(Dv)−
(
VāR(Dv)

)
BR

∣∣2 dx ≤ 8

∫
BR

∣∣VāR(Dv)− VāR(Du)
∣∣2 dx

+ 8
( ρ
R

)2β
∫
BR

∣∣VāR(Du)−
(
VāR(Du)

)
BR

∣∣2 dx.
�

Next lemma is the localization estimate for the excess of the map u we were mentioning
before. It allows to replace the function VāR with Vāρ , for ρ < R, and, since we are
considering the excess, it has a particularly clean form.

Lemma 3.3. Let u ∈ W 1,H(·)(Ω) and the balls Bρ ⊆ B2R ⊆ Ω be concentric as in
Proposition 3.2, with ρ ≤ R ≤ [2e]−1. Then

(3.9)

∫
Bρ

∣∣Vāρ(Du)−
(
Vāρ(Du)

)
Bρ

∣∣2 dx ≤ c1 ∫
Bρ

∣∣VāR(Du)−
(
VāR(Du)

)
Bρ

∣∣2 dx
+ c2 E

2
R,s

∫
B2R

∣∣Vā2R(Du)
∣∣2 dx,

where c1 depends on n, p, L̃ and ‖H(·, Du)‖L1 and c2 on the same quantities but also on
R/ρ.

Proof. Using (2.14)–(2.15) we see that∫
Bρ

∣∣Vāρ(Du)−
(
Vāρ(Du)

)
Bρ

∣∣2 dx(3.10)

≤ c(p)
∫
Bρ

∣∣Vp(Du)−
(
Vp(Du)

)
Bρ

∣∣2 dx
+c(p) āρ

∫
Bρ

∣∣Vlog(Du)−
(
Vlog(Du)

)
Bρ

∣∣2 dx
≤ c(p)

∫
Bρ

∣∣VāR(Du)−
(
VāR(Du)

)
Bρ

∣∣2 dx
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+c(p)
(
āρ − āR

) ∫
Bρ

∣∣Vlog(Du)− Vlog

(
(Du)Bρ

)∣∣2 dx.

Now we estimate separately, using (2.11) with ω̃ = 1/2 and again (2.14), and then Hölder’s
inequality(

āρ − āR
) ∫

Bρ

∣∣Vlog(Du)− Vlog

(
(Du)Bρ

)∣∣2 dx
≤ c

∫
Bρ

∣∣a− āR∣∣ dx∫
Bρ

∣∣Vp(Du)− Vp
(
(Du)Bρ

)∣∣×
×
(
|Du|+

∣∣(Du)Bρ

∣∣) p2 log
(
e+ |Du|+

∣∣(Du)Bρ

∣∣) dx
≤ c
(R
ρ

)n(∫
BR

∣∣a− āR∣∣s dx) 1
s

(∫
Bρ

∣∣Vp(Du)−
(
Vp(Du)

)
Bρ

∣∣2 dx) 1
2

×

×
(∫

Bρ

(
|Du|+

∣∣(Du)Bρ

∣∣)p log2 (e+ |Du|+
∣∣(Du)Bρ

∣∣) dx) 1
2

for s > 1 as in (3.2). By Lemma 2.1 with f = (|Du|+ |(Du)Bρ |)
p, β = 2, σ = 1/p, θ = 0,

ς̃ = 1 + δg, using also the higher integrability estimate (2.31) and the first property in
(2.12), we can estimate∫

Bρ

(
|Du|+

∣∣(Du)Bρ

∣∣)p log2 (e+ |Du|+
∣∣(Du)Bρ

∣∣) dx
≤ c log2

(1

ρ

)(∫
Bρ

(
|Du|+

∣∣(Du)Bρ

∣∣)p(1+δg)
dx

) 1
1+δg

≤ c
(

1 + log
(R
ρ

))2

log2
( 1

R

)(∫
Bρ

|Du|p(1+δg) dx

) 1
1+δg

≤ c log2
( 1

R

)∫
B3R/2

H(x,Du) dx;

the constant c depends on n, p, L̃, ‖H(·, Du)‖L1 and R/ρ. Now using Young’s inequality,
reabsorbing the term ∫

Bρ

∣∣Vp(Du)−
(
Vp(Du)

)
Bρ

∣∣2 dx
and then using the reverse Hölder inequality (2.33) give (3.9). �

A similar one, dealing with the right-hand side: this estimate will allow to perform the
final iteration in a more transparent form.

Lemma 3.4. Let u ∈W 1,H(·)(Ω) be a minimizer to Plog as in Theorem 2.5 and B2R ⊆ Ω
with 2R ≤ [2e]−1. Then∫

BR

∣∣VāR(Du)−
(
VāR(Du)

)
BR

∣∣2 dx ≤ c ∫
B2R

∣∣Vā2R(Du)−
(
Vā2R(Du)

)
B2R

∣∣2 dx
+ cE2

2R,s

∫
B2R

∣∣Vā2R(Du)
∣∣2 dx

where c depends on n, p, L̃ and ‖H(·, Du)‖L1 .

Proof. Estimating similarly as in (3.10) after enlarging the domain of integration yields∫
BR

∣∣VāR(Du)−
(
VāR(Du)

)
BR

∣∣2 dx
≤ c(n, p)

∫
B2R

∣∣Vā2R(Du)−
(
Vā2R(Du)

)
B2R

∣∣2 dx
+ c(p)

(
āR − ā2R

) ∫
BR

∣∣Vlog(Du)−
(
Vlog(Du)

)
BR

∣∣2 dx
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≤ cε
(∫

B2R

∣∣a− ā2R

∣∣s dx) 2
s

log2
( 1

2R

)∫
B2R

∣∣Vā2R(Du)
∣∣2 dx

+ ε

∫
BR

∣∣VāR(Du)−
(
VāR(Du)

)
BR

∣∣2 dx
for every ε ∈ (0, 1), with cε depending on n, p, L̃, ‖H(·, Du)‖L1 and ε, and this completes
the proof. �

The following Corollary is the goal of this section: simply merging Lemmas 3.2, 3.3
and 3.4 leads to the following corollary:

Corollary 3.5. Let u ∈W 1,H(·)(Ω) be a minimizer to Plog as in Theorem 2.5; let BR ≡
BR(x0) ⊆ Ω with R ≤ [2e]−1. There exists s > 1 as in (3.2) such that for every ε ∈ (0, 1)

there exists a constant δ ∈ (0, 1/2), depending on n, p, L̃, ‖H(·, Du)‖L1 and ε, such that

(3.11)

∫
BδR

∣∣VāδR(Du)−
(
VāδR(Du)

)
BδR

∣∣2 dx ≤ ε ∫
BR

∣∣VāR(Du)− (VāR(Du))BR

∣∣2 dx
+ cε

[
E2
R,s + χ{p<2}E

p′

R,s

] ∫
BR

∣∣VāR(Du)
∣∣2 dx,

where the constant cε depends on n, p, L̃, ‖H(·, Du)‖L1 and ε.

Proof. As previously stated, merging the three lemmas and estimating ER,s ≤ cE2R,s,
then renaming 2R to R, gives∫

Bρ

∣∣Vāρ(Du)−
(
Vāρ(Du)

)
Bρ

∣∣2 dx ≤ c1( ρ
R

)2β
∫
BR

∣∣VāR(Du)−
(
VāR(Du)

)
BR

∣∣2 dx
+ c2

[
E2
R,s + χ{p<2}E

p′

R,s

] ∫
BR

∣∣VāR(Du)
∣∣2 dx;

for every ρ ≤ R/2 and constants c1 depending on n, p, L̃ and ‖H(·, Du)‖L1 , c2 depending

on n, p, L̃, ‖H(·, Du)‖L1 and R/ρ. Now we simply take ρ = δR for

δ = min
{( ε

c1

)1/[2β]

,
1

2

}
.

�

4. Iteration procedures

The conclusion follows the arguments of [21] but we propose the proof in detail both for
the reader’s convenience and also to highlight the various modifications needed to adapt
it to our case. We prove the results under the assumptions of Theorem 1.2; if (1.2) holds,
then (1.6)-(1.7) are in force due to (2.30) and (1.13) due to Lemma 2.2, (2.23) and finally
(2.29).

We start by fixing a compact subset K1 b Ω and a ball BR(x0) ⊆ Ω with center x0 ∈ K1

and radius R smaller than R̃ = min{[2e]−1, dist(K1, ∂Ω)/2}; we will further reduce the

value of R̃ several times.
We fix then δ ∈ (0, 1/2) as the constant, depending on n, p, L̃ and ‖H(·, Du)‖L1 , given

by Corollary 3.2 and corresponding to the choice ε = 1/16; accordingly, we set for k ∈ N0

(4.1) Rk = δkR, Bk = BRk (x0), āk = (a)Bk

and

(4.2) vk =

∫
Bk

Vāk (Du) dx, Ek =

(∫
Bk

∣∣Vāk (Du)− (Vāk (Du))Bk

∣∣2 dx) 1
2

,

dk = |vk| =
∣∣∣ ∫

Bk

Vāk (Du) dx
∣∣∣, Ek = log

( 1

Rk

)(∫
Bk

∣∣a− (a)Bk

∣∣s dx) 1
s

= ERk,s,
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for s > 1 fixed in Corollary 3.5. Using this compact notation (3.11), after taking square
roots and performing standard manipulations, implies that for every k ∈ N0 we have

Ek+1 ≤
1

4
Ek + c̃

[
Ek + χ{p<2}E

p′
2
k

](∫
Bk

∣∣Vāk (Du)
∣∣2 dx) 1

2

≤ 1

4
Ek + 2c̃Ek

(∫
Bk

∣∣Vāk (Du)
∣∣2 dx) 1

2

;(4.3)

the constant c̃ ≥ 1 depends on n, p, L̃ and ‖H(·, Du)‖L1 . Notice indeed that if p < 2 then
for any j ∈ N0

(4.4) E
p′
2
j ≤

[ ∞∑
k=0

Ek
] p′

2
−1

Ej ≤ Ej

if we take R ≤ R̃ and R̃, depending on n, p, L̃, ‖H(·, Du)‖L1 , a(·),dist(∂Ω,K1) but not on
x0 ∈ K1, small enough so that (2.28) is satisfied with ε = 1.

4.1. Gradient boundedness. First we prove by induction that∫
Bk

|Du|p
(
1 + (a)Bk log(e+ |Du|)

)
dx =

∫
Bk

Hāk (Du) dx =

∫
Bk

∣∣Vāk (Du)
∣∣2 dx

≤ c1
∫
BR(x0)

∣∣V(a)BR
(Du)

∣∣2 dx = c1

∫
BR(x0)

H(a)BR
(Du) dx =: λ2

0

for every k ∈ N0, with c1 = [10(1+δ−n)]2, so that c1 depends on n, p, L̃ and ‖H(·, Du)‖L1 ;
this would yield the local boundedness result thanks to Lebesgue’s differentiation theorem.
The local estimate (1.4) in Theorem 1.2 will follow from the reverse Hölder inequality
(2.34) together with a standard covering argument.

Observe that, using (2.8), triangle inequality and enlarging the domain of integration

dk+1 − dk =
∣∣∣ ∫

Bk+1

Vāk+1(Du) dx
∣∣∣− ∣∣∣ ∫

Bk

Vāk (Du) dx
∣∣∣

≤ |vk+1 − vk| ≤
∫
Bk+1

∣∣Vāk+1(Du)−
(
Vāk (Du)

)
Bk

∣∣ dx
≤
∫
Bk+1

∣∣Vāk (Du)−
(
Vāk (Du)

)
Bk

∣∣ dx+

∫
Bk+1

∣∣Vāk+1(Du)− Vāk (Du)
∣∣ dx

≤ δ−nEk +

∫
Bk+1

∣∣Vāk+1(Du)− Vāk (Du)
∣∣ dx;(4.5)

using telescopic summations gives

dj+1 = d0 +

j∑
k=0

(
dk+1 − dk

)
≤ d0 + δ−n

j∑
k=0

Ek +

j∑
k=0

∫
Bk+1

∣∣Vāk+1(Du)− Vāk (Du)
∣∣ dx.(4.6)

Now we separately estimate the last two terms of the right-hand side. For the first one,
notice that if we estimate

(4.7)

(∫
Bk

∣∣Vāk (Du)
∣∣2 dx) 1

2

≤ Ek + dk;

we see that if we take R ≤ R̃ with R̃ ≡ R̃(n, p, L̃, ‖H(·, Du)‖L1 , a(·), dist(K1, ∂Ω)) such

that, being c̃ = c̃(n, p, L̃, ‖H(·, Du)‖L1) the constant in (4.3)

(4.8) Ek ≤
∞∑
k=0

log
( 1

Rk

)(∫
Bk

∣∣a− (a)Bk

∣∣s dx) 1
s ≤ 1

8c̃
≤ 1, k ∈ N0
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(and this is possible again thanks to Corollary 2.4) we can improve (4.3) to

Ek+1 ≤
1

2
Ek + cEkdk.

Summing up this sequence of inequalities for k = 0 to j, j ∈ N0 given, and reabsorbing
gives

(4.9)

j+1∑
k=0

Ek ≤ 2E0 + c

j∑
k=0

Ekdk.

To estimate the second term in (4.6) we single out the integrand and we recall the definition
of Vā after (2.7); taking into account (2.10)

(4.10)
∣∣Vāk+1(Du)− Vāk (Du)

∣∣ ≤ c(p) |āk+1 − āk||Du|
p
2 log(e+ |Du|);

averaging (4.10) over Bk+1 and using Lemma 2.1∫
Bk+1

∣∣Vāk+1(Du)− Vāk (Du)
∣∣ dx

≤
∫
Bk

∣∣a− (a)Bk

∣∣ dx∫
Bk+1

|Du|
p
2 log(e+ |Du|) dx

≤ c log
( 1

Rk+1

)(∫
Bk

∣∣a− (a)Bk

∣∣s dx) 1
s
(∫

Bk+1

|Du|p dx
) 1

2

≤ c log
( 1

Rk

)(∫
Bk

∣∣a− (a)Bk

∣∣s dx) 1
s

(∫
Bk

∣∣Vāk (Du)
∣∣2 dx) 1

2

≤ cEk
(
Ek + dk

)
≤ Ek + cEkdk,

for s as in (3.2) and c depending on n, p, L̃ and ‖H(·, Du)‖L1 , up to possibly reducing

again the value of R̃ as done in (4.8); we also used (2.12) and (4.7). Estimating similarly
as above and then summing up yields

j∑
k=0

∫
Bk+1

∣∣Vāk+1(Du)− Vāk (Du)
∣∣ dx ≤ j∑

k=0

Ek + c

j∑
k=0

Ek dk,

with c ≡ c(n, p, L̃, ‖H(·, Du)‖L1). Inserting all these informations into (4.6) and then
using (4.9) finally leads to

dj+1 ≤ d0 + (1 + δ−n)

j∑
k=0

Ek + c

j∑
k=0

Ek dk ≤ d0 + 2(1 + δ−n)E0 + c

j∑
k=0

Ek dk

≤
[
1 + 4(1 + δ−n)

]( ∫
BR(x0)

∣∣Vā0(Du)
∣∣2 dx) 1

2
+ c

j∑
k=0

Ek dk ≤
λ0

2
+ c

j∑
k=0

Ek dk(4.11)

with c depending on n, p, L̃ and ‖H(·, Du)‖L1 . It is easy now to show by induction that

dj ≤ λ0 for all j ∈ N0,

and this will conclude the proof of gradient boundedness as stated above: for j = 0 this
is immediate. Suppose now that it holds for all k ∈ {0, 1, . . . , j} for some fixed j ∈ N0; by
(4.11) and the inductive hypothesis we have

dj+1 ≤
λ0

2
+ c̄ λ0

j∑
k=0

Ek ≤
λ0

2
+ c̄ λ0

∞∑
k=0

Ek ≤
λ0

2
+ c̄ λ0 sup

x0∈K1

Eδs,1(a)(x0).

Now we further reduce the value of R̃ in order to have

(4.12) sup
x0∈K1

Eδs,1(a)(x0) ≤ c̄

2
for every R ≤ R̃,

and this is possible in view of Corollary 2.4, with a value of R̃ depending on n, p, L̃, ‖H(·, Du)‖L1 ,
a(·) and dist(K1, ∂Ω); the proof of the local Lipschitz character of minimizers is concluded.



22 BARONI

4.2. VMO-type gradient regularity. Given again a compact subset K1 b Ω, we have
as a consequence of the result in the previous paragraph that Du ∈ L∞(K2) where K1 b
K2 b Ω (we can choose, for instance, K2 = {x ∈ Ω : dist (x,K1) ≤ dist (∂Ω,K1)/2}) and
hence set

(4.13) λ1 :=
∥∥Va(·)(Du)

∥∥
L∞(K2)

< +∞.

In this intermediate technical step, needed for the forthcoming continuity proof, we will
show the following property of VMO-regularity type: setting

ω(ρ) = sup
r≤ρ

sup
x0∈K1

∫
Br(x0)

∣∣Vār (Du)−
(
Vār (Du)

)
Br(x0)

∣∣2 dx
for ρ ≤ min{[2e]−1, dist (∂Ω,K1)/2}, we have

lim
ρ↘0

ω(ρ) = 0.

We take therefore ε̃ > 0 and we show the existence of a threshold Rε̃, depending on
n, p, L̃, ‖H(·, Du)‖L1 , a(·), dist(∂Ω,K1) and ε̃, such that that it holds

(4.14) sup
x0∈K1

∫
Br(x0)

∣∣Vār (Du)−
(
Vār (Du)

)
Br(x0)

∣∣2 dx ≤ ε̃λ2
1 for every r ≤ Rε̃.

For R ∈ (0,min{[2e]−1, dist (∂Ω,K1)/4}] fixed, we take δ ∈ (0, 1/2) as the constant

given in Corollary 3.5 for ε = ε̃/4, so that δ depends on on n, p, L̃, ‖H(·, Du)‖L1 and

ε̃. Then we choose R̄, depending on n, p, L̃, ‖H(·, Du)‖L1 , a(·) and dist(∂Ω,K1) smaller

than min{[2e]−1, dist (∂Ω,K1)/2} but also so small that

sup
x∈K1

Eδs,1(a)(x) ≤ 1 =⇒ E2
R,s + χ{p<2}E

p′

R,s ≤ 2E2
R,s

for all R ≤ R̄, as in (4.4). Then we further possibly reduce its value so that, being cδ the
constant from Corollary 3.5 corresponding to the choice of δ made above,

sup
x∈K1

Eδs,1(a)(x) ≤ ε̃

4cδ
=⇒ cδE

2
R,s ≤

ε̃

4

holds for every R ≤ R̄; now R̄ also depends on ε̃. By Corollary 3.5 we have, using triangle’s
inequality and (2.34)∫

BδR

∣∣VāδR(Du)−
(
VāδR(Du)

)
BδR

∣∣2 dx ≤ [2ε+ 2cδE
2
R,s

] ∫
BR

∣∣VāR(Du)
∣∣2 dx

≤ [2ε+ 2cδE
2
R,s

]
λ2

1 ≤ ε̃λ2
1(4.15)

for every radius R smaller than R̄; therefore we get what wanted if we take Rε̃ = δR̄.
Notice indeed that the estimate in (4.15) is clearly uniform with respect to x0 ∈ K1 and
if r ≤ Rε̃, then there exists R ≤ R̄ such that r = δR: the estimate in (4.15) is exactly
(4.14).

4.3. Gradient continuity. As Lipschitz regularity has been proven, the non-uniform el-
lipticity of the functional becomes immaterial, see [15, 16], and gradient continuity follows
from the regularity theory of functionals with standard growth and WLn,1 dependence on
the x variable; we anyway provide a short proof in the spirit of the previous ones. Given
a compact set K1 we find an intermediate one K1 b K2 b Ω and we again fix λ1 as in
(4.13).

We prove now that the gradient of our minimizer u is continuous in K1 by showing that
Du is the uniform limit of a sequence of continuous functions, its averages on small balls.
More precisely, starting here from a generic but fixed radius R = min{R̃, dist (∂Ω,K1)/2},
R̃ as chosen in Paragraph 4.1 so that (4.4)-(4.12) hold, and a point x in K1, we define
the quantities vj , dj , Ej ,Ej as in (4.1)–(4.2) starting from the radius R. δ ∈ (0, 1) is

again the constant, depending on n, p, L̃ and ‖H(·, Du)‖L1 , given by Corollary 3.5 for
ε = 1/16. Notice that all the quantities just defined depend on the point x, center of the
ball considered, but we shall keep this in the notation implicit - and somehow ambiguous
- for simplicity, avoiding to make the dependences on x explicit. We stress, however, that
all our estimates will be uniform with respect to x. We also highlight that we are going
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to further reduce the value of R. Thanks to Lebesgue’s differentiation theorem, we know
that

lim
j→+∞

vj = lim
j→+∞

vj(x) = Va(x)

(
Du(x)

)
for a.e. x ∈ K1

and as we will prove it is a uniform limit of continuous functions, it will follow that
Va(x)(Du) is also a.e. equal in K1 to a continuous function; being the set of Lebesgue’s
points dense, Va(·)(Du) will turn out to be continuous (therefore it will satisfy (4.13)
everywhere) and the continuity of Du will follow. Indeed by triangle’s inequality, for
every x, y ∈ K1 we have∣∣Va(x)

(
Du(x)

)
− Va(x)

(
Du(y)

)∣∣ ≤ ∣∣Va(x)

(
Du(x)

)
− Va(y)

(
Du(y)

)∣∣
+
∣∣Va(x)

(
Du(y)

)
− Va(y)

(
Du(y)

)∣∣;
from (2.8) and the fact that a(·) ≥ 0 it follows∣∣Va(x)

(
Du(x)

)
− Va(x)

(
Du(y)

)∣∣ ≥ c(p)∣∣Vp(Du(x)
)
− Vp

(
Du(y)

)∣∣
and using again (2.10) and then (4.13)

|Va(x)

(
Du(y)

)
− Va(y)

(
Du(y)

)∣∣ ≤ c(p)|a(x)− a(y)|λ1 log(e+ λ
2
p

1 )

as |Du|p ≤ |Va(·)(Du)|2. Thus from the continuity of Va(·)(Du) and that of a(·) it follows
the continuity of Vp(Du) and it is well known that Vp is a locally bi-Lipschitz bijection;
therefore Du will be continuous if also Va(·)(Du) will be.

Therefore now we are going to prove that for every ε ∈ (0, 1) there exists an index ̄

depending on n, p, L̃, ‖H(·, Du)‖L1 , a(·), dist(∂Ω,K1) and ε but not on x ∈ K1 such that∣∣Va(x)(Du(x))− v̄(x)
∣∣ ≤ ελ1;

this will prove the uniform convergence of vj(·). We start noticing that working similarly
as how done to prove (4.9) (but this time summing the previous inequalities for k = ̄ to
m, ̄ ≥ 1 to be chosen and m > ̄, reabsorbing and then passing to the limit for m→ +∞),
we get

(4.16)

∞∑
k=̄

Ek ≤ 2Ē + c

∞∑
k=̄

Ekdk ≤ 2Ē + cλ1

∞∑
k=̄

Ek;

notice indeed that from our choice of R ≤ R̃ and the fact stated in (4.13), it follows
that dk ≤ λ1 for all k ∈ N0. Note that the previous estimate is uniform in K1, being
the dependence on the point x ∈ K1 (center of the balls Bk defining in turn the excess)
implicit for simplicity of the notation.

Now for almost every x ∈ K1 and for ̄ ≥ 1 we have, similarly as in (4.5)–(4.6)∣∣Va(x)(Du(x))− v̄(x)
∣∣ ≤ ∞∑

k=̄

|vk+1(x)− vk(x)| =
∞∑
k=̄

|vk+1 − vk|

≤ δ−n
∞∑
k=̄

Ek +

∞∑
k=̄

∫
Bk+1

∣∣Vāk+1(Du)− Vāk (Du)
∣∣ dx

and due to
∞∑
k=̄

∫
Bk+1

∣∣Vāk+1(Du)− Vāk (Du)
∣∣ dx ≤ ∞∑

k=̄

Ek + c λ1

∞∑
k=̄

Ek

(see before (4.11)), merging the previous estimates and (4.16) leads to∣∣Va(x)(Du(x))− v̄
∣∣ ≤ c1Ē + c2λ1

∞∑
k=0

Ek

being both c1 and c2 constants depending on n, p, L̃ and ‖H(·, Du)‖L1 . Now, given ε > 0,
we reduce the value of R so that

c2

∞∑
k=0

Ek = c2

∞∑
k=0

Ek(x) ≤ c2 sup
x∈K1

Eδ1,s(a)(x) ≤ ε

2
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for all x ∈ K1 in view of Corollary 2.4. R, at this point, will depend on n, p, L̃, ‖H(·, Du)‖L1 ,
a(·),dist(∂Ω,K1) and ε. Finally, being now Rε the radius corresponding to the choice ε̃ =

(ε/[2c1])2 in (4.14), we choose ̄ so large, depending on n, p, L̃, ‖H(·, Du)‖L1 , a(·),dist(∂Ω,K1)
and ε, so that δ̄R ≤ Rε. With this choice we have, recalling that B̄ = Bδ̄R(x),

c1Ē = c1Ē(x) ≤ c1
(∫

B̄

∣∣Vāj (Du)− (Vāj (Du))
Bj

∣∣2 dx) 1
2

≤ ε

2
λ1;

inserting the information in the last two displays into (4.16) the proof is concluded.
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