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Abstract. A rigorous unified perspective of cohesive zone models is presented, including and
comparing potential-based and non potential-based formulations, and encompassing known ex-
amples studied in literature. The main novelty of the work consists in the natural inclusion
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intrinsic construction of energy densities or tensions. The proposed mathematical investigation
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Introduction

Over the past two decades, variational mathematical methods have emerged as a powerful tool
for studying failure phenomena in solids, driven by their intrinsic connection to the energetic
nature of mechanical processes. These methods have gained significant interest not only in the
mathematical community but also in engineering applications, particularly in fracture mechanics
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and related problems such as debonding and delamination. For comprehensive overviews of these
approaches, we refer to [7, 13]. In this context, mechanical models that can be described by
minimizing a suitable energy are often referred to as potential-based models in the engineering
literature, while those characterized solely by equilibrium equations between strain and tension
are termed non potential-based models. Mathematically, these are commonly distinguished
as variational and non-variational models, respectively. Although potential-based models are
frequently preferred in applications due to their simpler structure, they are not universally
applicable and may fail to adequately capture certain phenomena, as highlighted in [17].

Within fracture mechanics and delamination processes, models can be further categorized into
cohesive and brittle frameworks. Cohesive models, pioneered by Barenblatt [3] and Dugdale [11],
describe failure as a gradual process, in contrast to brittle models, which assume abrupt collapse.
Brittle fracture, first energetically interpreted by Griffith [16], occurs instantaneously when a
critical threshold (often termed toughness) is exceeded. Cohesive models, on the other hand,
are particularly effective in capturing the distinct regimes of loading and unloading, where a
variable such as crack amplitude or displacement slip either increases or decreases. This is
achieved through the introduction of an irreversible history variable, which tracks the system’s
past states and distinguishes between loading (when the variable increases) and unloading (when
it remains constant). Similar approaches have been extended to model fatigue [10], where the
history variable may also evolve during unloading phases.

A key challenge in this field is the construction of cohesive energies and tension expressions
that incorporate both current and history variables while maintaining physically feasible me-
chanical properties. While potential-based models involving only current variables–suitable for
systems under monotone loading–are well-documented in the literature (see, e.g., [21]), models
that account for unloading regimes remain scarce and incomplete. For instance, in [24], the his-
tory variable is treated as a damage parameter rather than being intrinsically embedded within
the potential, limiting the model’s applicability. Recent works such as [6, 23] have explored
potentials incorporating unloading effects, but these studies are restricted to isotropic behav-
iors, where the energy and history variable depend solely on the amplitude of failure, not on its
direction. For non potential-based models, the situation is even more limited: while expressions
involving current variables have been proposed [17], analytical frameworks for incorporating
history variables into cohesive tensions remain largely unexplored.

In this paper, we contribute to the analysis of cohesive-zone models in three significant ways.
First, we provide a rigorous mathematical formulation of both variational and non-variational
cohesive models under a unified framework. We propose an intrinsic method to construct poten-
tial energies and tension expressions that account for loading and unloading effects in a general
anisotropic (mixed-mode) setting, starting from energy densities or tensions defined solely for
the loading phase. These constructions yield the only admissible candidates with physically
reasonable behavior, such as linear unloading responses following loading phases.

Second, we compare potential-based and non potential-based models, demonstrating–through
both theoretical analysis and representative examples–the limitations of the former relative to the
latter. Specifically, we extend the observations of [17] to general loading-unloading scenarios,
showing that the variational model is consistent only when the material exhibits the same
fracture energy in all directions. Even in this case, the model predicts realistic behavior only
under unidirectional unloading or in the restrictive case of uncoupled energy densities, where
changes in one direction are independent of others. In contrast, the non-variational model
produces feasible results across all loading-unloading regimes without such limitations.

Finally, we investigate the consistency of these constructions in a specific model of a hybrid
composite comprising two elastic laminates subjected to horizontal stretching driven by a pre-
scribed boundary displacement. The laminates interact along their interface, where cohesive
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effects arise due to displacement mismatches. Unlike previous studies [2, 23], which assume
isotropic interfaces, we consider an anisotropic interface where cohesive effects depend on the
direction of the displacement slip. While prior works focused solely on variational formulations,
we establish well-posedness for the non-variational formulation as well. The model assumes
slow, quasistatic evolution and small displacements, allowing for a linearized elasticity frame-
work. This extends the scope of earlier studies on isotropic cohesive interfaces [1, 4, 5, 8, 19, 20]
to the anisotropic case.

Plan of the paper. In Section 1, we provide a detailed description of the mechanical model
under study: two elastic laminates with a cohesive interface. We present both the variational and
the non-variational formulations of the problem. For the variational formulation, we introduce
the elastic and cohesive energies of the system, while for the non-variational formulation, we
derive the equilibrium equations (or inclusions) that must be satisfied. In both cases, we outline
the key assumptions, distinguishing between those required for mathematical rigor and those
essential from a mechanical perspective. We then define the notions of quasistatic evolution ap-
propriate for each setting: for the potential-based model, we adopt the well-established concept
of energetic solutions, while for the non potential-based model, we introduce a natural notion of
equilibrium solutions. Section 2 focuses on the explicit construction of an anisotropic cohesive
energy and a cohesive tension that incorporate both loading and unloading regimes, starting
from a given energy density or tension defined solely for the loading phase. We ensure that
these constructions satisfy all necessary mechanical and mathematical properties. Additionally,
we highlight the limitations of the variational formulation compared to the non-variational one,
emphasizing the latter’s broader applicability. In Section 3, we present representative examples
to validate the consistency of our theoretical constructions and to support the discussions in
Section 2. These examples illustrate the practical implications of our findings and demonstrate
the effectiveness of the proposed models. Finally, Section 4 is dedicated to the mathematical
proof of existence for both energetic solutions (in the variational setting) and equilibrium so-
lutions (in the non-variational setting). For the former, we employ the well-known method of
minimizing movements, while for the latter, we utilize Kakutani’s fixed point theorem for set-
valued functions. These proofs establish the well-posedness of the proposed formulations and
provide a rigorous foundation for their application.

Notation

The maximum (resp. minimum) of two extended real numbers α, β ∈ R ∪ {±∞} is denoted
by α ∨ β (resp. α ∧ β).

For a positive integer n ∈ N, the standard scalar product between vectors v, w ∈ Rn is denoted
by v ·w and we write |v|n for the euclidean norm, where the subscript simply stresses the space
dimension. Analogously, by 0n we mean the null vector in Rn. For lightness of notation, in the
scalar case n = 1 we omit the subscript. We also introduce the vector v ∨w whose components
are obtained by taking the maximum between the corresponding components of v and w, i.e.
(v ∨ w)i := vi ∨ wi.

We use the symbols Rn×n and Rn×nsym to denote the set of real (n×n)-matrices and the subset

of symmetric matrices. For any matrix A ∈ Rn×n, we write Asym := 1
2(A + AT ) ∈ Rn×nsym for

its symmetric part. In the case A = ∇u we adopt the usual notation e(u) in place of (∇u)sym.
The Frobenius scalar product between two matrices A,B ∈ Rn×n is A : B = tr(ABT ), and the

corresponding norm is denoted by |A|n×n :=
√
A : A. The tensor product between two vectors

v, w ∈ Rn is the matrix v ⊗ w ∈ Rn×n defined by (v ⊗ w)i,j := viwj .
We adopt standard notations for Bochner spaces and for scalar- or vector-valued Lebesgue and

Sobolev spaces. By L0(Ω)+ we mean the space of nonnegative Lebesgue measurable functions on
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the (open) set Ω ⊆ Rn. Given α ∈ (0, 1], by C0,α(Ω) and C0,α(Ω;Rm) we mean, respectively, the
space of scalar- and Rm-valued functions which are α-Hölder continuous (Lipschitz continuous
if α = 1) in Ω, endowed with the norm ‖ · ‖C0,α(Ω) := ‖ · ‖C0(Ω) + [ · ]α,Ω, where [ f ]α,Ω :=

sup
x,y∈Ω
x 6=y

|f(x)−f(y)|
|x−y|αn

is the Hölder seminorm of f . In order to lighten the notation, we write the same

symbol for the norms in C0,α(Ω) and in C0,α(Ω;Rm); the meaning will be clear from the context.
The same convention is used for norms in Lebesgue or Sobolev spaces. We finally denote by
C0,α

loc (Ω) (resp. C0,α
loc (Ω;Rm)) the space of functions belonging to C0,α(Ω′) (resp. C0,α(Ω′;Rm))

for all open set Ω′ ⊂⊂ Ω, i.e. such that the closure of Ω′ is still a subset of Ω.
Positive and negative part of a real function f are denoted by f+ := f ∨0 and f− := −(f ∧0),

respectively.
Given a normed space (X, ‖ · ‖X), by B([a, b];X) we mean the space of everywhere defined

measurable functions f : [a, b]→ X which are bounded in X, namely sup
t∈[a,b]

‖f(t)‖X < +∞.

1. Setting

We first describe the specific mechanical model of sliding laminates we intend to investigate
in this paper, showing how cohesive effects comes into play. We present both the variational and
the non-variational formulation of the problem, and we introduce the corresponding notions of
solution. We then state our main mathematical results, ensuring existence of such solutions for
the two variants of the model.

The reference configuration of the elastic composite is represented by an open, bounded,
connected set Ω ⊆ Rd with Lipschitz boundary. We point out that the physical dimension of the
problem is d = 2, but the mathematical arguments still remain rigorous in arbitrary dimension
d ∈ N.

1.1. Potential-based model. The total elastic energy of the composite is given by the func-
tional E : H1(Ω;Rd)2 → [0,+∞) defined as

E(u) :=

2∑
i=1

1

2

∫
Ω
Ci(x)e(ui(x)) : e(ui(x)) dx.

Here, the bold letter u = (u1, u2) denotes the pair of (horizontal) displacements of the two
layers, which completely describes the elastic behaviour of the material since we are working in
a linearized setting (small deformations). Moreover Ci : Ω→ Rd×d×d×d is the stiffness tensor of
the ith layer; for i = 1, 2 we assume that

(C1) Ci is uniformly continuous with modulus of continuity ωi,

together with the usual assumptions in linearized elasticity

(C2) Ci(x)A ∈ Rd×dsym for all x ∈ Ω and A ∈ Rd×d;
(C3) Ci(x)A = Ci(x)Asym for all x ∈ Ω and A ∈ Rd×d;
(C4) Ci(x)A : B = Ci(x)B : A for all x ∈ Ω and A,B ∈ Rd×d (symmetry);
(C5) Ci(x)A : A ≥ ci|Asym|2d×d for some ci > 0 and for all x ∈ Ω and A ∈ Rd×d (coercivity).

We recall that the coercivity condition (C5) automatically implies the so-called strict Legendre-
Hadamard condition (see for instance [9, end of Chapter 5])

Ci(x)(v ⊗ w) : (v ⊗ w) ≥ ci
2
|v ⊗ w|2d×d, for all x ∈ Ω and v, w ∈ Rd. (1.1)

The (planar) interface between the two layers of material is assumed to behave in a cohesive
fashion with respect to their reciprocal slip. Differently from previous contributions [6, 23], we
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allow for anisotropy of such interface, possibly due to asymmetries in the microstructures of the
strata. To describe such anisotropic effects we fix an integer m ∈ N, representing the number of
cohesive variables, and we consider a function g : Rd → [0,+∞)m satisfying

(g1) g(0d) = 0m;
(g2) g is Lipschitz continuous in Rd.

Remark 1.1. The isotropic case analyzed in [6, 23] can be recovered by choosing m = 1 and
g(δ) = |δ|d, for δ ∈ Rd, namely the cohesive energy (1.2) below just depends on the amplitude
of the slip between the two laminates, but not on its direction.

Example 1.2. The prototypical anisotropic (also called mixed-mode) case is given by the choice
m = d and g(δ) = (|δ1|, |δ2|, . . . , |δd|), namely the cohesive energy reacts differently with respect
to slips in different directions. One may also replace the modulus |δi| with the asymmetric version
µ+
i δ

+
i +µ−i δ

−
i , with coefficients µ±i ≥ 0, thus distinguishing between forward and backward slips.

The cohesive energy is then given by a functional K : L0(Ω;Rd) × (L0(Ω)+)m → [0,+∞)
defined by

K(δ, γ) :=

∫
Ω

Φ(x, g(δ(x)), γ(x)) dx, (1.2)

where the variable δ denotes the current slip of the two layers u1−u2, while γ, here and henceforth
called history variable, represents the irreversible counterpart of the cohesive variables g(δ),
namely each component γl (at time t) plays the role of the maximum value reached by gl(δ)
during the evolution (till time t).

The density Φ: Ω × [0,+∞)m × [0,+∞)m → [0,+∞), which takes into account different
loading-unloading regimes, is measurable and satisfies the following properties:

(Φ1) Φ(x, 0m, 0m) = 0 for a.e. x ∈ Ω;
(Φ2) Φ(x, ·, ·) is bounded, essentially uniformly with respect to x ∈ Ω; also, it is continuous

in the whole [0,+∞)m × [0,+∞)m, for a.e. x ∈ Ω;
(Φ3) the map y 7→ Φ(x, y, z) is Lipschitz continuous in [0,+∞)m, essentially uniformly with

respect to x ∈ Ω and uniformly with respect to z ∈ [0,+∞)m;
(Φ4) Φ(x, y, z) = Φ(x, y, y ∨ z) for a.e. x ∈ Ω and for all (y, z) ∈ [0,+∞)m × [0,+∞)m;
(Φ5) for a.e. x ∈ Ω and for all y ∈ [0,+∞)m the map z 7→ Φ(x, y, z) is nondecreasing with

respect to each component.

In Section 2 we propose an intrinsic way to explicitely construct densities Φ which behave in a
proper fashion with respect to loading (gl(δ) increases) and unloading (gl(δ) decreases). We also
present some examples, which encompass known models analyzed in literature [2, 21, 24]. In
particular, we stress that realistic densities should fulfil the following properties (for a.e. x ∈ Ω
and for all z ∈ [0,+∞)2):

(Φ6) for all l = 1, . . . ,m, the map yl 7→ Φ(x, y, z) is nondecreasing;
(Φ7) for all l = 1, . . . ,m, the map yl 7→ Φ(x, y, z) is convex and quadratic in the unloading

zone yl < zl, while it is concave in the loading zone yl ≥ zl;
(Φ8) for all l, j = 1, . . . ,m with l 6= j, the map yj 7→ ∂ylΦ(x, y, z) is nonincreasing;
(Φ9) lim

|y|m→∞
|∇yΦ(x, y, z)|m = 0.

Remark 1.3. Condition (Φ7) may be weakened requiring that the density is concave in the
loading zone just if zl has reached a certain positive but small threshold z̄l. This describes
materials possessing an initial elastic behaviour, included in the so-called intrinsic cohesive
models.
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The evolution of the system is driven by a prescribed horizontal external displacement ` acting
on a portion of a boundary ∂DΩ ⊆ ∂Ω of positive Hausdorff measure Hd−1(∂DΩ) > 0. Given
T > 0, we require that

` ∈W 1,1(0, T ;H1(Ω;Rd)), (1.3)

and we postulate that it is slow with respect to internal vibrations, so that inertia can be
neglected and the model can be set in a quasistatic framework.

Given a function f : ∂DΩ→ Rd, we also introduce the following notation:

H1
D,f (Ω;Rd) := {v ∈ H1(Ω;Rd) : v = f Hd−1-a.e. in ∂DΩ}.

The total energy of the elastic composite can thus be written through the functional F : [0, T ]×
H1(Ω;Rd)2 × (L0(Ω)+)m → [0,+∞] defined by

F(t,u, γ) :=

{
E(u) +K(u1 − u2, γ), if u ∈ (H1

D,`(t)(Ω;Rd))2,

+∞, otherwise.

At the initial time t = 0 we prescribe the initial conditions

(u0, γ0) ∈ (H1
D,`(0)(Ω;Rd))2 × C0,1

loc (Ω;Rm), (1.4a)

and we assume that

γ0
l ≥ gl(u

0
1 − u0

2), for all l = 1, . . .m, and

F(0,u0, γ0) ≤ F(0,v, γ0), for every v ∈ H1(Ω;Rd)2.
(1.4b)

The notion of solution we adopt in this paper for the potential-based model has a natural
variational flavour, and it is well-fitted for quasistatic evolutions [18]. Roughly speaking, such
solution minimizes at all times the total energy F(t, ·, ·) (see (GS)) while the history variable
increases, and at the same time an energy balance is preserved (see (EB)).

Definition 1.4. Given a prescribed displacement ` and initial data (u0, γ0) satisfying (1.3) and
(1.4), we say that a map [0, T ] 3 t 7→ (u(t), γ(t)) ∈ H1(Ω;Rd)2 × (L0(Ω)+)m is a (general-
ized) energetic solution to the potential-based cohesive interface model if the initial conditions
(u(0), γ(0)) = (u0, γ0) are attained, each component of the history variable γ is nondecreasing in
time, and the following global stability condition and energy balance are satisfied for all t ∈ [0, T ]:

(GS) γl(t) ≥ gl(u1(t)− u2(t)), for all l = 1, . . .m, and
F(t,u(t), γ(t)) ≤ F(t,v, γ(t)), for every v ∈ H1(Ω;Rd)2;

(EB) F(t,u(t), γ(t)) = F(0,u0, γ0) +W(t);

where the quantity W(t) represents the amount of work computed by the prescribed displacement
until the time t, which is defined as

W(t) :=

∫ t

0

2∑
i=1

∫
Ω
Ci(x)e(ui(s, x)) : e( ˙̀(s, x)) dx ds. (1.5)

Observe that the minimality requirement in (GS) implies that an energetic solution formally
solves the following system of partial differential inclusions at all times t ∈ [0, T ]:

−divC1e(u1(t)) ∈ −∇yΦ(·, g(u1(t)− u2(t)), γ(t))Dg(u1(t)− u2(t)), in Ω,

−divC2e(u2(t)) ∈ ∇yΦ(·, g(u1(t)− u2(t)), γ(t))Dg(u1(t)− u2(t)), in Ω,

u1(t) = u2(t) = `(t), in ∂DΩ,

∂nu1(t) = ∂nu2(t) = 0d, in ∂Ω \ ∂DΩ,

(1.6)

where Dg(δ) denotes the set of matrices m × d whose l-th row belongs to the (convex) subdif-
ferential of gl at δ.
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We now state our first mathematical result, which provides existence of energetic solutions.
Its proof can be found in Section 4.

Theorem 1.5. Let the stiffness tensors Ci satisfy (C1)-(C5) and let the cohesive energy density
Φ and the cohesive variables g satisfy (Φ1)-(Φ5) and (g1)-(g2). Then, given a prescribed dis-
placement ` and initial data (u0, γ0) fulfilling (1.3) and (1.4), there exists an energetic solution
(u, γ) to the potential-based cohesive interface model in the sense of Definition 1.4.

Furthermore, such pair of displacements u actually belongs to B([0, T ];H1(Ω;Rd)2) and to
B([0, T ];C0,α(Ω′;Rd)2) for all Ω′ ⊂⊂ Ω and α ∈ (0, 1), while the history variable γ actually is
in B([0, T ];C0,α(Ω′;Rm)) for all Ω′ ⊂⊂ Ω and α ∈ (0, 1).

1.2. Non potential-based model. As explained in the Introduction, non-variational models
are described through equilibrium equations rather than energies. In view of the Euler-Lagrange
equations (1.6), the non potential version of the model under consideration is thus characterized
by the following system:

−divC1e(u1(t)) ∈ −T (·, g(u1(t)− u2(t)), γ(t))Dg(u1(t)− u2(t)), in Ω,

−divC2e(u2(t)) ∈ T (·, g(u1(t)− u2(t)), γ(t))Dg(u1(t)− u2(t)), in Ω,

u1(t) = u2(t) = `(t), in ∂DΩ,

∂nu1(t) = ∂nu2(t) = 0d, in ∂Ω \ ∂DΩ,

(1.7)

where the right-hand side ∓T (·, g(u1(t) − u2(t)), γ(t))Dg(u1(t) − u2(t)) ∈ Rd represents the
tension acting on the two layers. With a slight abuse of terminology, we still refer to the vector
field T : Ω × [0,+∞)m × [0,+∞)m → Rm with the name cohesive tension. We also stress that
it is not necessarily a gradient, as in the potential-based case. We require that T satisfies the
following assumptions:

(T 1) T (x, ·, ·) is bounded, essentially uniformly with respect to x ∈ Ω; also, it is continuous
in the whole [0,+∞)m × [0,+∞)m, for a.e. x ∈ Ω;

(T 2) T (x, y, z) = T (x, y, y ∨ z) for a.e. x ∈ Ω and for all (y, z) ∈ [0,+∞)m × [0,+∞)m.

Analogously to the previous formulation, Section 2 also contains an intrinsic construction of
tensions T possessing a realistic behaviour in both loading and unloading regimes. In particular,
they also fulfil (for a.e. x ∈ Ω and for all z ∈ [0,+∞)2):

(T 3) for all l = 1, . . . ,m, the component Tl(x, y, z) is nonnegative;
(T 4) for all l = 1, . . . ,m, the map yl 7→ Tl(x, y, z) is linear and nondecreasing in the unloading

zone yl < zl, while it is nonincreasing in the loading zone yl ≥ zl (possibly if zl ≥ z̄l > 0,
see Remark 1.3);

(T 5) for all l, j = 1, . . . ,m with l 6= j, the map yj 7→ Tl(x, y, z) is nonincreasing;
(T 6) lim

|y|m→∞
|T (x, y, z)|m = 0.

Here, in addition to (g1) and (g2), we also need to require that the cohesive function g fulfils:

(g3) each component of g is convex;
(g4) the following closure property holds: if δn → δ strongly in L2(Ω;Rd), ηn ⇀ η weakly

in L2(Ω;Rm×d), and ηn(x) ∈ Dg(δn(x)) for a.e. x ∈ Ω, then η(x) ∈ Dg(δ(x)) for a.e.
x ∈ Ω as well.

Remark 1.6. It is standard to check that the examples introduced in Remarks 1.1 and 1.2
satisfy the above assumptions (g3) and (g4).

For the non potential-based model, we consider the following notion of quasistatic solution,
which somehow replaces the stronger global stability condition (GS) with an equilibrium condi-
tion.
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Definition 1.7. Given an external displacement ` and initial data (u0, γ0) satisfying (1.3),
(1.4a), the first condition in (1.4b) and solving (1.7) for t = 0 (see (1.8) below), we say that a
map [0, T ] 3 t 7→ (u(t), γ(t)) ∈ H1(Ω;Rd)2 × (L0(Ω)+)m is a (generalized) equilibrium solution
to the non potential-based cohesive interface model if the initial conditions (u(0), γ(0)) = (u0, γ0)
are attained, each component of the history variable γ is nondecreasing in time, and the following
equilibrium condition is satisfied for all t ∈ [0, T ]:

(EQ) γl(t) ≥ gl(u1(t)− u2(t)), for all l = 1, . . .m, and
u(t) ∈ (H1

D,`(t)(Ω;Rd))2 is a weak solution to (1.7), namely there exists a function η(t) ∈
(L∞(Ω;Rm×d))2 such that

ηi(t, x) ∈ Dg(u1(t, x)− u2(t, x)), for a.e. x ∈ Ω, and for i = 1, 2,

and for all ϕ ∈ (H1
D,0d

(Ω;Rd))2 there holds

2∑
i=1

∫
Ω
Cie(ui(t)) : e(ϕi) dx = −

∫
Ω
T (x, g(u1(t)− u2(t)), γ(t)) ·

(
η1(t)ϕ1 − η2(t)ϕ2

)
dx. (1.8)

Remark 1.8. If the displacement pair u of an equilibrium solution is more regular in time, say
u ∈ AC([0, T ];H1(Ω;Rd)2), then the following energy balance is also satisfied for all t ∈ [0, T ]:

E(u(t)) +

∫ t

0

∫
Ω
T (x, g(u1(τ)− u2(τ)), γ(τ)) ·

(
η1(τ)(u̇1(τ)− ˙̀(τ))−η2(τ)(u̇2(τ)− ˙̀(τ))

)
dx dτ

=E(u0) +W(t),

where the work of the external displacement W has been introduced in (1.5). In the particular
case T = ∇yΦ, namely if the model admits a potential, then one formally recovers (EB).

A possible approach leading to the validity of a suitable energy balance without additional
time-regularity (which is not expected in general) may be the vanishing viscosity argument.
However, this goes beyond the scopes of the present paper.

In this setting, we are able to show existence of equilibrium solutions. The proof of the
following result is developed in Section 4.

Theorem 1.9. Let the stiffness tensors Ci satisfy (C1)-(C5) and let the cohesive tension T and
the cohesive variables g satisfy (T 1)-(T 2) and (g1)-(g4). Then, given a prescribed displacement
` and initial data (u0, γ0) fulfilling (1.3), (1.4a), the first condition in (1.4b) and (1.8) for t = 0,
there exists an equilibrium solution (u, γ) to the non potential-based cohesive interface model in
the sense of Definition 1.7.

Furthermore, the same regularity properties stated in Theorem 1.5 hold.

2. Construction of cohesive energy densities and tensions

In this section we present an intrinsic way of building a feasible loading-unloading energy
density Φ and tension T , starting from a “purely loading” density Ψ or tension S, respectively.
Actually, as we will see, a good candidate for S is given by ∇Ψ∨ 0d, indeed the issues observed
in [17, 22] for potential-based models occur when the partial derivatives ∂iΨ become negative.
We then provide several examples of densities Ψ, including many expressions studied in [17, 21,
22, 24].

Although the model depicted in the previous section deals with cohesive delamination, we
point out that the arguments of the current section are valid for general cohesive models, so for
instance they may be applied to fracture mechanics.

Also supported by the numerical examples performed in Section 3, our analysis essentially
proves that variational mixed-mode models are consistent just if the complete delamination
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energies in the different directions are equal (see (2.11)). Moreover, even in this case, they return
physically realistic responses only in the restrictive (and quite unnatural) situation of unloading
happening in one direction, while the slips in the other ones are still. On the contrary, our
construction of non-variational mixed-mode models provides a satisfactory description of real
instances without any limitations and in any loading-unloading regime.

For applicative reasons, we focus on the physical dimension d = 2; moreover, for the sake of
clarity we restrict our attention to homogeneous interfaces, i.e. the densities do not depend on
x ∈ Ω, but we stress that inhomogeneous ones can be treated in an analogous way.

2.1. Construction of the potential Φ. We consider a loading function Ψ : [0,+∞)2 →
[0,+∞) (we write Ψ = Ψ(y1, y2)) satisfying

(Ψ1) Ψ(0, 0) = 0;
(Ψ2) Ψ is bounded, Lipschitz, with ∇Ψ and ∂12Ψ locally Lipschitz in (0,+∞)2;
(Ψ3) for i, j = 1, 2 with j 6= i there hold ∂iΨ ≥ yi∂iiΨ ∨ 0 and ∂12Ψ ≤ yi∂iijΨ ∧ 0 a.e. in

[0,+∞)2;
(Ψ4) sup

y1,y2>0
(y1 + y2)|∂12Ψ(y1, y2)| < +∞.

These requirements are needed for the validity of the mathematical assumptions (Φ1)-(Φ5); in
order to have also the physical properties (Φ6)-(Φ9) we need to add:

(Ψ5) ∇Ψ and ∂12Ψ vanish at infinity;
(Ψ6) for i, j = 1, 2 with j 6= i there holds 2∂iiΨ ≤ yj∂iijΨ ∧ 0 a.e. in [0,+∞)2 (or if yi ≥ z̄i,

yj ≥ 0 in case of Remark 1.3).

Before writing the definition of Φ, we introduce the following notation. Given z1, z2 ≥ 0,
playing the role of history variables, we divide the space of possible openings into four regions:

R1(z1, z2) := {y1 ≥ z1, y2 ≥ z2},
R2(z1, z2) := {0 ≤ y1 < z1, y2 ≥ z2},
R3(z1, z2) := {y1 ≥ z1, 0 ≤ y2 < z2},
R4(z1, z2) := {0 ≤ y1 < z1, 0 ≤ y2 < z2}.

Observe that R1 and R4 represent the pure loading and the pure unloading phase, respectively;
while R2 and R3 describe the mixed phases, in which one direction experiences loading while
the other one unloading.

We then set Φ : [0,+∞)2×[0,+∞)2 → R as

Φ(y1, y2, z1, z2) :=



Ψ(y1, y2), if (y1, y2) ∈ R1(z1, z2),

Ψ(z1, y2)− z1

2
∂1Ψ(z1, y2)

(
1−

(
y1

z1

)2
)
, if (y1, y2) ∈ R2(z1, z2),

Ψ(y1, z2)− z2

2
∂2Ψ(y1, z2)

(
1−

(
y2

z2

)2
)
, if (y1, y2) ∈ R3(z1, z2),

Ψ(z1, z2)− z1

2
∂1Ψ(z1, z2)

(
1−

(
y1

z1

)2
)

−z2

2
∂2Ψ(z1, z2)

(
1−

(
y2

z2

)2
)

+
z1z2

4
∂12Ψ(z1, z2)

(
1−

(
y1

z1

)2
)(

1−
(
y2

z2

)2
)
, if (y1, y2) ∈ R4(z1, z2).
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Let us briefly describe the structure of Φ. In the pure loading zone R1 it coincides with the
loading density Ψ; in R2 (and similarly in R3), namely in the unloading phase for y1, it behaves
quadratically with respect to y1, and the coefficients are chosen in order to have a smooth
junction; finally, in the pure unloading zone R4 the function Φ is quadratic in both directions
y1 and y2.

We actually observe that this expression provides the only candidate of potential energy whose
partial derivatives (tensions) experience linear decay in the unloading phase with respect to the
corrisponding variable.

We now check the validity of (Φ1) – (Φ5). Continuity of Φ in [0,+∞)2× [0,+∞)2 and validity
of hypotheses (Φ1) and (Φ4) are immediate. In order the check the remaining assumptions, it
is useful to explicitly compute the partial derivatives of Φ:

∂y1Φ(y1, y2, z1, z2) =



∂1Ψ(y1, y2), if (y1, y2) ∈ R1(z1, z2),

∂1Ψ(z1, y2)
y1

z1
, if (y1, y2) ∈ R2(z1, z2),

∂1Ψ(y1, z2)− z2

2
∂12Ψ(y1, z2)

(
1−

(
y2

z2

)2
)
, if (y1, y2) ∈ R3(z1, z2),(

∂1Ψ(z1, z2)− z2

2
∂12Ψ(z1, z2)

(
1−

(
y2

z2

)2
))

y1

z1
, if (y1, y2) ∈ R4(z1, z2),

(2.1a)

∂y2Φ(y1, y2, z1, z2) =



∂2Ψ(y1, y2), if (y1, y2) ∈ R1(z1, z2),

∂2Ψ(z1, y2)− z1

2
∂12Ψ(z1, y2)

(
1−

(
y1

z1

)2
)
, if (y1, y2) ∈ R2(z1, z2),

∂2Ψ(y1, z2)
y2

z2
, if (y1, y2) ∈ R3(z1, z2),(

∂2Ψ(z1, z2)− z1

2
∂12Ψ(z1, z2)

(
1−

(
y1

z1

)2
))

y2

z2
, if (y1, y2) ∈ R4(z1, z2),

(2.1b)

∂z1Φ(y1, y2, z1, z2) =



0, if (y1, y2) ∈ R1(z1, z2),

∂1Ψ(z1, y2)− z1∂11Ψ(z1, y2)

2

(
1−

(
y1

z1

)2
)
, if (y1, y2) ∈ R2(z1, z2),

0, if (y1, y2) ∈ R3(z1, z2),(
∂1Ψ(z1, z2)− z1∂11Ψ(z1, z2)

2
− z2

4
(∂12Ψ(z1, z2)

−z1∂112Ψ(z1, z2))

(
1−

(
y2

z2

)2
))(

1−
(
y1

z1

)2
)
, if (y1, y2) ∈ R4(z1, z2),

∂z2Φ(y1, y2, z1, z2) =



0, if (y1, y2) ∈ R1(z1, z2),

0, if (y1, y2) ∈ R2(z1, z2),

∂2Ψ(y1, z2)− z2∂22Ψ(y1, z2)

2

(
1−

(
y2

z2

)2
)
, if (y1, y2) ∈ R3(z1, z2),(

∂2Ψ(z1, z2)− z2∂22Ψ(z1, z2)

2
− z1

4
(∂12Ψ(z1, z2)

−z2∂122Ψ(z1, z2))

(
1−

(
y1

z1

)2
))(

1−
(
y2

z2

)2
)

if (y1, y2) ∈ R4(z1, z2).
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From (Ψ3) we easily get ∂yiΦ ≥ 0 and ∂ziΦ ≥ 0 for i = 1, 2, hence (Φ5) holds. Furthermore, we
deduce

0 = Φ(0, 0, 0, 0) ≤ Φ(y1, y2, z1, z2) ≤ Φ(y1 ∨ z1, y2 ∨ z2, z1, z2) = Ψ(y1 ∨ z1, y2 ∨ z2) ≤ sup
[0,+∞)2

Ψ.

Since the supremum in the last term is finite by (Ψ2), we get that Φ is bounded and so in
particular (Φ2) is fulfilled. It remains to verify (Φ3). Let us check that ∂y1Φ is bounded
uniformly with respect to z, the computation for ∂y2Φ being analogous. In R1 and in R2 the
fact is trivial by exploiting (Ψ2), while in R3 we can estimate by using (Ψ4), obtaining

|∂y1Φ(y1, y2, z1, z2)| ≤ |∂1Ψ(y1, z2)|+ z2|∂12Ψ(y1, z2)| ≤ C.

Similar computations yield the result also in R4, and we conclude.
Let us now check (Φ6)-(Φ9), assuming in addition (Ψ5) and (Ψ6). Notice that we already

proved (Φ6), while we observe that (Φ9) is automatically satisfied whenever (Ψ5) is in force.
Moreover, (Φ7) follows from (Ψ3) and (Ψ6) by observing that the partial derivatives ∂yiΦ are
continuous and by exploiting the expression

∂y1,y1Φ(y1, y2, z1, z2) =



∂11Ψ(y1, y2), if (y1, y2) ∈ R1(z1, z2),

∂1Ψ(z1, y2)
1

z1
, if (y1, y2) ∈ R2(z1, z2),

∂11Ψ(y1, z2)− z2

2
∂112Ψ(y1, z2)

(
1−

(
y2

z2

)2
)
, if (y1, y2) ∈ R3(z1, z2),(

∂1Ψ(z1, z2)− z2

2
∂12Ψ(z1, z2)

(
1−

(
y2

z2

)2
))

1

z1
, if (y1, y2) ∈ R4(z1, z2),

and analogously for ∂y2,y2Φ. Finally, (Ψ3) yields that the mixed derivative

∂y1,y2Φ(y1, y2, z1, z2) =



∂12Ψ(y1, y2), if (y1, y2) ∈ R1(z1, z2),

∂12Ψ(z1, y2)
y1

z1
, if (y1, y2) ∈ R2(z1, z2),

∂12Ψ(y1, z2)
y2

z2
, if (y1, y2) ∈ R3(z1, z2),

∂12Ψ(z1, z2)
y1

z1

y2

z2
, if (y1, y2) ∈ R4(z1, z2),

is nonnegative, whence also (Φ8) holds true.

2.2. Construction of the non-potential tension T . We adopt the same notations of the
previous section. Consider a loading tension S = (S1,S2) : [0,+∞)2 → R2 satisfying

(S1) S is continuous and bounded in [0,+∞)2.

The tension T = (T1, T2) : [0,+∞)2 × [0,+∞)2 → R2 is then defined as

T1(y1, y2, z1, z2) =



S1(y1, y2), if (y1, y2) ∈ R1(z1, z2),

S1(z1, y2)
y1

z1
, if (y1, y2) ∈ R2(z1, z2),

S1(y1, z2), if (y1, y2) ∈ R3(z1, z2),

S1(z1, z2)
y1

z1
, if (y1, y2) ∈ R4(z1, z2),

(2.2a)
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T2(y1, y2, z1, z2) =



S2(y1, y2), if (y1, y2) ∈ R1(z1, z2),

S2(z1, y2), if (y1, y2) ∈ R2(z1, z2),

S2(y1, z2)
y2

z2
, if (y1, y2) ∈ R3(z1, z2),

S2(z1, z2)
y2

z2
, if (y1, y2) ∈ R4(z1, z2).

(2.2b)

The validity of (T 1) and (T 2) is immediate. One may also directly verify the physical re-
quirements (T 3)-(T 6) assuming in addition that

(S2) S is valued in [0,+∞)2 and vanishes at infinity;
(S3) S1 and S2 are nonincreasing in each component (Si nonincreasing with respect to yi only

in [z̄i,+∞) in case of an intrinsic cohesive model).

If S = ∇Ψ for some suitable density Ψ, notice that the expressions (2.2) coincide with (2.1)
in the (not interesting) case of uncoupled directions, namely when ∂12Ψ ≡ 0, or equivalently
Ψ(y1, y2) = ψ1(y1) + ψ2(y2). This is not a coincidence, indeed it is easy to check that the pair
(T1, T2) defines a gradient (with respect to y) just in this occurence.

2.3. Examples of loading density Ψ. We now present some specific instances of functions
Ψ. They all fall within the following abstract structure.

Let us consider two one-dimensional cohesive densities (see [6, 23]) ψi ∈ C1,1
loc ([0,+∞)), i =

1, 2, namely each ψi is bounded, Lipschitz, nondecreasing, and satisfies ψi(0) = 0 and

ψ′i(y)− yψ′′i (y) ≥ 0, (2.3a)

sup
y>0

yψ′i(y) < +∞. (2.3b)

Assuming that supψi = 1, we also consider a nonnegative function F ∈ C2,1([0, 1]2) such that
F (0, 0) = 0, ∂iF ≥ 0, ∂iiF ≤ 0, ∂12F ≤ 0, ∂iijF ≥ 0 in [0, 1]2 for i, j = 1, 2, i 6= j.

The density Ψ is now defined as

Ψ(y1, y2) := F (ψ1(y1), ψ2(y2)). (2.4)

Let us now check that it satisfies conditions (Ψ1)–(Ψ4). It is trivial to see that (Ψ1) and (Ψ2)
hold true, while by simple computations we deduce

∂iΨ(y1, y2) = ∂iF (ψ1(y1), ψ2(y2))ψ′i(yi) ≥ 0, (2.5)

since it is the product of nonnegative terms. Analogously we obtain

∂12Ψ(y1, y2) = ∂12F (ψ1(y1), ψ2(y2))ψ′1(y1)ψ′2(y2) ≤ 0. (2.6)

Moreover, we have

∂iΨ(y1, y2)− yi∂iiΨ(y1, y2)

=∂iF (ψ1(y1), ψ2(y2))
(
ψ′i(yi)− yiψ′′i (yi)

)
− yiψ′i(yi)2∂iiF (ψ1(y1), ψ2(y2)) ≥ 0, (2.7)

where we used (2.3a) and the assumptions on F . Similarly, there holds

∂12Ψ(y1, y2)− yi∂iijΨ(y1, y2)

=ψ′j(yj)
(

(ψ′i(yi)− yiψ′′i (yi))∂12F (ψ1(y1), ψ2(y2))− yi(ψ′i(yi))2∂iijF (ψ1(y1), ψ2(y2))
)
≤ 0.

(2.8)
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Combining (2.5), (2.6), (2.7) and (2.8) we finally infer (Ψ3). By exploiting (2.3b) we also show
(Ψ4):

sup
y1,y2>0

(y1 + y2)|∂12Ψ(y1, y2)| = sup
y1,y2>0

(y1 + y2)|∂12F (ψ1(y1), ψ2(y2))|ψ′1(y1)ψ′2(y2)

≤max
[0,1]2
|∂12F |

(
supψ′2 sup

y1≥0
y1ψ

′
1(y1) + supψ′1 sup

y2≥0
y2ψ

′
2(y2)

)
< +∞.

If in addition F satisfies

∂1F (ξ1, 1) = ∂2F (1, ξ2) = 0, for all (ξ1, ξ2) ∈ [0, 1]2, (2.9)

then also (Ψ5) can be directly obtained.
The validity of (Ψ6) can be instead deduced if the functions ψi are concave in [0,+∞) (or, in

view of Remark 1.3, in [z̄i,+∞)). Indeed, recalling the assumptions on F , in this case we infer

∂iiΨ(y1, y2) = ψ′′i (yi)∂iF (ψ1(y1), ψ2(y2)) + (ψ′i(yi))
2∂iiF (ψ1(y1), ψ2(y2))

≤ 0 ≤ yj
2
ψ′j(yj)

(
ψ′′i (yi)∂12F (ψ1(y1), ψ2(y2)) + (ψ′i(yi))

2∂iijF (ψ1(y1), ψ2(y2))
)

=
yj
2
∂iijΨ(y1, y2).

The simplest, although effective, choice of auxiliary function F satisfying the previous as-
sumptions is given by

F (ξ1, ξ2) := Φ1ξ1 + Φ2ξ2 − αξ1ξ2, (2.10)

where Φ1,Φ2 ≥ 0 are nonnegative constants representing complete delamination energies, while
the parameter α satisfies 0 ≤ α ≤ Φ1 ∧ Φ2. However, observe that (2.9), needed to preserve a
realistic behaviour, is in force if and only if

α = Φ1 = Φ2. (2.11)

This represents a first limitation of potential-based models, indeed the above constraint repre-
sents materials whose delamination energies are equal in both directions.

We now consider examples of one-dimensional densities fulfilling the required assumptions.

Negative exponentials. The first example is given by

ψexp(y) = 1− e−ρy,
with ρ > 0. It features an infinite delamination opening, namely it reaches its supremum just
asymptotically as y → +∞.

Polynomial behaviour. A second simple example with finite delamination opening δ > 0 is the
cubic law

ψcub(y) =


y

δ

((y
δ

)2
− 3

y

δ
+ 3

)
, if y ∈ [0, δ),

1, if y ≥ δ.

Intrinsic densities. Starting from concave densities like the previous two examples one can
always construct a whole family of new densities, featuring an initial quadratic (i.e. elastic)
behaviour and thus suitable to describe the so-called intrinsic cohesive models. Given a concave
function ψ ∈ C1,1

loc ([0,+∞)) bounded, Lipschitz, nondecreasing, satisfying ψ(0) = 0 and (2.3b),
for any parameter ε > 0 it is enough to define

ψε(y) :=


y2

2ε
, if y ∈ [0, z̄ε],

ψ(y)− ψ(z̄ε) +
z̄2
ε

2ε
, if y ∈ (z̄ε,+∞),
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where z̄ε > 0 is the unique positive number satisfying z̄ε = εψ′(z̄ε). Notice that conditions
(2.3), as well as the above assumptions, are satisfied by ψε; moreover, it is concave in [z̄ε,+∞).
We actually observe that, in order to have supψε = 1, one shall rescale the function with the
constant (1− ψ(z̄ε) + z̄2

ε/2ε)
−1.

PPR model. We now discuss a more involved example introduced in [22]–and called PPR from
the name of the authors–for an analogous model of fracture. We first introduce the intrinsic
cohesive zone model, characterized by an initial elastic behaviour. For i = 1, 2, let us consider

the parameters αi > 1, Φi, σi > 0 and λi ∈
(

0, 1√
αi

)
, representing shape index (characterizing

material softening responses), complete delamination energy, cohesive strenght, and initial slope
indicator in direction i, respectively. We then define the constants

mi :=
αi(αi − 1)λ2

i

1− αiλ2
i

> 0, (2.12)

the final slip width (or delamination opening)

δi :=
Φi

σi
αiλi(1− λi)αi−1

(
1 +

αi
mi

)(
1 + λi

αi
mi

)mi−1

> 0, (2.13)

and the energy constants

Γ1 :=


−Φ1

(
α1

m1

)m1

, if Φ1 ≥ Φ2,(
α1

m1

)m1

, if Φ1 < Φ2,
Γ2 :=


(
α2

m2

)m2

, if Φ1 ≥ Φ2,

−Φ2

(
α2

m2

)m2

, if Φ1 < Φ2.
(2.14)

The loading density in the PPR model is then defined as (see (8) in [22])

ΨPPR(y1, y2) := Φ1 ∧ Φ2+

[
Γ1

((
1− y1

δ1

)+
)α1 (

m1

α1
+
y1

δ1

)m1

+ (Φ1 − Φ2)+

]
×[

Γ2

((
1− y2

δ2

)+
)α2 (

m2

α2
+
y2

δ2

)m2

+ (Φ2 − Φ1)+

]
.

We observe that, after some simple manipulation, we can rewrite the PPR density in the form
(2.4), with F as in (2.10). Indeed we have

ΨPPR(y1, y2) = Φ1ψ1(y1) + Φ2ψ2(y2)− Φ1 ∨ Φ2ψ1(y1)ψ2(y2), (2.15)

where the one-dimensional densities are given by

ψi(yi) := 1−

((
1− yi

δi

)+
)αi (

1 +
αi
mi

yi
δi

)mi
. (2.16)

Remark 2.1. Comparing (2.15) with (2.10), we observe that the constraint α ≤ Φ1 ∧ Φ2 here
yields Φ1 = Φ2 (see also (2.11)), namely we are forced to consider equal delamination energy
in both directions in order to keep the potential-based structure of the model. This drawback
was already observed in [22, Section 2.2] (see also [21]), and it is an intrinsic limitation of
potential-based models, which can be overcome by means of non potential-based ones.

We now show that the one-dimensional PPR densities fulfil our assumptions.

Lemma 2.2. If λi ≤ 1√
2αi−1

, then the densities defined in (2.16) are nonnegative and satisfy

the following properties:

• ψi(0) = ψ′i(0) = 0;
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• ψi ∈ C1,1([0,+∞)) is nondecreasing and bounded;
• assumption (2.3) holds true;
• ψi is concave in [δiλi,+∞).

Proof. By computing the derivatives of ψi we obtain

ψ′i(yi) =
αi
δi

(
1 +

αi
mi

)
yi
δi

((
1− yi

δi

)+
)αi−1(

1 +
αi
mi

yi
δi

)mi−1

,

ψ′′i (yi) =
αi
δ2
i

(
1 +

αi
mi

)((
1− yi

δi

)+
)αi−2(

1 +
αi
mi

yi
δi

)mi−2(
1− αi

mi
(αi +mi − 1)

y2
i

δ2
i

)
,

whence one easily deduces the regularity of ψi and the fact that it is nondecreasing. Moreover,

ψ′′i is nonpositive in

[
δi
√

mi
αi(αi+mi−1) ,+∞

)
, namely in [δiλi,+∞) by means of (2.12), and so

ψi is concave therein.
Using the obvious property ψi(0) = 0, one then infers that ψi is nonnegative and bounded

(with maxψi = 1). Also property (2.3b) easily follows since ψ′i is supported in [0, δi], so we are
left to check (2.3a). To this aim we compute

ψ′i(yi)−yiψ′′i (yi) =
αi
δi

(
1+

αi
mi

)
y2
i

δ2
i

((
1−yi

δi

)+
)αi−2(

1+
αi
mi

yi
δi

)mi−2( αi
mi

(αi+mi−2)
yi
δi

+
αi
mi
−1

)
.

Observing that, by the expression (2.12), the assumption λi ≤ (2αi−1)−1/2 yields αi ≥ mi, and
since under our set of assumptions there holds αi(αi +mi − 1) ≥ mi, we now infer that the last
term within brackets in the above expression is nonnegative (we recall that it is enough to check
it for yi ∈ [0, δi]). This yields (2.3a) and we conclude. �

Sending the initial slope indicators λi to zero we recover the extrinsic cohesive zone version
of the PPR model, corresponding to a completely anelastic process. By the expressions (2.12),
(2.13), (2.14), after simple computations as λi → 0 we deduce

mi → 0,

δi → δ̄i :=
Φi

σi
αi,

Γ1 → Γ̄1 :=

{
−Φ1, if Φ1 ≥ Φ2,

1, if Φ1 < Φ2,
Γ2 → Γ̄2 :=

{
1, if Φ1 ≥ Φ2,

−Φ2, if Φ1 < Φ2,

whence we obtain ΨPPR(y1, y2)→ Ψ̄PPR(y1, y2), where

Ψ̄PPR(y1, y2) := Φ1∧Φ2 +

[
Γ̄1

((
1− y1

δ̄1

)+
)α1

+ (Φ1−Φ2)+

][
Γ̄2

((
1− y2

δ̄2

)+
)α2

+ (Φ2−Φ1)+

]
.

Arguing as before we can rewrite Ψ̄PPR as

Ψ̄PPR(y1, y2) = Φ1ψ̄1(y1) + Φ2ψ̄2(y2)− Φ1 ∨ Φ2ψ̄1(y1)ψ̄2(y2), (2.17)

where the extrinsic one-dimensional densities are given by

ψ̄i(yi) := 1−

((
1− yi

δ̄i

)+
)αi

. (2.18)

Again, we stress that Remark 2.1 still applies.
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We conclude by showing that also in the extrinsic case the one-dimensional densities fulfil our
assumptions.

Lemma 2.3. The densities defined in (2.18) are nonnegative and satisfy the following properties:

• ψ̄i(0) = 0;
• ψ̄i ∈ C1,1([0,+∞)) is nondecreasing, bounded and concave;
• assumption (2.3) holds true;
• ψ̄i is concave.

Proof. The result follows by arguing as in Lemma 2.2 once we compute

ψ̄′i(yi) =
αi
δ̄i

((
1− yi

δ̄i

)+
)αi−1

≥ 0,

ψ̄′′i (yi) = −αi(αi − 1)

δ̄2
i

((
1− yi

δ̄i

)+
)αi−2

≤ 0.

�

2.4. Examples of loading tension S. In non potential-based models a good choice of loading
tension is given by

S(y1, y2) := ∇Ψ(y1, y2) ∨ 02 = (∂1Ψ(y1, y2)+, ∂2Ψ(y1, y2)+), (2.19)

where Ψ has again the form (2.4), but with weaker requirements than before. Here, the function
F is just assumed to be of class C1, with no constraints on the sign of its derivatives; while the
one-dimensional densities ψi do not need to fulfil (2.3) anymore. Condition (S1) is now a direct
consequence of the just listed regularity assumptions.

Conditions (S2) and (S3) require slightly stronger assumptions, as expected. The former is
fulfilled whenever ψ′i vanish as yi → +∞ and

∂1F (ξ1, 1) ≤ 0, and ∂2F (1, ξ2) ≤ 0, for all (ξ1, ξ2) ∈ [0, 1]2. (2.20)

The latter is instead implied by assuming that ψi are concave in [z̄i,+∞), and that F is of class
C2 with ∂12F ≤ 0 and ∂iiF ≤ 0. To show it, as before it is enough to compute the derivatives
of Si and verify that they are nonpositive.

The explicit form (2.10) of F is included in this setting (in particular (2.20) is in force) if
and only if the parameter α satisfies α ≥ Φ1 ∨Φ2. For instance, observe that the PPR densities
(2.15) and (2.17) fit in the non-potential framework even if, differently than the potential-based
model (see Remark 2.1), the two delamination energies Φ1 and Φ2 are different.

This fact shows the flexibility of non-variational models with respect to variational ones, in
the mixed-mode case.

3. Representative instances: non trivial loading/unloading paths

In this section, we illustrate the response of a cohesive interface under non trivial load-
ing/unloading/reloading paths in dimension d = 2 with the prototypical cohesive variable
g(δ) = (|δ1|, |δ2|). In particular, the respective opening separations are assumed to follow the
relations:

y1(t) = |a1 sin(b1t)|, y2(t) = |a2 sin(b2t)|,
where t is a time-like parameter. We consider the variational intrinsic PPR energy density (2.15)
and the corresponding non potential-based law induced by (2.19). Without loss of generality
the following parameter values are taken: α1 = α2 = 2, σ1 = σ2 = 2 MPa and λ1 = λ2 = 0.2.

The following situations are investigated:
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• CASE 1: equal displacement slip evolution (a1 = a2 = 1, b1 = b2 = 0.2) and equal
energy values Φ1 = Φ2 = 2 N/m (see Fig. 1a);
• CASE 2: equal displacement slip values with different phases (a1 = a2 = 1, b1 = 0.2, b2 =

0.3) and equal energy values Φ1 = Φ2 = 2 N/m (see Fig. 3a);
• CASE 3: different displacement slip values with different phases (a1 = 1, a2 = 3, b1 =

0.2, b2 = 0.3) and different energy values Φ1 = 6, Φ2 = 2 N/m (see Fig. 5a);
• CASE 4: different displacement slip values with different phases (a1 = 1, a2 = 0.5,
b1 = 0.125, b2 = 0.4) but unloading of y1 at fixed y2 value and equal energy values
Φ1 = Φ2 = 2 N/m (see Fig. 7a).

For each case the following plots are given: evolution of displacement slip values y1, y2 and his-
tory variables z1, z2, energy evolution (only for the variational model) and traction-displacement
slip relations.

Although the energy evolutions of the variational model depicted in Figs. 1b, 3b, 5b seem con-
sistent, the same cannot be said of its derivatives, which from the engineering point of view have
a crucial meaning. In all cases, the computed traction–separation relations during the first load-
ing path for the potential-based model and the non potential-based law are equivalent. In CASE
1, the unloading/reloading path is nonlinear for the variational model, see Figs. 1c,d, while it
is fully linear for the non-potential model Figs. 2a,b. For CASE 2, the unloading/reloading
path of the potential-based model reported in Figs. 3c,d reveals significant deviations from the
expected results as the one obtained with the non potential-based law as depicted in Figs. 4a,b.
The problem is further exacerbated in CASE 3, where the potential-based model gives a totally
nonphysical response as reported in Figs. 5c,d differently from the non potential-based model
that does not allow the change of sign of the stress under partial unloading conditions, see Figs.
6a,b. Only in the very special CASE 4 the variational model provides a physically reasonable
result in the case of partial unloading as illustrated in Fig. 7.
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Figure 1. CASE 1: potential-based model. a) Evolution of displacement
slip values y1, y2 and history variables z1, z2, b) Energy evolution, c) Traction-
displacement slip relation T1− y1, d) Traction-displacement slip relation T2− y2.

Figure 2. CASE 1: non potential-based model. a) Traction-displacement slip
relation T1 − y1, b) Traction-displacement slip relation T2 − y2.
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Figure 3. CASE 2: potential-based model. a) Evolution of displacement
slip values y1, y2 and history variables z1, z2, b) Energy evolution, c) Traction-
displacement slip relation T1− y1, d) Traction-displacement slip relation T2− y2.

Figure 4. CASE 2: non potential-based model. a) Traction-displacement slip
relation T1 − y1, b) Traction-displacement slip relation T2 − y2.
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Figure 5. CASE 3: potential-based model. a) Evolution of displacement
slip values y1, y2 and history variables z1, z2, b) Energy evolution, c) Traction-
displacement slip relation T1− y1, d) Traction-displacement slip relation T2− y2.

Figure 6. CASE 3: non potential-based model. a) Traction-displacement slip
relation T1 − y1, b) Traction-displacement slip relation T2 − y2.
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Figure 7. CASE 4: potential-based model. a) Evolution of displacement
slip values y1, y2 and history variables z1, z2, b) Energy evolution, c) Traction-
displacement slip relation T1− y1, d) Traction-displacement slip relation T2− y2.

4. Proof of the existence results

This last section is devoted to the proof of Theorems 1.5 and 1.9; we thus tacitly assume all
their hypotheses, when needed.

4.1. Energetic solutions. We first consider the potential-based model. The argument is simi-
lar to the one developed in [6, 23], so we only sketch the various proofs stressing the differences
which arise due to the anisotropy. We begin by performing a time-discretization algorithm. Let
τ > 0 such that T/τ ∈ N, and for k = 0, . . . , T/τ we define tk := kτ . For k = 1, . . . , T/τ we now
consider the following recursive minimization scheme: given (uk−1, γk−1), we setu

k ∈ argmin
v∈H1(Ω;Rd)2

F(tk,v, γk−1),

γk := γk−1 ∨ g(uk1 − uk2),
(4.1)

where the initial conditions naturally are the given pair of initial data (u0, γ0).
The existence of the minimum in (4.1)1 directly follows from the Direct Method of the Calculus

of Variations in the weak topology of H1(Ω;Rd)2. Coercivity is ensured by Korn-Poincarè
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inequality, since the cohesive energy K is nonnegative; on the other hand, lower semicontinuity
of the elastic energy E is standard, while it follows by Fatou’s lemma for K.

A crucial tool in order to gain compactness for the discrete history variable γk will be the
following regularity result, whose proof can be found in [14, Theorem 7.2].

Theorem 4.1. Let the set Ω ⊆ Rd be bilipschitz diffeomorphic to the open unit cube. Let
u ∈ H1(Ω;Rd) be a weak solution of the equation

−div (Ce(u)) = g, in Ω,

where the tensor C satisfies (C1), (C3) and (1.1).

If g ∈ L
dp
d+p (Ω;Rd) for some p > 2, then ∇u ∈ Lploc(Ω;Rd×d) and for all open set Ω′ ⊂⊂ Ω

there holds

‖∇u‖Lp(Ω′) ≤ C ′
(
‖g‖

L
dp
d+p (Ω)

+ ‖∇u‖L2(Ω)

)
,

where the constant C ′ > 0 depends only on p, d, c, ω and dist(Ω′,Ω).

This first lemma provides boundedness of the discrete displacements uk, by exploiting their
minimality property (4.1)1

Lemma 4.2. There exists a constant C > 0 independent of τ such that

max
k=0,...,T/τ

‖uk‖H1(Ω)2 ≤ C. (4.2)

Proof. For k = 0 there is nothing to prove. So we fix k ≥ 1 and we pick `(tk) := (`(tk), `(tk)) as
a competitor for uk in (4.1)1. By employing (C1), (C5), (g1) and (Φ2) we estimate

2∑
i=1

ci
2
‖e(uki )‖2L2(Ω) ≤ F(tk,uk, γk−1) ≤ F(tk, `(tk), γk−1) = E(`(tk)) +K(0d, γ

k−1)

≤ C‖`(tk)‖2H1(Ω) +

∫
Ω

Φ(x, 0m, γ
k−1) dx ≤ C( max

t∈[0,T ]
‖`(t)‖2H1(Ω) + 1).

We now conclude by means of (1.3) and Korn-Poincarè inequality. �

By somehow computing the Euler-Lagrange equations of F(tk, ·, γk−1), see also (1.6), we
deduce the following uniform estimate.

Lemma 4.3. There exists a constant C > 0 independent of τ such that for i = 1, 2 and for any
ϕ ∈ H1

0 (Ω;Rd) there holds

max
k=0,...,T/τ

|〈divCie(uki ), ϕ〉H1
0 (Ω;Rd)| ≤ C‖ϕ‖L1(Ω). (4.3)

Proof. Fix k = 0, . . . , T/τ and let ϕ ∈ H1
0 (Ω;Rd)2 and h > 0. By taking uk+hϕ as a competitor

for uk in (4.1)1 and (1.4b) (we set γ−1 := γ0) we obtain

0 ≤ lim inf
h→0+

F(tk,uk + hϕ, γk−1)−F(tk,uk, γk−1)

h

=

2∑
i=1

∫
Ω
Cie(uki ) : e(ϕi) dx+ lim inf

h→0+

K(uk1 − uk2 + h(ϕ1 − ϕ2), γk−1)−K(uk1 − uk2, γk−1)

h
.

Observing that by (g2) and (Φ3) there holds

|K(uk1 − uk2 + h(ϕ1 − ϕ2), γk−1)−K(uk1 − uk2, γk−1)| ≤ Ch‖ϕ1 − ϕ2‖L1(Ω),
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we thus deduce
2∑
i=1

〈divCie(uki ), ϕi〉H1
0 (Ω;Rd) ≤ C‖ϕ1 − ϕ2‖L1(Ω).

By choosing ϕ1 = 0d or ϕ2 = 0d we finally conclude. �

We now employ the above two lemmas, together with Theorem 4.1, in order to improve the
previous uniform bounds.

Lemma 4.4. For k = 0, . . . , T/τ there holds

uk ∈W 1,p
loc (Ω;Rd)2 for all p > 2, (4.4a)

γk ∈ C0,α
loc (Ω;Rm) for all α ∈ (0, 1), (4.4b)

and for every Ω′ ⊂⊂ Ω there exists a constant C ′ > 0 independent of τ (possibly depending on
p and Ω′) such that

max
k=0,...,T/τ

‖uk‖W 1,p(Ω′)2 ≤ C ′, (4.5a)

max
k=0,...,T/τ

‖γk‖
C0,α(Ω

′
)
≤ C ′. (4.5b)

Proof. We fix k = 0, . . . , T/τ , p > 2 and we first observe that by intersecting the set Ω with a
sufficiently fine cubic grid we may write it as

Ω =
N⋃
j=1

Ωj , where each Ωj is bilipschitz diffeomorphic to the open unit cube in Rd.

Pay attention that we are not requiring the subsets to be disjoint. We start working in a single
set Ωj introduced above. For i = 1, 2, by (4.3) we infer that

divCie(uki ) ∈ L∞(Ωj ;Rd), with ‖divCie(uki )‖L∞(Ωj) ≤ C.

The regularity Theorem 4.1 now yields ∇uki ∈ L
q
loc(Ωj ;Rd×d) for any q > 2 with

‖∇uki ‖Lq(Ω′j) ≤ C
′
j(‖divCie(uki )‖L∞(Ωj) + ‖∇uki ‖L2(Ωj)) ≤ C

′
j , for any Ω′j ⊂⊂ Ωj ,

where we exploited (4.2) in the last inequality.

By arguing as in [23, Proposition 2.5] we then deduce that uki ∈W
1,p
loc (Ωj ;Rd) with

‖uki ‖W 1,p(Ω′j)
≤ C ′j , for any Ω′j ⊂⊂ Ωj .

This readily implies (4.4a) and (4.5a), indeed for any Ω′ ⊂⊂ Ω one can easily find sets Ω′j ⊂⊂ Ωj

such that Ω′ =
⋃N
j=1 Ω′j .

We now fix k = 0, . . . , T/τ and α ∈ (0, 1). If k = 0 there is nothing to prove since γ0 ∈
C0,1

loc (Ω;Rm). If k ≥ 1 we consider p > d
1−α , so that by Sobolev embedding one actually has

un ∈ C0,α
loc (Ω;Rd)2 for any n = 1 . . . , k with

max
n=1,...,k

‖un‖C0,α(Ω′)2 ≤ C
′ max
n=1,...,k

‖un‖W 1,p(Ω′′)2 ≤ C ′, for any Ω′ ⊂⊂ Ω,

where Ω′′ is an open set with Lipschitz boundary such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω.
In particular, since g is continuous, for any l = 1, . . . ,m one deduces

max
n=1,...,k

‖gl(un1 − un2 )‖C0(Ω′) ≤ C
′.
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Moreover the discrete history variable γkl = max
n=1,...,k

gl(u
n
1 − un2 ) ∨ γ0

l is continuous in Ω since it

is a finite maximum of continuous functions, and for any Ω′ ⊂⊂ Ω there holds

‖γkl ‖C0(Ω′) = max
n=1,...,k

‖gl(un1 − un2 )‖C0(Ω′) ∨ ‖γ
0
l ‖C0(Ω′) ≤ C

′.

In order to show the validity of (4.4b) and (4.5b) we just need to control the Hölder seminorms
[γkl ]α,Ω′ for an arbitrary set Ω′ ⊂⊂ Ω. Let us fix two different points x, y ∈ Ω′; then there

are two possibilities: either γkl (x) = γ0
l (x) or there exists n̄ ∈ {1, . . . , k} such that γkl (x) =

gl(u
n̄
1 (x)− un̄2 (x)). In the first case we can estimate

γkl (x) ≤ γ0
l (y) + |γ0

l (x)− γ0
l (y)| ≤ γkl (y) + C ′|x− y|αd .

In the second case, instead, by using (g2) we have

γkl (x) ≤ gl(u
n̄
1 (y)− un̄2 (y)) + |gl(un̄1 (x)− un̄2 (x))− gl(u

n̄
1 (y)− un̄2 (y))|

≤ γkl (y) + C
2∑
i=1

|un̄i (x)− un̄i (y)|d ≤ γkl (y) + C ′|x− y|αd .

By the arbitrariness of x and y we finally conclude. �

We now introduce the piecewise constant interpolants (uτ , γτ ) of the discrete displacements
and history variable defined as{

uτ (t) := uk, γτ (t) := γk, if t ∈ [tk, tk+1),

uτ (T ) := uT/τ , γτ (T ) := γT/τ .
(4.6)

For conveniency, we also set wτ as{
wτ (t) := w(tk), if t ∈ [tk, tk+1),

wτ (T ) := w(T ).

For a given t ∈ [0, T ] we finally define

tτ := max{tk : tk ≤ t}.

We first show that such interpolants satisfy a discrete energy inequality.

Proposition 4.5. For every t ∈ [0, T ] and τ > 0 the following discrete energy inequality holds
true:

F(tτ ,uτ (t), γτ (t)) ≤ F(0,u0, γ0) +Wτ (t) +Rτ , (4.7)

where Wτ (t) =

∫ t

0

∫
Ω

2∑
i=1

Cie(uτi (s)) : e( ˙̀(s)) dx ds, while Rτ ≥ 0 is an infinitesimal remainder.

Proof. The proof follows arguing as in [23, Proposition 3.1] by observing that for any k =
1, . . . , T/τ assumption (Φ4) yields

K(uk1 − uk2, γk) = K(uk1 − uk2, γk−1 ∨ g(uk1 − uk2)) = K(uk1 − uk2, γk−1). (4.8)

�

In view of the bounds obtained in Lemma 4.4, we now deduce the following compactness
result.



POTENTIAL- AND NON POTENTIAL-BASED COHESIVE MODELS 25

Proposition 4.6. There exists a subsequence τj ↘ 0 and for all t ∈ [0, T ] there exist a fur-

ther subsequence τj(t) (possibly depending on time), and functions u(t) ∈ (H1
D,`(t)(Ω;Rd) ∩

C0,α
loc (Ω;Rd))2 and γ(t) ∈ C0,α

loc (Ω;Rm) for any α ∈ (0, 1) such that for all t ∈ [0, T ] there hold:

uτj(t)(t)
H1(Ω;Rd)2−−−−−−−⇀
j→+∞

u(t), and uτj(t)(t) −−−−→
j→+∞

u(t) locally uniformly in Ω,

γτj (t) −−−−→
j→+∞

γ(t) locally uniformly in Ω.
(4.9)

In particular one has (u(0), γ(0)) = (u0, γ0).
Moreover for all l = 1, . . . ,m the function γl is nondecreasing in time, and

γl(t, x) ≥ sup
s∈[0,t]

gl(u1(s, x)− u2(s, x)), for every (t, x) ∈ [0, T ]× Ω. (4.10)

Finally there holds u ∈ B([0, T ];H1(Ω;Rd)2) and for all Ω′ ⊂⊂ Ω and any α ∈ (0, 1) there also
hold u ∈ B([0, T ];C0,α(Ω′;Rd))2) and γ ∈ B([0, T ];C0,α(Ω′;Rm)).

Proof. The compactness result (4.9) can be proved exactly as in [23, Proposition 3.3] once we
have at our disposal the uniform bounds (4.5). In the same way, inequality (4.10) follows arguing
as [23, Proposition 3.3] since gl is a continuous function. All the other properties are simple
byproducts of the convergences (4.9) and the uniform bounds (4.2) and (4.5). �

We finally conclude by showing that the just obtained limit functions are an energetic solution
to the potential-based cohesive interface model.

Proposition 4.7. For every t ∈ [0, T ] the limit pair (u, γ) obtained in Proposition 4.6 satisfies
the global stability condition (GS) and the energy balance (EB) of Definition 1.4.

Proof. The first condition in (GS) is implied by (4.10), while the global minimality property
follows as in [23, Proposition 3.5] recalling assumptions (Φ4), (Φ5) and property (4.8).

As a consequence of (GS), arguing as in [6, Proposition 3.10] one can prove the lower energy
inequality

F(t,u(t), γ(t)) ≥ F(0,u0, γ0) +W(t),

by exploiting assumption (Φ5). The opposite inequality, which finally yields (EB), instead
follows by sending τj → 0 in the discrete energy inequality (4.7), see [23, Proposition 3.4] for
more details. �

4.2. Equilibrium solutions. We now focus on Theorem 1.9. We discretize the time interval
[0, T ] as in the previous section, but here we need to consider a different recursive scheme.
Given a pair (uk−1, γk−1) we first select uk ∈ (H1

D,`(tk)
(Ω;Rd))2 as a solution to (1.7) with

history variable at the previous step γk−1, namely satisfying

2∑
i=1

∫
Ω
Cie(uki ) : e(ϕi) dx = −

∫
Ω
T (x, g(uk1 − uk2), γk−1) · (ηk1ϕ1 − ηk2ϕ2) dx, (4.11a)

for all ϕ ∈ (H1
D,0d

(Ω;Rd))2 and for some

ηk ∈ (L∞(Ω;Rm×d))2 such that ηki (x) ∈ Dg(uk1(x)− uk2(x)) for a.e. x ∈ Ω. (4.11b)

Then we define γk as in (4.1)2.
The existence of a solution uk to (4.11) is granted by the well-known Kakutani’s fixed point

theorem (or better, by its infinite-dimensional generalization [12, 15]).

Theorem 4.8. Let S be a nonempty convex compact subset of a Hausdorff locally convex topo-
logical vector space, and consider a set-valued function R : S → 2S satisfying:
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• R(s) is nonempty and convex for all s ∈ S;
• the graph of R is closed, i.e. if sn → s, un → u, sn ∈ S and un ∈ R(sn), then u ∈ R(s).

Then, there exists a fixed point s ∈ R(s).

Corollary 4.9. Under the assumptions of Theorem 1.9, system (4.11) admits a solution.

Proof. It is enough to show that the following set-valued map admits a fixed point. We define

S :=
{
s ∈ (H1

D,`(tk)
(Ω;Rd))2 : ‖si‖H1(Ω) ≤ R for i = 1, 2

}
, with R > 0 to be chosen, and we

consider Rk : S → 2S which maps a function s ∈ S to the set of functions u ∈ (H1
D,`(tk)

(Ω;Rd))2

solving

2∑
i=1

∫
Ω
Cie(ui) : e(ϕi) dx = −

∫
Ω
T (x, g(s1 − s2), γk−1) · (η1ϕ1 − η2ϕ2) dx, (4.12)

for all ϕ ∈ (H1
D,0d

(Ω;Rd))2, as η ∈ (L∞(Ω;Rm×d))2 such that ηi(x) ∈ Dg(s1(x)− s2(x)) for a.e.
x ∈ Ω varies.

The set S is clearly nonempty and convex; moreover, it is compact if endowed with the weak
topology of (H1(Ω;Rd))2 (which is also metrizable on S, since it is bounded). Let us first show
that Rk is valued in S, up to choosing R large enough. Given u ∈ Rk(s), by taking as a test
function ϕ = u− `(tk) we infer

2∑
i=1

ci‖e(ui)‖2L2(Ω) ≤
2∑
i=1

∫
Ω
Cie(ui) : e(ui − `(tk)) dx+

∫
Ω
Cie(ui) : e(`(tk)) dx

≤ C‖T ‖L∞‖g‖C0,1(Rd)

2∑
i=1

‖ui − `(tk)‖L2(Ω) + C
2∑
i=1

‖e(ui)‖L2(Ω) (4.13)

≤ C

(
2∑
i=1

‖e(ui)‖L2(Ω) + 1

)
,

where we exploited assumptions (T 1), (g2) together with Korn-Poincaré inequality. Notice
that the constant C does not depend on s, thus the above chain of inequalities implies that
‖e(ui)‖L2(Ω) is uniformly bounded, and so again by Korn-Poincaré inequality one infers that
u ∈ S if R is large.

Recalling that by (g3) the set Dg(δ) is convex for all δ ∈ Rd, we also easily deduce that Rk(s)
is convex as well (and clearly nonempty) for all s ∈ S.

In order to apply Theorem 4.8 and conclude, we just need to show that the graph of Rk
is closed with respect to the weak topology of (H1(Ω;Rd))2. To this aim, consider sequences
sn ⇀ s, un ⇀ u weakly in (H1(Ω;Rd))2, such that un ∈ Rk(sn). In particular, let ηn ∈
(L∞(Ω;Rm×d))2 such that ηni (x) ∈ Dg(sn1 (x) − sn2 (x)) for a.e. x ∈ Ω satisfying (4.12) given by
the definition of Rk. Since g is Lipschitz, then ηn is uniformly bounded in L∞, so without loss

of generality we may assume that ηn
∗−⇀ η weakly∗ in (L∞(Ω;Rm×d))2. Hence, by means of

(g4), we deduce that ηi(x) ∈ Dg(s1(x)− s2(x)) for a.e. x ∈ Ω. Moreover, equation (4.12) passes
to the limit: indeed, on the left-hand side we may use weak convergence in H1, while on the
right-hand side we exploit the fact that

T (·, g(sn1 − sn2 ), γk−1)ηni ⇀ T (·, g(s1 − s2), γk−1)ηi, weakly in L2(Ω;Rd),
since it is the product of the weak convergent sequence ηni and of the strong convergent one
T (·, g(sn1 − sn2 ), γk−1) (this latter property follows by Dominated Convergence Theorem in view
of (T 1) and (g2)), and both of them are bounded in L∞.

We have thus proved that u ∈ Rk(s), namely the graph of Rk is closed, and we conclude. �
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From now on, the strategy is similar to the one presented in the previous section. We first show
uniform bounds for the sequence of pairs (uk, γk), which yield convergence of the corresponding
piecewise constant interpolants. We then prove that the obtained limit are indeed an equilibrium
solution to the non potential-based cohesive interface model.

Proposition 4.10. There exists a constant C > 0 independent of τ such that the bounds (4.2)
and (4.5) hold true.

Proof. The H1 bound (4.2) can be obtained as in (4.13) by taking as a test function ϕ =
uk − `(tk). Instead, the bounds (4.5) follow by arguing exactly as in the proof of Lemma 4.4:
the validity of (4.3) in the current framework can be indeed directly checked from (4.11a) by
means of (T 1) and (g2). �

We now consider the piecewise constant interpolants (uτ , γτ ) defined as in (4.6). Due to the
just obtained uniform bounds, we immediately deduce that the same results of Proposition 4.6
hold true also in the current setting. We thus conclude the proof of Theorem 1.9 if we show
that the limit pair (u(t), γ(t)) solves the equilibrium equation (1.8) for all times.

To this aim, we first introduce the piecewise constant interpolant ητ defined as in (4.6) where
the discrete values ηk are given by (4.11). Notice that, by (g3), without loss of generality we
may assume that

ητj(t)(t)
L∞(Ω;Rm×d)2∗−−−−−−−−−⇀

j→+∞
η(t), for all t ∈ [0, T ].

Moreover, by using (g4), we also infer that ηi(t, x) ∈ Dg(u1(t, x) − u2(t, x)) for a.e. x ∈ Ω.
Then, fix t ∈ [0, T ] and ϕ ∈ (H1

D,0d
(Ω;Rd))2. By (4.11a) and exploiting (T 2) together with the

definition of γk we observe that

2∑
i=1

∫
Ω
Cie(u

τj(t)
i (t)) : e(ϕi) dx

=−
∫

Ω
T (x, g(u

τj(t)
1 (t)− uτj(t)2 (t)), γτj(t)(t− τj(t))) · (η

τj(t)
1 (t)ϕ1 − η

τj(t)
2 (t)ϕ2) dx,

=−
∫

Ω
T (x, g(u

τj(t)
1 (t)− uτj(t)2 (t)), γτj(t)(t)) · (ητj(t)1 (t)ϕ1 − η

τj(t)
2 (t)ϕ2) dx.

By means of (4.9), and arguing as in the last part of Corollary 4.9, we can pass to the limit the
first and the last line above by weak convergence in H1 and L2, respectively, exploiting (T 1)
and (g2). Thus, equation (1.8) is satisfied and Theorem 1.9 is proved.
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